
. ' ·~

. ...

Energy Complexity of Logic Level Structures 1

TR90-010

Ab.ruazy, 1990

AkhilesbTyagi

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/ AtBrmative Action Institution.

Energy Complexity of Logic Level Structures1

AKHILESH TYAGI2

Department of Computer Science

University of North Carolina

Chapel Hill, N.C.

ABSTRACT

The objective of this paper is to develop a set of combinatorial techniques to compare the energy com

plexities of the static and dynamic design styles for a set of logic level structures such as a PLA, a gate

matrix array and a Weinberger array. We demonstrate these techniques by showing that the average energy

consumption of a dynamic PLA exceeds that of a static PLA. We also show that, on average, a dynamic

PLA is faster than a static PLA. This is consistent with intuition since one can trade power for delay. In

order to prove these results, we deal with a very general class of PLAs. If we restrict this class, we can do

more. In particular, we show that the choice of a design style for a data path control PLA depends on the

degree of parallelism of the data path. We extend these techniques to the general logic-level structures as

gate matrix arrays and Weinberger arrays. A lower bound on the average switching energy of the general

logic level structures is also derived. Our techniques are general enough to be applicable to most of the

application domains. We believe that our results give a mathematical justification within the limitations of

our model for picking one design style over the other for a given application domain.

1 Overview

Several functions have been analyzed for their energy consumption in the VLSI model of compu

tation [1], [9], (10], (11], [16] and (18]. In this paper, we look at a more structured medium of

computation, i.e., logic level structures. It is the regularity of a structure that gives us a better

handle on the energy complexity analysis. As for the scope of the structural analysis, indeed, all

1 A preliminary version of this paper appears in the Proceedings of the Stanford Conference on Advanced Research

in VLSI, MIT Press, 1987

'Research supported by NSF grant number MIP-8806169.

1

the functions are implemented with a handful of the structured components like PLA, RAM, ROM,

multiplexers etc. Our design methodologies teach us to decompose a given function into a few lower

level computation and communication primitives that are better understood. For each such primi

tive, we have a corresponding structure. Thus, this analysis applies to a structural implementation

of any function. What are the benefits of structural analysis vis a vis functional analysis? The

domain of a structural analysis technique is restricted to a set of well understood structures. Thus

the techniques are more powerful, giving rise to a stronger theory.

Our interest in the structure level analysis arose out of a practical need. During the design

of the Quarter Horse [8), a 32 bit CMOS microprocessor, we had agreed on the choice of a PLA

to implement our control path due to various reasons; flexibility of reconfiguring the control path

being the most important one. We were hoping to attain a clock period as close to 50 ns as possible.

Since the granularity of timing for an architecture is dictated by the speed of its control path, our

first target for the speed improvement was the PLA implementing it. We discarded the option of

decomposing the PLA personality matrix into a few smaller and equivalent PLAs as an alternative

due to its complexity and nonuniformity. The nonuniformity directly affects our ability to route

automatically the control lines from the PLA to the data path. Besides only a PLA with loosely

coupled states can benefit from such a decomposition. Thus the obvious choice we were left with

was to pick the fastest PLA design style. Due to various factors, our control of the fabrication

process being one of them, we did not consider complicated design styles like Cascode Voltage

Switch Level (CVSL) [7). Thus our choice was primarily between a static style or dynamic style

PLA implementation. The current state of knowledge did not resolve this question for us. This

paper is an attempt to answer the question.

Due to its regularity, a PLA is probably the most popular structure for the implementation of

random logic. Its simplicity also makes it the ideal medium for automating the layout process for

a random logic expression. Recently, a PLA has been the structure of choice for the control path

design in several microprocessors, as in Quarter Horse [8], Mosaic [13), and PP4 [15), primarily

due to the ease of reconfignration. Thus, a significant fraction of silicon area laid out today is

devoted to PLA design. It is no surprise, then, that a lot of effort has been devoted to finding

ways of optimizing a PLA at the description level (e.g. logic minimization [3)) as well as at layout

level (e.g. folding techniques [4), [6)). However, to the best of our knowledge, there have been

2

no attempts at mathematically analyzing the energy consumption or the delay of this structure.

The high performance architectures are reaching a point where power dissipation will be a serious

problem. Given this scenario, it is especially fruitful to pay attention to the switching complexity

of a PLA, since it is the control path in an architecture which does most of the switching.

In Section 2, we first outline the assumptions we have made about a PLA personality matrix.

This is followed by the energy analysis of static and dynamic PLA design styles in Section 3.

Section 4 deals with the energy complexity of general logic]eve] structures such as a Weinberger

array [19] and a gate matrix array [12]. Section 5 limits the personality matrices of PLAs to a

finite state machine and hence estimates the switching more accurately for this class of PLAs. In

the last section, we compare the speeds of two design styles.

2 Model

A PLA is completely specified by a collection of sum of products logic expressions [14]. Let there be

n input variables denoted by x1 , x 2 , ••• , Xn. A litem! refers to either a variable x; or the complement

of a variable x;. A product term consists of a Boolean and (A) of several literals. A complete product

term contains n literals, since each variable occurs in either the complemented form or in its normal

form. When a product term contains only (n - r) < n literals, it is said to have r don't cares.

A PLA output y; is specified by a Boolean or (v) of several product terms. A PLA personality

matrix specifies the sum of products form for all the outputs Yr, Y2, .•. , Yl in a matrix form. Each

product term is also referred to as a minterrdl. Note that this requires that we allow the circuits

under consideration to have unlimited fanin and fanout.

We will be counting only the switching of the wires. In asymptotics, the wires dominate the

complexity of even a regular structure like a PLA. In a static design, it may seem that when a pull

up is fighting against one or more pull-downs, a considerable amount of energy may be consumed,

thus violating this assumption. But, in a static design the pull-up transistors are so weak that the

energy consumed by the contention of a pull-up and a pull-down device is a very small fraction4 of

3 Although the correct term is implicant, we will continue to use minterm due to its wide acceptability.
41t can be as high as twice the energy stored in a wire. However assigning double the cost of a 0 - 1 transition

to a 1 - 0 transition does not change the relative standings of two styles. To retain simplicity and generality in

the model, we assign the sa.me energy cost to both the transitions.

3

the switching energy of a long minterm wire in poly layer. Thus we will assume that the switching

energy of a wire is proportional to its length in the layout.

A PLA satisfies the Uniswitch Model (USM), as defined in Kissin's paper and thesis [10], [11]. In

this model, any wire in an acyclic circuit can switch at most once, for an unpipelined computation.

To verify this, notice that a PLA does not switch any wire more than once in response to a clock

transition, since the state feedback paths (to build a finite state machine) are clocked. Notice,

though, that in the dynamic style a wire is first precharged and then is evaluated to logic level zero,

hence switching twice. We will still classify this behavior to be in Uniswitch model.

We will be referring to the state of a PLA very often in the following discussion. The state of

a PLA is given by the values of its min terms and the outputs. Note that the state of a PLA is

completely specified by the value of its input bits. Over a complete cycle of operation, the input

defines the final values of the minterms and the outputs.

Our objective is to compare the switching energy consumed by the static and the dynamic

design styles. Instead, we compare only the total amount of switching between two design styles.

Note that once a PLA personality matrix is fixed, the lengths of both the minterm and output

wires are fixed. And the switching energy just equals the product of the amount of switching and

the wire length. Thus the wire lengths can be factored out for the purpose of comparison since

they are the same for both the design styles. This also separates the inherent switching complexity

issues from the layout issues. The switching amount is a property of the personality matrix, but

the wire lengths depend on the particular layout. The clever layout techniques like folding - to

reduce the wire lengths - could very well be applied across both the design styles. This validates

our strategy of comparing only the switching.

A PLA is used in a wide spectrum of applications. This makes it very hard to say anything

about the distribution of state transition probabilities. In order to make the problem tractable,

we restrict a PLA personality in the following way. We assume that the domain of PLAs we are

considering has the property that, given Si is the current state, the next state could be any of

the 2n states with equal probability. Of course, in a real PLA certain state transitions are more

heavily favored than others. We do not have sufficient information about a PLA personality to

assign nonuniform weights to the state transitions. A more complicated modeling could attempt

to look at it as a Markov process. However, this is an attempt to capture every kind of PLA into a

4

single unified model. Alternatively, one could build a different model of a PLA for each domain of

applications. We take the later approach in Section 5, by modeling a control PLA for a data path.

In what follows, m is the number of min terms, n is the number of inputs, and, l is the number

of outputs for the PLA under consideration. Thus the total area of a PLA under either implemen.

tation, is 8(m (n + 1)). Having set the ground rules, we are ready to analyze the energy complexity

of PLA design styles.

3 PLA Energy Complexity

Note that the input switching is uniform to both the design styles. However the way the min terms

and the outputs are evaluated is very different. Thus we need to compare only the minterm and

output switching. We will consider both NAND and NOR style dynamic and static PLAs. A

p-type precharge scheme is more commonly used in today's CMOS dynamic design styles. For

this reason, in our discussion a dynamic style PLA refers to a p-type precharge scheme dynamic

PLA, where a node is precharged to logic Ievell.

We develop some notation before we go any further. Let M be the set of minterms. More

specifically, M has integer elements in the range [0, m- 1]. Notice that M is associated with the

personality matrix A for a PLA for a function f. From now on, the personality matrix A and the

function f will be implicit in the notation and will not be explicitly stated.

Definition 1 An onset for a states;, denoted by On(s;) ~ M is the set ofminterms that are active

(on) in the states; for a PLA computing a function f.

We will think of On(s;) as a bit vector oflength m. Let- On(s;) denote the bitwise complement

of On(s;). an (U)b denotes the bitwise 'A(V)' of a and b. The weight of a bit vector it, lal, is the

number of bit positions with entry 1 in a. What is the domain of values that On(s;) can assume?

To answer this question let us define 0 N(x) to be the set of active min terms with the input vector

being x. Let M = U;re{o,l}nON(x) be the union of active minterm sets over all the input vectors.

Clearly the domain of values for On(s;) is the set M.

Similarly, let 0 be the set of output bits with integer elements in the range [0, l-1]. Let Out(s;)

denote the set of output bits that are active (on) in states;. At times, we will think of Out(s;) as

a /-bit vector. Let 0 = U,;Out(s;) be the domain of values for Out(s;).

5

We count only the average switching, which is the total switching averaged over all the 22
n state

pairs. Note that this allows a PLA to stay in the same state in the next cycle. To determine the

average switching, all that we can assume is that the input values are uniformly distributed from the

set {0, l}n. What can we say about the vectors in M and 0? A PLA specifies a mapping from the

set of input vectors {0, l}n to the sets M and 0. The elements of M have certain characteristics

determined by the fact that an and plane implements an and of the input bits. This mapping forms

the basis of the min term switching analysis for the static and dynamic design styles in the following

subsection. Subsection 3.2 deals with the switching of the output lines. Section 4 contains the

analysis of average switching energy of two design styles if we did not know anything about the

mapping between the input values and the set M.

3.1 And Plane

In the following, we show that the average switching in the and plane of a NOR style dynamic

PLA is given by (;:-:-Pm, where every minterm on average contains r don't cares. A NAND

style dynamic design, on the other hand, requires 2.~-' switching. For a static PLA, both NAND

and NOR styles lead to an average switching of ~~~.-r;j 1) m. Notice that on average the NOR

style dynamic PLA consumes ~-r times as much energy as a NOR or NAND style static PLA.

In contrast, a NAND style dynamic PLA asymptotically consumes the same order of energy as a

static style PLA.

In the proofs that follow, we need to determine the average number of l's in a minterm set.

The following discussion addresses this issue. Let the input values be chosen from {0, l}n with a

uniform distribution. Since each minterm, on average, contains r don't cares, a min term must be

shared by 2r input values, i.e. for a given minterm 2r distinct input values will turn it on. One

implication of this fact is that eacll minterm set in a NOR (NAND) style PLA, on average, contains

m/2n~r ([m- 2.:'.:r]) l's. The following lemma proves it.

Lemma 1 Let each minterm, on average, contain r don't cares. Then the average number of 1 's

in a minterm set x EM, JxJ, is given by m/2n-r for a NOR style and plane. In a NAND design,

the average number of 1 's is given by m - 2.:'.:r .

PROOF: Consider a table of the following form. Each row corresponds with a minterm and each

column corresponds with an input value from {0, 1 }n. Thus there are m rows and 2n columns.

6

The position (i,j) in this table contains a 1 if the min term in the ith row evaluates to 1 for the

input assignment in column j. In the NOR case, only one assignment of values to the literals in a

min term evaluates it to 1, i.e., when all of n - r literals in a min term are set to zero. Since each

min term, on average, has n- r literals, it evaluates to 1 for 2• input assignments. Hence each row

on average contains 2r 1 's. The total number of 1 's in the table then is m2r. This averaged over

2n input values provides the average number of 1 's in a min term set (in a column in this table) to

be m/2n-r for the NOR case.

In the NAND case, a minterm evaluates to 0 only when each of its (n- r) literals is assigned

a 1. Thus 2r out of 2n input assignments give rise to a 0 in a row. Thus the total number of 1's

in a row is 2n- 2r with the total number of 1's in the table being (2n- 2r) m. Averaging it over

2n input values gives the average number of 1's in a NAND style and plane minterm as m -
2

:::._ •.

(2n-r 1)
This can also be rewritten as m 2• ;:- •

0

We will be using this lemma many times in the following proofs. We start the analysis with the

dynamic case, which is simpler.

3.1.1 Dynamic Design Style

The total switching from state Sp to Sc is denoted by Sw(sp, sc)· Let us estimate the switching,

Sw(sp,sc), in the precharged logic. In a dynamic logic, there is no coupling between two states

Sp and sc. State sP has no influence on the switching in State sc and State sc does not affect the

switching in State Sp. The two independent components of switching due to sc and sp are:

1. Precharging the minterms that were discharged in the previous state. This number is m -

2. Discharging the minterms that are not active in the current state. This number is m -

Thus, the expression for total switching in the dynamic logic case is given by:

(1)

7

Notice that the worst case switching in this case could be almost as large as 2m. The following

lemma determines the average switching in the dynamic case.

Lemma 2 The average switching for a NOR (NAND} style dynamic PLA and plane with r don't

cares per minterm is <~:-: -j) m (2n~-I).

PRoOF: The average switching is given by 2m - 2lxl by Equation 1, where lxl denotes the

average weight of an element in M. For the NOR case, the average weight of an element in

M is given by m/2n-r by Lemma 1. Hence the NOR case average switching is 2m (1 - 2"1__").
(zn-c 1)

Rearranging the terms, we get 2"_":1 m. In the NAND case, from Lemma 1 the average weight

is m (2n-r - 1) / 2n-r. Hence the average switching is zn~-1.

0

Note that n- r can take values in the range [1, n]. At least one literal is required to specify a

nontrivial minterm, giving rise to the lower end of the range. In the other extreme, all n literals

of a minterm may be specified. The dynamic NOR style average switching then ranges from m

to (;::flm. The upper range is approximately 2m. The NAND style average switching ranges

from 2:::_1 to m. Notice that this time the upper range of n - r gives rise to the lower range of

average switching. Also notice that this gap in the average switching of NAND and NOR dynamic

styles is not an intrinsic one. Our assumption regarding p-type precharge leads to this gap. In

ann-type precharge dynamic logic this relationship between NOR and NAND average switching

will be inverted. The NOR (NAND) style then will have m/2n-r-l (m (2n-r- 1)/2n-r-l) average

switching. Now let us look at the static design style PLAs.

3.1.2 Static Design Style

Let us consider the switching for a transition from a previous state, sp, to a current state, s,.

Arguing in a similar way as for Equation 1, one can see that the total switching, Sw(sp, s,), is

given by the following equation.

Sw(s,,s,) = !(On(s,) n (- On(s,)))l + !((- On(s,)) n On(s,))l (2)

From this equation, the worst case switching can be at most m when two min term sets differ in all

the bit positions. Contrast this with the dynamic case where the worst case switching could have

8

been almost as high as 2m. Note that for each pair of mlnterm sets u, v E M, we need to calculate

!Un ~ vi + I ~ i1 n vi. Also notice that this quantity equals exactly the number of bit positions

that i1 and v differ in. This is the Hammlng distance of i1 and v, which we shall denote by h(u, v).

Let us establish some notation before we go any further. The total Hamming distance of a

setS, denoted by h,(S), is "E,;;,;;esh(x,YJ. The average Hamming distance of a setS, denoted by

h.(S), is h1(S) j ISI 2 • Our basic strategy will be to count the total Hammlng distance of the set

M, h,(M) first and then to divide it by the total number of state pairs to derive ha(M). The

following lemma does that.

Lemma 3 The average switching for both NOR and NAND style static PLA and plane with r

d ' • • • b (2n-r -1) on t cares per mznterm zs gzven y 22(n r) 1 m.

PRooF: Note that 2n input values are mapped into 2n-r minterm sets. Hence the cardinality of

the set M must be zn-r.

We wish to determlne the average Hamming distance of M. Consider a row-wise enumeration

of all the m-bit vectors in M. Thus position (i,j) lists the jth bit of the ith element of M.

There are 2n-r rows and m columns in this enumeration. By Lemma 1, for the NOR case a row

in this enumeration on average has mj2n-r 1 's. Then the total number of 1 's in this table is m.

Hence the average number of 1's per column is 1. Thus each column, on average, has one 1 and

(2n-r- 1) O's. Let us count each column's contribution towards the total Hammlng distance. The

single 1 differs from 2n-r - 1 rows containing 0 in that column contributing (2n-r - 1) towards

the total Hammlng distance. Simllarly, each of 2n-r - 1 O's contributes a 1 towards the total

Hamming distance. Thus each column has a Hammlng distance of 2 (2n-r - 1) giving a total

Hamming distance of 2m (2n-r - 1). This quantity averaged over 22(n-r) row pairs provides an

average Hammlng distance of ~~(.-',) 1l m. Recall that the average switching is given by the average

Hammlng distance. The NAND case has the same average Hammlng distance.

0

Once again, letting (n- r) range over (1, n] gives [g;.:.\ m, m/2] for the average switching range.

The lower bound goes to m/2n-l in the limit. Notice that the expression for the average dynamic

switching in Lemma 2 is about 2n-r times as large as the one for a static PLA. The reason for

9

this gap is the independence of two states in the dynamic case. In other words, a dynamic design

has no memory. The current state sc does not remember, and hence does not benefit from any

information about the previous state, sp. Now let us consider the switching in an or plane.

3.2 Or Plane

This subsection determines the average switching in an or plane. Recall that there are l output lines

and m minterm lines in the or plane. Let each output function contains min terms on average. This

implies that the average number of 1's in each column on the output side of the PLA personality

matrix iss. Note that 1 ::; s ::; m. Then we will prove that the average switching in the or plane of

a NOR-NOR dynamic PLA is 21 [1- (1- 2-(n-r))l A NAND-NAND dynamic PLA or plane

switches 21 [(1- 2-(n-r))"] times. For a static style or plane, both NAND and NOR designs lead

to 21 (1- 2-(n-r))' [1 - (1- 2-(n-r)rJ switching. We will refer to the collection of l output

functions by the term output word. We will first prove a lemma analogous to Lemma 1 estimating

the average number of 1's in an output word.

Lemma 4 Let the average number of don't cares per minterm be r and the average number of

minterms per output function be s. Then the average number of 1's in an output word jj E 0,

I ill, is given by (1 - 2-(n-r) r l for a NOR-NOR PLA. In a NAND-NAND design, the average

number of 1's is given by [1 - (1 - 2-(n-r))']t. .

PROOF: The proof is very similar to the proof of Lemma 1. Let us concentrate on a particular

output bit Yj· Since every output function contains s min terms on average, we can draw a table as

in Lemma 1 with s min terms of Yj along the rows and 2n input assignments along the columns. Let

us first deal with the NOR-NOR case. Each of theses rows will contain exactly 2r 1's and zn- 2'

O's. Hence the probability of a given minterm (a row) being a 0 is 1 - 2-(n-r) and the probability

of its being a 1 is z-(n-r). For a NOR style or plane, an output bit evaluates to 1 if and only if all

of its s minterms evaluate to 0. The probability of all the s minterms being 0 is (1 - z-(n-r))•.

Thus the expected number of l's in an output word is (1 - 2-(n-r))s l.

Let us now consider the NAND-NAND case. Each minterm evaluates to 0 for 2' input values

and to 1 for 2n - 2r input values. An output bit is 0 if and only if all its minterms evaluate to

10

1. The probability of this event is (1 - 2-(n-r))•. Hence the expected number of 1 's in an output

word is [1 - (1- 2-(n-r))•]z.

0

Now let us analyze both dynamic and static style or planes using the same techniques as in

Subsection 3.1.

3.2.1 Dynamic Design Style

Once again, the switching in a transition from a state Sp to a state Sc is given by an equation

analogous to Equation 1.

(3)

This equation along with Lemma 4 gives rise to the following lemma.

Lemma 5 Let a PLA have r don't cares per minterm and s minterms per output on average.

Then the average switching for a NOR-NOR {NAND-NAND) style dynamic PLA or plane is

21 [1- (1- 2-<n-r)rJ (21 [(1- 2-<n-r)r]).

3.2.2 Static Design Style

The switching between two states sp and sc is given by an equation similar to Equation 2.

(4)

Thus we need to estimate the average Hamming distance of the set 0. The following lemma

does that.

Lemma 6 The average switching for both NOR and NAND style static PLA or plane with r don't

cares per minterm and s minterms per output is given by 21 (1- 2-(n-r)r [1 - (1- 2-(n-r)rJ.

11

PROOF: Let there be R elements in 0. We have to estimate the average Hamming distance

of the set 0, ha(0). Once again, let us enumerate the elements of 0 in R rows. Each column

corresponds with one output bit. By Lemma 4, each row has l (1- z-(n-r))' 1's for the NOR-NOR

case. Hence the average number of 1's per column is R (1- 2-(n-r) r and the average number

of O's per column is R [1 - (1 - 2-(n-r))
8

]. Thus the total Hamming distance of the set 0 is

2lR2 (1- 2-(n-r))' [1- (1- 2-(n-rJ)'j. Averaged over R 2 combinations, this gives an average

Hamming distance of 21 (1- z-(n-r))' [1 - (1- 2-(n-rl)'J. The NAND-NAND case also leads

to the same result.

0

Recall that (n- r) takes on values in the range [1,n] and sis in the range [1,m]. Notice once

again that the static style consumes less energy than either NOR-NOR or NAND-NAND dynamic

style for the or plane as well. On the other hand, NAND-NAND dynamic style or plane seems to

consume more energy than a NOR-NOR dynamic style or plane.

We can add up the average switching of both the and plane and or plane to get the following

corollaries.

Corollary 1
(2n-r -1)
2n r 1 m +

For a dynamic PLA in NOR-NOR (NAND-NAND) style, the average switching is

21 [1 - (1- 2-(n-r))'] (mj2n-r-I + 21 [(1 - 2-(n-r))']).

Corollary 2 For a static PLA, the average switching is given by ~;~.-',)'! m +' 21 (1- 2-(n-r))'

[1- (1- 2-(n-r))l

Notice that the static design consumes at least half as much energy as either of NOR-NOR

or NAND-NAND dynamic PLAs for any values of r and s. A more accurate comparison can be

obtained by assuming the lengths of min terms to be proportional to 2n + l and the lengths of the

output wires to be proportional to m. Then we get the following corollaries.

Corollary 3 For a dynamic PLA in NOR-NOR (NAND-NAND} style, the average switching en

ergy is proportional to <;:-~:P m(zn + t) + 2mz [1 - (1 - 2-rn-r)) ']

(m(2n + l)/(2"-r-I) + 2ml [(1- 2-(n-r))']).

12

Corollary 4 For a static PLA, the average switching energy is given by ;;(·.-·.)1l m(2n + l) +
2ml (1- 2-(n-r))' [1- (1- 2-(n-r))l

This shows that a static style PLA has a lower average energy consumption than a dynamic

style PLA. Within the dynamic style, the choice between a NOR-NOR or NAND-NAND design

depends on two parameters: the average number of don't cares per min term r and the average

number of minterms per output s.

4 General Logic Level Structure Energy Complexity

In the preceding analysis, we had fixed the mapping between the set of input values {0, 1}" and

the sets M and 0. This in turn fixed one characteristic of the sets M and 0: the average weight

of their elements. lf we do not bind this mapping, we can get a comparison of two design styles for

a general logic level structure.

We investigate the following question. Consider a layout structure implementing a multilevel

Boolean function with n input bits and m output bits. (Note that a PLA implements a 2-level,

AND-OR, Boolean function.) The two structuresthat are commonly used for this purpose are

Weinberger arrays [19] and gate matrix arrays [12]. Notice that these structures do not fix the

mapping function between the input values and the output values to be nand or nor. We wish

to derive a value for average switching of output bits in these structures. Note that we are not

counting the switching of intermediate values. (An intermediate value is a function of input values

that is not an output bit. For example, in f = (x1x3 + x2)(x1x4), XtX3 is an internally generated

intermediate value.) However the same results about relative energy complexity of dynamic and

static styles also apply to the intermediate values. Thus couting the switching of the intermediate

values will only magnify the relative standings of the two design styles.

Can the switching count still be used as a basis for switching energy comparison between two

design styles? Admittedly not all the output lines in a Weinberger array or a gate matrix array

have the same length. But for a given layout, these lengths are fixed. Thus the average switching

still forms a basis for switching energy comparison between static and dynamic design styles. In

most of the following discussion we also assume that no output bits are shared, i.e., each input

value gets mapped to a unique output value.

13

The following subsection estimates the average switching of the output bits when m = kn for

a small constant k > 0. What happens if m is allowed to be arbitrarily large with respect to n?

In Subsection 4.2 we derive some lower bounds on the average switching for a general logic level

structure for this case.

4.1 General Logic Level Structure Switching

We show the following in this subsection. On average, m output bits switch in a dynamic style

general logic level structure, while only m/2 bits switch for the static case. In the following

discussion, n is the number of input bits and m is the number of output bits. The input values are

uniformly distributed from the set {0, l}n. The state of a logic level structure is, once again, well

defined and is completely determined by the input value5 • Let 0 be the set of output bits with

elements from [O,m- 1]. Out(s;) is the set of output bits that are on in state Si. The domain of

values of Out(s;) is denoted by 0. Let us start with the dynamic case.

4.1.1 Dynamic Design Style

The expression for total switching in the dynamic logic case is very similar to Equation 1. The

switching between two states Sp and sc is given by:

(5)

We start with a simple case, when m :5 n. Since 2m :5 2n, this fixes the set 0 to be {0, l}m and

does not leave any room for the adversary to pick the vectors of 0 cleverly. Note that although we

had assumed that the output words are not shared, in this case the sharing will be necessary. For

this reason, we also assume that 2m output words are uniformly distributed. We will not need this

assumption for other lemmas and theorems.

Lemma 7 The avemge switching for a dynamic logic structure with m :5 n is m.

PROOF: First, we have to sum /Out(sp)/ + /Out(sc)/ over all pairs (sp,sc)· Let us visualize a truth

table (a lexicographically ordered enumeration) of m-bit vectors, as we state the proof. For a fixed

5 No feedback paths a.re permitted in a. multilevel logic description.

14

Out(sp) we fix a row and count each of the 2m rows with it. For 2m possible values of Out(sp), each

row is counted 2m times as Out(sc)· This sum taken over all the rows in the truth table equals (2m) x

(total number of J's in the truth table). Note that the total number of 1's in the table is m 2m-l.

When a row corresponds with Out(sp), it is counted once in conjunction with each of the 2m possible

Out(sc)· It provides another term of 2m m 2m-l. Thus the total switching is m 22m and the average

~~~ism. 0 

Most of the functions implemented with a general logic level structure in practice will have a 

very few output bits and will be covered by the previous lemma. But very often, the number of 

output bits m is a small constant multiple of the number of input bits n. As the next generalization, 

we allow for m to be that large. Hence, let us consider the case when m = kn for k > 1. As we 

will see in the proof of the following theorem, it makes a difference whether 0 is closed under 

complement, i.e., if u E 0 then ~ u E 0. We will call u E 0 an unpaired output word if~ u ~ 0. 

Theorem 1 Let the number of outputs m = kn with k > 1. Let there be 2p unpaired output 

words in the set of assigned output words 0. Then the average switching between any two states, 

Sw(s;, Sj) ism. 

PROOF: This time 0 contains 2n output words. Recall from the proof of Lemma 7 that each 

row is counted 2n times as Out(sp) and 2n times as Out(sc)· Each pair of complemented output 

words contributes m 1 's to the truth table. The number of complemented pairs is given by 2n-l -

p. Thus the number of 1's in the truth table due to complemented pairs is m (2n-l - p). To 

count the number of 1 's in the unpaired 2p output words, we estimate the average number of 1 's 

from a collection of sets containing 2p unpaired m-bit vectors. These sets are either of the form 

0{0, 1 }m-log(2P)-l {0, 1}log(2P) or of the form 1 {0, 1 }m-log(2P)-l {0, 1 }log(2P). This expression specifies 

zm-log(2P) sets of 2p vectors each. Notice that since the MSB is fixed to a 0 or a 1, all the 2p 

vectors in such a set are unpaired. The average number of 1 's in 2p least significant bit positions is 

log(2p)/2 by the counting technique of Lemma 7. Similarly, the middle m-log(2p)-1 bit positions 

contribute (m -log(2p)- 1]/2 to the average number of 1's. The most significant bit position can 

have a 1 with probability 1/2. This says that the average number of l's per vector in such a set is 

m/2. Hence, the total number of 1 'sin the truth table is m (2n-l- p) + m p, which equals m 2n-l. 

Along the lines of the proof of Lemma 7, the total switching is m 22n and the average switching is 

m. 0 

15 



Having analyzed the dynamic style, let us look at the static case. 

4.1.2 Static Design Style 

The expression for switchlng count in an output word is analogous to Equation 2. The switching 

from state Sp to sc, Sw( sp, sc), is given by: 

Sw(sp, s,) = I(Out(sp) n (~ Out(s,)))l + I((~ Out(s.)) n Out(s,))l (6) 

Thls is exactly the average Hamming distance of the set 0. We will show that the maximum 

average switchlng attainable is m/2 for a reasonable logic structure. A reasonable logic structure 

is a function with m being equal to k n, where k > 0 is a very small constant; since in practice that 

is how m and n relate. 

The expression in Equation 6 is symmetric with respect to the pair ( sp, sc)· That tempts us to 

count the overlaps between all the pairs of subsets of 0 and double it to get the switching totaled 

over all pairs (s;,sj)· When can that be done? The domain of values for Out(s;) and~ Out(sj) 

is 0. If 0 were closed under complement then we could collapse the second term in Equation 6 

on top of the first term. To make things even simpler we start with the assumption that m _:::; n. 

Once again, this case forces the output words to be shared. Hence for this case, we assume that 

the elements of 0 are uniformly distributed. Thls forces the set 0 to be {0, l}m. We will relax 

these assumptions as we go on. In addition to the sum of overlaps between all the unordered pairs 

of the subsets of 0, there is another term due to self overlap. 

Once again, our basic strategy will be to count the total Hamming distance of the set 0. It is 

time to prove the simplest result. 

Lemma 8 The avemge switching for a static logic structure with m _:::; n is given by m/2. 

PROOF: Let us first count the total Hamming distance (also referred to as overlap). Consider a 

lexicographlcally ordered enumeration of all the 2m output words. Each row in this enumeration 

is assigned to a unique set of 2n-m states. Thus the average switching from a previous state sP to 

a current state Be is given by the average Hamming distance of any two rows in this enumeration. 

Let us fix a row as the current output word (an m-bit vector x). For any column j (bit position 

16 



j), this row (vector x) differs from 2m-t other rows (vectors). Thus each bit position contributes 

a Hamming distance of 2m-t. For a fixed initial state, then, the total Hamming distance is given 

by m 2m-t. Any of 2m m-bit vectors could be the initial state vector. Hence, the total Hamming 

distance is m 22m-l. Dividing it by the number of state pairs 22m gives the average switching of 

m/2. 

0 

We illustrate the previous lemma by an example. Consider the following table of output values 

form= n = 2. 

oo 0 0 

OJ 0 1 

02 1 0 

03 1 1 

Consider the transitions from o0 to any other state o0 , OJ, o2 or oa. oo differs from o2 and o3 in 

bit position 1 contributing 2 to the total Hamming distance. Similarly o0 differs from o1 and o3 in 

bit position 0 contributing another 2 to the Hamming distance. It can be verified that each of Ot, 

o2 and o3 also contribute 4 to the Hamming distance. Thus the total Hamming distance is 16. We 

divide the total Hamming distance by the number of state pairs giving 16/16 = 1 as the average 

switching. 

The next generalization comes from considering the case when k > 1. For each one of 2n input 

states, we need to assign a distinct output word from a set of 2m > 2n output words (Now we 

assume that there is no sharing of min terms). Recall that 0 is the set of 2n output words that are 

assigned to one of the states. There are two cases, one when 0 is closed under bitwise complement, 

and the other, when it is not. Let us consider the first case. There are 2n-l complement pairs in 0. 

Intuitively, it seems likely that given a large number, 2m, of output words to choose from, we could 

intelligently pick 2n output words to lower the switching below Lemma 8 level. But as the following 

theorem shows, the switching only gets worse. The intuitive reasoning behind this phenomenon is 

as follows. Each complement pair has m 1 's between two of them. There are 2n-l such pairs. Thus 

the total number of 1's in the elements of 0 is m2n-t. The total number of bits in these entries 

17 



is m 2n. There are exactly half 1 entries and half 0 entries. Thus, the expected Hamming distance 

between any two elements of 0 is m/2. Recall that h( u, v) denotes the Hamming distance between 

il and v. We state and prove the theorem next. 

Theorem 2 Let the number of output bits m = kn with k > 1. Let the set of assigned output 

words 0 be closed under bitwise complement. Then the average switching between any two states, 

Sw(s;,sj), is given by m/2. 

PROOF: This time we will be counting the Hamming distance between complement pairs. Let us 

consider two complement pairs ( u, ~ it) E 0 and ( v, ~ v) E 0. We claim that the transitions from 

the output words from a complement pair (it,~ u) to a complement pair (v, ~ v) have a Hamming 

distance of 2m. There are two cases as follows. 

it= v or it=~ v: In this case, notice that the Hamming distance between it and ~ it is m. Thus 

the transitions il __.....~ it and ~ il ---+ il contribute 2m to the total Hamming distance. 

it,~ it ~ v: First consider the transition il __..... v. Let us assume that the Hamming distance of it 

and vis q. Then the Hamming distance of it and ~ vis m- q. Thus h( it, v) + h( it, ~ v) is m. 

Similarly, h( ~ it, v) + h( ~ il, ~ v) is m. Hence, all the transitions between two complement 

pairs contribute 2m to the total Hamming distance. 

There are 2n-l complement pairs. Thus, the total number of distinct complement pairs is given 

by 22n-2 • Hence the total Hamming distance is m 22n-t. Thus the average switching is m/2. 

0 

Now we consider the second case when the set 0 is not closed under complement. This gives 

rise to a range for the average switching depending on the number of unpaired output words, 2p, 

in 0. 

Theorem 3 Let m = kn with k > 1. Let there be 2p unpaired output words in 0. The average 

switching in this case is 
m2n (2n-l- p) 2p2 log(2p) 

+ 

18 



PROOF: We have to consider the interactions between three groups of the output words belonging 

to 0. Let set A consist of the output words that have their complements in 0. The cardinality of 

A is 2n - 2p. Let 2p unpaired output words belong to set B. Let the bitwise complements of 2p 

output words in B belong to set C. There are three terms in the expression for the total switching. 

• The first one is due to internal overlap between the elements of A. This analysis is similar to 

the one in the proof of Theorem 2. Thus, the total overlap is 2m (2n-l - p )2. 

• The second term is due to the interaction between set A and the sets B and C, due to the 

symmetry of Expression 6. Its contribution is m(2n-l - p )2p. 

• The third term approximates the contribution of the interaction of sets B and C. We calculate 

this contribution in the following discussion. 

This term's contribution to the total switching is H = I:u,iTEB h( il, v), which is the Hamming 

distance oft he set B. We cannot really estimate H, the Hamming distance of a set for an arbitrary 

set B. However, since we are interested in the average behavior, we can calculate the average 

Hamming distance of a set picked from a given collection of sets. In this case, all the sets in this 

collection must not be closed under complement and their cardinality must be 2p. Only log(2p) 

bits are required to specify a collection of 2p vectors. Let us fix the other m - log(2p) bits to 

zero. Note that for 2p < zm, at least one bit will be fixed to zero thereby guaranteeing that 

no set in this collection is closed under complement. We can specify this collection of sets as 

{om-log(2P) {0, 1pos(2P)}. Let us estimate the Hamming distance of this collection of sets. 

Let one be the least significant bit position and m the most significant bit position. For each 

bit position 1 ~ j ~ log(2p ), a bit vector u differs from 2log(2P)- 1 = p vectors. But for the bit 

positions log(2p) + 1 ::::; j ~ m, each vector contains a zero. Thus the left m - log(2p) columns do 

not contribute anything to the Hamming distance of this set. The right log(2p) columns contribute 

peach towards the Hamming distance. Thus, the Hamming distance of a set of 2p distinct m-bit 

vectors is log(2p) p2p. It has to be averaged over 4p2 pairs. This gives us an average overlap of 

log(2p)/2 and a total Hamming distance of 2p2 log(2p). 

All the three terms combined and averaged over 22n state pairs give us the average switching 

in the following form. 

19 



D 

2n (2n-l ) 
The first term in Theorem 3, m2in -p dominates as the number of unpaired output words 

2p tends to zero, and the average switching tends to m/2. As the ratio of unpaired output words 

rises, (p --+ 2n-l ), the second term dominates in the average switching expression. With this 

extreme, in the limit, the average switching is n/2. Thus, the average switching is a monotonic 

nonlinear function of p. 

To summarize, a static logic structure has a maximum average switching of m/2 (when 0 is 

closed under complement). Even in the general case, the average switching of a static structure 

is in the range (n/2, m/2]. In the following subsection, we derive asymptotic lower bounds on the 

amount of switching in dynamic and static designs for a general logic level structure as a function 

ofm and n. 

4.2 Lower Bounds on Average Switching 

We estimated the average switching for a PLA as a function of both m and n in Subsection 3. 

There was no restriction on how large or small m could be with respect to n. (Although m ;:c: n - r 

since at least 2n-r states are required). But our discussion of the average switching for a logic level 

structure so far has been very pragmatic in the following sense. The estimation of average switching 

for a logic level structure was limited to the practical domain where the number of minterms m is a 

small constant multiple of the number of inputs n. Our proofs were also constructive in nature and 

hence one could build a Weinberger array or a gate matrix array to achieve the claimed bounds on 

average switching. We will free our model of the practical limitations and ask the following question. 

What can we say about the average switching in dynamic and static logic level structures, if m 

were allowed to be arbitrarily large in comparison with n? We prove the following for m ;:c: n. For 

a dynamic style logic, the average switching is n (n/2log (~ + 2)); while for the static style the 

lower bound is n (n/4log (';: + 2)). Notice that the choice between the static style and dynamic 

style is immaterial in this asymptotic setup. We will first show the lower bound for the dynamic 

case. 

20 



4.2.1 Dynamic Style 

The dynamic style switching in a transition from state Sp to Sc was derived in Equation 5 on 

page 14. 

Sw(sp,sc) = 2m - jOut(sp)i - jOut(sc)l 

We need to average the expression jOut(sp)i + jOut(sc)l over all the state pairs (sp,sc) and 

subtract that from 2m to derive a lower bound on the average switching. We will derive an upper 

bound on the average value of jOut(s)i averaged over all the states s. Let us abstract the output 

words Out(s) as m-bit vectors. We need to estimate the average number of l's in an m-bit vector 

from the set 0. Since no output words are shared between input vectors, the cardinality of 0 must 

be zn. 

Thus the problem is as follows. How can we construct a set 0 with zn m-bit vectors with the 

maximum number of 1's? We show in Appendix A that the maximum number of l's in such a 

set is r2(n/4log(mfn)) using the following argument. LetS; denote the set of m-bit vectors with 

exactly m - i 1 's. The cardinality c; of S; is given by ( 7 ) , since that is the number of ways of 

choosing i bit positions for zero entries. Let 0 be Ul~o S; such that I:l~o is 0(2n). The average 

number of l's in a vector from 0 then is 0 (I;;' c;,,(m-i)). The proof of Lemma 12 in Appendix A 
Ei Cj 

essentially shows that the coefficient of the n/4log(m/n)th term in this equation provides a tight ., 
bound on the whole sum. Hence I;; c;jm-i) is O(m - n/4log([m/n] + 2)). 

L, Ci 

Lemma 9 For m 2:: n, the average number of 1 's in an m- bit vector chosen at random from a set 

0 of cardinality 2n is O(m - n/4log([mfn] + 2)). 

Thus the average value of Sw(sp, sc) is J2(2m - 2(m - nf4log([m/n] + 2))), which is 

J2( n/2log([m/n] + 2)). The following corollary states that this main result which can be derived 

from Equation 5 and Lemma 9. 

Corollary 5 Form 2:: n, the average switching in a dynamic style logic level structure is J2(n/2log([m/n: + 
2)). 

21 



4.2.2 Static Style 

Recall from Equation 6 on page 16 that the static style switching in a transition from state Sp to 

state sc is given by the following expression. 

This expression measures the Hamming distance of two m-bit vectors Out(sp) and Out(sc)· 

Thus deriving a lower bound on the average switching in the static case is equivalent to deriving a 

lower bound on the average Hamming distance of the set 0. Notice once again that the cardinality 

of 0 is 2n. In Appendix B we prove a lower bound of n/4log(m/n) on the average Hamming 

distance of a set S of cardinality at most 2n containing m-bit vectors. 

The following corollary states the main result that follows from Equation 6 and Lemma 17 in 

Appendix B. 

Corollary 6 Form 2: n, the average switching in a static style logic level structure is fl ( 4 log([mln] + 2))). 

Notice that a ROM requires m = 2n. In that case, by Corollary 5, the average switching for 

a dynamic style ROM is fl(l). If we consider a dynamic ROM that precharges every output line 

to 0 through ann-type precharge, then it indeed has 0(1) average switching. From Lemma 9 the 

average number of l's in an m-bit vector form= 2n is given by m- 1. Thus there is only one 

zero in the output word of each state giving rise to an active-low ROM. For a static style ROM, 

Corollary 6 requires fl(1) switching. Again, a static style ROM needs to switch only two output 

lines on average. 

5 Data Path PLA 

In the preceding discussion, we considered the PLAs that have them-bit vectors with m/2n-r l's 

as a min term set. We also assumed that from a given state, it was equally likely to go to any other 

state in the next transition. Given all these assumptions, we derived some general average case 

results. Can we do better if we have more information about the domain of PLAs we analyze? We 

answer this question with regard to a very interesting and important class of PLAs, the data path 

22 



control PLAs. We believe that most of the PLAs designed today are used as finite state machines 

(FSM). 

To be able to get a handle on the structure of the min term set M, we will make some simplifying 

assumptions about the behavior of the data path control FSMs. Note that the domain of our 

analysis is not limited to only a data path control PLA. The following assumptions hold for most 

other control applications too. A data path consists of many components like a shifter, ALU, 

register file and PC. Each such component has a cluster of control lines. When a component is 

logically activated, all the control lines associated with it become active over a macrocycle of the 

FSM. There are smaller microcycles, probably a clock cycle, which define the granularity of this 

cluster of control lines in more detail. This leads to the assumption that there is exactly one 

minterm which is associated with a cluster of control lines of one data path component. Note that 

this leads to an underestimation of the total switching. 

For the time being, we are ignoring the state counting process, which is the heart of a FSM. 

Later we will refine our model, and account for the energy required by the counting. Note that we 

still have some inaccuracy in our model due to the clustering of all the min terms for a data path 

component into one minterm. With each state transition in the state counting, only a subset of 

the cluster of control lines for a data path component switches. However, this information is too 

domain specific to allow for a general model. 

Observe that due to the assumptions above, this minterm set has some nice properties. Let 

I«- VI, the one sided distance of u and ii, be the number of bit positions where u has a one and ii 
does not. For a pair of min term sets u and ii, let the average one sided distances I u- VI :<:; k1 and 

Iii- ul :<:; k2, for some constants kr and k2 depending on the FSM. Let k equal max(k1 ,k2 ). Since 

we have assumed that each data path unit is controlled by one macro control line, the number k 

has the following interpretation. On average, at most k new components can be activated and at 

most k currently active components can be deactivated in going to a next state. Note that k is, 

in a rough sense, the degree of parallelism or pipelining of the given data path, since on average k 

data path components are simultaneously active. Let us put this down as a definition. 

Definition 2 Let k be maximum of the average values oflu- iii and Iii- ul over all the state pairs 

( u, ii). k will be known as the degree of parallelism for a given data path. 

23 



In the case of a static design, going from state s; to state Sj, on average k min terms will be 

turned off and k other min terms will be turned on. Thus, the average switching will be 2k. 

On the other hand, for a dynamic design the average switching equals 2m - 2x (average size of 

an onset). Assuming that k is a very good approximation to the onset size, the average switching 

here is given by 2m - 2k - 2c for a very small constant c. 

We could define p = kfm to be the degree of utilization for a FSM. Then, according to our 

previous discussion, a high value of p seems to favor the dynamic design style, while a low value of 

p favors the static design style. 

State Counting: As we mentioned earlier, state counting is an essential activity associated with 

a FSM. Typically, there is a microprogram for activating a data path unit consisting of several 

microcycles. For example, the first step in using anAL U in a dual bus architecture might be latching 

in the two operands from two buses. The current trend in simple instruction [8] architectures seems 

to be to keep the number of microcycles, t, the same for each data unit. This in turn leads to uniform 

length machine instructions. In any case, we can assume that activating each data unit involves 

counting up to t, where t can be taken to be the maximum of all data unit microprogram lengths. 

We now analyze the switching due to counting. 

There are flogtl output bits to count up to t. We assume the following sum of products form 

for the output bits of the state counter. 

(7) 

This equation holds for all i, 1 :$ i :$ flog tl. The first product in this expression asserts the 

condition for toggling x; from 0 to 1, that x; is 0 and every other lower bit is 1. The remaining 

terms give conditions for retaining x; at 1, once it is 1. Note that for the ith output bit, x;, there 

are i min terms in this expression. Also notice that the set of min terms for x; is disjoint from the 

set of min terms for x j for i f= j. 

Note that we are limiting a FSM to lexicographic order counting. Instead, we could have worked 

with the Gray code counting thus switching only one bit in going to the next state. However, it 

does not change the relative switching of two design styles, since the number of min terms required 

to specify Gray code goes up by a factor of flog tl. But we do not know how the other counting 

schemes will affect the switching energy of counting. 

24 



In a static design, the least significant bit, x1, toggles t times, x2 toggles t/2 times, and x; 

toggles t/2'-1 times. We state the result for a static design as a theorem. 

Theorem 4 Let a static design PLA, designed with the logic expression stated above, count up to 

t. The total switching in counting from 0 to t is given by t log t. 

PROOF: We refer to the complete enumeration of flogtl-bit vectors. Some observations about this 

table are as follows. Each of the flog tl columns has t/2 O's and t/2 1's. In the ith column (for 

1::; i:::; flogtl), there are tf2i clusters of 2(i-l) 1's. 

We analyze the switching due to a 1-cluster in the ith column. Note that the first term in the 

R.H.S. of Equation 7 is on only for the duration of the first 1 in the cluster. At that time all the 

other terms for Xi are off. The ( i- 1)st column determines when the second term for Xi is on. Xi 

is 1 everywhere in the 1-cluster. Thus for each 0-run in the ( i- j)th column, the (j + 1)st term 

in Equation 7 stays on. Thus it is the number of 0-runs in the section of the (i - j)th column 

induced by this 1-cluster (restricted to this 1-cluster's rows), that determines the switching of the 

(j + 1 )st term due to this 1-cluster. Summing this over 1 :::; j :::; i - 1 gives the switching due to 

one 1-cluster in the ith column, Switch( i) = 2 + 2 + 4 + ... + 2i-l. This series sums up to zi. 
Since the number of 1-clusters is t/2', the total switching due to Xi is (t/2')(2i), which equals t. 

Thus the total switching for counting is given by t log t. 

0 

How much switching energy do we need, to count in a dynamic logic design? The answer is 

given by the following theorem. 

Theorem 5 Let a dynamic design PLA, designed with the logic expression in the Equation 7 above, 

count up to t. The total switching in counting from 0 tot is given by~ t log2 t. 

PROOF: As in Theorem 4, let us estimate the switching due to one 1-cluster in the ith column. 

Note that the first term in the R.H.S. of Equation 7 stays on only until the last zero in the 0-cluster 

preceding a 1-cluster. Thus, for every one in a 1-cluster it is precharged and then discharged. The 

total switching of this term is given by 2(2'-1 - 1), where 2'-1 is the size of a 1-cluster. Every 

25 



other term switches twice (precharge and discharge) for each zero in columns i - 1 through 1. This 

switching equals ( i- 1) 2 (2'-2 )" The total switching due to 1 's is given by 

flog tl t 
I: -;[(2;- 2) + (i- 1)2i-l] 0 

i=l 2 

This sum simplifies to the expression t [log' t ~ 3105 ' - 2 + f J ~ t log2 t" 0 

Let k be the degree of parallelism as defined in Definition 2, m the number of data path units 

and t the length of the microprogram for a data path unit. Then, the total switching with state 

counting is given by the following corollaries" 

Corollary 7 The average switching for a data path FSM designed in the static style is given by 

2k(t log t)" 

Corollary 8 The average switching for a data path FSM designed in the dynamic style is approx

imately (2m- 2k)(t log2 t)" 

6 Delay Analysis 

Based on the functional energy-time trade-off result [18], we expect a dynamic PLA to be faster than 

a static PLA" We show that it is indeed the case, for an average PLA" The following assumptions 

informally define, what we mean by an average instance of a PLA" 

L Each minterm set on average specifies n - r literals and hence 2" input values share one 

min term set" 

2" from a given input vector x, it is equally likely to go to any other input vector fj, where 

x,fjE {0,1}n" 

At the risk of being redundant, we repeat the critical assumptions" Note that we are compar

ing the intrinsic differences between two design styles" The delay advantage gained by applying 

optimization techniques like folding is achievable in both the design styles" We assume that all the 

minterm lines have the same length in both the static and dynamic layouts, and they are routed in 

the same layer" In other words, all the minterms have the same capacitance and resistance" This 

26 



assumption is valid for a PLA that has not gone through any layout optimizations like folding. We 

assume that the above mentioned conditions are valid for the output lines, as well. The techniques 

required to compare the output line's delay will be exactly the same as those used for comparing 

the minterm delay. Thus, we will demonstrate our results by minterm delay analysis. 

6.1 Modified Delay Model 

The VLSI complexity theory has grappled with the issue of delay modeling and each of the syn

chronous, capacitive, and diffusion models have been justified [2]. However, for a more exact 

comparison of circuits as we do here, we have to refine our model to include in our delay calcula

tions, the strength and the type of a driver driving a node. Introducing this detail separates two 

commonly used design styles, static and dynamic, with respect to their speed. Although our inten

tion is to compare these two design styles for a PLA, this model applies to any function expressed 

in the sum of products form. The following description justifies the need for this refinement. 

Dynamic Style: An essential difference between static and dynamic design styles is that the 

dynamic style assigns the pull-up and pull-down phases for the same node to separate phases 

of a clock signal. Thus, a node is never pulled down and up, simultaneously. Let the time 

a minimum sized n-channel driver takes to pull down a unit area metal wire, be denoted by 

v. We will assume that the time it takes a minimum sized n-channel driver to discharge a 

minterm wire in a given PLA instance is also given by v, since the scale factor consisting 

of rninterm layer capacitance and area is the same for both the styles. Thus for the sake of 

comparison, our results will still be valid. We will not charge any time for a 0 -. 1 transition 

in a dynamic design, since the precharge phase can be made very very small compared to the 

evaluate phase. If it is a 1 -+ 0 transition, then the strength of this transition is defined to 

be the number of n-channel devices, k, pulling it down. This transition is charged a delay of 

vfk. In the SPICE experiments we performed on some real PLAs, this relationship seems to 

hold. 

Static Style: The following discussion applies to the nMOS static design style or to the pseudo

nMOS static design style. In a static design, when a node is to be pulled down to ground, 

there is a weak p-channel device fighting against one or more n-channel devices. The p-channel 

27 



device is designed to be weak enough so that it can be overpowered even by a minimum sized 

n-channel device. Typically, the channel length ratio for a p-channel device to a n-channel 

device is about two, in a static design (Note that this ratio is required in order to have 

reasonable noise immunity, as shown in the text book by Weste and Eshraghian [20] [page 

54]). In the SPICE experiments conducted by the author, the time a n-channel device took 

to discharge a node without a weak p-channel device pulling it up, was almost the same as 

the time in a static setup. Thus, we assume that a minimum sized n-type device takes time v 

to pull down a min term node even in the static design style. The time it takes for a p-channel 

device to pull up the same node is different due to lower mobility of a p-channel. Let J.lr 

be the ratio of n-channel mobility top-channel mobility, i.e., J.lr = J.ln/ J.lp· Let us denote 

the time, J.lrV, that a minimum sized p-channel transistor takes to pull up a minterm, by vP. 

Then a p-channel device with a channel width ratio of r, will take time rvp. This case, when 

a weak p-type pulls up a node, shows the main difference between the two design styles. As 

we previously mentioned, this time equals 1'J.lrV, where r is approximately two and J.lr in a 

typical process today varies between two and three. Thus a 0 ---. 1 transition takes ~ 5 times 

as long as the slowest 1---. 0 transition (strength 1, when only one n-channel device is on). 

To summarize the delay estimation, 0 -+ 1 transitions are expensive in a static design, while 

they come for free in a dynamic design. Each 0 ---. 1 transition takes ~ 5v delay, while a strength6 

k 1---. 0 transition costs only vjk. In the next section, we show that an average PLA instance has 

many 0 -+ 1 transitions, hence proving our claim. 

6.2 Dynamic vs Static PLA Delay 

Theorem 6 The asymptotic average time to switch a static PLA is ~ 5 times as long as the 

average time to switch a dynamic PLA. 

PROOF: Let us again visualize a lexicographically ordered enumeration of2n-r m-bit vectors in M. 

We wish to determine the average number of 0 --> 1 switchings per transition. This is essentially 

the number of positions where Sp contains a 0 and sc contains a 1. It seems somewhat like a one 

6 Recall that a transition has strength kif k devices are simultaneously changing the state of the same node in the 

same direction. 

28 



sided Hamming distance, ho( il, v), where we count only the positions with a 0 in i1 and a 1 in 'ii. 

By Lemma 3, this average one sided Hamming distance is given by <~;(: -;:)> m. This multiplied by 

~ 5v gives the average static evaluation time, while a factor of v estimates the dynamic evaluation 

time. Hence the asymptotic average time to switch a static PLA is ~ 5 times as long as the average 

time to switch a dynamic PLA. 

0 

Note that in this delay model, the superiority of a dynamic design over a static design can be 

proved for any logic expression by showing that a majority of transitions are from zero to one. 

In practice, we have the same clock period for each transition. Hence we do not have to show 

that almost all the transitions are the zero to one kind. Even if one transition has a 0 __, 1 

switching component, from practical considerations the clock period will have to be long enough 

to accommodate it. 

7 Conclusions 

We raised the question, "How do dynamic and static design styles compare in terms of energy 

consumption and speed?". For a PLA implementation, the answer depends on two factors, r- the 

average number of don't cares per min term and s- the average number of min terms per output bit. 

Corollaries 3 and 4 provide simple expressions to determine this. A silicon compiler presumably 

could use these expressions to make a choice between two desi,n styles. 

The result for general logic level structures is more clear-cut. The average switching in the 

dynamic case is about twice the average switching in the static case. On the other hand, as the 

number of output bits m grows asymptotically larger than the number of input bits n (as in a 

ROM), both the styles consume the same order of energy. The expected delay of a dynamic style 

logic, however, is approximately 5 times smaller than that of static style logic. 

There are several related open questions that we did not address in this paper. We still have not 

compared different CMOS design styles such as Domino, NORA, CVSL etc. for their relative energy 

consumption. Given a function of n input bits and m output bits and its domino implementation 

with k domino stages, it is hard to determine a reasonable distribution of these input and output 

29 



bits among k stages. Recently there has been some activity in the area of decomposition and 

factorization of finite state machines [5]. Can our analysis be carried over to this kind of FSM 

synthesis and used as an optimization criterion? 

References 

[1] A. Aggarwal, A. K. Chandra, and P. Raghavan. Energy Consumption in VLSI Circuits. In 

ACM Symposium on Theory of Computing, pages 205-216, ACM-SIGACT, 1988. 

[2] G. Bilardi, M. Pracchi, and F. P. Preparata. A Critique of Network Speed in VLSI Models of 

Computation. IEEE J. of Solid-State Circuits, August 1982. 

[3] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic Minimization 

Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Boston, Mass., 1984. 

[4] G. De Micheli and A. Sangiovanni-Vincentelli. PLEASURE: A Computer Program for Sim

ple/Multiple Constrained/Unconstrained Folding of Programmable Logic Arrays. Memoran

dum No. UCB/ERL M82/57, U.C. Berkeley, 1982. 

[5] S. Devadas and A.R. Newton. Decomposition and Factorization of Sequential Finite State 

Machines. In Proceedings of Sixth IEEE International Conference on Computer-Aided Design, 

pages 148-151, 1988. 

(6] G. Hachtel, A.R. Newton, and A. Sangiovanni-Vincentelli. An Algorithm for Optimal PLA 

Folding. IEEE Trans. on CAD of ICs and Systems, April 1982. 

(7] L. G. Heller, W. R. Griffin, J. W. Davis, and N. G. Thoma. Cascade Voltage Switch Logic: A 

Differential CMOS Logic Family. In Proceedings of the IEEE International Solid state Circuits 

Conference, IEEE, February 1984. 

[8] S. Ho, B. Jinks, T. Knight, J. Schaad, 1. Snyder, A. Tyagi, and C. Yang. The Quarter Horse: 

A Case Study in Rapid Prototyping of a 32-hit Microprocessor Chip. In IEEE Proceedings 

of the International Conference on Computer Design: VLSI in Computer, IEEE Computer 

Society, 1985. 

30 



(9] G. Kissin. Functional Bounds on Switching Theory. In Chapel Hill Conference on VLSI, 

U.N.C., Chapel Hill, Computer Science Press, 1985. 

[10] G. Kissin. Measuring Energy Consumption in VLSI Circuits. PhD thesis, Department of 

Computer Science, University of Toronto, Toronto, 1987. 

(11] G. Kissin. Measuring Energy Consumption in VLSI Circuits: a Foundation. In ACM Sympo

sium on Theory of Computing, ACM-SIGACT, 1982. 

[12] A. D. Lopez and H. S. Law. A Dense Gate Matrix Layout Method for MOS VLSI. IEEE 

Transactions on Electron Devices, ED-27:8, August 1980. 

[13] C. Lutz. Design of the Mosaic Processor. Masters Thesis, Computer Science Dept., California 

Institute of Technology, 1984. 

[14] C. Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley, Reading, Mass., 

1980. 

[15] W.D. Moeller and G. Sandweg. The Peripheral Processor PP4: A Highly Regular VLSI 

Processor. In Proceedings of 11th International Symposium on Computer Architecture, 1984. 

[16] L. Snyder and A. Tyagi. The Energy Complexity of Transitive Functions. Technical Re

port TRCS-86-09-07, Dept. of Computer Science, University of Washington, Seattle, 1986. 

(17] G. B. Thomas. Calculus and Analytic Geometry. Addison-Wesley, Reading, Mass., fourth 

edition, 1969. 

[18] A. Tyagi. The Role of Energy in VLSI Computations. PhD thesis, Department of Com

puter Science, University of Washington, Seattle, 1988. Available as UWCS Technical Report 

Number 88-06-05. 

[19] A. Weinberger. Large Scale Integration of MOS Complex Logic : A Layout Method. IEEE 

Journal of Solid State Circuits, SC-2:4:182-190, December 1967. 

[20] N. Weste and K. Eshraghian. Principles of CMOS VLSI Design. Addison-Wesley, Reading, 

Mass., 1985. 

31 



Appendix 

A Upper Bound on Average Weight 

Let S' be the set of 2m m-bit strings. We wish to build a set S of at least 2n of these strings that 

contains maximum average number of 1 's per string. We assemble a set S ~ S' with cardinality 

not exceeding 2n that has the maximum average weight for a set of its size. The average weight of 

S definitely constitutes an upper bound on the weight of any set containing 2n m-bit strings. How 

is the set S built? Let S; (of cardinality c;) be the set of all the strings in S' with m- i l's. The 

greedy algorithm below constructs the set S. cs denotes the cardinality of set S. 

s = 0; cs = 0; i = 0; 

while (cs + c;) ~ 2n do 

S SUS;; cs = cs + c;; i = i + 1; 

end while 

Let i 11 be the index of the set S; that was last included in S, i.e., this algorithm exits with 

i = i 11 + 1. The problem is to find an approximation i 1 to i 11 such that l::l~o c; < 2n. Then the 

average weight of a set containing atleast 2n m-bit strings W(m, n) is given by 

W(m,n) = 0 (L:f c; ~m- i)) (8) 
L; c; 

Let us first estimate c;, the number of all the m-bit strings with weight m - i. c; is just the 

number of ways of placing i O's in m positions. This is given by ( : ) . 

.... 0:: ·:·:::: :~:::!::::·{ ( 7T'"( 7T T:l ~' ':'"( ·:)} L::~:~ 
( 7 ) is at least as large as L:f,:J ( 7 ) for j ~ m/3. This fact helps in the following way. We 

32 



> 1/2 then !t(i') provides a lower bound on W(m,n). Hence the value of i' we 
m 

' 
choose later must satisfy the relation i' :<::; mj3. 

Before we can prove Lemma 10, let us develop some notation. Let Sm,j denote L:{=o ( 7 ) . 
Let bm,i denote ( 7 ) . Then the following lemma holds. 

Lemma 10 In the sequence {bm,i}f,;0 , bm,j 2:: Sm,j-1 for j :<::; m/3. 

PROOF: Note that for j $ mj3, bm,;/bm,j-1 2:: 2. To see it, let us consider the ratio bm,;/bm,j-1 = 
m-j+1

• This ratio is larger than 2 for j $ m/3. The remaining proof is by induction. 

inductive hypothesis: bm,j 2:: Sm,j-1 for j $ m/3. 

basis: For j = 1 (assume m > 3), sm,O = bm,o = 1 and bm,1 = m. 

inductive step: Let the inductive hypothesis hold for all j < l $ m/3. Consider sm,l-1 

s + b <by inductive hypothesis b 1- + b 1- . And since 2b 1- < b 1 it shows that m,l-2 m,l-1 _ m, 1 m, 1 m, 1 _ m, , 

D 

Now we claim that 4 log("m/n) is a valid choice for i'. Notice first that for m 2:: 2n, 4 log(:n/n) $ 

m/3. Another condition that i' must satisfy is 'Ll~o c; $ 2n. It turns out that due to Lemma 10 

and the fact that i' $ m/3, this condition reduces to the condition that c;' = 0(2n ). If c;' = 

( ; ) is 0(2n) then by Lemma 10 'Ll~0 c; is also 0(2n). But we are looking for an i1 sucll that 

33 



Z::::i~a c; ::; 2n. Let c;' be 0(2n) with a proportionality constant of K. By Lemma 10, c;,_1 will 

be at most ~ 2n. In general, Ci' _ j will be at most f, 2n. Hence c(i' -log K) ::; 2n. Since we are only 

looking for a lower bound on i' and ( i' -log K) is D( i'), all that we require of i1 is that Ci' be 0(2n ). 

We claim that cn/4 log((m/n)+ 2)) is 0(2n). We only need to show that ( m ) is 
n/4log[(m/n) + 2]) 

0(2n ). We state and prove this claim as a lemma. 

Lemma 11 Let m and n be two positive integers such that m 2: n. Then ( ==:!!~=.,...,.,. 
4log([m/n[ + 2) 

PROOF: We consider two cases, one: when m 2: n 2 , and two: when n ::; m ::; n2 • 

m 2: n2
: Let us consider ( 7 ) . It equals m(mi(;~l(:::;-i+l). For non-negative m and i, the largest 

fraction among ';', ';'::1
1 , ••. , m-1i+1 is m-1i+l ::; m. Thus an upper bound on ( 7 ) is mi. 

. ,-Fori= 4 tog{;n/n}' this upper bound becomes m 4 log(m/n). This equals (mn/Iogm) 41ogffi/n)_ 

mnf!ogm is 2n. For m 2: n2, 41~;f:/n) < 1. Hence ( m ) ::; 2n. Note that 

4Jog/!n/n) 

( 
m ) $ ( ~ ) since 4 log(m/n) ::; m/2 for the range of interest. 

4log([mfn] + 2) 4log(m/n) 

n::; m ::; n2: Stirling's approximation fork! is given by v'hl( ~ /, where e is the inverse natural log 

of one. This is a tight bound in asymptotics. Then ( m ) is e (,fiii . ../'i1mi m/e m . ) • 
i 2"KiU/e)' 2"K(m-i)((m-i)/e)=-• 

This equals )I;J;(:-i) (';' ); (m~i) m-i. Note that the last term in this expression, ( m~i) m-i 

equals ( 1 + m~i) m-i. We claim that this expression has an upper bound of ei. Let us prove 

it. 

( 
. )m-i Claim: 1 + -•-. m-• 

l/ ln(l+~l 
PROOF OF THE CLAIM: (1 + x) "'is e • . It is well known from any calculus text book 

[15] that lim,.-o(l + x )11"' = e. This requires taking the limit of the exponent of e in this 

34 



expression, In(~+x), using !'Hopi tal's rule. The exponent of e, In(~+x), goes to 1 in the limit 

as x --+ 0. As x increases, this exponent can only decrease since ln(1 + x) has a slower growth 

rate than x. Another way to see that (1 + x )11x is a decreasing function of x is a.s follows. 

The derivative of (1 + x)llx with respect to X is given by (1 + x)11x c.'~x - ln(;txl). This 

expression is always negative for x > 0. Thus a value of x greater than 0 only makes this 

expression smaller than e. This implies that (1 + x )11x is e" for a constant c :$ 1. 

Now notice that (1 + m~.)m-i is equivalent to [(1 + x)(llx)r with x = (m~i)" Notice that 

form> k, x > 0. Since (1 + x)11x = e" for a c :$1, (1 + m~i)m-• :$ ei. 

END OF CLAIM 

For i = 4log([,:'/nl+2), an upper bound on ( 7 ) is given by the following expression. 

~(B) 
1 ~(m)'~ VfiV i(m - i) T e' 

The factor . 12,,(';. i) is 2Iog([mlnl~2) m . In asymptotics, when m > > n, this term 
V 1rn ( m Uog([rn/n]+2}) 

is 0(1/,fii). Even for m = 3k though, this term equals ( log~ ) . Hence this square 
7r n- 4log3 

root term is 0(1) for n < m :$ n2 • Now let us consider Term (A). ('T)i is given by 
n/4 

(';; 4log([m/n] + 2))(nl4log([mln]+2)). This ha.s an upper bound of (m/n)'••(=/n) ( 4log([m/n]+ 
3n74 ((J 14 ) 2+logloR(fmlnJ+2)) 

2)) 3 log([m nl+2) which in turn is 2(n/4) 2 n 3 log(lm/n +2 ) • 

Now consider Term (B). ei equals zi!oge. This is given by z(n loge)1(4log([mlnl+2)) or alterna-

((3nl4) 1
" • ) tively by 2 3to<(lm7nl+z) . Terms (A) and (B) combined together give z(n14 ) 

(( I ) [ '•••+2+'••''•\fm/nl+>lj) r 1 1 ) 2 3n 4 alog([m/n+ 2 ) • Form> n the fraction loge+Z+loglog( m n +2 evaluates to a 
- ' 3log([m/n]+2) 

v(alue le: than )1. In particular, for m = n it evaluates to .8637. 

is O(zn). 

4log([,:'/n]+2J 

Hence for n2 > m ~ n, 

D 

Now we show that Lemma 11 indeed leads to a good lower bound on the average weight W(m,n). 

Lemma 12 Let m and n be two positive integers such that m ~ n. The average weight of a set S 

containing at least m-bit vectors, W(m,n) = O(m - n/4log([m/n] + 2)). 

35 



PROOF: Notice that form 2: n, n/4log([m/n] + 2) :::; m/3. Equation 8 gives an upper bound 

(
L:'' c· i) ., ( m ) of D ira;, on W(m,n), provided I:i i :::; zn. Let us use n/4log([m/n] + 2) fori'. 

Lemma 11 shows that form 2: n .( ~ ) is 0(2n). Hence ci' = ( ~ ) is 
4log([m/n]+2) 4log([m/nJ+2) 

0(2n). Lemma 10 states that since n/4log([m/n]+2):::; m/3, L;~6••U,;;/•i+') l) c; :::; cn/4log([m/n]+2)· 

h "'(4log([,;;/n)+2)) < 2 d h • 0(2n) T us L-i=O c; _ Cn/4log([m/n]+2) an ence IS • 

"(""n/4log([tn/nJ+2) ( ") n 

N 1 t t . t ] b d L..-; o Ci m-• ur t d ]' th t "'4log([m/n}+2) . ow e uses 1ma e a ower oun on L~/4 log([m/n]+2) c, . vve no e ear 1er a Wi c~ 

is EJ(cn/4log([m/n]+2J)· Hence Equation 8 translates into W(m,n) = O(m - n/4log([m/n] + 2)). 

0 

B Lower Bound on Average Hamming Distance 

Before we prove a lower bound on h.(O), let us prove a lemma analogous to Lemma 10. Once 

agaln, let bm,i denote ( 7 ) . Let s~,j denote I:{=o ( 7 ) ( 7 ) · 
Lemma 13 In the sequence {b;,,;}z;0 , b;,,j 2: s~,j- 1 for j :::; m/3. 

PROOF: Note that for j:::; m/3 < m/(1 + v'2), b;,jb;,,j_1 2: 2. To see it, let us consider the ratio 

bj/b]_1 = (m-jpl'. This ratio is larger than 2 for j :::; m/(1 + v'2). The remalning proof is by 

induction and is identical to the proof of Lemma 10. 

0 

The strategy to derive a lower bound on h.( 0) is as follows. We will construct a set S of m-bit 

vectors that has the minimum average Hamming distance for its size. We also show that adding 

anY more strings to Swill only increase the average Hamming distance within the range of interest. 

Thus any setS' with JS'J 2: JSJ satisfies the condition, h.(S') 2: ha(S). Note that JOJ = zn. Hence 

a set S of size no more than zn will provide a lower bound on the average Hamming distance of 0. 

Thus ha(S) is a lower bound on h.(O) for a carefully selected setS. Let us first describe how this 

set S is constructed. 

36 



Let Sm,i denote the set of aJl them-bit strings with exactly i 1's. Thus Sz,o contains only 00 

and S2,1 contains 01 and 10. There are ( 7 ) strings in Sm,i· We claim that a set of the form 

Sk = Uf=oSm,i, fork::; m/2, has the smallest average Hamming distance for its size. As we saw 

in Appendix A, fork = nf4Iog(m/n), I Uf=o Sm,il ::; 2n. Thus for the range of our interest, 

Sn/4 log(m/n) can be chosen for S and it will indeed be a set of minimum average Hamming distaoce 

for its size. 

Let dk denote the average Hamming distance of the set Sm,k· Also let dj,k denote the average 

Hamming distaoce between the sets Sm,j and Sm,k· (The average Hamming distance between two 

sets X andY is given by I:,efxli~~(x,YJ .) Let us first derive the values of dk and di,i+i· 

Lemma 14 The average Hamming distance of the set Sm,k as defined above, dk, is given by 2k(m

k)fm. The average Hamming distance between two sets Sm,i and Sm,i+i• denoted by di,i+j is 

im-;,-j + (i + j)m,;i. 

PROOF: Let us first estimate dk. Note that ISm,kl = ( : ) . Consider an enumeration of 

aJl the vectors in Sm,k with one vector per row and with the lth bit of eacli vector in the lth 

column for 1 ::; l ::; m. Each column in this enumeration contains ( m-
1 

) 1's, since that is 
k-1 

::::~~ ::.~~:.: ::: ::·(~"'"' r :~:· r :'· (~·: 7 r ,fu:,::·~~~::. :: 
rows containing ( m-

1 
) 1's contribute ( m-

1 
) ( m-

1 
) towards the total Hamming 

k-1 k-1 k 

distance. Similarly the rows containing zeros in that column contribute t(h:ks-~m

11
e )am(ou:tk~o1 t)he. 

total Hamming distance. Thus the total Hamming distaoce of Sm,k is 2m 

-~-r-~r-'-7-'----.,..--'--, which equals 2k(m- k)fm. For 1 ::; k::; (m- 1)/2, dk is 

37 



m-1 \ m-1 +(~-l)(m-1) 
i+j-1 ' •-1 •+J 

ha ( Sm,i, Sm,i+j) is m ...l...---~!..-..L,--~-r-'--,---'-~-----''-, which is i m-:,- j + ( i + 

-)m-i J --:;;;-. 

m m 

' i+j 
' I 

0 

Now let us prove our clalm about the set Sk being the right kind of set to derive a lower bound 

on the average Hamming distance. 

Lemma 15 The set Sk = Uf=oSm,i• for k :$ ( m - 1)/2 and Sm,i as described above, has the 

minimum average Hamming distance of a set of its cardinality. 

paoo F: The proof is by induction on k. 

inductive hypothesis: For Sj = u{=0 Sm,i, for j :$ (m- 1)/2, ha(Sj) :$ h.(S) for any set 

S\; {0,1}m with !SI2: !Sj!· 

basis: Consider the case j = 0. The set 50 = {000 .. · 00}. This set has an average Hamming 

distance of 0 and no other set of cardinality 1 has a lower average Hamming distance. 

inductive step: Let the clalm be true for all j < k. Let us consider the set Sk = Uf=0 Sm,i· We 

h~ve to prove two things. One, given that we are building on top of the set Sk-l, Sm,k is the best 

set to add; two, there is no other set of cardinality !Sk! that has a lower average Hamming distance. 

38 



Let us prove the first claim first. Consider a set S', a small perturbation on Sm,k> to extend 

sk-1 by ISm,kl elements. The total Hamming distance of sk-1 uS', h,(Sk-1 uS') is h,(Sk-1) + 
h,(S') + h,(Sk-1,S'). On the other hand, h,(Sk) = h,(Sk-1) + h,(Sm,k) + h,(Sk-1,Sm,k)· Let 

S' contain one vector X' with k + 1 1's, where X' is essentially derived by adding a 1 to a vector 

x E Sm,k in the lth bit position. This is the smallest perturbation on Sm,k· Let us estimate h,(S'). 

:::~:::~·:,b;. ,:: :~, r: ~: J : ... ~.~ ::,· (~ :·· 'F'::: ,::~ ::: ::::,: 
distance contribution of this column is 2 [ ( ( : ~ 

1

1 
) + 1) ( ( m: 1 

) - 1)]. This equals 

2 ( : ~; ) ( m: 1 
) + 2 ( ( m: 1 

) ( : ~; ) - 1). The contribution due to this 

extra 1, 2 ( ( m: 1 
) - ( : ~; ) - 1) ;?: 0, since fork :; (m- 1)/2, ( m: 1 

) is a 

monotonically increasing function of k. Thus the total Hamming distance of S', h,(S');?: h,(Sm,k)· 

'" :: ':: ·.:·:=~~(::~~:· r~: :: r~~;s) ,: ·::::.~,::::·~~;:: 
distance of the vector X' with Sm,i· h,(X', Sm,i) = h,(x, Sm,i) + ( m ~ 1 

) - ( 7 ~ 
1

1 
) , since 

the lth column contains one extra one and one fewer zeros. The extra term is definitely positive 

fori:; (m- 1)/2. Thus h,(X', Sm,i) > h,(x,Sm,i) fori:; (m- 1)/2. Just by adding an extra one 

to Sm,k, we see that the average Hamming distance goes up. By a simple induction on the number 

of ones added to Sm,k, we can show that adding Sm,k to Sk_ 1 indeed gives a set with the least 

Hamming distance over all ways to produce it. 

Now let us prove the second claim. Let S' be a set of cardinality ISkl· Let us consider the 

following partition of S'. Let T1 C S' have the smallest average Hamming distance of all the ISk-ll 

sized subsets of S'. Note that lTd also is ISk-11· Let Tu be the set difference of S' and T~o i.e. 

Tu = S'- T1. Then S' = T1 U T,. The expression for the total Hamming distance of S' is given by 

h,(S') = ht(1l) + h,(T,) + ht(Tt,T.). By inductive hypothesis, ht(1l) ;?: h,(Sk_1). If T1 = Sk_ 1, 

then we are dealing with the case described above, so let us assume that T1 #- S k-1. Tu cannot 

39 



ha-ve any vectors from Sk-l· Hence by Lemma 14 h,(Tu) 2: ht(Sm,k)· Now we claim that h,(TI, Tu) 

is also at least as high as h1(Sk_1 , Sm,k)· We wish to show that h,(A,B) 2: h,(A,B') for a set A 

if ht(B) 2: h,(B'). Let the average number of ones (zeros) in a column of a set S be denoted by 

PS (qs). Then h,(S) = 2mpsqs, where qs = lSI - PS· This achieves a maximum when qs = PS· 

Notice that h,(B) 2: h,(B') implies that ABS(ps- qs) 2: ABS(PB'- qs•). It can be seen that 

PA.qB + qAPB 2: PAqB' + qAPB'· Hence ht(TI,Tu) 2: h,(Sk-l,Tu)· We already showed in the first 

part of this proof that h,(Sk-l, S) 2: ht(Sm,k) for any set S with larger number of 1's than Sm,k 

and cardinality ISm'kl· Since we know that Tu contains at least as many ones as Sm,k• and its 

cardinality is ISm,kl; h,(S') 2: h,(Sk)· 

Thus we have shown that the total Hamming distance of Sk, h1(Sk), is one of the smallest 

for a set of size ISkl· Hence the average Hamming distance of Sk, ha(Sk), also is minimum for 

k :<:; (m- 1)/2. In addition, the average contributions di,i+i and d1 are monotonically increasing 

functions of j and l respectively for j > 0 and i,l ::; (m- 1)/2. Thus we have also shown that 

increasing the size of Sk can only increase the average Hamming distance. 

0 

In order for ISkl to be 0(2n), l:f=o ( 7 ) must be 0(2n). We have seen in Appendix A, 

Lemma 11 that form 2: n, k = n/4log(m/n) satisfies this condition. Now to derive a lower bound 

on h.(O), all that needs to be done is to derive a lower bound on h.(Sn;41og(m/n))· The following 

lemma does that. 

Lemma 16 The avemge Hamming distance of the set Sk> h.(Sk), fork::; m/3 is il(k). 

PROOF: The average Hamming distance of Sk is given by the following equation. 

40 



Consider the denominator in this equation. The first term L;j=0 ( ( ~ ) I:;{;;;~ ( 7 ) ) is at 

most as large as the second term L:f=o ( 7 ) ( 7 ) by Lemma 10 forkS mj3. Thus h.(Sk) > 

2 

m 

' > 1/2. 

L:.=o L:.=o 
i i 

Then, ha(Sk) is il(h.(Sm,k)). From Lemma 14, ha(Sm,k) equals 2k(m- k)/m, which forkS m/3 

is 8(k). Thus h.(Sk) is il(k) forkS mj3. 

0 

The next lemma places a lower bound on the average Hamming distance of the set 0. 

Lemma 17 The average Hamming distance of the set 0 is il(njlog(mjn)) form 2:: n. 

PROOF: Let us consider the set Snf4Iog(mfn) = Uf~cilog(m/n) Sm,i· Its cardinality is no greater than 

0(2n) form 2:: n. It has the minimum average Hamming distance of a set of its size by Lemma 15. 

Since the cardinality of 0 is 2n, ha(O) is il(h.(Sn/4Iog(m/n))). From Lemma 16, h.(Snf4Iog(mfn))) 

is il(n/41og(mjn)) for njlog(m/n) S m/3. And hence that is also a lower bound on ha(O) for 

m 2:: n. 

0 

AcKNoWLEDGEMENTS 

I am thankful to Carl Ebeling and Larry Snyder of University of W<i.shington and Martine Schlag 

of University of California, Santa Cruz for many invaluable discussions and insights. This work 

was funded in part by NSF under grant number MIP-8806169. 

41 




