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ABSTRACT 

We believe that it is the degrees of freedom in the physical realization of the communication component of 
a function that gives the design space its complexity and diversity. The number of communication schemes 
exhibited by the datapath functions is very small: three to be precise. We give a general framework to model 
these communication schemes by simple algebraic structures which also provide the corresponding design 
spaces. These models are extremely simple, and hence easy to manipulate, but are sufficiently powerful to 
model the simple concepts of pipelining and synchronous designs. 

1 Overview 

The following quotation from McFarland, Parker and Camposano (MPC88] sums up the problem in 
a nutshell. 

"The major problem underlying all these tasks is the extremely large number of 
desigu possibilities which must be examined in order to select the design which meets 
the constraints and is as near as possible to the optimal design. The "design space" that 
needs to be searched is multi-dimensional and discontinuous, and it is hard even to find a 
canonical set of operators that systematically take you through that space. Furthermore, 
the shape of the design space is often problem-specific, so that there is no methodology 
that is guaranteed to work in all cases." 

1.1 The Global Picture 

The need for design space exploration is succinctly brought forth by Johansson (Joh89]. We see the 
design space exploration as a two step process. The first phase picks up an architecturet best suited 
to the specifications of the user. The second phase can then apply electrical optimizations and local 
transformations to achieve a better match with the user's requirements. At the function module 
level, consider the example of an adder. If a fast O(logn) time addition is desired, the architecture 
level exploration phase must identify the parallel-prefix adder as the architecture. The transistors 
along the parallel prefix tree chains can be sized up to match the exact delay specifications. 

*This research was supported in part by NSF Grant #MIP-8806169 
twe use the term architecture loosely here to mean an algorithm with a hardware implementation 
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Figure 1: An lllustration of One-Dimensional Dataflow 

Our work addresses the first phase in this scheme: architecture selection. There are at least two 
ways it could be done. One approach is to develop a language to describe Boolean networks/ circuits. 
An architecture is described as a program in this language. Several design transformations attempt 
to generate many equivalent architectures from a given architecture for a function. Most often these 
transformations are very local in the sense that they massage a small part of the design rather than 
changing the underlying algorithm. A global transformation would be analogous to the program 
transformations in the software area. The need to make this language sufficiently expressive to tackle 
a wide variety of circuits makes it hard to perform these program transformations. The principal 
difficulty seems to be that the algorithmic description of hardware contains a wealth of information 
about the implementation such as clocking, timing and structural attributes. A transformation has 
to deal with all this information in the target design. 

Let us now outline the second approach. An implementation of a function/algorithm can be con­
sidered to be performing two tasks: communication and computation. It is often the communication 
component that dominates both the asymptotic area and time requirements. Our approach takes 
this into account. We develop algebraic models for the communication pattern of a function. Once 
again, consider the adder example. The circuits to compute the individual carry, kill and propagate 
bits do not determine its complexity. It is the physical realization of the underlying communication 
pattern (the bit c0 to 1-nth bit positions, c1 to 2-nth positions and c; to i + 1- nth positions) that 
defines its design space. This realization could either be a carry-ripple chain or a look-ahead scheme 
or a carry-select scheme among many possible ways. An algebraic structure, a monoid, is a good 
model for this kind of one dimensional communication pattern. This is also a model for the design 
space. An essential difference between the two approaches is that the communication model does 
not contain sufficient information to reconstruct the underlying algorithm. But it is simple enough 
that one can traverse the design space in a relatively efficient way. We believe that the design space 
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Figure 2: An illustration of Two-Dimensional Dataflow 

model should be added to the list of attributes of a design such as timing model and simulation 
model that are propagated across several design abstractions and across the design hierarchy. 

This discussion still does not address the issue of suitability of this approach for silicon compi­
lation. The communication pattern's regularity results from the regularity of the function in the 
following sense. Every bit position in an adder is executing the same algorithm. There are iden­
tifiable groups of variables/nodes such as carry that have the same semantics. This gives rise to a 
regular connunication pattern between these bit slices. It follows from this discussion then that 
all the datapath functions can be modeled in this way. Admittedly, a silicon system consists of 
random logic components as well. At this point, we don't have a very clear understanding of how 
this approach can be applied to a random logic block. But can we extend this approach from a 
function module level model to a model for a datapath? We can build the design space models for 
a few primitive functions such as adder and shifter from our understanding of these functions. The 
next step involves being able to compose two models to form a composite model for the composition 
of two primitive functions. An example is a multiplier. A multiplication is a complex composition 
of addition and shifting. We show how we can derive a design space model for a multiplier from the 
models of an adder and a shifter. The situation is somewhat different when two functions communi­
cate under the control of a finite state machine, as the communication between a program counter 
(PC) and a memory address register (MAR). This composition requires a different technique to 
derive the composite model. 

1.2 Related Work 

The systolic design community has done extensive work in transforming one algorithm into many 
systolic realizations (Che85], (Che87], (CS83], (Mol83], (LM82], (Qui84]. Parker, Park and Jain 
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have developed several empirical models for pipelined and nonpipelined area-time trade-offs [PP86], 
[JMP88]. The work that has come closest to performing design space exploration was done by 
Johnsson and Cohen [JC81]. But its application was limited to simple computational networks. 
Sheeran [She84] and Patel et. a!. [PSE85] have used variants of FP to describe and generate 
circuits. Another formal means of realizing circuits was proposed by Johnson [Joh86]. But these 
formal methods are either too specialized to describe general circuits or they cannot consider the 
design space in its full generality. 

1.3 Organization 

Section 2 describes the notion of type-0, type-1 and type-2 functions and then develops the design 
space models for them. These functions encompass addition and shifting. Section 3 deals with the 
question of design space composition. 

2 Design Space: 

The term design space refers to the space of various physical incarnations of a function. For instance, 
addition can either be performed with a O(n) area and O(n) time carry-ripple adder or with a 
O(nlogn) area and O(logn) time parallel-prefix adder [BK82]. More often than not, the design 
space does not consist of just a collection of discrete design points. For an adder, the family of 
k-bit carry look-ahead adders consisting of nfk look-ahead blocks is parametrized by k in the range 
1 through n. We are interested in characterizing the design space of a function by the area-time 
requirements of its design points. 

The notion of the area used by a design point and the time taken by a design point is well-defined. 
A word of clarification is in order here. We intend to characterize a design point according to its 
asymptotic area-time requirements. Thus a carry-ripple adder for an n-bit datapath is classified 
as n area and n time adder. In reality, every asymptotic design point is a bubble in the area-time 
space consisting of all the adders that can be derived from each other through local optimizations. 
The local optimizations will typically work within the context of a gate or a critical path such as 
transistor sizing, fanin reordering and critical load isolation. A catalog of such techniques used 
in the CAD tool POLO is described in Kotliar and Hedlund [KH89]. Figure 3 shows the bubbles 
corresponding to a carry-ripple adder and a parallel-prefix adder. This figure highlights several 
points. 

1. The design space of a function is a family of such area-time graphs (one graph for every value 
of n - the datapath width) rather than a single graph. 

2. A bubble is characterized by its asymptotic area-time requirements as a function of n. Thus a 
carry-ripple adder has area e(n) and timee(n). But the asymptotic notation e can hide many 
constants. Thus, for this approach to be feasible, the constants need to be determined. The 
constants depend on the idiosyncrasies of the designer's design style or on the characteristics 
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Figure 3: Two Bubbles in the Design Space for Adder 
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of the layout system. We generate the mask layouts using the placement and route system 
VPNR [KB88]. A set of constants can be derived for any layout system. Figure 3 uses a 
hypothetical example of a system where each cell of a carry-ripple adder takes up 100 ,\2 area 
and has delay of 4 units. Similarly, a parallel-prefix adder takes area lOOn+ 20nlogn + 3200 
lambda squares. Each level of the parallel-prefix network has depth of 2. 

The most commonly used approach to design space exploration so far has been to get into one 
such bubble for a design on the basis of some optimization criterion such as area or time. Then local 
optimizations are applied to squeeze another 20% to 30% of the desired resource- which corresponds 
to a traversal within such a bubble. Our objective is to provide a capability to jump between these 
bubbles in accordance with the asymptotic resource requirements. The design space exploration at 
the bubble level is often more rewarding than the exploration within a bubble. The second phase of 
local traversal within a bubble for further tuning of parameters is still applicable and desirable. An 
approximate analogy is to an optimization problem with many local minima. The first approach 
puts us into some local valley, while our proposed approach enables us to sample all the valleys. 

In the light of the preceding discussion, we choose to characterize a design point by the asymptotic 
resource usage of the bubble: we don't distinguish between the design points within a bubble. This 
develops the notion of the design space for a function. 

3 Design Space Models 

As we discussed earlier, our design space models encompass only the communication component of 
a design. The computation part can be bound to any circuit that exhibits the desired behavior. We 
classify the primitive communication patterns into two classes based on the dimensionality of the 
dataflow. The concept of dimensionality of dataflow was also used by Chen [Che85], [Che87]. In 
an intuitive way, if the value of a group of variables flows from the less significant bit positions to 
more significant bit positions only then the dataflow dimensionality is one. Figure 1 illustrates this. 
The examples of some functions with dataflow dimensionality 1 are addition, parity generation and 
counting. On the other hand, if the information flow can also be from more significant bit positions 
to less significant bit positions then the dimensionality is 2. Shifting is an example of a function with 
dataflow dimensionality 2. This is shown in Figure 2. Of course, in order to be complete, we should 
also consider the functions with dataflow dimensionality 0. These are the functions where there is 
no communication between any of the n bit slices. We also call these functions type-0 functions. 
All the memory elements in a datapath, such as a register file, memory data register are examples 
of type-0 functions. For these functions, the communication does not dominate the design space. 

We develop more formal definitions for the other two types. Let us first recall the definitions 
of two algebraic structures: a monoid and a group. A monoid is a set closed under an associative 
operation o with an identity element. A set with an associative operation o is a group if it is closed, 
has an identity element and has an inverse for every element. A permutation group is a group of 
permutations. A permutation 1r(x1> x2,··· ,xn) permutes its input to give (x;1 , x;2 ,··· ,x;.). The 
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composition of two permutations is defined very naturally where (1r;011"j)(x1, x2, · · ·, Xn) gives 1r; ap­
plied to 11"j(x1, x 2 , · • ·, Xn)· Now let us define the concept of a function with dataflow dimensionality 
one. We refer to these functions as type-1 functions. 

3.1 Type-1 Functions 

Definition 1 Let a function f(xr, x2,··· ,x,.) have an output (Yr. Y2 ·· · ,yn) where x; and Yi 1::; 
i, j ::; n are bits. f computes a monoid if there exists a set of bits ( mr, m2, · · ·, mn) computed by f 
and an operation o such that the set {m1 , m2 , ••• ,mn} alongwith o forms a monoid. In this case, 
the dataflow for f has a dimensionality of at least one. We refer to f as a type-1 function. 

An alternative definition considers the communication complexity [Yao79] of the functions. The 
functions with 0(1) communication complexity are type-1 functions. Let us consider some examples 
of functions that compute a monoid. Addition is one of them. Let us consider the addition of two 

words an ... a2a1 and b,. ... b2b1. 

3.1.1 Addition 

Let g; and p; be the generate and propagate bits for the ith bit position. The following relations 
are well known. 

g; = a;/\ b; 

p; = a; Ell b; 

(1) 

(2) 

Brent and Kung [BK82] show the following. Let (g,p) be a tuple associated with every bit slice. 
When two bit positions are put together, composite generate and propagate signals can be generated. 
The operator o models this as follows. 

(g,p) 0 (g',p') = (g v (p /\ g'), p /\ p') 

We define the concept of block-generate and block-propagate signals for the blocks spanning the 
bit positions 1 through i. 

if i=1 
2$i$n 

(G;, P;) represent the final generate and propagate values at the bit position i. Brent and Kung 
[BK82] go on to show that c; = G;. However, this perspective does not help us construct a monoid. 
We need to represent the communication structures that can bridge the carry by i positions for 
1::; i $ n. Hence we modify the definition of (G;, P;) given by Brent and Kung in the following way. 
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{ 

(0, 1} if i=O 
(G;,P;}(j) = (gj,Pi) if i=1 

(GH,P;_,)(j + 1} o (G1,P1)(j) otherwise 

Now ( G;, P;)(j) represents the block-generate and block-propagate signals of a block of length i 
starting at bit position j (bit positions j through i + j- 1). Now with the following definition of o, 

the set {(G0 , P0 ), (Gt. P,}, (G2 , P2 ), ••. , (Gn, Pn)} forms a monoid. 

( ) (G ) { ( Gm Pn) 
G;, P; 0 tJ>z = (G; v (P; 1\ Gt), P; 1\ Pz) 

ifi+l>n 
otherwise 

The identity element for this monoid is (G0 , P0 ) = (0, 1}. This shows that the dimension of the 

dataflow for addition is at least one. 

3.1.2 Parity and Counting 

Now let us consider parity generation. The parity of n bits XI> x 2, ••• Xn is 1 if an odd number of 
input bits have value 1. Otherwise the parity is 0. Note that at least one bit of information needs 

to flow across any partition of the input bits. Let Pi be the parity of the input bits xl> x 2 , ••• , x;. 

Once again we can define a block parity signal, P;, that indicates the parity of a given block of span 

!. 

{ 

0 if i=O 
P;(j} = X j if i=1 

P;_1 (j + 1) o P1 (j) otherwise 

The operation o corresponds to exclusive-or E!). Then the set { P0 , P1 , .•. , Pn} alongwith the 
operation o defined as follows forms a monoid. 

P;oPz = { 
Pn 
P; ffi Pz 

ifi+l>n 
otherwise 

The monoid identity is Po = 0. This establishes parity as a type-1 function. Counting can be 
shown to be computing a monoid in a similar way as addition. 

3.2 Type-2 Functions 

The type-2 functions compute a permutation group. Notice that the computation of a permutation 
group requires more communication than the computation of a monoid. An information-theoretic 
definition will consider the functions with O(n) communication complexity to be type-2 functions. 
A formal definition of a type-2 function follows. 
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Definition 2 Let a function f(xb x2, · .. , Xn : c1, c2, ... , CJogn) have an output (YI> Y2 .. ·, Yn) 
where xi> x2, · · ·, Xn (YI> Y2 · · ·, Yn) are input (output) bits and cb c2, ... , CJogn are the control input 
bits. f computes a permutation group if every control input value permutes the input bits and all the 

permutations encoded by the control values form a permutation group. In this case, the dataflow for 
f has a dimensionality of at least two. We refer to f as a type-2 function. 

The clearest example of a type-2 function is shifting. 

3.2.1 Shifting 

We consider right cyclic shift as an example of type-2 function. Let 11"; for 0 ::; i ::; n repre­
sent the right cyclic shift by i bit positions. In particular, 11"; corresponds to the permutation 

( x1 x 2 .. • Xn ) . It is an accepted practice to use only the bit positions in 
X(t-i)modn X(2-i)modn · · · Xn-i 

this notation. Then 11"; is given by ( ( .)
1 

d ( .)
2 

d .. · n . ) . Consider the set of 
1 - 1 mo n 2 - 1 mo n . . . n - 1 

permutations G = { 11"0, 11"1> ••• , "n-d· The composition operator is defined as 11"; o 11"1 is "{i+l)modno 

Notice that G forms a group. The identity element is 1r0 and the inverse of 1r; is 11"(n-i)modn· This 
demonstrates that shifting has a dataflow of dimensionality two. In addition, it is a type-2 function. 

3.2.2 Transitive Functions 

The notion of transitive functions was defined by Vuillemin (Vui83]. These functions embed a com­
putation of a permutation group. The examples include shifting, multiplication, linear transforms 
and three matrix product. Note that not every transitive function is a type-2 function due to the 
requirement in Definition 2 that all the control values encode a permutation of a group. But all 
the type-2 functions are transitive. The transitive functions are compositions of type-1 and type-2 
functions. We will look at multiplication in the next section. 

3.3 Design Space of Type-1 Functions 

The definition of a type-1 function tells us that it computes a monoid (M, o). Let M be the 
set { M 0 , MI> M 2 , ••. , Mn}· The reader is encouraged to think of the adder monoid described in 
Subsection 3.1 as a more concrete example of the following concepts. Recall from Subsection3.1 
that the monoid element M;(j) denotes a block computation of the monoid element with the block 
span of i bits and the jth bit being the least significant bit of the block. There are many physical 
realizations for a communication scheme M;. But given the limited fanin, all of them require log i 
levels and ilogi gates. A parallel prefix scheme as described in Brent, Kung (BK82] or Ngai, Irwin 
(NI85] can be adapted to realize M; for any monoid M. The underlying communication scheme 
remains the same for any monoid. Only the cells computing the composition differ. To realize the 
function f, we need to compute Mn(l). The selection of the elements from this monoid to realize 
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Figure 4: 6-bit Adder Given by (G4, P4)(3) o (G2, P2)(1) 

Mn corresponds to a design for the communication component of f. On one extreme one could 
choose only Mn(1) which gives us the parallel prefix realization. This design takes up the most area, 
O(nlogn), but is the fastest with O(logn) delay. The other extreme would be to use n copies of M1 

n copies 

elements (as Mn =M1 o M1 o ... o .M1). This corresponds with the complete ripple communication. 
This design is the slowest data parallel design (delay O(n)) but takes only O(n) area. Thus, in 
general, a collection of elements from this monoid such that Mn = M;1 o M;2 o ... o M;. with 
I::f=t i1 = n uniquely identifies a design for the communication component off. Taking an adder 
example, (G4,P4 )(3) o (G2,P2)(1) gives a 6-bit adder as shown in Figure 4. In a practical design, 
one would probably choose all the carry-look-ahead blocks to be the same size, i1 = i2 = ... = ik. 

We can get fancier in the realizations of a monoid communication to achieve the design points 
between the ripple scheme and the parallel prefix scheme. We can have selection communication 
analogous to carry-select blocks. This information can be encoded in the type of operators used 
in an algebraic expression to realize Pn. In addition to o, we introduce another operator * whose 
semantics is exactly that of the operator o. But the design corresponding to M; * Mj will make two 
copies of the design corresponding toM;. One copy evaluates with 1 (monoid input 1) as the input 
and the other one evaluates with 0 (monoid input 0). Then a selection mux will choose between the 
output values of these two blocks on the basis of the monoid output value of the Mj block. Now 
a specification of an n-bit function f can consist of expressions containing both o and * operators 
as long as the indices (span of look-ahead) of the monoid elements sum upton. Every bit position 
1 ::; k ::; n should be covered by a M;(j) such that j ::; k ::; j + i -1. There is an additional choice of 
the operator, o or *• between two elements M;(l + j) and M1(j) (between bit positions l + j- 1 and 
l + j). This provides a rich design space. But many designs in this scheme are clearly suboptimal. 
For example, only the expressions with M elements with the same span need be explored. 

Space-Time Mapping and Combinational Vs. Synchronous Designs: Consider the spec-
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n copies 

ification for a ripple-communication scheme: M1 o M 1 o ... o M1. This specification is doing the 
requisite monoid computation in space (all the compositions are done in space). One easily notices 
that the n instances of M 1 can be folded upon one instance of M 1 , if the composition o were to be 
done in time rather than space. The time realization of a composition introduces a delay element 
along every signal path going across the space realization. Figure 5 shows this. Note that the input 
bit stream x will be serialized in the time composition schema. 

Since we leave the internals of a monoid element M; unspecified, we assume a combinational 
implementation, to be on the safer side. The following scheme can sometimes be used to derive a 

n copies 

synchronous design. The ripple-communication specification M 1 o M 1 o ... o M1 gives a combina­
tional design. To make it synchronous, a latch (delay element) is associated with the composition 
operator. We use the notation oa for a synchronous composition operator. The synchronous spec-

n copies 

ification M1 oa M1 oa ... oa M1 gives a ripple realization as in Figure 5 except that every wire is 
cut with a delay latch. For a monoid computation, the storage requirement is only a constant, as 
can be shown using Baudet's ideas [Bau81]. Hence this schema can also be time mapped to derive 
a bit-serial design. 

The time taken by a design specified by the expression M;, oM;, o .. . oM;• is given by 2::7:1 log( i 1+ 
1). The area is given by 2::7:1 i1 log( i1 + 1) and the average case energy consumption is 2::7:1 i1. We 
use this formulation to build a module generator for an adder (Tya90]. Let us tabulate the area­
time performances of several design options actually generated by our system in Table 1. This table 
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type area time 
synchronous time-mapped ripple 0(1) O(n) 

ripple with look-ahead lc nloglc ~ 
selection with look-ahead 1c ¥-+ 1.2n k+t 

pa.ra.llel-prefix with look-ahead 1c ·~ logn 

Table 1: Area-Time Performance of Several Monoid Designs 

along with the user specifications directs us towards a design subspace right away. The choice of 
the parameter k gives us the flexibility of satisfyingtheuser specifications. 

3.4 Design Space of Type-2 Functions 

We need to realize a permutation group to build the communication structure of a type-2 function. 
The design space for a permutation group, G, depends on many parameters for the group such as the 
number of equivalence classes and the order of a generator element. We enhance on this aspect in the 
following. Each permutation acts on the set S = {1, 2, ••• , n}, the set of positions. A permutation 
group defines an equivalence relation on this set as follows [[Rob84], pages 290-291]. Two elements 
a, b E S are related by this equivalence relation r if there exists a permutation 1r s.t. 1r{a) = b. 
Burnside?s Lemma {Rob84) gives a way of counting the number of equivalence classes introduced 
by this relation. We can use the fi.IDilia.r cyclic notation (1 3) (2 4) to denote the permutation 

( ! ! ~ : ) . Then the number of equivalence classes induced by a group is at most as high 

as the number of cycles in any permutation of G. Tbe number of equivalea.ce <:lasses, c(G) is a 
good measure oftbe routiag complexity of a physical realizatioa oftbe permutation group G. Let 
811 82, ••• , S~c be the partition of S induced by the equivalence relation r. Then, we can show that 
the area of a pipelined realization of such ·a group is n ( n m~1 !Sal). . . 

Another important notion is that of the group generato.rs. Let us use 1r2 to denote 1r o 1r and 
use a similar interpretation for r•. Eadl permutation 1r generates a. subgroup of G, < 1r > as 
{ 1ri} f:.0 • Here 1r is referred to as a generator of < 1r >. For the cyclic shifting group 1r1 generates 
the whole group. Once aga.in, a relation r relates two permutations r; and 1r't if 1t; e < 1rt >. 
Tbe number of equivalence classes in tbis relation is the least number of generators we need to 
physically design to realize the permutation group. The most compact design for a permutation 
group will contain as few physical permuting structures as the number of equivalence classes. Each 
physical permuting structure performs all the permutations required by an equivalence class through 
time-mapped permutation compositions (similar to the one discussed in Subsection 3.3). 

The cyclic shifting group discussed in Subsection 3.2 perhaps is the most commonly occuring 
permutation group in VLSI designs. In view of the preceding discussion, our discussion centers 
around the design space of the cyclic shifting group only. 
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3.4.1 Shifter Design Space Model 

The cyclic permutation group is G = {1r0, 1r1 , .•• , "n-1 }. Note that the permutation 1r; performs 
a right-cyclic shift by i bit positions. The permutation 71"1 forms a generator for the whole group 
G. We can specify a shifter design in a way similar to the monoid communication design. The 
most obvious specification is the composition of a generator element repeated n (its order) times. 

n copies 

For the cyclic shift group, we get 1r1 o ll'1 o ... 1r1 . Using the rule to map a space realization of a 
composition to a time realization (as used in adders and monoid computation), we can derive a 
linear shift register as shown in Figure 6. We cannot map this linear structure into a single cell since 
n storage elements is the minimum required to compute a type-2 function. 

n copies 

The expression 1r1 o 71"1 o ... 71"1 can be grouped into 1r n/2 o 1r n/4 o ... o 1r2 o 1r1 to derive a barrel 

shifter. Each element in this expression corresponds with a stage of a barrel shifter. We can derive 
a pipelined barrel shifter by changing the operator o to a synchronous operator o~ giving us the 

expression "n/2 o~ "n/4 o~ ... o~ 1r2 o~ "1· 
Another interesting way to realize a shifter is to decompose the domain of permutation elements 

and then use smaller permutation elements over several domains to realize larger permutations. Let 
us explain this for the square shifter shown in Figure 7. This shifter is described in Ullman [UII84]. 
A square shifter saves area by giving up speed. It is designed as a y'n x y'n array. The input 
bits x1 ••• Xn are stored in this array as follows. Let the lower-left corner be the array position 
(1, 1) and the upper-right corner be (y'n, Vii). Then the array position (i, j) stores the input 
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type energy area time group specification 
linear n2 n n ll"t 

barrel n2 n2 logn 'lrn/2 ° ll"n/4 0 • • • 0 ll"t 

square n3/2 n .;n as described 

Table 2: Area-Energy-Time Performance of Several Shifters 

Partial Product A 

B 

Figure 8: A Parallel-Serial Multiplier 

bit xi+ (j-t)vn· The cell in this array is capable of shifting either up or to the right. Notice 
that the top cell in each column shifts to the bottom cell of the next column during an upshift. 

The shift value c = CJogn • • • Ct can be split into two values: Cup = C1ogn • • • Ct and Cright = 
2 

CJogn • • • Ciogn+l. A shift by c consists of shifting all the va)ues right by Cright in time v'n followed by 
2 

shifting up by Cup in time .;n. Thus the complete shift takes time v'n with area n. The permutation 
group has been split into 2v'n domains as follows. The v'n rows are realized by the permutations 
(1 v'n + 1. .. n- v'n + 1) (2 v'n + 2 ... n- v'n + 2) · · · ( v'n 2v'n ... n). The columns are realized by 
the v'n permutations (1 2 ... v'n) ( v'n + 1. .. 2v'n) · · · (n- v'n + 1. .. n). The permutation groups 
are realized by the 1r1 linear shift registers. The groups are bridged by inter-column wires. For more 
examples of such decompositions, the reader is referred to Tyagi (Tya90]. We also describe some 
shifting schemes based on the repeated input bit availability and their physical realizations. Table 2 
summarizes a part of the design space of shifters. 

4 Design Space Composition to Derive Multiplier Design Space 

The design space models for an adder and a shifter were built from our understanding of these 
two functions. This approach would not be very practical for a silicon compilation environment. For 
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a composite function fog, where the design space models off and g are already known, we should 
be able to derive the design space model for fog from the models for f and g. We have made limited 
progress in this direction. We illustrate the derivation of the design space model for multiplication 
from the models for addition and shifting. We also give a brief sketch of the composition process 
when the connunication between f and g is not combinational but is directed by a finite state 
machine. This is the case for any pair of modules in a datapath. 

4.1 Multiplication Model 

The most common algorithm for multiplication is the shift and ;uld algorithm, we all learn in the 
grade school. We start with a specification of a parallel/serial multiplier shown in Figure 8. We 
wish to multiply two n + 1-bit integers B = bn ... b0 and A = an ... a1 ao. The result can be 
written as x 0 (a 0.B) + x1(a1.B) + ... + xn(an.B). This defines a generic parallel-parallel multi­
plier, which can be refined to give more compact designs. Let us first transform this expression 

into 11"J ( ••• (x! (1r1 (x! ( 11"J (anB) + an-!B) + an-2B) + an-3B) .. . ) + aoB). This could be done 
by observing the arithmetic progression of the indices for 1r in the parallel-parallel specification. 
Notice that now we have the shift composition performed in space. Applying the earlier space-time 
mapping rule, we can realize this expression as shown in Figure 8. The design space model would 
consider this design to be suboptimal for the following reason. The asymptotic time to perform x1 

(shift by 1) is some unit time c0 • The adder is in series with x1 in this composition. The adder 
design space shows the fastest adder (parallel-prefix) at log n time. This mismatch can be resolved 
in one of the following two ways. 

We can convert the adder to a carry-save adder as shown in Figure 9. Then the time per carry­
save addition comes down to unit time c1 • This is a match within a constant satisfying the design 
space model. Hence this design is considered an optimal design. Note that a carry-save adder 
is just a bit serial adder, which is a time-domain realization of a carry-ripple adder as shown in 
Figure 5. When a full adder ( G1 , P1 ) gets u~ed for an n-bit long stream in this way, we denote it by 

~~( :~ ~.:: ~:,:)::•::,~:li.:~~0rg <h< domrun of <ho lio~o oh;ft re@oW '' ~ 

The second way to achieve this match is by noticing that the time-mapped realization of a carry­
ripple adder would work right with a linear shift register as long as the input B (in Figure 8) can 
be serialized in the right way. This is one example of the information that this design space model 
lacks. This limitation is also the reason that we can compose models this easily. Figure 10 illustrates 
the serial-serial multiplier. The specification for this multiplier consists of x1 ((GJ. P1 )n, 2, ... , n). 

Another transformation we can consider is to notice the symmetry of multiplication with respect 
to its two input words. This reqnires looking at the parallel-parallel specification and taking its dual 
with respect to the two inputs. Then one can derive the column-add serial-parallel multiplier shown 
in Figure 11. The specification here is x1 (Ab0 , (G1 , PJ)n, Abt. (Gt. PJ)n, ... , Abn, (G1 , PJ)n). One 
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can derive Lyon's pipelined version [Lyo76] from this by introducing delay latches along every signal 
path across the shift boundaries. 

In summary, the following techniques/ operators guide the search of the design space (massaging 
of the algebraic expression) with respect to a given set of user area and time requirements. In all 
these cases, the constituent primitive components are matched in speed. 

space-time mapping: When repeated subexpressions occur, the compositions can either be real­

ized in the expanded form in space or folded in time. This space-time mapping can either 
reduce space into time to realize a smaller area design point or map time into space to realize 
a faster design point. 

communication bandwidth: Algebraic elements with larger indices have larger communication 
bandwidth at the cost of larger area. A subexpression that evaluates to a larger-index element 
can be replaced for a faster design point. This process can also replace a large-index element 

by a sub-expression consisting of small index elements giving rise to a lower area but slower 

design point. 

factoring: When elements with indices in an arithmetic progression are found, they can be folded 
to use the least index element repeatedly. A parallel-parallel square multiplier can be derived 
from a Wallace tree multiplier in this way. 

symmetry: An axis transformation for the expression gives rise to a whole new space of designs. 
For example, the multiplication can be seen as adding a new row to the partial product at 
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every stage. Alternately, it can be seen as the addition of columns from right to left. This 
perspective leads to the Lyon's pipelined multiplier. 

4.2 Composition under FSM Control 

In the multiplier case (combinational composition), the design space model has to determine the 
speed of two components so that one can feed another at the rate the other can consume the data. 
But in this situation the two components need not exhibit the sequential dependence. For example, 
a program counter (PC) needs to compute the new address in parallel with the ALU operation in a 
pipelined machine such as MIPS-X [CH87]. The additional complexity is that every pipe stage in 
MIPS-X is divided into two non-overlapped clock phases ¢1 and </>2 • Hence we need to determine if 
both the PC and ALU have nonoverlapped operations or simultaneous operations. The simultaniety 
argues for the designs with as matched a time performance as possible, so that no component is 
overdesigned. 

We have made the picture look very simplistic. One needs to perform the same kind of slack 
analysis as is performed in high-level synthesis (behavior level) (MPC88]. But the domain is a 
finite state machine where an output signal indicates if a module is activated or not. The same 
technique will work nonetheless. Only the pairs of design points for two modules that satisfy the 
FSM constraints and minimize the total area are propagated up as the design points at this composite 
level. 

5 Conclusions and Future Work 

We have described a design space model that models only the communication component of a func­
tion. But for the functions that are complex (and thus hard to characterize), it is the communication 
c~mponent that dominates the area-time requirements of a design. We believe that this constitutes 
the minimal information a design space model needs to carry forward to be a successfnl model. For 
the most purposes, this information is also sufficient. We gave a general framework to model all the 
datapath functions in terms of type-0, type-1 and type-2 functions or a composition thereof. We 
have used these models to build function modnle generators for adder, shifter and multiplier. These 
module generators exhibit enough flexibility to satisfy most of the user specifications. 

We also proposed a technique for composing two design space models to derive a composite 
model for a larger system in the hierarchy. This was sketched with the example of the derivation of 
the design space model of a multiplier from the models for adder and shifter. 

This work needs to be extended to do this composition for a system whose modules communicate 
under the control of a finte state machine. We gave a preliminary method to do this. 

As pointed out in the discussion, a model of timing and clocking is missing from this model. 
There is a macro-concept of a delay-latch to allow us to consider pipelined and synchronous im­
plementations. An interesting direction will be to consider if different clocking schemes can fit 
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into this framework and if a new, consistent clocking scheme can be derived from the same design 
transformation. 

In summary, although the complete designs have been characterized by formal methods, we 
believe that this is the first attempt at modeling the design space by formal means. This is a more 
pragmatic way to handle the design space exploration tasks. 
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