
. .

An Algebraic Model for
Design Space Exploration*

TR90-009

February, 1990

Akhilesh Tyagi

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/Affirmative Action Institution.

An Algebraic Model for Design Space Exploration·

AKHILESH TYAGI

Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175

ABSTRACT

We believe that it is the degrees of freedom in the physical realization of the communication component of
a function that gives the design space its complexity and diversity. The number of communication schemes
exhibited by the datapath functions is very small: three to be precise. We give a general framework to model
these communication schemes by simple algebraic structures which also provide the corresponding design
spaces. These models are extremely simple, and hence easy to manipulate, but are sufficiently powerful to
model the simple concepts of pipelining and synchronous designs.

1 Overview

The following quotation from McFarland, Parker and Camposano (MPC88] sums up the problem in
a nutshell.

"The major problem underlying all these tasks is the extremely large number of
desigu possibilities which must be examined in order to select the design which meets
the constraints and is as near as possible to the optimal design. The "design space" that
needs to be searched is multi-dimensional and discontinuous, and it is hard even to find a
canonical set of operators that systematically take you through that space. Furthermore,
the shape of the design space is often problem-specific, so that there is no methodology
that is guaranteed to work in all cases."

1.1 The Global Picture

The need for design space exploration is succinctly brought forth by Johansson (Joh89]. We see the
design space exploration as a two step process. The first phase picks up an architecturet best suited
to the specifications of the user. The second phase can then apply electrical optimizations and local
transformations to achieve a better match with the user's requirements. At the function module
level, consider the example of an adder. If a fast O(logn) time addition is desired, the architecture
level exploration phase must identify the parallel-prefix adder as the architecture. The transistors
along the parallel prefix tree chains can be sized up to match the exact delay specifications.

*This research was supported in part by NSF Grant #MIP-8806169
twe use the term architecture loosely here to mean an algorithm with a hardware implementation

1

1
D

X

0 0 0 0 0

n-1

Figure 1: An lllustration of One-Dimensional Dataflow

Our work addresses the first phase in this scheme: architecture selection. There are at least two
ways it could be done. One approach is to develop a language to describe Boolean networks/ circuits.
An architecture is described as a program in this language. Several design transformations attempt
to generate many equivalent architectures from a given architecture for a function. Most often these
transformations are very local in the sense that they massage a small part of the design rather than
changing the underlying algorithm. A global transformation would be analogous to the program
transformations in the software area. The need to make this language sufficiently expressive to tackle
a wide variety of circuits makes it hard to perform these program transformations. The principal
difficulty seems to be that the algorithmic description of hardware contains a wealth of information
about the implementation such as clocking, timing and structural attributes. A transformation has
to deal with all this information in the target design.

Let us now outline the second approach. An implementation of a function/algorithm can be con
sidered to be performing two tasks: communication and computation. It is often the communication
component that dominates both the asymptotic area and time requirements. Our approach takes
this into account. We develop algebraic models for the communication pattern of a function. Once
again, consider the adder example. The circuits to compute the individual carry, kill and propagate
bits do not determine its complexity. It is the physical realization of the underlying communication
pattern (the bit c0 to 1-nth bit positions, c1 to 2-nth positions and c; to i + 1- nth positions) that
defines its design space. This realization could either be a carry-ripple chain or a look-ahead scheme
or a carry-select scheme among many possible ways. An algebraic structure, a monoid, is a good
model for this kind of one dimensional communication pattern. This is also a model for the design
space. An essential difference between the two approaches is that the communication model does
not contain sufficient information to reconstruct the underlying algorithm. But it is simple enough
that one can traverse the design space in a relatively efficient way. We believe that the design space

2

X
n-1

0 0 0 0 0

Figure 2: An illustration of Two-Dimensional Dataflow

model should be added to the list of attributes of a design such as timing model and simulation
model that are propagated across several design abstractions and across the design hierarchy.

This discussion still does not address the issue of suitability of this approach for silicon compi
lation. The communication pattern's regularity results from the regularity of the function in the
following sense. Every bit position in an adder is executing the same algorithm. There are iden
tifiable groups of variables/nodes such as carry that have the same semantics. This gives rise to a
regular connunication pattern between these bit slices. It follows from this discussion then that
all the datapath functions can be modeled in this way. Admittedly, a silicon system consists of
random logic components as well. At this point, we don't have a very clear understanding of how
this approach can be applied to a random logic block. But can we extend this approach from a
function module level model to a model for a datapath? We can build the design space models for
a few primitive functions such as adder and shifter from our understanding of these functions. The
next step involves being able to compose two models to form a composite model for the composition
of two primitive functions. An example is a multiplier. A multiplication is a complex composition
of addition and shifting. We show how we can derive a design space model for a multiplier from the
models of an adder and a shifter. The situation is somewhat different when two functions communi
cate under the control of a finite state machine, as the communication between a program counter
(PC) and a memory address register (MAR). This composition requires a different technique to
derive the composite model.

1.2 Related Work

The systolic design community has done extensive work in transforming one algorithm into many
systolic realizations (Che85], (Che87], (CS83], (Mol83], (LM82], (Qui84]. Parker, Park and Jain

3

have developed several empirical models for pipelined and nonpipelined area-time trade-offs [PP86],
[JMP88]. The work that has come closest to performing design space exploration was done by
Johnsson and Cohen [JC81]. But its application was limited to simple computational networks.
Sheeran [She84] and Patel et. a!. [PSE85] have used variants of FP to describe and generate
circuits. Another formal means of realizing circuits was proposed by Johnson [Joh86]. But these
formal methods are either too specialized to describe general circuits or they cannot consider the
design space in its full generality.

1.3 Organization

Section 2 describes the notion of type-0, type-1 and type-2 functions and then develops the design
space models for them. These functions encompass addition and shifting. Section 3 deals with the
question of design space composition.

2 Design Space:

The term design space refers to the space of various physical incarnations of a function. For instance,
addition can either be performed with a O(n) area and O(n) time carry-ripple adder or with a
O(nlogn) area and O(logn) time parallel-prefix adder [BK82]. More often than not, the design
space does not consist of just a collection of discrete design points. For an adder, the family of
k-bit carry look-ahead adders consisting of nfk look-ahead blocks is parametrized by k in the range
1 through n. We are interested in characterizing the design space of a function by the area-time
requirements of its design points.

The notion of the area used by a design point and the time taken by a design point is well-defined.
A word of clarification is in order here. We intend to characterize a design point according to its
asymptotic area-time requirements. Thus a carry-ripple adder for an n-bit datapath is classified
as n area and n time adder. In reality, every asymptotic design point is a bubble in the area-time
space consisting of all the adders that can be derived from each other through local optimizations.
The local optimizations will typically work within the context of a gate or a critical path such as
transistor sizing, fanin reordering and critical load isolation. A catalog of such techniques used
in the CAD tool POLO is described in Kotliar and Hedlund [KH89]. Figure 3 shows the bubbles
corresponding to a carry-ripple adder and a parallel-prefix adder. This figure highlights several
points.

1. The design space of a function is a family of such area-time graphs (one graph for every value
of n - the datapath width) rather than a single graph.

2. A bubble is characterized by its asymptotic area-time requirements as a function of n. Thus a
carry-ripple adder has area e(n) and timee(n). But the asymptotic notation e can hide many
constants. Thus, for this approach to be feasible, the constants need to be determined. The
constants depend on the idiosyncrasies of the designer's design style or on the characteristics

4

Area

9600

3200

n=32

(sq. lambdas)

parallel-prefix

c:=> area=100n + 20 n log n +

3200
time=2 log n

carry-ripple

c:=> area=100 n

time=4n

Time
10 128

(unit delay)

Figure 3: Two Bubbles in the Design Space for Adder

5

of the layout system. We generate the mask layouts using the placement and route system
VPNR [KB88]. A set of constants can be derived for any layout system. Figure 3 uses a
hypothetical example of a system where each cell of a carry-ripple adder takes up 100 ,\2 area
and has delay of 4 units. Similarly, a parallel-prefix adder takes area lOOn+ 20nlogn + 3200
lambda squares. Each level of the parallel-prefix network has depth of 2.

The most commonly used approach to design space exploration so far has been to get into one
such bubble for a design on the basis of some optimization criterion such as area or time. Then local
optimizations are applied to squeeze another 20% to 30% of the desired resource- which corresponds
to a traversal within such a bubble. Our objective is to provide a capability to jump between these
bubbles in accordance with the asymptotic resource requirements. The design space exploration at
the bubble level is often more rewarding than the exploration within a bubble. The second phase of
local traversal within a bubble for further tuning of parameters is still applicable and desirable. An
approximate analogy is to an optimization problem with many local minima. The first approach
puts us into some local valley, while our proposed approach enables us to sample all the valleys.

In the light of the preceding discussion, we choose to characterize a design point by the asymptotic
resource usage of the bubble: we don't distinguish between the design points within a bubble. This
develops the notion of the design space for a function.

3 Design Space Models

As we discussed earlier, our design space models encompass only the communication component of
a design. The computation part can be bound to any circuit that exhibits the desired behavior. We
classify the primitive communication patterns into two classes based on the dimensionality of the
dataflow. The concept of dimensionality of dataflow was also used by Chen [Che85], [Che87]. In
an intuitive way, if the value of a group of variables flows from the less significant bit positions to
more significant bit positions only then the dataflow dimensionality is one. Figure 1 illustrates this.
The examples of some functions with dataflow dimensionality 1 are addition, parity generation and
counting. On the other hand, if the information flow can also be from more significant bit positions
to less significant bit positions then the dimensionality is 2. Shifting is an example of a function with
dataflow dimensionality 2. This is shown in Figure 2. Of course, in order to be complete, we should
also consider the functions with dataflow dimensionality 0. These are the functions where there is
no communication between any of the n bit slices. We also call these functions type-0 functions.
All the memory elements in a datapath, such as a register file, memory data register are examples
of type-0 functions. For these functions, the communication does not dominate the design space.

We develop more formal definitions for the other two types. Let us first recall the definitions
of two algebraic structures: a monoid and a group. A monoid is a set closed under an associative
operation o with an identity element. A set with an associative operation o is a group if it is closed,
has an identity element and has an inverse for every element. A permutation group is a group of
permutations. A permutation 1r(x1> x2,··· ,xn) permutes its input to give (x;1 , x;2 ,··· ,x;.). The

6

composition of two permutations is defined very naturally where (1r;011"j)(x1, x2, · · ·, Xn) gives 1r; ap
plied to 11"j(x1, x 2 , · • ·, Xn)· Now let us define the concept of a function with dataflow dimensionality
one. We refer to these functions as type-1 functions.

3.1 Type-1 Functions

Definition 1 Let a function f(xr, x2,··· ,x,.) have an output (Yr. Y2 ·· · ,yn) where x; and Yi 1::;
i, j ::; n are bits. f computes a monoid if there exists a set of bits (mr, m2, · · ·, mn) computed by f
and an operation o such that the set {m1 , m2 , ••• ,mn} alongwith o forms a monoid. In this case,
the dataflow for f has a dimensionality of at least one. We refer to f as a type-1 function.

An alternative definition considers the communication complexity [Yao79] of the functions. The
functions with 0(1) communication complexity are type-1 functions. Let us consider some examples
of functions that compute a monoid. Addition is one of them. Let us consider the addition of two

words an ... a2a1 and b,. ... b2b1.

3.1.1 Addition

Let g; and p; be the generate and propagate bits for the ith bit position. The following relations
are well known.

g; = a;/\ b;

p; = a; Ell b;

(1)

(2)

Brent and Kung [BK82] show the following. Let (g,p) be a tuple associated with every bit slice.
When two bit positions are put together, composite generate and propagate signals can be generated.
The operator o models this as follows.

(g,p) 0 (g',p') = (g v (p /\ g'), p /\ p')

We define the concept of block-generate and block-propagate signals for the blocks spanning the
bit positions 1 through i.

if i=1
2in

(G;, P;) represent the final generate and propagate values at the bit position i. Brent and Kung
[BK82] go on to show that c; = G;. However, this perspective does not help us construct a monoid.
We need to represent the communication structures that can bridge the carry by i positions for
1::; i $ n. Hence we modify the definition of (G;, P;) given by Brent and Kung in the following way.

7

{

(0, 1} if i=O
(G;,P;}(j) = (gj,Pi) if i=1

(GH,P;_,)(j + 1} o (G1,P1)(j) otherwise

Now (G;, P;)(j) represents the block-generate and block-propagate signals of a block of length i
starting at bit position j (bit positions j through i + j- 1). Now with the following definition of o,

the set {(G0 , P0), (Gt. P,}, (G2 , P2), ••. , (Gn, Pn)} forms a monoid.

() (G) { (Gm Pn)
G;, P; 0 tJ>z = (G; v (P; 1\ Gt), P; 1\ Pz)

ifi+l>n
otherwise

The identity element for this monoid is (G0 , P0) = (0, 1}. This shows that the dimension of the

dataflow for addition is at least one.

3.1.2 Parity and Counting

Now let us consider parity generation. The parity of n bits XI> x 2, ••• Xn is 1 if an odd number of
input bits have value 1. Otherwise the parity is 0. Note that at least one bit of information needs

to flow across any partition of the input bits. Let Pi be the parity of the input bits xl> x 2 , ••• , x;.

Once again we can define a block parity signal, P;, that indicates the parity of a given block of span

!.

{

0 if i=O
P;(j} = X j if i=1

P;_1 (j + 1) o P1 (j) otherwise

The operation o corresponds to exclusive-or E!). Then the set { P0 , P1 , .•. , Pn} alongwith the
operation o defined as follows forms a monoid.

P;oPz = {
Pn
P; ffi Pz

ifi+l>n
otherwise

The monoid identity is Po = 0. This establishes parity as a type-1 function. Counting can be
shown to be computing a monoid in a similar way as addition.

3.2 Type-2 Functions

The type-2 functions compute a permutation group. Notice that the computation of a permutation
group requires more communication than the computation of a monoid. An information-theoretic
definition will consider the functions with O(n) communication complexity to be type-2 functions.
A formal definition of a type-2 function follows.

8

Definition 2 Let a function f(xb x2, · .. , Xn : c1, c2, ... , CJogn) have an output (YI> Y2 .. ·, Yn)
where xi> x2, · · ·, Xn (YI> Y2 · · ·, Yn) are input (output) bits and cb c2, ... , CJogn are the control input
bits. f computes a permutation group if every control input value permutes the input bits and all the

permutations encoded by the control values form a permutation group. In this case, the dataflow for
f has a dimensionality of at least two. We refer to f as a type-2 function.

The clearest example of a type-2 function is shifting.

3.2.1 Shifting

We consider right cyclic shift as an example of type-2 function. Let 11"; for 0 ::; i ::; n repre
sent the right cyclic shift by i bit positions. In particular, 11"; corresponds to the permutation

(x1 x 2 .. • Xn) . It is an accepted practice to use only the bit positions in
X(t-i)modn X(2-i)modn · · · Xn-i

this notation. Then 11"; is given by ((.)
1

d (.)
2

d .. · n .) . Consider the set of
1 - 1 mo n 2 - 1 mo n . . . n - 1

permutations G = { 11"0, 11"1> ••• , "n-d· The composition operator is defined as 11"; o 11"1 is "{i+l)modno

Notice that G forms a group. The identity element is 1r0 and the inverse of 1r; is 11"(n-i)modn· This
demonstrates that shifting has a dataflow of dimensionality two. In addition, it is a type-2 function.

3.2.2 Transitive Functions

The notion of transitive functions was defined by Vuillemin (Vui83]. These functions embed a com
putation of a permutation group. The examples include shifting, multiplication, linear transforms
and three matrix product. Note that not every transitive function is a type-2 function due to the
requirement in Definition 2 that all the control values encode a permutation of a group. But all
the type-2 functions are transitive. The transitive functions are compositions of type-1 and type-2
functions. We will look at multiplication in the next section.

3.3 Design Space of Type-1 Functions

The definition of a type-1 function tells us that it computes a monoid (M, o). Let M be the
set { M 0 , MI> M 2 , ••. , Mn}· The reader is encouraged to think of the adder monoid described in
Subsection 3.1 as a more concrete example of the following concepts. Recall from Subsection3.1
that the monoid element M;(j) denotes a block computation of the monoid element with the block
span of i bits and the jth bit being the least significant bit of the block. There are many physical
realizations for a communication scheme M;. But given the limited fanin, all of them require log i
levels and ilogi gates. A parallel prefix scheme as described in Brent, Kung (BK82] or Ngai, Irwin
(NI85] can be adapted to realize M; for any monoid M. The underlying communication scheme
remains the same for any monoid. Only the cells computing the composition differ. To realize the
function f, we need to compute Mn(l). The selection of the elements from this monoid to realize

9

4-bit parallel

prefix block 2-bit block

(G ' p)
2 2

Figure 4: 6-bit Adder Given by (G4, P4)(3) o (G2, P2)(1)

Mn corresponds to a design for the communication component of f. On one extreme one could
choose only Mn(1) which gives us the parallel prefix realization. This design takes up the most area,
O(nlogn), but is the fastest with O(logn) delay. The other extreme would be to use n copies of M1

n copies

elements (as Mn =M1 o M1 o ... o .M1). This corresponds with the complete ripple communication.
This design is the slowest data parallel design (delay O(n)) but takes only O(n) area. Thus, in
general, a collection of elements from this monoid such that Mn = M;1 o M;2 o ... o M;. with
I::f=t i1 = n uniquely identifies a design for the communication component off. Taking an adder
example, (G4,P4)(3) o (G2,P2)(1) gives a 6-bit adder as shown in Figure 4. In a practical design,
one would probably choose all the carry-look-ahead blocks to be the same size, i1 = i2 = ... = ik.

We can get fancier in the realizations of a monoid communication to achieve the design points
between the ripple scheme and the parallel prefix scheme. We can have selection communication
analogous to carry-select blocks. This information can be encoded in the type of operators used
in an algebraic expression to realize Pn. In addition to o, we introduce another operator * whose
semantics is exactly that of the operator o. But the design corresponding to M; * Mj will make two
copies of the design corresponding toM;. One copy evaluates with 1 (monoid input 1) as the input
and the other one evaluates with 0 (monoid input 0). Then a selection mux will choose between the
output values of these two blocks on the basis of the monoid output value of the Mj block. Now
a specification of an n-bit function f can consist of expressions containing both o and * operators
as long as the indices (span of look-ahead) of the monoid elements sum upton. Every bit position
1 ::; k ::; n should be covered by a M;(j) such that j ::; k ::; j + i -1. There is an additional choice of
the operator, o or *• between two elements M;(l + j) and M1(j) (between bit positions l + j- 1 and
l + j). This provides a rich design space. But many designs in this scheme are clearly suboptimal.
For example, only the expressions with M elements with the same span need be explored.

Space-Time Mapping and Combinational Vs. Synchronous Designs: Consider the spec-

10

X
n

X ,

r- f-

- D. -

Figure 5: Space-Time Mapping

n copies

ification for a ripple-communication scheme: M1 o M 1 o ... o M1. This specification is doing the
requisite monoid computation in space (all the compositions are done in space). One easily notices
that the n instances of M 1 can be folded upon one instance of M 1 , if the composition o were to be
done in time rather than space. The time realization of a composition introduces a delay element
along every signal path going across the space realization. Figure 5 shows this. Note that the input
bit stream x will be serialized in the time composition schema.

Since we leave the internals of a monoid element M; unspecified, we assume a combinational
implementation, to be on the safer side. The following scheme can sometimes be used to derive a

n copies

synchronous design. The ripple-communication specification M 1 o M 1 o ... o M1 gives a combina
tional design. To make it synchronous, a latch (delay element) is associated with the composition
operator. We use the notation oa for a synchronous composition operator. The synchronous spec-

n copies

ification M1 oa M1 oa ... oa M1 gives a ripple realization as in Figure 5 except that every wire is
cut with a delay latch. For a monoid computation, the storage requirement is only a constant, as
can be shown using Baudet's ideas [Bau81]. Hence this schema can also be time mapped to derive
a bit-serial design.

The time taken by a design specified by the expression M;, oM;, o .. . oM;• is given by 2::7:1 log(i 1+
1). The area is given by 2::7:1 i1 log(i1 + 1) and the average case energy consumption is 2::7:1 i1. We
use this formulation to build a module generator for an adder (Tya90]. Let us tabulate the area
time performances of several design options actually generated by our system in Table 1. This table

11

type area time
synchronous time-mapped ripple 0(1) O(n)

ripple with look-ahead lc nloglc ~
selection with look-ahead 1c ¥-+ 1.2n k+t

pa.ra.llel-prefix with look-ahead 1c ·~ logn

Table 1: Area-Time Performance of Several Monoid Designs

along with the user specifications directs us towards a design subspace right away. The choice of
the parameter k gives us the flexibility of satisfyingtheuser specifications.

3.4 Design Space of Type-2 Functions

We need to realize a permutation group to build the communication structure of a type-2 function.
The design space for a permutation group, G, depends on many parameters for the group such as the
number of equivalence classes and the order of a generator element. We enhance on this aspect in the
following. Each permutation acts on the set S = {1, 2, ••• , n}, the set of positions. A permutation
group defines an equivalence relation on this set as follows [[Rob84], pages 290-291]. Two elements
a, b E S are related by this equivalence relation r if there exists a permutation 1r s.t. 1r{a) = b.
Burnside?s Lemma {Rob84) gives a way of counting the number of equivalence classes introduced
by this relation. We can use the fi.IDilia.r cyclic notation (1 3) (2 4) to denote the permutation

(! ! ~ :) . Then the number of equivalence classes induced by a group is at most as high

as the number of cycles in any permutation of G. Tbe number of equivalea.ce <:lasses, c(G) is a
good measure oftbe routiag complexity of a physical realizatioa oftbe permutation group G. Let
811 82, ••• , S~c be the partition of S induced by the equivalence relation r. Then, we can show that
the area of a pipelined realization of such ·a group is n (n m~1 !Sal). . .

Another important notion is that of the group generato.rs. Let us use 1r2 to denote 1r o 1r and
use a similar interpretation for r•. Eadl permutation 1r generates a. subgroup of G, < 1r > as
{ 1ri} f:.0 • Here 1r is referred to as a generator of < 1r >. For the cyclic shifting group 1r1 generates
the whole group. Once aga.in, a relation r relates two permutations r; and 1r't if 1t; e < 1rt >.
Tbe number of equivalence classes in tbis relation is the least number of generators we need to
physically design to realize the permutation group. The most compact design for a permutation
group will contain as few physical permuting structures as the number of equivalence classes. Each
physical permuting structure performs all the permutations required by an equivalence class through
time-mapped permutation compositions (similar to the one discussed in Subsection 3.3).

The cyclic shifting group discussed in Subsection 3.2 perhaps is the most commonly occuring
permutation group in VLSI designs. In view of the preceding discussion, our discussion centers
around the design space of the cyclic shifting group only.

12

~

'

6,. Delay Latch

u

Figure 6: Space-Time Mapping to Derive a Linear Shift Register from 1r1 o 1r1 o •.. o 1r1

13

---Jn---
ynx2jil

\

1 \
XJn +1 X n-Jn +1

Figure 7: A Square Shifter

3.4.1 Shifter Design Space Model

The cyclic permutation group is G = {1r0, 1r1 , .•• , "n-1 }. Note that the permutation 1r; performs
a right-cyclic shift by i bit positions. The permutation 71"1 forms a generator for the whole group
G. We can specify a shifter design in a way similar to the monoid communication design. The
most obvious specification is the composition of a generator element repeated n (its order) times.

n copies

For the cyclic shift group, we get 1r1 o ll'1 o ... 1r1 . Using the rule to map a space realization of a
composition to a time realization (as used in adders and monoid computation), we can derive a
linear shift register as shown in Figure 6. We cannot map this linear structure into a single cell since
n storage elements is the minimum required to compute a type-2 function.

n copies

The expression 1r1 o 71"1 o ... 71"1 can be grouped into 1r n/2 o 1r n/4 o ... o 1r2 o 1r1 to derive a barrel

shifter. Each element in this expression corresponds with a stage of a barrel shifter. We can derive
a pipelined barrel shifter by changing the operator o to a synchronous operator o~ giving us the

expression "n/2 o~ "n/4 o~ ... o~ 1r2 o~ "1·
Another interesting way to realize a shifter is to decompose the domain of permutation elements

and then use smaller permutation elements over several domains to realize larger permutations. Let
us explain this for the square shifter shown in Figure 7. This shifter is described in Ullman [UII84].
A square shifter saves area by giving up speed. It is designed as a y'n x y'n array. The input
bits x1 ••• Xn are stored in this array as follows. Let the lower-left corner be the array position
(1, 1) and the upper-right corner be (y'n, Vii). Then the array position (i, j) stores the input

14

type energy area time group specification
linear n2 n n ll"t

barrel n2 n2 logn 'lrn/2 ° ll"n/4 0 • • • 0 ll"t

square n3/2 n .;n as described

Table 2: Area-Energy-Time Performance of Several Shifters

Partial Product A

B

Figure 8: A Parallel-Serial Multiplier

bit xi+ (j-t)vn· The cell in this array is capable of shifting either up or to the right. Notice
that the top cell in each column shifts to the bottom cell of the next column during an upshift.

The shift value c = CJogn • • • Ct can be split into two values: Cup = C1ogn • • • Ct and Cright =
2

CJogn • • • Ciogn+l. A shift by c consists of shifting all the va)ues right by Cright in time v'n followed by
2

shifting up by Cup in time .;n. Thus the complete shift takes time v'n with area n. The permutation
group has been split into 2v'n domains as follows. The v'n rows are realized by the permutations
(1 v'n + 1. .. n- v'n + 1) (2 v'n + 2 ... n- v'n + 2) · · · (v'n 2v'n ... n). The columns are realized by
the v'n permutations (1 2 ... v'n) (v'n + 1. .. 2v'n) · · · (n- v'n + 1. .. n). The permutation groups
are realized by the 1r1 linear shift registers. The groups are bridged by inter-column wires. For more
examples of such decompositions, the reader is referred to Tyagi (Tya90]. We also describe some
shifting schemes based on the repeated input bit availability and their physical realizations. Table 2
summarizes a part of the design space of shifters.

4 Design Space Composition to Derive Multiplier Design Space

The design space models for an adder and a shifter were built from our understanding of these
two functions. This approach would not be very practical for a silicon compilation environment. For

15

a composite function fog, where the design space models off and g are already known, we should
be able to derive the design space model for fog from the models for f and g. We have made limited
progress in this direction. We illustrate the derivation of the design space model for multiplication
from the models for addition and shifting. We also give a brief sketch of the composition process
when the connunication between f and g is not combinational but is directed by a finite state
machine. This is the case for any pair of modules in a datapath.

4.1 Multiplication Model

The most common algorithm for multiplication is the shift and ;uld algorithm, we all learn in the
grade school. We start with a specification of a parallel/serial multiplier shown in Figure 8. We
wish to multiply two n + 1-bit integers B = bn ... b0 and A = an ... a1 ao. The result can be
written as x 0 (a 0.B) + x1(a1.B) + ... + xn(an.B). This defines a generic parallel-parallel multi
plier, which can be refined to give more compact designs. Let us first transform this expression

into 11"J (••• (x! (1r1 (x! (11"J (anB) + an-!B) + an-2B) + an-3B) .. .) + aoB). This could be done
by observing the arithmetic progression of the indices for 1r in the parallel-parallel specification.
Notice that now we have the shift composition performed in space. Applying the earlier space-time
mapping rule, we can realize this expression as shown in Figure 8. The design space model would
consider this design to be suboptimal for the following reason. The asymptotic time to perform x1

(shift by 1) is some unit time c0 • The adder is in series with x1 in this composition. The adder
design space shows the fastest adder (parallel-prefix) at log n time. This mismatch can be resolved
in one of the following two ways.

We can convert the adder to a carry-save adder as shown in Figure 9. Then the time per carry
save addition comes down to unit time c1 • This is a match within a constant satisfying the design
space model. Hence this design is considered an optimal design. Note that a carry-save adder
is just a bit serial adder, which is a time-domain realization of a carry-ripple adder as shown in
Figure 5. When a full adder (G1 , P1) gets u~ed for an n-bit long stream in this way, we denote it by

~~(:~ ~.:: ~:,:)::•::,~:li.:~~0rg <h< domrun of <ho lio~o oh;ft re@oW '' ~

The second way to achieve this match is by noticing that the time-mapped realization of a carry
ripple adder would work right with a linear shift register as long as the input B (in Figure 8) can
be serialized in the right way. This is one example of the information that this design space model
lacks. This limitation is also the reason that we can compose models this easily. Figure 10 illustrates
the serial-serial multiplier. The specification for this multiplier consists of x1 ((GJ. P1)n, 2, ... , n).

Another transformation we can consider is to notice the symmetry of multiplication with respect
to its two input words. This reqnires looking at the parallel-parallel specification and taking its dual
with respect to the two inputs. Then one can derive the column-add serial-parallel multiplier shown
in Figure 11. The specification here is x1 (Ab0 , (G1 , PJ)n, Abt. (Gt. PJ)n, ... , Abn, (G1 , PJ)n). One

16

Carry
bits

Sum
bit

a

b

s

Q Q <;: 'J A

0 Q Q 0

~
1\ 1\ 1\ -
\ I \ I \ I

L...o.- - - :...__...

1 l l l
B I

Figure 9: A Parallel-Serial Multiplier with Carry-save Adder

-I\ L
-LJ shift register (n-1)

FA
;-+ I-

cin cout

- delay· 1--

Figure 10: A Serial-Serial Multiplier

17

coutt sum

a-
FA

c-

t
b

-

a

b
0

b
1

b
2

Figure 11: A Column Add Serial-Parallel Multiplier

b
3

can derive Lyon's pipelined version [Lyo76] from this by introducing delay latches along every signal
path across the shift boundaries.

In summary, the following techniques/ operators guide the search of the design space (massaging
of the algebraic expression) with respect to a given set of user area and time requirements. In all
these cases, the constituent primitive components are matched in speed.

space-time mapping: When repeated subexpressions occur, the compositions can either be real

ized in the expanded form in space or folded in time. This space-time mapping can either
reduce space into time to realize a smaller area design point or map time into space to realize
a faster design point.

communication bandwidth: Algebraic elements with larger indices have larger communication
bandwidth at the cost of larger area. A subexpression that evaluates to a larger-index element
can be replaced for a faster design point. This process can also replace a large-index element

by a sub-expression consisting of small index elements giving rise to a lower area but slower

design point.

factoring: When elements with indices in an arithmetic progression are found, they can be folded
to use the least index element repeatedly. A parallel-parallel square multiplier can be derived
from a Wallace tree multiplier in this way.

symmetry: An axis transformation for the expression gives rise to a whole new space of designs.
For example, the multiplication can be seen as adding a new row to the partial product at

18

every stage. Alternately, it can be seen as the addition of columns from right to left. This
perspective leads to the Lyon's pipelined multiplier.

4.2 Composition under FSM Control

In the multiplier case (combinational composition), the design space model has to determine the
speed of two components so that one can feed another at the rate the other can consume the data.
But in this situation the two components need not exhibit the sequential dependence. For example,
a program counter (PC) needs to compute the new address in parallel with the ALU operation in a
pipelined machine such as MIPS-X [CH87]. The additional complexity is that every pipe stage in
MIPS-X is divided into two non-overlapped clock phases ¢1 and </>2 • Hence we need to determine if
both the PC and ALU have nonoverlapped operations or simultaneous operations. The simultaniety
argues for the designs with as matched a time performance as possible, so that no component is
overdesigned.

We have made the picture look very simplistic. One needs to perform the same kind of slack
analysis as is performed in high-level synthesis (behavior level) (MPC88]. But the domain is a
finite state machine where an output signal indicates if a module is activated or not. The same
technique will work nonetheless. Only the pairs of design points for two modules that satisfy the
FSM constraints and minimize the total area are propagated up as the design points at this composite
level.

5 Conclusions and Future Work

We have described a design space model that models only the communication component of a func
tion. But for the functions that are complex (and thus hard to characterize), it is the communication
c~mponent that dominates the area-time requirements of a design. We believe that this constitutes
the minimal information a design space model needs to carry forward to be a successfnl model. For
the most purposes, this information is also sufficient. We gave a general framework to model all the
datapath functions in terms of type-0, type-1 and type-2 functions or a composition thereof. We
have used these models to build function modnle generators for adder, shifter and multiplier. These
module generators exhibit enough flexibility to satisfy most of the user specifications.

We also proposed a technique for composing two design space models to derive a composite
model for a larger system in the hierarchy. This was sketched with the example of the derivation of
the design space model of a multiplier from the models for adder and shifter.

This work needs to be extended to do this composition for a system whose modules communicate
under the control of a finte state machine. We gave a preliminary method to do this.

As pointed out in the discussion, a model of timing and clocking is missing from this model.
There is a macro-concept of a delay-latch to allow us to consider pipelined and synchronous im
plementations. An interesting direction will be to consider if different clocking schemes can fit

19

into this framework and if a new, consistent clocking scheme can be derived from the same design
transformation.

In summary, although the complete designs have been characterized by formal methods, we
believe that this is the first attempt at modeling the design space by formal means. This is a more
pragmatic way to handle the design space exploration tasks.

References

[Bau81] G. M. Baudet. On the Area Required by VLSI Circuits. In Proceedings of CMU Conference
on VLSI, pages 100-107. CMU, Computer Science Press, 1981.

[BK82] R.P. Brent and H.T. Kung. A Regular Layout for Parallel Adders. IEEE Transactions on
Computers, pages 260-264, March 1982.

[CH87] P. Chow and M. Horowitz. Architectural in the Design of MIPS-X. In Proceedings of
the 14th ACM International Symposium on Computer Architecture, pages 300-308. ACM,
1987.

[Che85] M.C. Chen. The Generation of a Class of Multipliers: A Synthesis Approach to the
Design of Highly Parallel Algorithms in VLSI. In Proceedings of International Conference
on Computer Design. IEEE, 1985.

[Che87] M.C. Chen. The Generation of a Class of Multipliers: Synthesizing Highly Parallel Algo
rithms in VLSI. Technical Report YALEU/DCS/RR-406, Yale University, May 1987. To
appear in IEEE Transactions on Computers.

[CS83] P.R. Cappello and K. Steiglitz. Unifying VLSI Array Designs with Geometric Transfor
mations. In Proceedings of International Conference on Parallel Processing. IEEE, 1983.

[JC81] L. Johnsson and D. Cohen. A Mathematical Approach to Modelling the Flow of Data and
Control in Computational Networks. In Proceedings of the CMU Conference on VLSI,
pages 213-225. CMU, Computer Science Press, 1981.

[JMP88] R. Jain, M. J. Milner, and A. C. Parker. Area-Time Model for Synthesis ofNon-Pipelined
Designs. In Proceedings of ICCAD-88, pages 48-51. IEEE, 1988.

[Joh86] S.D. Johnson. Digital Design in a Functional Calculus. In G. J. Milne and P. A. Subrah
manyam, editors, Formal Aspects of VLSI Design, pages 45-57. Elsevier Science Publishers
(North-Holland), Amsterdam, Holland, 1986.

[Joh89] D. Johanssen. Silicon Compilation. In Proceedings of the Jgsg Decennial Caltech Confer

ence on VLSI, pages 17-36. MIT Press, 1989.

[KB88] G. Kedem and F. Brglez. OASIS: Open Architecture Silicon Implementation System.
Technical Report MCNC TR 88-06, Microelectronics Center of North Carolina, February
1988.

20

[KH89] M.S. Kotliar and K.S. Hedlund. Speed Optimization of Combinational Circuits. In Pro
ceedings of the 1989 International Workshop on Logic Synthesis. MCNC/ ACM SIGDA,
1989.

[LM82] T. Lin and C. Mead. The Application of Group Theory in Classifying Systolic Arrays.
Technical Report 5006:DF:82, California Institute of Technology, Pasadena, California,
April1982.

[Lyo76] R. F. Lyon. Two's Complement Pipeline Multipliers. IEEE Transactions on Communi
cations, April1976.

[Mol83] D. I. Moldovan. On The Design of Algorithms for VLSI Systolic Arrays. IEEE Transactions
on Computers, 71(1), January 1983.

[MPC88] M. C. McFarland, A. C. Parker, and R. Camposano. Tutorial on High Level Synthesis.
In Proceedings of the 25th Design Automation Conference, pages 330-336. ACM/IEEE,
1988.

[NI85] T-F. Ngai and M. J. Irwin. Regular, Area-Time Efficient Carry-Lookahead Adders. In
Proceedings of the 7th IEEE Symposium on Computer Arithmetic, pages 9-15. IEEE, 1985.

[PP86] N. Park and A. C. Parker. Sehwa : A Program for Synthesis of Pipelines. In Proceedings
of the 23rd Design Automation Conference. IEEE-ACM, 1986.

[PSE85] D. Patel, M. Schlag, and M. Ercegovac. v:FP: An Environment for the Multi-level Specifi
cation, Analysis, and Synthesis of Hardware Algorithms. In Proceedings of the Functional
Programming Language and Computer Architecture Conference, pages 233-255, 1985.

[Qui84] P. Quinton. Automatic Synthesis of Systolic Arrays from Uniform Recurrent Equations.
In Proceedings of the 11th Annual Symposium on Computer Architecture. IEEE, 1984.

[Rob84] F. S. Roberts. Applied Combinatorics. Prentice Hall Inc., 1984.

[She84] M. Sheeran. muFP, a Language for VLSI Design. In Proceedings of the 1984 ACM
Conference on LISP and Functional Programming, pages 104-112. ACM, 1984.

[Tya90] A. Tyagi. An Algebraic Model for Design Space with Applications to Module Genera
tion. In Proceedings of the First IEEE European Design Automation Conference. IEEE
Computer Society Press, 1990. Also available as The Dept. of Computer Science, UNC,
Chapel Hill, TR89-032.

[Ull84] J.D. Ullman. Computational Aspects of VLSI. Computer Science Press, Rockville, Md.,
1984.

[Vui83] J. Vuillemin. A Combinatorial Limit to the Computing Power of VLSI Circuits. IEEE
Transactions on Computers, pages 294-300, March 1983.

[Yao79] A.C. Yao. Some Complexity Questions Related to Distributed Computing. In ACM
Symposium on Theory of Computing. ACM-SIGACT, 1979.

21

