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Visual Psychophysics and Medical Imaging: 
Nonparametric Adaptive Method for Rapid 

Threshold Estimation in Sensitivity 
Experiments 

VICTOR KLYMENKO, STEPHEN M. PIZER, AND R. E. JOHNSTON 

Abstract-Rapid advances in biomedical imaging, including new 
technologies in image acquisition, reconstruction and display, and new 
algorithms in digital image processing, have generated the need for 
valid, reliable, efficient, and standardized psychophysical methods of 
observer performance evaluation, particularly with respect to observer 
sensitivity to imaging parameters. In recent years there has been con­
sider:.lble activity in the development of new psychophysical techniques 
measuring observer sensitivity, each of them with relative advantages 
and disadvantages in terms of efficiency, reliability, underlying statis­
tical assumptions, computational simplicity and domain of application 
[1]-[74]. In this paper we describe the m-AFC transformed up-down 
adaptive method for the rapid determination of visual thresholds [28], 
[32], [33], [49], [50], [55] in medical images. The method is very effi­
cient in obtaining thresholds to medical imaging parameters; in addi­
tion it is free from criterion bias, an important concern in radiology, 
and it is free from parametric assumptions about the stimulus scale, 
which are often unknown due to the complexity of medical images. We 
report issues of experimental design that arise in the use of this method 
and note the psychological caveats which should be followed with hu­
man observers. We present two experiments, where we demonstrate 
the method's efficacy in determining thresholds and psychometric 
functions in medical images. 

I. INTRODUCTION 

A DV ANCES in medical imaging such as new tech­
J-\.nologies in image acquisition, reconstruction, dis­
play, and new algorithms in digital image processing, 
have generated the need for observer performance evalu­
ation of a large number of imaging parameters [75], [76]. 
Section II briefly overviews the perceptual issues relevant 
to medical imaging and reviews traditional methods of 
measuring visual sensitivity [ 15], [ 16], [ 18], [77], [78]. 
Section III describes an efficient adaptive method, the 
transformed up-down method [33], for use in the rapid 
determination of visual thresholds in medical images. 
Section IV reports human observer experiments demon­
strating the method and Section V reports our conclusions 
on the efficacy of the method. 

Manuscript received November 13. 1989: revised Mav 2. I990. This 
work supported in part by NIH POl-CA-47982. . 

V. Kiymcnko is with the Department Radiology. University of North 
Carolina at Chapel Hill. Chapel Hill. NC 27599. 

S. M. Pizer and R. E. Johnston arc with the Departments of Computer 
Science and Radiology, University of North Carolina at Chapel Hill. Chapel 
Hill. NC 27599. 

IEEE Log Number 9037580. 

Our main purpose is to point out the relevance of a 
method of threshold estimation, originally imported from 
psycho-acoustics [33] and gaining wide currency in basic 
research in visual psychophysics [79]-[83], to applied 
questions in medical imaging. We briefly review current 
methodological thinking in psychophysics and argue for 
the wider use of the procedure known as the transformed 
up-down method to investigate issues in medical imaging. 
In addition, we call attention to frequently disregarded 
and potentially confounding psychological and methodo­
logical issues which need to be considered when obtaining 
empirical thresholds to medical imaging parameters. The 
method we describe is useful in measuring visual sensi­
tivity, when in the context of an experiment the image 
parameter of interest can be modified on-line by a com­
puter controlled display. 

II. PSYCHOMETRIC FUNCTIONS AND MEDICAL IMAGING 

The quality of the medical image a radiologist sees, is 
the final product of a complex chain of transformations, 
beginning with the physical properties of the object and 
ending with the perceptual response of the observer [84], 
[85], what we call the object to observer pipeline (OTOP). 
In medical image viewing situations, the observer may 
need to identify or classify a feature from among a set of 
potential features, such as the type of lesion present; dis­
criminate a feature, such as the location of a stenosis; or 
detect a feature, such as the presence or absence of a nod­
ule in a noisy image. The observer may need to make a 
determination as to diagnosis, such as that the patient has 
pneumonia; or treatment such as the location of a planned 
surgical path relative to a nerve or blood vessel. In each 
of these situations, the observer's ability to perceive the 
relevant information in the image will be based on a series 
of decisions made about parameters at different OTOP 
stages. For example, early stage OTOP parameter deci­
sions might concern what amount of radioactive material 
needs to be used for the PET scan, or what are the param­
eter settings for an image reconstruction algorithm; an in­
termediate OTOP stage parameter decision might involve 
what degree of enhancement is best when applying an ad­
justable adaptive histogram equalization image process-
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ing algorithm [86], [87]; a later stage decision might con­
cern the dynamic luminance range to which a display 
device should be set. Whatever the type of response re­
quired, OTOP parameter setting decisions will effect the 
observer's performance based on how the observer's sen­
sitivity corresponds to changes in the OTOP parameter. 
The OTOP parameter need not necessarily be examined 
in terms of sensitivity to an intensive stimulus dimension 
such as luminance or contrast, but in terms of any per­
ceivable dimension such as, for example, size, depth, or 
location. 

An example of an OTOP parameter decision would be 
the degree of edge enhancement in an unsharp masking 
algorithm. This decision might effect, for example, the 
lesion contrast needed to detect a particular type of lesion 
in a medical image. The experimental conditions, the 
OTOP parameter, might be four settings of a smgle un­
sharp masking algorithm, or four different algorithms. 
Here we wish to determine what stimulus level, lesion 
contrast in this example, is needed to reach threshold for 
each of the four OTOP conditions. Above some stimulus 
level (high lesion contrast), where performance will be 
perfect, an experimental condition will be in the su­
prathreshold region; below some level (low lesion con­
trast) where performance will be at chance, it is in the 
subthreshold region. Between these levels (intermediate 
lesion contrasts), in the threshold region, performance will 
usually [32] vary monotonically from chance to perfect. 
These functions are variously known as sensitivity, psy­
chophysical or psychometric functions. These psychom­
etric functions are almost always monotonic, generally 
ogival, and often (particularly for intensive stimulus di­
mensions) Gaussian integral functions, or logistic or Wei­
bull functions [21], [24], [38], [43], [65], [77], [88], [89]. 
Also the stimulus region they map onto, the threshold re­
gion, is of particular importance for a number of reasons. 
Because of both technological OTOP and human perfor­
mance limitations, this is currently the maximum range of 
many medical images. The threshold region is also the 
only one of the three regions which allows us to determine 
quantitatively and objectively how perceptual perfor­
mance per se varies in terms of an image parameter vari­
ation. 

In addition, it is also the only region in which we can 
equalize the performance effects of different parameters, 
or scale the same parameter in psychophysically equal 
units, since points both in the perfect suprathreshold and 
chance subthreshold ranges are indeterminate. For ex­
ample, consider the case where one wants to perceptually 
linearize the 256 driving levels of a display device [90]. 
That is one wants to set the physical luminances corre­
sponding to each driving level such that a target in the 
image at say 5 driving levels above its background is 
equally detectable throughout the range of driving lev­
els-for example, a target set at driving level 15 in a back­
ground set at driving level 10 would be as perceivable as 
a target set at 205 in a background set at 200. Here the 
procedure would be to define a point on the psychometric 

function, such as the 75% correct point as the threshold 
or just noticeable difference (JND) unit, and determine 
the luminance increment JND's for each driving level 
[84), [85], [90]. Deriving equal luminance increments by 
subjective scaling such as Steven's magnitude estimation 
procedure [78], would produce subjectively equal units of 
the stimulus scale, equal brightness units in this case, but 
would likely be inappropriate in terms of objective task­
specific performance, such as detection or discrimination 
of a target. In the demonstration experiments, we will de­
termine what are the mimimum increments in driving level 
units of a target above its noisy background which will 
achieve threshold of the target for a set of two dynamic 
luminance ranges of a CT image displayed on a video 
screen. 

As the nature of thresholds and psychometric functions 
are well covered elsewhere [16], [18], [77], [78], we only 
briefly mention several pertinent notions. Historically the 
research conducted under the rubric of .>ignal detection 
theory has shown that thresholds are not absolute and can 
be decomposed into perceptual sensitivity and cognitive 
decision components. The decision components can be 
controlled when using an alternative forced choice (AFC) 
procedure, and the more alternatives the more stable the 
resulting index of sensitivity [77). If one wishes to com­
pare the effect of different experimental conditions on 
threshold, one can simply record percent correct in an 
m-AFC procedure and compare the results, and given ad­
ditional assumptions compare the results to other m-AFC 
experiments, where m is some number of alternatives [91]. 
These percent corrects, often converted to some common 
currency such as d', will give us different threshold points 
on the psychometric functions for the different experi­
mental conditions. 

If one wishes instead to equalize the different experi­
mental conditions, that is to find the same threshold point, 
such as the 50% correct point, on the different psycho­
metric functions, one would need to vary the stimulus 
magnitude for each experimental condition to reach these 
points. Traditionally this has been done by the method of 
adjustment, where the observer sets the threshold, and the 
method of limits, where the observer indicates his thresh­
old by changing his response to ascending and descending 
stimulus magnitude sequences. Although efficient, both 
methods are confounded by subjective criterion bias. This 
bias has been avoided by using the less efficient method 
of constant stimuli [ 15], [ 18], [53]. For each experimen­
tal condition, this last method presents a large number of 
trials in random order at predetermined stimulus levels, 
records resulting percent corrects and interpolates the de­
sired threshold point. The method of constant stimuli is 
inefficient in that many trials will be presented at some 
distance from the desired threshold points, and in order 
to interpolate, one needs to make parametric assumptions 
about the stimulus scale onto which the psychometric 
function is mapped. 

In examining the perceptual effects of directly varying 
a parameter somewhere in the object to observation pipe-
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line, in medical imaging contexts one often cannot make 
any assumptions regarding the underlying stimulus scale 
of the psychometric function [82], [92], [93]. Earlier, we 
gave the example of the lesion contrast needed for detec­
tion at each of four settings of an OTOP parameter, four 
degrees of edge enhancement in an unsharp masking al­
gorithm. We might instead be interested in how percep­
tual performance maps directly onto varying the settings 
of an OTOP parameter. Consider, for example, the case 
where the experimenter is interested in investigating the 
effects of pixel histogram shape upon visual threshold for 
detecting the location of a tumor, for example, is the brain 
tumor in contact with the optic nerve? The OTOP param­
eter of interest here, the look-up-table (LUT) remapping 
function, will produce a hyperbolic histogram at one ex­
treme, a flat histogram for an intermediate value where 
each pixel value in the range occurs an equal number of 
times in the image, and aU-shaped histogram at the other 
extreme parameter settil)g. We wish to derive a psycho­
metric function for correct detection of location in terms 
of how observer sensitivity maps directly onto the varia- . 
tion in this OTOP parameter. In this case, rather than 
varying a perceptually well specified parameter such as 
contrast to derive contrast thresholds and psychometric 
functions for each OTOP parameter variation, the exper­
imenter is directly varying the OTOP parameter to derive 
its psychometric function. In this example, as the shape 
of the pixel histogram changes, the signal-to-noise ratio 
(SNR), the conspicuity of the lesion, the average lumi­
nance increment of the lesion over its background, the 
global and local luminance and contrast in the image, etc., 
will change in complex and often unknown ways. Even if 
one knows the relevant stimulus scale, calculating the rel­
evant changes induced by varying the histogram shape 
may be mathematically intractable. On the other hand, 
one may assume that, for example, the Gaussian integral 
[94] of the psychometric function varies against the his­
togram shape changing units which we have imposed, 
when in reality it varies against some more complex func­
tion [93] of the histogram shape changing units, in which 
case the interpolated threshold estimate will be based on 
the wrong parametric assumptions, the result being un­
predictable in terms of bias and accuracy [82]. Many im­
age manipulations defy simple parametrization of the rel­
evant stimulus scale which may not even be known. Even 
in well researched simple stimulus domains, there are still 
debates concerning the correct units of the underlying 
stimulus scale [82]. 

In the transformed up-down method described in the 
next section, we do not need to make any parametric as­
sumptions within the context of the experiment. How­
ever, if one decides such assumptions are safe and useful 
and wishes to use parametric data analysis techniques such 
as probit analysis [33], [95], one can still use the data 
collected by this method, with the advantage that the ex­
periment will be more efficient than the method of con­
stant stimuli in terms of the number of trials and the place­
ment of stimuli [15]. [32]. [331, [82]. This method is one 
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of a class of modem techniques known as adaptive pro­
cedures, which are those procedures where the stimulus 
level on each trial in an experiment is adaptively based on 
the observer's previous responses. The transformed up­
down method, unlike many other procedures, requires no 
parametric assumptions and is relatively robust to time 
course effects, which are the drifts in threshold caused by 
various external factors. These external factors are an im­
portant aspect of the threshold estimation problem we dis­
cuss next. 

Assume for the moment that we know the stimulus level 
of the 50% point on a psychometric function for an 
m-AFC paradigm and want to demonstrate this. Logically 
one might assume that we should present all the trials at 
the stimulus level corresponding to the 50% point. How 
many trials should we present at this stimulus level? The 
deviation of the empirical percent from the real percent 
correct will of course follow the sampling distribution 
based on the number of trials and the value of m. This is 
the foundation of the "wall of variability" beyond which 
we cannot go even in principle. Additional bricks to the 
wall will be unavoidably added by between-subject vari­
ability, and by external factors, which introduce addi­
tional variability into each individual observer's re­
sponses and corresponding threshold estimates. They may 
in fact change the threshold being estimated during the 
process of estimation, for example, by perceptual learn­
ing, habituation, and aftereffects, even development of 
superstitious response behavior, and so on [74]. The pur­
pose of good experimental design is, of course, to reduce 
the confounding influence of external factors which, be­
cause of the inherently stochastic nature of all threshold 
estimation procedures, cause unique problems. Although 
these are attenuated by the efficiency of adaptive methods, 
they are never absolutely eliminated because of the con­
straints of human experimentation. These constraints in­
clude the temporal effects of the psychological variables 
of fatigue, perceptual learning, motivation, light and dark 
adaptation and so on [74], as well as the inherent vari­
ability in the psychometric function itself. Each addi­
tional observation taken to estimate a threshold will. in a 
fashion paralleling the Heisenberg uncertainty principle 
in physics, affect the threshold. The improvement in. 
threshold estimation of running a thousand r:1ther than a 
hundred trials, thus, may not be as straightforward as the 
mathematics would imply due to the increasingly uncon­
trolled influence of psychological variables such as. for 
instance, fatigue. At some indeterminant point in time un­
controlled attentional lapses due to fatigue and boredom 
will begin irreparably confounding the sensitivity data 
[20]-[23]. Thus chipping away at one brick in the wall of 
variability will cause another to fall into its place. Long 
runs of near threshold stimuli are especially disconcert­
ing, because these stimuli by their nature impose the max­
imum perceptual and attentional performance require­
ments on observers [961. 

While theoretically, due to the multiple trials needed, 
no technique can completely tease apart a threshold esti-
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mate from the various confounding time course factors 
(which may have opposing effects such as perceptual 
learning and stress), the transformed up-down method al­
lows one to track changes in the overall influence of these 
external factors by obtaining ongoing threshold estimates. 
The main advantage of adaptive techniques in general is 
their efficiency in terms of the number of trials. The main 
advantages of the adaptive method we will describe is its 
computational simplicity, ability to track drifting thresh­
olds, and its freedom from restrictive parametric assump­
tions about the underlying stimulus scale onto which the 
psychometric function is mapped. 

Ill. NONPARAMETRIC ADAPTIVE THRESHOLD 

EsTIMATION 

The transformed up-down method has been described 
as a modified method of limits [33], in that the threshold 
estimate is based on mini-ascending and -descending se­
quences of stimulus level, and alternatively as a modified 
method of constant stimuli [ 15], in that the ongoing 
threshold estimate is adaptively bracketed. 

A. Transformed Up-Down Method of Wetherill and 
Levitt 

Assume we have prior knowledge of the general thresh­
old region. Once we are in this neighborhood, the sim­
plest stimulus transition or stepping rule is to raise the 
stimulus level for the next trial following an incorrect re­
sponse, or lower the stimulus level following a correct 
response. This transition rule (Rule A) leads to what is 
known as the simple up-down or staircase method. In the 
resulting up and down sequence of stimulus levels, 
changes in the direction of stimulus levels are called turn­
ing points; upper turning points for a change from an as­
cending to descending series of levels, and lower turning 
points for the reverse. The stimulus value midway be­
tween a turning point and the preceeding stimulus level 
constitutes a local estimate. To avoid directional bias, lo­
cal estimates associated with an equal number of upper 
and lower turning points are averaged. This is usually 
more simply described as averaging the turning points 
[ 15]. The average stimulus value of the two turning points 
(an upper and neighboring lower turning point) consti­
tutes a mid-run estimate, and the average of all the mid­
run estimates is operationally defined in this method as 
the threshold estimate of the 50% point. The mid-run es­
timates, thus provide a rough moving window of the 
threshold estimate. Changing the transition rule so that 
the stimulus level is now only decreased after two con­
secutive correct responses, but still increased after each 
incorrect response (Rule B), will result in a higher thresh­
old estimate, the 70.7% threshold point. The transformed 
up-down method, worked out by Wetherill and others 
[28], [29], [31], [67]-[71], refers to the set of potential 
transition rules defining different threshold points [32], 
[33], [35]. The logic behind the transition rules is as fol­
lows. Each Rule X has an associated percentage of correct 

responses, x, such that a stimulus at the x% correct level 
has an equal probability of ascending or descending. 
Whether the stimulus level rises or falls, it will subse­
quently have a greater probability of reversing direction. 
Thus the stimulus levels will tend to converge onto and 
oscillate about the x% correct point. For example, mod­
ifying the transition rules so that the stimulus level is now 
only decreased after three consecutive correct responses, 
but still increased after each incorrect response (Rule C), 
will result in a higher threshold estimate, the 79.4% 
threshold point. 

Because of the differing number of trials specifying dif­
ferent transition rules, only a few of the potential quanta! 
threshold points are practical within the context of ob­
server sensitivity experiments [32], [33]. However two 
points, such as those specified by Rules A and B, are suf­
ficient to derive a practical estimate of two threshold 
points and the spread, or steepness, of a psychometric 
function. The spread here is operationally defined as the 
difference between threshold estimates obtained by Rules 
A and B. This difference will allow us to determine 
whether the psychometric function has a small spread, is 
steep, or a large spread, is shallow, that is, how sensitive 
it is to changes in the stimulus parameter. The steepness 
of the psychometric function is sometimes more conve­
niently specified in terms of slope which is simply the 
inverse of the spread. 

In estimating thresholds from the data, methods other 
than the average mid-run estimate [3], [10], such as the 
median of the stimulus levels visited or maximum likeli­
hood estimation should not change the estimates in terms 
of the experimental results [46], [55]. If the differences 
between experimental conditions are so small as to be af­
fected by the method of estimation, the results should be 
interpreted with extreme caution. One may always theo­
retically refine one's estimate based on the parametric and 
other assumptions one is willing to make; however, this 
will generally be of little practical consequence in terms 
of the empirical conclusions one is likely to derive [39], 
[51]-[53]. In addition to the method of estimation, the 
operational definition of a threshold is based on a number 
of procedural factors including the value of m in nz-AFC 
paradigms, the step size, the trial placement rules, and the 
percentage point being estimated. The legitimacy of com­
paring results across experimental paradigms by convert­
ing to a common currency, such as d' in signal detection 
theory, has been debated [7], [31], [55], [72], [77]; it will 
depend on a number of factors including the type of stim­
ulus dimension under investigation [7], [26]. In the con­
text of m-AFC experiments, m may refer to the number 
of alternative stimuli presented on each trial, only one of 
which contains the target to be detected; or m may refer 
to the number of target choices to be discriminated, only 
one of which is present on each trial. The value of m 
should be as large as is practical (preferably larger than 2 
[28], [29], [46], [50]), and the threshold point being es­
timated must be larger than I 00/ m percent correct, which 
is chance guessing. To reduce variability, avoid estimat-
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ing threshold points near the extremes of the psycho­
metric function [38], [39]. 

In order to increase experimental efficiency, the thresh­
old-estimation stage is usually preceeded by a range-lo­
cation stage, described next. 

B. Hybrid Adaptive Method 

The purpose of the range-location stage is to first find 
the general region in which the desired threshold point 
lies. Thus, a large change in stimulus magnitude, or step 
size, is used, and this stage is terminated once the region 
is located. This two stage or hybrid approach has one main 
advantage. The number of trials is further reduced, thus 
increasing the efficiency, without introducing experimen­
ter bias into the design [5]. The threshold estimation stage 
then uses a smaller step size based on the experimenter's 
desired threshold accuracy and other factors such as the 
equipment's resolution limitations. If only the second 
stage were employed, the experimenter might introduce 
bias into the experiment by estimating each threshold re­
gion himself and starting each experimental condition in 
each of their estimated regions, or having no experi­
menter bias by starting each condition at the same level, 
thus causing a loss of efficiency, particularly if a large 
number of steps are required to reach some of the thresh­
old regions. Many algorithms have been developed [9], 
[15], [16], [23], [32], incorporating this two stage or hy­
brid approach, see review in [74]. For the range-location 
stage, we suggest using a modified method of limits in 
which the experiment is started above threshold and ter­
minated at the first incorrect response in the down se­
quence. This stimulus level then becomes the first trial in 
the threshold estimation stage. In the following experi­
ments, we use two down sequences for the first stage and 
start the second stage at the average of the two termina­
tion levels. This has the advantage of attenuating the loss 
of efficiency due to lapses or numerous chance corrects in 
the beginning of the experiment, but the disadvantage of 
introducing more trials in this stage. The reason we do 
not use an ascending as well as a descending series in this 
stage, as is normally done in the method of limits, is that 
the final average value of the two series would be more 
variable, on average further from the threshold region, 
due to the asymmetry in the two series in m-AFC para­
digms. In the descending series the observer can be in­
correct above threshold when he should have been correct 
only due to a lapse, which should be minimal at the start 
of the experiment. However in an ascending series, the 
observer by chance could be correct far below the thresh­
old region. 

Once in the threshold-estimation stage, the choice of 
step size is determined by the importance the experi­
menter assigns to the accuracy versus efficiency tradeoff. 
In some experimental contexts, efficiency and experimen­
ter bias issues may necessitate several reductions in step 
size in the range-location stage or in some procedures in 
the threshold-estimation stage [79]. The main caveat with 
reductions in step size is that it should not be so rapid in 
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terms of the number of trials that if the stimulus level 
inadvertently ends up far from the threshold by a string 
of lucky guesses or lapses, the experiment cannot recover 
efficiently. In the threshold-estimation stage the data will 
usually indicate by rapidly increasing mid-run estimates 
that the stimulus level is in the subthreshold region, or by 
unusually long descending sequences that the stimulus 
level is in the suprathreshold region. For the final thresh­
old estimate, the first one, two, or three mid-run estimates 
are usually discarded to guard against the range-location 
stage overshooting or undershooting the threshold region. 

Other adaptive methods do not separate the data anal­
ysis for threshold estimation and the trial placement rules. 
They operate by placing the stimulus level on each trial 
at the cumulative threshold estimate of the pooled data 
from all preceeding trials, e.g. [63]-[65]. These tech­
niques have relative disadvantages including: one, they 
are often based on parametric assumptions; two, they need 
to place many trials in the disconcerting subthreshold re­
gion [20]-[23], [43], where the observer is responding at 
chance levels for long sequences of trials; three, if the 
threshold drifts or there are lapses or a string of lucky 
guesses, the final threshold estimate necessarily incorpo­
rates the propagated errors; and four, they sometimes can 
not terminate in a reasonable amount of time [20], [23], 
[55]. There is currently considerable activity in the de­
velopment of threshold estimation methodologies. A new 
intermediate adaptive method recently developed [52], 
which appears potentially useful, awaits empirical test­
ing. Next we demonstrate the transformed up-down 
method. 

IV. EXPERIMENTAL DEMONSTRATIONS 

The utility ofthe m-AFC transformed up-down method 
was examined in two experiments. Experiment 1 dem­
onstrated its effectiveness in obtaining comparative 
threshold estimates and comparative spread estimates of 
psychometric functions for two display conditions. The 
data were separately analyzed in terms of two OTOP pa­
rameters in order to demonstrate the conclusions which 
can be derived about parameter variation in different 
stages of the object to observation pipeline. Experiment 
2 further demonstrated the efficiency, consistency and re­
liability of the estimation procedure. 

A. Experiment 1: Comparative Threshold and Spread 
Estimates of Two Psychometric Functions 

The effect of two display mappings, Full Dynamic 
Range and Compressed Dynamic Range, on the Upper 
(70.7%) and Lower (50%) thresholds of a notched target 
in a CT scan was estimated using a 4-AFC transformed 
up-down procedure. The four experimental conditions, 
two thresholds for each of the two dynamic ranges, al­
lowed us to compare the thresholds and the spread of the 
psychometric functions for the two display conditions. 

1) Method: We describe some aspects of the experi­
ments in more detail than is usual in order to explicate 
methodological considerations. 
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a) Observers: There were five observers, each with 
normal, or corrected to normal, vision. They were two of 
the authors (VK and REJ), two departmental secretaries 
(AC and TB), and a biomedical engineering student (DG). 

b) Equipment and Stimuli: A Comtal image process­
ing system hosted by a VAX 111730 computer presented 
the stimuli on a gray-scale video monitor and recorded the 
responses, which were made via a numeric keypad. The 
spatial and luminance resolution of the monitor respec­
tively was 104 pixels per degree of visual angle, and 256 
driving levels. The stimulus, a simulated CT scan in im­
age memory, contained pixel values ranging from 0 to 
255. After passing through a look-up-table, these were 
mapped onto the 0-255 driving level range of the display 
monitor. The luminance scale, measured in the center of 
a uniformly driven full screen, was approximately loga­
rithmic (driving level-luminance in cd/m2

: 0-.017, 
128-.55, 255-19.87). 

The CT scan was generated by a computer image pro­
cessing procedure which simulated the output of a recon­
struction algorithm. The three stages of creating this CT 
scan involved the following: one, defining several re­
gions of uniform pixel value corresponding to organs; 
two, blurring the edges to simulate the partial volume ef­
fect; and three, simulating the effect of uncorrelated Pois­
son noise in the projection profiles previous to tomo­
graphic reconstruction; resulting in an image with 
realistically correlated noise. For each experimental trial, 
one of four C-shaped targets, superimposed by pixel value 
addition, was present in the CT image (see Figs. 1 and 
2). 

The target was an 8 X 8 pixel square with a 4 x 4 pixel 
square section removed from the middle of either the up­
per, lower, right or left sides, forming a bi-symetrical 
C-shaped target with the open end facing up, down, right, 
or left. For each trial the target was presented in one of 
nine contigious pixel locations on the CT scan. These nine 
locations were defined with reference to a 3 by 3 array of 
adjacent pixel coordinates. The set of nine target loca­
tions, forming the possible backgrounds of the target, had 
been of uniform pixel value-135, seven and a half driv­
ing levels above the center of the range, -before the noise 
was added in the third stage of creating the CT scan. On 
each trial, one of 36 possible stimuli (4 targets x 9 lo­
cations) were randomly presented. Thus we used a single 
"frozen noise" image with positional variation of the tar­
get. The mean and standard deviation of the l 00 pixel 
region which formed the possible backgrounds of the tar­
get was 134.88 and 21.23, respectively. The CT scan tar­
get combination presented to the observer was zoomed up 
by a 2 X 2 pixel replication; thus there were 52 enlarged 
pixels per degree of visual angle in the stimulus presented 
to the observer. Between trials a display showing the four 
target choices was presented for 5 s. The luminance, 4.5 
cd / cm2

, of the intertrial display served to maintain a con­
stant level of global light adaptation to avoid changing 
observer sensitivity during the course of the experiment. 
Observers were motivated to fixate the intertrial screen 

Fig. 1. Example of the stimuli presented in Experiments I and 2. CT scan 
displayed under Full Dynamic Range with a superimposed upward fac­
ing C-shaped target, one of the four alternative targets, see text. 

Fig. 2. Example of stimuli presented in Experiment I. CT scan displayed 
under Compressed Dynamic Range with a superimposed downward fac­
ing C-shaped target, one of the four alternative targets, see text. 

which contained the target choices and the feedback de­
scribed in the next section. 

The DL value of the target in the CT scan was the num­
ber of driving level units the target pixels were raised 
above the noisy background. Each pixel in the target var­
ied in absolute driving level, but all target pixels were a 
constant number of driving levels above the noisy back­
ground. The DL value of the target was manipulated 
adaptively as described in the next section. 

In the Full Dynamic Range Displays, the 256 pixel 
value range of the CT scan in image memory was linearly 
mapped onto the full 256 driving level range of the dis­
play monitor by the identity LUT transform. In the Com­
pressed Dynamic Range displays, the pixel value range 
was linearly mapped onto the central half of the· driving 
level range. This produced a more faded image of lower 
contrast. 

In describing the value of the target in the CT scan­
target combination, we can refer to the physical DL units 
seen by the observer, or we can refer to the pixel values 
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of the target in image memory before the dynamic lumi­
nance range compression, where we refer to the number 
of pixel values that the target is raised above the noisy 
background as "scaled CT" or SC units. Because of the 
LUT remapping function, in the Full Dynamic Range dis­
plays, DL units directly correspond to SC units, while in 
the Compressed Range displays, they are one half of the 
SC units. Because we have complete information, we will 
be able to determine which of these two OTOP parameters 
is more predictive of the threshold of the target. 

c) Design: A version of the hybrid transformed up­
down method described earlier was used to obtain the four 
threshold estimates-Upper and Lower Thresholds of the 
Full and Compressed Dynamic Ranges. 

There were three stages presented in the following or­
der in each experimental session: practice, range-loca­
tion, and threshold-estimation. The type of feedback re­
ceived was an observer's only indication of the stage. 
Some external factors such as fatigue and boredom can be 
partially ameliorated by motivating the observer with 
feedback. 

In the practice stage the target value was always 60 DL 
units, far above threshold, and feedback was received after 
every trial in the form of the words "right" or "wrong" 
appearing after every trial on the intertrial display. There 
were 12 practice trials which consisted of the four exper­
imental conditions being presented in random order within 
three blocks. 

In the range-location stage, target values started at 60 
DL for each of the four trial sequences representing the 
four experimental conditions. In each sequence every cor­
rect response decreased the target value by 6 DL units for 
the following trial in the sequence. The first incorrect re­
sponse placed the target at 60 DL again, and the second 
incorrect response terminated the sequence. The four se­
quences were interleaved by presenting a trial from each 
sequence in random order for every block of four trials. 
As each sequence terminated, the remaining sequences 
were presented in random order in smaller blocks. Feed­
back was given after every trial in the form "correct" or 
"incorrect" appearing on the intertrial display. 

The threshold-estimation stage began only after termi­
nation of all sequences in the range-location stage. In the 
threshold-estimation stage the starting value of the target 
of each sequence, representing each experimental condi­
tion, was the average value of the two incorrect responses 
recorded in the range-location stage. This value consti­
tutes the initial estimate, near which the desired threshold 
is assumed to be located. The step size was one DL unit. 
The four sequences were interleaved in the same manner 
as in the range-location stage. In the threshold-estimation 
stage, feedback was given only after every four trials by 
presenting the number correct (0-4) on every fourth 
intertrial display. This decoupling of feedback from in­
dividual trials serves two purposes. One, along with in­
terleaving, it prevents an observer from following and 
therefore being tempted to control the sequential depen­
dencies in stimulus presentation [5], [32]-[34]. Two, it 
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prevents "overlearning" unrelated to sensitivity. For ex­
ample in our experiment, we used pseudorandom noise 
by having four target orientations in nine adjacent spatial 
locations creating a set of 36 target-noise combinations. 
If feedback was directly coupled to each trial, an observer 
might learn to attend to covarying features irrelevant to 
the task such as perceptually salient landmarks specific to 
certain target plus noise combinations. While it is unlikly 
that an observer would overlearn with 36 combinations in 
a short experiment, it is safer to decouple feedback from 
individual trials. In :my case, as will be described below, 
one can check for time course effects such as overlearn­
ing. 

The two Upper Threshold sequences followed Rule B 
defining the 70.7% point, and the two Lower Threshold 
sequences followed Rule A defining the 50% point. Each 
sequence was terminated after 14 turning points. For all 
sequences the turning point count started with the first up­
per turning point to avoid differential bias. If the first turn­
ing point was a lower turning point it was not counted. 
The average of each upper and following lower turning 
point constitutes a mid-run estimate. Thus each sequence 
produced 7 mid-run estimates. The first two mid-run es­
timates were discarded; thus for each observer, the final 
threshold estimate for an experimental condition was the 
average of the last five mid-run estimates. 

d) Procedure: Each observer had experience with 
the experimental setup in similar experiments. Observa­
tion was binocular in a light-proof tunnel in a dark room. 
A chin rest positioned the observer 1.25 m from the dis­
play screen. Each observer dark adapted for ten minutes 
during which time the instructions were given. Each ob­
server responded with the right hand via a standard nu­
meric keypad which had a bump on the center key. Each 
observer was told to hit the key above, below, to the right, 
or to the left of the center key, respectively, depending 
upon whether the notch in the target faced up, down, to 
the right, or to the left, thus optimizing stimulus response 
compatability. Poor stimulus response compatibility, in 
requiring more attentional effort, will induce fatigue ear­
lier and affect performance [96], [97]. The stimulus dis­
play remained on until the enter key was pressed at which 
time the response was registered. Responses could be 
changed before hitting the enter key as only the final re­
sponse was registered. A short warning beep sounded if 
the observer hit a nonresponse key and a long beep 
sounded at the end of the experiment. 

2) Results: For each observer, each experimental ses­
sion lasted under one hour, with the following number of 
trials in the threshold-estimation stage: Full Dynamic 
Range, Upper Threshold- 54.0 (SO = 11.0), and Lower 
Threshold-32.8 (SO = 0.8); Compressed Dynamic 
Range, Upper Threshold-48.2 (SO = 4.3), and Lower 
Threshold, 30.2 (SO= 6.3). We were able to efficiently, 
without parametric assumptions, arrive at reliable esti­
mates of the relative thresholds and spreads of the psy­
chometric functions in two medical imaging display con­
ditions in terms of two OTOP parameters. In addition we 
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were able to track the time course of observer sensitivity 
in order to check for large confounding deviations from 
the psychometric stationarity assumption. 

a) Threshold Estimates: Threshold-estimates, based 
on the average of the last five mid-run estimates, were 
obtained for each observer for each experimental condi­
tion. The data were separately examined in terms of two 
OTOP parameters: first, DL or driving level units, which 
map onto the physical luminance values of the target seen 
by the observer; and second, SC units, which correspond 
to prelook-up-table pixel values of the target in computer 
memory. 

The four experimental conditions were the Upper and 
Lower Thresholds of the Full and Compressed Dynamic 
Ranges. In Table I the four means are given in DL units 
in the next to the last column, and in SC units in the last 
column. 

Comparing the two threshold estimates within each dy­
namic range condition, we found a significant difference 
between the Upper and Lower Threshold of the Full Dy­
namic Range (t( 4) = 2.53, p < 0.05 ), and between the 
Upper and Lower Threshold of the Compressed Dynamic 
Range (t(4) = 2.87, p < 0.05), indicating that, as ex­
pected, in both dynamic range conditions a greater incre­
ment in luminance above the background is needed to 
reach a higher point on the psychometric function. (The 
above t-tests are the same for DL and SC units.) No dif­
ference between Upper and Lower Threshold would have 
indicated either a very steep function, not resolvable in 
terms of the step size used in the experiment, and/or low 
statistical power in the experiment, indicating the need for 
more observers or more sessions per observer. 

Comparing threshold estimates across dynamic range 
conditions, we found that the Upper Threshold of the Full 
Dynamic Range condition is greater than the Upper 
Threshold of the Compressed Dynamic Range condition 
in terms of DL units ( t( 4) = 5.87, p < 0.01 ), but not 
significantly different in terms of SC units ( t ( 4) = I. 31 ) . 
Similarly the Lower Threshold of the Full Dynamic Range 
condition is greater than the Lower Threshold of the Com­
pressed Dynamic Range condition in terms of DL units 
(t( 4) = 2.88, p < 0.05 ), but not significantly different in 
terms of SC units (t( 4) = 0.48 ). The DL results indicate 
that as the physical luminance of the noise in the back­
ground is compressed, the luminance increment needed to 
correctly identify the target is also compressed. The SC 
results indicate that in terms of pixel values in image 
memory, the thresholds are the same in both dynamic 
range conditions. 

As might be expected from the preceeding tests, when 
using all the available data (four threshold estimates) to 
test for an overall difference in location of the two psy­
chometric functions, we found the following. In DL units, 
the difference in the average of the two threshold points 
for the Full Dynamic Range, 16.3 (SD = 1.6), and the 
Compressed Dynamic Range, 9.0 (SD = 1.5), was highly 
significant (t( 4) = 15.3, p < .01 ). In SC units, the dif­
ference in the average of the two threshold points for the 

Full Dynamic Range, 16.3 (SD = 1.6), and the Com­
pressed Dynamic Range, 18.1 (SD = 2.9), indicated that 
the location of the two psychometric functions are not sig­
nificantly different, (t(4) = L97). The SC results show 
that in terms of pixel values in computer memory, the 
psychometric functions are in the same location in both 
dynamic range conditions. 

The DL results show that the psychometric function for 
the Compressed Dynamic Range is shifted to a lower 
stimulus range. Of interest is whether this shift is uni­
form; that is, are the functions parallel [98]? In other 
words, is there a difference in the spread (Upper minus 
Lower Threshold point) of the Full Dynamic Range, 8.0 
(SD = 7.1), and the spread of the Compressed Dynamic 
Range, 4.5 (SD = 3.5)? We found no significant differ­
ence, t ( 4) = l. 91, and thus we may assume, until we 
have evidence to the contrary, that in DL units, the two 
functions are close to parallel, at least within the power 
of the experiment. We may also assume that the family 
of psychometric functions between the full and com­
pressed ranges are intermediate in thresholds and spreads. 
However, we would be hesitant to make any additional 
assumptions far outside this range. In general finding dif­
ferences in spread (or slope) will require more statistical 
power than finding threshold differences. In SC units, we 
also failed to find any difference between the spread of 
the Full Dynamic Range, 8.0 (SD = 7.1), and the Com­
pressed Dynamic Range, 9.1 (SD = 7.1), (t( 4) = 0.60), 
further supporting the contention of no difference between 
the psychometric functions of the Full and Compressed 
Dynamic Range in terms of SC units. 

For these medical images, the thresholds appear to be 
the same in SC units regardless of the physical lumi­
nances-the DL units-the observer sees. If for these 
noisy images, the two functions are the same, then the 
SNR in terms of SC units appears to be the limiting factor, 
independent of the dynamic luminance range of the dis­
play. If SC-SNR is invariant with respect to dynamic 
range, then we can conclude that our compression of the 
dynamic range of the display will have no effect on di­
agnosis. For example, a radiologist viewing the Com­
pressed Dynamic Range will require a certain DL level of 
the target; increasing the dynamic range will only in­
crease the DL level needed to see the target by an equiv­
alent amount; performance is the same in terms of diag­
nosis. However, enhancing the target in terms of SC units, 
by adaptive histogram equalization for example, might 
enhance performance [87]. We explore this issue in more 
detail elsewhere [83]. 

Comparing the results of the SC and DL analysis, we 
can see that there is one inconsistency which has not been 
resolved, which is the failure to find a difference in spread 
of the two psychometric functions in terms of either units. 
Examining the data in terms of a difference in slope (the 
inverse of spread), we as expected, also found no differ­
ence in terms of either DL units, t( 4) = 1.47, or SC 
units, t( 4) = 1.00. Since the DL units of the Compressed 
Dynamic Range condition are a multiplicative constant 
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TABLE I 
MEA:-J THKr.SHOLil EsTIMATEs HlR ExPEKIMLNT I 

Mid-Run Estimates (DL Units) 

Final Threshold 
Estimates 

Threshold Point Estimated Dl D2 

Full Dynamic Range 
Upper (70.7) 16.9 19.1 20.2 19.8 

( 7.1) ( 5.1) (4.6) (4.3) 

Lower (50) 14.5 13.3 13.4 13.2 
( 3.2) ( 5.3) ( 4.6) ( 3.9) 

Compressed Dynamic Range 
Upper(70.7) 9.4 10.3 10 2 I I. I 

( 3.7) ( 1.9) ( 1.6) ( 2.6) 

Lower (50) 6.4 6.1 6.5 6.4 
( 4.1) ( 3 3) ( 3.1) ( 3.0) 

Mean of Four Points 12.6 12.6 

4 

20.8 20.7 
(4.8) (4.3) 

12.1 11.3 
( 3.5) ( 3.2) 

I 1.7 11.9 
( 2.6) ( 2.7) 

7.1 6.8 
( 2.4) ( 2. 7) 

12.9 12.7 

19.8 
(4.7) 

11.2 
( 3.3) 

11.6 
( 2. 7) 

7.0 
( 2.5) 

12.4 

DL Units 

20.3 
( 4.2) 

12.2 
(3.5) 

11.3 
( 2.3) 

6.8 
( 2.4) 

12.7 

SC Units 

20.3 
( 4.2) 

12.2 
( 3.5) 

22.6 
(4.5) 

13.5 
(4.7) 

Note: D I and D2 arc the two discarded mid-run estimates. Final threshold estimates are the average of the last five mid-run estimates. Standard 
deviations in parcnthess below the means are the between-subject standard deviations. 

(0.5) of the SC units, the spread (and slope) of the Com­
pressed Dynamic Range function must be different from 
the spread (and slope) of the Full Dynamic Range func­
tion in terms of at least one of the units. Thus if we were 
interested in these small differences, we could increase 
the statistical power of the experiment until one or the 
other (or possibly both) differences reached significance. 
In this experiment the LUT remapping function was very 
simple and we could examine the data in terms of both 
SC and DL units. However, there will be many cases in 
medical imaging in which an early OTOP parameter may 
not be so easily characterized in terms of the physical 
stimulus values presented to the observer. 

b) Time Course of Threshold Estimates: Most tech­
niques of threshold estimation implicitly or explicitly [65] 
assume stationarity of the psychometric function [20]; that 
is, there is no elevation or depression of a threshold over 
time due to cognitive factors such as overlearning, moti­
vational factors, such as boredom, or perceptual-sensory 
factors, such as perceptual learning or light or dark ad­
aptation. Table I shows the mean mid-run estimates; there 
are no general temporal trends. The bottom row of Table 
I shows the mean mid-run estimates averaged over the 
four conditions. We found no effect on thresholds of the 
ordinal position of these five (nondiscarded) mean mid­
run estimates, F(4, 16) = 0.21. The results from the ini­
tial estimates are statistically indistinguishable from the 
final estimates. One still should obtain a number of mid­
run estimates to enhance accuracy and avoid the undue 
influence of random statistical flucuations and lapses. 
(Lapses are a concern particularly if the stimulus duration 
is limited, where an observer needs to maintain a high 
degree of alertness.) In our experiment, we display the 
bright screen between trials to avoid contamination by 
dark adaptation. One might have performed a similar ex­
periment without the bright intertrial screen if one were 
interested in studying the effects, if any, of the time course 
of dark adaptation on these thresholds. In such a case we 

would need to record the absolute times of mid-run esti­
mates rather than merely the ordinal times. This adaptive 
method has been used to investigate the influence of var­
ious factors on the time course of sensory thresholds in 
tracking paradigms [73]. In the next experiment we ex­
amine the stationarity /time course issue in more detail. 

B. Experiment 2: Reliability and Consistency of 
Threshold-Estimate 

One of the experimental conditions tested in Experi­
ment 1, the Upper Threshold of the Full Dynamic Range, 
was retested in Experiment 2, except this time five thresh­
old estimates were obtained from each observer, allowing 
us to assess the time course and the internal consistency 
of the estimate as well as its reliability across experi­
ments. 

1) Method: There were four observers (VK, AC, TB, 
and DG). For each observer, there were five separate se­
quences following Rule B, for estimating the Upper 
Threshold point (70. 7%) of the Full Dynamic Range con­
dition. The sequences were presented in the same inter­
leaved 4-AFC hybrid transformed up-down fashion de­
scribed in Experiment 1, with four minor differences. 
One, there were ten rather than twelve practice trials in 
the practice stage. Two, for purposes of trial sequence 
randomization, a block of trials initially consisted of five 
rather than four trials; as before block size decreased as 
sequences terminated. Three, the step size was 10 DL 
units rather than 6 in the range-location stage. Four, feed­
back (0-5) was given after every five trials rather than 
every four trials in the threshold-estimation stage. 

2) Results 
a) lnterexperiment Reliabilit_v: In Experiment 2, for 

each observer there were 25 mid-run estimates of the Up­
per Threshold point of the Full Dynamic Range, five from 
each sequence. The average of the 25, the mean Upper 
Threshold estimate was 20.6 (SD = 2.1). In Experiment 
1, for the same four observers, where each observer's es­
timate was the average of five sequential mid-run esti-
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mates from a single sequence, the mean value was 19.7 
(SD = 4.6). This difference, which is smaller than a step 
size, is not statistically significant t ( 3) = 1.41. Two con­
clusions can be derived from this. One, the method is re­
liable across experiments and minor design variations; and 
two, collecting approximately five times as much data did 
not significantly change the estimates or enhance the ac­
curacy with respect to the conclusions of Experiment 1. 
Simultaneous interleaving of the different experimental 
conditions, as carried out in Experiment 1, is, however, 
still the best policy. It is doubtful that sophisticated par­
ametric curve fitting or number crunching procedures 
would enhance the empirical data [25], [49], [50], partic­
ularly if one is trying to estimate a moving threshold. We 
examine this question next. 

b) Time Course of Threshold Estimate: We analyzed 
the data in terms of its time course. In Experiment 1, each 
observer's threshold estimate for an experimental condi­
tion was the average of five temporally sequential mid­
run estimates from one sequence. In Experiment 2, where 
five sequences tested the same condition, we examined 
the data in terms of the ordinal location of mid-run esti­
mates. Each of the last five mid-run estimates was an ex­
perimental condition. In this case, an observer's threshold 
estimate was the average of five co-ordinal mid-run esti­
mates from the five different sequences. For example, an 
observer's estimate of experimental condition 2 was the 
average of the 2nd mid-run estimate from each of the five 
independent sequences. Due to the nature of the design, 
coordinal mid-run estimates were not exactly in temporal 
phase. The means for Experiment 2 are shown in Table 
II. The means and between subject standard deviations for 
the same four observers from Experiment 1 are shown for 
comparison. Excluding the initial two discarded mid-run 
estimates, the means for mid-run estimates 1-5 were sub­
jected to an analysis of variance test. The effect of exper­
imental condition was not significant, F( 4, 12) = 1.57, 
MSr = 1.36; however, the threshold estimate rises 
slightly, and we found that this slight linear trend reached 
significance, F( 1, 12) = 5.49, p < 0.05. This small in­
crease was probably due to occasional lapses from the in­
creasingly unavoidable boredom of viewing the same 
stimulus display a large number of times. There are those 
who have argued that the last estimate, or even the stim­
ulus levels of the last few trials, it the best estimate [3], 
[ 1 0]; however the same arguments concerning the undue 
influence of statistical fluctuation given earlier still apply. 

c) Intraobserver Consistency: In testing aspects of 
medical images, we are generally not interested in indi­
vidual differences where some observers may have gen­
erally higher thresholds due to opthalmological and other 
factors [ 19], but we are interested in how consistent the 
method is in measuring each individual observer's thresh­
old. We examine this in terms of the variability of each 
individual observer's five threshold estimates as measured 
by the within-subject standard deviation of each observ­
er's five mid-run estimates from independent sequences 
of trials. Row 5 of Table II lists the mean within-subject 
standard deviation for the five estimates for each of the 

seven ordinal positions in the stimulus sequences. The ef­
fect of the seven ordinal positions on the within-subject 
standard deviation of mid-run estimates was significant, 
F(6, 18) = 5.02, MSr = 0.94, p < 0.01. As discussed 
earlier we discard the first two mid-run estimates to re­
duce starting point bias in the final estimate. We found 
that within-subject standard deviation of the first two es­
timates was significantly larger than the last five esti­
mates, F( 1, 18) = 27.82, p < 0.01. As shown in Table 
II the within-subject standard deviations stabilize after the 
first two discarded mid-run estimates. It is unlikely that 
additional mid-run estimates would have any lower in­
traobserver variability. After the second discarded mid­
run estimate, the independent mid-run estimates appear to 
run up against the wall of variability, akin to Planck's 
constant in physics, beyond which they cannot go due to 
various factors, most importantly the inherent variability 
of the psychometric function itself. 

This last source of variability has been the subject of 
theoretical debates, where depending on the experimental 
conditions, it has been attributed to variability in the stim­
ulus per se limiting ideal observers, or variability in the 
observer anywhere from the early visual neural system to 
late cognitive decision processes [78]. Our purpose is not 
to enter this debate, but merely to point out the utility of 
the m-AFC transformed up-down method as a practical 
and efficient procedure for reducing controllable external 
variance in estimating thresholds. Since we did not find 
any overlearning effect, it is possible that some of the 
within-subject variance was due to the stimulus variability 
generated by the nine positional perturbations of the tar­
get. If we were interested in separating the effect of stim­
ulus variability from variability in the visual-brain sys­
tem, we could have interleaved nine independent threshold 
estimation sequences, one for each position. Or if we were 
instead interested in generalizing to a larger set of stimuli, 
we could have instead randomly varied the noise and/or 
CT images instead of, or in additional to the positional 
perturbations. In this case, the resulting psychometric 
function would be a statistical composite of the individual 
psychometric functions. We did not find any overlearning 
in our experiments. However, the medical imaging inves­
tigator is cautioned that the need to check for this partic­
ular decremental time course effect is particularly perti­
nent when large numbers of trials are used with small 
stimulus sets. As shown in Table II the mean within-sub­
ject standard deviation (2. 8) of the final threshold esti­
mate is only slightly, but significantly, less than the aver­
age within-subject standard deviations of the five mid-run 
estimates (3.1 ); t( 3) = 5.20, p < 0.05; thus indicating 
that, with this stimulus set we have clearly reached the 
point of diminshing returns in terms of the number of 
trials. Although there was slight incremental time course 
effect over the last five mid-run threshold estimates, it is 
interesting to note that it is unrelated to their consistency. 
In most medical imaging experiments where several con­
ditions are tested, interleaving will generally eliminate the 
differential effect of external time course factors on 
threshold estimates from different experimental condi-



KLYMENKO eta/.: VISUAL PSYCHOPHYSICS AND MEDICAL IMAGING 363 

TABLE II 
MEAN THRESHOLD ESTIMATES FOR EXPERIMENT 2 

Mid-Run Estimates Final 
Threshold 

Dl D2 4 Estimate 

Mean 17.6 19.3 19.9 20.2 20.4 20.7 21.8 20.6 
( 17.0) ( 19.5) ( 19.6) ( 19.0) ( 19.1) (20.3) ( 20.3) ( 19.7) 

Between Subject 4.4 4.4 3.5 2.6 2.2 0.8 1.8 2.1 
Standard Deviation ( 8.2) ( 5.8) ( 5.1) (4 6) ( 3.4) (4.8) ( 5.3) (4.6) 

Mean Within Subject 5.7 4.7 3.1 3.0 3.2 3.0 3.1 2.8 
Standard Deviation 

Note: Each mid-run and the final threshold estimate is the mean from five independent sequences of trials for four observers. Dl and D2 are the two 
discarded mid-run estimates. Final threshold estimate is the average of the last five mid-run estimates. Mean within-subject standard deviation is the 
standard deviation for each observer's five sequences averaged over the four observers. Shown for comparison in parentheses below the mean threshold 
estimates and below the between-subject standard deviations are the corresponding results from Experiment I for the same four observers for the same 
experimental condition. 

tions. Where there are too many experimental conditions 
to administer in a single session, the researcher is cau­
tioned to employ the appropriate counterbalancing [99] 
and replication of threshold estimates. 

In order to more fully exploit the efficiency of adaptive 
procedures, a more realistic experiment than our demon­
stration experiments might have examined the effects of a 
larger number of experimental conditions (i.e., a large 
number of degrees of compression of dynamic ranges) on 
threshold estimates [83]. The results of such an experi­
ment would be plotted as a threshold curve, one point rep­
resenting a threshold estimate for each exper;mental con­
dition. Corwin [100] recently has developed a highly 
efficient procedure for exploiting knowledge of previous 
threshold estimates to obtain new threshold estimates. In 
Experiment 1, if we had a third experimental condition, 
an Intermediate Dynamic Range between the Full and 
Compressed Dynamic Ranges, we might have initially 
searched for its threshold at an interpolated stimulus level 
between the previously obtained threshold estimates for 
the Full and Compressed Dynamic Ranges. This is most 
appropriate for small changes in the experimental variable 
as many threshold curves are nonmonotonic, the classic 
case being the spatial frequency contrast sensitivity curve 
[82]. Corwin's method [ 1 00] takes this into account by 
on-line varying not only the stimulus level, but also the 
degree of change from one experimental condition to the 
next based on the ongoing estimate of the local slope of 
the threshold curve. 

V. CoNCLUSION 

Developements in threshold estimation continue una­
bated [100], [101], [102]. The numerous methods of 
threshold estimation in use and currently being developed 
and tested each have relative theoretical and empirical ad­
vantages and disadvantages. In terms of efficiency, reli­
ability, and consistency, the transformed up-down method 
has been found to be equivalent to or compared favorably 
with other adaptive and nonadaptive methods in terms of 
computer simulations and empirical threshold estimates 
[31], [49], [50], [55], [72]. In addition to its efficiency, 
the transformed up-down method has qualitative advan-

tages over other methods in that it can track drifting 
thresholds, and is free from parametric assumptions. 

In Experiment 1, where two OTOP parameters were 
available for analysis, we were able to show that increas­
ing the dynamic luminance range caused a corresponding 
increase in the thresholds in terms of DL units, but not in 
terms of SC units. We also showed that additional statis­
tical power was needed in order to find a spread (or slope) 
difference, which logically must exist in terms of one of 
the two OTOP parameters. If only one OTOP parameter 
was available, one could not infer this, but would need to 
decide statistical power on the basis of how much of a 
difference is relevant to the medical imaging question un­
der investigation. For example, the degree of precision 
required in calibrating an OTOP parameter might be de­
cided on the basis of the steepness of the relevant psy­
chometric function. The transformed up-down method 
was reliable across experiments and minor design varia­
tions. In Experiment 2, there was a slight time course ef­
fect. As we've shown, this method allows one a very 
straightforward manner of statistically checking for drift­
ing thresholds. The interexperimental reliability results 
and the intraobserver consistency results both show that 
in estimating thresholds, the method rapidly converges 
down to the wall of variability inherent in the psycho­
metric function. Increasing the amount of data collection 
(or number crunching sophistication) is always an option, 
but often likely to be an option of rapidly diminishing 
returns, due both to the negligible empirical differences 
in the obtained estimates and the increasing influence of 
external psychological variables. 

We have found the hybrid m-AFC transformed up­
down method to be a highly efficient, reliable, and prac­
tical procedure for the investigation of visual sensitivity 
issues in medical imaging. 
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