
Distributing Display Lists on a Multicomputer 1

David Ellsworth, Howard Good, and Brice Tebbs

Department of Computer Science
University of North Carolina, Chapel Hill

Abstract

We have developed techniques for distributing a hierarchical
display list from a PHIGS-like library across a multicomputer.
By storing a portion of the database at each processor, inter
processor communication is reduced. This reduction promises
traversal of the display 1 ist at rates supporting rendering speeds
of one million polygons/second or more, as we hope to achieve
on ournew machine, Pixel-Planes 5 (under construction). Our
distribution techniques support order-dependent primitives
and allow general display list editing.

CR Categories and Subject Descriptors: C.l.2 [Processor Archi
tectures) Multiprocessors-MlMD processors; C. 2.4 f Computer-Com
munication Networks] Distributed Systems-Distributed applica
tions; 1.3.2 [Computer Graphics] Graphics Systems-Distributed
Graphics; I.3.4 [Computer Graphics] Graphics Utilities-Graphics
Packages; PHIGS; 1.3.5 [Computer Graphics) Computational Ge
ometry and Object Modeling-Hierarchy and geometric transforma
tions.
Additional Key Wm·ds and Plu·ases: display list, structure net
work, multicomputer, order dependent primitive.
1This work was supported by the Defense Advanced Research Proj
ects Agency, DARPA ISTO Order No. 6090, the National Science
Foundation, Grant No. DCI-860 1152, and the Office of Naval
Research, Contract No. NOO 14-86-K-0680.

1. Introduction

Most of the work in parallelizing graphics systems has concentrated
on the rasterization, or back-end, part of the traditional graphics
pipeline [Fuchs 77, Parke 80). Considerably less attention has been
given to parallelizing the traversal and transfonnation, or front-end,
partofthe pipeline. Increasingly sophisticated methods of distribut
ing front-end calculations over multiple processors will be needed as
the desired real-time speeds of graphics machines increase from the
current l 00-200 thousand triangles/second to I million triangles/
second and beyond.

Current designs for multiprocessor front -ends include vector proces
sor [Apgar 88], pipeline [Akeley 89], shared memory !Borden 89].
and MIMD [Torborg 87] architectures. While these architectures
achieve high performance, they all have limitations in their ability to

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fcc
and/or specific permission.
© 1990 ACM 089791-351-5/90/0003/0147$1.50

147

scale to larger numbers of processors. Vector processors with longer
vector lengths achieve little speedup on display lists with arbitrary
sized elements. Pipelined multiprocessor architectures are difficult
to scale because their performance is limited by the slowest stage of
the pipeline, and partitioning tasks evenly on pipelines with many
processors is very difficult.

A more important limitation is that all of these architectures perform
a single-threaded, or serial, traversal of the database. Serial traversal
at rates high enough to sustain l million polygons per second is
difficult, and would today likely require specialized traversal hard
ware, limiting possible graphics algorithms [Foley 90]. Storing the
entire database in a single memory subsystem for a serial traversal
would require extremely high bandwidth from the memory to the
parallel transformation units. As performance levels increase to I 0
million polygons per second, we believe serial traversal will no
longer be practical.

One solution to the scalability problem is to use a distributed
memory MIMD, or multicomputer, architecture [Athas 88]. Such a
system could perform both traversal and transformation in parallel.
The system will scale well as long as required interprocessorcommu
nication bandwidth is kept at a reasonable level. This solution does
not require specialized hardware, as traversal and transformation can
be done on the same general-pmvose processors.

1.1 Pixel-Planes 5

Pixel-Planes 5, a high perfonnancegraphics system being being built
at UNC, is a heterogeneous multicomputer [Fuchs 89]. The Pixel
Planes 5 system consists of a host workstation, nominally 16 Intel
i860-based Graphics Processors (GPs), nominally 16 SlMD proces
sor aJTays called Renderers, and a frame buffer, all of which are

Figure l. Pixel-Planes 5 Block Diagram

mounted on a high bandwidth (640 MByte/sec) ring network (see
Figure l). The host computer provides standard UNIX system
services such as file 1/0. Each Graphics Processor is a general
purpose floating-point processor with its own memory. The Render
ers perform rasterization by using using their 128x 128 array of 1-bit
processors and a quadratic expression evaluator tree.

Pixel-Planes 5 (PNJ/5) is suited to a wide variety of graphics
algorithms, including volume rendering and CSG [Fuchs 89]. In this
paper, however, we concentrate on P.\p/5 in a traditional display list
rendering mode. When mnning in this mode, the application runs on
the workstation host. Since the host is a conventional UNIX worksta
tion, it has significantly less computing power and I/0 bandwidth
than the GPs. For this reason we maintain the database on the GPs
to minimize the amount of data that the host must send to the GPs
every frame.

The basic display list rendering process on P.\p/5 proceeds as
follows: the GPs traverse the database, transform the polygons into
screen space, and compute coefficients for a set oflinear expressions
that are used to scan-convert each polygon. These linear expressions
are evaluated by the SIMD arrays on the Renderer boards. The
Renderer boards then compute the image, each handling different
regions of the screen. Finally, the screen sub-images are collected in
the frame buffer and displayed.

1.2 PPHIGS

We have implemented a variant of the PHIGS+ standard [van Darn
88] in a graphics library called PPHIGS (Pixel-Planes Hierarchical
Interactive Graphics System). Like PHIGS+, the PPHIGS database
consists of a network of structures. Each stmcture contains stmcture
elements that are either graphicsprimitives such as lines and polygons,
attributes such as colors and matrix operations, or executes (calls) to
instance other structures. PPHIGS implements a subset of the
PHIGS+ collection of attributes and primitives. A sample PPHIGS
structure network is given in Figure 2.

PPHIGS, like any hierarchical graphics library, puts several con
straints on any database distribution algorithm: First, in PPHIGS,
attributes such as colors or matrix operations can be inherited from
parent structures. Second, PPHIGS allows the user to perform
general editing of the structure network. Finally, PPHIGS has some
graphics primitives (pmticularly 2- Dones) that must be rendered in
a particular order.

11 hicycle 11

marri\

execute "wheels"

(etc.) !
L________j 11 whecls 11

matrix

execute "wheel"

/r--------'-"alrix __ v execute "wheel"

,-------------~-
polygon color

polygon

polygon

polygon
1-----------

polygon

(etc.)

Figure 2. Sample PPHIGS stmcture network.

148

1.3 Application Mix

PPHIGS-based applications can be characterized in two ways: l)
database organization and 2) editing requirements. The database
organization is the arrangement and number of structures in the
network. The editing requirements are characterized by the fre
quency and types of changes that must be done to the structure
network.

We have analyzed applications that run on our current graphics
system, Pixel-Planes 4, including molecular graphics, architectural
walkthrough, and head-mounted display research. We have found
that the majority of the applications have databases with relatively
few structures, each structure having a largenumberofpolygons, and
that the database editing that is clone each frame usually consists of
changing only a few transformation matrices. Nearly all of the
cuJTent applications are interactive applications.

We expect that our application mix for Pixel-Planes 5 will include
similar applications, as well as new ones made possible by the
increase in perfmmance. When the number of available polygons
increases with Pxp/5, we expect that the number of stmctures and
transfonnations will increase more slowly than the number of poly
gons. This will further increase the number of polygons per structure
without significantly increasing the amount of editing that must be
clone each frame.

The rest of the paper describes techniques we have developed for
distributing an application's structure networks evenly on a multi
computer. The techniques presented have been implemented on the
Pixel-Planes 5 system simulator and have been tested on several
different databases. Although the techniques were developed for
Pixel-Planes 5 and PPHIGS, we expect them to be applicable to
distributing any type of hierarchical display list on any multicom
puter.

2. Display List Distribution

Given the expected application mix for Pxpl5, a display list distribu
tion method should have the following goals:

The processors' loads should be balanced: each processor
should take the same amount of time to transform its portion
of the display list.
As the display list and the viewing position is modified, the
processors' loads should remain balanced without redistri
bution of the display list. This allows the time to draw a
frame to be consistent, which is important for interactive
applications.
The amount of duplicated work should be minimized, thus
allowing the system to be scaled.

To meet these goals, we have investigated several different ap
proaches. The two most promising approaches, distributing by
stmcture and distributing by primitive, are discussed below.

2.1 Distribute by Stmcture

One method of distributing the display list is to assign instances of
structures to processors so that the loads are balanced. If the number
of structure instances is less than the number of GPs, the stmctures
can be broken up.

Before traversing a structure, a processor must have that structure's
inherited attributes. One way of computing this is to maintain a

skeleton on each processor of the network from the local structure
back to the root of the structure network. The skeleton contains only
the attribute elements of the ancestor structures. The inherited
attributes can be computed by traversing the ancestor structures.
This requires some duplication of computation and additional over
head to manage the network skeleton when the network is altered.
Another way is to maintain a skeleton of the entire structure network
on a single processor (perhaps the host), and then pre-calculate the
inherited attributes, sending those to the appropriate processors. This
would require considerable processing during editing to keep the
inherited attributes on the processors up to date.

A more important problem is that the processor workloads do not
remain balanced when objects are clipped or arc added or subtracted
from the display list. If the load becomes unbalanced, redistribution
will be necessary to balance the workloads. This would either hold
up the transformation process, thereby affecting the frame rate, or it
would require resources dedicated to balancing the workloads.

2.2 Distribute by Primitive

Using this method, the primitives of each structure are divided
equally among the processors. This division is done primitive-by
primitive so that successive primitives (polygons, spheres, etc.) arc
generally placed on different processors. Attributes are sent to all
processors to insure that each processor has the correct attribute
values during traversal. All processors are given structure execute
primitives so each can traverse the structure network.

This method does a better job of insuring that the load remains closely
balanced. When a structure is added or removed from the structure
network, the loads remain balanced because the individual structure's
load is balanced among the processors. When part of the structure is
off screen, the load will remain relatively balanced if the clipped
primitives have been sent to different processors. This should be the
case since successive primitives in a structure are often near each
other in space.

Unfmtunatcly, duplicating attributes and structure executes on each
processor adds work as compared to a single processor traversal. For
many models this is not a serious problem since there are many more
primitives than attributes and many primitives in a structure. A
second problem is that an imbalance may be created if small struc
tures which aren't perfectly balanced are instanced many times.

For example, consider a cube structure, distributed among 8 proces
sors, that is instanced l 00 times. The the distributed structure on the
first 6 processors would each contain one face of the cube; the
structure on the last two processors would be empty. The I 00
instance calls would go to all the processors. The result is that 6
processors would each traverse 100 cube faces while the last 2
processors execute empty structures.

2.3 Our Implementation

We have chosen to implement a vanat10n of the distribute-by
primitive method. In our implementation we have chosen to keep a
global copy of the entire database, not just a skeleton, on the host.
This simplifies editing, and makes display list inquiry and disk
archival faster since no communication with the processors is re
quired. In the rest of Section 2 we describe what we've clone to deal
with the simple distribute-by-primitive method's shortcomings.

2.3.1 Distributing Attributes

The main problem with the simple distribute-by-primitive approach

149

pre<:essor I

color A

~pmntrix a

polygon I

!:!:Pm.alrixc

colore

polygon 7

original display lisl

colorA

polygon 6

polygon 7

processor 2

colorA

Figure 3. Example of d i tributing a s ingle structure aero
processors.

is that each attribute is duplicated on all the processors. This means
that some processor cycles and memory space are wasted on redun
dant attributes. As systems are scaled up to more processors the
problem worsens, because the number of redundant attributes in
crease at a one-per-processor rate while the number of primitives
remains constant. We ameliorate the problem by having the host
send each attribute only to those processors on which it is required,
i.e. only to those processors that have primitives affected by that
attribute (see Figure 3).

In order for the host to know all the current attributes and those that
have been sent to each processor, it maintains an attribwe state for
the global display list and for the display list on each processor. Each
attribute state records, for a given point in the display list, the colors
and transformation matrices that would be active for each type of
primitive during traversal of the display list at that point.

The host initially reads in each stmcture from the application and
distributes it element by clement. As each primitive is aclclcd and
assigned to a processor, the attribute state of that processor is checked
to make sure that it is current, i.e. it matches the global one. If not,
the missing attributes are sent as well as the primitive. As each
attribute is added, the global attribute state is updated, but the
attribute is not immediately sent to any processor.

Some attributes, such as concatenate-mode transfonnation matrices
(which concatenate with rather than replace the current transforma
tion matrix), cannot be distributed in this way because they have a
cumulative effect on the structure. These are distributed to all
processors as soon as encountered, along with any pending replace
mode matrices.

While this is fairly simple to implement for initially distributing a
structure from start to finish, it is more difficult to implement for
arbitrary editing of structures, as discussed in Section 3.

2.3.2 Distributing Primitives

Our implementation improves on the simple method of sending a
primitive at a time to the most lightly loaded processor by sending
clusters of primitives rather than single ones. This has the advantage
that attributes affecting a small numberofprimitives are sent to fewer
processors, since the affected primitives will be distributed among
fewer processors. Clustering is especially useful for structures where
attributes change relatively often, i.e. between every few primitives.
The parameter controlling the amount of clustering allowed is based
on the number of processors. Note that while clustering allows
sending attributes to fewer processors, it also introduces more spatial
coherence in each structure on each processor. This could introduce

load imbalances similar to the ones encountered when using the
distribute-by-structure method.

We plan to break up large primitives such as long triangle strips into
smaller pieces and distribute them among the processors. This would
prevent the loads from becoming seriously unbalanced if such an
element is deleted or is moved completely off screen.

2.3.3 Primitive Structures

To avoid creating a load imbalance when small structures are
instanced multiple times, a graphics system could automatically
detect small, often instanced stmctures and identify them as primitive
stmctures. Primitive structures can be created and edited like struc
tures but are distributed like primitives. The entire primitive struc
ture is broadcast to all the processors, but each instance is sent to only
one processor. Instances of primitive stmctures can then be balanced
in the same way as pre-defined primitives. Primitive structures can
contain any primitives or attributes and can execute other primitive
structures. Primitive structures cannot execute ordinary stmctures,
because only a portion of the ordinmy structure would be on the same
processor as the the primitive structure instance.

We have not implemented automatic detection of primitive struc
tures, as it is difficult to switch between structure types as a stmcture
is edited and the stmcture size changes. Instead, our system has the
user designate which structures should be treated as primitive struc
tures.

2.3.4 Weighting Structure Elements

Implicit in the discussion of balancing structure elements among
processors is the relative "weight" of each element. Primitive and
attribute weights must be known before an application is run so that
databases can be balanced as they are loaded. We have determined
the nominalll'eight of each element by calculating the usual proces
sor time required to transform that element. Other criteria, such as
memory usage, could be used for other systems. An element's
nominal weight is changed only when its usual processing time
changes, e.g. when its transformation code is changed.

3. Structure Editing

Interactive applications need to perfonn general editing of stmctures.
All editing tasks must ensure that each attribute is sent to eve1y
processor that requires it and should preserve processor load balanc
ing. Distributing attributes correctly during editing is straightfor
ward using the simple distribute by primitive method in which each
attribute is distributed to all the processors: the host simply sends the
attributes to all processors, and sends p1imitives to the most lightly
loaded processor. Unfortunately, as previously mentioned, the
simple method can result in greatly reduced distribution efficiency
(see Results).

PPHIGS allows four types of structure editing operations:

modify: Replace stmcture element with a new one of the
same type (not standard PHIGS+).

append: Append element to the end of a structure.
insert: Insert an element at an arbitrmy point in a structure.
delete: Delete an element at an arbitrary point in a structure.

The first two tasks are simple and can be perfom1ed very quickly.
Insert and delete, however, require some analysis of the structure to
determine thecunent and processor attribute states at the point being
edited.

150

3.1 Modify Oper·ation

The modify operation is the simplest editing task, requiring just that
the new data be sent to the processor(s) that have the old data. Since
it is assumed that the old element was distributed conectly, no
analysis of the rest of the structure is required. The modify operation
is sufficient for many application tasks such as updating transforma
tion matrices and colors, and is the most heavily used in our current
applications.

3.2 Append Operation

The append operation requires knowing the current global attribute
state as well each processor's attribute state at the end of the edited
structure. We call the set of these attribute states the total attribute
state. Append requires no structure analysis, since the attribute states
at the end of each structure are saved with the structure descriptor.
Once the attribute states are known, elements can be appended in the
same way as when initially distributing a structure (see Section
2.3.1).

3.3 Insert and Delete Operations

The insertion and deletion operations also require knowing the total
attribute state at an arbitrary point in a structure, and can affect
distribution of elements both before and after the edit point. Deter
mining the attribute states and distributing attributes conectly for
each insert and delete would make each operation expensive. In
stead, edits are pe1formed on the host copy of the structure network
and then propagated to the processors when editing in a panicular
region of a structure is completed. Thus, insen and delete editing is
clone in two steps:

Step 1:

Step 2:

A series of insertion and/or deletions is done to the host
display list. Insertion of primitives, and deletion of
attributes and primitives, are propagated to the proces
sors immediately. Inserted attributes only appear in the
host display list.

The attribute states are acquired for the first point in the
structure affected during step 1. Then the global display
list is traversed from that point until the last point
affected and attributes are distributed to those proces
sors which require them, as is done when appending to
a stmcture. After the traversal, the attribute state at the
last affected point is used to send attributes to the
processors that do not have the current attributes.

3.4 Calculating the Attr·ibute States

For step 2 we must acquire the total attribute state at an arbitrmy
reference point. Saving the attribute states at every point in the
structure where editing operations could take place would take far
too much memory. Instead, we dete1mine the entire attribute states
on the fly by stepping backwards through the structure and examin
ing elements sent to each processor. This requires looking at at least
one attribute of each type sent to each processor and could involve
stepping back through the entire structure. To reduce the number of
steps needed, a limited fom1 of caching can be used. It is possible
either to save attribute states every n primitives, or to save a set of
attribute states in a cache to advantage of locality of reference during
editing.

For step 2 we also must propagate the attributes active at the last
referenced edit point to all processors that have at least one primitive
affected by the edit. This could involve stepping forward through the
rest of the structure to check elements.

3.5 Bounding Insert and Delete Operations

Calculating the attribute states as described above could require
checking all the elements in a stmcture. Instead, we don't explicitly
calculate the attribute states, but only deteimine which processors
have received the current attribute state. This involves stepping
backwards through the structure as before, but now every time a
primitive is encountered, we flag the attribute state for that processor
as current, because it was cuJTent when the primitive was first
distributed.

This method requires us to step back through the structure only until
one primitive for each processor is encountered. Using this method
and the distribute by primitive algorithm described in Section 2,
acquiring the attribute states will require examining O(n) elements,
where n is the number of processors. This is because only a certain
number of primitives can be sent to one processor before its load
becomes too heavy and primitives are sent to the next processor. That
number is c*(maxwlminw), where cis the primitive clustering factor
and ma.nv and minw are the maximum and minimum primitive
weights. The maximum number of elements that can be examined
without finding one on each of n processors is therefore c*(maxwl
minw)*(n -1), because at that point n-1 processors are maximally
loaded and the next primitive would have gone to the nth processor.

This method is complicated by the fact that some attributes, such as
a sphere color, only affect ce11ain types of primitives. Encountering
a primitive of a different type, such as a polygon, in the structure
would not guarantee that the attribute state at that point was current
for all primitive types. In order for the previous bound to hold, we
distribute attributes as if each attribute affects all succeeding primi
tives, regardless of their type. This ensures that once any primitive
is sent to a processor, the attribute state for that processor is correct
for all primitives. This strategy can save large amounts of structure
traversal. However, it comes at a cost of sometimes sending
unnecessary attributes, adding duplicate work. We expect the
number of these unnecessary attributes to be very small.

4. Order-Dependent Primitives

PPHIGS allows certain primitives, such as 20 polygons, to be
displayed in the order that they are encountered during the display list
traversal. These are called order-dependent primitives, or OOPs.
These primitives are displayed in front of the 30 z-buffered primi
tives to allow for overlays and annotation. A parallel implementation
of PPHIGS could synchronize the output of the transformation pro
cessors so the rasterization unit receives primitives in the correct
order, such as done in [Torborg 87] and [Borden 89]. However, this
synchronization would add overhead and require a serial step to the
rendering process, which would reduce the degree ofparallelization
in the system.

We preserve the effect of rendering order by using a variant of the z
buffer algorithm. During the transformation process, priority mnn
bers are assigned to each primitive. As each primitive is rendered, we
use a "priority buffer" to determine which primitive should be visible
at each pixel. This allows us to get the effect of a "painter's
algorithm" by using a z-buffer type approach. To use such an
approach, the z-buffer must have enough resolution to hold both the
30 primitives' z values and the order-dependent primitives' priority
values. A simple implementation would use one bit of the z-buffer
to differentiate between the z values used for 30 and order dependent
primitives.

151

In a single processor system the priority numbers can be assigned by
sequentially numbering the OOPs as they are encountered while
traversing the display list. Because a single processor in a multicom
puter has only a part of the distributed display list, it cannot simply
number the primitives since it doesn't know how many primitives are
on the other processors We solve this problem by recording, for each
primitive, a "delta" value: the difference in priority numbers between
that ODP and the previous ODP on the same processor. This delta
value is one more than the numberof"missing" OOPs (those on other
processors) between the current and previous OOPs. We also record,
for each structure, the difference in priority numbers between the last
ODP and the end of the stmcture. With this information, a processor
can independently assign priority numbers to its portion of the
display list (sec Figure 4). These delta values are calculated when
distributing each structure. After editing an ODP, some of the deltas
must be updated; this can be done during the same traversal as when
the attributes are distributed to the correct processors (see section
3.3).

5. Display List Rebalancing

Although we expect that our distribution techniques will keep the
processors' workloads closely balanced, it is possible for the work
loads to become imbalanced. We have been investigating the ways
this may occur as well as methods for dynamically re-balancing the
load. Since we have not characterized how the workloads become
imbalanced, this work is preliminary.

We have found two major causes of workload imbalance: imperfect
distribution and invalidated weights. Each requires different tech
niques for eliminating the imbalances.

5.1 Imperfect Distribution

When distributing each structure across the processors it is almost
always impossible to balance the workload perfectly. These slight
imbalances, randomly distributed across the processors, could add
up to a large imbalance when one stmcture is instanced several times.

To detect the extent of imperfect distribution, each processor trav
erses its portion of the display list and adds up the nominal weights
of its structure elements. This computation could be done as part of
a normal traversal. The host uses these sums to detect an imperfect
distribution. To fix the imbalance, the host moves randomly picked
primitives from heavily loaded to lightly loaded processors using
procedures based on the editing sequences described above.

original display list

processor l priomy

Figure 4. Example of assigning priorities to a structure of OOPs.
A primitive's priority number is determined by adding its delta to

the previous primitive's priority.

5.2 Invalidated Weights

The second cause of imbalance is the fact that the nominal weights
of the structure elements (the ones used for the distribution) are not
always equal to the actual weight of the elements. For example, this
can happen when a polygon is backface culled, is off screen, or is
clipped to the viewing volume. Because these weight changes have
spatial coherence, in general there should only be large imbalances
when the database is distributed in a spatially coherent fashion.
While this is usually avoided in the primitive by primitive distribu
tion scheme, it can occur in some cases One example of this is when
a l6x 16 quadrilateral mesh is distributed across 16 processors: each
processor will have a strip of the mesh.

This cause of imbalance can be distinguished from imperfect distri
bution when the imperfect distribution test described above indicates
that the database is distributed correctly according to the nominal
weights. To correct the imbalance, the host must request that the
processors traverse their display lists and find primitives with actual
weights different from the nominal weights. The overloaded proces
sors find primitives with actual weights larger than nominal weights,
and lightly loaded processors find primitives with actual weights less
than the nominal weights. Then, the host exchanges primitives on
different processors that have the same nominal weights but that have
actual weights that balance the processor load.

Both redistribution methods should only be used when the imbalance
is significant (say> 10% of the total transfom1ation time) and remains
for several frames. If this is not done, then the rebalancing algorithm
will make fairly expensive adjustments every frame to correct the
normal slight imbalance. For the same reason, and also to avoid a
'hiccup' when the database is rebalanced, a limited amount of the
total imbalance should be corrected each frame. The amount to
redistribute per frame should be chosen so that it can be done within
the current frame time.

6. Results

We have simulated the two distribute-by-primitive algorithms: the
simple one described in section 2.2 and the more complex one
described in section 2.3. We have calculated their distribution
efficiency and load balancing for four hierarchical databases. The
distribution efficiency is the percentage of non-redundant work
performed by the processors, assuming perfect load balancing. The
processor utilization percentages show the quality of the load balanc
ing. The formulas used are:

L processor time

processor utilization = processors

number processors · MAX processor time
processors

distribution efficiency=
single processor time

I, processor time
processors

The overall speedup is given by the number of processors multiplied
by both percentages. The databases are illustrated in figures 6-8.

The space station database is the simplest case, namely a large
number of primitives with no hierarchy. The building lobby is
similar, but 55% of the primitives are off-screen and thus have
invalidated weights, as the time to transform each such polygon is a
fraction of the time indicated by its nominal weight. However, the
processor utilization remains high because our method distributes

152

the on-screen polygons evenly across the processors. The flock
consists of 144 "boids" (bird-oicls) [Reynolds 87] in flight about the
Old Well. The boids are defined by a primitive structure containing
5 polygons and 4 colors. A separate flock structure instances the
primitive structme 144 times, with a different transformation matrix
each time. The dramatic increase in distribution efficiency for the
complex algorithm reflects both the use of primitive structures and
the breakdown of the simple attribute distribution method. Finally,
the human figures are two stmctures with deep hierarchies (8 levels
of nesting), which are balanced well, but which require a consider
able amount of redundant work among the processors. The poor
disttibution efficiency occurs because the individual structures contain
few polygons: extra work results from flushing the attribute state to
all the processors before each new structure is instanced. We are
exploring ways to efficiently analyze paths through the hierarchy so
that only necessary attributes are propagated at each structure in
stance.

All results are from the Pixel-Planes 5 software simulator, where
each processor, SIMD rasterizer, or device is simulated with as an
separate Unix process. While the simulator accmately simulates the
effect ofC code running on the host and Graphics Processors, it docs
not give timing information about the transformation process for the
i860-basecl GPs. All element transformation values for Pixel-Planes
5 are estimated based on perfonnance of the Pixel-Planes 4 system.

7. Conclusions

As front-end computing power requirements continue to increase,
multicomputer graphic systems will become more common since the
architecture can be expanded without requiring higher memory
system performance or extensive communication. We have devel
oped an initial solution to distributing hierarchical display lists across
a multicomputer that handles many databases with reasonable effi
ciency and load balancing. While we feel that our solution will be
effective for most interactive situations, there is still more work to be
done, particularly in finding an algorithm that satisfies our distribu
tion goals without requiring a complicated editing procedure.

8. Acknowledgements

We wish to thank the Pixel-Planes project principle investigators
Henry Fuchs and John Poulton for their many helpful comments, and
our colleagues on the Pixel-Planes 5 software team, Michael Bajura,
Andrew Bell, Jonathan Leech, Ulrich Neumann, John Rhoades, and
Greg Turk, for helping design and implement the Pxpl5 simulator.
We would like to thank the members of the Walkthrough project
[NSF Grant #CCR-8609588], Frederick P. Brooks Jr.-principal
investigator, John Airey, Randy Brown, Penny Rheingans, and Dana
Smith for the lobby database. We would also like to thank to Don E.
Eyles for the space station database, Andy Skinner for the flock
simulator database, and Young Harvill of VPL Research for the
human figures database which he made using Paracomp 's Swivel3 D
modeling package.

Hierarchy Average Distribution Efficiency Processor
Overall Speedup

Depth/ Polygons Polygon/ Utilization
Attr ibute (complex di stribu tion

Database Structure per Simple Algorithm Complex Algorithm (complex di stribut ion algorit hm)
Ratio algorit hm)

Count Structure -- - - --- -
4 GPs 16GPs 4 GPs 16 0 Ps 4 GPs 16 GPs 4 GPs 16 GPs

space station 1/1 3388 21.6 98.3% 92.2% 99.5% 98 .8% 99.9% 99 .1 % 3.97 15.66
-- ··-

building lobby 1/l 3923 7.8 93.1 % 73.0% 98.3% 1 96.2 % 98.3% 93.4% 3.86 14.37

---t ----+---
I

flock and old well 2/147 10. 1 1.8 67.9% 29.8% 98.4% 1 94.8% 99.3%1 96.4% 3.91 14.62
i - i

two human figures 9/9 1 72. 1 36. 1 83.1 % J 49.7% 85.8% 57 .8% 85 .8% 90. 1% 2.94 8.33

Figure 4. Space tation databa e. Figure 6. Flock and old well databa e.

Figure 5. Building lobby databa e. Figure 7. Human figure databa e.

153

9. References

[Akeley 89]

[Apgar 88]

[Athas 88]

[Borden 89]

[Foley 90]

[Fuchs 89]

[Reynolds 87]

[Torborg 87)

[Van Dam 88]

Akeley, Kurt, "The Silicon Graphics 40/
240GTX Superworkstation", IEEE Computer
Graphics and Applicarions, 9(7), July 1989, pp
71-83.

Apgar, Brian, Bret Bersack and Abraham
Mammen, "A Display System for the StellarTM
Graphics Supercomputer Model GS l OOOTM",
Computer Graphics, 22(4), (Proceedings of
SIGGRAPH '88), pp 255-262.

Athas, William and Charles Seitz, "Multicom
puters: Message Passing Concurrent
Computers," Computer 21 (8), August 1988, pp
9-24.

Borden, Bruce, "Graphics Processing on a Graph
ics Supercomputer", IEEE Computer Graphics
and Applications, 9(7), July 1989, pp 56-62.

Foley, James, Andries van Dam, Steven Feiner,
and John Hughes, Fundamentals of Interactive
Computer Graphics, 2nd Edition, Addison
Wesley, Reading, Massachusetts, 1990 (in prepa
ration), sections 18.5 and 18.6.

Fuchs, Hemy, John Poulton, John Eyles, Trey
Greer, Jack Go!dfeather, David Ellsworth, Steve
Molnar, Greg Turk, Brice Tebbs, and Laura
Israel, "Pixel-Planes 5: A Heterogeneous Multi
processor Graphics System Using Processor
Enhanced Memories", Computer Graphics,
23(3), (Proceedings ofSIGGRAPH '89), pp 79-
88.

Reynolds, Craig, "Flocks, Herds, and Schools:
A Distributed Behavior Model", Computer
Graphics, 21(4), (Proceedings of SIGGRAPH
'87), pp 25-34.

Torborg, John, "A Parallel Processor Architec
ture for Graphics Arithmetic Operations",
Computer Graphics, 21(4), (Proceedings of
SIGGRAPH '87), pp 197-204.

Van Dam, Andries, eel. "PHIGS+ Functional
Description Revision 3.0", Computer Graphics,
22(3), July 1988, pp 125-218.

154

