
Towards Image Realism with Interactive Update Rates
in Complex Virtual Building Environments 1

John M. Airey, John H. Rohlrt, and Frederick P. Brooks, Jr.

Department of Computer Science, Sitterson Hall
University of North Carolina
Chapel Hill, NC 27599-3175

i'silicon Graphics Computer Systems
Mountain View, CA 94039-7311

Abstract

Two strategies, pre-computation before display and
adaptive refinement during display, are used to combine
interactivity with high image quality in a virtual building
simulation. Pre-computation is used in two ways. The
hidden-surface problem is partially solved by automatically
pre-computing potentially visible sets of the model for sets
of related viewpoints. Rendering only the potentially visible
subset associated with the current viewpoint, rather than the
entire model, produces significant speedups on real building
models. Solutions for the radiosity lighting model are pre
computed for up to twenty different sets of lights. Linear
combinations of these solutions can be manipulated in real
time. We use adaptive refinement to trade image realism for
interactivity as the situation requires. When the user is
stationary we replace a coarse model using few polygons
with a more detailed model. Image-level linear interpolation
smooths the transition between differing levels of image
realism.

CR Categories and Subject Descriptors: I. 3. 3
[Computer Graphics]: Picture/Image Generation - display
algorithms, viewing algorithms; 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism - color,shading
and shadowing.

Additional Key Words and Phrases: model-space
subdivision, potentially visible, radiosity, adaptive
refinement.

1This work was supported by NSF Grant#CCR-8609588
and ONR Grant#N00014-86-K-0680

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by pem1ission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific pem1ission.
© 1990 ACM 089791-351-5/90/0003/0041$1.50

41

1. Introduction

Our basic goal is a virtual building environment, a
system which simulates human experience with a building,
without physically constructing the building. Many
components of a building simulator, corresponding to many
human senses, are important. We concentrate on techniques
to enhance visual simulation.

We find natural motion to be a very important
component of visual simulation. We observe user behavior
to be qualitatively different at six updates per second as
compared to behavior at one update per second.

• At 1 frame per second, the system is painful to use. It is
necessary to use a two-dimensional floorplan display, or
map view, to navigate.

• As the frame rate increases to around 20 frames per second
interactivity appears to increase rapidly before leveling off.
At around 6 frames per second the virtual building illusion
begins to work. It is possible to navigate with only the
three-dimensional display, or scene view.

However, realistic images are also important. We use a
lighting model that realistically simulates the complicated
diffuse, interreflections within a building interior.
Furthermore, studying real buildings demands large, detailed
models.

Each of these simulation enhancements greatly increases
the number of primitives the display subsystem must
process and has an adverse effect on interactivity. To help
our display subsystem cope with this increased load and
remain interactive, we use two stategies. We pre-compute as
much work as possible and use adaptive refinement
techniques during display [Bergman 86]. The resulting
combination is a system that attempts to keep the update
rate above about six frames per second while providing as
realistic an image as possible.

Section 2 describes the system level organization in a
concrete, detailed manner. This is followed by sections
which cover the concepts and algorithms used in the system.

Our system uses pre-computation in two ways. A new
process automatically associates sets of viewpoints with
potentially visible subsets of the model [Airey 90). The
display subsystem has to process only the potentially
visible subset of the model that is associated with the
current viewpoint. The update rate increase due to this
process proportional to the depth complexity, hence the size
of the building modelled. For a 7125-polygon model of
Sitterson Hall, we have achieved speedups of not less than
3.25 in the worst case, and 30 in the average case, depending
upon the viewpoint. The process is based on model-space
subdivision and volume-to-polygon visibility testing. We
describe this process in Section 3.

The radiosity lighting model accurately simulates the
diffusely reflecting surfaces that dominate building interiors
[Goral 84). Because diffuse reflection is view-independent,
the shading can be pre-computed for finite areas or patches.
A resampling filter transfers patch radiosity values to color
values at patch vertices. The color values are interpolated
across the patch during display to get a smooth-shaded
image. Display systems with hardware support for color
interpolation can display radiosity patches rapidly. Since no
lighting-model dot products need to be performed, radiosity
patches can be rendered faster than Phong-shaded or Gouraud
shaded polygons. We present our variation of an algorithm
to compute radiosity in Section 4 and relate our practical
experiences using radiosity as a tool for virtual worlds. Our
system allows the user to interactively and independently
modulate 20 different lighting circuits in models with tens
of thousands of radiosity patches.

Adaptive refinement provides another way to increase
system performance. The user often stops moving to
examine the current view more closely. We take advantage
of the reduced need for interactivity to increase realism. For
example, the radiosity process dices large polygons into
smaller finite elements or patches. We maintain both the
original polygons and the derived patches in a form we call
hierarchical polygons. Image quality dynamically improves
by replacing the original model polygons with the derived
patches whenever the viewer is stationary. We further
describe adaptive refinement techniques in Section 5.

2. System Overview

We are iteratively developing a viitual world system that
lets architects and their clients explore a proposed building
during the design-development phase [Brooks 86). Although
this paper concentrates on the techniques we have used to
advance image realism, increase the frame rate and integrate
advances in these two areas, here are the larger aims of the
research project. A complete system has the following major

42

parts (Figure 1).

A modelling system for the architect, where the
canonical model is maintained. We use AutoCAD.

An image generation process for constructing a display
file from the canonical model and generating the images.
This includes the display-compiler subsystem and the
display subsystem.

An interface subsystem that allows the use of many
different man-machine interface devices for controlling
viewing parameters and lighting circuit settings.

real-time
display
structures

device inputs
interpreted to give

Canonical Model
Constructed by alterations

the Architect

viewer position, orientation
and viewing parameters

output

interface

Figure 1. Overview of a Virtual Building
System.

2.1 Modelling

The modelling subsystem must address ease of construction,
(i.e. how many man-hours are required to create the model),
model modification, and management of many different
versions of the model (a task very similar to source code
control). For our modelling capabilities, we have adopted
AutoCAD. This helps us establish partnerships with
architects for datasets and system evaluation.

2.3 User Interface

The interface subsystem must coordinate input devices
with the display system. We have found that a flexible
interface to a variety of devices is important. We already use
several devices, often concurrently, and need to test new
devices often. Frequent users such as architects may want
complete freedom of motion Uoysticks), while an infrequent

user, e.g., a client, may desire a restrictive but more natural
interface, (a treadmill with a head-mounted display or big
screen display). We expect to report on the research results
of the interface subsystem in another publication.

2.4 Display Compiler

The display compilation task must translate the
geometric and surface attribute information from the model
into a form suitable for rapid display and interaction with the
interface devices. Figure 2 depicts the process of converting
an AutoCAD dataset into a form suitable for a virtual world
system. The rectangles represent programs. The ovals
represent data files. The type of the data file is depicted by
the Unix convention of filename extensions.

I AutoCAD H .dxf

radiosity

translators
and filters

model subdivision,
potentially visible
set com utation

Figure 2. Display File Compilation in
UNC Walkthrough System.

The AutoCAD extemal files (.dxf extension) arc parsed
and converted to a simple format which consists entirely of
polygons (.poly extension). Separate files arc generated
which contain surface attribute information (.sc extension),
and the sets of lights for which we want to compute
independent radiosity solutions (.circuit extension). Another
file (.template extension) allows Phigs+ -like structures to

43

be incorporated into the final display file. The display
compilation forks into the radiosity process and tl1e model
subdivision process.

The radiosity system is described in Section 4. It
processes .poly files by automatically dicing the polygons
into derived patches and computing color values for each
patch for each independent light circuit. The original
polygons are given color values by averaging the values of
their derived patches. The patches retain indices to parent
polygons. The shaded polygons arc written to a file with a
.O.patch extension and the derived patches are written to a
file with a .l.patch extension. This information is used by
the next program to construct hierarchical polygons. A
hierarchical polygon is a polygon that has an associated list
of polygons that may be used to replace the polygon. We
have experimented only with one level of refinement and
with refining all polygons to the same level simultaneously,
but our data structures and display code allow arbitrary
subdivision for each polygon independently.

The model subdivision process is described in Section 3.
It generates a recursive subdivision of the model space. The
result of this subdivision process is a tree of splitting planes
(.partition extension). The .partition file defines
subvolumes, or cells,of the model (.cell extension). Each of
these cells is processed to determine the polygons that are
potentially visible to an observer ranging freely inside the
cell. These polygons are then associated with the cell.
During display, the cell containing the current viewpoint is
found, and only its associated polygons are rendered.

3. Display
Subdivision
Testing

Acceleration by Model-Space
and Volume-to-Polygon Visibility

Architectural databases possess special characteristics.
We list some of these properties here and then describe how
we exploit them.

1. The model is changed much less often than the
viewpoint, which makes pre-processing desirable.

2. Many buildings have high average depth complexity. Any
image computed from an interior viewpoint will have many
surfaces covering every pixel. A related observation is that
most of the model docs not contribute at all to any given
image. Furthermore, the depth complexity of a building is
basically independent of tesselation due to shading and
independent of the amount of detail modelled.

3. Most polygons are axial, that is parallel to two of the
coordinate axes. Additionally many polygons are rectangles.

4. The set of polygons that appears in each view changes
slowly as the viewpoint moves, except when crossing
certain thresholds, e.g., doors, which we call portals.

Consider a simplified three room floorplan (Figure 3). The
set of polygons visible in a 360 degree field of view from v 1
does not change much until we get near v2. Then it stays
roughly the same until we get to v3 where it changes
radically again.

(0,0) x=l

Figure 3. Simple Three Room Floorplan
with Possible Viewer Path.

5. Large planar surfaces are often structured into multiple,
co-planar levels for modelling purposes, shading purposes,
and realism detail purposes. For example, the modeller may
represent a ceiling with one polygon, but it may be diced
into many smaller co-planar polygons to represent the
shading determined by radiosity calculations.

6. Because the viewpoint is usually inside the building, the
role of surface interreflections in shading calculations are
very important for spatial comprehension.

3.1 Model Space Subdivision

We automatically subdivide model space or equivalently,
viewpoint space, into cells. Define the union of visible
polygons for all the viewpoints in a cell as the potentially
visible set for that cell. For any viewpoint in the cell,
rendering the potentially visible set for that cell generates an
image with no missing polygons. Since the size of the
potentially visible set is usually much smaller than the size
of the model it came from, it takes less time to render.

For the simple iconic example in figure 3, the labelled
rooms approximate what we want in a cell. If the doors were
closed (and they had no glass) then we could simply render
the polygons in room2 when the viewpoint is in room2 and
we would get roughly a three-fold increase in system update
time. If the doors are open, we have to add the polygons
that can be seen through the doors from room2 to the
potentially visible set for that cell.

44

Even from this simple example it is obvious that certain
model subdivisions are better than others. The subdivision
process should try to satisfy the following objectives.

Objective 1. Minimize the size of the potentially visible
sets. We want cells whose potentially visible set is not
much larger than the visible set of any one viewpoint in the
cell. This ensures that we get the best possible speedup.

Objective 2. Minimize the number of cells. We can not
afford a cell for every viewpoint, so Objective 1 must be
countered with the objective that two adjacent cells should
not have similar potentially visible sets.

Besides these loosely stated objectives, a subdivision
algorithm must satisfy other restrictions.

Restriction 1. It must be easy to find the cell that
contains the current viewpoint. This operation is performed
during display, and every cycle it uses increases system
latency.

Restriction 2. It must be automatic. No hand-tooling
allowed. Architects can not afford the time and may not have
the expertise to hand-weave databases for esoteric display
algorithms.

Restriction 1 implies we must use some type of data
structure suitable for range searching. We chose recursive
binary partitioning planes. Furthermore, we found it
sufficient to restrict their orientation to be normal to one of
the coordinate axes. Other options include a regular 3D grid
or adaptive space subdivision techniques such as octrees or
k-d trees [Mehlhorn 84]. Any of these data structures allow
the cell containing a viewpoint to be found quickly.

To satisfy Objective 1 and Restriction 2, we devised a
heuristic function to choose the splitting planes used in the
recursive binary subdivision scheme. Since we generally
want a splitting plane that is largly opaque, we limit the
choice of splitting planes to those that contain model
polygons. The function evaluates each plane containing a
polygon for its suitability as a separating plane. Criteria
considered are

• how evenly the plane separates the model, which we call
the balance of the split,

• how well the plane hides the two sides from each other. A
floor hides much better than a wall with a door in it. We call
this the occlusion factor of the split,

• how little the plane splits individual polygons, since
polygons that are split will have to be put in the potentially
visible sets of both partitions. This is called the split
factor.

The metrics we use quantify these criteria between 0 and
1. A linear combination of these values, with the occlusion
factor weighted most heavily, has proven to be successful:

partition priority == .S*occlusion + .3*balance + .2*split.

To satisfy Objective 2, the process terminates when no
partitioning plane has a partition priority exceeding a user
defined threshold or when other limits, such as tree-depth,
are exceeded. The process generates a tree with interior nodes
representing binary separating planes and leaf nodes
representing cell volumes.

If we ran this function on the "planes" in our simple
example floor plan, the wall that separates room 2 and room
3 from room 1, the plane y=l, would have a higher partition
priority than the wall that separates room 2 from room 3,
the plane x= 1, based on its higher occlusion factor. This
yields two cells, room 1 and the combination of room 2 and
room 3. Recursively evaluating our heuristic function on
these two cells suggests that room 2 and room 3 can be
further split into two cells along the plane x= 1 (figure 4 and
5).

(2,2)

rooml

\ y=l

room2 room3

(0,0) x=l

Figure 4. The Subivided Floor Plan.

y=l

X=~~
/ ~ rooml

room2 room3

Figure 5. The Corresponding Tree Data
Structure for Figure 4. Interior Nodes
Represent Splitting Planes and Leaf
Nodes Represent Cell Volumes.

45

3.2 Volume-to-Polygon Visibility Testing

After model-space subdivision, the subset of the model
potentially visible to an observer inside each cell is
computed and stored with the cell. If the cell is completely
sealed, that is, its boundary is composed of opaque surfaces,
then this is easy to do. The potentially visible set for the
cell is simply the set of polygons that intersect the cell.
However, if the cell has holes in its boundary, called
portals, then the problem is more difficult. In our simple
example, the only portals are actual doors. In real-life
datasets, hallways, stairwells, windows, and oddly shaped
rooms give rise to other portals. Algorithms that compare
co-planar sets of polygons can compute the actual polygonal
definitions of the portals [Ottman 85],[Weiler 81].

We call the question of what external polygons we
should add to the potentially visible set for a cell the
volume-to-polygon visibility problem. This can be reduced
to another problem. We really only have to worry about
what can be seen from the portals, which can be represented
with polygons. Taking the union of what is visible from all
the portals of a cell solves the volume-to-polygon visibility
problem for the cell.

Unfortunately, this is also a difficult problem. We need
to know what is visible from an area, an infinite albeit
bounded number of viewpoints. We call this problem the
viewarea problem.

This is fundamentally equivalent to computing the
polygons that receive direct illumination from an area light
source [Nishita Nakamae 85]. Other researchers have
examined a related problem in two dimensions which deals
with visibility from an edge [Avis 86], [O'Rourke 87].

Since algorithms to compute the exact solution for the
viewarea problem are complex and inefficient, we have
developed two complementary classes of algorithms to
compute approximations to the exact solution. These are
detailed in [Airey 90].

One class uses point sampling and may underestimate
the set of polygons to add to the cell's potentially visible
set. This is analogous to the usc of point sampling in
radiosity solutions. In fact, it is implemented with the same
ray-polygon intersection library used by our radiosity
implementation, Section 4.

Another class establishes occlusion relationships runong
polygons. This is based on the computation of shadow
volumes [Crow 77]. Since exhaustive computation of
shadow volumes is expensive, we compute a partial
solution. This may overestimate the set of polygons to add
to the cell's potentially visible set. Since the exact solution
is bracketed by these two algorithms, we hope they can be
combined into a more accurate algorithm in the future.

Currently, the problem these approaches are expensive.
In practice we usually use only the sampling bas0 metho.ds,
because they are less expensive than the occlus10n-relat10n
based methods.

Note that a workstation with Z-buffer hardware, the
ability to scan convert polygon identifiers rather than color
values, and the ability to read back the identifiers could be
used to accelerate a sampling-based approach just as a
radiosity solution can be accelerated.

3.3 Speedup Results

We have run this algorithm on a few databases and
compiled statistics to document the speedup results. The
databases include

• A 7125-polygon model of Sitterson Hall. Walls are
represented by single polygons with separate colors for the
front-facing and back-facing sides. AutoCAD was not used
for this model. (Modelled by Dana Smith from plans by
Phil Freelon of O'Brien and Atkins)

• A second model of Sitterson Hall was constructed with
AutoCAD. This model consists of over 22,000 polygons.
For the most part it consists of polygons that are designed
to be seen from only one side. The walls have thickness and
are modelled with a pair of polygons. The lobby portion of
this model appears in a Siggraph '89 video. The lobby has
3949 polygons. (Modelled by Penny Rheingans.)

• The Orange United Methodist Church Fellowship
Building. An early version with 7812 polygons is called
Church 1. (Model started by Penny Rheingans from plans by
Wesley McClure and Craig Leonard of McClure NBBJ.)

• A later version consists of over 12,000 polygons. Since
radiosity increases the number of polygons that must be
stored in display memory by about an order of magnitude,
we were forced to use a 6037 polygon subset because of
display memory limitations. This subset, which we call
Church2, consists of the main meeting hall and a few
adjoining rooms, including a fully furnished kitchen. Sec the
description of Color Plates in Section 6. (John Alspaugh
finished modelling the church databases).

Table 1. summarizes the results of the model-subdivision
algorithm on these datasets.

The best results arc from the Sitterson database. It was
subdivided into 269 cells. The cell with the largest
potentially visible set had 2195 polygons to display. The
average number of polygons to display was a little more
than 230. The speedup was 3.25 in the worst case and 30 in
the average case.

46

Data polys cells polys/cell speedup
avg. max. avg. min.

Sitt. 7125 269 230 2195 30.98 3.25
Lobby 3949 54 466 2550 8.47 1.55
Chrch1 7812 108 291 2055 26.85 3.80
Chrch2 6037 16 1887 3477 3.20 1.74

Tablel. Summary of Model Subdivision
speedup results.

The additional display memory required to store the data
structure generated by the visibility pre-computation is
reasonable, about 20%. The main requirement is the need to
store potentially visible sets for each cell: Since severa~ cells
may see each polygon, there is a potential for large d1splay
memory use unless polygon descriptions are shared among
cells. We represent the polygons once; the display list for
each cell is composed of references to the polygons. From
the numbers in Table 1 for the Sitterson model, we see that,
on average, about ten cells can sec each polygon. This
means we need about 10 more words per polygon to store
the pointers. Since the storage required for a ~olor
interpolated quadrilateral is about 200 bytes, the total.d1splay
file size is increased by about 20%. The storage reqmrement
for the other databases is less.

4.0 Radiosity Shading in an Interactive System

The radiosity lighting model has several properties that
make it desirable for virtual building environments.

• It accurately models the diffuse interreflections that
dominate the interior of a building.

• The lighting information may be pre-computed and stored
as color values at polygon vertices. These values are linearly
interpolated by hardware during display. This effectively
eliminates any lighting calculations at display time, and
yields rapid rendering.

• The process is a linear system. Thus the contributions of
several different light sources may be computed
independently. A linear combination of these solution.s may
be computed during display, allowing the user to bnghten
and dim lights. This gives an added dimension of
interactivity at little cost.

For several years the best-known solution to the
radiosity lighting model used quadratic time and quadratic
space [Cohen 85]. This made it prohi.bitive for ~se 111

practical systems. The shooting al~o~1thm used ll_l t!1e
progressi vc refinement solution to rad1os1ty makes radJOSJty

practical [Cohen 88]. The algorithm runs in linear space, and
usually only linear time is required to converge to an
acceptable solution. It is no longer a research curiosity but a
tool for virtual environments.

4.1 A Ray-Casting Approach

We use a modified shooting approach to compute the
radiosity solution. The sampling process uses ray-casting
based on a jittered hemispherical distribution, rather than a
Z-buffcr based hemi-cube [Airey, Ouh-young 89].

At each iteration step, we adapt the resolution of the
hemispherical sampling distribution as a function of unshot
radiosity to keep the radiosity per ray constant. Airey and
Ouh-young observed, empirically, that the unshot radiosity
at each step decreases as a negative exponential. Thus, the
number of rays fired at each step also decreases as a negative
exponential.

A new ray-polygon intersection algorithm tuned to
architectural databases accelerates the ray casting. It takes
advantage of characteristics such as the large proportion of
axial rectangles. The basic idea can be easily described in
two dimensions. Consider the problem of computing the
closest intersection of the ray and line segments depicted in
figure 6.

l__j L
y=c

y=b

~~
x=a I x=b I x=c I x=d

Figure 6. Ray-Line Segment Intersection.

The ray intersects the lines containing segments parallel
to the x-axis, in order, from bottom to top. Similarly, the
ray intersects the lines containing segmenL~ parallel to the
y-axis, in order, from right to left.

This suggests a data structure which groups line
segments lying in the same line together. Each set of
parallel lines is sorted along the normal direction. This data

stmcture can be pre-computed.

To compute the intersections in order, we check the
intersection parameter for the closest line in each of the two
sorted lists. In our example, the line y==a is closer than the
line x===d. When we check the segments lying in the line
y=a, we halt and report the intersection.

If we had not found an intersection, we would have
computed the intersection parameter for the next line in the
x-parallcl list, y:=b, and compared it with the intersection
parameter for the line x""d. We continue to effectively merge
the two lists until we find an intersection.

The process works in three dimensions similarly. The
small percentage of non-axial polygons are put into a
standard BSP tree. After an intersection is found for the axial
polygons, the BSP tree is searched from front to back until
we find an intersection or exceed the intersection parameter
found for the axial polygons.

The primary advantage of ray-casting sampling
algorithms is flexibility. We have been able to experiment
with light-emitter distributions other than true diffuse
emission, such as spotlight-like distributions, with only
small changes in our software. Wallace, et al., use ray
casting to sample the light source from the model vertices to
decrease solution errors due to limited sampling distributions
[Wallace 89]. They also note other advantages, such as the
ability to use exact parametric descriptions of objects.

4.2 Interactive Light Manipulation

We have extended our radiosity program to compute the
contributions of several different light circuits. For each
patch we simultaneously compute a vector of radiosities,
one entry for each light circuit. Since a value for the red,
green and blue channels must be stored for every patch for
every independent set of lights, the storage requirement is
large. On workstations used to compute the radiosity
solution, large physical memories and virtual memory case
this problem. However, we did not have enough display
memory for some of our models. We devised an
approximation to save space. An average color is computed
from the colors due to each light circuit, and an 8 bit
intensity value is computed for each light circuit.

The radiosity process computes an array of color values
for each vertex,

<r,g,b>k, with 0 <= r,g,b < 256,

one for each of the k light circuits. We compute an average
color,

<R,G,B> ""I, (<r,g,b>k);

47

max= MAX(MAX(R,G),B);
<R,G,B> = <R/max,G/max,B/max>;

Then we compute an eight bit intensity value for each of the
k light circuits,

The storage required is k+4 bytes rather than 4*k
bytes, assuming word boundary restrictions. The penalty for
this savings is that the color of each surface stays constant,
regardless of the light circuit settings. Since most of the
lights encountered in real models are white, this has not
been a problem.

During display, the user may alter global settings for
each of the k light groups, i.e,. turn some off, brighten
others, etc. We scale the average <R,G,B> value stored at
each vertex with the dot product of the global settings and
the light group intensity values stored at each vertex. This
takes roughly one extra frame time to compute. The result is
then stored at the vertex until the user changes the global
settings again. Thus, any combination of k lights can be
interactively modified during display. In our system, k is
20.

4.3 Using a Physically Based Lighting Model on
a Non-Physical Models

A physically based rendering method requires physically
based models. Although AutoCAD is a powerful modelling
tool, it does not guarantee topological consistency of the
models it produces. Thus we have developed several
programs to help find and fix these model inconsistencies.

• A radiosity program that keeps track of the radiosity for
both sides of every polygon and reverses the orientation of
polygons as necessary. This requires the modeller to
correctly orient only light-emitting polygons.

• A retesselation program to transform polygonal surface
tilings into planar subdivisions, a tesselation in which every
edge joins two and only two polygons except at surface
boundaries. This is necessary to prevent cracks in curved
surfaces and shading discontinuities in planar surfaces.

• A program to filter out patches that get no light. This
prevents Z-buffer problems caused by coincident co-planar
surfaces. It also serves to eliminate portions of the model
that ordinarily cannot be seen.

5. Adaptive Refinement

Pre-computation is a good strategy and should be applied
to viewpoint-independent image features. Unfortunately,
only a few tasks, such as visibility relations and diffuse
shading in a static environment, fall into this category. To

48

deal with image features that cannot be handled by pre
computation, and features that strain the limits of the
display subsystem even with pre-computation, we turn to
adaptive refinement.

An object can be approximated at various levels of detail.
We use the approximation that most closely fits the needed
level of interactivity at the moment. This idea is well
known and regarded as a common-sense notion among flight
simulator developers. However, since our projected user, an
architect, also constructs the model, we have concentrated on
automatic applications of the principle

The radiosity process dices model polygons into patches.
In our experience, this increases the number of display
polygons by a factor of four to ten. Since our display
system, Pixel-Planes 4, takes a constant amount of time to
render any color-interpolated quadrilateral, regardless of
screen size, a radiosity shaded model takes four to ten times
longer to display than the original model. (For commercial
graphics workstations, which tend to be pixel-fill limited,
this effect may be much less noticable.)

The dicing due to racliosity can be used to produce levels
of detail automatically. We have adopted hierarchical
polygons as our display primitive (Figure 7).

refine

Figure 7. A Hierarchical Polygon. In the
Actual Image the Patch Values are Stored
at Vertices and Interpolated to Obtain
Smooth Shading.

Each polygon has an associated list of polygons that can be

used to refine it. When the user stops, the image "sweetens."
The resolution level of the hierarchical polygons displayed is
increased; we display the patches.

We smooth the transition from one quality level to the
next with pixel-level blending to minimize user distraction.
The blending takes advantage of the huge aggregate SIMD
computing power of the Pixel-Planes 4 machine by
computing the blending function at every pixel
simultaneously. The blending implementation uses fifty
interpolation steps and occurs in a fraction of a second.

The level of resolution refinement is fixed by the choice
of patch size made during the radiosity pre-computation. We
have developed secondary levels of refinement that are
dependent upon the current view and light circuit settings.
The secondary levels of improvement arc slower since they
involve computation during display, but they can markedly
improve an image that suffers from coarse patch sampling.

uniform choice
of quadrilateral
diagonal

choosing the diagonal
to run along contour
lines

Figure 8. Uniform Choice of
Quadrilateral Diagonal vs. Difference
Directed Choice. In the Actual Image, the
Colors are Transfered to Patch Vertices
and Linear Interpolation Provides Smooth
Shading.

We approximate bilinear interpolation across a

49

quadrilateral patch with two triangles so the shading can be
expressed as a Pixel-Planes 4 linear expression [Fuchs 85].
This can cause problems. Note that if the color values at the
four corners of the quadrilateral are a, b, c, d, then the
bilinearly-interpolated color at the center of the patch is
(a+b+c+d) /4. Since a quadrilateral can be triangulated in
two ways, the value at the center is either (a +c) /2 or
(b+d) /2, depending upon which diagonal is chosen.

During the first adaptive refinement step, we choose the
diagonal uniformly. As a secondary adaptive refinement step,
we choose the diagonal that connects the two vertices that
are more closely matched in color. This tends to make the
diagonals run perpendicular to the shading gradient (Figure
8).

Even after choosing the best diagonal, the approximation
may be inaccurate. A patch can be subdivided into four
patches. The color value at the new center vertex is
computed with bilinear interpolation. The process is applied
to each subpatch recursively.

Following adaptive refinement of shading, the image is
anti-aliascd. We use an algorithm developed by Fuchs et al.
that builds the anti-aliased image using supersampling
[Fuchs 85]. A new image is computed for each supersample
and blended smoothly into an accumulated image using the
supersample filter weights.

6. Color Plates

The church2 model of Orange United Methodist Church
Fellowship Hall has served as one of our primary system
evaluation databases. It has 6037 polygons drawn from a
larger 12,000+ polygon model. The model subdivision
process partitioned it into 16 cells. As a result, the display
subsystem needs to process 1887 polygons on average and
3477 in the worst case. Pixel-Planes 4 can display the basic
model at more than 8 frames per second.

All five color plates show the image that is produced
when the viewer is stationary and adaptive refinement has
replaced the coarse model with the radiosity-shaded model
and anti-aliasing has smoothed the jaggies. The radiosity
process produced 26,794 patches with 65,627 vertices from
the original 6037 polygons by dicing at a resolution of 21
square inches. A radiosity solution was computed for 13
different lighting circuits. These may be manipulated
interactively. The radiosity solution was computed overnight
on a DECstation 3100.

The building was designed by Wesley McClure and Craig
Leonard of McClure NBBJ. The modelling was done by
Penny Rheingans and John Alspaugh with AutoCAD.

Plate 3. is a perspective plan view. We allow the user to
choose whether or not back-facing polygons are rendered. In

this image they are not displayed. Since the only light
sources we used were inside the model, the outward-facing
roof polygons did not receive any light. We used a filter to
remove black polygons from the database to remove any
coincident polygons that might exist. This filtered out the
outward-facing roof polygons. The inward-facing roof
polygons are not displayed because they are back-facing.
This has proven to be a whole new way to view the model,
as it enables architects to see the entire building in a single
view. The Fellowship Hall is equipped with spotlights that
can be used to illuminate an individual giving a speech. The
spotlight beam can be seen in the lower center of the main
hall.

Plates 1 and 2 are views inside the main hall. The spotlight
can be seen in Plate 2.

Plates 4 and 5 are of the kitchen. The kitchen can be located
in the upper left portion of the perspective plan view in
Plate 3.

7. References

[Airey 90] Unpublished Ph.D. Dissertation Manuscript,
University of North Carolina Department of Computer
Science.

[Airey Ouh-young 89] Airey, J. and M. Ouh-young, "Two
Adaptive Techniques Let Progressive Radiosity Outperform
the Traditional Radiosity Algorithm", University of North
Carolina Department of Computer Science Technical Report
TR89-020.

[Avis 86] David A vis, Teren Gum, Godfried Toussaint,
"Visibility between two edges of a simple polygon", The
Visual Computer, 2(6), pp. 342-357

[Bergman 86] Bergman, Larry, Henry Fuchs, Eric Grant,
Susan Spach, "Image rendering by Adaptive Refinement",
Computer Graphics 20(4) pp. 29-38.

[Brooks 86] Walkthrough- A Dynamic Graphics System for
Simulating Virtual Buildings, F.P. Brooks, Jr., Proceedings
of the 1986 Workshop on Interactive Computer Graphics.

[Cohen 85] Cohen, Michael F., Shenchang Eric Chen, John
R. Wallace, and Donald P. Greenberg, "A Radiosity
Solution for Complex Environments," Computer Graphics,
19(3) (Proceedings of SIGGRAPH '85), pp. 31-40.

[Cohen 88] Cohen, Michael F., Shenchang Eric Chen, John
R. Wallace, and Donald P. Greenberg, "A progressive
Refinement Approach to Fast Radiosity Image Generation,"
Computer Graphics, 22(4) (Proceedings of SIGGRAPH
'88) pp. 75-84.

Graphics", Computer Graphics, 19(3) (Proceedings of
SIGGRAPH '77), pp. 242-248.

[Fuchs 85] Fuchs, H., J. Goldfeather, J.P. Hultquist, S.
Spach, J. Austin, F.P. Brooks, Jr., J. Eyles, and J. Poulton,
"Fast Spheres, TExtures, Transparencies, and Image
Enhancements in Pixel-Planes", Computer Graphics, 19(3)
(Proceedings of SIGGRAPH '85), pp. 111-120.

[Goral 84] Goral, Cindy M., Torrance, Kenneth E.,
Greenberg, Donald P., "Modeling the Interaction of Light
Between Diffuse Surfaces", Computer Graphics, 18(3)
(Proceedings of SIGGRAPH '84), pp. 213-222

[Mehlhorn 84] Mehlhorn, Kurt, "Data Structures and
Algorithms 3: Multi-dimensional Searching and
Computational Geometry", EA TCS Monographs on
Theoretical Computer Science, Springer-Verlag, 1984

[Nishita Nakamae 85] Nishita, T. and Nakamae, E.,
"Continous Tone Representation of Three-Dimensional
Objects Taking Account of Shadows and Interreflection",
Computer Graphics, 19(3) (Proceedings of SIGGRAPH
'85), pp. 23-30.

[O'Rourke 87] O'Rourke, Joseph, "Art Gallery Theorems
and Algorithms", International Series of Monographs on
Computer Science, Oxford University Press 1987

[Ottman 85] Ottman, Thomas, Widmayer, Peter, and Derick
Wood, "A Fast Algorithm for the Boolean Masking
Problem", Computer Vision, Graphics and Image
Processing, 30 pp. 249-268, 1985

[Wallace 89] Wallace, John R., Elmquist, Kells A., Haines,
Eric A., "A Ray Tracing Algorithm for Progressive
Radiosity", Computer Graphics 23(4) (Proceedings of
SIGGRAPH '89), pp.315-324.

[Weiler 81] Weiler, Kevin, "Polygon Comparison using a
Graph Representation", Computer Graphics 15(4),
(Proceedings of SIGGRAPH 81), pp. 10-18

Color images for this paper can be found in the color
[Crow 77] Crow, F.C, "Shadow Algorithms for Computer plate section.

50

258

1. 2.

3.

4. 5.

Airey, Rohlf and Brooks, "Towards
Image Realism with Interactive
Update Rates in Complex Virtual
Building Environments".

