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Abstract 

Two strategies, pre-computation before display and 
adaptive refinement during display, are used to combine 
interactivity with high image quality in a virtual building 
simulation. Pre-computation is used in two ways. The 
hidden-surface problem is partially solved by automatically 
pre-computing potentially visible sets of the model for sets 
of related viewpoints. Rendering only the potentially visible 
subset associated with the current viewpoint, rather than the 
entire model, produces significant speedups on real building 
models. Solutions for the radiosity lighting model are pre
computed for up to twenty different sets of lights. Linear 
combinations of these solutions can be manipulated in real 
time. We use adaptive refinement to trade image realism for 
interactivity as the situation requires. When the user is 
stationary we replace a coarse model using few polygons 
with a more detailed model. Image-level linear interpolation 
smooths the transition between differing levels of image 
realism. 
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1. Introduction 

Our basic goal is a virtual building environment, a 
system which simulates human experience with a building, 
without physically constructing the building. Many 
components of a building simulator, corresponding to many 
human senses, are important. We concentrate on techniques 
to enhance visual simulation. 

We find natural motion to be a very important 
component of visual simulation. We observe user behavior 
to be qualitatively different at six updates per second as 
compared to behavior at one update per second. 

• At 1 frame per second, the system is painful to use. It is 
necessary to use a two-dimensional floorplan display, or 
map view, to navigate. 

• As the frame rate increases to around 20 frames per second 
interactivity appears to increase rapidly before leveling off. 
At around 6 frames per second the virtual building illusion 
begins to work. It is possible to navigate with only the 
three-dimensional display, or scene view. 

However, realistic images are also important. We use a 
lighting model that realistically simulates the complicated 
diffuse, interreflections within a building interior. 
Furthermore, studying real buildings demands large, detailed 
models. 

Each of these simulation enhancements greatly increases 
the number of primitives the display subsystem must 
process and has an adverse effect on interactivity. To help 
our display subsystem cope with this increased load and 
remain interactive, we use two stategies. We pre-compute as 
much work as possible and use adaptive refinement 
techniques during display [Bergman 86]. The resulting 
combination is a system that attempts to keep the update 
rate above about six frames per second while providing as 
realistic an image as possible. 



Section 2 describes the system level organization in a 
concrete, detailed manner. This is followed by sections 
which cover the concepts and algorithms used in the system. 

Our system uses pre-computation in two ways. A new 
process automatically associates sets of viewpoints with 
potentially visible subsets of the model [Airey 90). The 
display subsystem has to process only the potentially 
visible subset of the model that is associated with the 
current viewpoint. The update rate increase due to this 
process proportional to the depth complexity, hence the size 
of the building modelled. For a 7125-polygon model of 
Sitterson Hall, we have achieved speedups of not less than 
3.25 in the worst case, and 30 in the average case, depending 
upon the viewpoint. The process is based on model-space 
subdivision and volume-to-polygon visibility testing. We 
describe this process in Section 3. 

The radiosity lighting model accurately simulates the 
diffusely reflecting surfaces that dominate building interiors 
[Goral 84). Because diffuse reflection is view-independent, 
the shading can be pre-computed for finite areas or patches. 
A resampling filter transfers patch radiosity values to color 
values at patch vertices. The color values are interpolated 
across the patch during display to get a smooth-shaded 
image. Display systems with hardware support for color 
interpolation can display radiosity patches rapidly. Since no 
lighting-model dot products need to be performed, radiosity 
patches can be rendered faster than Phong-shaded or Gouraud
shaded polygons. We present our variation of an algorithm 
to compute radiosity in Section 4 and relate our practical 
experiences using radiosity as a tool for virtual worlds. Our 
system allows the user to interactively and independently 
modulate 20 different lighting circuits in models with tens 
of thousands of radiosity patches. 

Adaptive refinement provides another way to increase 
system performance. The user often stops moving to 
examine the current view more closely. We take advantage 
of the reduced need for interactivity to increase realism. For 
example, the radiosity process dices large polygons into 
smaller finite elements or patches. We maintain both the 
original polygons and the derived patches in a form we call 
hierarchical polygons. Image quality dynamically improves 
by replacing the original model polygons with the derived 
patches whenever the viewer is stationary. We further 
describe adaptive refinement techniques in Section 5. 

2. System Overview 

We are iteratively developing a viitual world system that 
lets architects and their clients explore a proposed building 
during the design-development phase [Brooks 86). Although 
this paper concentrates on the techniques we have used to 
advance image realism, increase the frame rate and integrate 
advances in these two areas, here are the larger aims of the 
research project. A complete system has the following major 
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parts (Figure 1). 

A modelling system for the architect, where the 
canonical model is maintained. We use AutoCAD. 

An image generation process for constructing a display 
file from the canonical model and generating the images. 
This includes the display-compiler subsystem and the 
display subsystem. 

An interface subsystem that allows the use of many 
different man-machine interface devices for controlling 
viewing parameters and lighting circuit settings. 

real-time 
display 
structures 

device inputs 
interpreted to give 

Canonical Model 
Constructed by alterations 

the Architect 

viewer position, orientation 
and viewing parameters 

output 

interface 

Figure 1. Overview of a Virtual Building 
System. 

2.1 Modelling 

The modelling subsystem must address ease of construction, 
(i.e. how many man-hours are required to create the model), 
model modification, and management of many different 
versions of the model (a task very similar to source code 
control). For our modelling capabilities, we have adopted 
AutoCAD. This helps us establish partnerships with 
architects for datasets and system evaluation. 

2.3 User Interface 

The interface subsystem must coordinate input devices 
with the display system. We have found that a flexible 
interface to a variety of devices is important. We already use 
several devices, often concurrently, and need to test new 
devices often. Frequent users such as architects may want 
complete freedom of motion Uoysticks), while an infrequent 



user, e.g., a client, may desire a restrictive but more natural 
interface, (a treadmill with a head-mounted display or big 
screen display). We expect to report on the research results 
of the interface subsystem in another publication. 

2.4 Display Compiler 

The display compilation task must translate the 
geometric and surface attribute information from the model 
into a form suitable for rapid display and interaction with the 
interface devices. Figure 2 depicts the process of converting 
an AutoCAD dataset into a form suitable for a virtual world 
system. The rectangles represent programs. The ovals 
represent data files. The type of the data file is depicted by 
the Unix convention of filename extensions. 

I AutoCAD H .dxf 

radiosity 

translators 
and filters 

model subdivision, 
potentially visible 
set com utation 

Figure 2. Display File Compilation in 
UNC Walkthrough System. 

The AutoCAD extemal files (.dxf extension) arc parsed 
and converted to a simple format which consists entirely of 
polygons (.poly extension). Separate files arc generated 
which contain surface attribute information (.sc extension), 
and the sets of lights for which we want to compute 
independent radiosity solutions (.circuit extension). Another 
file (.template extension) allows Phigs+ -like structures to 
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be incorporated into the final display file. The display 
compilation forks into the radiosity process and tl1e model 
subdivision process. 

The radiosity system is described in Section 4. It 
processes .poly files by automatically dicing the polygons 
into derived patches and computing color values for each 
patch for each independent light circuit. The original 
polygons are given color values by averaging the values of 
their derived patches. The patches retain indices to parent 
polygons. The shaded polygons arc written to a file with a 
.O.patch extension and the derived patches are written to a 
file with a .l.patch extension. This information is used by 
the next program to construct hierarchical polygons. A 
hierarchical polygon is a polygon that has an associated list 
of polygons that may be used to replace the polygon. We 
have experimented only with one level of refinement and 
with refining all polygons to the same level simultaneously, 
but our data structures and display code allow arbitrary 
subdivision for each polygon independently. 

The model subdivision process is described in Section 3. 
It generates a recursive subdivision of the model space. The 
result of this subdivision process is a tree of splitting planes 
(.partition extension). The .partition file defines 
subvolumes, or cells,of the model (.cell extension). Each of 
these cells is processed to determine the polygons that are 
potentially visible to an observer ranging freely inside the 
cell. These polygons are then associated with the cell. 
During display, the cell containing the current viewpoint is 
found, and only its associated polygons are rendered. 

3. Display 
Subdivision 
Testing 

Acceleration by Model-Space 
and Volume-to-Polygon Visibility 

Architectural databases possess special characteristics. 
We list some of these properties here and then describe how 
we exploit them. 

1. The model is changed much less often than the 
viewpoint, which makes pre-processing desirable. 

2. Many buildings have high average depth complexity. Any 
image computed from an interior viewpoint will have many 
surfaces covering every pixel. A related observation is that 
most of the model docs not contribute at all to any given 
image. Furthermore, the depth complexity of a building is 
basically independent of tesselation due to shading and 
independent of the amount of detail modelled. 

3. Most polygons are axial, that is parallel to two of the 
coordinate axes. Additionally many polygons are rectangles. 

4. The set of polygons that appears in each view changes 
slowly as the viewpoint moves, except when crossing 
certain thresholds, e.g., doors, which we call portals. 



Consider a simplified three room floorplan (Figure 3). The 
set of polygons visible in a 360 degree field of view from v 1 
does not change much until we get near v2. Then it stays 
roughly the same until we get to v3 where it changes 
radically again. 

(0,0) x=l 

Figure 3. Simple Three Room Floorplan 
with Possible Viewer Path. 

5. Large planar surfaces are often structured into multiple, 
co-planar levels for modelling purposes, shading purposes, 
and realism detail purposes. For example, the modeller may 
represent a ceiling with one polygon, but it may be diced 
into many smaller co-planar polygons to represent the 
shading determined by radiosity calculations. 

6. Because the viewpoint is usually inside the building, the 
role of surface interreflections in shading calculations are 
very important for spatial comprehension. 

3.1 Model Space Subdivision 

We automatically subdivide model space or equivalently, 
viewpoint space, into cells. Define the union of visible 
polygons for all the viewpoints in a cell as the potentially 
visible set for that cell. For any viewpoint in the cell, 
rendering the potentially visible set for that cell generates an 
image with no missing polygons. Since the size of the 
potentially visible set is usually much smaller than the size 
of the model it came from, it takes less time to render. 

For the simple iconic example in figure 3, the labelled 
rooms approximate what we want in a cell. If the doors were 
closed (and they had no glass) then we could simply render 
the polygons in room2 when the viewpoint is in room2 and 
we would get roughly a three-fold increase in system update 
time. If the doors are open, we have to add the polygons 
that can be seen through the doors from room2 to the 
potentially visible set for that cell. 
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Even from this simple example it is obvious that certain 
model subdivisions are better than others. The subdivision 
process should try to satisfy the following objectives. 

Objective 1. Minimize the size of the potentially visible 
sets. We want cells whose potentially visible set is not 
much larger than the visible set of any one viewpoint in the 
cell. This ensures that we get the best possible speedup. 

Objective 2. Minimize the number of cells. We can not 
afford a cell for every viewpoint, so Objective 1 must be 
countered with the objective that two adjacent cells should 
not have similar potentially visible sets. 

Besides these loosely stated objectives, a subdivision 
algorithm must satisfy other restrictions. 

Restriction 1. It must be easy to find the cell that 
contains the current viewpoint. This operation is performed 
during display, and every cycle it uses increases system 
latency. 

Restriction 2. It must be automatic. No hand-tooling 
allowed. Architects can not afford the time and may not have 
the expertise to hand-weave databases for esoteric display 
algorithms. 

Restriction 1 implies we must use some type of data 
structure suitable for range searching. We chose recursive 
binary partitioning planes. Furthermore, we found it 
sufficient to restrict their orientation to be normal to one of 
the coordinate axes. Other options include a regular 3D grid 
or adaptive space subdivision techniques such as octrees or 
k-d trees [Mehlhorn 84]. Any of these data structures allow 
the cell containing a viewpoint to be found quickly. 

To satisfy Objective 1 and Restriction 2, we devised a 
heuristic function to choose the splitting planes used in the 
recursive binary subdivision scheme. Since we generally 
want a splitting plane that is largly opaque, we limit the 
choice of splitting planes to those that contain model 
polygons. The function evaluates each plane containing a 
polygon for its suitability as a separating plane. Criteria 
considered are 

• how evenly the plane separates the model, which we call 
the balance of the split, 

• how well the plane hides the two sides from each other. A 
floor hides much better than a wall with a door in it. We call 
this the occlusion factor of the split, 

• how little the plane splits individual polygons, since 
polygons that are split will have to be put in the potentially 
visible sets of both partitions. This is called the split 
factor. 



The metrics we use quantify these criteria between 0 and 
1. A linear combination of these values, with the occlusion 
factor weighted most heavily, has proven to be successful: 

partition priority == .S*occlusion + .3*balance + .2*split. 

To satisfy Objective 2, the process terminates when no 
partitioning plane has a partition priority exceeding a user
defined threshold or when other limits, such as tree-depth, 
are exceeded. The process generates a tree with interior nodes 
representing binary separating planes and leaf nodes 
representing cell volumes. 

If we ran this function on the "planes" in our simple 
example floor plan, the wall that separates room 2 and room 
3 from room 1, the plane y=l, would have a higher partition 
priority than the wall that separates room 2 from room 3, 
the plane x= 1, based on its higher occlusion factor. This 
yields two cells, room 1 and the combination of room 2 and 
room 3. Recursively evaluating our heuristic function on 
these two cells suggests that room 2 and room 3 can be 
further split into two cells along the plane x= 1 (figure 4 and 
5). 

(2,2) 

rooml 

\ y=l 

room2 room3 

(0,0) x=l 

Figure 4. The Subivided Floor Plan. 

y=l 

X=~~ 
/ ~ rooml 

room2 room3 

Figure 5. The Corresponding Tree Data 
Structure for Figure 4. Interior Nodes 
Represent Splitting Planes and Leaf 
Nodes Represent Cell Volumes. 
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3.2 Volume-to-Polygon Visibility Testing 

After model-space subdivision, the subset of the model 
potentially visible to an observer inside each cell is 
computed and stored with the cell. If the cell is completely 
sealed, that is, its boundary is composed of opaque surfaces, 
then this is easy to do. The potentially visible set for the 
cell is simply the set of polygons that intersect the cell. 
However, if the cell has holes in its boundary, called 
portals, then the problem is more difficult. In our simple 
example, the only portals are actual doors. In real-life 
datasets, hallways, stairwells, windows, and oddly shaped 
rooms give rise to other portals. Algorithms that compare 
co-planar sets of polygons can compute the actual polygonal 
definitions of the portals [Ottman 85],[Weiler 81]. 

We call the question of what external polygons we 
should add to the potentially visible set for a cell the 
volume-to-polygon visibility problem. This can be reduced 
to another problem. We really only have to worry about 
what can be seen from the portals, which can be represented 
with polygons. Taking the union of what is visible from all 
the portals of a cell solves the volume-to-polygon visibility 
problem for the cell. 

Unfortunately, this is also a difficult problem. We need 
to know what is visible from an area, an infinite albeit 
bounded number of viewpoints. We call this problem the 
viewarea problem. 

This is fundamentally equivalent to computing the 
polygons that receive direct illumination from an area light 
source [Nishita Nakamae 85]. Other researchers have 
examined a related problem in two dimensions which deals 
with visibility from an edge [Avis 86], [O'Rourke 87]. 

Since algorithms to compute the exact solution for the 
viewarea problem are complex and inefficient, we have 
developed two complementary classes of algorithms to 
compute approximations to the exact solution. These are 
detailed in [Airey 90]. 

One class uses point sampling and may underestimate 
the set of polygons to add to the cell's potentially visible 
set. This is analogous to the usc of point sampling in 
radiosity solutions. In fact, it is implemented with the same 
ray-polygon intersection library used by our radiosity 
implementation, Section 4. 

Another class establishes occlusion relationships runong 
polygons. This is based on the computation of shadow 
volumes [Crow 77]. Since exhaustive computation of 
shadow volumes is expensive, we compute a partial 
solution. This may overestimate the set of polygons to add 
to the cell's potentially visible set. Since the exact solution 
is bracketed by these two algorithms, we hope they can be 
combined into a more accurate algorithm in the future. 



Currently, the problem these approaches are expensive. 
In practice we usually use only the sampling bas0 metho.ds, 
because they are less expensive than the occlus10n-relat10n 
based methods. 

Note that a workstation with Z-buffer hardware, the 
ability to scan convert polygon identifiers rather than color 
values, and the ability to read back the identifiers could be 
used to accelerate a sampling-based approach just as a 
radiosity solution can be accelerated. 

3.3 Speedup Results 

We have run this algorithm on a few databases and 
compiled statistics to document the speedup results. The 
databases include 

• A 7125-polygon model of Sitterson Hall. Walls are 
represented by single polygons with separate colors for the 
front-facing and back-facing sides. AutoCAD was not used 
for this model. (Modelled by Dana Smith from plans by 
Phil Freelon of O'Brien and Atkins) 

• A second model of Sitterson Hall was constructed with 
AutoCAD. This model consists of over 22,000 polygons. 
For the most part it consists of polygons that are designed 
to be seen from only one side. The walls have thickness and 
are modelled with a pair of polygons. The lobby portion of 
this model appears in a Siggraph '89 video. The lobby has 
3949 polygons. (Modelled by Penny Rheingans.) 

• The Orange United Methodist Church Fellowship 
Building. An early version with 7812 polygons is called 
Church 1. (Model started by Penny Rheingans from plans by 
Wesley McClure and Craig Leonard of McClure NBBJ.) 

• A later version consists of over 12,000 polygons. Since 
radiosity increases the number of polygons that must be 
stored in display memory by about an order of magnitude, 
we were forced to use a 6037 polygon subset because of 
display memory limitations. This subset, which we call 
Church2, consists of the main meeting hall and a few 
adjoining rooms, including a fully furnished kitchen. Sec the 
description of Color Plates in Section 6. (John Alspaugh 
finished modelling the church databases). 

Table 1. summarizes the results of the model-subdivision 
algorithm on these datasets. 

The best results arc from the Sitterson database. It was 
subdivided into 269 cells. The cell with the largest 
potentially visible set had 2195 polygons to display. The 
average number of polygons to display was a little more 
than 230. The speedup was 3.25 in the worst case and 30 in 
the average case. 
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Data polys cells polys/cell speedup 
avg. max. avg. min. 

Sitt. 7125 269 230 2195 30.98 3.25 
Lobby 3949 54 466 2550 8.47 1.55 
Chrch1 7812 108 291 2055 26.85 3.80 
Chrch2 6037 16 1887 3477 3.20 1.74 

Tablel. Summary of Model Subdivision 
speedup results. 

The additional display memory required to store the data 
structure generated by the visibility pre-computation is 
reasonable, about 20%. The main requirement is the need to 
store potentially visible sets for each cell: Since severa~ cells 
may see each polygon, there is a potential for large d1splay 
memory use unless polygon descriptions are shared among 
cells. We represent the polygons once; the display list for 
each cell is composed of references to the polygons. From 
the numbers in Table 1 for the Sitterson model, we see that, 
on average, about ten cells can sec each polygon. This 
means we need about 10 more words per polygon to store 
the pointers. Since the storage required for a ~olor
interpolated quadrilateral is about 200 bytes, the total.d1splay 
file size is increased by about 20%. The storage reqmrement 
for the other databases is less. 

4.0 Radiosity Shading in an Interactive System 

The radiosity lighting model has several properties that 
make it desirable for virtual building environments. 

• It accurately models the diffuse interreflections that 
dominate the interior of a building. 

• The lighting information may be pre-computed and stored 
as color values at polygon vertices. These values are linearly 
interpolated by hardware during display. This effectively 
eliminates any lighting calculations at display time, and 
yields rapid rendering. 

• The process is a linear system. Thus the contributions of 
several different light sources may be computed 
independently. A linear combination of these solution.s may 
be computed during display, allowing the user to bnghten 
and dim lights. This gives an added dimension of 
interactivity at little cost. 

For several years the best-known solution to the 
radiosity lighting model used quadratic time and quadratic 
space [Cohen 85]. This made it prohi.bitive for ~se 111 

practical systems. The shooting al~o~1thm used ll_l t!1e 
progressi vc refinement solution to rad1os1ty makes radJOSJty 



practical [Cohen 88]. The algorithm runs in linear space, and 
usually only linear time is required to converge to an 
acceptable solution. It is no longer a research curiosity but a 
tool for virtual environments. 

4.1 A Ray-Casting Approach 

We use a modified shooting approach to compute the 
radiosity solution. The sampling process uses ray-casting 
based on a jittered hemispherical distribution, rather than a 
Z-buffcr based hemi-cube [Airey, Ouh-young 89]. 

At each iteration step, we adapt the resolution of the 
hemispherical sampling distribution as a function of unshot 
radiosity to keep the radiosity per ray constant. Airey and 
Ouh-young observed, empirically, that the unshot radiosity 
at each step decreases as a negative exponential. Thus, the 
number of rays fired at each step also decreases as a negative 
exponential. 

A new ray-polygon intersection algorithm tuned to 
architectural databases accelerates the ray casting. It takes 
advantage of characteristics such as the large proportion of 
axial rectangles. The basic idea can be easily described in 
two dimensions. Consider the problem of computing the 
closest intersection of the ray and line segments depicted in 
figure 6. 

l__j L 
y=c 

y=b 

~~ 
x=a I x=b I x=c I x=d 

Figure 6. Ray-Line Segment Intersection. 

The ray intersects the lines containing segments parallel 
to the x-axis, in order, from bottom to top. Similarly, the 
ray intersects the lines containing segmenL~ parallel to the 
y-axis, in order, from right to left. 

This suggests a data structure which groups line 
segments lying in the same line together. Each set of 
parallel lines is sorted along the normal direction. This data 

stmcture can be pre-computed. 

To compute the intersections in order, we check the 
intersection parameter for the closest line in each of the two 
sorted lists. In our example, the line y==a is closer than the 
line x===d. When we check the segments lying in the line 
y=a, we halt and report the intersection. 

If we had not found an intersection, we would have 
computed the intersection parameter for the next line in the 
x-parallcl list, y:=b, and compared it with the intersection 
parameter for the line x""d. We continue to effectively merge 
the two lists until we find an intersection. 

The process works in three dimensions similarly. The 
small percentage of non-axial polygons are put into a 
standard BSP tree. After an intersection is found for the axial 
polygons, the BSP tree is searched from front to back until 
we find an intersection or exceed the intersection parameter 
found for the axial polygons. 

The primary advantage of ray-casting sampling 
algorithms is flexibility. We have been able to experiment 
with light-emitter distributions other than true diffuse 
emission, such as spotlight-like distributions, with only 
small changes in our software. Wallace, et al., use ray
casting to sample the light source from the model vertices to 
decrease solution errors due to limited sampling distributions 
[Wallace 89]. They also note other advantages, such as the 
ability to use exact parametric descriptions of objects. 

4.2 Interactive Light Manipulation 

We have extended our radiosity program to compute the 
contributions of several different light circuits. For each 
patch we simultaneously compute a vector of radiosities, 
one entry for each light circuit. Since a value for the red, 
green and blue channels must be stored for every patch for 
every independent set of lights, the storage requirement is 
large. On workstations used to compute the radiosity 
solution, large physical memories and virtual memory case 
this problem. However, we did not have enough display 
memory for some of our models. We devised an 
approximation to save space. An average color is computed 
from the colors due to each light circuit, and an 8 bit 
intensity value is computed for each light circuit. 

The radiosity process computes an array of color values 
for each vertex, 

<r,g,b>k, with 0 <= r,g,b < 256, 

one for each of the k light circuits. We compute an average 
color, 

<R,G,B> ""I, (<r,g,b>k); 
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max= MAX(MAX(R,G),B); 
<R,G,B> = <R/max,G/max,B/max>; 

Then we compute an eight bit intensity value for each of the 
k light circuits, 

The storage required is k+4 bytes rather than 4*k 
bytes, assuming word boundary restrictions. The penalty for 
this savings is that the color of each surface stays constant, 
regardless of the light circuit settings. Since most of the 
lights encountered in real models are white, this has not 
been a problem. 

During display, the user may alter global settings for 
each of the k light groups, i.e,. turn some off, brighten 
others, etc. We scale the average <R,G,B> value stored at 
each vertex with the dot product of the global settings and 
the light group intensity values stored at each vertex. This 
takes roughly one extra frame time to compute. The result is 
then stored at the vertex until the user changes the global 
settings again. Thus, any combination of k lights can be 
interactively modified during display. In our system, k is 
20. 

4.3 Using a Physically Based Lighting Model on 
a Non-Physical Models 

A physically based rendering method requires physically 
based models. Although AutoCAD is a powerful modelling 
tool, it does not guarantee topological consistency of the 
models it produces. Thus we have developed several 
programs to help find and fix these model inconsistencies. 

• A radiosity program that keeps track of the radiosity for 
both sides of every polygon and reverses the orientation of 
polygons as necessary. This requires the modeller to 
correctly orient only light-emitting polygons. 

• A retesselation program to transform polygonal surface 
tilings into planar subdivisions, a tesselation in which every 
edge joins two and only two polygons except at surface 
boundaries. This is necessary to prevent cracks in curved 
surfaces and shading discontinuities in planar surfaces. 

• A program to filter out patches that get no light. This 
prevents Z-buffer problems caused by coincident co-planar 
surfaces. It also serves to eliminate portions of the model 
that ordinarily cannot be seen. 

5. Adaptive Refinement 

Pre-computation is a good strategy and should be applied 
to viewpoint-independent image features. Unfortunately, 
only a few tasks, such as visibility relations and diffuse 
shading in a static environment, fall into this category. To 
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deal with image features that cannot be handled by pre
computation, and features that strain the limits of the 
display subsystem even with pre-computation, we turn to 
adaptive refinement. 

An object can be approximated at various levels of detail. 
We use the approximation that most closely fits the needed 
level of interactivity at the moment. This idea is well
known and regarded as a common-sense notion among flight 
simulator developers. However, since our projected user, an 
architect, also constructs the model, we have concentrated on 
automatic applications of the principle 

The radiosity process dices model polygons into patches. 
In our experience, this increases the number of display 
polygons by a factor of four to ten. Since our display 
system, Pixel-Planes 4, takes a constant amount of time to 
render any color-interpolated quadrilateral, regardless of 
screen size, a radiosity shaded model takes four to ten times 
longer to display than the original model. (For commercial 
graphics workstations, which tend to be pixel-fill limited, 
this effect may be much less noticable.) 

The dicing due to racliosity can be used to produce levels 
of detail automatically. We have adopted hierarchical 
polygons as our display primitive (Figure 7). 

refine 

Figure 7. A Hierarchical Polygon. In the 
Actual Image the Patch Values are Stored 
at Vertices and Interpolated to Obtain 
Smooth Shading. 

Each polygon has an associated list of polygons that can be 



used to refine it. When the user stops, the image "sweetens." 
The resolution level of the hierarchical polygons displayed is 
increased; we display the patches. 

We smooth the transition from one quality level to the 
next with pixel-level blending to minimize user distraction. 
The blending takes advantage of the huge aggregate SIMD 
computing power of the Pixel-Planes 4 machine by 
computing the blending function at every pixel 
simultaneously. The blending implementation uses fifty 
interpolation steps and occurs in a fraction of a second. 

The level of resolution refinement is fixed by the choice 
of patch size made during the radiosity pre-computation. We 
have developed secondary levels of refinement that are 
dependent upon the current view and light circuit settings. 
The secondary levels of improvement arc slower since they 
involve computation during display, but they can markedly 
improve an image that suffers from coarse patch sampling. 

uniform choice 
of quadrilateral 
diagonal 

choosing the diagonal 
to run along contour 
lines 

Figure 8. Uniform Choice of 
Quadrilateral Diagonal vs. Difference 
Directed Choice. In the Actual Image, the 
Colors are Transfered to Patch Vertices 
and Linear Interpolation Provides Smooth 
Shading. 

We approximate bilinear interpolation across a 
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quadrilateral patch with two triangles so the shading can be 
expressed as a Pixel-Planes 4 linear expression [Fuchs 85]. 
This can cause problems. Note that if the color values at the 
four corners of the quadrilateral are a, b, c, d, then the 
bilinearly-interpolated color at the center of the patch is 
(a+b+c+d) /4. Since a quadrilateral can be triangulated in 
two ways, the value at the center is either (a +c) /2 or 
(b+d) /2, depending upon which diagonal is chosen. 

During the first adaptive refinement step, we choose the 
diagonal uniformly. As a secondary adaptive refinement step, 
we choose the diagonal that connects the two vertices that 
are more closely matched in color. This tends to make the 
diagonals run perpendicular to the shading gradient (Figure 
8). 

Even after choosing the best diagonal, the approximation 
may be inaccurate. A patch can be subdivided into four 
patches. The color value at the new center vertex is 
computed with bilinear interpolation. The process is applied 
to each subpatch recursively. 

Following adaptive refinement of shading, the image is 
anti-aliascd. We use an algorithm developed by Fuchs et al. 
that builds the anti-aliased image using supersampling 
[Fuchs 85]. A new image is computed for each supersample 
and blended smoothly into an accumulated image using the 
supersample filter weights. 

6. Color Plates 

The church2 model of Orange United Methodist Church 
Fellowship Hall has served as one of our primary system 
evaluation databases. It has 6037 polygons drawn from a 
larger 12,000+ polygon model. The model subdivision 
process partitioned it into 16 cells. As a result, the display 
subsystem needs to process 1887 polygons on average and 
3477 in the worst case. Pixel-Planes 4 can display the basic 
model at more than 8 frames per second. 

All five color plates show the image that is produced 
when the viewer is stationary and adaptive refinement has 
replaced the coarse model with the radiosity-shaded model 
and anti-aliasing has smoothed the jaggies. The radiosity 
process produced 26,794 patches with 65,627 vertices from 
the original 6037 polygons by dicing at a resolution of 21 
square inches. A radiosity solution was computed for 13 
different lighting circuits. These may be manipulated 
interactively. The radiosity solution was computed overnight 
on a DECstation 3100. 

The building was designed by Wesley McClure and Craig 
Leonard of McClure NBBJ. The modelling was done by 
Penny Rheingans and John Alspaugh with AutoCAD. 

Plate 3. is a perspective plan view. We allow the user to 
choose whether or not back-facing polygons are rendered. In 



this image they are not displayed. Since the only light 
sources we used were inside the model, the outward-facing 
roof polygons did not receive any light. We used a filter to 
remove black polygons from the database to remove any 
coincident polygons that might exist. This filtered out the 
outward-facing roof polygons. The inward-facing roof 
polygons are not displayed because they are back-facing. 
This has proven to be a whole new way to view the model, 
as it enables architects to see the entire building in a single 
view. The Fellowship Hall is equipped with spotlights that 
can be used to illuminate an individual giving a speech. The 
spotlight beam can be seen in the lower center of the main 
hall. 

Plates 1 and 2 are views inside the main hall. The spotlight 
can be seen in Plate 2. 

Plates 4 and 5 are of the kitchen. The kitchen can be located 
in the upper left portion of the perspective plan view in 
Plate 3. 
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