
Displaying Alphanumeric
Characters on Pixel-Planes 5

TR89-049

December, 1989

Andrei State

~'

C,'i_~'';·

I' I
I

' I

The University of North Carolina at Chapel Hill I

Department of Computer Science ' !I
I

CB#3175, Sitterson Hall
_.: !!::!.

~ Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/Affirmative Action Institution.

Displaying Alphanumeric Characters on Pixel-Planes 5 page 2

Displaying Alphanumeric Characters
on Pixel-Planes 5

1 . Introduction

2 . The Rendering Process on Pixel-Planes 5

3 . Three Methods for Character Rendering
3. 1 Real-Time Scan Conversion
3. 2 Character Bit-Slitting to Renderers
3.3 Character Bit-Slitting in Graphics Processors

4 . Conclusion

5 . Acknowledgements

6. References

UNC-CH Mon. Dec 11, 1989

Displaying Alphanumeric Characters on Pixel-Planes 5 page 3

1. Introduction

The Pixel-Planes 5 system [Fuchs89] is an implementation of a high-performance graphics
architecture designed primarily for high-speed rendering of 3-dimensional data from
surface or volumetric databases. However, particular applications may require the
additional display of alphanumeric text, either as superimposed (overlayed) alphanumeric
text, or as true 3-dimensional text capable of interacting with other 3-dimensional
elements (shading, hiding/intersecting, etc.). Different approaches that have been
proposed and partially implemented so far will be described and compared.

2. The Rendering Process on Pixel-Planes 5

The rendering process in the Pixel-Planes 5 system is controlled by a designated graphics
processor, the Master GP. The following outline describes this process (adapted from
[Fuchs89] and [Brusq89]):

Step 1: Master GP requests new frame from other GPs.

Step 2: GPs interpret the database, generating Renderer commands for each graphics
primitive. The commands are placed into the local bins corresponding to the screen
regions where the primitive lies. Each GP has a bin for every pixel region of the screen.

Step 3: The GPs send bins containing commands to Renderers; these execute commands
and compute intermediate results, which are then stored in each pixel's backing store
memory.

Step 4: The GP sending the final bin to a Renderer also sends end-of-frame commands
for a region. The Renderers execute these commands and compute final pixel values from
the intermediate results.

Step 5: The Renderers send computed pixels to the Frame Buffer, one entire screen
region at a time.

Step 6: When all regions' pixel values have been received, the Frame Buffer swaps
banks and displays the newly-computed frame.

In order to display 2-dimensional antialiased alphanumeric text on a display driven by a
Pixei-Pianes-5 based system, these elements, which are supposedly part of the graphics
database, must be passed through the graphics pipeline just as all other database elements,
and must consequently be embedded in the rendering scheme described above. In the
geometry subsystem, alphanumeric text strings are processed by the GPs and sorted into
the bins for the various screen regions, thereby sorting into a region's bin only the
characters which fall entirely or at least partially within that region. Thus, in general only
single characters overlapping screen region boundaries will be sorted into more than one
bin. The task of accessing and marking/updating all single pixels covered (totally or
partially) by a specific character or vector (scan conversion) can be performed either in
the Renderer units, or, alternatively, in the graphics processors. The latter alternative
exists because the Pixel-Planes 5 system allows access to the video backing store memory
elements from both pixel processors and graphics processors.

Figure 1 shows the organization of the backing store memory of a single Pixel-Planes 5
Renderer unit. A total of 128 32-bit words is available at each pixel (in addition to the fast

UNC-CH Mon, Dec 11, 1989

Displaying Alphanumeric Characters on Pixel-Planes 5 page 4

static RAM local pixel memory of 208 bits). A sector contains one 32-bit word for each

of the Renderer's 1282 pixels, arranged in 128 scanlinas a 128 horizontal pixel-words
each. When transferring data to and from the backing store via the Ring Network Port, an
integer. number of scanlinas must be transferred, even if only the contents of a sing Ia bit of
a particular pixel are to be accessed. Transfers between the fast local pixel memory and
the Backing Store (dona by the parallel pixel processors) involve the transfer of one 32-bit
word at a time.

Figure 1 Backing Store memory organization for a single Pixel-Planes 5 Renderer

If the alphanumeric characters are to be overlayed over a specific background, then they

UNC-CH Mon, Dec 11,1989

Displaying Alphanumeric Characters on Pixel-Planes 5 page 5

must be composited with it in the Renderers. Since each screen region is visited only once
by a Renderer, compositing of the different layers of the final image can be accomplished
by each Renderer just before it sends the final pixel values to the Frame Buffer and 'moves
on" to the next screen region it is assigned to. According to [Turk89], one such
composition step, i. e. blending one foreground layer with one background layer, requires
approximately 1,000 machine cycles (rough estimate), which corresponds to 25
microseconds or 1/1 ,667th of the time available for a single frame (assuming 40 MHz
operation and a 24 Hz update rate).

3. Three Methods for Alphanumeric Character Rendering

Character fonts can be represented either as 2-dimensional, simply or multiply connected
regions bounded by line segments and possibly also by conic curves (in order to take
advantage of the Quadratic Expression Evaluators (QEEs) in the Pixel-Planes 5 Renderers)
or, alternatively, as pixel arrays (i. e. bit patterns) with a specific number b of bits for
each pixel covered, thus providing 2b levels of partial pixel coverage (for antialiasing).
Since the earlier reprentation is perfectly adapted to scan conversion performed in the
Renderers, we will take only the following three alphanumeric character drawing methods
into consideration:

1. Scan conversion in Renderers,from 2-d region boundary representation

2. Bit pattern copy in Renderers, from bit pattern representation

3. Bit pattern copy in GPs,from bit pattern representation

Note that methods no. 2 and 3, i. e. using either the pixel processors or the graphics
processors for character drawing from a bit pattern (i. e. already scan-converted)
representation merely amount to placing the font matrices for a string of characters to be
displayed at the appropriate pixel locations.

For either of the three alternatives, final composition is most efficiently performed by
the pixel proce$sors in the renderer units as outlined above, taking full advantage of the
parallel architecture. The b-bit -per-pixel representation of the fonts in the bit pattern
representation scheme (methods no. 2 and 3) is treated as a transparency mask during this
process.

3.1 Real-Time Scan Conversion

Method no. 1 has been studied in depth at UNC by visiting researcher Herve Tardif, who has
also implemented it on the Pixel-Planes 4 system. On this system, the fonts were
represented as simply or multiply connected 2-dimensional polygonal regions (polygons
with zero or more holes); since the single Renderer in Pixel-Planes 4 does not have a QEE,
the Bezier curve segments in the initial representations were approximated by straight line

·segments (using the de Casteljau algorithm). On the average, 50 straight line segments
were used per character. Tardifs implementation performs at only 2,500 characters/sec
[Good89].

A significant speedup is expected from the implementation of this method on the Pixel
Planes 5 system [Fuchs89]. The higher clock frequencies used throughout and the
Renderer's integrated QEEs allow predictions on the order of approximately 20,000
characters per second for a single Renderer, thereby using a boundary representation
consisting of straight line segments and conic sections instead of Bezier curve segments
(adapted for scan conversion with quadratic expressions), but otherwise exhibiting the

UNC-CH Mon, Dec 11, 1989

Displaying Alphanumeric Characters on Pixel-Planes 5 page 6

same level of detail as the fonts used in the Pixel-Planes 4 implementation. The
performance figure applies to characters of arbitrary size (unless the characters are large
enough so that a significant fraction of all on-screen characters fall within more than one
screen region, thus effectively increasing the number of characters to be scan-converted),
but without antialiasing, the incorporation of which may further increase the time
complexity of this method: for example, if the fonts were to be supersampled at a rate of
2x2 = 4 samples per pixel, the capacity of one Renderer unit would drop to about 20,000/4
= 5,000 characters per second ..

A characteristic of this method is that since fonts are represented as true 3-dimensional
elements in the database, they can be rendererd using techniques available for 3-d
rendering, e. g. shading with ambient, diffuse, and specular components. Furthermore,
they can be positioned and oriented in 3-d space, thus possibly hiding or being hidden by
other 3-d elements in the database. This method can also be extended to generate
character fonts with "thickness".

I" Renderer microcode to draw a string of characters "I
set number of fractional bits to 0
disable pixels outside of rectangle containing text (4 linear expressions)
I" Horizontal pass: "I
for each of the wn pixel columns inside text rectangle

store pixel column font data into local pixel memory
disable pixel column (1 linear expression)

I" Now each of the pixels in the text rectangle contains all pixel "I
!" values for the pixel column it belongs to in its local memory •;
re-enable text rectangle
I" Vertical pass: "I
for each of the h pixel rows inside text rectangle

select row pixel data from values stored during horizontal pass
move data to final value locations in local pixel memory
disable pixel row (1 linear expression)

I" Now each of the pixels in the text rectangle contains the correct "I
I" pixel data in the final value locations in its local memory "I
re-enable text rectangle
restore number of fractional bits
discard all data stored during horizontal pass

cycles:

1 0
40

bh
10

40

2b
10

40
1 0

Figure 2 Implementation of character drawing in the Renderers (method no. 1)

3.2 Character Bit-Slitting to Renderers

The approach of method no. 2 [Turk89] requires the character fonts to be stored as bit
patterns (transparency mask) somewhere in memory addressable by the GPs (or by a
single GP, if the system is set up so that a particular GP is allocated the task of handling all
character strings). When sorting into the bins associated with the screen regions,
character groups (i. e. adjacent characters occupying a rectangular area of the screen):
hereafter referred to as strings, are not split into single characters; instead, Renderer
instructions to process entire strings at a time are generated, more exactly in the form of
pixel processor instructions to write values extracted from the bit pattern arrays
available to the GP(s) into the Renderers' pixel memory bits. Figure 2 outlines the core
part of the pixel processor code implementing the proposed algorithm.

UNC-CH Mon, Dec 11, 1989

Displaying Alphanumeric Characters on Pixel-Planes 5 page 7

The time complexity of this algorithm depends on the size of the characters and on the
number of bits per pixel used for the font's transparency mask in the bit pattern
representation. If we denote a character's width and height (in pixels) by w and h
respectively, and the number of bits per pixel by b, then, assuming a text string with n
characters, we obtain the following approximate formula for the number of cycles c for
the core portion of the algorithm [Turk89]: c = 140+b2+24b+wn(bh+t 0)+h(2b+1 0).

Capacity [characters/sec]
60,000

50,000

40,000

30,000

20,000

CHARACTER RENDERING CAPACITY OF
ONE RENDERER WITH METHOD NO. 2

BIT-SLITTING TO RENDERER
(CHARACTER HEIGHT/WIDTH= 1.5)

10,000

5,000
3,000 =====================~====~====~=---~---=~===~----

0
10 16 22 28 34 40 46 52 58

Character width [pixels]

Figure 3 Character rendering capacity of one Pixel-Planes 5 Renderer for various character sizes
and numbers n of characters per string, assuming 2 bits per pixel, a 3/2 character heighVwidth

ratio, and 40 MHz operation

Figure 3 is a plot showing the character rendering capacity of a single Pixel-Planes 5
Renderer for different character sizes and a character height-to-width ratio hlw = 3/2,
thereby also assuming a representation using a 2-bit-per-pixel transparency mask
providing 4 opacity levels per pixel, which we consider a minimum requirement for
antialiasing. Several curves for different values of n are given, showing that
simultaneously rendering multiple characters (strings) eliminates a certain amount of fixed
overhead; but obviously a small value of n is sufficient to ensure this since there is no
significant improvement in performance beyond n = 3. Hence assuming that characters
are displayed as strings with an average length of 3, and for a character size of 20-by-30
pixels, we obtain a performance of nearly 25,000 (antialiased!) characters per second.

The graph shows that this algorithm is considerably faster than the previously discussed
method, but only if the characters used are small; more precisely, for n;;:3, method no.2 is
superior to method no. 1 if the character matrix is smaller or equal to 48-by-72 pixels,
which represents a Renderer performance of approximately 5,000 characters/second,
with a quality of antialiasing comparable to the one achievable using method no. 1 in
connection with 2-by-2 supersampling.

UNC-CH Mon, Dec 11,1989

Displaying Alphanumeric Characters on Pixel-Planes 5 page a

However, the algorithm of method no.2 does not make efficient use of the massively
parallel structure of the Renderers: due to the SIMD concept, the pixel processors must
essentially loop over every single pixel column and then over every single pixel row in the
rectangle containing the text string.

3.3 Character Bit-Slitting in Graphics Processors

In the approach of method no. 3 [Fuchs89a] much of the computational burden is moved from
the Renderers to the GPs responsible for character string processing. This concept evolved
from the understanding that in the previous method, character processing is performed on a
bit-sequential basis in the pixel processors; since these are not very efficient in this mode,
it was suggested to use one or more GPs for this task. The basic approach is very simple:
transformations and screen region distribution (bin sorting) are accomplished as in method
no. 2. But instead of sending specific character drawing commands to the Renderer
currently in charge of the screen region the string falls into, the GPs extract the bit
patterns from the font arrays and store them directly into the Backing Store memory of
the Renderer, at the appropriate pixel locations. The GPs then merely send the end-of
frame composition commands to the Renderers, whose pixel processors use the pixel
values from the Backing Store in order to composite the final pixel colors for the
Renderers' assigned screen regions (the Renderers' only remaining alphanumerics
processing task under this approach).

For the following time complexity estimations, we assume again a 2-bit-per pixel
transparency mask. In the Pixel-Planes 5 system, the GPs access the Backing Store
memory of the Renderers via the ring network. One communication channel has a bandwidth
of 20 million 32-bit words per second, thus imposing a theoretical upper limit to the
character rendering capacity of a single GP. In order to determine this limit, we must also
respect the limitations imposed by the -data format for transmission of pixel values to the
Renderers' backing store memories. According to [Eyles89], an entire 32-bit word must
be transmitted per pixel (even if we only use 2 bits for our transparency mask character
font representation). Moreover, an entire Renderer scanline (i. e. 128 horizontal pixels if
the Renderers are configured as 128-by-128 pixel devices) must be transmitted if a pixel
on that scanline is to be modified. Hence the average number m of characters intersected
by a Renderer scanline must be taken into account. For example, in order to transfer the
character "E" in figure 1, the upper 5 scanlines must be transferred to the Renderer, a
total of 5x128x32 = 20480 bits, whereas the font's bit pattern requires only 5x4xb = 40
bits (for b = 2)!. In this example, m has a value of 1. Note that m is independent of the
number n of characters scan-converted simultaneously (as a string) in method no. 2,
which depends on the logical organization of the text items on the screen, whereas m
depends on the physical distribution of text strings on the screen. The (integer) values for
m range from 1 to INT(128/w). A second example might serve to clarify this: assuming
a character size of 20-by-30 pixels, a screen filled with (adjacent) alphanumeric
characters corresponds to m=INT(128/20)=6, whereas a screen in which characters are
arranged in vertical columns that are 128 pixels apart, so that a Renderer's screen region
is intersected by only one column, corresponds to m=1. Hence for this method, the
theoretical limit imposed by the communication bandwidth is c=20,000,000m/128h
characters/second. Figure 4 shows plots of c for different values of wand m, assuming
again a character aspect ratio hlw = 3/2.

As far as the actual bit pattern manipulations in the GPs are concerned, the algorithm
implementing this method must copy the character bitmask from a font table into an area of
memory reserved for generation of final-image pixel data. Typically, a GP might have to
manage several such bitmap areas, each of which would have a size equal to that of a
screen region processed by a Renderer unit; there would be a one-to-one correspondence

UNC-CH Mon, Dec 11, 1989

Displaying Alphanumeric Characters on Pixel-Planes 5 page 9

between these bitmap areas and the GP bins used for the sort middle process.
We assume that the· character font is stored (in a wasteful way) in a table with 1 byte

per pixel, even if we use only 2 bits from each byte for the transparency mask font
representation. We also assume a 20-by-30 pixel character matrix. Thus a complete set.
of printable ASCII characters would occupy no more than than 96*20*30 = 57600 bytes,
which can be stored in a single ROM circuit. This storage schema may be optimized, at the
expense of higher computational overhead. However, even with the computationally most
efficient font storage schema, it is unlikely that the time complexity be lower than 2 cycles
per pixel copied into a bitmap region, or 1,200 cycles per character. Assuming 40 MHz
operation, a single GP can then render approximately 33,000 characters per second. These
can actually be transmitted to the Renderers at this rate only if m = 6, which is unlikely
to be an ·average value unless the application is such that screen regions are "filled" with
alphanumeric characters. Thus the communication through the Ring Network is obviously
the bottleneck in this configuration. A more probable average value, m = 3, leads to a
maximum possible transmission rate of 16,000 characters per second, comparable to the
performance achievable with method no. 1.

Transmission speed [characters/sec]
60,000

50,000

40,000

30,000

20,000

10,000

10 16

CHARACTER MATRIX TRANSMISSION CAPACITY OF
ONE RENDERER WITH METHOD NO.3

BIT-BUTTING IN GP
(CHARACTER HEIGHT/WIDTH= 1.5)

22 28 34 40 46 52 58
Character width [pixels]

Figure 4 Speed limit for transmission of character matrices into a Renderer's backing store. See
text for definition of parameter m.

The transmission rate could be increased by packing the bit-pattern representations for
several screen regions into a package of transmitted 32-bit words [Tebbs89]. For b bits
per pixel, character bit pattern data for 32/b screen regions could be transmitted
simultaneously. Thus, for b = 2, the transmission rates shown in figure 4 could
theoretically go up by as high a factor as 16. However, this assumes that characters are
distributed on the screen in such a way thai the same scanlines have to be transmitted lor

UNC-CH Mon, Dec 11,1989

Displaying Alphanumeric Characters on Pixel-Planes 5 page 10

each screen region, which is highly improbable except in situations when several screen
regions are completely filled with alphanumerics. However, packaging the bit pattern
information for several screen regions into single words requires more computation
(shifts, logical operations) on a per-pixel basis in the GPs, thus increasing the cycle count
to at least 4 cycles per pixel. Consequently, the character rendering capacity of a single
GP would drop by a factor of approximately 2. In the example using 20-by-30 pixel
character matrices, a single GP could render only about 16,000 characters per second, and
thus couldn't possibly take advantage of the increased transmission capacity.

4. Conclusion

Table 8.1 summarizes this analysis of different methods for character rendering. We
conclude that method no. 1, while suitable for rendering of high-quality text of arbitrary
size, and extensible to applications involving 3-d text interacting with other 3-d elements,
is computationally too expensive for applications requiring relatively small 2-dimensional
characters, which cannot take full advantage of a high-quality representation. Out of the
other 2 methods, method no. 2, while not exhibiting any disadvantage over method no. 3,
has the advantage of requiring less communication bandwidth between GPs and Renderers.

1 • Real-time scan conversion In Renderers from 2-d boundary
representation

Rendering time independent of character size, efficient for large characters (above
48-by-72 pixels), but inefficient for smaller ones.

• Character font storage independent of character size on screen, efficient for very
large characters, but inefficient for small and medium-sized ones.

• Can be extended to 3-d shaded characters with "thickness", interacting with other 3-d
elements.
Antialiasing by supersampling costly, but of arbitrarily high quality.

2. Blt-bllttlng to Renderers from transparency mask bit pattern
rep rese ntatlo n

• Rendering time dependent of character size, efficient for small characters, but
inefficient above 48-by72 pixel character size.
Character font storage dependent on character size on screen, efficient for small and
medium-sized characters, but inefficient for very large characters
Only for 2-d characters.

• Antialiasing through transparency mask less costly than method no.1.

3. Bit-bllttlng In GPs from transparency mask bit pattern representation
Rendering time depending on character size, inefficient for large characters.
Character font storage dependent on character size on screen, efficient for small
characters, but inefficient for large characters, and always less efficient than with
method no. 2

• Only for 2-d characters.
Antialiasing through transparency mask less costly than method no.1.

• Requires transmission of large amounts of pixel data from GPs to Renderers.

Table 8.1 Summary of 3 possible methods for character drawing on a Pixel-Planes 5 based system.

UNC-CH Mon, Dec 11,1989

Displaying Alphanumeric Characters on Pixel-Planes 5 page 11

5. Acknowledgements

This research has been partially supported by USAF Project ·No. 0100, contract number
F33615-89-C-1848, "An Architecture for Advanced Avionics Displays", issued by the
Cockpit Integration Directorate of Air Force Wright Aeronautical Laboratories. Additional
funding was provided by the Defense Advanced Research Projects Agency, DARPA ISTO
Order No. 6090, the National Science Foundation, Grant No. DCI-8601152, and the Office of
Naval Research, Contract No. N0014-86-K-0680.

I would like to thank Henry Fuchs, Principal Investigator on the USAF project. Thanks
also go to John Eyles and to my colleagues on the Pixel-Planes Team, especially Greg Turk,
who provided and implemented the algorithm of method no. 2. Both Greg Turk and Brice
Tebbs reviewed and commented on a draft version of this document.

6. References

[Brusq89]:

[Eyles89]:

[Fuchs89]:

[Fuchs89a]:

[Good89]:

[Tebbs89):

[Turk89):

Brusq, Roger, "High-Performance Computer Graphics Architectures,"
Technical Report TR89-026, Department of Computer Science,
University of North Carolina at Chapel Hill, July 1989.

Eyles, John, "Renderer Overview," Chapter 111.4 in the Pixel-Planes 5
System Documentation, Department of Computer Science, University
of North Carolina at Chapel Hill, 1989.

Fuchs, Henry, John Poulton, John Eyles, Trey Greer, Jack Goldfeather,
David Ellsworth, Steve Molnar, Greg Turk, Brice Tebbs, and Laura
Israel, "Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics
System Using Processor-Enhanced Memories," ACM Computer
Graphics, Volume 23, Number 3, July· 1989.

Fuchs, Henry, Personal Communications, September-December 1989.

Good, Howard, Personal Communication, November 1989.

Tebbs, Brice, Personal Communication, November 1989.

Turk, Gregory, Personal Communications, November 1989.

UNC-CH Mon, Dec 11, 1989

