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Abstract 

A new shape description for grey-scale images called the intensity axis of symmetry (lAS) 

and an associated curvature-based description called vertex curves are presented. Both of 

these shape description methods focus on properties of the level curves of the image and 

combine this information across intensities to obtain representations which capture 

properties of both the spatial and intensity shape of an image. Methods to calculate and to 

display both image shape descriptions are described. To provide the necessary coherence 

across the spatial and intensity dimensions while computing the IAS, the boundary-based 

·active contour method of Kassis extended to obtain a surface-based functional called the 

active surface. To illustrate the effectiveness of the IAS for image shape description, an 

interactive image segmentation program which identifies and displays image regions 

associated with individual components of the IAS is demonstrated. These regions often 

correspond to sensible anatomical structures in medical images. An analysis of the 

multiresolution behavior of the IAS reve~ls that it is possible to impose a quasi-hierarchy 

on IAS sheets by focusing on the multiresolution properties of much simpler geometric 

structures: vertex curves approximated by watershed boundaries. 
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1.1 The Driving Problem 

Chapter 1 

Introduction 

Quantitative analysis is the primary motivation for digital image processing in many 

applications. In medical applications, locating and measuring anatomical structures in 

images is often an important first step in diagnosis and treatment. In biology and other 

scientific disciplines, the analysis of structures in images often leads to better understanding 

of the underlying mechanisms in the systems being studied. This dissertation addresses 

one of the central problems in computer-aided image analysis; how the shape of structures 

in an image should be represented to best facilitate quantitative analysis. To accomplish 

this task requires an understanding of what shape is and how it should be extracted from 

grey-scale images. Answers to these two questions are the focus of my research. 

1.2 My Thesis 

This dissertation makes an important distinction between object shape and image shape. 

Object shape traditionally involves all aspects of an object except its position, orientation 

and size. Extending the notion of shape to images requires invariance to similar 

transformations in the intensity dimension. Thus, image shape involves all aspects of an 

image except its position, orientation, and size, mean grey value, and intensity scale factor. 



In particular, it involves the spatial and intensity branching and bending of objects in 

images and their structural relationships. While methods to capture object shape have been 

devised, the problems involved in capturing image shape have not been addressed 

satisfactorily. My thesis is that shape of structures in grey-scale images can effectively be 

described in terms of the shape of the level sets for the image and that the structural 

relationships between image structures can be determined by examining the image at 

multiple resolutions or scales. 

1.3 Preview of Results 

To support my thesis, I designed and implemented a new image shape description called 

the intensity axis of symmetry (lAS) and an associated curvature-based description called 

vertex curves. Both of these descriptions focus on properties of the individual level curves 

of the image and combine this information across intensities to obtain representations which 

capture both spatial and intensity properties of shape in an image. To demonstrate the 

effectiveness of this image shape description, I implemented an interactive image 

segmentation program which identifies and displays image regions associated with 

individual components of the lAS. These regions often correspond to sensible anatomical 

structures in medical images. 

The rest of this dissertation is organized as follows. Chapter 2 reviews existing methods 

for describing the shape and structure of predefined objects and images. Chapter 3 

describes the formal properties of my new shape description method. Chapter 4 outlines 

one effective method devised for computing the lAS. Chapter 5 describes how the lAS can 

be used to segment medical images into sensible image regions. Chapter 6 investigates the 

multiresolution behavior of the lAS. Chapter 7 closes with a summary of results and 

directions for future research. 
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2.1 Introduction 

Chapter 2 

Background 

Image abstraction is central to many image analysis techniques. Rather than working with 

the raw intensity values in an image, these solution methods first extract features of the 

image which are essential for the analysis. I am interested in identifying and studying 

structures in grey-scale medical images. Therefore, my attention is focused on methods for 

describing the shape of structures in grey-scale images and the relationships between these 

structures. 

Two classic approaches have been employed to achieve this goal. The first involves 

partitioning the image into segments (collections of pixels which belong to the same object 

in the image) and then describing the shape of the resulting image regions. The multitude 

of segmentation methods are beyond the scope of my work, but the methods devised to 

describe the shape of these predefined objects are central to my research. The second 

approach for describing image structures is to capture properties of the grey-scale image 

directly. These methods have the advantage of not requiring an image segmentation, and 

often lead to one, but they often run into difficulty when they attempt to describe the shape 

of image objects. The next two sections review the existing methods for describing shape 

of predefined objects and for describing features of the grey-scale images respectively. 



2.2 Shape Description Methods 

To describe object shape, we are interested in everything about the object except its 

position, orientation and size. For example, a triangle is still "triangle shaped" no matter 

how it is positioned, oriented or scaled. Representations of objects which are invariant to 

changes in position, orientation and scale are called object shape descriptions. The 

following are methods for describing the shape of predefined objects. 

2.2.1 Generalized Cylinders, Cones and Ribbons 

One of the simplest descriptions of predefined objects is based on swept surfaces. When a 

disk is swept along a path in three dimensions, we get a three-dimensional volume called a 

generalized cylinder [Binford, 1971]. If the size and orientation of the disk varies along the 

path, the result is a generalized cone [Nevatia and Binford, 1977]. This notion has also 

been applied to derive a representation of two-dimensional objects. When line segments 

are swept along a path in two dimensions, the result is a shape description called 

generalized ribbons [Rosenfeld, 1984]. This idea has not been extended to grey-scale 

images nor to multiple resolutions. Generalized cones have been used as a shape 

description for image generation and also for object recognition [Agin, 1972; Soroka and 

Bajcsy, 1976; Soroka, 1979; Shani, 1980; Brooks, 1981]. A serious problem with this 

approach is the difficulty in establishing the axis direction and cross-section behavior, 

particularly in the presence of image noise and distortion. For this reason, more recent axis

based shape description methods show more promise. 

4 



2.2.2 Smoothed Local Symmetries (SLS) 

If all possible lines connecting a fixed point on the boundary of an object to another point 

on the boundary are considered, those lines which have the same angle of intersection with 

the boundary tangent at both endpoints form a special subset of line segments called local 

symmetries. When the locus of all midpoints of local symmetry lines are combined, the 

result is an axis called the smoothed local symmetry (SLS). The radius and curvature of 

this axis can be characterized to obtain a shape description for two-dimensional binary 

images [Brady and Asada, 1984]. One problem with this representation is that the axis 

segments describing a connected object are not guaranteed to be connected. Extensions to 

two-dimensional grey-scale images and to multiresolution hierarchies may be possible but 

have not been investigated. 

2.2.3 Symmetric Axis (SA) 

The symmetric axis (SA), also known as the skeleton or medial axis, is a shape description 

which characterizes the spine along the middle of an object [Blum, 1974]. More 

specifically, the SA is the locus of centers of maximal tangent circles inside (or outside) the 

object. These points form connected axes which describe the branching structure of the 

object. Associated with each axis is a radius function which records how wide the object is 

at every point on the axis and a curvature function which describes how the axis is 

bending. These functions together can be used to characterize shapes. This method was 

originally devised to handle two-dimensional binary images [Blum and Nagel, 1978], but it 

has been extended to three-dimensional binary images [Nackman, 1982]. Calculating an 

approximate two-dimensional symmetric axis from two-dimensional grey-scale images has 

also been investigated [Wang, Wu and Rosenfeld, 1981]. The major problem with this 

shape description is its sensitivity to noise in the boundary. To overcome this difficulty, 
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multiresolution techniques have been applied to two-dimensional binary images to 

determine the significance of axis branches and to impose a scale-based relationship on axis 

segments [Dill, 1987; Pizer, 1987]. These noise handling methods have also been 

extended to three-dimensional images [Bloomberg, 1988]. 

2.2.4 Process Inferred Symmetry Axis (PISA) 

The set of all midpoints of shorter interboundary arcs of maximal circles tangent to the 

boundary of an object defines a shape description called the process iriferred symmetry axis 

(PISA) [Leyton, 1986]. This axis is similar to the SLS and SAT except that each axis 

segment is associated with a process of deformation (like denting in, bulging out) which 

operates on the object boundary. ln this way, the shape of an object can be described by 

the sequence of deformations which transforms a primordial object into the object being 

described. While this is an exciting approach, it has not yet been extended to handle image 

noise and has been defmed only for two-dimensional binary images. 

2.2.5 Homology Maps 

When we inscribe a circle in a triangle and then use an affine transformation to deform the 

triangle, the circle is deformed into an ellipse. The principal axes of this ellipse give us the 

principal strains of the deformation. By extending this notion to describe the movement of 

a collection of landmarks on the boundary of an object, the result is a deformation 

representation for two-dimensional binary images called the homology map [Bookstein, 

1986]. Like the PlSA approach, the homology map could be used to describe the shape of 

an object by the deformation required to transform a primordial object. How this method 

responds to image noise is not known. lt is also unknown how effectively this technique 

can be used as a shape descriptor for three-dimensional images or two-dimensional grey-
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scale images. 

2.2.6 Codons 

One way to study the shape of a predefined object is to focus on the curvature of its 

boundary. If an object's boundary is decomposed into sections bounded by two adjacent 

curvature minima, curve segments called codons are obtained [Richards and Hoffman, 

1985]. Each codon contains a single curvature maximum and can be classified into five 

types, depending on the signs of the three curvature extrema. By considering sections 

bounded by two adjacent curvature maxima, we obtain five codon duals, which can be 

classified by simply changing the sign and type of each curvature extremum in our codon 

classification [Leyton, 1986]. The shape characterization provided by codons is sensitive 

to boundary noise and has not been extended from two-dimensional binary images to other 

image types. 

2.3 Image Descript ion Methods 

There are a multitude of image features which can be computed directly from the grey-scale 

values in an image and characterize the image in some way. Simple examples include the 

location of edges, ridges, valleys, maxima or minima in an image. We call such 

representations image descriptions. The following are image description methods which 

capture interesting image properties. 

2.3.1 Slope Districts and Critical Point Configuration Graphs 

When a two-dimensional grey-scale image is viewed as a surface in three dimensions, one 

natural geographical subdivision is into hills and dales [Cayley, 1859; Maxwell, 1870]. If 
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this is extended further to include ridge lines (which separate dales) and course lines (which 

separate hills), the surface can be partitioned into slope districts, (areas which have a single 

hill top and dale bottom in common). If the critical points on the surface (hill tops, dale 

bottoms and saddle points) are connected in a graph by ridge and course lines, the critical 

point configuration graph is obtained [Nackman, 1984]. This image description method 

has recently been used to characterize two-dimensional grey-scale images. It is very 

sensitive to noise and also ignores almost all information about the shape of the hill and 

dales. 

2.3.2 Smale Diagram 

The Smale diagram is another image representation which partitions an image surface into 

regions [Smale, 1967]. In this case, the isointensity contours through the saddle points of 

the image are used to represent the extent of bright and dark regions in the image. The 

nesting of these curves can then be represented in a graph and used to characterize the 

nesting of bright and dark regions in the image [Blicher, 1985]. This method has several 

problems. As with slope districts, it is very sensitive to image noise, and all information 

about the intensity shape of the individual regions is lost in this representation. Also, the 

relative positions of nested contours are not retained by this description. 

2.3.3 Image Pyramid 

The image pyramid is one of the earliest multiresolution image representations. It is so 

called because it consists of multiple versions of the image which when stacked on each 

other form a pyramid. The bottom of the pyramid is the original image. Each intermediate 

level in the pyramid is a 2n by 2n image with pixel values found by averaging four pixels in 
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the 2n+ 1 by 2n+ 1 image directly below it in the pyramid. The top of this pyramid is a one 

pixel image containing the average intensity in the original image. This method provides 

noise-insensitive descriptions of grey-scale images which have been applied with some 

success to several applications, for example, edge detection [Kelly, 1971], hierarchical 

template matching [Rosenfeld, 1977], and image segmentation [Burt and Hong, 1981]. 

The major shortcomings of this approach are the aliasing caused by the ad hoc nature in 

which lower resolution images are computed and the difficulty of following image features 

from level to level. 

2.3.4 Difference of Low Pass Transform (DOLP) 

Another multiresolution representation for grey-scale images is called the difference of low 

pass transform (DOLP) [Crowley and Parker, 1984]. The frrst step in calculating the 

DOLP is convolving the original image with a sequence of bandpass filters (where each 

filter is the difference of two low pass filters). This results in a stack of images called the 

Laplacian stack [Marr and Poggio, 1980]. Since the Laplacian is equal to the trace of the 

Hessian, it captures an important aspect of the behavior of the second derivative of the 

image. A second phase of locating peaks and following ridges in this three-dimensional 

structure yields a graph-like representation of the grey-scale image. While this graph 

describes the hierarchical nature of bar-like regions in the image, the shape of these regions 

is not explicitly incorporated. 

2.3.5 Intensity Stack 

The intensity stack is an image description designed to address the theoretical issues in 

multiresolution image analysis [Koenderink, 1984]. Like the pyramid, it consists of a 
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stack of images at decreasing resolutions. Unlike the pyramid, the intensity stack uses 

Gaussian blurring to obtain this collection of images in order to guarantee that no new 

extrema are generated as we blur. Therefore it is possible to follow the paths of intensity 

extrema (local maxima and minima) from one resolution to the next. As the blurring 

increases, each of the non-extremal points is associated with one of these extremal paths. 

This yields a hierarchical (tree-like) description of light and dark regions in the image which 

can be used for image segmentation [Lifshitz, 1987]. While the shape of these extremal 

paths is not described explicitly, these paths capture scale information in the image. 

2.3.6 Gaussian Derivative N-Jet 

The Gaussian derivative n-jer is a generalization of the intensity stack which captures the 

changes in the flrst n derivatives of the image under blurring. One effective method for 

calculating the n-jet which avoids numerical differentation is to precalculate the first n 

derivatives of the Gaussian blurring kernel and apply these to the input image [Koenderink, 

1987]. Another effective method for calculating this representation uses differences of 

offset Gaussians (DOOGs) to approximate these derivatives [Young, 1986]. The n-jet is 

robust against image noise and represents the differential geometry of the image but does 

not directly yield a structural description of the image. Efforts to extract geometric image 

features from then-jet are under investigation and show great promise [Blom, 1988]. 

2. 4 Discussion 

The many shape and image descriptions described above share one goal in common: they 

attempt to abstract the image in order to extract some useful information about the structure 

of an object or an image. The flrst class of methods describe the shape properties of 

predefined objects while the second class of methods focuses on features which can be 
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directly calculated from images. This dissertation will combine these two ideas to obtain a 

shape description which can be applied directly to images. 

This approach will have three advantages over other methods. First, the segmentation step 

required to define objects before describing their shape will no longer be necessary. This is 

particularly important because image segmentation is a difficult task. The second advantage 

is that geometric relationships among many image features are directly captured by the 

structural properties of an image shape description. For example, a shape description 

which identifies the intensity ridges in an image will also describe the adjacency 

relationship between the intensity maxima on these ridges. This will allow image analysis 

applications to identify and study image regions which are geometrically related, without 

requiring a priori semantic knowledge of the image geometry. 

The shape description method that provides the best structural decomposition of objects 

into connected components is the symmetric axis. The image description that best captures 

the hierarchical relationships between image structures is the intensity stack. To combine 

these desirable properties in one image representation requires 1) extending the symmetric 

axis to grey scale images and 2) using multiresolution analysis to identify the hierarchical 

relationships between individual components of this new symmetry axis. The remainder of 

this dissertation describes the issues involved in designing and implementing an image 

representation which accomplishes these objectives. 
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Chapter 3 

The Intensity Axis of Symmetry 

3.1 Introduction 

The previous chapter reviewed existing shape and image description methods and identified 

the symmetric axis and the intensity stack as the most promising methods in these 

respective categories. This chapter defines a new image shape description called the 

intensity axis of symmetry (lAS) which shares the advantages of both of these methods. 

This is accomplished by describing simultaneously the shape of the whole collection of 

level curves which comprise the image. A discussion of the important descriptive 

properties of the lAS then follows. 

3. 2 Axes of Symmetry 

Disks are perfectly symmetrical. Hence, it is natural to use disks to somehow describe the 

symmetry of predefined objects. One way to do this is to derive axes of symmetry based 

on the properties of disks tangent to the boundary of an object. Several methods use this 

approach. The locus of midpoints of chords of tangent disks are used to define smoothed 

local symmetries [Brady and Asada, 1984]. The locus of midpoints of arcs of tangent 

disks are used to define process inferred axes LLeyton, 1986]. Finally, the locus of centers 

of tangent disks are used to defrne the symmetric axis (SA) [Blum, 1974]. When the 



radius of each of these disks is also recorded, the result is the symmetric axis transform 

(SAT) [Blum and Nagel, 1978]. 

How the tangent disk is positioned relative to the object boundary distinguishes three 

classes of SA. The internal SA is defined by centers of maximal (doubly tangent) disks 

which are entirely within the object while the external SA is defined by centers of maximal 

disks which are entirely outside the object. The global SA is defined by the centers of all 

doubly tangent disks, even those which intersect the object boundary. By focusing on 

either the internal or external SA, the shape of the object or the "hole" not filled by the 

object can be represented. Using the global SA, all object symmetries can be represented. 

The SA has many attractive properties. First, the branching structure of the object is 

reflected by the branching of the axis. This yields a natural correspondence between 

components of the object and components of the shape description. Second, the bending 

and flaring of the object is reflected by changes in the curvature of the axis and of the radius 

of the tangent disks. This gives us a way to compare and contrast similar shapes. Finally, 

this shape description is unique and with the radius information can be used to recreate the 

object. 

One of the problems with the SA is that it is very sensitive. Noise and small detail in the 

object boundary can cause large but "unimportant" branches to appear in the axis. These 

confound shape analysis by introducing large numbers of axis segments and by breaking 

up main branches into numerous small sections. One solution is to use multiple resolution 

analysis to derive a hierarchy on the individual components of the shape description. This 

approach yields the multiresolution symmetric axis [Pizer, 1986]. Computing this shape 

description involves measuring the importance of each branch in the symmetric axis. As 

the resolution decreases, objects tend to simplify, eventually becoming ellipses. Because 
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the symmetric axis varies smoothly with the figure it represents, the branching structure of 

the axis also simplifies as resolution is lowered. Thus, we can follow axis branches to 

annihilation through a multiple resolution sequence of object boundaries. The importance 

of each branch is then determined by its annihilation resolution. 

The order of annihilation of axis branches can be used to impose a hierarchy on axis 

branches (see Figure 3.1). When a branch annihilates the two remaining adjacent branches 

combine to form a single branch and the annihilated branch is labeled as a sub-object of this 

new branch. When we do this for all axis branches, the result is a description which 

reflects the shape of an object and also the hierarchy of sub-objects which make up the 

object. This multiresolution shape description can then be used to study image structure as 

a function of scale. 

Figure 3.1. Branching hierarchy imposed on the symmetric axis by resolution 

reduction (from left to right). When axis segment 'd' annihilates it is labeled as a 

sub-branch of a new composite branch 'ce'. Later, when axis 'b' annihilates it is 

labeled as a sub-branch of the major axis 'ace'. 

To obtain a multiresolution sequence of object boundaries , the two natural alternatives are 

boundary blurring and figure blurring (see Figure 3.2). Both techniques yield acceptable 

results but are suited to different problems. When boundary blurring is used, object 
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topology is maintained but figural similarity is frequently not preserved; two shapes with 

different topologies may be visually similar at one scale yet appear quite different at another 

scale. This similarity problem can be avoided by blurring the object figure. When the 

characteristic function representing the object figure is convolved with a Gaussian, it yields 

a grey-scale image. The blurred object boundary can then obtained by selecting one of the 

intensity level curves of this image. One natural method is to select the intensity level curve 

which preserves the object's area. As with any choice, this can result in topological 

changes in the boundary as resolution is reduced. Thus, two objects may have similar 

figures at each of many resolutions yet have quite different boundary topologies. 

a) b) 

vo 
60 

Figure 3.2. Three stages of boundary blurring (left) and figure blurring (right). 

The problem of selecting a single level curve to represent the boundary of a figure-blurred 

object leads to an important observation. Binary images are special cases of grey-scale 

images; they are images which have only two grey values. Thus, binary images should be 

treated as grey-scale images and grey-scale shape descriptions should be applied to describe 

such images. To preserve causality under resolution reduction, Gaussian blurring of the 

intensities should be used to impose a multiresolution hierarchy on this description 

[Koenderink, 1984]. This further motivates the investigation of grey-scale shape 

descriptions. 
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3.3 The Intensity Axis of Symmetry (lAS) 

The objective of this section is to generalize the symmetric axis to describe grey-scale 

images. Two-dimensional grey-scale images can be viewed as a surface in three space 

defined by the graph (x, y, I(x,y)). One way to describe the shape of such graphs is to use 

the tools of differential geometry to describe the surface. An alternative is to describe the 

two regions of space separated by this surface. The major problem with either of these 

approaches is that the intensity dimension is incommensurate with the spatial dimensions. 

There is no natural choice as to what intensity change is equivalent to what spatial distance. 

Shape descriptions which vary with a particular choice of equivalency must therefore be 

avoided. This problem can be overcome by describing image shape in terms of the level 

sets of the image (see Figure 3.3). These curves are by definition restricted to a single 

intensity, so the shape of these curves will not vary if image intensity is uniformly rescaled. 

Figure 3.3. A digital subtraction angiogram (DSA) image of blood vessels (left) 

and a collection of selected intensity level curves (right). 
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The level sets for a two-dimensional grey-scale image are the planar curves defined by 

I(x,y) = L, for all intensities L in the image. These level sets create boundaries that 

partition each level into an inside and an outside. The image surface is the union of its level 

sets at their respective intensity levels. The volume below the surface consists of all points 

(x,y,I) which have I < I(x,y), while the volume above the image surface consists of all 

points where I> I(x,y). Thus, it is possible to represent the image surface and the regions 

on either side of the surface in terms of the level curves or regions defined by level curves. 

To describe the shape of each of these level curves, I nse the symmetric axis transform. 

By calculating the SA for each level curve Land embedding these axes in three dimensions 

at their respective intensity levels, the result is a grey-scale shape description I call the 

intensity axis of symmetry (!AS). When the axis branches are defined according to 

multiresolution analysis and the scale of individual axis branches is calculated and 

recorded, the result is the multiresolution lAS. What does this collection of axis 

transforms describe? Because each of the level curves of the graph (x,y, I(x,y)) partition 

each level into an inside and an outside, we can describe two things. The volume below 

the image surface can be represented by the internal symmetric axis transform for each 

level. Since image intensity corresponds to the height of the image surface, this volume 

can be used to describe the shape of light structures in the image. Similarly, the volume 

above the image surface can be represented by the external symmetric axis transform for 

each level, and can be used to describe the shape of dark of regions in the image. The 

union of the internal and external symmetric axis transforms combines this information to 

describe the shape of light and dark structures in the image simultaneously. 
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3. 4 Properties of the IAS 

One of the strengths of the symmetric axis transform is its ability to represent the shape of 

individual components of an object and combine this information to describe the shape of 

the whole object. To understand how the lAS behaves in this regard requires an analysis 

of the following: 

1) the topology of the basic elements of the lAS, 

2) the bending and branching behavior of these structures, 

3) the behavior of the radius function for these structures, 

4) the one-to-one mapping between objects and axis transforms, 

5) the invariance of the lAS under image rotation, translation, and uniform scaling. 

These five topics are discussed in the following sections. To simplify the analysis, it is 

assumed that the original intensity function l(x,y) is smooth and continuously differentiable 

and that the critical points of this function are generic (isolated and non-degenerate) and can 

be catalogued and studied using Morse theory [Morse, 1934]. 

3. 4.1 Axis Topology 

The first step in understanding the lAS is identifying the basic elements which comprise 

this shape description. This can be accomplished by examining the behavior of level 

curves. Assuming that the image I(x,y) is smooth and continuous, the curves defined by 

l(x,y) = L will vary smoothly with intensity L except at critical points. Because the 

symmetric axis varies smoothly with the region it represents, the collection of axes for 

these level curves will vary smoothly with L and form smooth branching surfaces in three 
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dimensions (see Figure 3.4). I call these surfaces lAS sheets or simply axis sheets. 

a) b) 

Figure 3.4. The level curves (left) and corresponding lAS (right) for part of a 

synthetic image. The shaded branching surfaces are called axis sheets. 

At critical points, the topology of level curves changes abruptly but in a manner which can 

be easily analyzed. At local extrema, level curves reduce to a point and then disappear 

(depending on the intensity direction from which the extremum is approached). At saddle 

points, level curves come together, cross and then come apart again. The lAS near these 

regions also changes abruptly. The remainder of this section investigates axis sheet 

behavior near critical points and the indications of shape this behavior provides. 

At a local maximum the axis sheet for the region under the image surface shrinks with the 

level curve until it disappears at the critical point. The axis sheet above the surface near a 

local minimum behaves similarly. These points are called sheet terminations (see Figure 

3.5a). They are an indication of locally lightest or darkest spots in the image. The 

behavior of sheets on the opposite side of the image surface near these extrema is more 

complicated. Consider what happens to the symmetric axis for an object with a hole, as the 
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hole gradually shrinks and then disappears. Initially, the axis for the object loops around 

the hole. This loop shrinks slightly as the hole shrinks, but suddenly disappears when the 

hole disappears. At the same time, a new piece of axis down the center of the object 

appears. This is exactly the situation we observe near local extrema in an image. If we 

look at the lAS just above a local minimum, we find that an axis sheet forms a loop around 

the indentation near the minimum and that this loop disappears and another axis sheet 

appears as we move below the extremum. Similar axis behavior is also observed for the 

lAS above the surface near a local maximum. These changes in lAS sheets are called loop 

terminations (see Figure 3.5b). They give us an indication of the nesting of dark regions 

within light regions and vice versa. 

a) b) c) 

Figure 3.5. lAS behavior near critical points in the image illustrating a) the level 

curves near an intensity maximum and the corresponding sheet termination in the 

lAS, b) the level curves near an intensity minimum and the corresponding loop 

termination in the lAS, c) the level curves near an intensity saddle point and the 

corresponding axis tear in the lAS. In each case, the lAS sheets are shaded and 

displaced below the image surface. In addition, the SAs for the selected level 

curves are shown in bold for emphasis. 
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The level curves near a saddle point cross each other. If we calculate the lAS for the region 

under the image surface near such crossing points, we find that the axis sheet separates into 

two pieces at the saddle point as we move up in intensity. These are called axis tears (see 

Figure 3.5c). The same behavior is observed for the lAS above the image surface except 

that the sheets tear apart as we go down in intensity. Thus, we call saddle points tear 

points of the lAS. These points are special for two other reasons. First, level curves 

through saddle points describe the nesting of hills and pits in the image [Blicher, 1985]. 

Thus, the axis sheets can be partitioned at these levels to obtain descriptions of local light 

and dark regions of the image. Second, saddle points are the only points in common to the 

lASs of both polarities, so they act as connection points between the lAS below the surface 

and the lAS above the surface. This adds coherence to our shape description which can be 

exploited to describe the relationship between local light and dark regions in the image. 

3.4.2 Axis Bending and Branching 

While critical point behavior yields a basic understanding of the relationships between light 

and dark regions in the image, additional information about the spatial and intensity shape 

of these regions is conveyed by the branching and bending of lAS sheets. How individual 

sheets bend gives an indication of the shape of the corresponding light and dark regions of 

the image. How these sheets combine to form branching surfaces captures the global 

branching structure of the image being described. By combining these shape properties, it 

is possible to describe the basic shape of the grey-scale image. 

The bending of axis sheets reflects two different image properties. When the bending is in 

the spatial dimensions, it captures how ridges (or valleys) in the image are bending. When 

the bending is in the intensity dimension, it reflects the asymmetry of intensity ridge (or 

valley) profiles (see Figure 3.6). To quantify this bending requires that the curvature at 
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each point on the axis sheets be calculated in two directions. If the normal to the axis sheet 

at the point (x',y',i') is given by some vector N = (x,y,i), then the axis tangent in the 

spatial dimensions will be perpendicular to this normal yet have no intensity component. 

This tangent vector is given by TJ = (-y, x, 0). The axis tangent in the orthogonal direction 

will be the direction on the axis surface where intensity changes most rapidly. This tangent 

to the axis surface is given by T2 = N x Tr = (-iy, -ix, x2 + y2). Spatial bending is 

reflected by axis curvature in the Tr direction while intensity bending is indicated by axis 

curvature in the T2 direction. The derivatives of these curvature functions measure how 

this bending changes as we move along the axis. As with the two-dimensional and three

dimensional SA, these curvature properties can be used to characterize the shape of sections 

of individual axis sheets. 

Figure 3.6. Axis bending properties in the intensity dimension. One side of this 

ridge corresponds to a steep edge while the opposite side slopes more gently. 

Once we have a description of the shape of individual sheets, we need to consider how 

these sheets are connected. Recall that the SA for an object consists of a collection of axis 

curves connected at axis branch points. Similarly, the lAS consists of axis surfaces 

connected by branch curves. The branching structure of lAS sheets above and below the 
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image surface reflect the spatial relationships between dark and light regions in the image 

respectively. Each light ridge-like structure in the grey-scale image is described by an axis 

sheet below the image surface. The connections between the axis sheets reflect the 

connections between these intensity ridges in the image. Similarly, the branching of each 

dark valley-like structure in the image is described by lAS sheet connections above the 

image surface. 

The branching of lAS sheets is most easily visualized for image regions which correspond 

to ridges on hillsides (see Figure 3.4). Here, a single axis sheet corresponding to the ridge 

is attached to the lAS sheet describing the hillside. When many ridges and subridges are 

involved, the branching of the lAS reflects the hierarchical relationships among these image 

structures. Because local intensity extrema introduce loops in the lAS, the axis sheets are 

not connected in a pure hierarchy. The axis sheets which make up these loops will be 

connected by two separate branch curves to other axis sheets (see Figure 3.7). These two

ended connections require additional data structures to record the relationships between axis 

sheets. This issue is described in detail in chapter 6. 

a) b) 

Figure 3.7. Axis branching near an intensity minimum on the side of a ridge. The 

SAs for the selected level curves in a) are shown in bold on the lAS surfaces in b). 
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3. 4. 3 Axis Radius Function 

In addition to capturing the bending and branching of light and dark regions of an image, 

the lAS also reflects width properties of image structures. Recall that each point on the 

SAT has associated with it the radius of the maximal disk at that point. This function 

describes the widening and narrowing of individual axis branches. Extending this notion 

to the intensity dimension, each point on the lAS has associated with it the radius of the 

maximal disk at that point and within that level curve. Thus, the radius function on the lAS 

reflects the spatial width of structures in the image. Changes in this radius function along 

axis sheets yields additional information about the shape of structures in the grey-scale 

image. 

Width changes in the spatial dimensions reflect the widening or narrowing of intensity 

ridges and valleys. This occurs when the first derivative of the radius function in the 

direction of the spatial tangent T! (defined above) is positive or negative respectively. The 

second derivative behavior in the same direction describes the flaring and cupping of ridges 

and valleys. The seven combinations of these derivative properties correspond to those for 

the radius function of the two-dimensional symmetric axis (see Figure 3.8). 

The sharpness and roundness of ridges or valleys corresponds to width changes in the 

intensity dimension. Consider the radius function as we follow the intensity tangent T2 

(defined above) up the axis sheet for a ridge. Because the image surface is described by a 

function, the radius decreases monotonically as we move toward higher intensities. Hence, 

the first derivative is always negative. When the second derivative in the T2 direction is 

also negative, the ridge appears round at the top. Conversely, ridges which appear sharp 

have a positive second derivative (see Figure 3.9). This analysis extends to valleys by 
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considering the radius function as we go down the sheet corresponding to the valley. 

When the shape properties provided by the radius function are combined with the other 

properties we have described, we obtain an overall description of the shape of a two 

-dimensional grey-scale image. 

r' > 0 r' = 0 r' < 0 

__/ ~ 
r">O 

~ r--
Opening flare Closing flare 

~ ~ 
r"=O 

~ ~ 
Opening wedge Worm Closing wedge 

r-- ~ 
r"<O 

~ ___/ 
Opening cup Closing cup 

Figure 3.8. Widening and narrowing properties of the SA characterized by the first 

and second derivative behavior of the radius function in the spatial dimension 

[Blum and Nagel, 1978]. 
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Figure 3.9. Roundness properties determined by the second derivative behavior of 

the radius function in the intensity direction. The second derivative is positive as 

we go up the axis for the ridge on the left and negative for the ridge on the right. 

3. 4. 4 Axis Inverse Mapping 

In addition to describing the width properties of image structures, the radius function 

described above provides the necessary information to recreate the original image given the 

lAS. This is best illustrated by considering an axis point on the two-dimensional SA. The 

radius of the maximal disk at that point is given by the radius function. By drawing the 

maximal disk centered at that point, we defme the region of the figure associated with that 

point on the axis. Extending this notion to all of the points on a SA branch, the union of all 

maximal disks centered on the axis branch defines the region of the object associated with 

the selected SA branch. When the union of all maximal disks on all branches is computed, 

the result is the original two-dimensional object. The SA with its associated radius function 

is called a transform because this inverse mapping exists. 

Extending this inverse mapping to the lAS is straightforward. The volume associated with 

an axis sheet is defined to be the union of all maximal disks for all points on the sheet at 

their respective intensity levels (see Figure 3.10). By considering the volume associated 
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with all internal lAS sheets, the result is the volume under the image surface (x,y,l(x,y)). 

The original intensity image can then be recovered by simply recording the maximal 

intensity value at each (x,y) position. Thus, the internal lAS plus the radius function also 

defines a transform. Similarly, the external lAS defines the volume above the image 

surface whose minimal values at each (x,y) position give the original image. This inverse 

mapping property of the lAS is very important in the applications of this shape description 

discussed in chapter 5. 

a) b) 

Figure 3.10. Associating an object region with a single lAS sheet. The union of 

maximal disks at their respective intensity levels on the axis sheet (left) defines an 

intensity volume. The maximum intensity at each (x,y) point of this volume defines 

the object region associated with this lAS sheet (right). 

3. 4. 5 Axis In variance 

Now that the descriptive properties of the lAS have been identified, one major property 

remains to be verified. Recall that image shape descriptions were defined to be 

representations of images which are independent of "position, orientation, size, mean grey 
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value, and intensity scale factor". To demonstrate that the lAS satisfies these requirements 

it must be shown that the lAS remains invariant to changes in spatial coordinates 

corresponding to rotations, translations, uniform scalings. In addition, lAS invariance to 

changes of the intensity scale factor and mean grey value must be demonstrated. 

Image transformations which consist only of rotations and translations preserve length. 

· Because the lAS is defined in terms of the locus of centers of maximal tangent disks, the 

relative sizes of these disks will be unchanged by such transformations. Hence, the relative 

locations of axis points will not change if an image is rotated or translated. Thus, the effect 

of rotating and translating the image is to rotate and translate the lAS by an equal amount. 

Because distance is preserved, the radius function along these transformed axis sheets also 

remains unchanged. One of the important reasons for using curvature to describe curves 

and surfaces is that these curvature functions remain invariant to affine changes of 

coordinates (such as rotations and translations). Consequently, axis curvature in both the 

spatial and intensity directions remain invariant to image rotations and translations. Hence, 

all aspects of the lAS remain invariant to image rotations and translations. 

Image transformations which involve uniform spatial scalings do not preserve length. 

Such transformations alter the relative positions of the locus of centers of maximal disks 

defining the lAS. As a consequence, the radius and curvature functions of the IAS change 

by some scale factor, while the structure of the branching remains the same. While this 

scale factor can be easily derived from the Jacobian of the transformation mapping when it 

is known, the more general situation of calculating scale-invariant shape descriptions for 

images when the image transformation is unknown is more complex and has not been 

incorporated into the present definition of the lAS. Thus, the lAS is invariant to rotations 

and translations but not fully to uniform spatial seatings. 
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The IAS is defmed in terms of the behavior of a family of image level curves. The intensity 

values associated with these curves does not affect any aspect of the two dimensional SAs 

for these curves, nor does it alter how these SAs connect from level to level. Thus, the 

basic structure of the lAS and its radius function remain invariant to changes in intensity 

scale factor and mean grey value. The same is not true for the lAS curvature function. 

Since the surface derivatives in the intensity dimension are measured relative to the image 

intensity scale, lAS curvature function, which is calculated in terms of these derivatives, 

will vary with changes in the image intensity scale factor. Thus, only measurements of 

intensity bending are affected by intensity scale manipulations; all other aspects of the lAS 

are unchanged. 

3. 5 Discussion 

By focusing on the shape of the level curves defined by a grey-scale image, the intensity 

axis of symmetry represents the image exactly and has many useful properties as a shape 

description for grey-scale images. It provides a means for identifying individual image 

structures and a mechanism for studying the shape characteristics of these structures and 

geometrical relationships between these structures. Thus, the lAS provides a very 

powerful tool for image description. The next task is to demonstrate an effective means of 

computing the lAS for discrete grey-scale images. 

29 



Chapter 4 

Computing the Intensity Axis of Symmetry 

4.1 Introduction 

The previous chapter defined the intensity axis of symmetry (lAS) and described certain 

desirable properties. This chapter describes one approach for calculating a discrete 

representation of the lAS given an arbitrary grey scale image. The emphasis is on 

calculating an accurate and robust approximation of the lAS; questions of efficiency are of 

secondary interest here will be discussed only briefly. 

4.2 Level by Level Calculation of Axes 

While it is natural to describe the lAS in terms of the SA for a collection of binary images, 

there are several inherent problems with using this approach to calculate the lAS. In 

medical applications it is common for images to contain 12 or more bits of data per pixel. 

Thus, many slices would be necessary to represent image structures accurately, making the 

time to calculate the SAs for the whole image excessive. More seriously, the boundaries of 

these binary images change topology as intensity varies. This makes it difficult to connect 

contours or axes from slice to slice. Finally, when discrete binary images are used to 

calculate SAs, artifacts due to aliasing are introduced which complicate the following of 

SAs from slice to slice. These problems together make it almost impossible to calculate the 



lAS on a slice-by-slice basis. Therefore, a method which processes all intensity levels in 

the image simultaneously has been developed. 

4.3 Simultaneous Calculation of Axes 

To develop an algorithm for calculating the lAS which processes all intensity levels 

simultaneously requires an image model which provides spatial and intensity coherence. 

The active contour model [Kass, 1987] uses a curve-based functional to provide a spatially 

coherent model of closed contours. By extending this functional to surfaces, a new image 

representation called the active surface model is defined which provides coherence across 

both space and intensity levels. By selecting the appropriate initial conditions and 

minimizing this surface functional, it is possible to solve for the entire lAS structure 

simultaneously. 

The initial position of the active surface should reflect the basic structure of the lAS. Since 

the original image viewed as a surface in (x,y,l) captures the basic topology of the level 

curves used to define the lAS, this surface is used as the starting position of the lAS. By 

defming a function of (x,y,I) which reflects the symmetry of the image at each location and 

intensity level in the image, the active surface can be "attracted" towards the intensity axis 

of symmetry. Partitioning the active surface into patches which correspond to the 

individual sheets of the lAS can then be accomplished by determining the links from each 

point on the active surface to the point which was attracted to the same location from the 

"opposite" direction. These axis sheets can then be displayed or used for further shape 

analysis. 
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4.3.1 A Review of the Active Contour Model 

The active contour model, as originally specified, provides a technique for fitting closed 

curves to edges, ridges and other image features while maintaining smoothness constraints 

on the curve. These constraints are based on first and second derivative properties of the 

curve and ensure that the solution is relatively insensitive to noisy image features. The key 

to this technique is the minimization of the energy functional 

Energy= f [ wt II fs(s) 112 + w2ll fss(s) 112 + g(f(s))] ds 

where f(s) = (x(s), y(s)) are the coordinates of the curve parameterized by arc lengths, and 

first and second partial derivatives of the curve with respect to arc length s are denoted with 

subscripts. The weights Wt and w2 control the effects of these derivatives and enable us to 

specify the curve behavior. When Wl is less than w2, the curve resembles a spline; 

otherwise it resembles a membrane. The third term in this functional is used to direct the 

active contour towards the image features of interest. For example, to fit the active contour 

to the boundary of an object, the function g(f(s)) should reflect edge strengths in the input 

image. To solve for the curve f(s) which minimizes this energy functional, Kass developed 

discrete formulations of the two Euler equatio.ns associated with this functional. These 

equations are solved iteratively for x(s) and y(s). 

4.3.2 The Active Surface Model 

To extend the active contour model to surfaces requires an energy functional defined on 

surfaces with terms capturing the first and second derivative properties of the surface. To 

allow the greatest flexibility in controlling the parametric surface given by 
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f(u,v) = (x(u,v),y(u,v),I(u,v)), 

the active contour energy functional is extended to a two dimensional surface as follows: 

Energy= f f [ Wl II fu(u,v) 112 + W2 II fv(u,v) 112 + W3 II fuu(u,v) 112 + 

W4 II fuv(u,v) 112 + W5 II fvv(u,v) 112 + g(f(u,v))] du dv 

where u and v are the parametric coordinates of the surface, and the frrst and second partial 

derivatives of the surface in these directions are denoted by subscripts. The five weights 

wi control the effects of these partial derivatives and enable us to specify the surface 

behavior to resemble a spline or a flexible membrane. The attraction of the surface by 

image features, here symmetry, is given by the function g(f(u,v)). 

While curves with several hundred points can be solved using the Euler equations 

developed by Kass, the surfaces we are dealing with consist of tens of thousands of points. 

Thus, simultaneous solution via Euler equations becomes unreasonable, and iterative 

relaxation techniques are more practical. In the MIN_SURFACE program, each point p on 

the active surface is examined on each iteration of this relaxation process to see if any of the 

neighbors of p has a lower contribution to the total energy than p. If so, p is moved to its 

neighbor's location. Since the attraction function g(f(u,v)) does not have local rrtinima 

other than the global minimum, this gradient descent rrtinirrtization technique yields a 

surface representing the IAS after a finite number of iterations. Several implementation 

issues are of interest here. 
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Constraining the movement of the active surface 

The first and second partial derivatives of the parameterized surface in the functional above 

consist of sums of squares of the partial derivatives of the individual coordinate functions. 

For example, the first derivative of the parameterized surface with respect to u is given by 

II fu(u,v) 112 = xu(u,v)2 + yu(u,v)2 + Iu(u,v)2. 

Thus, the active surface described so far treats the intensity and spatial dimensions equally. 

This poses several problems. First, there is no obvious way to relate energy in the spatial 

dimensions to energy in the intensity dimension. Even if this could be overcome by some 

type of image normalization, a more serious problem must be addressed. The basic shape 

of the image is reflected in the number and positions of hills and pits in the image and in the 

structure of the ridges and valleys which connect these extrema. If the behavior of the 

active surface is unconstrained, the minimal functional could yield an approximation of the 

lAS which does not have the same basic structure as the image. For example, if the active 

surface is very stiff, the resulting lAS could have fewer extremal points than the original 

image. This is a fundamental problem and must be avoided. 

This problem is solved by constraining the movement of points on the active surface and by 

selecting an appropriate starting position for the surface. The iterative minimization 

technique described above considers the nearest neighbors of a point in its search for lower 

energy contributions. In three dimensions, these neighbors lie in a 3x3x3 cube, so there 

are 26 nearest neighbors of the central point. By restricting this search to points of the 

same intensity value, 18 of these 26 nearest neighbors are excluded from this search. This 

forces the active surface to move only in the spatial dimensions, leaving the intensity 
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structure of the surface untouched. With this constraint on the active surface, it is clear that 

the original image should be used as the starting position of the active surface in order to 

ensure that the resulting lAS will have the same number of extrema and the same 

connectivity structure between extrema as the input image. 

Representing the active surface. 

Because the calculation is to produce a discrete lAS for a discrete input image, the most 

practical representation of the lAS is a discrete sampling of the x(u,v), y(u,v) and l(u,v) 

functions. This can be viewed as a function of three variables (u,v,C), where C represents 

one of the three coordinate functions of the lAS (x,y,I). This three-dimensional function is 

represented as a matrix of integer values and stored in an image using the /usr/image format 

[Zimmerman, 1981]. The (u,v,O) and (u,v,1) entries in this image give the (x,y) 

coordinates of the lAS point while the (u,v,2) entry gives the intensity value I at this point. 

One advantage of this representation is that the existing /usr/image display tools can be used 

to study the coordinates of the IAS to gain a better understanding of the lAS surface and the 

behavior of the MIN_SURFACE program. More importantly, the IAS can be stored and 

accessed in a uniform and convenient manner by the programs which process this shape 

description. Because the input and output of the MIN_SURF ACE program are in the same 

format, it is possible to take the output after N iterations, inspect the results, and use this 

intermediate surface as input for another M iterations. 

Selecting the partial derivative weights. 

The weights Wi on the partial derivatives in the energy functional specify the internal 
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constraints on the active surface. Increasing the relative contribution of the first order 

derivatives in the energy functional introduces a penalty associated with the rate of change 

of the surface in space. This penalty is reduced when the surface area is minimized, 

causing the surface to behave more like a flexible membrane similar to a soap bubble. By 

increasing the relative contribution of the second order terms, a penalty is introduced 

whenever the first order terms change abruptly. This penalty is reduced when the number 

and sharpness of corners are minimized and when the spacing of sample points on the 

active surface are uniformly distributed, causing the surface to behave more like a spline. 

The contribution of the symmetry function g(f(u,v)) in the energy functional has an implicit 

weight of one. Thus the absolute values of the partial derivative weights controls how 

much the surface is internally constrained versus externally attracted towards the lAS. 

After experimenting with several combinations of these weights, I concluded that the active 

surface most successfully converges on the lAS when its behavior is more like a flexible 

membrane than like a spline. This allows the surface to have sharp folds at the tops of axis 

sheets and where axis sheets branch. I also experimented with the absolute value of these 

weights and found that the following weights provide a reasonable balance between the 

internal and external constraints: 

WI = 0.2, W2 = 0.2, W3 = 0.1, W4 =OJ, W5 = 0.1. 

The number of medical images I used for these experiments was very small (six) and of 

limited variety, so these weights may not be ideal for every grey scale image. Finding the 

"best" weights for every situation is beyond the scope of this research. 
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Estimating the partial derivatives of the surface. 

The partial derivatives of points on the surface are calculated using symmetric finite 

differences to avoid any particular bias in the movement of the surface. The formulas used 

in the active surface program are 

xu(u,v) = ( x(u+1,v)- x(u-1,v)) /2 

xv(u,v) = ( x(u,v+1)- x(u,v-1)) /2 

xuu(u,v) = ( x(u+1,v)- 2 x(u,v) + x(u-1,v)) 

Xuv(u,v) = ( x(u+1,v+l)- x(u-l,v+1)- x(u+1,v-1) + x(u-1,v-1)) /4 

Xvv(u,v) = ( x(u,v+1)- 2 x(u,v) + x(u,v-1)) 

with similar equations for y(u,v). Since the active surface is restricted to move only in the 

x andy dimensions, the partial derivatives of intensity I(u,v) with respect to u and v will 

not change. Therefore, these terms will cancel when calculating ~e change in functional 

energy when a point is moved in (x,y). Hence, there is no need to calculate the partial 

derivatives of I(u,v). 

Some care must be taken at the boundaries of the surface where the neighbors of a pixel 

may be out of bounds. The solution I chose was to clip the indices of the point's neighbors 

to lie within [umin,Umax] and [vmin,Vmax]. For example, if (u,v) is a boundary pixel where 

u-1 < umin, I use Umin in place of u-1 when calculating neighboring values of x andy. The 

effect is to extend the image with a copy of the extreme rows and columns in each 

direction. The values of the boundary pixels will be repeated in some of the partial 

derivative calculations, but this was deemed a better solution than either wrapping around 
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the indices or ignoring the out of bounds pixels in the calculations. 

Determining the overall change in the energy functional for a given point movement. 

The estimates of surface partial derivatives are weighted and integrated with the image 

feature contribution g(f(u,v)) over the active surface to obtain an estimate of the total energy 

of the functional. To minimize this energy, the 8 neighbors of the point (x,y,I) in the 

spatial dimensions are checked to see if a movement of the active surface to one of these 

neighbors will reduce the total energy. If so, the point is moved. The tricky aspect of this 

calculation is determining the effect of this movement on each neighbor's energy term 

without the undue computation involved in recalculating the energy contribution of all 8 

neighbors. 

By inspecting the finite differences above, it is clear that only some of the partial derivatives 

of these neighbors are changed when the point (x,y,I) goes to the point (x',y',I). The 28 

energy terms to be recalculated are summarized below. 

a) For the points (u-1,v) and (u+l,v) the new values of the partial derivatives 

Xu, Xuu, yu, and Yuu are recalculated. 

b) For the points (u,v-1) and (u,v+l) the new values of the partial derivatives 

xv, xvv, yv, and Yvv are recalculated. 

c) For the points (u-1,v-1), (u-1,v+1), (u+1,v-1) and (u+1,v+1) the new values 

of the partial derivatives Xuv and yuv are recalculated. 

d) For the point (u,v) the new values of the partial derivatives xuu, xvv, yuu, and 

yvv are calculated. 
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Thus, the work involved in checking the 8 neighbors of a given point on the surface 

involves calculating 28x8=224 new partial derivatives. This is a considerable savings over 

the 90x8=720 calculations required by the brute force approach and produces much better 

results than simply ignoring the contribution of the point's 8 neighbors to the energy 

functional. 

Stopping this iterative process once the swface has converged. 

There are several natural ways to determine when the active surface has converged to the 

IAS. One alternative is to stop the iterative process when the number of iterations reaches 

some predefined limit. For example, if we consider the maximum distance a point must 

travel to reach the symmetry axis, the iteration limit should be at least one half the image 

width divided by the step size. This termination condition does not reflect the structure of 

the image being processed and is usually too high. 

We really want the stopping condition to reflect the "change" in the active surface from one 

iteration to the next. One alternative is to stop when the total energy change falls below 

some given threshold. Another alternative is to say that the active surface has converged 

when the number of points moved in an iteration falls below a specified threshold. Both of 

these approaches have potential problems. If the solution is globally good but bad in 

isolated areas, the surface may be far from the correct solution in these isolated areas, yet 

the energy change or the number of moving points may fall below their respective 

thresholds. The problem of setting these thresholds is further complicated by the fact that 

the rate of change of the active surface may vary from image to image. 

Making the stopping criteria depend on the image is attractive for pragmatic reasons. For 

this study, we will use this approach and watch for cases where problems might arise. The 
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thresholds I have found most effective for calculating the lAS for medical images are 1) an 

iteration threshold of about 25% of the image width, and 2) a threshold on the number of 

moving pixels of about 1% of the total number of pixels in the input image. These 

threshold values are input parameters of the MIN_SURFACE program. For a typical 

256x256 medical image the active surface requires about 50 iterations before meeting the 

stopping criteria indicating approximate convergence to the lAS. 

4.3.3 The Image Symmetry Function 

Because the SA is defined in terms of the centers of maximal disks, the distance from an 

axis point to the nearest boundary point is locally maximal; a small step in either direction 

perpendicular to the axis towards the object boundary will result in a lower distance to the 

boundary. This distance function reflects the symmetry of the object and together with an 

active contour originating on the object boundary can be used to compute the two

dimensional SA for the object (see Figure 4.1). 

A distance function can also be used to identify points on the lAS. By computing the 

distance from each point (x,y,I) to the nearest point (x',y',I) on the image surface at the 

same intensity level, it is possible to define an image symmetry function which reflects the 

size of the largest tangent disk that can be centered at every point. When the weight 

controlling the contribution of the image symmetry function in the active surface functional 

above is negative, minimizing this functional will cause the active surface to converge to 

points with maximal distance to the image surface. Since these points correspond to the 

centers of maximal disks tangent to the level curves of the image, this symmetry function 

directs the active surface towards the lAS. To effectively compute the image symmetry 

function, several implementation issues must be addressed. 
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Figure 4.1. A portion of an object's boundary attracted by the symmetry function 

to one branch of the two-dimensional symmetric axis for the object.. 

Representing the image symmetry function. 

Because the function g(x,y,I) will be used extensively and is costly to compute, the values 

of this function are precalculated and recorded in a three-dimensional array which is stored 

as an image in the /usr/image format. Because sub-pixel accuracy is not needed by the 

active surface program, the sampling grid in x and y corresponds to the original image 

sampling rate. The sampling in the intensity dimension is another matter. Considering the 

space and time requirements, it seems unreasonable to calculate g(x,y,I) for every intensity 

level in the image. Experience shows that quite satisfactory results are possible by 

selecting 50 evenly spaced intensity levels and calculating the image symmetry function for 

those levels. 
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Calculating the image symmetry function. 

Two algorithms have been implemented for calculating the function g(x,y,I). The first uses 

a brute force search which is slow but accurate. It involves computing the spatial distance 

from the point (x,y) to every other pixel (x',y') in the image. This distance is compared 

with the current distance value recorded at position (x,y,I') in the image symmetry table, 

where I' is the intensity of the pixel (x'y'). If the new distance is less than the current 

value at (x,y,I') in the table, the new minimum at that intensity is saved. Thus, the distance 

to the nearest point on the image surface at every intensity is computed for every point in 

(x,y,I). This algorithm requires O(n4) time, where n is the image width, and requires 

O(n2r) space for an image intensity range of r values. This is far too slow, so a faster 

method of computing the symmetry function was developed. 

The second algorithm is directly based on the grass fire analogy described above. The grey 

scale image is thresholded at r evenly-spaced intensity levels to produce a collection of 

binary images. Here, the 1-valued pixels are inside these level curves and correspond to 

grass, while the 0-valued pixels are outside these level curves and correspond to "burned" 

grass. The effect of burning grass for one unit of time is simulated by removing all 

1-valued pixels which have 0-valued neighbors (i.e., the boundary pixels of these binary 

images). This "burning" can be accomplished by scanning the image once by rows and 

again by columns. The time each pixel is removed is recorded in the output image. After a 

limited number of iterations, all 1-valued pixels are removed and their removal times 

provide an accurate estimate of the symmetry function for the selected intensity levels. This 

algorithm requires O(n3r) time for images of nxn pixels thresholded at r intensity values. 

This is a significant improvement over the first algorithm since r is usually much less than n 

and because numerical calculations are not required to calculate distances. 
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4.3.4 Linking the Active Surface 

Before the branching behavior of the lAS sheets can be used to investigate the spatial 

relationships between structures in the image, the active surface must be partitioned into the 

individual axis sheets which comprise the lAS for the image. The strategy here is to 

identify the two portions of the active surface which are attracted by the image symmetry 

function to "opposite" sides of each lAS sheet. These two patches of the active surface 

represent two sections of the grass flre whose quench points defme the lAS sheet. 

The first step in this partitioning process involves linking each point on the active surface to 

the point which was attracted to the same location from the "opposite" direction. Using 

these links, it is possible to use region growing to identify the two patches of active surface 

which converge from "opposite" directions and form each axis sheet. By joining these 

patches, the basic topological difference between the lAS and the active surface (a sheet 

versus two sides of a folded surface) can be eliminated. Before computing these links, a 

more precise defmition of what is meant by "opposite" is needed. 

Recall that the grass frre analogy defines lAS points as the quench points of a grass flre 

started at the boundary of an object. These quench points are where the frres have arrived 

from two (or more) different directions simultaneously and put each other out (grass can 

not burn twice). Hence, the burning time from these points on the boundary to the quench 

point are identical. Since time is proportional to distance in this model, this means that 

there are two (or more) points on the boundary of the object which share the same minimal 

distance from the boundary to the quench point. These points on the boundary are called 

involutes. The objectives of the linking program are 1) fmding and linking the involutes of 

the active surface and 2) representing this information so other analysis programs can make 
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use of these links. Several implementation issues are of interest here. 

Determining if two points are involutes 

After attraction to the lAS, the spatial location of involutes in (x,y ,I) should be identical. 

Since the discrete sampling of the active surface makes this unlikely, I use closeness in 

(x,y,l) to define the involutes of points on the active surface. In particular, if the 

coordinates of a point (u,v) are (x,y,I), the involute of this point is the active surface point 

(u',v') with coordinates (x',y',I') such that the distance II (x,y,I)- (x',y',l') II is minimal. 

One problem with this discrete definition of involutes is that it is asymmetrical. The reason 

is that the involute of each active surface point is determined independently according to the 

distance minimization above. Hence, the involute of the point (u',v') above could be some 

active surface point other than (u,v) which is closer to (x',y',I'). In addition, it is possible 

for two or more points on the active surface to share the same involute. To avoid 

consequent problems, the algorithms which use involute information have been designed 

so that they do not require symmetrical identification of involutes. 

A second problem with this approach is that the points on the active surface adjacent to 

(u,v) are likely to be attracted to points near (x,y,I). Thus, I place an additional restriction 

on involutes. The surface distance II (u,v) - (u',v') II between two involutes must be above 

a specified threshold. I have obtained satisfactory results by setting this threshold so that 

the 8 nearest neighbors of (u,v) are excluded as potential involutes. One situation where 

this heuristic introduces some problems is near the endcurves of lAS sheets. Since points 

on these endcurves correspond to SA endpoints, these points quench with themselves due 

to the higher order contact of the maximal disk to the level curve at these points. Therefore, 

the assignment of involutes for such points may be inaccurate using this method. Rather 
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than attempting to detect lAS endcurves using some other mechanism, the algorithms 

which use involute information have been designed to be robust to these potential 

misassignments. 

Finding the links connecting involutes 

Three algorithms have been implemented for calculating the links connecting involutes on 

the active surface. The first method uses brute force searching. For each point on the 

active surface (u,v), the distance in (x,y,l) from that point to every other point (u',v') on 

the active surface is calculated and the minimal distance is recorded in a link table. The 

coordinates (u',v') of the closest point are also recorded for future use. As noted above, 

the nearest neighbors of (u,v) are excluded from this search. This method produces 

accurate results but is computationally very expensive. For an image with width n, O(n4) 

distance calculations are required, each of which involves several multiplications and 

divisions. As a result, several hours of CPU time on a SUN-4 are required to calculate the 

links for a 256x256 image. 

To improve this situation, a second method was devised. Because the values of (x,y,I) on 

the active surface are integer-valued and restricted to a specified range, it is possible to use 

a variation on bucket sorting to calculate the involutes of the points on the active surface. 

The flrst step in this process is to allocate buckets corresponding to each of the possible 

(x,y,I) coordinates of points on the active surface. The next step involves distributing the 

original (u,v) coordinates of surface points into their corresponding (x,y,I) buckets. The 

buckets can contain several points. Thus if two or more points share the same (x,y,I) 

position, they will fall in the same bucket. The last step is to search for the closest point in 

(x,y,I) for each point on the active surface. The distribution of points into buckets greatly 
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reduces the time required for this search. If the bucket for the point (u,v) has two or more 

points, the linking is trivial and involves no searching. If only one entry has fallen in the 

(x,y,l) bucket corresponding to the point (u,v), then the neighboring buckets in (x,y,n are 

searched until a non-empty bucket is found. The (u',v') coordinates of the closest point 

give the coordinates of the involute in this case. To avoid problems near lAS branch 

curves and end curves, the nearest neighbors of (u,v) are again excluded from this search. 

While this algorithm is more complex than the brute force search method, it is much faster 

and produces identical results. 

To improve the quality of the links between involutes on the active surface, a third method 

was implemented. Noting the requirement that involutes share the same minimal distance 

from the boundary to the quench point, Cutlip [Cullip, 1989] suggested a heuristic for 

identifying involutes which minimizes a weighted sum of three terms to fmd the most likely 

links. The expression for the linking error for the points (u,v) at (x,y,l) and (u',v') at 

(x',y',I') is given by 

WI II (x,y,I) - (x',y',l') II- W2 II (u,v)- (u',v') II 

+ W3 I II (x,y)- (u,v) II- II (x',y')- (u',v') II I. 

The flrst term reflects the spatial distance between two points on the active surface in 

(x,y,l) coordinates. When this term is minimized, the two points quench at the same 

location. The second term measures the parametric distance between these points on the 

active surface. This term should be maximized to avoid linking adjacent points on the 

active surface to each other. The third term reflects the difference between the quenching 

distances of the two points. The quenching distance is the distance a point travels from its 

initial position on the image boundary (u,v) to its quenching point (x,y,l). Hence, this 
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term should be minimized to identify the most likely involutes. The weights Wi control the 

relative contribution of these three terms. I have found that reasonable results are achieved 

with w1 = 1, w2 = 1 and w3 = 1. Finding the "best" weights for every situation is beyond 

the scope of this research but may result in even better identification of involutes. 

Representing these links 

The output of all link finding programs is a matrix of (u',v',d) values giving the surface 

coordinates of the involute of the point (u,v) and the distanced between these two points. 

This data is stored as a three-dimensional image in /usr/image format to ensure that the data 

is accessible in a uniform and convenient manner by other lAS analysis and display 

programs. The indices of this image are (u,v,L) where u and v are the coordinates of the 

active surface and L indexes one of the three components of the (u',v',d) link. Thus, the 

(u,v,O) and (u,v,l) entries of this image give the (u',v') coordinates of the involute for 

(u,v) while the (u,v,2) entry contains the distance d between these points. This 

representation together with the three-dimensional image representing the (x,y ,1) 

coordinates of the points on the active surface provide a concise representation of the lAS 

shape description. 

4.3.5 Identifying Individual Axis Sheets 

In order to investigate the branching behavior of the lAS, the active surface must first be 

partitioned into the individual axis sheets which comprise the lAS for the image. Because it 

is difficult to identify and connect the points on the surface which correspond to lAS 

branch curves and lAS end curves, methods which rely on the identification of these points 

to partition the active surface into axis sheets will be very error prone. On the other hand, 
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the links between involutes calculated above make it easy to identify which pairs of points 

are on the same axis sheet. Using this information, a special region growing algorithm was 

developed for identifying the set of points on the active surface which make up each of the 

lAS sheets. Issues addressed in the implementation of this algorithm are discussed below. 

Growing an active surface region 

If we are given a starting point on the active surface, what other points lie on the same lAS 

sheet? By definition, the involute of this point has been attracted to the same (x,y,I) 

location as the starting point. Therefore, the involute belongs on the same lAS sheet. 

Extending this notion to small neighborhoods called patches on the active surface, we fmd 

that the patch which includes the starting point and the patch which includes the involute are 

also attracted to nearby (x,y ,I) locations. Thus, the neighborhoods of the starting point and 

the quench point are also on the same sheet. When the patches become larger and the 

neighborhoods include lAS branch curves or lAS end curves, the situation becomes more 

complex. 

Because active surface points on either side of a lAS branch curve lie on different axis 

sheets, these branch points should act as a boundary to stop the neighborhood from 

including points from both of these adjacent axis sheets. Thus, points should be iteratively 

added to these neighborhood patches only if 1) they are a nearest neighbor of one of the 

existing points in the patch, and 2) their involute is either a member of the involute patch or 

one of the nearest neighbors of the involute patch. These constraints prevent patches from 

growing beyond lAS branch curves (see Figure 4.2). Thus, all of the points on the same 

lAS axis sheet can be found by growing the neighborhood patches for the starting point 

and its involute until both patches are stable. The union of these points define the active 

surface region associated with a single lAS sheet. 
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Figure 4.2. Linking involutes to identify the set of points on a single axis of the 

two-dimensional symmetric axis. The points in black belong to a single branch. 

The shaded points are the neighbors of this branch. Other SA points are white. 

Representing an active surface region 

The two patches of involute points which define an active surface region can be represented 

as two non-intersecting sets of (u,v) coordinates. These two sets are initialized with the 

coordinates of the seed point and its involute respectively. 

As the region growing algorithm proceeds, it is necessary to record the coordinates of the 

neighboring pixels of these two patches. This introduces two additional sets of (u,v) 

coordinates. The coordinates of these neighboring pixels are recalculated after each 

iteration and used in the region growing algorithm described above. 

To facilitate fast set lookup, the regions associated with these four non-overlapping sets of 
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points are recorded in a two-dimensional array and stored as a grey-scale image in 

/usr/image format. Here, predefined set identifiers are used to determine which of the four 

sets each (u,v) point belongs to. The 0-valued pixels belong to no set. Thus, to see if a 

given (u,v) point is a member of a particular set requires only an array lookup and a 

comparison. 

Displaying an active surface region 

One method for visualizing an active surface region is to display the region image described 

above. This provides useful structural information, but the context of the region within the 

image is lost. A more attractive alternative is to use the region image as a display mask for 

the original image. Here, the original image intensities are displayed where region pixels 

are non-zero, and black is displayed elsewhere. To test this algorithm, I implemented an 

interactive program on a color SUN-3 which allows the user to select starting points using 

the mouse. These seeds are used to calculate the set of points which make up the active 

surface region for the selected IAS sheet. The masking technique described above is used 

to display this region in an adjacent image. 

In a large number of cases, the resulting regions correspond to sensible image structures or 

parts of these structures (see Figure 4.3). Unfortunately these regions occasionally 

subsume each other. For example, one starting point may yield part of an image structure 

while a nearby starting point produces a larger region which includes the former region. 

This undesirable behavior may be caused by the selection of starting points near IAS 

branch curves, but the true cause has not been identified. To avoid this problem, a second 

algorithm was devised which partitions the entire active surface into nonoverlapping 

regions corresponding to all of the individual axis sheets comprising the IAS. 
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Figure 4.3. A DSA image and an active surface region corresponding to a sensible 

image structure. 

Calculating the /AS partition 

The interactive region-growing algorithm often produces excellent results, but what is 

really needed is a partitioning of the whole active surface into N regions corresponding to 

the N axis sheets which make up the IAS. The selection of an appropriate seed for each 

axis sheet is not straightforward. It is natural to expect the same region to be grown if any 

point inside the region is used as a seed, but this is not always the case. Occasionally, 

when points on the region boundary or near an axis end curve are selected as seeds, only a 

subset of the larger "true" region is obtained. These artifacts are due to discreteness 

problems in the linking of involutes and the sequential nature of the region growing 

algorithm. The problem of finding the "correct" seeds is avoided by considering a large 

number of seeds, calculating the associated regions, and identifying for each point on the 

active surface the largest region which includes that point. These are called the maximal 

regions of the active surface. 
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The simplest method to identify the largest region which includes a given point (u,v) is to 

grow all possible active surface regions, determine which regions include (u,v) and record 

the region identifier for the region which has the largest area. By considering each point on 

the active surface separately, this brute force algorithm can be used to find the maximal 

regions of the active surface. While this method sounds simple, the cost of this 

computation is excessive. Faster methods are possible by rearranging the order of 

calculations. 

There is no need to recalculate all possible active surface regions for each point on the 

surface. By keeping track of the size of each region and the "largest-region identifier" for 

each pixel in the image in a buffer, only one pass through the regions is required. This 

buffer is initialized to contain the identifier of a zero-area region. For each pixel in each 

possible region, the size of the current region is compared to the size of the region in the 

buffer. If the current region is larger, the buffer is updated to contain the current region 

identifier. Thus, the maximal regions can be determined with only one pass through all 

possible active surface regions. This modified algorithm yields the desired results but is 

still rather costly to compute because so many regions must be grown. 

A good approximation to the "correct" maximal regions can be quickly calculated by using 

a subset of the active surface points as the seeds for growing regions. The program begins 

by using every lOOth point on the active surface as a seed and calculating the active surface 

regions associated with these points. If the seed point has already been identified as part of 

some region, that seed is ignored because a region including that point has already been 

identified. After one pass through the active surface selecting seeds, many of the maximal 

regions have been identified. To find the remainder, the program makes a second pass 

through the surface and uses any point which is not part of some region as a seed point. 

Once the regions associated with these points are calculated, all of the maximal regions 
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corresponding to the N axis sheets comprising the lAS will be identified. These regions 

define the lAS partition. 

Representing the !AS partition · 

Because the regions in the lAS partition do not overlap, it is possible to represent the lAS 

partition by recording the region identifier associated with each point on the active surface 

in a two-dimensional matrix. These values are stored in a grey scale image using the 

/usr/image format. Before the seed selection described above takes place, this image is 

initialized to contain all zeros (the identifier of a zero area region). The program uses a seed 

counter to generate unique region identifiers. Thus, after all of the regions have been 

identified, the output image will contain values from 1 to N corresponding to region 

identifiers on the active surface. The actual locations of the seeds are not important and are 

not recorded. This representation of the lAS partition can be input to one of several region 

analysis or display programs. 

Displaying the lAS partition 

Now that the active surface regions associated with the individual lAS sheets have been 

computed and stored in an image, there are several ways to display this information. The 

simplest technique is to display the region image generated above. This gives an overall 

impression of the lAS partition but is difficult to interpret because adjacent regions often 

have very similar region numbers (see Figure 4.4). Displaying the boundaries between all 

of the regions in the image gives a better indication of the shape of the region associated 

with each lAS sheet. These boundaries can be easily calculated by scanning the maximal

region image from top to bottom and left to right and detecting changes in region numbers. 

This technique produces satisfactory results (see Figure 4.5). When these boundaries are 
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superimposed on the original grey scale image, the relationship between image structures 

and lAS sheet regions can be investigated (see Figure 4.6). Interactive region selection 

techniques are also possible and are described in detail in chapter 5. 

Figure 4.4. lAS regions displayed by number for a DSA image. 

Figure 4.5. lAS region boundaries for a DSA image. 
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Figure 4.6. lAS region boundaries superimposed on a DSA image. 

4.3.6 Calculating the Radius and Curvature Functions 

Two other lAS properties are useful in the analysis of object shape. We can study the 

width and bending behavior of structures in the image by examining the radius function 

and curvature properties of the active surface respectively. While these are the last 

components of my shape description, they are essential for detailed shape analysis 

applications. 

The radius function gives the width of image structures. In addition, the rate of change of 

the radius fuuction specifies how the width of the image structure is changing. Calculating 

the radius value for every point on the active surface involves finding the distance from the 

axis point to the nearest point on the image surface at the same intensity. This information 

has already been calculated and stored in the three-dimensional image symmetry function. 

Thus to find the radius function for the lAS only involves a table lookup given the (x,y,I) 
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coordinates of each point on the snrface. Current applications of the lAS have not needed 

this radius information, so this lookup function has not yet been implemented. 

Axis curvature directly gives the degree of object bending. In addition, the derivatives of 

curvature describe how the object bending changes as we move along the axis sheet. This 

information can be used to characterize the shape of individual axis sheets or parts of these 

sheets. There are several ways axis curvature can be calculated. The most convenient 

method uses the Weingarten map [Thorpe, 1979]. This quadratic form is calculated from 

the ftrst and second order partial derivatives of the axis surface and provides a concise 

description of how the surface normal changes as we move along the surface and hence 

captures the bending behavior of the surface. As a result, the Weingarten map can be used 

to calculate the surface curvature in any direction on the active surface. In addition, the 

principal curvature directions and the Gaussian and mean curvatures of the surface can be 

determined from the algebraic properties of this map. I have not yet implemented programs 

to derive axis curvature because my current applications of the lAS do not make use of this 

information. 

4.4 Discussion 

Calculating an accurate approximation of the lAS for a grey scale image is not an easy task. 

My early attempts to calculate this shape description by computing the symmetric axis on a 

level-by-level basis failed because of the difficulty in connecting these SAs from level to 

level. This connection problem is avoided by computing all of the SAs simultaneously. 

To accomplish this task, I developed and implemented the active surface model and related 

programs to generate the image symmetry function, link quench points on the active 

surface, and grow regions corresponding to the individual axis sheets which comprise the 

lAS. These programs have been tested on several images, and they produce excellent 
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results. Thus, my primary objective of demonstrating a viable implementation of the 

discrete lAS has been met. 
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Chapter 5 

Segmentation via the Intensity Axis of Symmetry 

5.1 Introduction 

The previous chapter described how the lAS can be calculated for an image. This chapter 

explain& how the lAS can be used to segment an image into sensible image regions. Before 

this is demonstrated, several methods for displaying the lAS are illustrated. The chapter 

concludes with an analysis of the effects of preprocessing the image before computing the 

lAS and its induced image segmentation. 

5. 2 Displaying the lAS 

The lAS is a collection of surfaces in three dimensions with an associated radius and 

curvature function at each point on these surfaces. To understand this shape description we 

need a way to display this information. This requires a combination of computer graphics 

techniques and standard image display methods. This section describes three methods for 

displaying the lAS: 1) using grey-scale images, 2) using wire-frame models, and 3) using a 

simple shaded graphics model called the intensity top view. 



5. 2 .1 Using Grey-Scale Images 

Recall that the (x,y J) coordinates of points on the active surface are represented as sampled 

parametric equations and stored in a three-dimensional image in /usr/image format. Hence, 

the easiest method for visualizing the lAS is to simply display this grey-scale image. This 

method is demonstrated in Figure 5 .1. Here, the left image gives the x coordinate, the 

center image the y coordinate, and the right image the intensity of the active surface at each 

point. Since the active surface is restricted to move only in the spatial dimensions, the right 

image always corresponds to the input image. 

Figure 5.1. Grey-scale display of the IAS for a digital subtraction angiogram 

(DSA) image. The three images represent the x coordinate (left), the y coordinate 

(center), and the intensity coordinate (right) of the active surface. 

The direction of motion and the convergence rate of the active surface can be visualized by 

subtracting the starting positions of the active surface from the coordinates of the lAS after 

a selected number of iterations (see Figure 5.2). The intensity coordinate of the active 

surface never changes, so this part of the difference image will always equal zero. 
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Figure 5.2. Change in lAS coordinates displayed as a DSA image. These images 

represent the change in the x coordinate (left), they coordinate (center), and the 

intensity coordinate (right) of the active surface. 

5. 2. 2 Using Wire Frame Models 

Because the lAS consists of a collection of surfaces in three dimensions, it is important to 

understand the spatial relationships among these axis sheets to understand the lAS as a 

whole. One way to do this is to generate a wire frame model representing the lAS and 

display this model on a vector display device. To obtain a wire frame representation of the 

lAS, every Kth point on the active surface is connected in a rectangular mesh, where K is 

the ratio between the image size and the vector display limit. The global structure of the 

lAS can be detennined by interactively inspecting the resulting wire frame model from 

different points of view. The relationship between image structures and individual lAS 

sheets can be understood when the original image surface is also displayed as a wire frame 

(see Figure 5.3). The wire frame display technique is also helpful for visualizing the 

convergence of the active surface towards the lAS. Wire frames can be displayed after 
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selected numbers of iterations and compared to see how the active surface is converging 

under different conditions. The active surface convergence criteria and the partial derivative 

weights for the active surface functional described in the previous chapter were 

experimentally determined using this display technique. 

Figure 5.3. Wire frame display of a DSA image surface (left) and the surface for 

the corresponding lAS (right). 

5. 2. 3 The Intensity Top View 

The third technique used for visualizing the lAS is based on a simple shaded graphics 

model. The active surface is represented by a collection of polygons whose vertices are 

points on the lAS. The color of each of these vertices is equal to the intensity of the active 

surface at that point. To compare the active surface to the original image, the top view of 

this model is generated. This is accomplished by setting the rendering viewpoint in (x,y,I) 

to (0,0, +oo) and using parallel projection to calculate the visible image. No lighting model 

is required to capture intensity variation. Instead, the grey level of intermediate points on 

each polygon is determined using linear interpolation of the intensities of the four vertices. 

61 



The result is an image which looks like a "thinned" version of the original grey-scale image 

(see Figure 5.4). 

Figure 5.4. A DSA image (left) and its corresponding top view of the lAS (right). 

Notice the central vertical ridge whose width indicates bending of lAS sheets in the 

intensity dimension. 

This display technique is useful for illustrating the bending and branching of lAS sheets in 

the spatial domain and in the intensity domain. The relatively thin ridges in the top view 

image are easy to follow and their connections easy to identify visually. Hence, the spatial 

properties of the lAS can be easily studied. The width of the top view ridges indicates the 

asymmetry of structures in the original image. Whenever the intensity profile of an 

intensity ridge is steeper on one side than on the other, the corresponding lAS sheet bends 

in the intensity dimension. This bending is reflected by wide ridges in the top view image 

which are brighter on one side than on the other. 
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5.3 Image Segmentation 

Image segmentation is the process of grouping pixels in the image into regions so that each 

region corresponds to some semantically sensible object. The process of identifying these 

objects is called labeling. Lifshitz [Lifshitz, 1987] and others have shown that 

multiresolution analysis can be applied to obtain more successful segmentations than 

conventional techniques based on local pixel properties or measures of edge strength 

[Ballard and Brown, 1982]. Following Crowley [Crowley and Parker, 1984], I argue that 

yet better segmentations can be obtained by using global information provided by image 

shape analysis. The next section describes how the lAS can be used to segment images 

into visually sensible regions. The subsequent section describes the results of this 

segmentation method and discusses several potential applications of image regions 

identified using this technique. 

5. 3.1 Segmentation Method 

Partitioning an image into visually sensible regions requires some decision algorithm that 

reflects what we mean by "visually sensible". Since a single axis sheet represents a single 

geometric structure in the image, generating the image regions "related" to individual lAS 

sheets will result in regions which reflect the global shape properties represented by the 

lAS. These regions are likely to describe meaningful structures in the original image. 

There are two natural ways to determine the image regions related to individual lAS sheets. 

The frrst method for generating the grey-scale region associated with an axis sheet uses the 

inverse mapping of the lAS described in chapter 3. Here, the radius function on the axis 

sheet is used to calculate the volume defined by the union of all maximal disks centered on 

their respective axis points. The maximal intensity at each (x,y) location of this volume 
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describes a grey-scale image associated with the axis sheet. The problem with this 

approach is that maximal disks for adjacent lAS sheets overlap. As a consequence, the 

image regions corresponding to lAS sheets overlap rather than partitioning the image into 

disjoint segments. This method is rejected for this reason. The second method for relating 

axis sheets to image regions uses the active surface partition described in chapter 4. Each 

region in this partition is comprised of the active surface points which map to a single lAS 

sheet. Hence, these active surface regions define a disjoint segmentation of the original 

grey-scale image into visually sensible components. This is illustrated in the next section. 

5. 3. 2 Segmentation Results 

To display these image regions, I implemented an interactive region display program. This 

program operates as follows. First, the original grey-scale image is displayed in one 

portion of the display window. Then, the user selects a point in this image using the 

mouse. The (x,y) coordinates of the selected point are used to look up the region identifier 

for the region containing that point. This region identifier information was pre-calculated 

and stored in a region image by the lAS partitioning program. The region image is then 

used as a mask to identify all other image points which lie in the same region. These points 

are displayed in their original intensities in an adjacent portion of the display window. All 

points which are not in this region are displayed in black. 

The results of this region definition and display method on vascular images are very 

encouraging. Image regions associated with individual blood vessels are routinely 

identified in digital subtraction angiogram (DSA) images. This is demonstrated with three 

different DSA images in Figures 5.5. In each case, most of the major blood vessels and 

other symmetrical structures in the image are described by single lAS regions. In addition, 
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Figure 5.5. Three DSA images; a carotid arteriogram (top), a renal arteriogram 

(center), and a left iliac arteriogram (bottom) and a collection of blood vessels 

identified by selecting individual lAS regions for these images. 
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many smaller blood vessels are identified. This result is particularly significant because 

image contrast in these regions is low. Large image structures which have superimposed 

detail are not as easily identified. For example, several image regions are required to 

construct the central vertical vessel in Figure 5.5. This is because the lAS sheet associated 

with this structure has several smaller sub-sheets attached to it which act as boundaries in 

the region growing algorithm described in chapter 4. With some means for identifying this 

relationship between IAS sheets, the single image region associated with an axis and its sub 

axes could be automatically displayed. These relationships between axis sheets can be 

specified manually using a hierarchy editor [Coggins, 1988], or automatically by exploiting 

multiresolution properties of the lAS. The second alternative is discussed in detail in 

chapter 6. 

The results of this segmentation technique on other types of medical images are mixed. 

Bones and other elongated anatomic structures can be easily selected in computed 

tomogram (CT) images and dental radiographs, but non-symmetrical or blob-like structures 

are not as easily identified. In certain cases, image structures which are described by 

multiple IAS sheets are composed of several image regions. For example, the left kidney 

in the CT image in Figure 5.6 is composed of two lAS regions. This is not a problem; it 

reflects the desirable decomposition of complex objects into subobjects. Semantically 

meaningful image regions can easily be obtained by interactively combining these lAS 

regions. In other situations, a single lAS region corresponds to several adjacent anatomical 

structures. For example, the lAS region near the spinal cord in the CT image in Figure 5.6 

also includes adjacent muscle tissue. This is a serious problem. Separate objects should be 

described by separate lAS structures and correspond to separate lAS image regions. To 

overcome this difficulty requires some means of manually editing the image regions 

produced by the lAS to obtain portions of the image corresponding to semantically 

meaningful regions of interest (ROI) in medical images. 
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Figure 5.6. An abdominal CT image and a dental radiograph and a collection of 

anatomical structures associated with individual lAS regions for these images. 
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One problem with this segmentation method is that the image regions defined by this 

scheme are normally wider than expected by human observers. This is because IAS 

regions are defined to be image stmctures which are symmetrical about some central axis. 

Thus, these regions extend from the top of one ridge to the bottoms of adjacent valleys, not 

just to the steepest points on the hillsides. Hence, the resulting regions are not bounded by 

edges. The fact that these image segments include neighboring edges can be useful in some 

applications. For example, by post-processing selected ROis to detect edges, it is possible 

to identify the sub-region bounded by these edges. With these edge-bounded regions more 

accurate measurements of anatomical structures can be obtained. By extending ROis to 

three dimensions, edge-based volume rendering techniques can be used to visualize three

dimensional anatomical structures, thereby potentially improving image understanding by 

physicians. Thus, edge information in conjunction with sensible regions of interest defined 

by the IAS can be very useful in image analysis and display applications. 

5. 4 Effects of Image Processing 

With the tools in place to display the IAS and the image segments associated with 

individual sheets of the IAS, it is possible to study the effects of image processing on the 

IAS and on the resulting segmentations. Since the IAS reflects shape properties of the level 

curves of an image, any image processing which changes the relative intensities of pixels in 

the image will result in different IAS descriptions than the original image. Three classes of 

image operations are considered here: methods for improving the contrast in images, 

methods for smoothing images via blurring, and methods for measuring edge strengths in 

images. The remainder of this section describes the effects of these operations. 
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5. 4.1 Contrast Enhancement 

It is common practice to enhance the contrast of medical images to facilitate diagnosis. The 

goal of these methods is to make structures within the image more visible to human 

observers. One way to do this is to allocate display intensities in proportion to the number 

of pixels at each intensity in the image. This technique is called histogram equalization 

because the cumulative histogram of the image is linearized in the process [Castleman, 

1979]. Because the relative ordering of pixel values in the image is unchanged by this 

procedure, the level curves in the image will remain unchanged. Hence, the lAS of images 

processed in this way will remain essentially identical to the lAS for the original image. 

Only the curvature function in the intensity dimension will be affected. As a consequence, 

the image regions defined via the lAS will remain unchanged if an image histogram is 

equalized. 

More effective contrast enhancement is possible by focusing on more local image 

properties. By performing a histogram equalization for a given neighborhood around each 

point in the image, pixels can be displayed with an intensity which reflects their brightness 

relative to other points within this neighborhood. This contrast enhancement technique is 

called adaptive histogram equalization (AHE) [Pizer, 1987b]. Unlike global histogram 

equalization, AHE changes the relative ordering of pixels values in the image. Thus, the 

level curves in the image are changed, causing the lAS for ARE-processed images to differ 

from the lAS for the original image. For the three DSA images tested, the effect of this 

change on the resulting segmentation yields mixed results. In some cases it aids the 

identification of low contrast image structures, while in others it makes the identification of 

larger image structures more difficult (see Figure 5.7). It appears that this type of local 

contrast enhancement emphasizes local shape over global shape and these changes are 

reflected in the structure of the lAS. This observation remains unproven. Further research 
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into the relationship between image shape description and contrast enhancement will yield 

insights to both processes. 

Figure 5.7. Effects of contrast enhancement via AHE on a DSA image (left) and its 

associated lAS top view (right) and selected lAS regions (bottom). 
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5.4.2 Gaussian Blurring 

Whenever image noise is a problem or small image details are not of interest, these 

structures can be removed from the image by blurring. Numerous smoothing and blurring 

methods have been devised [Castleman, 1979], but convolution with a Gaussian kernel has 

the most desirable properties [Koenderink, 1984; Babaud 1986]. Because blurring 

involves calculating weighted averages of pixels in small neighborhoods, the relative 

ordering of pixel values in the image will be changed when an image is blurred. Hence, the 

lAS and corresponding image segmentation for a blurred image will differ from those 

calculated for the original image. The complexity and number of axis sheets and associated 

image regions generally decreases as the degree of blurring increases (see Figure 5.8). As 

a result, Gaussian blurring is useful for multiresolution analysis. The degree of blurring 

required to annihilate image structures can be used to measure the "importance" of these 

structures. This approach can be used to obtain the hierarchical relationship between axis 

sheets and their corresponding image regions. This process is described in chapter 6. 

Before multiresolution analysis can proceed, the original grey-scale image must be 

preprocessed to handle certain boundary conditions. For an image of infinite extent, 

blurring with a Gaussian is equivalent to diffusion according to the heat equation and 

eventually results in an image with only one extremum [Koenderink, 1984]. Typical 

medical images have finite extent and non-zero boundary pixels. Correctly modeling the 

diffusion process to avoid edge-effects for such images involves four steps: 1) calculating 

the image which has the same boundary conditions as the original image and is invariant 

under blurring, 2) subtracting this image from the original image to obtain an image with 

zero boundary, 3) eliminating image boundaries by treating the image as an infinite 

periodic function, and 4) using Gaussian blurring on the resulting image to study the 

multiresolution behavior of the original image [Lifshitz, 1987]. 
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Figure 5.8. Effects of blurring a DSA image with a series of Gaussians (left) and 

their associated lAS top views (right). The standard deviations of the Gaussian 

filters in the frequency domain are: 25, 10, 5 (from top to bottom). 
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Figure 5.9. Effects on the lAS of preprocessing for Gaussian blurring on a DSA 

image (left) and associated lAS top view (right) and selected lAS regions (bottom). 
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The effects of this preprocessing depends on the distribution of pixel values along the 

image boundary. For images with few non-zero pixels on the boundary, the blurring

invariant image has little structure. When this image is subtracted from the original grey

scale image, the resulting IAS is only slightly altered near the image boundary. Images 

with more complex boundary value distributions have more substantial corresponding 

blurring invariant images. The subtraction of these images from the original has more 

impact on the IAS and its induced image segmentation (see Figure 5.9). These effects 

remain to be quantified. 

5. 4. 3 Edge Strength Images 

Many computer vision approaches focus on the edges in an image because they provide 

important information about the structure of objects within images. The lAS reflects image 

symmetry well, but edge information is captured only indirectly via the derivative 

properties of the radius function. In an attempt to incorporate edge information more 

directly, the behavior of the lAS on edge strength images was investigated. Here, the 

magnitude of the gradient vector is used as an estimation of edge strength at each point in 

the image. While the relationship between the original image and this edge strength image 

is visually apparent, the lAS structures for these two images are very different. Each 

symmetrical object in the original image is represented by a single lAS sheet while the two 

edges which define the boundaries of this object in the edge strength image will be 

represented by a pair of lAS sheets (see Figure 5.10). 

Although the edge strength image has a much more complex lAS structure than the original 

image, the image regions associated with the edge strength lAS are still quite useful. One 

of the major strengths of lAS-based segmentation is that the resulting image regions are 

geometrically related. In edge strength images, these regions correspond to connected 
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Figure 5.10. An edge strength image for a slightly blurred CT image (left) and its 

associated lAS top view image (right) and selected lAS regions (below). 
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components of object edges. Since edge following in medical images is often a difficult 

task, these lAS regions can be used to simplify this process. For example, the boundary of 

some complex object in an image can be interactively constructed by selecting a collection 

of edge regions around the perimeter of the object. The "true" location of the object 

boundary can then be determined using the directional derivative properties of the image 

gradient [Canny, 1984] within the resulting boundary region. This method for identifying 

edge locations in images provides useful information to applications which focus primarily 

on object boundaries and provides another robust way for identifying ROis in medical 

images. 

5. 5 Discussion 

The purpose of the lAS is to capture and represent image shape so that applications can use 

this information for their benefit. To demonstrate that the lAS achieves this goal, I have 

described how image segmentation is improved by focusing on geometric properties of 

image structures via the lAS. In addition, the effects of three types of image processing on 

the lAS and its induced image segmentation have also been investigated. There are many 

other potential applications of the lAS and other image processing effects to be studied 

which are beyond the scope of this research. 
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Chapter 6 

Multiresolution Analysis of the 

Intensity Axis of Symmetry 

6 .1 Introduction 

The previous three chapters defined the lAS, described an implementation of the lAS and 

illustrated the application of this shape description to the problem of image segmentation. 

This chapter describes the multiresolution behavior of the IAS and outlines two methods 

for calculating a quasi-hierarchical shape description based on this information. The first 

method uses the close relationship between symmetry and maximal curvature while the 

second approach makes use of the approximate relationship between symmetry and 

watershed boundaries. This chapter concludes with a summary of unsolved problems and 

suggestions for future investigations. 

6. 2 Early Multi resolution Analysis 

Most current models of the human visual system recognize that images are simultaneously 

processed at multiple scales [Ginsburg, 1977; Wilson, 1979; Robson, 1983; Koenderink, 

1987]. This multiresolution approach has also been used in computer vision to provide 

efficient analysis [Burt, 1983; Rosenfeld, 1984b] and also to identify the scale of image 

structures and to determine the relationships among these structures [Crowley, 1984; 



Bergholm, 1987]. A particularly promising class of multiresolution methods follows 

essential image features to annihilation under resolution reduction to determine the scale 

associated with these structures [Lifshitz, 1987; Gauch and Pizer, 1988]. The fundamental 

principle used by these methods is that small-scale structures disappear sooner than large

scale structures and that the small image structures annihilate into larger-scale structures. 

When the relationships between structures can be described by a tree, a scale-based 

hierarchy on image features can be defmed. When more general relationships between 

structures are possible, like those described by a directed acyclic graph, multiresolution 

analysis can be used to define a quasi-hierarchy which is useful for image segmentation and 

other computer vision tasks [Coggins, 1988]. This is the case for the lAS, in which loops 

can appear. 

Gaussian blurring is the best choice for resolution reduction because it guarantees image 

simplification [Koenderink, 1984; Yuille, 1983; Witkin, 1983]. It is the only form of 

blurring which does not allow the local creation of new values of any linear combination of 

derivatives of the image as the blurring proceeds. As a consequence, neither image 

intensities nor Laplacian zeros are created by this process. Nonlinear combinations of 

derivatives do not share this property. Local intensity extrema (zeros of gradient 

magnitude) can be created in certain circumstances [Lifshitz, 1987]. This property of 

Gaussian blurring must be anticipated by computer vision applications which focus on 

nonlinear derivative properties. 

6. 3 The Multi resolution lAS 

The intensity axis of symmetry captures many aspects of image shape. Unfortunately, as 

with the symmetric axis, it is too sensitive to noise and small image detail. These minor 

image features often introduce large but unimportant axis sheets into the lAS. The solution 
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to this problem is to focus on the multiresolution behavior of the lAS to obtain a measure of 

the importance of each axis sheet. With this information it is possible to define a quasi

hierarchy on the axis sheets which captures this relationship between major and minor 

image structures. This new data structure can then be used by application programs to 

direct top-down or bottom-up image analysis tasks. 

The obvious method for computing the multiresolution lAS is to blur the input image with a 

series of Gaussians and compute the corresponding lAS for these images. As noted in 

chapter 5, the effect of blurring is to reduce the number and complexity of axis sheets. By 
' 

selecting the rate of blurring carefully, it should be possible to follow the gradual 

annihilation of these sheets and define the required axis quasi-hierarchy (see Figure 6.1). 

This approach was used to calculate the lAS at sixteen selected blurring levels. While the 

resulting lASs exhibited the predicted behavior, the cost of these computations was 

excessive. 

a) b) c) 

Figure 6.1. The lAS quasi-hierarchy induced by image simplification for a 

synthetic image. Here, branch C annihilates and is identified as a sub-object of the 

new composite branch BD. Later, branch A annihilates and is identified as a sub-

object of the final axis BDE. 
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An alternative approach for computing the multiresolution lAS is to identify an image 

structure which is directly related to the lAS yet simpler to compute and follow through 

multiple resolutions. By identifying when components of the simpler structure annihilate, 

and relating this information back to the lAS, the desired quasi-hierarchy on the lAS can be 

obtained with less computational expense. 

6. 4 Multiresolution Vertex Curves 

This section describes the theory and implementation issues involved in using curvature 

information to determine the multiresolution properties of the lAS. The analysis begins 

with the two-dimensional case, illustrating the relationship between curvature extrema and 

endpoints of the SA. Then this analysis is extended to the intensity dimension. Curvature 

extrema of level curves are shown to form connected curves called vertex curves. These 

curves are directly related to the axis sheets of the lAS, so the multiresolution properties of 

vertex curves can be used to define the multiresolution lAS. Finally, the difficulties 

involved in following discrete vertex curves through scale space are discussed. 

6. 4 .1 Boundary Curvature and Vertices 

Several researchers have focused on boundary curvature because it reflects the bending of 

the object, an essential aspect of shape [Brady and Asada, 1984]. Extreme points of 

boundary curvature (local maxima and minima) can also be used to characterize shapes. If 

an object boundary is decomposed into sections bounded by two adjacent curvature 

minima, the resulting boundary segments are called codons [Richards and Hoffman, 

1985]. Each codon contains a single curvature maximum and can be characterized into five 

types depending on the sign of these curvature extrema. By considering sections bounded 

by adjacent curvature maxima, we get boundary segments called codon duals [Leyton, 
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1986]. These can be classified by simply changing the sign and type of each curvature 

extrema in the ccxlon classification. 

Leyton discovered an important relationship between these curvature-based descriptions 

and the symmetric axis. He proved that each codon has associated with it a unique axis of 

symmetry and that this line terminates at or near the point of maximal curvature (M) for the 

codon. Similarly, each codon dual has an associated symmetry line which terminates at a 

local curvature minimum (m) (see Figure 6.2). The type of SA associated with these 

boundary segments depends on the type and sign of the curvature extrema. Internal SAs 

terminate at positive maxima (M+ ), external SAs terminate at negative minima (m-), and 

global SAs are associated with negative maxima (M-) and positive minima (m+ ). These 

four types of curvature extrema are also known as vertices. Their corresponding points on 

the SA are called SA endpoints. This relationship between vertex points and endpoints of 

the SA provides a useful tool for studying the SA. Once a boundary has been decomposed 

into codons (or the vertex points are located), we know the number and location of SA 

endpoints. This information could be helpful for computing the SA, but it has more 

important implications for multiresolution techniques. 

m+ 

91M+ 
B) 

Figure 6.2. Relationship between codons and the two-dimensional SA. 
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Under resolution reduction the boundary will tend to simplify. This will cause two 

adjacent curvature extrema (a local maximum and a local minimum) to move together and 

annihilate into an inflection point. When this happens, the number of vertex points is 

decreased by two. The problem is to determine which codon annihilated into which. 

Recall that a codon is a boundary segment bounded by two curvature minima (m) with a 

curvature maxima (M) somewhere between these points. When two adjacent codons are 

considered, we have a sequence of five curvature extrema of the form (m1, M2, m3, M4, 

ms), where codon A consists of (m1, M2, m3) and codon B of (m3, M4, ms). We say that 

codon A annihilates into codon B if M2 and m3 are blurred into an inflection point since 

two of the three vertex points which comprise codon A have disappeared. Similarly, we 

say that codon B annihilates into codon A when m3 and M4 are blurred together. By 

recording the level of blurring required to annihilate each codon and also recording which 

codon blurred into which, it is possible to establish a codon hierarchy (see Figure 6.3). 

A B B 

a) b) 

Figure 6.3. Multiresolution codon behavior of an object where boundary blurring 

increases from left to right. Here codon A annihilates into codon B. 

c) 

It has also been demonstrated that in certain circumstances Gaussian blurring imposes a 

scale-based quasi-hierarchy on the SA branches describing an object [Pizer, 1987]. 

Because of the correspondence between vertex points and SA endpoints, it is clear that 
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these quasi-hierarchies are related. The scale which causes the annihilation of an axis 

branch is equal to the annihilation scale for the associated codon and vice versa. This fact 

can be used to our advantage when computing the multiresolution SA. Vertex points and 

their associated codons are much easier to compute and follow through scale space than SA 

branches. Thus, to compute the SA quasi-hierarchy we follow codons through multiple 

resolutions and use the correspondence between SA endpoints and codons to determine the 

scale of the individual branches of the SA. This relationship between curvature and 

symmetry also extends to grey-scale images. Before this can be developed, a review of the 

differential geometry of surfaces is necessary. 

6. 4. 2 Surface Curvature 

Viewing an image as a surface in ~3, it is possible to use the tools of differential geometry 

to determine the curvature of curves on this surface. If the surface is given locally by 

parametric equations S(u,v) = (St(u,v), S2(u,v), S3(u,v)), then it is possible to define the 

following linearly independent vectors at each point (subscripts u and v denote partial 

differentiation). 

The tangent in the u direction: Su(u,v) = (Stu(u,v), S2u(u,v), S3u(u,v)). 

The tangent in the v direction: Sv(u,v) = (Stv(u,v), S2v(u,v),S3v(u,v)). 

The surface normal at (u,v): N(u,v) = Su(u,v) x Sv(u,v). 

These three vectors are called the Gauss trihedron. They form a basis for the space of 

vectors at each point on the surface and can be used to calculate various surface properties. 

As with the Frenet frame, it is possible to determine the curvature of curves on a surface in 
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terms of the derivative properties of these basis vectors. This can be accomplished using 

the directional derivative, in the direction w, of the unit normal vector N 

DwN = (grad(Nl) • w, grad(N2) •w, grad(N3) • w) = wt [ Jacobian(N) ], 

where the three components of the normal vector N(u,v) are (Nt(u,v), N2(u,v), N3(u,v)). 

DwN measures the rate of turning of the normal N as we move on the surface in a direction 

w. With a change in sign this directional derivative is known in the Weingarten map. 

Because this linear map captures information about the shape of the surface, it is also 

known in the literature as the shape operator. The Weingarten map can be used to calculate 

the curvature of any curve on the surface S using 

K(p,w) = a"(t) • N(p) = - dS(w) • DwN(p), 

where a(t) is any parameterized curve restricted to the surfaceS passing through the point p 

with velocity a '(t) equal to the surface tangent given by the differential dS(w) [Thorpe, 

1979]. Because this formula gives the component of curvature of the normal in the tangent 

direction, it is often called the normal curvature of the surface. From a computational point 

of view, normal curvature can be determined using the Jacobian of the normal map as a 

quadratic form at each point on the surface. When the surface tangents are unit length, this 

expression for curvature becomes 

K(p,w) =- wt [Jacobian(N(p)) ] dS(w), (1) 

an easy expression to evaluate. It is interesting to note that algebraic properties of the 
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Jacobian of the normal map correspond to geometrical properties of the surface. The 

eigenvectors of this matrix give the principal curvature directions of the surface at that 

point. These are the directions of maximal and minimal curvature. The eigenvalues of this 

matrix give the principal curvatures, which are the values of the surface curvature in the 

principal directions. The determinant of this matrix is the product of principal curvatures 

and is known as the Gaussian curvature of the surface. The average of the principal 

curvature values is known as the mean curvature and can be computed via the trace of this 

matrix. Thus, many important surface properties are accessible once the Weingarten map 

has been computed. 

6.4.3 Level Curve Curvature and Vertex Curves 

Recall that the extremal points of boundary curvature are called vertices. TheM+ and m

vertices correspond to the SA endpoints in the two-dimensional case. Since we are treating 

a grey-scale image as a smooth collection of level curves, these vertex points are adjacent 

from level to level and form continuous curves on the image surface called vertex curves. 

Similarly, connecting SA endpoints from level to level yields curves which mark the top (or 

bottom) of lAS sheets. These curves are called lAS endcurves. Extending the relationship 

between vertex points and SA endpoints, it follows that theM+ and m- vertex curves of an 

image correspond to lAS endcurves. As a result, vertex curves provide a concise 

description of the branching and bending behavior of structures in the original grey-scale 

image (see Figure 6.4). The M+ and m- curvature extrema points mark the tops of 

intensity ridges and bottoms of intensity courses respectively. Because these curves are 

easier to calculate than the lAS, they can be used to efficiently study the multiresolution 

behavior of the lAS. 

85 



[ill lAS Sheets 
- M+ Vertices 

a) 

M+ Vertices 
m- Vertices 
Iso-intensicy 

Contours 

Figure 6.4. The relationship between lAS endcurves and vertex curves. 

b) 

The first step in locating the vertex curves in an image is to derive an expression for level 

curve curvature. When an image is represented by the surface S(u,v) = (u, v, I(u,v)), the 

Gauss trihedron reduces to the following. 

Su(u,v) = (1, 0, lu(u,v)), 

Sv(u,v) = (0, 1, lv(u,v)), 

N(u,v) = (-lu(u,v), -lv(u,v), 1). 

The unit length level curve normal is defined by ignoring the third component of the surface 

normal (which corresponds to the intensity dimension), and scaling the resulting normal so 

it points inward for closed contours. This yields 

N(u,v) = (Iu(u,v), lv(u,v)) I II (lu(u,v), lv(u,v)) II. 
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The unit vector with no intensity component which is orthogonal to the level curve normal 

is called the level curve tangent. This vector is given by 

T(u,v) = (-lv(u,v), lu(u,v)) I II (lu(u,v), lv(u,v)) II. 

Now we return to the task of calculating the level curve curvature using equation (1). Since 

the unnormalized level curve normal in this case equals the image gradient, the Jacobian of 

the normal map is equal to the Hessian of the original image. By using the level curve 

tangent as the surface tangent w, the expression for level curve curvature becomes 

JC(u,v) =- T(u,v)t [ Hessian(I)] T(u,v). 

This reduces to the following nonlinear combination of first and second partial derivatives 

of the original image: 

1C(u,v) =- (luu (lv)2- 2 luv lu lv + Ivv (lv)2) I ((Iu)2 + (lv)2)3/2. (2) 

To evaluate this expression and calculate the level curve curvature at every point in an 

image requires an estimate of these first and second order partial derivatives. To ensure 

high quality results, piecewise cubic splines are fit to the image data and the first order 

partial derivatives of these splines are analytically evaluated and recorded. To estimate the 

second order partial derivatives of the image, piecewise cubic splines are fit to the fust 

partial derivatives and the first order derivatives of these splines are analytically evaluated. 

This method can be extended to obtain smooth estimates of higher order partial derivatives. 

Once the 2-jet is calculated, it is then stored in a three-dimensional image in /usrlimage 
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format and later input to the curvature calculation program. The output of this program is a 

grey-scale image with brightness reflecting the curvature at each image point. 

The results for medical images illustrate the relationship between level curve curvature and 

the structure of the image. Consider the two grey-scale images in Figure 6.5. The image 

on the left is a digital subtraction angiogram (DSA) image. The image on the right is its 

corresponding level curve curvature image. Notice how the tops of ridges in the DSA 

image correspond to bright curves in the curvature image. These bright points are where 

level curve curvature is maximal and positive. The bottoms of courses in the DSA image 

have negative minimal curvature and appear as dark curves in the curvature image. 

Figure 6.5. A DSA image (left) and its corresponding level curve curvature image 

(right). 

One way to calculate the locations of these curvature extrema is to find the zeros of the 

directional derivative of level curve curvature 

88 



Dw K = grad(K(u,v)) • w, 

where w is the level curve tangent vector T(u,v) = (-Iv(u,v), Iu(u,v)) I II (Iu(u,v), Iv(u,v)) II. 

This expression can be expanded to yield the following nonlinear combination of first, 

second, and third order partial derivatives of the original image. 

DwK= [ Iuuu ( (Iu)2 (Iv)3 + (Iv)S) + 

Iuuv (- 3 (Iu)3 (Iv)2- 3 (Iu) (Iv)4) + 

Iuvv ( 3 (Iu)2 (Iv )3 + 3 (Iu)4 (Iv) ) + 

Ivvv ( (Iu)3 (Iv)2 + (Iu)S) + 

Iuu Iuv (- 3 (Iv)4 + 9 (Iu)2 (Iv)2) + 

Iuu Ivv ( 3 (Iu) (Iv)3- 3 (Iv)3 (Iv)) + 

Iuv Ivv ( 3 (Iu)4 - 9 (Iu)2 (I v )2 ) + 

(Iuu)2 (- 3 (Iu) (Iv)3) + 

(Iuv )2 ( 6 (Iu) (Iv )3 - 6 (Iu)3 (Iv) ) + 

(Ivv)2 ( 3 (Iu)3 (Iv)) ] I ((Iu)2 + (Iv)2)3. (3) 

While this is not a pretty expression, it can be easily evaluated, given the 3-jet of the image. 

Cubic splines are used to calculate these partial derivatives which are then stored in a three

dimensional image in lusrlimage format. Using these values, the expression above is 

evaluated and the results recorded in a real-valued image. The zeros of the curvature 
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Figure 6.6. A blurred DSA image (top left), its corresponding lAS top view image 

(bottom left), its level curve curvature image (bottom right), and vertex curve image 

(top right) marking the zeros of the curvature derivative function. 
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derivative function are located by scanning this image from top to bottom and from left to 

right to detect sign changes. These pixels are marked as curvature extrema (vertex) points 

in an output image (see Figure 6.6). Notice that there are more vertex curves in this image 

than bright or dark curves in the corresponding curvature image. In addition to identifying 

the vertex curves corresponding to lAS sheets, the zeros of the curvature derivative also 

identify curves of negative curvature maxima and positive curvature minima. These curves 

do not correspond to lAS sheets. 

6.4 .4 Vertex Curve Topology 

Before the multiresolution properties of vertex curves can be investigated, the topological 

structure of vertex curves must be discussed. When a surface (u, v, l(u,v)) is smooth and 

continuous, the level curves defmed by l(u,v) = C will also be smooth. It follows that the 

curvature of these curves will also vary smoothly along the curves and that the points of 

local maximum and minimum curvature on these curves are connected from level to level 

and form the vertex curves described above. The exception is at critical points of the image 

where two or more vertex curves cross. 

At local intensity extrema the topology of level curves changes. Slightly below a local 

intensity maximum the level curve is generally elliptical. Thus, it contains four curvature 

extrema, two maxima and two minima. As we move towards the critical point, the level 

curves shrink and these four vertices approach each other. At the local maximum, the level 

curve reduces to a point and the four vertex curves defined by these points meet. Similarly, 

four vertex curves meet at each intensity minimum in the image (see Figure 6.7). 
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m+ M-

m+ M-
a) b) 

Figure 6.7. Vertex curve behavior near an intensity maximum (left) and an 

intensity minimum (right). Level curves are dotted while vertex curves are solid. 

At saddle points, the topology of the level c urves also changes with intensity. The level 

curves at the saddle intensity cross while the level curves slightly above and below each 

saddle are generally hyperbolic near the critical point. Thus, we have a point of locally 

maxjmal curvature on each level curve above these critical points, and a point of locally 

minimal curvature on each level curve below. Farther away from the critical point, the level 

curves pull away from the asymptotic directions of the hyperbola. This introduces four 

points of locally minimal curvature which are also above the critical point. These minima 

are located on either side the curvature maxima for these level curves. This collection of 

eight vertex points smoothly approach each other and meet at the saddle point (see Figure 

6.8). Whlle Nackman identified three types of saddles in his analysis of critical point 

configuration graphs [Nackman, 1984], all three exhibit the behavior described above 

within a small neighborhood of the saddle point. 
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Figure 6.8. Vertex curve behavior near an intensity saddle point. Level curves are 

doned while vertex curves are solid. 

Finally, the catastrophe points of level curve curvature must be considered. Examining the 

level curves slightly above and below such points, we flnd that curvature along these level 

curves is given locally by 

K(s) = s3 + t s, 

where s is arc length and t varies with intensity and goes through zero at the catastrophe 

point. Thus, the level curve on one side of the catastrophe point has two curvature extrema 

(one maximum and one minimum) while the level curve on the other side has none. As we 

move towards the intensity of this critical point, these two curvature extrema come together 

and annihilate at the catastrophe point. Thus, two venex curves meet at each level curve 

catastrophe point on the image surface (see Figure 6.9). Those vertex curves consisting of 

positive curvature maxima (M+) mark the tops of ridges while venex curves consisting of 

negative curvature rninjma (m-) mark the bottoms of valleys in the image. 
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m+ 

Figure 6.9. Vertex curve behavior near two catastrophe points of level curve 

curvature on a hillside. Level curves are dotted while vertex curves are solid. 

6. 4 . 4 Multi resolution Properties of Vertex Curves 

The effects of Gaussian blurring on critical points m an image are well known 

[Koenderink, 1984; Lifshitz, 1987]. In general, intensity extrema (maxima or minima) 

gradually move towards saddle points and annihilate. Occasionally the reverse occurs; an 

extremum and a saddle point appear from nowhere as the image is blurred. Similar 

multiresolution behavior has been observed for pairs of curvature catastrophe points. In 

general, these points move together and annihilate as an image is blurred, but occasionally 

pairs of curvature catastrophe points are created as the resolution is reduced. How this 

image simplification process affects vertex curves is more complex. Since all vertex curve 

segments are bounded at each end by one of the critical points or catastrophe points 

described above, the annihilation (or creation) of critical points or catastrophe points signals 
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the annihilation (or creation) of vertex curve segments. 

The first case to consider is the annihilation of an extremum and a saddle point. As these 

two critical points come close together, they are connected by three vertex curve segments, 

one curve corresponding to positive maximal curvature (M+) and two curve segments 

corresponding to positive minimal curvature (m+). When these points eventually 

annihilate, these three vertex curve segments annihilate also. At the same time, three pairs 

of vertex curve segments merge to leave only three vertex curve segments near the 

annihilation point (see Figure 6.10). The scale of each of the annihilated vertex curve 

segments is the level of blurring required to cause their annihilation. 

The next case to consider is the annihilation of pairs of curvature catastrophe points. In the 

case of a ridge on a hillside, nearby pairs of catastrophe points are connected by a pair of 

vertex curves, one with positive maximal curvature (M+) and the other with positive 

minimal curvature (m+ ). When the image is blurred, these two catastrophe points come 

together and annihilate. The two vertex curve segments connecting these points are also 

annihilated (see Figure 6.11). The case where a valley annihilates into the side of a pit is 

identical except that the signs of the curvature extrema which make up the two vertex 

curves are negative (M- and m-). Again, the scale of each of these vertex curve segments is 

given by the level of blurring required to cause its annihilation. 

The final case to consider involves the temporary creation of a non-generic curvature 

catastrophe point followed by the annihilation of two curvature catastrophe points which 

are connected by a single vertex curve segment. Occasionally, curvature catastrophe points 

move towards other vertex curves as blurring proceeds. Whenever one of these 

catastrophe points becomes coincident with an existing vertex curve, level curve curvature 

is given locally by 
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K(s) = s4 + t s2, 

where s is arc length and t varies with intensity and goes through zero at the catastrophe 

point. Hence, there will be three curvature extrema on one side of this point and one 

curvature extremum on the other side. As blurring proceeds, this catastrophe point will 

move away from the vertex curve and become generic again. When this happens, it will 

then be connected by one vertex curve segment to another catastrophe point and by another 

vertex curve segment to a critical point in the image. This changes the topology of the 

vertex curves in this neighborhood (see Figure 6.12). Further blurring in this case will 

cause the two catastrophe points connected by a single vertex curve segment to come 

together and annihilate. The scale of this annihilated vertex curve segment is taken as the 

level of blurring required to cause its annihilation. This also causes the pair of adjacent 

vertex curve segments to merge, reducing the total number of vertex curve segments in this 

neighborhood by two. 

As noted above, intensity extrema and saddles can be created by Gaussian blurring. In 

addition, it is possible for pairs of curvature catastrophe points to be created as blurring 

proceeds. Hence, it is possible for vertex curve segments to be created as resolution is 

reduced by reversing the three processes described above. While these are not common 

events, they should be anticipated when studying the multiresolution behavior of vertex 

curves. 
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M+ 
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0 Intensity extremum 
e Intensity saddle 
e Annihilation point 

Figure 6.1 0. Annihilation of an intensity extremum and a saddle point as blurring 

proceeds from frame a to frame d. Here, level curves of the image are shown 

dotted while vertex curves are solid. 
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Intensity extremum 
Curvature critical point 
Annihilation point 

Figure 6.11. Simple annihilation of two curvature catastrophe points as blurring 

proceeds from frame a to frame d. Here, level curves of the image are shown 

dotted while vertex curves are solid. 
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m+ 

m+ 
c) m+ d) 

Figure 6.12. Complex annihilation of two curvature catastrophe points as blurring 

proceeds from frame a to frame f. Here, level curves of the image are shown dotted 

while vertex curves are solid. 
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With the theoretical properties of vertex curves in mind, it should now be possible to 

implement methods to calculate multiresolution vertex curves and use this information to 

determine the multiresolution properties of the lAS. The first task of calculating vertex 

curves at multiple resolutions has been solved. This involves evaluating first, second and 

third order partial derivatives of the image at multiple resolutions and substituting these 

values into equation (3) to locate vertex curves at these respective resolutions. To find the 

multiresolution image sequence, the original image is Fourier transformed and filtered with 

various Gaussians. To evaluate the partial derivatives of these blurred images, a cubic 

spline fitting program is used. The results of this sequence of computations verify the 

theory described above. Vertex curves move smoothly to annihilation, with occasional 

changes in topology, as blurring level increases (see Figure 6.13). 

The task of identifying individual vertex curve segments and following these segments 

through blurring has not been solved. The same types of problems encountered in trying to 

link individual SAs from intensity level to intensity level appear again. The vertex curves 

calculated above are given only by a collection of pixel locations in an image and are 

calculated for a finite number of blurring levels. To associate scale with vertex curve 

segments, these curves must be linked across pixels and from one blurring level to the 

next. There are three major problems which complicate this task. 

First, representing vertex curves as points in digital images introduces pixel artifacts. This 

is particularly bad near intensity critical points where several vertex curves meet. Thus, the 

connectivity of vertex curves is difficult to determine. Since much of the analysis of 

multiresolution behavior of images depends on which vertex curve is connected to which 

and how these connections change as the image is blurred, these pixel artifacts are a real a 

problem. 
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Figure 6.13. Multiresolution vertex curves for a sequence of 16 blurred images 

(displayed in a 4 by 4 grid). The amount of blurring increases from left to right and 

from top to bottom. 
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Second, numerical errors in estimating image derivatives affect the quality of curvature 

calculations. To identify the locations of vertex curves, the zeros of equation (3) must be 

calculated. Because this expression involves third order derivatives, and higher derivatives 

have higher relative error, the derivative of curvature will be less accurate than the value for 

level curve curvature. Fortunately, this causes only minor problems, especially as blurting 

proceeds [van Dam, 1988], and the pixel locations of vertex curves remain fairly accurate. 

To classify the type of curvature extremum on each vertex curve requires the second 

directional derivative of curvature. Because this function involves fourth order derivatives, 

there is considerable error introduced when calculating this function. This makes the 

process of labeling the four types of vertex curves very error prone. Unfortunately this 

information is very important for identifying individual vertex curve segments. 

Third, vertex curve topology changes as the image is blurred. While level curves change 

topology from one intensity level to the next near critical points, the overall image can still 

be represented by a single surface in three dimensions. Thus, the active surface model can 

be used to maintain coherence across intensities as the lAS is calculated. In contrast, the 

topology changes in vertex curves from one level of scale to the next are such that the 

collection can not be represented in scale space by a single surface. Rather, a collection of 

branching surfaces is required. The connectivity of these surfaces is quite complex and can 

not be determined in advance. Thus, efforts to link vertex curves for all levels of blurting 

simultaneously using an active surface model are hindered by the many changes in vertex 

curve topology which occur as the image is blurred. 

To overcome these difficulties, some means of computing the vertex curves and their 

connections across blurting levels as a whole is necessary. Until this is accomplished, 

multiresolution vertex curves can not be used to derive the multiresolution lAS. 
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6. 5 Multiresolution Watershed Boundaries 

Focusing on the multiresolution behavior of an even simpler geometric structure, the 

watershed, avoids the problems described in the previous section. In geography, 

watersheds are defined in terms of the drainage patterns of rainfall. Regions of terrain 

which drain to the same point are defined to be part of the same watershed. The same 

analysis can be applied to images by viewing intensity as height. In this case, the image 

gradient is used to predict the direction of drainage in an image. By following the image 

gradient downhill from each point in the image, the set of points which drain to each local 

intensity minimum can be identified. These are called the watersheds of the image. 

Similarly, the gradients can be followed uphill to local intensity maximum in the image, 

defining the watershed duals of the image. The remainder of this discussion will focus on 

watersheds, but extends to watershed duals by substituting "up" for "down" and 

"maximum" for "ntinimum". 

Because watershed boundaries tend to mark the tops of intensity ridges in an image, they 

tend to approximately coincide with the vertex curves marking the tops of lAS sheets. 

Hence, one way to approximate the multiresolution behavior of vertex curves and their 

associated lAS sheets is to focus on the multiresolution properties of watershed 

boundaries. Since the hierarchy on watershed regions is determined by the multiresolution 

behavior of intensity extrema in the image, it is easy to calculate the scale of the individual 

curves which comprise of the watershed boundary and the quasi-hierarchy relating these 

curves. By relating this information back to the lAS, it is possible to estimate the scale of 

individual lAS sheets and impose a quasi-hierarchy on these sheets. 

The four steps in this process are 1) calculating the watershed regions and their boundaries 

for an image, 2) imposing a hierarchy on these regions by following the intensity extrema 
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defining each watershed through multiple resolutions, 3) using the watershed hierarchy to 

associate an annihilation scale with each watershed boundary curve segment, and 4) 

relating this watershed boundary information back to the IAS to define a scale-based quasi

hierarchy on axis sheets. The remainder of this section describes these steps in detail. 

6. 5.1 Watersheds and their Boundaries 

The first step in calculating the watersheds for an image is identifying the local intensity 

minima which define the bottoms of watersheds. Since an integer valued image is a poor 

approximation to a smooth surface, the input image is converted to floating point and very 

slightly blurred. This eliminates the plateaus in the image and simplifies the process of 

identifying maxima and minima. To distinguish between these critical points, each pixel is 

compared with its eight neighbors. If all neighbors are less than the central pixel, it is 

identified as an intensity maximum. Similarly, all eight neighbors of an intensity minimum 

are greater than the central pixel. Once the critical points are identified in an image, their 

locations are recorded for other programs to use. 

The next step is calculating the image gradient. Again, the blurred floating point image is 

used. Since the goal here is to identify the drainage directions for each pixel in the image, 

the eight neighbors of each point are searched to determine the maximal and minimal 

intensity directions. Since there are nine possibilities for each of these directions (the 

central pixel could also be an extremum), I encode this information in a single integer value 

which is then recorded in a grey-scale image in /usr/image format. 

Partitioning the input image into watersheds begins by marking the locations of intensity 

minima with unique region identifiers in an output image. Then, for each of the remaining 

points in the image, the gradient information is used to follow the image down to some 
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intensity minimum. The identifier of this extremum is then recorded in the output pixel 

corresponding to this starting point. To save computation time, all of the other points along 

this gradient descent path are also labeled with the same intensity minimum. Once all pixels 

in the image have been associated with their respective minima, the output image will 

contain the watershed regions of the image. The regions for watershed duals can be 

calculated using a similar algorithm starting with the intensity maxima in the image and 

following the image uphill. 

The final step of locating the watershed boundaries is accomplished by scanning the region 

image from left to right and then from top to bottom detecting changes in region numbers. 

These locations are then recorded in an output image. Displaying these boundaries 

superimposed on the original grey-scale image demonstrates the success of this approach 

for calculating watersheds and also the visual similarity between watershed boundaries and 

vertex curves (see Figure 6.14). While the correspondence between vertex curves and 

watershed boundaries is not exact, their visual similarity is often retained as the imput 

image is blurred. 

Figure 6.14. Watershed boundaries superimposed on a DSA image (left) and 

vertex curves superimposed on the same image (right). 
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Hence, simple heuristics can frequently be employed to use multiresolution watershed 

boundaries to obtain a good indication of multiresolution vertex curve and multiresolution 

lAS behavior. 

6.5 .2 Linking Intensity Extrema 

The multiresolution properties of watershed boundaries depends on the multiresolution 

behavior of the intensity extrema which define these regions. As an image is gradually 

blurred with a series of Gaussians, the image structure simplifies. As this blurring 

progresses, all but one of the intensity extrema in the image will eventually move towards a 

saddle point and annihilate. The watershed regions associated with these intensity extrema 

are annihilated at the same time. To impose a multiresolution hierarchy on watershed 

regions, the paths of intensity extrema in the image are followed as blurring proceeds. 

When an intensity minimum annihilates into a saddle, the water which drains towards the 

annihilated minimum will now drain to some other intensity minimum in the image. This 

defmes the parent-child relationship between these two watershed regions. By continuing 

this process for all extrema in the image, the hierarchy on watershed regions is defined. 

This task is accomplished by my LINK_EXTREMA program. 

Given the original locations of intensity extrema in the image, the extremum linking 

program operates by following these points through successive levels of blurring. Rather 

than using the correct but computationally expensive process of linking all image points to 

their isointensity counterparts from one level of blurring [Lifshitz, 1987], a fast heuristic is 

employed. Gradient descent is used to link minima from one blurring level to the next. 

Given an intensity minimum at position (x,y) at blurring level n, the program follows the 

image gradient downhill from position (x,y) in level n+ 1 until another intensity minimum is 

encountered. This is recorded as the link from level n to level n+ 1 of the former minimum. 
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The links defined by this process will have duplicates whenever there are fewer extrema in 

level n+ 1 than in level n. This occurs whenever local intensity extrema are annihilated. 

For example, if the extremum at position (x,y) annihilates at blurring level n+ 1, the 

extremum at (x,y) will be linked by gradient following to some other pixel at location 

(x',y') in level n+ 1. At the same time, a second pixel very near (x',y') in level n will also 

be linked to (x',y') in level n+ 1. To determine which link corresponds to the annihilated 

extremum, the lengths of all links from level to level are compared. If two or more 

extremum points link to the same point, the extremum with the shortest distance link is 

selected as the normal link, while the other links are recorded as annihilation links. Thus, 

each annihilated intensity extremum is linked to the extremum at the next blurring level 

which is directly downhill from the annihilated extremum. These links between intensity 

extrema define the hierarchy on their corresponding watershed regions described above 

since gradient descent simulates the effect of water draining on the image surface. The 

blurring level required to cause these annihilations are also recorded with these links as an 

indication of the scale of the watershed regions. This information is used later to identify 

the scale of individual watershed boundary segments. 

This algorithm is less sensitive to the choice of blurring rate than other multiresolution 

methods because only the intensity extrema in the image are linked from level to level. For 

this reason, I empirically selected a collection of 50 blurring levels which yield satisfactory 

results and recorded these values in a data file used by my LINK_EXTREMA program. 

Undoubtedly, the blurring rate should be based on properties of the input image. This 

topic is investigated in detail in Lifshitz's dissertation [Lifshitz, 1987]. Since my current 

method yields satisfactory results, I have not investigated these options. 
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6. 5. 3 Displaying Watershed Region Hierarchies 

To examine individual watershed regions, the interactive region display program described 

in chapter 5 can be used. Recall that the inputs of this program are 1) the grey-scale image 

to be displayed and 2) the region image, which acts as a display mask. Thus, the portion 

of the original image associated with each watershed can be interactively selected and 

displayed. The resulting image regions are very satisfactory but this technique does not 

reflect the region hierarchy calculated above. 

To visualize this hierarchy on watershed regions, I implemented an interactive hierarchy 

display program on a color SUN-3. This program operates as follows. The original grey

scale image is first displayed in one portion of the display window. The user then 

interactively selects a point in this image using the mouse. The (x,y) coordinates of this 

point are then used to look up the watershed region which includes that point. This region 

identifier together with the region image provides a mask for displaying pixels in the 

adjacent portion of the display window. Points in the same region are displayed in their 

original grey-scale intensities while the others are left black. 

To display the hierarchical relationships between regions, the watershed hierarchy data file 

calculated by LINK_EXTREMA is read and used to create a table representing the scale at 

which each region blurs into each other region. There is one row and one column in this 

table for each of the watershed regions identified in the image. The (i,j)th entry of this table 

contains the blurring level required for region i to eventually annihilate into region j. In 

addition to storing the simple links recorded in the hierarchy data file, the non-reflexive 

transitive closure of these links is calculated and stored. Thus if region A blurs into region 

Bat scale 3, and region B blurs into region Cat scale 7, the (A,C)th entry of this table will 

indicate that A eventually blurs into C at blurring level 7. Cases where region i never 
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annihilates into region j are indicated by -1 in this table. 

To display the parent region of the selected region, the user clicks the "increase scale" 

button on the mouse. The appropriate entry of the hierarchy data file is read to identify 

which region the selected region annihilated into and the blurring level required to cause 

this annihilation. The row of the hierarchy table corresponding to the parent region is then 

scanned to identify the set of regions which annihilate into the parent at or below the 

blurring level required to cause the annihilation of the selected region. The union of these 

regions are then used to generate a display mask to select the portion of the original image 

to display. Thus, the parent of the selected region is displayed together with all of the 

children regions of the parent which have also annihilated into the parent at this scale. This 

process can be repeated by clicking the right button again. This provides a very useful 

visualization of the parent-child relationships in the watershed hierarchy (see Figure 6.15). 

To lower the scale of the set of regions being displayed, the user clicks the "lower scale" 

button on the mouse. Since many children can annihilate into a single parent, there may be 

several ways to go down in the hierarchy tree. Instead of trying to select one of these 

lower scale alternatives, the numerical value of the current annihilation scale is simply 

decremented. Then the display process described in the previous paragraph is used to 

identify the appropriate lower scale children regions to be used to generate a display mask. 

The corresponding pixels of the original image are then displayed. This scale lowering 

process provides a very useful visualization of the annihilation order of regions in the 

watershed hierarchy (see Figure 6.16). 
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Figure 6.15. A selected watershed region and sequence of higher scale regions. 
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Figure 6.16. A selected watershed region and a sequence of lower scale regions. 

6. 5. 4 Associating Scale with Watershed Boundaries 

After visually inspecting the watershed hierarchy to verify that it is sensible, the next task 

towards imposing a quasi-hierarchy on lAS sheets is associating scale information with the 

individual curve segments of the watershed boundaries. With this measure of importance 
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for each ridge-top and valley-bottom in the image, it is possible to estimate the scale of 

each IAS sheet and impose a quasi-hierarchy on these sheets. One way to determine the 

scale of watershed boundaries is to interpret watershed boundaries as water barriers which 

disappear when adjacent watersheds annihilate into each other. Thus if region A annihilates 

into region B at scale 3, all boundary points which have both A and B as neighbors should 

be labeled with scale 3. By continuing this process for all of the annihilations between 

adjacent regions recorded in the hierarchy table, the majority of the watershed boundary 

points in the image will be labeled by scale (see Figure 6.17a). 

a) 

Figure 6.17. Associating scale with watershed boundaries. In case a) region A 

annihilates into B before region B annihilates into C. In case b) region B 

annihilates into C before region A annihilates into C. 

b) 

The remaining unlabeled boundary points correspond to the special situation where two 

adjacent regions do not annihilate directly into each other. To handle this situation, the 

hierarchy data file is searched to fmd the lowest (smallest) scale watershed region which is 

a parent of both of these regions. The scale of the boundary between these regions is then 

determined to be the highest scale required for these two regions to annihilate into the 
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parent region. For example, if in Figure 6.17b region A annihilates into region C at scale 5 

and region B annihilates into C at scale 3, the scale of the boundary between A and B is 

equal to 5. This corresponds to the lowest scale at which water originally in region A will 

mix with water from region B. 

The algorithm for associating scale with watershed boundary pixels involves 1) scanning 

the watershed region from left to right and from top to bottom to detect changes in region 

number, 2) using the methods described above to identify the scale of the boundary 

between these two adjacent regions, and 3) recording this information in the output image. 

To reduce the computation time required to identify the scale of watershed boundaries, this 

information is calculated once on demand and also stored in a table for future reference. 

Once this process is complete, the scale of all watershed boundaries are recorded in an 

output image. 

Since intensity is proportional to scale in this image, displaying this grey-scale image gives 

an indication of the importance of individual ridges and courses in the original image. For 

images of blood vessels, the watershed boundary segments which describe the tops of 

major blood vessels in an image are labeled with higher scale than those segments 

corresponding to smaller blood vessels (see Figure 6.18). Thus, the desired scale 

relationship between these image structures is captured by the scale of watershed 

boundaries. In abdominal CT images, this relationship is more difficult to illustrate 

because such images have few ridge-like anatomical structures. However, the relative scale 

of image structures in CT images is still apparent in the scale of these region boundaries. 
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Figure 6.18. Watershed boundary scales for two DSA images images. 

6.5.5 Imposing a Quasi-Hierarchy on lAS Sheets 

With the multiresolution watershed boundaries calculated above, it is now possible to 

estimate the scale of individual axis sheets and impose a quasi-hierarchy on the components 

of the lAS. Unlike vertex curves, there is not an exact correspondence between lAS sheets 
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and watershed boundaries. There are two issues here, the spatial distance between 

watershed boundaries and their associated lAS endcurves, and the one-to-one relationship 

between these structures. Axis sheets which connect intensity extrema have lAS endcurves 

which follow ridge tops and course bottoms. When these ridges and courses are sharp and 

narrow, their endcurves correspond very closely with watershed and hilltop boundaries. In 

other situations, there may be some distance between these curves. For example, if a ridge 

is wide and rounded, the location of the level curve extrema defining the lAS endcurves 

may not correspond with nearby watershed boundaries. More seriously, there may be lAS 

sheets describing small ridges on the side of a water basin which have no corresponding 

boundaries. Thus, there may be fewer watershed boundaries than lAS endcurves. In an 

attempt to overcome these difficulties I have implemented several heuristics for associating 

watershed boundary scale with individual lAS sheets. 

Because the image regions associated with each lAS sheet have already been computed, 

this information can be used to select the set of watershed boundaries which overlap each 
I 

axis sheet. By calculating either the mean, median or mode value of the scale of the 

selected boundary points, it is possible to obtain some measure of the scale of each lAS 

sheet. In the blood vessel images that I have studied with this technique, many of the 

blood vessel regions have scales which appear to be sensible, while others are assigned 

scales which are either too high or too low (see Figure 6.19). The number of boundary 

points along the ridge-top or valley-bottom outnumber the boundary points associated with 

sub-ridges or sub-courses in the region. Thus, these simple statistical measures often give 

an accurate reflection of the annihilation scale of the lAS sheet. To display this 

information, each image pixel is labeled with intensity proportional to the scale associated 

with its corresponding lAS sheet. White is used for high scale and black for low scale. 
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Figure 6.19. Scale information for individual lAS sheets for a DSA image based 

on the mean value of the scale of watershed boundary points. 

One problem with this heuristic approach is that lAS sheets may occasionally be assigned 

an incorrect scale. This is because the statistical measures described above are only 

approximate measures for determining the scale of an lAS sheet based on the scale of 

watershed boundaries "nearby" the lAS sheet. When the relative scales between adjacent 

sheets are maintained, these assignment errors are not a major problem. Unfortunately, 

there are cases where major image structures are given low scale values. One solution to 

this problem is to use interactive tools to manually reassign higher scales to these regions. 

Determining the parent-child relationships between lAS sheets is the second half of the 

process of imposing a quasi-hierarchy on lAS sheets. Unlike intensity extrema and their 

associated watershed regions, the identification of which watershed boundary annihilates 

into another is not easily determined. Each watershed boundary is a curve segment which 

separates two watersheds and is connected at the endpoints to two other watershed region 

boundaries. When a boundary annihilates, it is not obvious how it should be related to 
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these two adjacent boundary segments. Should it be the child of only one of these 

boundary segments or both? Hence, identifying unique parent-child relationships between 

IAS sheets via multiresolution watershed boundaries remains an open problem. 

One approximate solution to this problem is to use the relative scales of lAS sheets 

calculated above, and the adjacency of lAS sheet regions in the image to record the "most 

likely" parent-child relationships between lAS sheets. This can be accomplished by 

relating each lAS region to all adjacent regions of higher scale. Thus, each lAS sheet can 

have many children and many parents. Some of these relationships are visually or 

semantically sensible while others are not. As a consequence, this approximate quasi

hierarchy must be manually corrected using an interactive tool for editing the parent-child 

relationships between image structures. 

6. 6 Discussion 

The lAS is much more difficult to follow through scale space than originally anticipated. 

This is principally because the individual components of the lAS are surfaces in three 

dimensions which can be arbitrarily connected. Attempting to compute these surfaces 

simultaneously across resolutions and following their annihilation directly is too 

computationally expensive to be effective. By focusing on the vertex curves which are 

associated with the endcurves of these IAS sheets, this problem is reduced to following the 

multiresolution behavior of curves in two dimensions, and relating the derived vertex curve 

structure back to the original lAS sheets. Because these curves can also be arbitrarily 

connected, and their topology changes as blurring proceeds, attempts to implement of this 

approach have also proven unsuccessful. 

By focusing on the annihilation of intensity extrema and their associated watersheds under 
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resolution reduction, it is possible to assign scale to the boundaries of these watershed 

regions. Using an empirical relationship between these watershed boundaries and lAS 

sheets, the task of assigning scale to individual lAS sheets can be accomplished. 

Unfortunately, this does not impose a satisfactory quasi-hierarchy on axis sheets and user 

intervention is required to obtain an accurate representation of the quasi-hierarchy induced 

on the lAS by image simplification. 

This situation should be remedied by either improving the theory relating watershed 

boundaries and the lAS (and extending the corresponding implementation) or by solving 

the problem of following vertex curves through scale space. The latter approach holds the 

most promise since the theory is already well developed. Perhaps some of the techniques 

used by Bergholm [Bergholm, 1987] or Baker [Baker, 1988] to follow edges through scale 

space could be applied to this task. This possibility remains to be investigated. 

Until some method is devised which overcomes these problems, human intervention is 

required to accurately represent the relationship between image structures. While this is not 

ideal, it does provide a means to make use of the parent-child relationships between image 

structures in image segmentation and other computer vision tasks. 
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7 .I Summary of Results 

Chapter 7 

Conclusions 

The principal objective of my research was to extend the analysis of shape to grey-scale 

images. I accomplished this goal by designing and implementing a new structural shape 

description called the intensity axis of symmetry (lAS) and an associated curvature-based 

description called vertex curves. Both of these descriptions focus on properties of 

individual level curves of the image and combine this information across intensities to 

obtain representations which capture both spatial and intensity properties of shape in an 

image. To demonstrate the effectiveness of this image shape description, I implemented an 

interactive image segmentation program which identifies and displays image regions 

associated with individual components of the lAS. These regions often correspond to 

sensible anatomical structures in medical images. An analysis of the multiresolution 

behavior of the lAS reveals that it is possible to impose a quasi-hierarchy on lAS sheets by 

focusing on the multiresolution properties of much simpler geometric structures: vertex 

curves approximated by watershed boundaries. The remainder of this section enumerates 

my main accomplishments. 



7 .1.1 The Definition of the lAS 

My first contribution is the definition of the intensity axis of symmetry. This shape 

description is specifically designed for grey-scale images and captures both the structural 

decomposition of objects within images and their individual width and bending properties. 

The branching behavior of image structures in both the spatial and intensity dimensions is 

reflected in the branching of individual lAS sheets. The radius and curvature functions 

defined on these sheets can be used to characterize portions of lAS sheets or study the 

width and bending properties of image structures in detail. In addition to providing an 

invariant description of image structures, these two functions can be used to recreate the 

original image. Hence, the lAS is an image transform which captures information related 

to edges, comers, ridges and courses in the image, which are visually significant. 

7 .1. 2 An Implementation of the lAS 

My main second accomplishment is the implementation of an effective method for 

calculating the intensity axis of symmetry. Because the intensity dimension is 

incommensurate with the spatial dimensions, the lAS is defined in terms of the symmetric 

axis for each intensity level in the image. Methods which calculate the two-dimensional SA 

for some collection of level curves and then attempt to connect these SAs from level to level 

to obtain the lAS fail to yield satisfactory results. To provide the necessary coherence in 

the intensity dimension, a new method for calculating the SA at all intensity levels 

simultaneously was developed. This was accomplished by extending the grass fire analogy 

of Blum to the intensity dimension. In two dimensions, the symmetric axis is defmed to be 

the set of quench points for a grass fire started on a level curve or an object boundary. 

These quench points are points where fire burning from one direction extinguishes the fire 

burning from another direction. To calculate the lAS, the effect of a grass fire burning in 
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(x,y,I) is simulated. A fire is started at each level curve simultaneously and allowed to 

bum inward towards the quench points which define the IAS, while maintaining the 

structural integrity of the frre surface. To ensure that the spatial and intensity dimensions 

remain separate, the frre is constrained so that it does not spread between intensities. There 

are three important aspects to this implementation. 

I) To provide the necessary coherence from one level curve to the next, the image 

is modeled as a surface in (x,y,I). To ensure that this surface is well behaved and 

converges on the quench points described above, an energy functional defined on 

surfaces is ntinintized. The functional I developed is an extension of the active 

contour model of Kass to surfaces, so it is called the active surface model. This 

functional includes a weighted sum of frrst and second partial derivatives of the 

surface whose weights are adjusted so the surface behaves like a flexible 

membrane. The functional also contains a term which reflects image symmetry and 

directs the surface towards the IAS. Together, these terms ensure that the active 

surface will converge to the lAS while reducing the number of artifacts introduced 

by image noise. An iterative relaxation technique is used to decrease the functional 

value. This technique moves each point on the active surface one step in (x,y,I) 

towards the lAS in each iteration. Convergence is deterntined when the number of 

points moved in an iteration falls below some predeterntined threshold. 

2) A function in (x,y,I) has been defined to direct the active surface (grass frre). 

Since the grass frre always burns away from the boundary, the distance from each 

point in (x,y,I) from the nearest image point at the same intensity corresponds to 

burning time. When this burning time is locally maximal in the burning direction, a 

quench point has been reached. This distance function is calculated (and inverted) 

and used as the image symmetry function which attracts the active surface towards 
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the lAS. 

3) A means of identifying the portions of the lAS corresponding to individual lAS 

sheets has been developed. The first step in this process is identifying which active 

surface point quenches with which. This task is accomplished by comparing the 

final (x,y,l) positions of each pair of active surface points. Each point is linked 

with the nearest point in (x,y,l) which is not adjacent on the active surface. After 

this linking of involutes is complete, a region growing algorithm can be used to 

identify which points lie on the same lAS sheet. The key to this algorithm is 

identifying where lAS sheets branch, and stopping the region growing from going 

beyond these branch points. This is accomplished by verifying that points added to 

the region are adjacent to other points in the region and that their corresponding 

involutes are also adjacent. This technique decomposes the active surface into the 

branching axis surfaces which comprise the lAS. 

7 .1. 3 Image Segmentation using the lAS 

My third main contribution is a method for the identification of image regions with shape

based coherence which correspond to sensible structures in medical images. The task of 

identifying regions of interest corresponding to anatomical (or physiological) structures in 

medical images is an important first step in measurement and display. When these image 

structures are geometrically related it is sensible to use image geometry in this segmentation 

process. Since the individual lAS sheets describe components in an image which are part 

of the same symmetrical object, the identification of image regions associated with these 

axis sheets yields image segments which are geometrically related. Thus, by selecting 

individual lAS sheets and displaying their associated image regions, ridge-like (or valley

like) image structures can be identified which often correspond to sensible objects (or parts 
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of sensible objects) within medical images. This method for image segmentation has been 

implemented and demonstrated on a variety of images. A preliminary analysis of the 

effects of image processing on this segmentation yields the following observations. 

I) With no image processing, the image regions calculated by this method 

correspond to portions of intensity ridges in the image (or intensity courses when 

the lAS of inverted images is calculated). Since few structures in abdominal CT 

images correspond to single intensity ridges, the regions identified by the lAS are 

often not as good as those provided by focusing on the annihilation of intensity 

extrema and the following of isointensity curves through multiple resolutions 

demonstrated by Lifshitz. The lAS-based image regions often correspond to parts 

of organs, but seldom whole organs. Worse, errors introduced in representing 

such circularly symmetric image structures occasionally results in lAS regions 

which combine parts of several organs. Hence, manual editing is required to 

identify regions of interest. In contrast, many structures of interest in DSA images 

correspond to single intensity ridges. Image segments associated with lAS sheets 

routinely identify whole sections of blood vessels from one branching point to 

another. These regions are much better than those provided by the Lifshitz 

approach, where very few blood vessel segments are identified. 

2) In theory, global contrast enhancement via histogram equalization should not 

effect the lAS because the relative ordering of pixel intensities is unaffected. In 

practice, the image symmetry function is calculated at a finite number of equally 

spaced intensities. By doing global histogram equalization before this function is 

calculated, a more uniform approximation to the lAS is possible in the intensity 

dimension. 
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3) Local contrast enhancement via adaptive histogram equalization frequently 

appears to yield better segmentations of small image structures. Unlike global 

histogram equalization, the global relative ordering of pixels in an image may be 

changed considerably. Thus, large image structures and the connections between 

such structures may be affected by such processing. In some cases this may be 

beneficial. For example, when the background in an image varies smoothly from 

one side of the image to the other, the effect of local contrast enhancement is to 

emphasize the foreground relative to the background. When this background 

variation is not essential to the task of object identification, such processing will 

yield image regions which are more visually sensible. When global intensity 

variation is important, adaptive histogram equalization may negatively effect image 

segmentation by changing the global relationships between pixel intensities required 

to identify such image structures. The precise nature of these effects are not 

known. 

4) Preprocessing for Gaussian blurring changes the structure of the lAS and 

corresponding image regions near image boundaries. Ideally image blurring should 

correspond to diffusion via the heat equation. For grey-scale images of finite 

extent, boundary effects must be anticipated and the image normalized before 

blurring with a Gaussian filter. Once this is done, boundary pixels have zero 

intensity. This changes the structure of the IAS near image boundaries. Branches 

no longer end abruptly at the edge of the image; they gradually diminish. Because 

this preprocessing changes the global relationships between pixel intensities, the 

precise nature of the effects of normalizing for blurring are unknown. 

5) Calculating the lAS for edge strength images provides a robust means for edge 

detection which can be used to identify regions of interest in medical images. 
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Because edges in typical medical images correspond to narrow ridges in gradient 

magnitude images, the lAS sheets which describe these ridges can be used to 

identify all or part of the boundary of image structures. These edges provided by 

this method are coherent due to the coherence of the underlying lAS for these 

regions. Therefore, applications which focus on object boundaries also benefit 

from edges identified by the IAS. 

7 .1. 4 Multi resolution Analysis of the lAS 

My fourth main accomplishment is an analysis of the multiresolution properties of the lAS. 

Blurring simplifies the image and its corresponding IAS-based segmentation. As an image 

is blurred, the number of intensity extrema generally decreases, causing the topology of 

level curves to simplify. Since the number of axis sheets is related to the number of 

intensity extrema, the number of lAS sheets also decreases with blurring. At the same 

time, the connectivity of these sheets also simplifies. Since small or low contrast image 

structures tend to annihilate early under blurring, the degree of image blurring required to 

annihilate image structures provides an indication of their scale. When importance is 

related to the particular combination of size and contrast that leads to a particular 

annihilation sequence, image blurring can be used to eliminate undesired image features 

before an image segmentation based on the lAS is calculated. Hence, the image regions 

obtained from a blurred image will correspond to more global structures in the image. 

Detailed analysis of the multiresolution properties of the IAS yields the following 

observations. 

1) There is a one-to-one correspondence between vertex curves defined by level 

curve curvature extrema and the individual branches of the IAS. Furthermore, these 

vertex curves can be easily calculated at any resolution by blurring the original 
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image, calculating the partial derivatives of the blurred image up to the third order, 

substituting into an expression for the directional derivative of level curve curvature, 

and searching for the zero crossings of this function. The problem of following 

these vertex curves to annihilation through scale space and associating scale to their 

corresponding lAS sheets has not been solved. 

2) There is an empirical relationship between watershed boundaries and the tops of 

lAS sheets which can be used to assign an estimate of scale to each lAS sheet and 

generate a quasi-hierarchy on lAS sheets. The scale of watershed boundaries can 

be determined by calculating a multiresolution hierarchy on intensity extrema in the 

image and their associated watershed regions. The heuristic for associating the 

scale of these watershed boundaries to lAS sheets yields only approximate results 

and the resulting quasi-hierarchy on lAS sheets contains parent-child relationships 

which are not always visually or semantically sensible. Hence, this quasi-hierarchy 

must be manually edited to reflect the proper parent-child relationships between lAS 

sheets, or the applications which use this information must be made robust to these 

approximation errors. 

7. 2 New Research Directions 

While much has been accomplished by this research, there are many interesting questions 

which remain to be investigated. First, several problems were identified during the 

implementation of the lAS which should be addressed. Second, these general shape 

description techniques could be extended to other image analysis tasks. The remainder of 

this section identifies these research directions. 

1) The active surface model is based on the minimization of a functional involving 
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a linear combination of first and second partial derivatives of the surface. While I 

have identified satisfactory weights for these partial derivatives, the "best" weights 

for these terms, if an optimum exists, are unknown. Nonlinear combinations of 

these derivatives are also potential candidates for the active surface functional. 

Wbich combinations produce the desired active surface behavior while remaining 

invariant to changes in coordinates are unknown. Both of these questions are 

important and should be addressed. Improving the functional used for the active 

surface could yield better approximations to the lAS and may also reduce the 

computational effort required. Because the active surface is a general tool for 

providing coherence across one-parameter families of curves, improvements in the 

active surface model will be beneficial in situations requiring such coherence. 

2) Minimizing a surface functional is difficult and computationally expensive. The 

gradient descent algorithm I have implemented yields excellent results, but the small 

step size in each iteration of the method causes two problems. First, it slows the 

convergence rate of the active surface. More seriously, the active surface could 

potentially converge on a local minimum rather than a global solution. One 

minimization algorithm which addresses both of these problems is simulated 

annealing [Kirkpatrick, 1983; Geman, 1984]. This method uses large step sizes 

early in the minimization to avoid local minima and decreases the step size as the 

number of iterations increase. This ensures that high quality results are obtained in 

reasonable time. How simulated annealing could be integrated into the active 

surface model is unknown. The potential speed improvements of this minimization 

approach make this alternative worthy of investigation. Since many other problems 

are posed in this regularization framework, the results of this investigation will have 

wide application. 
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3) Better methods are needed to identify the active surface regions associated with 

individual lAS sheets. The two region growing algorithms I have developed obtain 

satisfactory results but are rather complex and computationally expensive. The 

basic information used by these methods is that two adjacent pixels on the active 

surface whose involutes are also adjacent belong on the same lAS sheet. It would 

seem that this information could be used to devise an efficient region merging 

technique to grow all maximal regions simultaneously and thereby partition the 

active surface. Since this one of the slowest steps in the process of calculating the 

lAS, this possibility should be investigated as an alternative to my present methods. 

If existing region merging methods are not suited to this task, this problem presents 

an interesting opportunity to extend the capabilities of region merging techniques. 

4) The problem of following discrete curves and surfaces to annihilation through 

scale space requires some mechanism which provides coherence in digital images. 

The active surface model used to simultaneously calculate the symmetric axis at all 

intensity levels is not adequate for computing arbitrary surfaces in the scale domain 

because it is not designed to handle changes in curve topology. Perhaps the self

organizing active contour segments used by Zucker to identify edges in an image 

[Zucker, 1988] could be extended to surfaces to meet these requirements. With 

such multiresolution following tools, the desired quasi-hierarchy on lAS sheets 

could be calculated and used to direct top-down or bottom-up shape analysis 

applications. Solving the problem of providing coherence in these complex 

situations will provide a tool which should be useful for computer vision 

applications such as motion analysis. 

5) The effects of image processing on shape description are very complex and need 

to be studied within a solid theoretical framework. What is needed here is an 
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understanding of the shape deformation introduced by image change. By focusing 

on smooth deformations of shape, a family of shape descriptions could be defmed 

and used to understand the effects of image processing. This framework could also 

be used to study properties of shape in time-varying images. Because these one 

parameter families of shape descriptions are less constrained than those describing 

the level curves describing a grey-scale image, the mathematics of singularity theory 

will be essential to this analysis [Damon, 1988; Bruce and Giblin, 1986]. Perhaps 

the notion of describing shape change using process grammars [Leyton, 1986] 

could be extended to grey-scale images and used for this task. With such tools, 

many unexplored aspects of image shape could be investigated. 

6) The image shape properties captured by the lAS could be used for other 

purposes. For example, nonlocal edge properties can be investigated by 

considering both the radius properties and intensity bending of lAS sheets. Thus, 

the interaction of multiple edges in an image could be investigated [Pizer, 1988]. 

lAS features could also be used to design image warpings which make local 

intensities better matched with their local scale, so that local image shape will not 

interfere with multiresolution analysis in these neighborhoods [Pizer, 1988]. It 

may also be possible to identify other visually important image features such as 

comers using the lAS. These possibilities remain to be investigated. 

7) The black-on-white and the white-on-black descriptions of an image must 

somehow be combined. The description of image shape in terms of the lAS for the 

volume below the image surface provides a description of light structures on dark 

backgrounds, while the lAS which describes the volume above the image surface is 

best suited for describing dark structures on light backgrounds. These two lAS 

structures both provide a complete description of the image (either can be used to 
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recreate the image), so each image structure can be described in two ways. The 

problem of identifying which lAS should be used to describe which image 

structures remains open. 

8) The notion of investigating grey-scale shape by focusing on the shape of one

parameter families of intensity level curves could be generalized and applied to 

images of higher dimension. For example, the shape of structures in three

dimensional grey-scale images could be studied via the family of three-dimensional 

symmetric axes [Nackman, 1982] describing the isointensity surfaces defined by 

this intensity function. By defining three-dimensional regions associated with 

components of the resulting lAS structure, shape-based segmentation of three

dimensional medical images should be possible. These three-dimensional image 

regions should be very useful for volume rendering applications which require the 

identification of regions of interest and for medical applications (such as diagnosis 

and treatment planning) which require the analysis of structures within three

dimensional images. 
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