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WILLIAM DANIEL PARTAIN. Graph Reduction Without Pointers (Under the 
direction of Gyula A. Mag6.) 

Abstract 

Graph reduction is one way to overcome the exponential space blow-ups 
that simple normal-order evaluation of the lambda-calculus is likely to suf
fer. The lambda-calculus underlies lazy functional programming languages, 
which offer hope for improved programmer productivity based on stronger 
mathematical underpinnings. Because functional languages seem well-suited 
to highly-parallel machine implementations, graph reduction is often chosen 
as the basis for these machines' designs. 

Inherent to graph reduction is a commonly-accessible store holding nodes 
referenced through "pointers," unique global identifiers; graph operations 
cannot guarantee that nodes directly connected in the graph will be in nearby 
store locations. This absence of locality is inimical to parallel computers, 
which prefer isolated pieces of hardware working on self-contained parts of a 
program. 

In this dissertation, I develop an alternate reduction system using "sus
pensions" (delayed substitutions), with terms represented as trees and vari
ables by their binding indices (de Bruijn numbers). Global pointers do not 
exist and all operations, except searching for redexes, are entirely local. The 
system is provably equivalent to graph reduction, step for step. I show that . 
if this kind of interpreter is implemented on a highly-parallel machine with 
a locality-preserving, linear program representation and fast scan primitives 
(an FFP Machine is an appropriate architecture) then the interpreter's worst
case space complexity is the same as that of a graph reducer (that is, equiv
alent sharing), and its time complexity falls short on only one unimportant 
case. On the other side of the ledger, graph operations that involve chaining 
through many pointers are often replaced with a single associative-matching 
operation. What is more, this system has no difficulty with free variables in 
redexes and is good for reduction to full beta-normal form. 

These results suggest that non-naive tree reduction is an approach to 
supporting functional programming that a parallel-computer architect should 
not overlook. 
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Preliminaries 

Programming language. I support some of my descriptions by show
ing an implementation encoded in Standard ML, set in a sans serif font. 
Appendix A is a reader's introduction to ML and defines the supporting 
routines for the programs in the dissertation proper. I chose ML because 
the compiler from Bell Laboratories [8] was the best-implemented functional 
language available to me. The code shown is directly extracted from working 
programs. 

A stylistic matter. I veer from the usual habit of calling myself "we," 
siding with E. B. White: 

It is almost impossible to write anything decent using the editorial 
"we," unless you are the Dionne family. Anonymity, plus the "we," 
gives a writer a cloak of dishonesty, and he finds himself going around, 
like a masked reveler at a ball, kissing all the pretty girls [84, page 121]. 

Acknowledgments. I am not sure how I got into the Ph.D. business, but 
I know how I got through it. The Team Mag6 members have been the 
best of colleagues, notably David Middleton, initiator into the Mysteries, 
Edoardo Biagioni, with his startling imagination, and Bruce Smith, with his 
breadth of understanding and good sense. Charles Molnar and his group 
added more than a little spice through their collaboration with us. Vern 
Chi and the Microelectronics Systems Lab have provided superb computing 
facilities, even if I was mainly an intruder. "Net people" provided many small 
helps and assurances; Paul Watson went beyond the call duty by sending a 
copy of his hard-to-get thesis. Bharat J ayaraman and Rick Snodgrass, former 
committee members, read drafts even after they had decided to leave; that is 
conscientiousness! Gyiirgy Revesz provided a needed boost during his visit 
from the T. J. Watson Research Center. As for sanity, my family and friends 
have served admirably as bouncers for Dorothea Dix hospital, including my 
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father who has hounded me mercilessly about finishing and my mother who 
made a point not to. Ed McKenzie was as good a lunch crony as one could 
hope to find, but I will never forgive him for completing his degree in only 
four years. Phil and Paige LeMasters failed to disguise their deliberate effort 
to keep me in contact with the world outside Sitterson Hall. 

My noble and ennobling committee-Gyula Mag6, David Plaisted, Jan 
Prins, Don Stanat and Jennifer Welch-have bravely weathered the drafts 
from room 327 and have vastly improved my material. Prof. Stanat lured 
me into the Department and has stood behind his mistakes, even as I flamed 
the faculty and wrote purple prose into proposals. Prof. Mag6 has enhanced 
his reputation as the best thesis advisor in the Department, unbuffeted by 
the fashions of graduate-student whims, tolerant of not-always-serious meet
ings, readily available for consultation, and incisive (but not opaque) in his 
critique. I offer my heartfelt thanks to each one. 

I am grateful to the U. S. Army Research Office which provided financial 
support for this work through an Army Science and Technology Fellowship 
(grant number DAAL03-86-G-0050). 

Comments. I welcome your comments and corrections. My e-mail address 
is partain©cs. unc. edu, and paper mail will reach me via the Computer Sci
ence Department, UNC, Sitterson Hall, Chapel Hill, NC 27599-3175. Elec
tronic comments sent to Prof. Mag6 (mago©cs. unc. edu) will be forwarded 
to me even after I leave UNC. 
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Chapter 1 

The problem 

Von Neumann languages constantly keep our noses pressed in the dirt 
of address computation and the separate computation of single 

words, whereas we should be focusing on the form and 
content of the overall result we are trying to produce. 

-John Backus, "The History of FORTRAN I, II, and III" (1978). 

The broad concern behind this dissertation is how to implement functional 
programming languages on highly parallel computers without recourse to 
graph reduction that uses pointers into a global memory. This chapter sets 
out the specific problem that I examine and why it is important. I then 
present my thesis and sketch the plan of attack. 

In this chapter, I presume some knowledge of the >.-calculus, graph re
duction, and the FFP Machine; Chapters 2 and 3 and Section 5.1 introduce 
these topics, respectively. Less-important unfamiliar terms may be traced 
through the index. 

1.1 Motivation 

Two major emphases in computing are the quest for faster machines and the 
search for more productive, less error-prone ways to program them. 

Computers today are some four orders of magnitude faster than the ear
liest machines built around the time of von Neumann's original proposal for 
the stored-program serial computer in 1946 [39]. Improved technologies ac-



count for much of the speedup, as electro-mechanical parts have given way 
to sub-micron VLSI chips. Faster parts built with better technologies will 
continue to appear-but not indefinitely. Meanwhile, the appetite for more 
speed will continue unsatisfied. 

Why not improve computing speeds by using many processors at once 
to solve a problem? This idea dates back to the earliest computing days: 
for example, Univac lauded the "super-parallelism" of its Larc system, which 
could have two processors (1956) [63]; on the software side, the first article in 
the first issue of the British Computer Journal was about "Parallel Program
ming" (1958) [72]. Now, the use of many processors to achieve greater speeds 
is unavoidable, as the marginal cost of a faster uniprocessor ("serial MIPS") is 
high whereas the cost of a boxful of VLSI microprocessors (potential "parallel 
MIPS") continues to decrease. As a result, many multiprocessor machines 
have been built, and some are commercially available. Many of these designs 
have a modest number of processors and run separate programs on separate 
processors; typically, all processors share a global memory. These machines' 
selling point is cost-effectiveness. In contrast, my concern is with raw speed 
on an individual problem that has enough parallelism, and I limit myself 
to machines that deploy many processors to this end. (I exclude pipelined 
vector processors, because they offer only limited speedup.) 

On the software side, thousands of people have worked to make program
ming a more productive human endeavor. Higher-level languages, structured 
programming, and strong type-checking are among the tools and techniques 
used. Yet we still have a "software crisis" revealed by error-ridden code, by 
programs tenuously related to their specifications, and by bloated software 
projects, years behind schedule. The field of software engineering is dedicated 
to surmounting the crisis. 

Programming is even harder for multiprocessors. Most importantly, an 
additional kind of error, the "timing bug," enters the picture. The order in 
which pieces of a program (on different processors) synchronize with each 
other may vary from run to run. Instrumenting one's code to smoke out the 
bugs may change the timing enough that they vanish (the "probe effect"). 
Correct answers on one run provide no assurance that the program's timing 
is right; deadlocks may suddenly arise, perhaps when ramping up to larger
scale production work. In their report, "Exploiting Multiprocessors: Issues 
and Options," McGraw and Axelrod make clear the severity of timing prob
lems in practice [150]. Alan Karp subtitles his review of tools for parallel 
programming as "The state of the art of parallel programming and what a 
sorry state that art is in" [112]. 
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Tasks in a parallel program must communicate with each other, to share 
data and to synchronize their actions. How can a program and data be 
mapped onto processors so communication is efficient and parallel operations 
are not delayed? Moreover, how does one re-balance the load across the 
processors as the program's requirements change during execution? 

Some of the approaches to the thorniness of parallel programming are 
instructive. Perhaps the most common way multiprocessors are programmed 
is with low-level, error-prone tools (e.g., extended FORTRAN)-but only for 
"well-behaved" problems with static data structures and predictable run
time execution profiles. Happily, many important scientific programs fit this 
mold. A person plans the mapping of program and data to processors, and 
the results can be good: the work that yielded the impressive Sandia Labs 
speedups is in this category (71; 83). 

Because the coordination of many independently-controlled processors is 
so difficult, another option is to retreat from autonomous processors and 
have each processor apply a common instruction to its own local data. Be
cause many data are massaged by each instruction, one can get consider
able data parallelism, which can be spectacular for some problems. NASA's 
MPP (172) and the Connection Machine (93) are examples of these so-called 
Single-Instruction-stream, Multiple-Data-stream (SIMD) machines (Flynn's 
taxonomy (67)). 

The promoters of INMOS transputers do not avoid the complexity of 
autonomous parallel operations; instead, they try to tame it with a clear 
theoretical model (Hoare's communicating sequential processes, embodied 
in the "occam" language (97)) and hot "transputer" silicon with firmware 
communication primitives to make the model viable (210). Wired-together 
transputers are an example of a Multiple-Instruction-stream, Multiple-Data
stream (MIMD) approach. 

These and many other techniques have earned multiprocessors a useful 
niche in today's computing scene. But it is worth asking: What would we 
really like to see in a multiprocessor to solve one problem faster? I suggest 
the following characteristics. 

• It would be very fast compared to its same-technology sequential con
temporaries, assuming enough parallelism to keep it busy. 

o It could be applied to many, if not all, computing tasks. 

o Programming the machine would include no extra hardships compared 
to programming a sequential computer. Presumably, there would no 
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longer be "sequential programming" and "parallel programming"-just 
"programming." 

• It would be indefinitely scalable; one could keep adding processors to the 
machine with good results-either more speed on the same problems 
or the ability to solve bigger problems. 

Let us return to programming, again. A radical solution to the soft
ware crisis is the technique of functional programming. A program is an 
ordinary mathematical function that yields an "answer" when applied to 
"input data." The most notable casualty of functional programming is the 
assignment statement of traditional "imperative" languages. Other features 
include: 

• Functional programs deal only with values, not with the memory loca
tions that happen to hold those values. John Backus describes current 
programming as figuring out what is to be done and preparing a "stor
age plan" to decide what location holds what value at which time [16]. 
Much of the code in an imperative program micro-manages the storage 
plan. 

• Lazy evaluation ensures that nothing is evaluated unnecessarily. Lazy 
evaluation lets programs use infinite data structures; for example, in 

(firsLthree ( all_primes_from 1 )), 

a!Lprimes_from would begin generating an infinite list of prime numbers, 
just enough for firsLthree to select the first three elements. (ML, used 
in this dissertation, is a functional language that does not use lazy 
evaluation.) 

• Functional programs often use higher-order functions, those that take 
other functions as arguments or return them as results. The "compose" 
function, as in f o g, takes functions f and g as arguments. 

• In his article "Why Functional Programming Matters," Hughes argues 
that lazy evaluation and higher-order functions make it easier to build 
kits of re-usable, mix-and-match program parts from which "modular" 
programs may be synthesized [106]. 

• Functional programs are much easier to reason about mathematically 
than imperative programs. For example, "linear" recursive functions 
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may be transformed such that they can be encoded as efficient while
loops [15; 88]. Multiple passes over list-structures can often be reduced 
to fewer passes, with absolute certainty that the program's semantics 
are unchanged. Field and Harrison's text provides a good survey of 
approaches to "program transformation" [ 66]. 

• Functional programs are typically shorter than their imperative coun
terparts, and they can be dramatically clearer. (I hope the programs 
in this dissertation vindicate this viewpoint!) 

There are several camps in the functional programming community. The 
"lazy purists" are purists because they eschew all mathematically-opaque lan
guage features and lazy because they insist on lazy evaluation (and the pro
gramming style it makes possible); this camp is in the ascendant. Miranda1 

and Haskell are lazy functional languages. The "Backus purists" also avoid 
"impure" features, but they follow John Backus in advocating "function
level thinking," a constrained use of higher-order functions, and an eager 
evaluation strategy (evaluate arguments before applying a function). FL is 
the most recent function-level language [17]. The "impurists" make up the 
largest camp; they allow imperative features but discourage their use. LISP, 
Scheme, and ML are representative languages. In this dissertation, I take the 
lazy purists' demands to heart, using techniques learned at my home base 
in the Backus camp, and coding my sample implementations in an impure 
language. 

At the core of lazy functional languages is a formal system called the 
A-calculus, which was developed by Alonzo Church [46]. To do lazy eval
uation, the rules of the calculus must be applied in the so-called normal 
order (or a closely-related order). Chapter 2 introduces the normal-order 
evaluation of the A-calculus. 

Reduction, generally speaking, is an approach to computing in which pro
gram, data, and "state" are represented together in some structure, and com
putation proceeds by applying reduction rules to make incremental changes 
in the structure. For example, the paper-and-pencil arithmetic expression 
(4 + 9) x (3- 7) includes data (the numbers 3, 4, 7, and 9) and program 
(the operator symbols +, -, and x, plus their ordering with parentheses), 
and it could include other information (annotations, perhaps, to further con
strain evaluation order for numerical error-control reasons). Applying the 
rules of arithmetic, the expression reduces to -52, in three reduction steps: 

1 Miranda is a trademark of Research Software Ltd. 
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-> 13 x (3- 7), -> 13 x -4, and -> -52. Reduction machines stand in con
trast to fixed-program or reentrant machines, in which the computing instruc
tions are segregated from program data and are not modified during program 
execution [209]. 

An expression in the A-calculus is represented naturally by its parse tree, 
with the A-calculus reduction rules causing changes to the tree; this is how 
a A-calculus computation proceeds on a blackboard, for example. Unfortu
nately, normal-order computations may lead to exponential growth in both 
tree size and number of reductions to be done (Section 2.9). For this reason, 
the earliest computational mechanisms based on reduction of the A-calculus 
(e.g., the SECD Machine [130]) used applicative order. Wadsworth's great 
contribution was to show that normal-order reduction was more practical 
if A-calculus expressions were represented as graphs, with the rules of the 
A-calculus carried out as changes to the graphs [201]. 

The main feature of graph reduction, roughly speaking, is the sharing 
of common subexpressions; it eliminates the exponential-growth problems 
and provides a parsimonious program representation. Furthermore, if an 
expression is shared, then the result of its evaluation will also be shared. 
Section 2.9 describes the space problems of standard A-calculus expressions; 
Chapter 3 gives a full introduction to graph reduction, presenting a complete 
A-calculus interpreter. 

The prospects for multiprocessors and functional programming are linked. 
Historically, the implementations of lazy functional languages on von Neu
mann computers have been grossly inefficient when compared with tradi
tional imperative languages. Recent implementations do much better; Pey
ton Jones's book covers the state of that art [165]. Still, one may argue that 
an imperative language (Backus: "von Neumann language" [14]) will always 
beat a functional language on von Neumann machines because the former 
is only the flimsiest disguise for the underlying stored-program uniproces
sor machine. The functional language is a ballerina at an imperative square 
dance. A multiprocessor of appropriate design could better serve the func
tional language's requirements. 

A functional approach offers great potential benefit to parallel computing. 
The powerful first Church-Rosser theorem (for the A-calculus) allows great 
latitude in the order in which function applications are undertaken, guaran
teeing that the results will be the same in every case. A parallel implemen
tation is free to do the applications simultaneously. This no-intervention
needed parallelism is usually called implicit parallelism, and it is very im
portant for scalable machines: one cannot expect a programmer to pre-plan 
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the execution of hundreds of thousands of independent processing tasks "by 
hand." Consequently, functional programming-which proponents claim is 
superior anyway-holds the prospect for significant parallelism without any 
extra effort from programmers. 

To design and build a successful multiprocessor that supports lazy func
tional programming is a truly monumental task, and it has not been done yet. 
Several parallel computers to support lazy functional programming have been 
designed, including Redifiow (114; 116], ALICE (56; 88; 49], and the Dutch 
Parallel Reduction Machine (23; 91] (Section 3.5 has the details). I will focus 
on their common design decision of a computational mode]2 of parallel graph 
reduction, in which the many processing entities concurrently twiddle with 
a graph that represents program and data. Why did they all choose graph 
reduction? What did they gain? What implications did this choice have for 
their architectures? What were the eventual costs of the decision? These 
questions have not been examined carefully enough. 

The obvious benefits of graph reduction stem from its sharing properties. 
Some of the imposed constraints are nearly as obvious. First, the program 
graph must be in a global store. As execution proceeds and the graph be
comes more tangled, a node may have an outgoing edge pointing to any other 
node in the graph: the hard·ware must allow for this possibility. Second, in a 
distributed implementation, it becomes much harder to ensure that adjoin
ing nodes in the graph will be in physically close-together hardware units. 
Third, it is difficult to move graph nodes around without leaving dangling 
pointers; re-shuflling nodes to improve locality is practically impossible. 

Since I have been at the University of North Carolina, Chapel Hill, I have 
been privileged to work on the design team for the FFP Machine (FFPM), 
a highly parallel multiprocessor that directly supports Backus's FFP class of 
low-level functional languages, a suitable basis for "function-level" program
ming. (I urge you to read the introduction to the Machine in Section 5.1 if 
you are not familiar with the design.) The FFPM makes a bold attempt to 
be a completely scalable design (up to millions of processors), to be applica
ble to problems with dynamic data structures and unpredictable execution 
patterns, to remove the exploitation of parallelism from the programmer's 
worries, and to provide fully-automatic, deadlock-free storage management. 

Though the main effort has been to support FFP-like languages, the 
FFPM project has also studied how to support other languages; Section 5.1.1 

2Dally and Wills say, "A model of computation is a set of abstractions that provides a 
programmer with a simplified view of a machine. A model typically provides abstractions 
for memory, operations, and sequencint' [54, page 19]. 
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takes up this matter in more detail. What about lazy .A-calculus-based func
tional languages on an FFPM? Project folklore knew "it could be done;" 
Plaisted published a brief description of one method in one of his 1985 pa
pers on FFPM extensions [171]. (Section 5.4 reviews previous work about 
implementing .A-calculus-like languages on an FFPM.) 

What are the main issues for FFPM support of lazy functional languages? 
First, the FFPM has a hardwired innermost-first evaluation order, corre
sponding to applicative-order, eager reduction; normal-order reduction is 
leftmost-first. (Sections 2.4-2.5 introduces a variety of normal forms and 
evaluation orders.) Happily, the two can be reconciled; Section 5.1.3 de
scribes the technique. 

The second issue arises because an FFPM normally operates on a linear 
symbol-string representation of an expression's parse tree, just as people do 
with pencil and paper. In this way, any subexpression (subtree) is local to 
a contiguous segment of the symbol-string. Since most useful tree manipu
lations work entirely within a subtree, the corresponding FFPM operations 
can be defined to work on localized contiguous symbol-strings. This property 
fits beautifully with the requirements for a scalable machine design, which 
strongly mitigate against the sharing of system resources. (For example, four 
processors sharing a page table is OK, but 400,000 processors will find ac
cess slow.) The operating cycle of an FFPM reflects an aversion to sharing: 
close-together processors are partitioned into groups that hold an interesting 
subtree's worth of symbols, and that group tries to proceed on a reduction. 
Because the subtree has all information required for a reduction to proceed, 
the processor group has no need to share any resources with other groups. 
But, for many reductions to be going at once, information common to many 
reductions must be copied enough times so that each processor-group has 
a full set of information. This may seem wasteful (and it can be), but it 
allows potentially many computations to proceed entirely independently of 
each other. This is what it means to say an FFPM "favors copying" and 
"exploits locality." 

Operations on a tree may be localized, but the tree's size will change and 
may shrink dramatically or grow arbitrarily large. To deal with this fluctua
tion, an FFPM provides automatic storage management in hardware, allow
ing program symbols to be inserted or deleted anywhere in a program string. 
Program execution is then an ongoing "cut and paste" re-arrangement of 
symbols (Revesz, personal comment). This means there is no guarantee what 
symbol a given processor will hold on any given machine cycle. Therefore, 
the memory distributed across the many processors does not have addresses 
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in the usual sense, and one processor can request something from another 
only by value; for example, "Will the processor holding index value 4 please 
send its program symbol?" There is no such thing as "the processor with 
address 4." This addressless property of memory in an FFPM-essential 
for storage management-makes it less than ideal for representing graphs, 
which are usually implemented as nodes with memory-cell-pointers for edges. 
One can simulate memory-cells-with-addresses in software (Mag6's study of 
Paterson-Wegman unification is described in Section 5.1.11), but it is not a 
natural fit. 

I have already mentioned that the normal-order evaluation may suffer 
exponential blow-ups unless sharing is done. One would therefore assume 
than an FFPM, disinclined to sharing, would make for a poor normal-order 
A-calculus implementation. Perhaps ... But there may be a way to go about 
sharing in an "addressless way." Can the useful features of an FFPM be 
brought to bear on the A-calculus from a different angle? 

Lazy functional language implementations without some form of shar
ing are completely impractical, so I will use sharing as my basic measure 
of success. Graph reduction is one way to achieve the desired sharing. On 
the other hand, the sharing of conventional graph reduction-nodes linked 
by pointers in a global addressable memory-is ill-matched to the desider
ata for scalable highly-parallel computers. These machines strongly favor 
representations that preserve locality. 

1.2 Thesis statement 

This dissertation examines the implementation of lazy functional languages 
on highly-parallel computers by focusing on a restricted "archetypal" prob
lem, the normal-order evaluation of the pure A-calculus. This is what Wads
worth did in his original work on graph reduction [201]. Enough sharing 
to avoid the likely exponential blow-ups of naive non-graph reduction is re
quired, and matching the maximal sharing of graph reduction is desirable. 

This dissertation develops a system for normal-order evaluation of the 
A-calculus that represents terms as trees instead of graphs (Chapter 4). 
Graph manipulations imply global pointers into a common store, a major 
impediment to implementation on highly-parallel computers. I compare my 
tree-reducing system (Chapter 4) to a graph reducer that does "lazy" copying 
of shared functions (Chapter 3). I claim:3 

3It is impossible to make these claims as precise as I would prefer until the scaffolding of 
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My tree-reducing interpreter manipulates terms-as-trees in a way 
isomorphic to a lazy-copying terms-as-graphs reducer, step for 
step. Because graph reduction is a correct implementation of the 
A-calculus, the tree-reducing interpreter must be as well. 

To consider worst-case time and space complexities, one must consider a 
reduction system in light of some computational model. To this end, I con
sider my interpreter implemented on an FFP Machine (Chapter 5); other ar
chitectures that support a linear program-representation and fast scan primi
tives would also work. I compare this with graph reduction on a conventional 
global-addressable-memory (GAM) machine, and I claim: 

The FFPM implementation of the tree-based reducer uses the 
same amount of space (within a constant factor) as conventional 
graph reduction on a GAM machine. Moreover, the FFPM im
plementation matches or improves on the time complexity of each 
part of a reduction step, with the exception of "last-instance re
locations," a non-critical operation. (Section 5.3.2 reviews this 
obscure matter in painful detail.) 

I believe the general approach suggested in this dissertation might well 
provide a viable base for highly-parallel computing systems to support lazy 
functional programming. 

1.3 Dissertation organization 

After an introduction to the A-calculus in Chapter 2, the heart of the dis
sertation (Chapters 3-5) is a comparison of two interpreters for the pure 
A-calculus. The first is a standard graph reducer (Chapter 3), and the sec
ond is my new "suspension-based" tree reducer (Chapter 4). I compare them 
for correctness (Section 4.7), space complexity (Section 5.3.1), and time com
plexity (Section 5.3.2). The beginning of Section 4.7 describes the strategy 
for the comparisons. 

To compare space and time complexity, one must consider the interpreters 
in the context of some computational model. For graph reduction, I use a 

the next chapters is in place. These claims are recapitulated in the Conclusions, Chapter 7, 
page 163. 
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conventional GAM machine; for the new interpreter, I consider its implemen
tation on an FFPM (Chapter 5); that chapter concludes with a comparison 
of the two (Section 5.3). 

Chapter 6 catalogs some ideas for extending the new interpreter that 
might be useful in turning this work into a practical parallel computing sys
tem. Chapter 7 presents my conclusions about this work. 

I review previous and related work after topics have been introduced, at 
the end of the appropriate chapter or section. For example, I survey graph
reduction architectures for functional programming in Section 3.5, just after 
introducing my graph reducer. 
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Chapter 2 

The >.-calculus 

What brings a parallel processing enthusiast into 
the jungles of the lambda calculus, a harsh and 

hostile territory replete with expressions so ugly 
that only a mathematician could love them? 

- Almasi and Gottlieb (1989). 

This chapter introduces a formalism called the >.-calculus, I setting the stage 
for the interpreters in Chapters 3 and 4. The >.-calculus underlies all lazy 
functional languages and captures their essential properties. 

Alonzo Church invented the >.-calculus as a precise notation to study 
functions [46]. In the >.-calculus, a function is viewed as a rule that converts 
arguments to values, rather than as a set of (argument, value) ordered pairs. 
It is this rule-oriented view of functions that brings out their computational 
aspects [18]. John McCarthy developed LISP, the first widely-used program
ming language influenced by the >.-calculus [149]. Peter Landin showed the 
connection to other programming languages (Algol 60, in that case) [131] 
and went on to suggest that future languages would be "syntactic sugarings" 
of the >.-calculus [132]. Dana Scott and Christopher Strachey did the crucial 
work to provide a well-founded denotational semantics for the >.-calculus and, 
by implication, the programming languages based on it [182]. Wadsworth's 
development of graph reduction (Chapter 3) was a major step forward for 
the implementation of >.-calculus-based functional languages [201]. Backus's 

1Strictly speaking, the untyped pure .AK calculus; there are other variants. 



1977 Turing Award lecture [14] widened interest in functional programming, 
and research has continued unabated since then. 

Although the .\-calculus is spare and simple, the results about it are pro
found and sometimes taxing. For a complete treatment, Barendregt [18] is 
the standard reference. Hindley and Seldin's book [96] is a more accessible 
treatment; most functional programming texts devote at least one chapter 
to the .\-calculus. 

2.1 Syntax 

Stated in programming-language terms, the .\-calculus is a systematic way of 
describing functions and their application to arguments. Let us begin with 
its syntactic elements. 

Well-formed expressions in the .\-calculus are called terms (or .\-terms). 
The simplest terms are variables (shown by a lower-case letter): x, k, y, or 
b, for example. 

The second kind of term is the abstraction (or .\-abstraction): this is 
how functions are defined. A .\-abstraction has the form .\v.{T}, where v is 
a variable and Tis any term (capital letters denote arbitrary terms). The 
unconventional braces to delimit a .\-abstraction are necessary later in this 
dissertation, to avoid implicit scope rules. A better notation, using only 
braces, might be {vT}; however, I keep the .\ symbol, etc., because readers 
expect to see .\'s in the .\-calculus. 

A .\-abstraction defines a function with a formal parameter v and a body 
T; the body specifies what the function "returns." For example, .\x. { x} 
is a function of x that returns whatever is passed to it-it is the identity 
function. Another example is .\r.{ s }, a function that returns s no matter 
what is passed to it-it is the constant function s. As one would expect, the 
specific name of the formal parameter x is irrelevant. .\x. { x} and .\y. {y} are 
the same function. 

In the term .\x.{.\y.{x}}, the subterm .\y.{x} is the body of the whole 
term, and the variable x is bound to the first .\. That .\x is called the binder 
of x; a variable has at most one binder. Only .\'scan be binders. Conversely, 
the variable x is a bound variable of the .\x; one .\x may have many bound 
variables, all denoted by the name x. In a term .\c.{D}, the bound variables 
of .\c must fall within D. D--or the term enclosed by the braces { }-is the 
scope of .\c. 

A variable a is bound to the innermost .\a in whose scope it falls, as in 
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Figure 2.1: >.-abstractions 

lexically-scoped programming languages. In >.r. { >.r. { r}}, the variable r is 
bound to the rightmost >.r. If, in a term R, there is no >.a, then occurrences 
of a variable a are not bound, but free. Note that xis bound in >.x.{>.y.{x}} 
but is free in the sub term >.y. { x}. A variable that has no binder anywhere 
is free at the top level; such variables are constants . 

Figure 2.1 shows some examples of >.-abstractions; his a constant; w, x, 
r, and the y's are variables, bound in the >.-terms shown. The parse trees
or >.-trees-for the terms are shown above their text representations (dashed 
arcs show bindings of variables to binders, if they exist). I find the trees 
easier to understand; written-out terms of more than, say, seven symbols 
make my eyes glaze over. 

Variable names and bindings can be confusing when a >.-term contains 
two variables named x with different binders (for example). To substitute 
for one x but not the other is tricky, and the procedure cannot be automated 
efficiently. I avoid this problem by changing to a name-free >.-calculus in 
Section 2.6; meanwhile, I restrict myself to >.-terms in which the problem 
does not arise. 

The final construct of the >.-calculus is an application (or >.-application), 
of the form (F X)-the function term F is applied to the argument term X. 
For the term (F X), F is the rator and X is the rand; the terms come from 
Landin [130] and are short for "operator" and "operand." Figure 2.2 shows 
seven >.-applications (shown in the >.-trees by unlabeled two-child nodes). 

Tree representations prompt some useful definitions. The binding path 
(of a variable) is the (unique) path up the tree from the variable to its 
binder. The root path of any syntactic element (variable, >.-abstraction, or>.
application) is the path from the element to the root of the tree representing 
the whole term. 

Some of the >.-applications in Figure 2.2 match our intuitions about apply
ing a function to an argument. For example, applying the identity function 
>.i.{i} to z should (and does) yield z. One surprise of the >.-calculus, however, 

14 



1\ 1\ 1\ 1\ ~ 
>.i z z >.i >.J h X y AX AX 

l 1. I )\ )\ z z g 
X X X X 

(>.i.{i} z) (z>.i.{i}) (>.f.{g} h) (x y) (>.x.{(x x)} .\x.{(x x)}) 

Figure 2.2: >.-applications 

is that the "backwards" term (z >.i.{i}) is equally well-formed. 
Summarizing, a Backus-Naur-style grammar for well-formed .\-terms is: 

<term> (<term> <term>) 
>. <variable> . {<term>} 
<variable> 

2.2 Computing with the >.-calculus 

How does one compute with the >.-calculus? Intuition remains a reasonable 
guide: We apply a "program" rator to an "input-data" rand and hope that 
an "answer" will eventually be computed. (Because all computable func
tions can be expressed in the .\-calculus, the Halting Problem precludes any 
assurance of termination). 

The fundamental operation of the >.-calculus is (3-reduction. It defines 
what happens when a function-rator >.x.{M} is applied to a rand N. The 
process is as simple as can be~N is textually substituted for every variable 
bound by >.x in M. Or, as it is usually expressed, N is substituted for every 
free occurrence of x in M. In symbols, a (3-reduction is written as 

(>.x.{M} N)--+ M[x := N]. 

In a /3-reduction, the substitution for the variable is the main effort (not 
the other minor adjustments to symbols in the term). Figure 2.3 shows some 
/3-reductions (dotted lines show the substitutions and point downward). 

Consider Figure 2.3c. The ,8-reduction substitutes >.y.{(y y)} for every 
free occurrence of x in ( x x )~both of them. This example also shows that a 
reduction does not necessarily produce something shorter; the left and right 
terms are the same~suggesting a non terminating sequence of reductions. 

A term of the form (>.x.{M} N) is a (3-redex (reducible expression). 
Reducing one redex is called a ,8-reduction step (or just a "step"). A term 
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Figure 2.3: ~-reductions 

T1 ~-reduces to a term T2 if T2 can be obtained from T1 by a finite sequence 
of zero or more steps. 

Though not done often, the ~-rule may be invoked in reverse: 

(Ax.{M} N) <- M[x := N]. 

This is a ~-expansion step. To express that the ~-rule may be used "in both 
directions," one speaks of ~-conversion. 

2.3 Other >.-calculus reduction rules 

The pure A-calculus has more fundamental rules for manipulating A-terms. 
This section says why I do not pay them much attention. 

The a-rule (or its use, a-conversion) renames variables to avoid name 
clashes. I skirt this issue by using either a name-free calculus (Section 2.6; 
Chapter 4) or backpointers (Chapter 3). 

The 7]-rule (or its use, called an 71-reduction step) is 

Ax.{(Mx)}--> M. 

There must be no free occurrences of x in M. The 7]-rule is needed for 
extensional equivalence. It is useful in compile-time transformations, but it 
is not needed for "computing." Peyton Jones's book about implementing 
functional languages gives further details [165, pages 19~20]. 

As with the ~-rule, the 7]-rule may be used in reverse: it is then 7]
expansion. Using the rule both ways is 71-conversion. When not qualified, 
"reduction," "expansion," and "conversion" refer to the ~-rule. 
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Figure 2.4: A .\-term in $-normal form 

2.4 f)-normal form and normal-order reduction 

I have introduced the three syntactic elements of the .\-calculus-variables, 
.\-abstractions, and .\-applications-and the main operation, $-reduction, 
which has substitution as its main component. What does one do with it? 

An obvious possibility is to do reduction steps until there are no more 
$-redexes. A term that contains no $-redexes is in $-normal form (BNF). 
Figure 2.4 shows a term in BNF. 

A term T in BNF is unique (up to renaming of variables), in that no 
other term in BNF can be reduced to it. Since a term in BNF is what is left 
when computation is finished-an answer, in some sense-its uniqueness is 
exceedingly important. 

What of a term that contains redexes than cannot be removed by any 
sequence of reduction steps? Figure 2.3c is an example. Its reduction is 
non-terminating, so it has no BNF. 

Finally, consider a term T with many redexes that has a BNF TBNF· Will 
we reach TBNF, no matter what order we do $-reductions? No---we could end 
up down a blind alley of non-termination. For example, in the term 

(.\q.{r} (.\s.{(s s)} .\s.{(s s)})) 

if we always choose the rightmost redex, we will not reach BNF, whereas the 
other (left) redex yields r in one step. 

Fortunately, there does exist an evaluation order-a pre-defined order in 
which $-reductions should be done-that will yield a term's BNF if it exists; 
this is the second Church Rosser theorem. It is called the normal order; 
evaluation using this order is called normal-order evaluation. When terms 
are written as linear text, the leftmost $-redex should be reduced in each 
step. The equivalent .\-tree rule is to choose the first red ex reached by a 
preorder walk of the tree from the root. 
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Figure 2.5: A >.-term in head-normal form 

Normal-order evaluation is lazy-it reduces a /3-redex only if necessary. 
This property allows programming with infinite data structures, a feature 
that the lazy functional programming community insists upon. 

2.5 Other normal forms and evaluation orders 

Evaluating to BNF, while conceptually simple and theoretically satisfying, 
traditionally leads to inefficient implementations, mainly because free vari
ables in A-abstractions (that are rators) preclude their effective compilation 
(Peyton Jones illustrates the problem in his book [165, pages 221-222]). 
Therefore, one might evaluate terms to another normal form deemed suffi
cient grounds to stop reducing. 

When the >.-calculus is given some semantics (a matter I am ignoring), 
terms without a BNF are considered "meaningless." Head-normal form 
(HNF) is a less restrictive normal form that retains this property: a >.-term 
without a HNF is also "meaningless" so evaluating to HNF is just as good. 
A >.-term is in HNF iff it is of the form 

where n, m 2': 0, and vis a variable [165, page 199]. Figure 2.5 shows a term 
in HNF. In >.-tree terms, if you throw away a term's top-level A's (>.band >.a 
in Figure 2.5), then walk along the left "spine" of application nodes (three 
of them in Figure 2.5), the first non-application node is at the head, shown 
by a * in Figure 2.5. If the head node is not a A-abstraction (i.e., it is a 
variable), then the term is in HNF. HNF is a less constraining normal form: 
a term in BNF is in HNF, but a term in HNF is not necessarily in BNF; 
the example in Figure 2.5 still has a redex in it. If that redex led to a non
terminating sequence of reductions, then the term would not have a BNF, 
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yet it is in HNF. Wadsworth invented HNF [201]; Barendregt also discusses 
it [18, page 41 J. Berkling wrote an interesting paper about evaluating to 
HNF [25]. 

HNF satisfies purists, but it can still have free variables in redexes. For 
this, weak head-normal form (WHNF) is required. As I use it, weak re
duction means "redexes inside .\-abstractions do not count." So, even if 
Figure 2.5 had a redex at its *'d head position, it would be in WHNF be
cause it is inside the top-level abstraction .\b.{ ... }. The effect of reducing 
only to WHNF is that one never has to contend with free variables in a redex 
(excluding constants) [165, page 198]. A term in HNF is also in WHNF, but 
a term in WHNF may not have a HNF. 

BNF, HNF, and WHNF are the most common normal forms; WHNF 
is the most popular for lazy functional-language implementations. (Peyton 
Jones's book on implementation has a lot to say about WHNF [165].) 

I must introduce more forms that will be needed later on. Weak j3-
normal form is to BNF as WHNF is to HNF: redexes are not reduced inside 
.\-abstractions, top-level ones excluded.2 Lambda form (LF) means that 
the term's .\-abstractions that cannot possibly be rators of any redex are 
in BNF. (This truly obscure definition is used in the traditional eval-apply 
interpreter for BNF, evaLBNF (page 25).) Root-lambda form (RLF) is a 
still-more-obscure form used the interpreter in Chapter 4, and I defer its 
definition until then. 

BNF is the only normal form listed that is unique, provided it exists. 
A term T may have two distinct fl-convertible variants, T1 <-> T2, both in 
the normal form. This can happen because of a redex in an "uninteresting" 
subterm, e.g., for HNF, not in head position. 

Various evaluation orders can be used to reach a particular normal form. 
An order that is certain to produce the normal form for a term if it exists is a 
safe order for that form. Normal order is safe for all normal forms mentioned 
above. 

An unsafe order is an evaluation order that may fail to find a term's 
normal form in some cases (presumably rare). The most common unsafe 
order is applicative order, in which the rand and rator of a redex are evaluated 
before doing the (I- reduction; it is one form of eager evaluation. Applicative 
order is practical-the entire LISP community uses it-but it does preclude 
computing with infinite structures. This disqualifies it for lazy functional 
programmmg. 

2The exclusion is one of convenience and has no deeper significance. 
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Figure 2.6: How to capture a variable in one easy lesson 

In this dissertation, I use normal-order evaluation to BNF, or WBNF 
when BNF poses a major implementation hurdle. Both are adequate for lazy 
functional programming. 

2.6 The name-free ,\-calculus 

Names for variables in the A-calculus are convenient for the reader but com
plicate some definitions, most notably the precise definition of M[x := NJ, 
substitution of N for free occurrences of x in M. The classic difficulty is 
name capture; the reduction in Figure 2.6 illustrates the problem (dotted 
lines highlight the substitutions): Unless the AY in the left-hand side is re
named (along with the variable y bound to it), it will capture the (unrelated) 
y being substituted for x. Figure 2.6b shows the same reduction with the 
necessary renammg. 

A common solution to the naming problem is to represent each variable 
by its binding index, the number of binders on a variable's binding path. 
This is easiest to see on a A-tree: start at a variable and walk toward the 
root, counting binders (A's). Note that a variable with no .\'s between it and 
its binder will have a binding index of 1; others might define it to be 0. 

De Bruijn [59] invented binding indices, and many people call them 
"de Bruijn numbers;" Berkling [27; 32] developed a closely-related scheme 
independently; the term "binding index" is his [25]. 

To convert all variables to binding indices, constants must get indices, 
too. I give them distinct negative binding indices. Different instances of the 
same constant will have the same negative index. Rules for the name-free 
.\-calculus must not change them. Because they do not change and convey 
little information, I usually write constants' binding indices as a * subscript. 
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Figure 2. 7: Reduction with binding indices 

Figure 2. 7 shows a name-free reduction; I have added the binding indices 
as subscripts to the variable names. Dashed arcs show the bindings of bound 
variables to binders (A's). 

Once a term has had binding indices added, the variable names can be 
removed. This is often done and leads to a notation such as 

A.{(.\.{(2 (-1 .\.{A.{3}}))} (-1 .\.{(1 2)}))}-> .\.{(1 (-1 .\.{A.{(-1 .\.{(14)})}}))} 

Readability has not improved,3 so I prefer keeping a term's original variable 
names as mnemonic decoration, with the real information (binding indices) 
attached as subscripts, as in the example above. The rules of a name-free 
calculus operate only on the subscripts. The names are there only to make 
examples easier to understand. The following definition will be used later. 

Definition 2.1 Two name-free .\-terms are A1-equivalent if they are identical 
(but the name decorations on the terms do not count, of course). 

The predicate function plain_equivs (page 23) checks if two plain A-terms 
are Arequivalent. The t subscript suggests that it operates on terms as 
A-trees. 

A word on still other approaches to variable naming. . . Revesz has an 
alternate calculus for which "brute-force" renaming works [174]. Staples 

3 We could make matters worse by removing the .X symbols, as in Chapter 5. 
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[191] and Boom [36] propose schemes in which extra information is pinned 
onto .A-abstractions to keep track of their bound variables. Appendix C of 
Barendregt's tome [18] discusses free and bound variables further. 

A simple interpreter and the recurring example. We now have all 
the pieces to put together a simple normal-order interpreter for the name-free 
.A-calculus, written in ML (Appendix A gives some background information 
about ML). The function onestepT : Term -+ (booi,Term) (page 23) tries 
to do one ,@-reduction step. If it cannot, it returns false and the .A-term is 
in WBNF; otherwise, it returns true and the reduced-one-step .A-term. A 
top-level routine (not shown) repeatedly calls onestep T until it returns false. 
Figure 2.8 shows all the steps in the reduction of a recurring example that 
will be repeated for all interpreters in this dissertation. 

The ML function evaLBNF: Term-+ Term (page 25) is a traditional en
coding of an interpreter that reduces to BNF. The auxiliary function evaLLF 
ensures that a .A-abstraction used as a rator of a redex is not evaluated before 
reduction; other abstractions are fully reduced. EvaLWBNF is also shown; 
evaLWBNF and repeated calls to onestepT produce the same result, of course! 

2. 7 Combinators 

An alternate solution to the name-capture problem is remove free variables 
altogether by converting .A-terms to combinators [52; 53; 164]. A combina
tor is simply a .A-term with no free variables except constants; .Ax.{ x} and 
(.Ax.{Ay.{(x y)}} .Az.{z}) are examples. 

Any .A-term may be converted to a combinator-term built from a fixed set 
of combinators. The minimal set of building-blocks is the SK combinators. 

S >.x.{.\y.{.\z.{((x3 z1 )(y2 zi))}}} 

J( .Ax.{.\y.{x2}} 

Larger base sets of combinators may be used for more space-efficient encod
ings (e.g., Turner's combinators [199]). An alternate method is to use an 
even more specialized kind of >.-term called supercombinators [105]. A su
percombinator is a combinator in which all inner .A-abstractions are also su
percombinators. Supercombinators may have several arguments, and "multi
argument" reduction must be used to avoid intermediate terms that have free 
variables. Sets of supercombinators derived from specific .A-terms have some 
advantages for implementation over fixed-combinator sets. 
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(* plain_equivs :Term- Term- bool. 

*) 

Compares two TermTs and returns true if they are identical except for decorative 
names and variable marks; otherwise, returns false. 

exception unexpected_suspension_error 

fun plain_equivs (App(Ml,Nl)) (App(M2,N2)) = 
(plain_equivs Ml M2) andalso (plain_equivs Nl N2) 

I plain_equivs (Lam(Bl,_)) (Lam(B2,-)) = plain_equivs Bl 82 

I plain_equivs (Var(bil,_,_)) (Var(bi2,-.-)) = (bil = bi2) 

I plain_equivs (Sus(-.-.-)) (Sus(-.-.-)) 

I plain_equivs otherl other2 

:;:::; raise unexpected_suspension_error 

=false 

(* onestepT: Term- (booi,Term). 

*) 

Uses std..subst (page 172) and incdree_varsl (page 171). 

Find the first redex in T and reduce it (tree reduction); report whether or not a 
red ex was done (and return the new >.-term). 

All of the code except the first clause implements a preorder walk of the term 
looking for a redex (an App node with a Lam rator). 

When an App(Lam(B, ... ),N, ... ) is found, real work begins. The main effort is sub
stituting N for bound variables of the Lam( ... ); the standard routine std..subst does it. 
The two calls to incr _free_varsl adjust the binding indices. 

fun onestepT (App(Lam(B, n), N)) = (* redex *) 
(true, incr_free_varsl -1 (std_subst (incdree_varsll N) B)) 

I onestep T (App(M, N)) = (* rator not a lambda *) 
(*do preorder walk *) 
let val (done_in_M, M') = onestepT Min 

if done_in_M then 

end 

(true, App(M', N)) 

else let val (done_in_N, N') = onestepT N 
in (done_in_N, App(M, N')) end 

(*- onestepT (Lam(B, n)) =(?if we were going to {3-normal form ... ?) 
let val ( done_in_B, B') = onestepT B 
in (done_in_B, Lam(B', n)) end 

*) 

I onestepT other= (false, other)(* variable or abstraction [to WBNF} *) 
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Figure 2.8: The recurring example: five tree reduction steps 
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(* evai_BNF: Term-> Term. 

Uses std_subst (page 172), incr_free_vars1 (page 171), and evaLLF. 

This is the traditional normal-order interpreter, following Wadsworth {201, 
page 181}; the same thing is in Arvind et al. {9, page 5.3}. 

evai_BNF evaluates a Term to {3-normal form. The "helper" function evaLLF 
evaluates to lambda form, with no reduction inside a A-abstraction that might 
become a redex-rator. 

evai_WBNF: Term----+ Term evaluates a Term to weak {3-normal form; redexes inside 
A-abstractions are allowed to live. 

std_subst does substitution, and incr _free_varsl keeps binding indices in order. 
*) 
fun evaLBNF (App(M,N)) = 

let val M' = evaLLF M in case M' 
of Lam(B, n) => 

evai_BNF (incr_free_varsl -1 (std_subst (incdree_vars11 N) B)) 

1- => 
App(M', evaLBNF N) 

end 

I evai_BNF (Lam(B,n)) = Lam(evaLBNF B, n) 

I evai_BN F a_variable = a_variable 

and evaLLF (App(M,N)) = 
let val M' = evaLLF Min case M' 

of Lam( B. n) => 
evai_LF (incr_free_vars1 -1 (std_subst (incdree_vars11 N) B)) 

1- => 
App(M', evaLBNF N) 

end 

I evaLLF (Lam(B,n)) = Lam(B, n) (*don't eva] body! *) 

I evai_LF a_variable = a_variable 

(* to weak normal form ... *) 

fun evaLWBNF (App(M,N)) = 
let val M' = evai_WBNF M 
in (case M' 

of Lam(B,n) => (incdree_vars1 -1 (std...subst (incdree_vars1 1 N) B)) 
I- => App(M', evai_WBNF N) 

) end 

I evaLWBNF other= other (*abstraction or variable*) 
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Combinators have no free variables, so they are pure rewrite rules and 
require no "context" for their evaluation. This property makes the nature of a 
combinator-based interpreter quite different, and the strategies used diverge 
widely from those used for evaluating the pure .\-calculus. I will have little 
more to say about combinators. 

2.8 The practical use of the ,\-calculus 

The pure .\-calculus is not a practical medium for computation; for exam
ple, it has no numbers and no arithmetic. The theoretically-minded will be 
happy to know that these can be represented in the pure .\-calculus. But, 
even then, the pure .\-calculus remains wildly impractical, so the designer 
of a .\-calculus-based language always adds numbers, arithmetic and other 
primitives. Moreover, theoreticians may add different symbols or restrictions 
to the formal system for their own nefarious purposes. So, there are many 
.\-calculus and .\-calculus-derived systems, each contrived for a different pur
pose. 

From a FORTRAN4 programmer's perspective, a normal-order inter
preter of the .\-calculus (or a practical variant) is inefficient: it is too slow, 
and it uses too much memory. The impediments run deep: substitution of 
full generality, as in f)-reduction, is not a bounded operation, there is no 
really efficient representation for higher-order functions, and the bookkeep
ing overhead needed to track variables' freeness can be considerable. This 
inefficiency has been tackled in many ways, including: 

o Make infrequent use of the parts that are "inefficient." LISP, the first 
programming language based on the .\-calculus, also has full impera
tive features that readily compile to good global-addressable-memory 
(GAM) machine code. Most real LISP programs are not written in a 
functional style. Also, LISP's applicative-order evaluation is unsafe. 

o Use a different evaluation order, aim for a different normal form, and 
provide many primitive operations; in short, soup up the base language. 

o At compile-time, transform the initial .\-terms into something more 
amenable to efficient execution on a GAM machine (e.g., to supercom
binators [105]). 

4 Phil Wadler, visiting UNC in the fall of 1984, paraphrased: "Let's call all languages 
with assignment 'FORTRAN'." 
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• Use hints from the programmer to improve the efficacy of compilation. 

• Improve the interpreter's basic model of computation, upgrade its al
gorithms, or augment its realization (e.g., throw hardware at it). 

2.9 The necessity of sharing for normal-order 
evaluation 

I want an interpreter for the normal-order evaluation of the >.-calculus that 
does not depend on representing >.-terms as graphs. Graphs are normally 
used because they can represent shared terms easily (see Chapter 3). This 
section explains why the sharing is necessary. 

What is "sharing?" It means that one instance of a term S is made 
to stand for many occurrences of the term. For example, in the arithmetic 
expressiOn 

X+ X+ X, X = 2 X 2, 

the product 2 X 2 is "shared;" the references to it, x, are generally called 
"pointers". Whereas the shared instance of a term may be arbitrarily large, 
the pointers to it are constant-sized. 5 

If the size of a pointer and the shared term it points to are the same 
(within a constant factor), that is trivial sharing, because it does not save 
any space. In the >.-calculus, sharing a variable is trivial. 

Non-trivial sharing of the kind just described is space sharing; memory 
is conserved. A second form of sharing is computation sharing, in which 
reduction-steps are conserved:6 when a space-shared term S is reduced to 
S', all the pointers to S will (by some magic) indicate S'. If one of those 
pointers is followed later, the reduction S--> S' need not be re-done. 

As Section 3.3 will make clear, the >.-calculus requires some copying of 
>.-terms, even for graph reduction. The copying that must be done for correct
ness' sake is necessary copying; other copying is unnecessary. Unnecessary 
copying done willfully in hope of some benefit (e.g., speeding things up) is 
speculative; one cannot determine the necessity of copying in advance. 

Why is sharing practically required for the normal-order >.-calculus? Con
sider, informally, a simple, normal-order evaluation without sharing versus an 

5 Strictly speaking, a pointer into an arbitrarily-large address-space is also unboundedly 
big; however, I am following the computer-science practice of believing that any pointer 
can fit into 32 or 64 or 128 ... bits. 

6I am following the terminology of Arvind et al. [9]. 
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applicative-order one (I follow Wozencraft and Evans's notes for MIT course 
6.231 [213, pages 3.2-32-3.2-33]). Intuitively, applicative order reduces the 
redexes at the bottom of the A-tree and passes the results upward to the 
next level of reductions. Two good things may happen. First-and this is 
the weaker argument-reductions often produce smaller A-terms, using less 
space when passed upward and copied by higher-up redexes. Second, a A
term being substituted never contains a redex, so there is no proliferation 
of unevaluated redexes. The problem with applicative order is that some 
of those bottom-up reductions are unnecessary (their results will be thrown 
away later) and, in the worst case, non-terminating-which is why applica
tive evaluation is unsafe. 

Normal-order reduction, by contrast, only commits to reductions that are 
certain to be needed in getting to BNF. (Determining "neededness" in general 
is undecidable; Barendregt et a!. discuss some approaches to this matter 
[19].) Since the leftmost redex is always needed, normal-order evaluation 
reduces it at each step. Meanwhile, normal-order reductions may make many 
copies of unevaluated A-terms. These terms are likely to be larger than their 
,8-reduced equivalents; moreover, copying them can increase the number of 
red exes in the whole A-term. 

This argument is informal, because cases can be concocted to show ei
ther applicative or normal order superior. However, common cases of func
tion composition-extremely important in practice-get normal-order-evalu
ation-with-copying in trouble. Figure 2.9 shows an example in which a func
tion f is composed with itself, (Aj.{(f (J (J (Ay.{yr} z))))} Ax.{(x x)}); 
redexes are starred. Applicative order quickly determines the initial argu
ment [(Ay.{y1} z)-+ z], substitutes Ax.{(x1 x1)} for f, does the compositions 
right-to-left, bottom-to-top, and finishes the whole job in five steps, total. 
Normal-order evaluation, on the other hand, substitutes for f first, then 
does the compositions left-to-right, top-to-bottom, each time substituting 
the whole right part of the term, eventually making eight unevaluated copies 
of the initial argument, (Ay.{yr} z). The reduction takes sixteen steps. 

If there were k uses of f in Figure 2.9 (instead of three) and there were n 
instances of x in the rand (instead of two), then applicative-order evaluation 
would reduce the A-term in 2 + k steps. Normal-order would take roughly 
nk steps. This exponential blow-up, both in space required and reductions to 
do, will arise in practical normal-order reductions; therefore, some sharing 
mechanism must be provided for any normal-order A-calculus interpreter. 
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Chapter 3 

Graph reduction: the 
A.g-interpreter 

This means that an argument is evaluated at most once, its 
evaluation being delayed until first needed. After Wadsworth 

this kind of 'lazy' evaluation has become a lifestyle. 

-Aiello and Prini (1981). 

This dissertation studies the normal-order evaluation of the .A-calculus by 
comparing graph reduction with suspension-based reduction. The first part 
of this chapter presents a full graph-reduction interpreter that will serve for 
the graph-reduction half of the comparison. The next chapter presents the 
alternate interpreter. 

Section 3.5 reviews parallel graph-reduction architectures. The main 
question there is: Why did the designers of those machines choose graph 
reduction? I dwell particularly on what they say about sharing. 

For illustrative purposes, the interpreter in this chapter is encoded in 
ML. Appendix A provides a reader's guide to ML and describes some utility 
functions for graphs (Section A.2.2). The code reflects the non-functional, 
pointer-twiddling nature of graph reduction by using references (pointers), 
dereferencing, and assignments. 

Introduction. This chapter introduces graph reduction, an implementa
tion technique often used for functional languages, and presents a normal-



* 
~ 

.\x }v 

X 

y X 

(.\x.{((x y) (x (y x)))} N) --> ((N y) (N (y N))) 

Figure 3.1: Simple graph reduction 

order graph reducer for the .\-calculus: a .\
9
-interpreter. Wadsworth invented 

graph reduction for the pure .\-calculus [201] ;1 its main virtue is that it pro
vides the needed sharing for normal-order evaluation. 

Wadsworth's fundamental insight was this: when faced with a substitu
tion M[x := N] during ;]-reduction, replace each instance of x in M with 
a pointer to N rather than a copy of N. Figure 3.1 shows a simple graph 
;]-reduction, with dotted lines highlighting the intended substitutions. (The 
graphs do not use binding indices for reasons discussed in Section 3.4.1.) 

Figure 3.1 illustrates two important things a graph reducer must do. The 
first is obvious: the rator's bound variables are replaced by pointers to the 
rand. The rand is not duplicated; the single copy is shared (space sharing). 

The second thing is more subtle-the root of the redex (marked by* in 
Figure 3.1) is overwritten with the result of the reduction (the node marked 
t). If the root node (node*) has several pointers aimed at it, the overwriting 
lets them all "see" the result of the reduction-computation sharing. Graph 
reduction provides maximal sharing of both space and computation. 

Top-level structure of a .\
9
-interpreter. I now present the details of a 

-\-interpreter. A .\-calculus interpreter has three essential parts: a search 
strategy to find ;3-redexes, a procedure to copy shared rators (Section 3.3 de
scribes this implementation concern), and ;]-reduction (substitution, mainly) 
to apply to the chosen redexes. Optionally, the interpreter may apply "tidy
ing" transformations between reduction steps for efficiency reasons. 

1 Ironically, in the introduction of his thesis, Wadsworth said that he considered the 
work on semantics to be "more significant" [201, pages 2-3L yet he is certainly best 
known for inventing graph reduction. 
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(* Top-level loop: drives onestepG (>._-interpreter). Does the skipping over top-level 
>._-abstractions. Uses onestepG (page 36) and rm_indir_nodes (page 176). 

*) 

fun toplevG (ref(LamG(B,_,_,_))) = toplevG B 
I toplevG other = reaLtoplevG other 

and reaLtoplevG G = 
let val done_in_G = onestepG G (*step forward *) 

val G' = rm_indir_nodes G (* tidy things up *) 

in if done_in_G then(* keep going*) reaLtopleveiG G' else G' 
end 

The normal-order search strategy of this .\9 -interpreter is a pre-order 
walk as would be used on the underlying .\-tree; however, subgraphs rooted 
at already-visited nodes are not revisited. The function onestepG (page 36) 
encodes this strategy; it is repeatedly invoked by toplevG (page 32) until 
onestepG indicates that no relevant redexes remain. 

Copying of a shared rator before ,8-reduction is the job of lazy_copy (page 
41) with substG (page 37) doing the subsequent substitution. In this .\

9
-in

terpreter, the periodic removal of indirection nodes counts as "tidying," but 
I ignore this in comparisons of interpreters later on. 

With that bird's-eye view in mind, I begin by describing the data struc
tures that represent .\-terms in the -\-interpreter, then I present its con
stituent parts. 

3.1 Graph structure and terminology 

The basic data-structuring implication of graph reduction is that .\-terms 
are represented by (directed acyclic) graphs, not trees. (Cyclic graphs are 
sometimes used to represent recursive functions more efficiently.) When I 
describe graph-related things, I often add a g subscript; for example, "\
graph," ".\9 -term" or ".\

9
-interpreter." 

A .\9 -graph is a directed graph consisting of a set of nodes and a set of 
directed edges. (In figures, direction on edges is from the higher node to the 
lower node unless an arrowhead shows otherwise.) .\

9
-graph nodes represent 

the basic constructs of the .\-calculus in the obvious way; Figure 3.2 gives 
the ML definition of a \-graph node; most of the fields are updatable (all 
the refs), because graph reduction modifies the graph in place. The following 
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(* Graph nodes for the Ag-calculus; names commonly used are shown. *) 
type Gnodeinfo = 

bool ref* 
int ref * 
bool ref* 
(int * int) ref 

datatype Gnode 
= AppG of 

(*subbed; true if substituted in *) 
(* refcnt; reference count {debugging only} *) 
(*visited; visited/marked? [housekeeping} *) 
(* x_y; x,y coords for anim {debugging only}*) 

Gnode ref* (* M; rator *) 
Gnode ref* (* N; rand *) 
boo I ref * (* indir; true if a temporary indirection node *) 
Gnodeinfo (* bits to keep around *) 

[lamG of 
Gnode ref * 
int ref* 
string * 
Gnodeinfo 

[ VarG of 
int ref * 
string * 
Gnodeinfo 

(* B; body *) 
(* bndriD; binderiD for backpointers *) 
(* n; variable name: decorative *) 

(* bi; binderiD: backpointer *) 
(* n; variable name: decorative *) 

Figure 3.2: Graph nodes' structure 
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kinds of nodes may exist: 

AppG: Represents a .A-application; its left and right children are pointers to 
the rand and rator, respectively. 

A subbed flag is set true when a node is the root of a graph that rep
resents a substituted free expression; Section 3.3 discusses the reasons 
for this flag. A visited flag is set by the .A

9
-interpreter when it wants 

to avoid re-visiting nodes. A reference count (i.e., number of pointers 
to the node) and a pair of ( x, y) coordinates (used to make figures) are 
for debugging only. 

An AppG may be temporarily turned into an indirection node by setting 
its indir flag. If set, the rator-pointer indicates the intended target. 

LamG: Represents a .A-abstraction; it has a pointer to the .A-abstraction body. 
The LamG node has a unique integer binder-ID; variables can then 
match against this ID to see if they are bound to this .A-abstraction. 
(The support routines for these IDs are in Section A.2.2 (page 177).) 
The name on an abstraction is preserved (i.e., x for a .Ax), but it is 
purely decorative. The housekeeping fields are like those of AppGs. 

VarG: Represents a variable; the important field is the binder-ID that iden
tifies the LamG where the variable is bound (constants have an ID 
for which there is no matching LamG). The binder-ID is, in effect, a 
backpointer to the variable's binder. (See Section 3.4.1 for why bind
ing indices cannot be used.) The housekeeping fields are like those of 
AppGs. The name is purely decorative, as usual. 

Some terminology about .A
9
-graphs is needed, especially for comparisons 

later on. A node has a type: three possible types are .A-applications, .A
abstractions, and variables bound to .A-abstractions. Nodes of these partic
ular types are plain nodes; all nodes in a .A

9
-graph are plain (making it a 

rather dull distinction at this point!). 
If two plain nodes are directly connected by an edge, they are g-connected. 

All edges in a \-graph are g-connections. 

Definition 3.1 Two .A9 -graphs G1 and G2 are .A9 -equivalent if they are 
isomorphic graphs in which each corresponding pair of nodes g1 E G1 and 
g2 E G2 have the same type and the same subbed-flag value. 
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Converting between simple >.-terms and .X
9
-graphs. A simple, tree

structured .X-term (like those in Chapter 2) is a \-graph. (I ignore the ML 
type-conversion mechanics of replacing App, Lam, and Var nodes with AppG, 
LamG, and VarG nodes (respectively) and the messy conversion from binding 
indices to binder-ID backpointers as done in the code in Appendix A.2.2.) 

The function graph2term T : Gnode ref-> Term (page 67) converts a .X9 -

graph to its linear-expansion .X-term. (In the ML code, I use the name 
"Term T" to indicate a simple .X-term made from >.-applications, >.-abstrac
tions, and variables.) All the sharing in the .X

9
-graph is unwound, producing 

a plain >.-term with no sharing. 

3.2 Finding a redex and ,8
9
-reduction 

As already suggested, walking a >.
9
-graph to find the next redex (in pre-order) 

is fundamentally the same as walking a >.-tree, except that previously-visited 
subgraphs need not be re-walked. The ML function onestepG : Gnode ref-> 
bool (page 36) finds the next redex and then modifies the >.-graph appropri
ately, returning a boolean indicating whether a reduction took place. (I defer 
the problem of shared rators to Section 3.3.) 

The important lines in onestepG are the calls to lazy_copy (described in 
the next section) and substG (page 37) that does a substitution: all variables 
with a binder-ID matching that of the rator \-abstraction are replaced with 
a pointer to the rand N. SubstG also reports the number of substitutions 
done. 

Purely for reasons of compatibility with the interpreter in the next chap
ter, the .X9 -interpreter handles trivial reductions specially. If the rand is a 
single variable, i.e., the redex is (.Xx.{B} y), the substitution of y is actually 
done and the substitutions' subbed flag are not set. Sharing a variable is 
trivial and serves no purpose. This case is handled by substG (page 37). 

Similarly, if the rator-body is a single bound variable, i.e., the redex 
is (h.{x} P), then P is the result (as usual) but its subbed flag is left 
alone. Section 4.5.2 explains about why these special cases facilitate exact 
comparisons of interpreters. 

OnestepS achieves the effect of overwriting the root of the redex by turning 
it into an indirection node, a common technique. It is simpler than looking 
through the whole >.9 -graph to find pointers to the redex and re-aiming them. 
I will generally ignore indirection nodes; toplevG (page 32) removes them 
between steps for simplicity's sake. 
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(* onestepG : Gnode ref-+ bool is passed a pointer to (part of) a graph; it finds the 
first redex in it and reduces it (modifying the Ag-graph in place). It reports whether 
or not a reduction was done; it reduces to WBNF. 

*) 

It uses incr_refcnt (page 175), seLsubbed (page 175), lazy_copy (page 41), and substG 
(page 37). 

fun onestepG (ref (AppG(M,N,(ref true),-))) =raise unexpected_indirection_node 

I onestepG (ref (AppG(M as ref (lamG(B as ref (VarG(vbi,n,(-.-·-·-))). 
lbi .-. (-·I refcnt, -· _)) ), 

N,indir,(subbed,_,_,_)))) = 
(* beta redex: special case of a trivial rator body *) 
( indir := true; (* this AppG now an indirection node! *) 

seLsubbed false N; (*the reason for the special case *) 

if ((!vbi) = (!lbi)) then (*bound*) 
(M :=(IN)) 

else (* useless reduction *) 
(M :=(!B)); 

true 
) 

I onestepG (G as ref (AppG(M as ref (lamG(B,si,-.(-.lrefcnt,-.-))), 
N,indir,(subbed,_,_,_)))) = 

(* beta redex; special case of a trivial rand handled in substG *) 
let 

in ( 

val_ = incr_refcnt -1M; (*will lose AppG refs*) 
val _ = incr_refcnt -1 N; 
val _ = seLsubbed true N; (*the key to laziness! *) 
val Blzcpy = lazy_copy B; 
val (instance, no..subs) = (substG ('si) N Blzcpy); 

indir := true; (* this AppG now an indirection node! *) 
incr_refcnt -1 M; (*whatever M is will have one less ref*) 
(M :=(!instance)); (* redex overwritten! *) 
true 

) end 

I onestepG (ref (AppG(M,N,_,_))) = (*not a redex *) 
( onestepG M) orelse ( onestepG N) 

(* onestepG (ref (LamG(B,_,_,_))) = onestepG B, if BNF were possible ... *) 

I onestepG other = false (* a lamG or a VarG *) 
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(* substG : int ~ Gnode ref~ Gnode ref~ Gnode ref* int fills in bound variables 
(those backpointing to bndrlD) with pointers to sub_with, or-if sub_with is just a 
variable--with a copy of the variable itself (trivial substitution). substG also returns 
the number of substitutions done. 

*) 

SubstG takes the usual precautions against revisiting subgraphs (with mk..graph_visited 
(page 175)); not visiting subbed nodes would work as well. subG is the local function 
that goes on to do all the work. 

and substG bndrlD sub_with node = 
let (*cases with 'subbed' and 'visited' false given first *) 

fun subG bndrlD sub_with (Gas ref (AppG(M,N,(ref true),-)))= 
(perr(" unexpected indir node:" -unparse(graph2term T G)); 
subG bndriD sub_with M) 

I subG bndrlD sub_w (G as ref (AppG(M,N,_,(_,_,visited as (ref false),-)))) = 
let val _ =(visited :=true) 

val (M',mc) = (subG bndriD sub_w M) 
val (N',nc) = (subG bndriD sub_w N) 

in (G, (mc:int)+(nc:int)) end 

I subG bndrlD sub_with (Gas ref (LamG(B,-,-.(-,_,visited as (ref false),-))))= 
(*a copy of a LamG node needs all-new binderiDs *) 
let val _ = (visited :=true) 

val (B',bc) = (subG bndriD sub_with B) 
in (G, be) end 

I subG bndriD sub_with (Gas ref (VarG(si,_,(_,_,visited as (ref false),-)))) = 
((visited :=true); 
if (!si = bndrlD) then ( (*substituting! *) 

case sub_with (* but not if trivial... *) 
of (ref (VarG(ssi,sn,(-.-·-·-)))) =} ( (*subbed is true *) 

) 

((ref (VarG(ref (!ssi),sn,(ref true,ref l,ref false, ref (0,0))))), 
1) 

I - =} ( (*non-trivial substitution *) 
incr _refcnt 1 sub_with; 
G := !sub_with; 
(G, 1)) 

) else (*just copying *) 
(G, 0)) 

(*finally, if 'visited' is true ... *) 
I subG bndriD sub_with already_visited = (already_visited, 0) 

in (mk_graph_visited false node; subG bndriD sub_with node) end 
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Figure 3.3: Graph reduction with copying 

3.3 Sharing free expressions and lazy copying 

There is more to graph reduction than substitution with pointers to, rather 
than copies of, a A

9
-term. Some copying is unavoidable. The problematic case 

arises when the rator of a red ex (a A-abstraction) is shared. An abstraction 
>..x.M is a "template" for a reduction; M defines the "shape" or "structure" 
of the result, with the bound variables of >..x being placeholders to indicate 
where the rand should be "plugged in." To fill in the placeholders of a shared 
rator is to use up the other sharers' template. Consequently, shared rators 
require some copying. Figure 3.3 shows a reduction, marked with a *, in 
which the rator is shared (with three pointers to it). A complete copy of the 
rator is kept for possible later use. 

Wadsworth sought to maximize sharing of space and computation. For 
those criteria, the reduction in Figure 3.3 copies too much. In particular, the 
sub-term (a (b c)) includes no bound variable x, so one copy may be shared 
among all instances of the A-abstraction's body. (a ( b c)) is a maximal free 
expression (MFE) in the term >..x.{((x x) (a (b c)))}. (Other free expressions 
include c and (b c), but neither is maximal.) Figure 3.4 shows the same 
reduction as Figure 3.3, but with the MFE (a (b c)) shared. 

Detecting and sharing MFEs gives the most possible sharing, and there
fore the least copying, but it is an expensive task for run-time. 2 Arvind 
et a!. [9] examined the alternatives in some detail; they say an interpreter 
like Wadsworth's that detects and uses MFEs does fully lazy copying. 

Arvind et a!. also discuss lazy-copying interpreters, citing Henderson 

2 Also, the "most possible" sharing is not necessarily the ''best possible;" Peyton Jones's 
book on sequential implementations of graph reduction has a section on "Excessive Shar
ing" [165, Section 23.4.2]! 
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and Morris's evaluator as an example [90]. Lazy copying does not detect 
MFEs; instead, it exploits a simple observation: If the term (,\a.{ ,\b.{M}} N) 
is reduced to ,\b.{M[a := N]}, then N is free in ,\b.{M[a := N]}, because 
variables in N could not "see" the ,\b abstraction to be bound to it. I call 
it a substituted free expression (SFE). Lazy-copying flags SFEs when first 
encountered and avoids copying them later on. Put colloquially, lazy copying 
does not seek out free expressions, but it makes good use of the ones that 
come its way. In figures, daggers t mark the roots of the SFEs; in the ML 
code, subbed flags are set to true. 

Lazy copying leads to less sharing than fully-lazy copying. Figure 3.5 
shows (a) a term with a redex at the top and (b) the term after a lazy-copy 
of the shared rator (the ,I)-reduction itself would follow). Laziness manifests 
itself in the sharing of be-daggered ( d d); fully-lazy copying would detect 
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the free expression ( c c) and avoid copying it also. The function lazy_copy : 
Gnode ref-+ Gnode ref (page 41) is an implementation. 

Arvind et al. 's main result that is relevant here is that lazy copying gives 
the same sharing as fully-lazy copying if the initial >.-terms have their free 
expressions >.-lifted, as in conversion to supercombinators, for example [105]. 
(Section 6.5 happens to give an example of such a conversion.) With this 
assurance in mind, I consider lazy or fully-lazy copying to be equally ac
ceptable. The interpreters in this chapter and the next do (non-fully) lazy 
copying of shared rators. 

That is the good news. The bad news is that lazying copying can give 
incorrect results on >.9 -graphs with redexes inside (non-top-level) >.9 -abstrac
tions. Put another way, it is correct only for reduction to weak ,8-normal form 
(WBNF). Figure 3.6a shows a >.

9
-graph after one reduction (ton the SFE). 

The second reduction is inside the >.z abstraction, as Figure 3.6b shows. The 
third redex will be the one marked with a *i because its rator is shared, a 
lazy copy must precede the reduction. Because ( z z) is a be-daggered alleged 
SFE, it will not be copied. But the z's mean that (z z) is not free in the >.z 
abstraction, and they must not be shared. 

The >.9 -interpreter on the recurring example. Figure 3. 7 shows all the 
steps of the graph reduction of the recurring example; the daggers indicate 
SFEs. 

3.4 More on variable bindings 

3.4.1 Graph reduction with binding indices 

Graph reduction is an implementation technique for the >.-calculus that has 
desirable sharing properties; binding indices are an effective solution to the 
problems of variable naming: can the two techniques be used together? 
Oddly enough, for normal-order evaluation the answer is "No." 

Figure 3.8 shows a reduction done two ways, by (a) simple tree reduction 
and by (b) graph reduction. There are two substitutions for x; for tree 
reduction, the binding indices in the substituted terms differ. In particular, 
the free variables y and z in the two copies of rand are now different distances 
from their binders. The problem is that >.-terms are represented by graphs, 
so binding paths are no longer unique. 

If the rand is to be shared, then something must be done to balance the 
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(* lazy.copy : Gnode ref-+ Gnode ref copies the subgraph of connected unsubbed nodes 
rooted at its argument node. That is, when a subbed node representing an SFE is 
seen, a pointer to that node is returned and the copy does not proceed inside that 
subgraph. 

*) 

The function chg.bndriDs (page 177) is used to fix backpointer binderiDs in the copied 
parts of graphs. 

and lazy.copy node = 
let (*cases with 'subbed' and 'visited' false given first *) 

fun lzcp (Gas ref (AppG(M,N,(ref true),.))) = 
(perr(" unexpected indir node:" ·unparse(graph2term T G)); lzcp M) 

llzcp (G as ref (AppG(M,N,.,((ref false),.,visited as (ref false),x.y)))) = 
let val _ = (visited := true) (*just copying an AppG node *) 

val (M', N') = (lzcp M, lzcp N) 
in (ref (AppG(M', N', ref false, (ref false, ref 1, ref false, ref (!x.y))))) end 

llzcp (Gas ref (lamG(B,old..bndriD,n,((ref false),.,visited as (ref false),.)))) = 
(* a copy of a LamG node needs all-new binderiDs *) 
let val_ = (visited := true) 

val new.bndriD = nexUD () 
val B' = (lzcp B) 
val_ = chg.bndriDs (!old.bndriD) new.bndriD B' 

in (ref (LamG(B', ref new.bndriD, n, (ref false, ref 1,ref false, ref (0,0))))) 
end 

llzcp (G as ref (VarG(si,n,((ref false),.,visited as (ref false),x.y)))) = 
(visited :=true; 
(ref (VarG(ref (!si), n, (ref false, ref 1, ref false, ref (!x.y)))))) 

(*now the cases with 'subbed' true but 'visited' false *) 
llzcp (G as ref (AppG(.,.,.,((ref true),.,visited as (ref false),-)))) = 
let val new.ptr = (ref (VarG(ref 0,"" ,(ref false,ref 1,ref false, ref (0,0))))) 
in ( new_ptr := !G; new.ptr) end 

llzcp (G as ref (LamG(.,.,.,((ref true),.,visited as (ref false),-)))) = 
let val new.ptr = (ref (VarG(ref 0,"" ,(ref false, ref 1,ref false, ref (0,0))))) 
in ( new.ptr := !G; new.ptr) end 

llzcp (G as ref (VarG(.,.,((ref true),.,visited as (ref false),.)))) = 
let val new.ptr = (ref (VarG(ref 0,"" ,(reffalse,ref 1,ref false, ref (0,0))))) 
in ( new_ptr := !G; new.ptr) end 

(*finally, if 'visited' is true ... *) 
llzcp already.visited = 

(perr(" already visited:" ·unparse(graph2term T already_visited)); 
raise visited_when_copying) 

in (mk_graph.visited false node; lzcp node) end 

41 



A ~ 
b AZ b b Az b 

.Ay 

A z z 

y y z z 

(a) (b) 

Figure 3.6: Lazying copying will not work for non-weak reduction 

binding-path lengths for the would-be substitutions. One can imagine insert
ing path-balancing nodes into the graph; however, allowing these nodes to ap
pear anywhere in the graph complicates the basic definitions of the .A-calculus 
(e.g., ,6-reduction). Berkling's variant of binding indices [27; 31; 32] uses such 
"unbinding" operators, but they do not help with graph reduction. The de
scription of a "k.A1r calculus" in Schliitter's dissertation is a clear, extended 
explanation of a system that includes unbinding [180, pages 87-119]. 

Graph reduction and binding indices can be used together if no reduction 
is done inside .A-abstractions, i.e., to a weaker normal form. Peyton Jones's 
book on implementation discusses the relevant techniques, especially for weak 
head-normal form (WHNF) [165, pages 198-199]. 

The difficulties with binding indices for normal-order evaluation are the 
reason I use Wadsworth's backpointers in the .A

9
-interpreter, implemented 

with global integer binder-IDs (Section A.2.2) [201]. It is esthetically un
pleasing not to have a binding-indices graph-reducer to compare with my 
binding-indices tree-reducer of the next chapter, but the discrepancy is not 
important. 

3.4.2 Wadsworth's use of backpointers 

Wadsworth suggests a clever use of backpointers and indirection nodes that 
not only avoids variable-naming problems but also avoids having to search for 
bound variables during ,6

9
-reduction [201, pages 176-180]; Figure 3.9 gives 

an example, with backpointers shown by dashed arcs. 
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Figure 3. 7: The >..9 -interpreter on the recurring example 
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As usual, the root of the red ex becomes an indirection node (shown by 
"--* ). The novelties are that the rator's .\-node also becomes an indirection 
node and that the backpointers are treated as "real" pointers thereafter. For 
this to work, the target of a backpointer must be examined before one knows 
whether it should be followed or not. It may not be very efficient, but it is a 
neat idea; Berkling provides a critique in his 1986 paper [25, page 29]. 

3.5 Graph-reduction architectures and sharing 

This section sketches some of the parallel architectures that have been de
signed to support graph reduction and reviews some of the designers' com
ments on their experience. I want to know why they chose graph reduction 
as their basic computational model. 

The ALICE parallel graph-reduction machine (Imperial College, London) 
[56; 88; 49] and its follow-on, Flagship (University of Manchester and ICL 
also collaborating) [205], are an instructive pair of designs. ALICE was 
first reported in 1981; a prototype was running in the summer of 1986; its 
designers' practical experience merits close attention. 

In ALICE, each node of a program graph is represented by a packet with 
a globally-known address; the packet includes the node type, the addresses 
of the nodes to which this node is connected, and other information (status 
bits, etc.). All the packets representing the program graph are in the packet 
pool (distributed) memory, shown by 'M' units in Figure 3.10 (the numbers 
of units shown do not reflect any real configuration). 3 Across the switching 
network sit several packet processors ('P' units). Each processor repeatedly 
fishes an active packet out of the pool and tries to do the rewrite suggested by 
the packet type. Further packets may have to be read, and, eventually, a set 
of packets representing the result will be thrown back into the pool. Because 
some packet types require evaluated arguments (e.g., arithmetic primitives), 
there is a mechanism to suspend active rewrites and to re-activate them when 
the required preliminaries have been done. 

Flagship is a successor to ALICE that also draws heavily on the experience 
of the Manchester dataflow machine group (who also built a prototype). The 
basic architecture chosen for Flagship, shown in Figure 3.11,4 reflects the 

3 Keller et al. call this a "dancehall" system organization, with "processors lined up 
along one side of a large dancehall, and memories along the other, with a network of 
switches in between" [114, page 411]. 

4This architecture is much closer to a "boudoir" organization, in which "each processor 
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Figure 3.10: ALICE machine organization ("dancehall") 

designers' foremost criticism of its predecessors: Having a switching network 
between the processors and memories requires that the network have very 
high bandwidth and that programs have massive parallelism to overcome 
long network latencies. Flagship designers have great concern for locality; 
they aim for "90% locality"-"9 out of 10 store accesses made by a rewrite 
should be to the local processor." [205, page 127]. The machine uses local 
caching of non-local parts of the program graph, so that rewriting itself 
is entirely local. Still, the designers concede that preserving locality is a 
"difficult problem, which forms a major aspect of Flagship research" [205, 
page 128], and they advocate that algorithm, language, and compiler design, 
plus dynamic mechanisms, be examined specifically to enhance locality. The 
approach taken to support lazy functional languages is supercombinators 
evaluated to WHNF; this means they look for large self-contained rewrites 
whose graph manipulations can be encoded as big swatches of von-Neumann 
code suitable for local execution [208]. (I should mention that the Flagship 
group found a supercombinator approach to be "ten to a hundred times 
more efficient" than a straight .\-calculus graph reducer [208; 206]; Berkling 
disagrees [25; 30].) Flagship takes locality seriously indeed: they want to 
preserve the "fine-grain" computational model of graph reduction but to 
avoid the considerable work a literal implementation of that model must 
entail [202]. 

There is no evidence that ALICE's designers considered a computational 

is closely paired with a memory" [114]. 
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Figure 3.11: Flagship machine organization ("boudoir") 

model other than graph reduction, which is understandable given their un
swerving commitment to lazy functional languages. By the time of Flagship, 
its designers were interested in supporting "graph rewriting," a more gen
eral mechanism discussed in Section 3.6. They note that graph reduction 
subsumes string reduction and "that string reduction can be readily imple
mented in any graph reduction machine structure in those circumstances 
where it may be worthwhile" [203, page 9]. 

Though they favor graph reduction as a computational model, the Flag
ship designers are plain-spoken about its costs. They state, unequivocally, 
"Graph reduction has a fundamental requirement for a global memory space 
at the level of an abstract machine architecture" [204, page 266]. Put another 
way, the "notion of node identity is an essential feature of graph [reduction] 
(as distinct from [tree reduction])" [207, section 2]. For a parallel design, 
"it is inevitable that much of the physical memory will not be immediately 
accessible by any single processor. The performance of any parallel machine 
is critically dependent on the way in which remote access is handled" [204, 
page 266]. 

The work of Keller et a!. in Utah, first reported in 1979, shows some 
of the same trends as ALICE/Flagship. AMPS was the first parallel graph
reduction machine from the Utah group; it was oriented to symbolic compu
tation and intended to run LISP [115]. AMPS had a "boudoir"-ish system 
organization (Figure 3.11), with a tree-structured switching network; the 
Processor /Memory units are connected to the leaves of the network, im
plementing a virtual global address space. The tree-node hardware supports 
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packet-switched communication, as well as load-balancing (hardware-assisted 
load-balancing is a hallmark of the Utah designs). The AMPS designers, 
though influenced by fine-grained dataflow approaches, sought "task-level" 
parallelism and used caching, saying "One of the most important concepts of 
our architecture is an attempt to improve performance by exploiting locality 
of information flow" [115, page 614]. 

AMPS supported graph reduction to allow programming with infinite 
structures and also because "by exploiting the richer connectivity of graphs, 
we can avoid much of the combinatorial explosion which takes place in purely 
string-oriented reduction machines" [ll5, page 616]. The mechanism of 
rewriting graphs is not fundamentally different from ALICE or Flagship: 
successive rewritings of "code words" represent graph-node manipulations. 

Rediflow, "a collection of ideas relating to multiprocessor system design 
and attendant software capabilities," reflects the development of the Utah 
group's thinking [114]. They moved toward a "hybrid model" that supports 
"reduction, dataflow, and von Neumann processes." The physical configu
ration changed from AMPS's tree to a rectangular mesh of "Xputers," but 
the boudoiresque, "medium grain" direct implementation of graph reduction 
is unchanged. The signature concern for load distribution and balancing is 
more evident [136]. 

Rediflow II is a "proposed multiprocessor architecture based on graph 
reduction" [116]. The most notable change is away from a direct "more
interpretive, graph reduction model" to a "PSCED" 5 approach, "an efficient 
method for the integration of sequential code" [116, page 204] (the authors 
say the PSCED idea is similar to SECD-m [1] or the Multilisp implementation 
[85; 86]). As with supercombinator machines, the goal is to have a success
ful non-von Neumann machine by shoehorning as much von-Neumann-style 
execution into the implementation as possible. 

Paul Hudak (Ph.D. from Utah) and his cohorts had a similar goal in 
their work on "serial combinators" [102; 103]: to compile functional programs 
into combinators for which the internal workings are entirely sequential, but 
without a loss of parallelism in the program. The serial code is gathered into 
bundles that can be executed cost-effectively by a single processor. 

Another British parallel graph-reduction machine is GRIP, under the di
rection of Simon Peyton Jones [169; 168]. GRIP uses a bus for its commu
nication medium (trading scalability for modest expense and low latency) 
and hopes to be a cost-effective dozens-of-processors computer. For lazy 

5 A sort-of acronym for "parallel SECD machine," pronounced ''sked." 
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functional languages, GRIP intends to use supercombinators to evaluate to 
WHNF, based on a parallel extension to the G-machine model (building on 
the G-machine compiler technology for sequential computers [165]). Pre
cious bus bandwidth is conserved by using "intelligent memory units" that 
do higher-level operations on the graph data they hold (e.g., create variable
sized nodes and do garbage collection). GRIP also has a central system
management processor. 

Peyton Jones also draws attention to the importance of locality, saying, 
"One issue dominates all others: how can a high degree of spatial locality be 
achieved simultaneously with a high degree of processor utilisation?" (his em
phasis) [167, page 182]. He goes on to say that a "bus was chosen specifically 
to make the locality issue less pressing" [167, page 183]. 

The Dutch Parallel Reduction Machine project is another significant 
broad-based effort to support functional programming [23; 91]. The design
ers use graphs for sharing reasons, saying "graphs are an essential part in any 
implementation" [23, page 264]. They aim for "coarse-grain" reduction (at 
the level of "jobs"), letting a standard fast sequential reducer do the "fine
grain" reductions; they use annotations to help decompose programs to jobs. 
Most interestingly, they give up a global address space and do not share at 
the job level [200]. Instead, they use a "sandwich strategy" of reduction that 
evaluates shared jobs first and then copies the results to the sharing reduc
ers' local address spaces. Thus, there is "a kind of string-reduction" [200, 
page 301 J at the job level, with conventional graph reduction at lower levels. 

Another design that uses distributed memory to implement a global ad
dress space is the HDG-Machine at the GEC Research Centre in England 
[33; 40; 41]; it is implemented on a network of transputers with distributed 
memories [210]. The underlying model of the HDG-Machine is the use of 
evaluation transformers, in which each function argument is analyzed at 
compile-time to decide how far it will need to be reduced. This information 
then guides the spawning and management of tasks in the machine. Terms 
are shared until reduced to WHNF; after that, they may be copied freely. 
Fast context-switching is essential in this machine, so stack frames are kept 
in the heap, and a context-switch is a simple pointer manipulation. 

Several other proposed machines for graph reduction restrict themselves 
to combinator reduction. Combinators are pure rewrite rules, unencumbered 
by free/bound-variable difficulties, and mechanisms can be constructed that 
give the effect of going through all the A-calculus reductions, but avoiding 
the intermediate steps. With super- or serial-combinators, the goal is to 
synthesize program-specific large combinators; again, to avoid intermediate 
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steps. This approach is well-represented by already-mentioned machines. 
With fixed sets of combinators (e.g., S, K, I), the approach is to build them 
directly into the hardware. Sequential combinator-reducing machines have 
included SKIM (47], SKIM II (196], the CURRY chip (173], and NORMA 
(179]. TIGRE is a threaded combinator-reducing interpreter in which the 
graph is built partly from instructions, so that the graph itself is actually 
executed (127]. Parallel combinator machines include COBWEB (87; 34] and 
COBWEB-2 (which uses combinator-equivalent "director strings") (6; 7]. 

The MaRS project in France, with its background in aeronautics and 
dataflow architectures, proposed a combinator-based parallel graph-reduc
tion machine (44; 48]. Of their graph-reduction choice, the designers say, 

(O]ne can distinguish two kinds of reductions, string reduction 
where expressions are formed of literals and values, and graph 
reduction, where expressions are constituted of literals and ref
erences. In our opinion, graph reduction is more interesting for 
the following reasons: because of the notion of reference, graph 
reduction allows the sharing of computation, but it also provides 
an efficient way for manipulating large data structures. Graphs 
are uniform representations of suspensions (closures) as well as of 
shared data structures (44, page 162]. 

There are still more proposals for "parallel graph reduction" machines; 
however, they do not speak out about the basic graph-reduction design 
choice. Amamiya proposes a heavily dataflow-influenced design that tries 
to use eager evaluation when possible (5]. (Generally speaking, reduction
machine designers have a great debt to their dataflow-machine predecessors 
and colleagues.) The G-machine group has designed a parallel variant, the 
<v,G>-machine (11]. Numao and Shimuragive a graph manipulation scheme 
for a system of disjoint graph reducers not sharing a common address space 
but communicating by CSP-style message passing (156]. Traub proposed an 
"abstract" parallel graph reduction machine, to help separate and clarify the 
many design issues in such architectures (197]. 

There are other major issues associated with graph reduction besides 
sharing, notably garbage collection and load distribution. These questions 
are beyond the scope of this dissertation, but I will again quote the experi
enced Manchester group on the cost of the global address space that graph 
reduction requires: "Graph Reduction requires continuous storage allocation 
and reclamation. It is inevitable that our distributed global address space 
will make these tasks more difficult" (204, page 271]. 
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It may well be true that the use of graph reduction has been an item of 
heated debate within the research groups that have chosen it; if so, the debate 
is not reflected in the literature. My speculation is that graph reduction 
is used because it is the best-known model that supports lazy functional 
programming; threatened exponential blow-ups of "string reduction" have 
kept researchers well away from that set of choices. Also, graph reduction 
offers plenty of sharing; however, designers do not strive for maximal sharing, 
suggesting it is not a critical design criterion. Most designers point out 
the importance of locality, with the experienced groups being all the more 
emphatic. Exotic and clever solutions like the Dutch "sandwich strategy" are 
used to overcome the inherent indifference to locality that is implicit to graph 
reduction. Given the modest success of parallel graph-reduction machines so 
far, I would suggest that some re-thinking is in order. 

Some close cousins of graph reduction and architectures based on it use 
"closure-based reduction" or related schemes. I review that work in Sec
tion 4.8.3. 

3.6 Graph rewriting 

I have concentrated strictly on graph reduction as a technique for imple
menting lazy functional languages, but I should mention that many "graph 
reduction" researchers, including several cited above, take a broader view~in 
this context, it is usually called graph rewriting. 

Graph rewriting sits on the well-explored theoretical base of term rewrit
ing systems, which are sets of rewrite rules on terms (e.g., S, K, I combi
nators can be described as a TRS). Klop [123] and Dershowitz [60] provide 
good introductions to TRSs. Drawing on the field of graph grammars, graph 
rewriting considers sets of rewrite rules that operate on graphs. Because 
graph rewriting can represent a broad range of computational models (in
cluding both functional and logic programming), as well as many machine
level graph-twiddling tricks that a compiler might do, and because graph 
rewriting is amenable to formal treatment, it is suitable as an intermediate 
form and compiler target language for parallel computers. 

The two main groups defining such languages for parallel machines are the 
Dactl group, at Manchester and East Anglia [74; 75; 77; 78; 76; 73; 119; 120], 
and the Lean group, part of the Dutch Parallel Reduction Machine project 
[20; 21; 22; 38]. FLIC is Peyton Jones's entry in the intermediate language 
field [166]. 
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Graph rewriting is significant, as it helps to broaden our understanding of 
fundamental issues in graph-based computation; however, it has not affected 
my work, because I am not making claims about anything but the normal
order evaluation of the pure >.-calculus. 
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Chapter 4 

Reduction with suspensions: the 
,\

3
-interpreter 

Suspension and reduction are ... remedies against the 
iniquitous or ill-founded decrees of inferior judges ... 

- John Erskine, An Institute of the Law of Scotland (1773). 

The previous chapter described the .\9 -interpreter, for the normal-order graph 
reduction of the .\-calculus. This chapter sets forth an alternate .\,-interpret
er that does the same reductions step-for-step but keeps .\-terms in tree form. 
Using a tree representation could provide better opportunity to preserve lo
cality in a parallel implementation. To illustrate this benefit, Chapter 5 
explains how an FFP Machine (FFPM) implementation would work. 

Sections 4.1-4.5 present the .\,-interpreter; Section 4.7 brings together 
the results of the previous sections to prove the .\,-interpreter's equivalence 
to the graph-reduction .\

9
-interpreter; since the .\9 -interpreter is known to 

be a correct implementation of the .\-calculus, the .\,-interpreter must be as 
well. Section 4.8 examines the relationship of this work to others' efforts. 

I have written a working .\,-interpreter in a functional style, using ML. 
Most of the code is included in this chapter for illustrative purposes; it uses 
some utility functions described in Section A.2.1. 

Introduction. This section describes an interpreter for the .\-calculus that 
manipulates ordinary .\-terms augmented with an additional element, the 
suspension-hence the name .\,-interpreter (and the s subscript). 



Wadsworth showed that graph reduction is a correct implementation of 
the normal-order evaluation of the pure A-calculus (201]. If I can prove 
that the A,-interpreter does the "same thing" as the graph-reducing A9 -in
terpreter on each reduction step, then it follows that the A,-interpreter is 
also a correct evaluator for the A-calculus. Moreover, if the two interpreters 
work in lockstep, then it is relatively easy to compare their time and space 
complexities as well. This chapter is concerned with the A,-interpreter itself 
and its correctness. I defer complexity questions until Section 5.3, after the 
various operations' costs have been determined. 

General battle plan. The diagram in Figure 4.1 suggests my broad claim, 
most of which I do not pursue: given a plain (non-graph) A-term T,O that 
(presumably) reduces to its weak ,8-normal form (WBNF) T,n in n graph
reduction steps, then the following do also: 

o the conventional interpreter, evai_WBNF (page 25) (which will do at 
least n reduction steps); 

o at least n calls to the plain-tree-reducing onestepT (page 23) (the as
terisk superscripts in Figure 4.1 denote "zero or more" calls); 

o n graph-reduction steps, as in the A9 -interpreter of Chapter 3 ( onestepG 
(page 36) is an encoding of the main routine); or 

o n suspension-ridden steps of the A,-interpreter of Chapter 4 ( onestepS 
(page 72) is an encoding of the main routine). 

The initial terms TO, T,0 , and T 0 are trivially related. 
g s 

I use a "super-toplevel" ML procedure that does what Figure 4.1 suggests: 
it runs all the interpreters together in lockstep, converting and comparing 
terms along the way, using the functions term2this and that2term of Figure 4.1 
to convert between representations. The "super-toplevel" code is not shown, 
as it is just several pages of error-checking. 

Specific battle plan. I do not consider all the equivalences suggested 
by Figure 4.1; I focus only on the step-for-step equivalence of the A

9
- and 

A,-interpreters. Figure 4.2 suggests the comparison I will make-both inter
preters take comparable action in each part of a reduction step: search for 
the "leftmost" redex (it may not literally be leftmost here), copy the rator if 
it is shared, do the reduction, and (optionally) tidy up the resulting A-term. 
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onestep term2graph 

onestep T * onestep term2graph nestepS vai_WBN F 

nestepG*: term2graph i:>nestepS* 

Figure 4.1: Graph reduction vs. reduction with suspensions 
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T;, -E----;:c:-::=,.,;-::=::-r--Tit 
g term2gra ph s 

Figure 4.2: A .\
9
-interpreter step vs. a .\8-interpreter step 
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(* top-most loop: drives onestepS (the >.,-interpreter). Does the skipping over top-level 
A, -abstractions. 

*) 

fun toplevS (Lam(B,n)) = Lam(toplevS, n) (*skipping over ... *) 
I toplevS other = reaUoplevS other 

and reaUoplevS T = 

let (*step forward *) 
val (action_in_T, T') = onestepS T 
(* tidy things up *) 
val T" = trashpickup (tidyterm T') 

in (*make sure all is well *) 

end 

if not(is_weiUormed T") then ( 
perr(" malformed term! "-unparse(T' )); 
T' 

) else if action_in_ T then (*keep going *) 
real_toplevS T" 

else 
T" 

Notation: the output of reduction step i (T;' or Tj') is input to the next 
(T;+I orr;+'). (Note the s, c, r, and t superscripts for the four phases.) 

Assuming a function onestepS (presented later) that does one reduction 
step, a .>.,-interpreter reduces a A-term to WBNF by calling onestepS repeat
edly, as the function toplevS :Term--> Term (page 57) shows. It tidies terms 
with tidyterm and trashpickup; a call to is_weiUormed is a safety check. (All 
these functions are presented later in this chapter.) 

Representations. The functions formA2formB in Figure 4.1 indicate con
versions between different representations of A-terms; they will be introduced 
in due course. All the representations used (unadorned A-trees without sus
pensions, A

9
-graphs, and A-trees with suspensions) have the plain elements 

in common (applications, abstractions, constants and variables bound to ab
stractions). I routinely make comparisons between these common elements 
across representational boundaries, e.g., comparing a \-abstraction to a .>.,
abstraction. Similarly, I will glibly call all of them "plain nodes." 

After defining the data structures for the .>.,-interpreter, I examine how 
a .>.,-interpreter tackles the four phases of a reduction step. Because the 
phases interact in subtle ways, there is a chicken-and-egg problem with the 
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presentation; if something seems murky the first time, skip it and try a second 
pass later. 

4.1 \-term structure and terminology 

The .\,-interpreter manipulates augmented .\-terms called .\,-terms. .\,
terms include the three plain elements of the .\-calculus: .\-applications, 
.\-abstractions, and variables bound to abstractions. 

The new construct in .\,-terms is the suspension. A suspension is a sub
stitution put "on hold" or suspended. 

The notation for a suspension is [xB PJ, and it stands for a substitution 
B[x := PJ. Meanwhile all the instances of variable x in B are sharing the 
single copy of P. Pis the called the pointee and B the body of the suspension. 
As always, the name x is a mnemonic decoration showing which variables in 
Bare pointing to P. The only "cost" of removing all variable-names in .\,
terms, leaving just binding indices, is in human convenience, as the example 
on page 21 showed. 

In a .\,-term, variables may be bound either to a .\,-abstraction or to 
a suspension: both .\,-abstractions and suspensions are binders (and have 
bound variables). A variable x; bound to a suspension [xB P] "points to" 
or "is aimed at" a copy of the pointee P. I will call such suspension-bound 
variables .\,-pointers. Henceforth, I reinforce the pointing notion by giving 
the pointers pointy hats, as in Xto y3 , etc. (to be explained shortly). The best 
way to think about a suspension is as a peg on a .\,-tree on which a shared 
.\,-term is hung; variables "point" to the shared term with their binding 
indices. 

Figure 4.3 shows a .\,-term with a suspension at its root. The three x 1 

variables point to N.l 
Figure 4.4 gives the ML definition for a well-formed .\,-term; Figure 4.5 

illustrates the various constructs (I will eventually account for all its dots 
and squiggles). A .\,-term can be: 

o An App(M,N): a .\,-application; the rator M and the rand N must be 
well-formed .\,-terms. 

As before, a .\,-application is written as (A1 N); in .\,-tree form, it is an 
unmarked two-child node. Figure 4.5 has three .\,-application nodes. 

1 Following my notational convention about asterisk subscripts, the y* variables have 
some unknown and uninteresting binding indices. Also, recall that capital letters denote 
arbitrary ternas. 
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[x] 

N 

Figure 4.3: A .\8 -term with a suspension at its root 

(*Terms in the pure A-calculus, plus Sus(pensions) *) 

datatype VarMark 

= NotPtr (*plain variable; not a pointer *) 
I Ptr (* var has been turned into a pointer *) 
I Follow Fill (*pointer being followed; should be illled eventually *) 
I FollowNoFill (*pointer being followed; needn't be tilled *) 
I Followed (* the following has been done [don't try again} *) 

datatype Term (* std names used *) 
= App of Term* Term (* M, N *) 
I lam of Term *string (* B, n *) 
I Var of int * VarMark *string (* bi, vmk, n *) 
I Sus of Term* Term* string (* B, P, n *) 

Figure 4.4: Definition of a Term 
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>.y 

I 
[x] 

Yz Yz 

Figure 4.5: An example with much >.,-term notation 

o A Sus(B,P,n): a suspension; the body B and the pointee P must be 
well-formed >.,-terms. The suspension must not have a bound variable 
in P (Section 6.3 discusses lifting this restriction). n is a name, for 
decorative purposes only. 

A suspension is written as [nB PJ; in >.,-tree form, it is shown by a [n] 
node. Figure 4.5 shows two suspensions, both for variables decorated 
with the name x. Each suspension in the figure has one bound variable. 

o A Lam(B,n): a >.,-abstraction; the body B must be a well-formed>.,
term. n is a variable name, for decorative purposes only. 

A >.,-abstraction is written as >.n.{B}; in >.,-tree form, it is shown by 
a >.n node. The topmost node, ).y, is the only Lam node in Figure 4.5. 

o A Var(bi, vmk, n): a variable with binding index bi. bi < 0 means the 
variable is a constant (a variable free at the top level). The variable 
mark vm k is an annotation saying what has happened to the variable: 
NotPtr means it is a plain variable; it must have a >.,-abstraction as its 
binder; a variable with any another mark must be bound to a suspen
sion. The other variable marks (FollowFill, FollowNoFill, and Followed) 
are used to guide the following of >.,-pointers. Section 4.3 describes 
their use. The variable name n is decorative, as always. 

A variable is written as n1; in both tree and text form. "Hats" (accents) 
represent the variable marks. A NotPtr variable x; has no hat; for Ptr, 
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(* is_well_formed : Term -> bool. 

*) 

Uses chk_vars (page 170), is_ptr (page 169), and is_bd_var_or_ptr (page 172). 
A predicate function that says if a Term is "well formed." Mainly, it checks if variable 
bindings are well behaved. A A-abstraction's bound variables must not be pointers, a 
suspension's bound variables must be pointers, and a suspension cannot have bound 
variables in its pointee. 

fun is_weiLformed (Var(_,_,_)) = true 

I is_weiLformed (App(M, N)) = (is_weiLformed M) andalso (is_weiLformed N) 

I is_well_formed (Lam(B, _)) = 
(is_weiLformed B) andalso 
(if (bd_var_exists B) then (not(bd_vars..are_ptrs B)) else true) 

I is_weiUormed (Sus(B, P, -)) = 
(is_weiLformed B) andalso (is_weiLformed P) 
andalso (if (bd_var_exists B) then (bd_vars_are_ptrs B) else true) 
andalso (not(bd_var_exists P)) 

and bd_var _exists T = 
chk_vars is_bd_var _or _ptr or Else false 1 1 T 

and bd_vars_are_ptrs T = 
let fun bd_var_is_ptr lev_ (bi,vmk,n) = (bi=lev) andalso (is_ptr(Var(bi,vmk,n))) 

in chk_vars bd_var_is_ptr orEise false 1 1 Tend 

FollowFill, FollowNoFill, and Followed marks, I use xi, ii, xi, and xi hats, 
respectively. 

There are six variables in Figure 4.5. All the y's are NotPtrs (and 
have the same binder); the two x's are, left to right, a FollowFill and a 
Followed; they are bound to different suspensions. 

The ML predicate function is_weiUormed : Term --> bool (page 61) encodes 
the requirements for a well-formed .),-term. 

Converting between plain >.-terms and As-terms. Plain (suspension
less) A-terms are As-terms. 

A As-term is converted to its linear expansion >.-term by completing 
the substitutions for which the suspensions in it stand, as the function 
term2termT: Term--> Term (page 62) shows. 

Notation for binding-index changes. I use the following notation for 
the adjustment of variables' binding indices: 
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(* term2termT: Term___, Term. 

Converts a Term, possibly including suspensions, to one without suspensions (for 
pure tree reduction, hence the name "TermT"). Completes the substitutions that the 
suspensions represent. 

Uses std_subst (page 172) and incdree_vars2 (page 171). 
*) 
fun term2termT (App(M,N)) = App(term2termT M, term2termT N) 

I term2term T (Lam( B. n )) = lam(term2term T B, n) 

I term2termT (Var(bi,vmk,n)) = Var(bi,vmk,n) 

I term2termT (Sus(B,P, n)) 
(incdree_vars2 1 (std..subst (term2termT P) (term2termT B))) 

Tif: Binding indices of free variables are incremented by 1; constants ex
cluded. 

Tdf: Binding indices of free variables in T are decremented by 1; constants 
excluded. 

Tib: Binding indices of bound variables in T (the binder will be obvious from 
context) are incremented by 1; constants excluded. 

Tdb: Binding indices of bound variables are decremented by 1; constants 
excluded. 

Terminology for comparing with >."-graphs. Recall that >.-applica
tions, >.-abstractions, and variables bound to >.-abstractions are plain nodes. 
A >.,-term, therefore, is made of plain nodes as well as suspensions and >.,
pointers. If two plain nodes in a >.,-term are directly connected by an edge 
in a >.,-tree, they are g-connected (as in >."-graphs). 

Two plain nodes in a >.,-term may also be s-connected, with an "indirec
tion" through suspensions and/or a >.,-pointer. As will only become clear 
in Section 4.5.5, the tidying rules (Section 4.5) guarantee that s-connections 
must have one of two forms in a tidied >.,-term. Meanwhile, the more intu
itive notions presented shortly will get us through. 

If two plain nodes in a >.,-term are either g- or s-connected, then they are 
sg-connected. (A \-graph is trivially sg-connected, because all of its nodes 
are plain, and adjacent nodes are invariably g-connected.) I re-emphasize 
that all this "connecting" has only to do with plain nodes in >.,-terms (and 
>.9 -graphs, of course). 
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A tidied .\8-term T8 is A89 -equivalent to a .\
9
-graph T

9 
(written as T8 ii T9

) 

if T8 may be made .\
9
-equivalent to T

9 
by converting all the s-connections in 

T. tog-connections. Put colloquially and none too precisely: "Replace the .\.
pointers with real pointers and throw away the suspensions." Algorithm 4.1 
(page 64) will be a more careful statement of this idea. 

4.2 fis-reduction: the fis rule 

This section examines how the .\.-interpreter does !1-reduction. Even though 
finding redexes (Section 4.3) and copying shared rators (Section 4.4) come 
first in a reduction step, looking at !1-reduction helps to clarify those more 
involved tasks. 

As Figure 4.2 showed, the .\8 -term input to this phase is T1' and its .\.9 -

equivalent is T;,. (Sections 4.3 and 4.4 will confirm that the searching and 
g 

copying phases preserve .\89-equivalence.) The reduction phase's output will 
be T;r and T;r, respectively. 

s g 

T;, is a tidy .\8 -term; for this section, that just means that the root of the 
s 

redex is g-connected to its rator. (Section 4.5 defines tidying more generally 
and discusses it at some length). Earlier parts of a reduction step do not 
affect tidiness: searching for a redex does not alter terms and copying a 
shared rator preserves tidiness (Lemma 4.8). 

!1.-reduction (the !1s rule) in the .\8 -interpreter creates a suspension: 

(.\x.{B} P)-> [xB PU]. 

Binding indices of free variables in P must be incremented because a new 
binder has been thrown into their binding paths, and the variables bound by 
the .\x must have their vmk's changed to Ptr because their binder is now a 
suspens10n. Sample code for the !1. rule is halfway down the code for onestepS 
(page 72). 

Lemma 4.1 Given T;c ii T~c with corresponding redexes selected for {3-reduc
tion zf Tic is 4 -reduced to Tir and Tic is 4 -reduced to Tir then Tir = Tir. 

' s fJs s g fJg g ' s sg g 

Proof. The proof is by showing that the interpreters make corresponding 
changes to their connected plain nodes and to the connections. There are 
three special cases to consider: when the rator body includes no bound vari
ables, when the rator body is a single bound variable, and when the rand is 
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[x] [x] 

>..y 

A 
p /:'p 

Yr T fir T 

Figure 4.6: ,8,-reduction of a shared redex 

a single variable. These cases are inextricably linked with tidying, specifi
cally the [useless] rule (Section 4.5.1) and trivial-suspension eradication (Sec
tion 4.5.2); they are dealt with there. Lemmas 4.3, 4.4, and 4.5 guarantee 
the correctness (corresponding plain nodes and connections) of those cases. 

Table 4.1 carefully compares the >..
9
-interpreter and >..,-interpreter imple

mentations of /3-reduction for all cases other than those just mentioned. It 
shows that the correspondence between plain nodes and their connections is 
maintained. D 

The blow-by-blow comparison of ,8
9

- and ,8,-reduction suggests an algo
rithm to convert a >..,-term to a >..9 -equivalent >..9 -graph. 

Algorithm 4.1 Convert a tidied >..,-term to a >..9 -graph. In short, replace 
each s-connection between plain nodes with a g-connection. 

1. Plain nodes in the >..,-term carry over unchanged, as do any g-connec
tions (edges) directly connecting them. 

2. Each >..,-pointer is replaced with a "real" pointer to the root node of 
its binder's pointee; tidying ensures that the root node is a plain node. 

3. Flag the plain root node of the pointee as a SFE (in \-interpreter ML 
code, set subbed :=true, as in onestepG (page 36)). 

4. "Short-circuit" the suspension node by replacing any pointers to it with 
pointers to its body. 

5. Give each variable bound to a >..-abstraction a Wadsworth-style back
pointer that points to the binder indicated by its binding index. (Recall 
from Section 3.4.1 that binding indices do not work in >.. 9 -graphs). 
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A -interpreter 

1. Replaces bound variables 
with pointers to the rand: 
g-connections. 

2. Keeps (shares) only one copy 
of the rand. 

3. Marks the rand as a substi
tuted free expression (SFE) 
(subbed flag set to true). 

4. The root node of the redex 
is overwritten with the root 
node of the result, so that 
if the redex was shared, the 
sharers will all see the reduced 
version. The redex-root \
application node is thus effec
tively discarded. 

5. The rator-root -\9 -abstraction 
node is discarded. 

6. Plain nodes lost are the redex
root, the rator-root, and all 
the rator-bound variables. 

-\,-interpreter 

Marks bound variables as 
"pointing" to the rand (now a 
suspension's pointee): s-con
nections. 

Keeps one copy of the rand as 
the suspension's pointee. 

The root node of the rand can 
be distinguished as "substi
tuted" because it is the root 
of a suspension's pointee. 

The root node of the redex 
is effectively overwritten with 
the root node of the result by 
turning the redex into a sus
pension. A redex is shared if 
it occurs in the pointee of an
other suspension, as in Fig
ure 4.6. Because the redex
root -\,-application node is re
placed by a new suspension, 
all the -\,-pointers that used 
to point to the redex now 
point to its reduced form (the 
new suspension). 

The rator-root -\,-abstraction 
node is discarded. 

Plain nodes lost are the redex
root (it becomes a suspen
sion), the rator-root, and 
all the rator-bound variables, 
which become -\,-pointers. 

Table 4.1: Comparison of {3
9

- and /3,-reduction 

65 



All the conversions in Algorithm 4.1 (real pointers for ,\,-pointers, "short
circuit wires" for suspensions, and backpointers for A-abstraction-bound vari
ables) are independent of each other, so the ,\9 -graph produced does not de
pend on the order in which the conversions are done. Term2graph :Term -> 

Gnode ref (page 67) is an implementation of the algorithm. 

4.3 Searching for the next redex 

For comparison purposes, the inputs to this phase are T' and T', with outputs 
s g 

T'' and Tis, respectively, as in the battle plan, Figure 4.2. 
s g 

Following pointers. Evaluation to WBNF of a ,\-term repeatedly seeks 
out the leftmost redex not in a top-level ,\-abstraction and reduces it. In 
trees or acyclic graphs, the first redex encountered in a pre-order walk from 
the root is selected. For ordinary tree reduction or the ,\

9
-interpreter, a 

tree- or graph-walking algorithm that follows g-connections between plain 
nodes suffices, as the functions onestep T (page 23) and onestepG (page 36) 
exemplify. 

How does one do a pre-order walk to the next redex in a -\,-tree with 
suspensions and -\,-pointers? It should be no surprise that the principle is to 
follow s-connections in the same way as the usual g-connections. Consider 
Figure 4.7, which shows a term after one (3

9
- and /3,-reduction. The next 

redex-the only one-is (Ax.{x} y), *'din the figure. Graph reduction will 
find it with a preorder walk (call it a \-walk), visiting nodes ,\x, ,\y, (), (), 

x, ,\a, (), a, () [redex found]. 
What does a pre-order walk of the comparable -\,-term give (a -\,-walk)? 

The first part is: AX, ,\y, [z], (), (), x3, zl. We observe: 

• There is a suspension node ([z]) in the -\,-walk but not in the \-walk. 
This absence fits with my earlier suggestion that a suspension is just a 
"peg" on the tree on which a shared term (the pointee) has been hung. 
When on a redex-finding mission, we should ignore the pegs insofar as 
possible. 

• The new aspect of the ,\,-walk is running into the 21 . What does that 
mean? At the equivalent point in the \-walk, we followed a pointer 
from a -\,-application() to its rand ,\a. But what is Z? It is a -\,-pointer 
to its binder's pointee! Follow it. 
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(*The functions term2graph: Term-+ Gnode ref and graph2termT: Gnode ref-+ Term 
convert between A8 -terms and Ag-graphs. 

*) 

term2graph uses nexUD (page 177), bidx_to_bndriDs_T (page 177), incr_refcnt (page 
175), seLsubbed (page 175), and substG (page 37). graph2termT uses bndriDs_to_bidx 
(page 177). 

and term2graph (App(M,N)) = 
ref(AppG((term2graph M), (term2graph N), ref false, 

(ref false, ref 1, ref false, ref (0,0)))) 

I term2graph (Sus(M,N, n)) = 
(*finish the substitution [innermost out} *) 
let val id_to_use = nexLID () 

val Mg = term2graph (bidx_to_bndriDs_T 1 id_to_use M) 
val Ng = term2graph (b"idx_to_bndriDs_T 1 id_to_use N) 
val _ = incuefcnt -1 Ng; 
val _ = seLsubbed true Ng; 
val (substituted, no..subs) = (substG id_to_use Ng Mg) 

in substituted end 

I term2graph (Lam(B, n)) = 
let val id_to_use = nexUD () 

val Bt' = bidx_to_bndriDs_T 1 id_to_use B 
val B' = term2graph Bt' 

in ref(LamG(B', ref id_to_use, n, (ref false, ref 1, ref false, ref (0,0)))) end 

I term2graph (Var(bi,vmk,n)) = (* VarMark info thrown away*) 
ref(VarG(ref bi, n, (ref false, ref 1, ref false, ref (0,0)))) 

and graph2term T (Gas ref (AppG(M,N,indir,_))) = 
if 'indir then (*indirection node *) 

graph2term T M 
else 

App(graph2term T M, graph2term T N) 

I graph2term T (ref(LamG(B,si,n,-))) = 
Lam(bndriDs_to_bidx 1 (!si) (graph2termT B), n) 

I graph2term T (ref(VarG(si,n,-))) = 
Var((!si), NotPtr, n) (* NB: put binderiD in temporarily *) 
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(a) .\9 -graph 

y 

AX 
I 

,\y 

I 
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(b) .\,-term 

Figure 4. 7: A term after one {3
9

- or f),-reduction 

Therefore, to mimic graph reduction, we follow 21 by re-visiting its 
binder and continuing the preorder walk at its pointee. The .\,-walk 
would continue: [z], .\a,(), a1 , () [redex found]. 

(Alternatively, instead offollowing the .\,-pointer to its target term, we 
could bring the term to the .\,-pointer-that is, copy the term. Though 
this would make for a kind of "lazy" tree reduction, it would not be 
anything like graph reduction.) 

What if the walk down the pointee finds no redex? Where should the 
search resume? Again, the cue comes from graph reduction: the search 
resumes at the pointer that carried us off in the first place. 

What if the walk down the pointee runs into another .\,-pointer? (Well
formedness prevents it from taking the search to an already-searched binder.) 
We follow it, as before. 

Running into .\,-pointers: setting variable-marks. Searching for the 
next red ex in a .\,-term by doing a pre-order walk that follows both g- and 
s-connections is not a difficult idea. I put it into practice in the form of a 
system that manipulates .\,-pointers' hats; the system is mainly driven by 
the needs of the FFPM implementation in Chapter 5. 
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[1] [2] [3] 

(a) three .\,-pointers to be marked 

[1] [2] [3] 

(b) three .\,-pointers, marked 

Figure 4.8: The three cases of pointer-following 

If a .\,-interpreter is looking at a suspension, it needs to know "where the 
action is." Is a .\,-pointer to some suspension higher up in the .\,-tree being 
followed? Is a .\,-pointer to this suspension being followed? Have all the 
.\,-pointers bound to this suspension already been followed? These kinds of 
questions can be answered by the judicious changing of hats. 

Consider Figure 4.8a, which illustrates the only three ways a .\,-pointer 
can be a child node: as rand and rator of a .\,-application, or as the body of 
a .\,-abstraction. (The case of a .\,-pointer as a suspension's child is untidy 
and therefore disallowed, as discussed in Section 4.5.2.) In all three cases, 
assume we are continuing a tree-walk from the *'d .\,-application node. 

In Figure 4.8a[1], the .\,-application's rator is the pointer 5: 1 • If 5: 1 points 
to a .\,-abstraction (i.e., N is one), then we need a copy of it here, because 
this .\,-application is the next redex! On the other hand, if N is not a .\,
abstraction, then we want to look for a redex in it, in hopes that it will 
become a .\,-abstraction. (This is analogous to the function of evaLLF in 
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the eval-apply interpreter evaLBNF (page 25).) If we eventually run out of 
redexes inN, then we want to return to the .\,-pointer that started the search 
at the pointee. 

What actually happens when the .\,-interpreter reaches the rator .\,
pointer? The .\,-interpreter marks x1 with a FollowFill mark, indicating that 
it decided to follow the pointer and that it should be filled (replaced by a 
copy) if the pointee is or becomes a .\,-abstraction. The hat on the marked 
x1 slants the same way as a rator slants off a .\,-application node. 

In Figure 4.8a(2], the rator of the .\,-application is a constant (it could be 
any term without a redex or unFollowed .\,-pointer), so the tree-walk search 
for a red ex goes on to examine the rand, a pointer x1 • No matter what x1 

points to, the .\,-application is not going to be a redex. There is no reason 
to fill this pointer. So, we mark x1 with a FollowNoFill mark (shown with 
a rand-ward slant accent: ±1). This means that ±1 should be followed and 
eventually returned to, but never copied into. 

In Figure 4.8a[3], the rator of the .\,-application is again a constant (or 
any term without a redex or unFollowed .\,-pointer), and the rand is a .\,
abstraction, so the tree-walk continues into the abstraction's body, where 
lurks the .\,-pointer ±2 • Again, no matter what x2 points to, there will be 
no redex here. Therefore, here also, the variable will be marked FollowNoFill: 
±2. 

Figure 4.8b shows how the three cases would be marked so x; could be 
followed effectively. 

The life cycle of a .\,-pointer. Now that most of the .\,-pointer hats 
have been introduced, we can consider how they are generally used. For this, 
think of .X,-terms in their linear, textual representation. 

Before the .\,-pointer, there is a variable bound to a .\,-abstraction, with 
a NotPtr hat. When a ,6,-reduction takes place, the .\,-pointer is born, with a 
Ptr hat. If and when the search for redexes reaches its part of the term, a.\,
pointer may get a Follow Fill or FollowNoFill hat. Following one .\,-pointer may 
spark the need to follow another further to the right in the term. As the fol
lowing yields results (target term is reduced, target term is a .\,-abstraction, 
etc.), .\,-pointers will be marked as Followed, with flat-top hats X;, meaning 
it is useless to re-follow them. Very roughly, the distribution of .\,-pointers 
in a linearly-represented .\,-term will be that in Figure 4.9. In the beginning, 
all variables will be NotPtrs, and in the end there will be many Followed 
.\,-pointers. In between, a "wave" of Ptr and Follow-type pointers will sweep 
left-to-right as the leftmost redex becomes more and more to the right. 
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Figure 4.9: Example distribution of As-pointers in a As-term 

Figure 4.9 reflects a general pattern of reduction and is only a visual image 
that may benefit some readers. Examples with differently-hatted As-pointers 
intermingled in arbitrary ways are easy to make up. 

An ML implementation of searching for a red ex. Implementations of 
the basic idea of following s-connections as well as g-connections may differ 
dramatically in how they work. I offer as evidence the ML implementation 
in this chapter, which uses an ML data type to represent ..\s-trees, and the 
FFPM implementation in Chapter 5, which operates on a linear string of 
symbols. 

The function onestepS: Term-> Term (beginning on page 72) is the heart 
of my As-interpreter implementation in ML; it encodes ,8s-reduction and the 
search for a redex, with its pointer hats, following, filling, etc. Each time 
onestepS is called, it looks for a ,8s-redex, reduces it, reports its success, and 
returns the new ..\ 8 -term. Complexity rears its ugly head at a suspension, 
on the second page of onestepS. The review here recaps some of the preceding 
exposition. 

If onestepS reaches a suspension in its walk, it should search the suspen
sion's body. It should not search the pointee (it should walk past the peg 
on the tree) unless the suspension has a bound variable with an appropriate 
Follow-type mark. 

If the suspension has a bound variable with a FollowFill or FollowNoFill 
hat, then attention focuses on the suspension's pointee. (In normal-order 
evaluation, redex detection is serial so a suspension will have at most one of 
these Follow-marked bound variables to obey.) 

The easiest case is with a FollowNoFill bound variable; the tree walk 
should simply continue with the pointee. The pointee should be reduced 
to ,B-normal form (BNF), and (assuming termination) the FollowNoFill hat 
should be changed to Followed. 
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(* onestepS: Term-+ (booi,Term). 

*) 

Uses ptrize_bd_vars (page 173), incdree_varsl (page 171), chk_vars (page 170), 
mod_vars (page 171), is_bd_follow_ptr (page 172), is_bd_follow_fiiLptr (page 172), 
is_higher_up_follow_ptr (page 172), and subs! (page 172). 

Given a Term, find first redex in it and reduce it. Report whether or not a reduction 
was done (and return new term). Reduces to weak f3-normal form (WBNF). 

fun onestepS (Lam(B,n)) = (*easy ones first ... *) 
(false, Lam(B,n)) 

(*if this were for j3-normal form (BNF) ... 
- onestepS (Lam(B,n)) = 

*) 

let val ( done_inJ3, B') = onestepS B 
in (done_inJ3, Lam(B', n)) end 

I onestepS (Var(x,Ptr, n)) =(false, Var(x,FollowNoFill,n)) 

I onestepS (Var(x,FollowFill, n)) =raise follow_ptr_during_search_error 

I onestepS (Var(x,FollowNoFill, n)) =raise follow_ptr_during_search_error 

I onestepS (Var(x,vmk, n)) =(false, Var(x,vmk,n)) 

I onestepS (App(Lam(B,n),N)) =(*fire the j3, rule! *) 
(true, ptrize_bd_vars (Sus(B, (incdree_varsll N), n))) 

I onestepS (App(Var(x,Ptr,n),N)) = (* rator is a >.,-pointer*) 
(false, (App(Var(x,FollowFill,n ),N))) 

I onestepS (App(M,N)) = (* rator something else *) 
let val (done_in_M, M') = onestepS M 

fun higher _up_follow_ptr _exists T = 
chk_vars is_higher _up_follow_ptr or Else false 0 0 T 

in if done_in_M then 
(true, App(M',N)) 

else if higher_up_follow_ptr_exists M' then 
(false, App(M',N)) 

else (* truly nothing happened in M *) 
let val (done_in_N, N') = onestepS N 

in (done_in_N, App(M',N')) end 
end 

(* onestepS continues on the next page. *) 
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(* This is a continuation of onestepS; this part handles suspensions. *) 

I onestepS (Sus(B,P, n)) = (* detine local functions tirst *) 
let fun bd_follow_fill_ptr _exists T = 

in 

end 

chk_vars is_bd_follow_fiiLptr or Else false 1 1 T 

fun bd_follow_ptr _exists T = 
chk_vars is_bd_follow_ptr orEise false 1 1 T 

fun higher _up_follow_ptr _exists T = 
chk-vars is_higher_up_follow_ptr orEise false 1 1 T 

fun mk_bd_followed_ptrs T = 
let fun make_followed_ptr lev_ (db,FollowFill,n) =(db, Followed, n) 

I make_followed_ptr lev_ (db,FollowNoFill,n) =(db, Followed, n) 
I make_followed_ptr lev _ ( -· -.-) = raise ptrize_bd_vars_error 

in mod_vars is_bd_follow_ptr make_followed_ptr 1 1 T end 

if (bd_follow_fiiLptr _exists B andalso is Jam P) then 

let val B' = (subst is_bd_follow_fill_ptr 1 1 P B) (*till 'er up *) 
val (done_in_B',B") = onestepS B' (*do the redex just created*) 

in (true, Sus(B", P, n)) end 

else if (bd_follow_ptr _exists B) (* but P not a >.-abstraction *) then 
let 

val ( done_in_P, P') = onestepS P in (* try for a red ex in P *) 
if done_in_P then 

(true, Sus(B, P', n)) 
else if higher_up_follow_ptr_exists P' then(* hit another >.,-ptr *) 

(false, Sus(B, P', n)) 
else (*reduced; re-mark pointers; try again in body B *) 

let val B' = mk_bd_followed_ptrs B 
val (done_in_B', B") = onestepS B' 

in (done_in_B', Sus(B" ,P, n)) end 
end 

else (* no Follow pointer in body B; try for a redex in there *) 
let 

end 

val ( done_in_B, B') = onestepS B in 
if done_in_B then (*great, something happened *) 

(true, Sus(B', P, n)) 
else if (bd_follow_ptr_exists B') then (*a Follow ptr was made *) 

onestepS (Sus(B', P, n)) 
else (* >.,-ptr upward hit, or finished *) 

(false, Sus(B', P, n)) 
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If a FollowFill bound variable exists in a suspension's body, then a As
application down there needs a As-abstraction rator. If the pointee is a 
As-abstraction, then the next redex has been found, but the rator is not "in 
place." Section 4.4 is concerned with the copy (or move) that must precede 
the .Bs-reduction. 

If the target of a FollowFill >..-pointer is not a As-abstraction, onestepS 
looks for redexes in the pointee in the usual tree-walking way. However, it 
stops looking if the pointee becomes a As-abstraction (and does the single 
substitution as before). This is evaluation to Root-lambda form (RLF): re
duction proceeds until the root node of the >..-term becomes a As-abstraction 
or until BNF is reached, whichever comes first. RLF is tied to overwriting of 
redexes' root nodes; it is analogous to lambda form (LF) attempted by the 
auxiliary function evaLLF of the eval-apply interpreter evaLBNF (page 25). 

If, in dealing with a FollowFill pointer, the suspension's pointee is not a 
As-abstraction and does not become one, then the FollowFill pointer should 
be changed to Followed and the search for a redex should resume in the 
suspension body. When re-hatting, all of the suspension's bound variables 
can be changed. 

Further searching for redexes in a suspension's subordinate As-terms is 
likely to run into another As-pointer, perhaps one with a target suspension 
higher up in the overall As-tree. In the As-interpreter, active work is done 
on the >.s-pointer poking highest up in the tree, and work on the others is 
deferred. 

Searching for a red ex: summary. Because Ti and Ti have the same sets 
s g 

of sg-connected plain nodes and the specification for the search is a pre-order 
walk that follows s-connections as well as g-connections, corresponding plain 
nodes will be chosen as the next redex (if one exists). 

The only changes made to Ti while searching for a redex are changed hats 
s 

on As-pointers. These changes do not affect ).s
9
-equivalence (Algorithm 4.1 

pays no attention to variables' hats), so if r; l'i r; before searching started, 
they will also be when searching is finished. 

The tidiness of r; must also be preserved, because searching does not 
change the >.s-term's structure. 
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4.4 Lazy copying of shared rators 

For comparison purposes, the inputs to this phase are Ti• and Ti•, with 
s g 

outputs r;' and r;', respectively, as the battle-plan showed (Figure 4.2). 
If the A-abstraction rator of a redex is shared, some or all of it must be 

copied to avoid "using up" the >.-abstraction template. Section 3.3 intro
duced this idea and explained "lazy" ( vs. "fully lazy") copying. A lazy copy 
is one that shares SFEs, those known to be free (because they were sub
stituted into a >.-abstraction from above and cannot, therefore, include any 
variables bound to that abstraction). A fully-lazy copy goes further, seeking 
out maximal free expressions (MFEs) at every step. 

In the >.,-interpreter, a >.,-term of the form (x; R), where X; is aimed 
at a >.,-abstraction, is a redex. The .A,-pointer x; needs to be filled (that is 
why it has a Follow Fill hat); there are two cases. If there is more than one 
.A,-pointer pointing to the .A,-abstraction rator, then it is shared and must 
be copied. I will show that the corresponding plain nodes are copied as in 
graph reduction and that the same connections will be set up. 

The second case is when the x; >.,-pointer is the only one aimed at the 
>.,-abstraction rator. It still needs to replace x;, so all parts of the redex 
will be local. After the replacement the suspension node and its pointee may 
be removed (they are now useless); conceptually, the >.,-abstraction is being 
moved. I call this case a last-instance relocation, because the last copy of 
the >.,-abstraction is being moved to where it will be used. This relocation 
does not affect .A,9 -equivalence because a set of nodes is simply being moved 
from one place to another, and the upward s-connection from redex to rator 
is being replaced with a g-connection. The >.,-abstraction node loses its 
SFE-ness (detectable in a >.,-term by being the pointee of a suspension), but 
this node is thrown away in the immediately-following ;5',-reduction, so the 
).9 j >.,discrepancy goes away. 

Graph reduction has no counterpart to last-instance relocation; Section 
5.3.2 (page 145) discusses the matter at some length, because of its effect on 
a .A,-interpreter's time complexity. 

When a graph reducer copies a shared rator lazily, it copies one or more 
plain, non-SFE, g-connected nodes that have a "border" of SFE root nodes. 
The new copy will share the SFE border nodes with the original copy. 

A lazy copy in the >.,-interpreter simply copies the >.,-abstraction pointee 
of the suspension at which the FollowFill >.,-pointer is aimed. Figure 4.10 
shows an example of lazy copying in the >.,-interpreter similar to that for 
the >.9 -interpreter shown in Figure 3.5 (page 39). The figures show (a) just 
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Figure 4.10: A lazy copy in the As-interpreter 

before the lazy copy and (b) just after. 

Lemma 4.2 The lazy copying of a shared >.-abstraction rator in a >.
9
-inter

preter and a >.,-interpreter maintains the correspondence between plain nodes 
and their connectedness· that is if Tis= Tis then Tic= Tic. 

' 's"gg s"gg 

Proof. Table 4.2 gives a blow-by-blow comparison of A
9

- and As-interpreter 
operations and shows that the plain-nodes and connectedness equivalence is 
maintained. The ML code for lazy_copy (page 41) may also be instructive. 

The As-interpreter part of step 3 in Table 4.2 deals with nicely g-connected 
plain nodes in the suspension's pointee and with As-pointers that are upward 
s-connections to pointees higher up in the As-tree. Fortunately, there are no 
other s-connections or As-pointers within the pointee because it cannot have 
a suspension in it. A suspension in the pointee would indicate a tJs-reduction 
was done inside a As-abstraction, which reduction to WBNF prevents. D 

Comment. Because the As-interpreter does lazy copies, if >.-lifted terms 
were provided as input, then, according to Arvind et a!. 's result [9], it would 
give the same sharing as Wadsworth's fully-lazy-copying interpreter. 

4.5 Tidying \-terms 

Besides a search strategy to find redexes, a method for copying shared rators, 
and a f)-reduction rule, a >.-calculus interpreter may have a tidying phase that 
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A -interpreter 

1. Copy the \-abstraction root
node (a plain node). Consider 
copying its body (Step 2). 

2. If a node is the root of a SFE, 
do not copy it but g-connect 
its parent to node itself. 

3. If a (plain) node is not the 
root of a SFE, copy it and 
g-connect it to its copied 
parent. 

.\,-interpreter 

Copy the .\,-abstraction root
node (a plain node). Consider 
copying its body (Step 2). 

The corresponding thing to 
a g-connection to a SFE 
is a .\,-pointer aimed at a 
suspension's pointee (an up
ward s-connection). Copy 
the .\,-pointer, creating an 
upward s-connection to the 
same pointee. 

Copy the corresponding plain 
node and g-connect it to its 
copied parent. 

Table 4.2: Comparison of\- and .\,-lazy copying 
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Figure 4.11: Pointer-following run amok 

rearranges terms to some advantage. The removal of indirection nodes is an 
example, 2 though most graph reducers avoid such overhead. I ignore tidying 
for A9 -graphs. 

Following the battle plan (Figure 4.2), the inputs to this phase are Tjr and 
T;r, with outputs Tj' and T;', respectively. Because A9 -graphs are not tidied 
and this is the last phase of reduction-step i Tit= Ti+I and Tir =Tit= Ti+1 • 

's s g g g 
Tidying up As-terms between ,8s-reduction steps is important for a As-

interpreter. The reason is because unrestrained As-pointer-following can 
quickly get out of hand; Figure 4.11 shows why. Assuming that we begin 
looking for a redex at the root node in the figure, the dotted arc shows the 
next plain node that we will get to. Whereas graph reduction will make the 
hop in one step (probably with one machine instruction), As-pointer-following 
will visit (non-plain) nodes x1 , [x], y3 , and [y] (among others) before reach
ing the plain-node pointer target. One may put together trees of suspensions 
and A8 -pointers to create arbitrarily complicated hops from one plain node 
to another. 

This section introduces the tidying rules for the As-interpreter designed to 
improve As-pointer-following by rearranging suspensions. Most of the section 
is in a tutorial style; Section 4.5. 7 summarizes the tidying enterprise. At the 
A-calculus level, these rules are identities related to the substitution opera
tion; I rely on the presentation about substitution in Hindley and Seldin's 
text [96, pages 7-10]. 

The first tidying rules are intimately related to the special cases of ,&
reduction in the \-interpreter, described in Section 3.2. 

2The function rm_indir_nodes (page 176) is an implementation. 
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(* trashpickup: Term--+ Term. Suspensions without bound variables are removed. 

Uses chk_vars (page 170), is_bd_var_or_ptr (page 172), and incr_free_vars2 (page 171). 
*) 
fun trashpickup (App(M, N)) = App(trashpickup M, trashpickup N) 

I trashpickup (Lam(B, n)) = Lam(trashpickup B, n) 

I trashpickup (Var(bi,vmk, n)) = Var(bi,vmk,n) 

I trashpickup (Sus(B, P, n)) = 
let val B' = trashpickup B 

val P' = trashpickup P 

in 
val bd_var_in_body = (chk_vars is_bd_var_or_ptr orEise false 11 B') 

if not(bd_var_in_body) then incdree_vars2 -1 B' 

else Sus(B', P', n) 
end 

4.5.1 Removing useless suspensions 

A useless suspension is one with no variables bound to it; no A5 -pointers 
in its body are aimed at its pointee. This is garbage collected in LISP and 
other systems with automatic storage management. Useless suspensions are 
the reason I refer to "connected plain nodes," because useless suspensions 
can add arbitrarily many (unconnected) plain nodes to a A5 -term. 

A suspension becomes useless either because it had no bound variables 
when it was created (f3s rule) or because its initially-bound variables have all 
been filled in subsequently. Removing a useless suspension is not a reduction 
rule in the pure sense; however for convenience, I will lump it with the more 
proper rules to be applied when tidying. This pseudo-rule is: 

[useless]: [B P] --t Bdf, B contains no bound variables. 

The [useless] pseudo-rule is just Hindley and Seldin's Lemma 1.14b: 

if x rj; Free Vars(M) then M[x := N] = M. 

My ML implementation scans for useless suspensions after each step, 
using the function trashpickup: Term --t Term (page 79). The FFPM imple
mentation in Chapter 5 checks for them immediately after fl.-reductions and 
the filling of FollowFill A8 -pointers. 

Lemma 4.3 A (3
9
-reduction Tic --t Tir in which the rator has no bound vari

ables corresponds to a (38 -redu~tion Tic --t Tir followed by an application of 
s s 
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the [useless] pseudo-rule. 

Pro of. It is straightforward: 

g case: (.\x.{M} N) _. M 
_. M s case: (.\x.{M} N) -> [xM N] 0 

4.5.2 Removing trivial suspensions 

One cause of needlessly painful .\8 -pointer-following is trivial suspensions: 
those that have a single pointer as their body or pointee. A trivial suspension 
wastes space and provides no sharing. It provides no benefit, so it can be 
removed. There are two rules: 

[triv-body]: 

[triv-ptee]: [M Yi] 

NB: cases in which the single-vari
able body is not bound to the sus-
pension are covered by the [useless] 
pseudo-rule. 
M' is M with bound variables re
set to i; then decrement all the free 
variables (including Yi)· 

The [triv-body] rule applies if the body of a suspension is a lone bound 
variable; the (trivial) substitution may be completed. If the variable is not 
bound here, the [useless] pseudo-rule applies. 

The [triv-ptee] rule applies if the pointee of a suspension is a lone variable. 
It is best to complete the substitution M[x := y;]-variables replace variables, 
and an unnecessary indirection is removed. 

For both rules, free variables must be decremented when the suspension 
is removed, because one binder has been removed from the variables' binding 
paths. 

Lemma 4.4 A (3
9 

-reduction Tic --> Tir in which the rat or is a lone variable 
corresponds to a {38 -reduction ~ic --> 

9 
Tir followed by an application of the 

s s 
[triv-body] rule. 

Proof. The \-interpreter treats this case specially by setting the rand's 
subbed flag to false, even if it was set previously. This keeps .\89-equivalence 
from being broken by a single subbed flag! Consider the two cases, with a 
dagger superscript indicating the subbed flag is set: 
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Figure 4.12: P'-reduction followed by [triv-ptee] rule 

g case: (.\x.{x1} N) ___, Nt N 
s case: (.\x.{xd N) ___, [xx 1 N] ___, N 

g case: (.\x.{xd Nt) ___, Nt = N 
s case: [y(.\x.{x1 } y1 ) N] ___, [y[xxl Y2l N] ___, [yYl N] ___, N 0 

Lemma 4.5 A iJ
9
-reduction Tic -> Tir in which the rand is a lone variable 

g g 

corresponds to a P',-reduction Tic -> Tir followed by an application of the 
' ' [triv-ptee] rule. 

Proof. The .\
9
-interpreter treats this case specially by substituting copies 

of the single-node rand (not sharing them) and not marking them as SFEs 
Figure 4.12 shows the graph-versus-suspension comparison; the x's sticking 
out of M represent whatever bound variables happen to be in there (at least 
one). Note the absence of daggers representing SFEs. 0 

4.5.3 Moving A
5
-abstractions above suspensions 

Another problem with using suspensions and .\,-pointers is that a .\,-appli
cation may be arbitrarily far from its plain-node rator, even without trivial 
suspensions; Figure 4.13 illustrates the problem. (An analogous difficulty 
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Figure 4.13: ,\x rator far from the plain-node As-application above 

for the \-interpreter would be to have many indirection nodes between a 
As-application and its rator.) As long as As-terms of this form are allowed, 
/Js-reduction is not a local operation in the As-tree. 

The solution to the problem is to move a As-abstraction suspension body 
above the suspension itself-the [>.-up] rule: 

[>.-up]: [x>-y.{B} P]-> .\y.{[xB' PU]}; 

where binding indices must be adjusted as follows: free variables in P must be 
incremented, because of a new binder ,\y in their binding path, and binding 
indices of bound variables of ,\y and [x] in B are incremented and decre
mented, respectively, so that they still point to the correct binder. Fig
ure 4.14a shows the [>.-up] rule in As-tree form. 

The [>.-up] rule guarantees that a As-application redex and its As-abstrac
tion rator will become adjacent in the As-tree, even if there are intervening 
suspensions on the abstraction's root path. The only other non-locality be
tween redex and rator that is possible is if a As-pointer must be followed to 
get from one to the other; As-pointer-marking and subsequent A-filling take 
care of that. 

The [.\-up] rule is simply one clause of the definition of substitution (see 
Hindley and Seldin [96, page 7]). 

Lemma 4.6 The [>.-up] rule preserves ,\s
9

-equivalence. 

Proof. The ,\9 -graph equivalents (use Algorithm 4.1) of both sides of the 
rule are the same, as Figure 4.14b shows. The dagger indicates that P is a 
SFE, and the set of arrow- tipped lines suggest one or more pointers to P. D 
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Figure 4.14: The [A.-up] rule and its graph-reduction equivalent 
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Figure 4.15: Suspension reordering needed 
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Figure 4.16: Rotate adjacent suspensions leftward 

4.5.4 Rotating suspensions 

Even without trivial suspensions, getting from one plain node to the next 
can still be messy; Figure 4.15 shows an example in which the desired hop is 
from .\,-application 1 to .\,-application 2: a .\,-pointer hop up to suspension 
[x], then a downward plunge through several suspension bodies (in general, 
there could be an arbitrary number). The problem is that suspension [x] has 
another suspension, [y], as its pointee. Put another way, one s-connection 
simply connects to another one. 

The [sus-rot!] rule solves this new problem (it is called the "[sus-rot!]" 
rule because the suspensions rotate to the left): 

Figure 4.16 shows the [sus-rot!] rule in tree form. The effect of the rule is 
to turn suspensions unseparated by plain nodes into long left-linear suspen
sion trees. (The "suspension-list" extension builds upon this property; see 
Section 6.1.) 
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Figure 4.17: The [sus-rot!] rule preserves .Xs
9
-equivalence 

The [sus-rot!] rule follows from lemmas about substitution in Hindley and 
Seldin [96]: 

[y[xM;f QJ [xP QJJ introduce a useless suspension; 
Lemma 1.14b. 
Lemma 1.15d. 

Lemma 4. 7 The [sus-rot!] rule preserves A89 -equivalence. 

Proof. The .\9 -graph equivalents (use Algorithm 4.1) of both sides of the 
rule are the same, as Figure 4.17 shows. The daggers indicate SFEs, and 
the set of arrow-tipped lines suggest one or more pointers. The possibility 
of pointers from B into Q is eliminated because the initial position of the 
[y] suspension is invisible to any As-pointers in B. D 

4.5.5 Upward and downwards-connections 

Recall that a g-connection is an edge that directly connects two plain nodes 
in a A8 -term (or a A9 -graph). 

Plain nodes connected via a As-pointer ares-connected. Figure 4.18 shows 
the only two ways a pair of plain nodes can be s-connected in a tidied A8 -term. 
Figure 4.18a shows an upward s-connection: a plain node a has a As-pointer 
child that s-connects it to the pointee b of the pointer's target suspension. 
The dashed line shows the s-connection. Tidying guarantees that a is not a 
suspension (else [triv-body]) and that b is not a suspension (else [sus-rot!]) 
or a variable (else [triv-ptee]). 
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Figure 4.18: Kinds of s-connections 

Figure 4.18b shows a downward s-connection: two plain nodes a and b 
have one or more suspensions hung between them. The dashed line is the 
s-connection. If there were another plain node c so mew here in the left-linear 
tree of suspensions, the a would be s-connected to c. The [triv-body] rule 
ensures that b is a plain node. 

4.5.6 Constraints on moving suspensions 

A suspension is a peg on a .As-tree on which a .As-term is hung so its bound 
variables may share it. By the nature of binding indices, a variable (here, I 
mean .As-pointers, too) can only "see" suspensions that are on the path from 
itself to the root of the .As-tree. A suspension may not be moved where one 
of the variables in either its body or pointee will no longer be able to see its 
binder. 

As an example, consider Figure 4.19. The suspension [x] could be moved 
to anywhere on the dotted lines. It cannot be moved further down, or one 
of its bound variables could not see it; it cannot be moved higher up, or the 
z's in its pointee could not see their binder. 

All tidying rules observe these constraints. 

4.5.7 Tidying: definition and important properties 

Definition. A .As-term is tidy if none of the [useless], [triv-body], [triv-ptee], 
[.A-up], or [sus-rot!] rules applies to it. 

A more informative definition of a tidied As-term is possible: 
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Figure 4.19: How far can suspension [x] be moved? 

L The root (A,-application) and rator (A,-abstraction) of a redex areal
ways directly connected (a g-connection). 

This guarantees that ;3,-reduction is a local tree operation. 

2. The A,-term includes no "garbage," nodes that are neither g- or s
connected to the term (i.e., nodes in useless suspensions). 

Aside from the impracticality of letting garbage accumulate, the FFPM 
implementation of searching for redexes (notably Algorithm 5.5) may 
not work correctly if useless suspensions are present. 

3. The A,-term is organized so a traversal from one plain node to another 
crosses one connection, either a direct connection (g-connection) or an 
upward or downward s-connection. 

This constraint is essential to achieving comparable time complexities 
for the A

9
- and A,-interpreters. 

The function tidyterm :Term -->Term (page 88) encodes all the rules ex
cept the [useless] one; it is implemented by trash pickup (page 79). Table 4.3 
shows all the A,-interpreter rules collected together, including those for tidy
mg. 

Important properties of tidying. ;3,-reduction may "untidy" a A,-term, 
and the tidying part of a reduction step will tidy it up. The other parts of a 
step (searching and copying) must preserve tidiness. Searching for the next 
redex preserves tidiness trivially-searching does not change terms. The 
following lemma deals with tidiness preservation by lazy copying. 
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(* tidyterm :Term--+ Term. 

*) 

Innermost-out "tidying" ofTerms with suspensions. Implements rules [triv-body}, 
[triv-ptee}, [J..-up) and {sus-rot!). 

Uses std_subst (page 172), incr_bd_vars (page 171), incdree_vars2 (page 171), and 
swapJevs (page 173). 

fun tidyterm (App(M, N)) = App(tidyterm M, tidyterm N) 

I tidyterm (Lam(B, n)) = Lam(tidyterm B, n) 

I tidyterm (Var(x,vmk,n)) = Var(x,vmk,n) 

I tidyterm (Sus(B, P, n)) = 
let val B' = tidyterm B 

val P' = tidyterm P 
in (case B' (*we've tidied below; see what we got *) 

)) end 

of lam(IB, In) =:- (* {J..-up} rule; may be more than one *) 
tidyterm (Lam(Sus(swap_levs 1 2 IB, incdree_vars2 1 P', n),ln)) 

I Var(bi, vmk,vn) =:- (* (triv-body} rule*) 
if bi :':: 0 then (* a constant *) 

Var(bi,vmk,vn) 
else if bi > 1 then (*keep body; heave away suspension *) 

Var((bi-1 ),vmk,vn) 
else (*if bi = 1 *) (*replace body with suspension *) 

(incdree_vars2 -1 P') 

I - =:- (* otherwise, look at pointee *) 
(case P' 

of Var(bi,vmk,vn) =:- (* (triv-ptee} rule *) 
(incdree_vars2 -1 (std_subst P' B')) 

I Sus(pB, pP, pn) =:- (* {sus-rot!] rule *) 
let val B" = (incdree_vars2 1 B') 

val pB' = (incr_bd_vars 1 pB) 
val pP' = (incdree_vars2 -1 pP) 

in 
Sus(Sus(B", pB', n), pP', pn) 

end 
I - =:- (* otherotherwise ... *) 

Sus(B', P', n) 
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[useless]: [B P] ___, Bdf 

[triv-body]: 

[triv-ptee]: 

[A-up]: [xAy.{B} P] ___, Ay.{[xB' pi!]} 

B contains no bound 
variables. 

Cases in which the 
single-variable body is not 
bound to the suspension are 
covered by the [useless] 
pseudo-rule. 

M' is M with bound variables 
set to i; then decrement all 
free variables (including y;). 

Free variables in P are 
incremented; B' is B with 
bound variables of AY 
incremented and bound 
variables of [x] decremented. 

[sus-rot!]: [xM [yP Q]] ___, [y[xMif pib] Qdf] Free variables in M are 
incremented; variables in P 
bound to [y] are incremented; 
free variables in Q are 
decremented. 

Table 4.3: A8 -interpreter rule summary 
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Lemma 4.8 The >.,-term that results from lazy copying into a FollowFill >.,
pointer in a tidied >.,-term {Section 4-4) is also tidy. 

Proof. Only g-connected plain nodes and >.,-pointers are copied in as the 
rator of a >.,-application; no suspensions are copied. None of the tidying 
rules can be applicable; they all involve suspensions. 0 

There are other important properties of tidying, besides those mentioned 
in the definitions above. 

• No rule copies a >.,-term bigger than a variable (one node); the [triv
body] and [triv-ptee] rules do this kind of "copying." All copying of 
larger terms is done when copying shared rators (Section 4.3). 

• No rule requires a change in the left-to-right order of its subterms when 
written out in textual form. This is important for the implementation 
in Chapter 5, which would have to copy to change the order, but other 
implementations might suffer no such penalty. 

4.5.8 The recurring example on the .\-interpreter 

And finally, Figure 4.20 shows all the steps of the recurring example. You 
may wish to compare with Figures 2.8 (ordinary tree reduction) and 3. 7 
(graph reduction). 

4.6 a-equivalence of \-terms 

>.-terms that are the same up to variable-renaming are said to be a-equi
valent. In a name-free (suspensionless) >.-calculus, a-equivalent terms are 
identical. In an application where it is important to be able to determine 
equality of >.-terms, a name-free >.-calculus is used mainly for this reason. 
An example is Nadathur and Jayaraman's work on >.-Prolog [155]. 

Unfortunately, >.,-terms (with suspensions) are not necessarily identical 
if equivalent, as Figure 4.21 shows. The (suspensionless) plain >.-term equiv
alents of both terms are identical, because the substitutions represented by 
suspensions may be done in either order (Hindley and Seldin's Lemma 1.15d 
[96, page 8]). 
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Figure 4.20: The A5 -interpreter on the recurring example 
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Figure 4.21: Equivalent, non-identical As-terms 

4. 7 Equivalence to graph reduction: correct
ness 

The guiding principle of a .As-interpreter is that it "does the same thing" as 
a .\

9
-interpreter. The previous sections have showed that a As-interpreter's 

actions are equivalent to a .\9 -interpreter in all phases of a reduction step: 
searching for a redex, copying the shared rator (if applicable), doing the (J
reduction, and tidying up the result. Because Wadsworth showed that graph 
reduction is a correct implementation of the normal-order evaluation of the 
pure .\-calculus [201], it follows that the As-interpreter is as well. 

As the battle plans of Figures 4.1 and 4.2 proclaimed, the following the
orem brings together the results about the correctness of the As-interpreter 
that have been presented in this chapter. 

Theorem 4.9 Given an initial plain .\-term T? on which n > 0 normal
order reduction steps can be done and 

• Tsn, the result of doing n {n 2:: 1) reduction steps on T? with a As-in
terpreter, 

• T
9
n, the result of doing n reduction steps on T? with a .\9 -interpreter, 

then Tn = Tn. s bg g 

Proof. The proof is by induction on n. For the basis and induction steps, 
we must consider each of the searching, copying, reduction, and tidying 
phases. As before, the notation Tjx is to suggest a term in form f at re
duction step i; x may be one of the letters s, c, r, or t, indicating one of the 
four phases of a reduction step. 
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Basis: searching. The input T,0 is a plain .A-term, an acceptable input 
for both the .A9 -interpreter and the .A,-interpreter. All nodes are plain and 
all connections are g-connections. Both the .A9-interpreter (which follows g
connections) and the .A,-interpreter (which follows both g- and s-connections) 
will do a pre-order walk to the (same) first .A-application with a .A-abstraction 
for a rator. 

Basis: copying. T,O has no sharing because no reductions have hap
pened yet, so the rator cannot be shared. Neither interpreter will do any
thing. 

Basis: ,8-reduction. Lemma 4.1 says that .A,
9
-equivalence is preserved 

for non-trivial, non-useless reductions. Lemmas 4.3, 4.4, and 4.5 prove the 
same thing for the useless-, trivial-body- and trivial-rand-reduction special 
cases. 

Basis: tidying. If T 0r and TOr are the results of the basis-step ,8-
reduction and TOt is the re;ult of tid'ying TOr, then TOr=. TOr. Lemmas 4.3, 

s s g ~ 8 

4.4, 4.5, 4.6, and 4. 7 ensure that the [useless], [triv-body], [triv-ptee], [.A-up], 
and [sus-rotl] rules do not affect .A,9 -equivalence, respectively. 

Thus ends the basis step for Theorem 4.9. 

Induction step. The induction hypothesis is that the .A
9

- and .A.
interpreters each run for i steps, producing Ti and Ti, respectively, and 

g ' 
that Ti = Ti. The goal is to prove that Ti+l = Ti+l. gsgs gsgs 

Induction: searching. For every g-connection between plain nodes 
that the .A

9
-interpreter follows, the .A,-interpreter will follow an sg-connection 

between the corresponding plain nodes in the .A,- term. 
The .A

9
-search will stop when its finds a .A

9
-application g-connected to a 

\-abstraction rator. The .A,-interpreter looks for the same pattern; tidy
ing guarantees a g-connection between redex and rator. The corresponding 
application nodes will be the redex. 

In the .A,-interpreter case, if the redex is connected to the rator by an s
connection, it will be an upward one. (A .A8-abstraction cannot be the target 
of a downward s-connection, because of the [A-up] rule.) Either a shared
rator copy or a last-instance relocation will follow. The latter cannot affect 
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.\s9 -equivalence, as its effect is only to replace the upward s-connection with 
a g-connection (Section 4.4). 

Induction: copying. If the rator of the selected redex is not shared, 
both interpreters proceed to ,6-reduction. If the rator is shared, Lemma 4.2 
says that the two interpreters do .\s

9
-equivalent lazy copying. 

Lemma 4.8 says that lazy copying of a shared rator in a tidied As-term 
produces a tidied term. 

Induction: ,6-reduction. As for the basis step. 

Induction: tidying. As for the basis step. Thus ends the proof of 
Theorem 4.9. D 

4.8 Related approaches to >.-calculus evalua
tion 

This section reviews previous work about normal-order evaluation of the 
.\-calculus that is similar in some way to my approach in the As-interpreter. 
A vast amount of work has been done on .\-calculus evaluation, much of it on 
practical variants, e.g., "reduction to weak head-normal form (WHNF) of an 
extended .\-calculus, using supercombinators." I do not trace the connections 
to that work, but limit myself to efforts closer in spirit. 

Sections 3.5 and 5.1.12 review graph-reduction and non-graph-reduction 
architectures, respectively. 

4.8.1 Efforts to find simpler reduction rules 

I began this work in 1986 when Mag6 directed my attention to Staples's 
(190] and Revesz's (174; 176] work on simpler sets of reduction rules for the 
.\-calculus. We examined their rules to see how they would fit on an FFPM. 

In his work in the late 1970s, Staples's major concern was with "optimality 
theory," including finding an optimal reduction order for the .\-calculus (a 
provably-minimal number of steps to reach BNF) (189; 188; 190; 192; 193; 
194] (Kennaway provides a summary of his work (118]). In the paper "A 
Graph-like Lambda Calculus for which Leftmost-Outermost Evaluation is 
Optimal" (190], Staples presents reduction rules for system that is equivalent 
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[triv-body]: if i ::::; 0 (x constant) 
if i = 1 (pointer bound here; re
place with pointee) 
if i > 1 (pointer bound above; 
pointee is unpainted to) 

Only if there are no suspension 
bound variables (i.e., useless sus
pension); free variables in B must 
be decremented. 

[.\-up]: [x.\y.{B} N] -+ .\y.{[xB' N;f]} Free variables inN are 
incremented; B' is B with 
bound variables of .\y incre
mented and bound variables of 
[x] decremented. 

Table 4.4: Staples's "graph-like lambda calculus" rules 

to the .\-calculus for reductions to BNF where they exist (but not for arbitrary 
reductions). Table 4.4 shows Staples's rules (converted to my notation and 
to name-freeness). I use my rule-names where applicable. 

The <Ta rule only applies if a term has a variable at its head position ( cf. 
Head-normal form (HNF)); Staples's scheme may be made fully equivalent 
to the .\-calculus if rule <Ta is replaced with: 

<Ta': ["(A B) P] -+(["A P] [B P]). 

The effect of the <Ta or <Ta' rules is to push a suspension down through a 
.\-application; this is more obvious in the tree form shown in Figure 4.22. 

Staples's system works by using the (J, rule to make suspensions and the 
u.\0, [.\-up], and (one of the) <Ta rules to push suspensions downward in a 
.\-term until the [triv-body] rule applies. 

The <T .\0 removes a useless suspension and serves little purpose in a name
free calculus. I have altered Staples's [.\-up] rule slightly to take advantage 
of the name-free calculus. 

For my purposes, the objection to Staples's rules is that the <Ta rules 
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Figure 4.22: Staples's aa-rules 

duplicate the suspension's pointee. It is to avoid this (possibly unnecessary) 
copying that the >.,-interpreter follows >.,-pointers and fills them in when 
necessary. 

The [sus-rot!] rule in the >.,-interpreter would serve no purpose in Staples's 
scheme, even though it is sensible (not wrong). More exhaustive checking for 
useless suspensions would be appropriate in Staples's system. 

Michael O'Donnell [161, pages 59-62] follows Staples's remark about not 
using special symbols for substitution (i.e., suspensions) [190, page 441] and 
uses >.-abstractions for the purpose instead. 0 'Donnell also uses binding 
indices to give a name-free calculus; his resulting rules are essentially the 
same as Staples's. In related work, O'Donnell and Strandh worked on a 
similar system (interestingly, with an explicit symbol for substitution) in 
which they tried to avoid the adjustment of binding indices as reduction 
proceeds [162]. Their approach was to add an integer tag to every >.-term 
(every node, in .X-tree terms) and to augment their rules to manipulate the 
tags. They could not get it to work; O'Donnell decided that a single number 
cannot hold the information required (personal communication). Repeatedly 
adjusting binding indices is not a problem for the implementation of the >.,
interpreter presented in Chapter 5. 

Revesz also presents a simpler set of reduction rules for the >.-calculus 
[174; 176]; as with O'Donnell, he is trying to break down substitution into 
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Ra: .\x.{P} ...., .\z.{[zj jx]P} where z is a 'fresh' variable 

R,81: (.\x.{ X} Q) ...., Q 

R,82: (.\x.{P} Q) ...., P if x is not free in P 

R,83: (.\x.{Ay.{P}} Q) ...., Az.{(.\x.{[z/ jy]P} Q)} if y # x is free in P, z a 
'fresh' variable 

R,84: (.\x.{(Pt P2)}Q)...., ((.\x.{P1}Q)(.\x.{P2}Q)) if xis free in (P1 P2) 

Table 4.5: Revesz's reduction rules 

simpler steps. He uses "brute force" variable-renaming as part of his solution 
to the name-capture problem ("[z/ jx]E" means to rename x in E as z). 
Table 4.5 shows Revesz's reduction rules (NB: not name-free variables).3 

Revesz's system is interesting, both as an elegant reformulation of the 
.\-calculus rules and as the basis for a practical implementation. Combining 
it with an extension to integrate lists into the .\-calculus [175; 176], Revesz 
has built an interpreter for his language on the RP3 shared-memory multi
processor [177]. 

The Staples and Revesz systems are similar. Staples uses an explicit sym
bol for suspension while Revesz does not. Their main difference is in variable 
naming; Revesz uses his brute-force renaming, whereas Staples depends on 
an infinite supply of "fresh variables." 

4.8.2 Comparison with environment-based evaluation 

The problem of how to best implement ,6-reduction (in particular the core 
problem of substitution and the binding of variables) has received consider
able attention; Kennaway and Sleep give a succinct synopsis of known ap
proaches [121]. I have already covered reduction methods, in which program 
and data are both represented in a program graph (the graph is a tree for 
tree reduction), and the structure of the graph reflects binding information. 
Substitution is then a matter of copying, either pointers (graph reduction) 
or terms themselves (tree reduction). 

3 This is "axiom system A,'' from Revesz's 1985 paper [174]; in his 1988 text, he con
centrates on axiom system Ao, which does not include brute-force renaming [176]. 
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Combinator-based approaches to reduction (orthogonal to whether tree 
or graph reduction is used) get rid of variables at compile-time, altering 
the requirements for an interpreter (Section 2. 7 introduces combinators, and 
combinator-based architectures are included in the review in Section 3.5). 
Major flavors of combinator reduction include the use of a fixed set of combi
nators (as with Turner's combinators [199] or categorical combinators [50]), 
of program-specific sets of combinators ("super-combinators") [105], and of 
director strings [122]. Goldberg's paper on using abstract interpretation to 
detect sharing at compile-time is noteworthy with respect to supercombina
tors and sharing [81]. As I say in Section 2. 7, comb ina tors are far from my 
concern with the normal-order evaluation of the untransmogrified .\-calculus; 
I do discuss some overlaps later in this section, particularly with director 
strings. 

The other main approach to implementing the .\-calculus is to use an envi
ronment: a set of variable-to- .X-term bindings, usually recorded in a separate 
data structure. Any evaluation of a .\-term takes place in an environment; 
bindings are added, perhaps modified, and looked up. Environment-based 
interpreters date back to LISP [149] and the SECD machine [130]; both 
are applicative-order evaluators, meaning that only fully-evaluated terms are 
stored in an environment. 

Environments become more complex when they hold unevaluated terms, 
as in normal-order evaluation. Not just the ,\-term, but also the "context" in 
which any later evaluation must take place (i.e., the bindings offree variables) 
must be recorded. Such a structure-a .\-term plus bindings for its free 
variables (an environment )-is often called a closure (e.g., Arvind et al. [9]). 

Using environments allows different sharing properties, depending on 
whether an unevaluated .\-term is overwritten with its evaluated equivalent 
after that term has been reduced. Field and Harrison give a fascinating 
synopsis of what sharing can be achieved for various types of underlying im
plementation languages; for example, a fully-lazy-copying interpreter cannot 
be implemented with a fully-eager functional language [66, pages 208-211]. 

Some people use the term "suspension" to mean "an updatable environ
ment," one that is modified in place, analogous to overwriting the root of 
a redex in graph reduction [127]. A suspension as I have defined it is in 
the same vein, except that only one variable is bound. My use of the term 
"suspension" comes from Staples [190]. He says "suspension is well-known 
in the theory of the classical lambda calculus" (page 441) and cites Rosen 
[178] and Mitschke [154] as antecedents. As I have mentioned, a "closure" 
is closely related; it is an environment plus a .\-abstraction, i.e., a function, 
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hence the older name "FUNARG," from LISP. Yet another term comparable 
to "suspension" as I have used it is "recipe," cited in Field and Harrison's 
text [66, page 205]. In his thesis, Paul Watson uses "frozen substitutions" 
[206] and the term "delayed substitutions" also comes up. My equivalent of 
a more traditional environment-a set of bindings-is the set of suspensions 
along a root path. A .\-term plus the suspensions along its root path is my 
equivalent of a closure. Bound variables-their binding indices, that is-are 
indexes into the environment. 

The categorical-combinators approach taken in the Categorical Abstract 
Machine also uses binding indices to index into an environment [51]. They 
use an explicit environment, whereas the .\,-interpreter is really closer to 
reduction, with suspensions being an integral part of the program-plus-data 
structure to which reduction rules are applied. 

As suggested earlier, director strings are related to traditional combina
tors; the motivation that Kennaway and Sleep give for them is similar to my 
suspensiOns: 

It would be better to only do the copying in response to the demands of 
the rest of the computation. One method of achieving this is to intra. 
duce environments ... When we encounter a beta-redex (.\x.{F} G), 
we merely replace it with the pair [F, (x = G)], where (x = G) is the 
environment that associates x with G ... We then continue by attempt
ing to evaluate F. If we discover further redexes, we reduce them. But 
if we find an occurrence of x whose value we need before proceeding 
further, then we 'push' the environment (x = G) down through F to 
that occurrence of x, peeling off a copy only of the path traversed. At 
the end of the path we substitute for x a pointer to G, and continue 
looking for the next redex to reduce [121, page 120]. 

Kennaway and Sleep call this approach "lazy graph reduction" and sug
gest director strings as one implementation. These are notations in a .\-tree 
that show how arguments should be pushed down the tree. The possible 
directors are/,\, ·,and-, meaning send "to the left," "to the right," "both 
ways," and "nowhere," respectively. Figure 4.23 shows a .\-application with 
five directors, as well as the result of applying one argument. 

The approach taken in the .\,-interpreter differs from director strings in 
the same way it differs from Staples's rules: I avoid the potentially use
less copying of "sending both ways." Kennaway and Sleep suggest a graph
reduction base, so they need not fear such copying. 
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E F E G F G 
Figure 4.23: An example of director strings 

4.8.3 Environment/reduction hybrids 

My suspensions are single-binding environments. The .\8 -interpreter is un
usual in that it works both in a "reduction mode" (e.g., the rules that move 
suspensions around) and in an "environment mode" (when following and 
filling .\8 -pointers). 

In their paper on sharing in functional language implementations, Arvind 
et a!. also describe a hybrid reduction/environment scheme [9, pages 5.5-
5.6]. It has "graph cells" that may point to "environment cells," as well as 
to each other. (The environments are of the traditional multi-binding kind.) 
Reduction at a (graph) cell takes place in the context of the environment cell 
attached there. Pointers to environment cells are passed down the graph as 
evaluation proceeds; evaluation inside an environment may also be required. 
Reduction in which environments (or closures, or suspensions) are stored and 
manipulated as part of the graph (or tree) are closure-based. 

Fairbairn and Wray's Three Instruction Machine (TIM) is a well-devel
oped example of closure-based (supercombinator) reduction, intended for 
use with stock hardware [64] (I follow the description by Koopman and Lee 
[127]). When a combinator evaluation is to be delayed, the current stack 
frame contains pointers to the ancestor nodes of the combinator-that is, 
the environment in which the evaluation will be done if necessary. To delay 
a reduction, TIM copies the current stack frame into a closure in the heap, 
in much the same way as registers are copied to memory on a context-switch. 
These closures have much the same flavor as "suspension lists," introduced 
in Section 6.1. 

4.8.4 Pointers versus \-pointers 

A graph reducer like the .\9 -interpreter (Chapter 3) depends on the notion of 
pointer, a unique identifier for an entity in a global name space: it provides an 
absolute address of something. In the .\

8
-interpreter, I use binding indices to 

point to suspensions' pointees; these .\8 -pointers are, in some sense, relative 
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addresses, saying how far to walk up a ..\-tree. 
Using absolute pointers suffers when a ..\-term is copied; all pointers with 

targets in the old copy must be changed to pointers into the new copy. On 
the other hand, a ..\s-term, with relative As-pointers, can be copied bit-for-bit 
and all will be well. 

Absolute pointers regain some merit in other operations, including sub
stitution (of pointers): the absolute pointer can be put in for the bound 
variables, no questions asked. Relative As-pointers, au contraire, must be re
peatedly adjusted as binding depths change. In Chapter 5, however, I show 
that one can have a machine implementation in which the "disadvantages" 
of relative As-pointers do not arise. 
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Chapter 5 

The ..\
3
-interpreter on an FFP 

Machine 

Representation is the essence of programming. 

-Frederick P. Brooks, Jr. (1975). 

This chapter describes how to implement the -A.-interpreter on an FFP Ma
chine (FFPM), a small-grain MIMD computer architecture that supports 
functional programming. (The -A.-interpreter is described in Chapter 4.) 
Following an introduction to the FFPM in Section 5.1 (including a review of 
other non-graph-reduction architectures aimed at functional programming), 
this chapter catalogs the FFPM algorithms needed for a -A.-interpreter. Sec
tion 5.2.1 gives algorithms for basic operations that are pervasive in an in
terpreter (e.g., detecting bound variables), and the following section sets out 
the rest of the implementation in a top-down fashion, with the highlights 
reviewed in Section 5.2. 7. Section 5.4 goes over previous FFPM work related 
to the .A-calculus. 

The algorithms in this chapter are presented in English, with examples; a 
more formal presentation would heighten the tedium to an unbearable level. 
I give time and space complexity results as I go along; I use the symbol "lg" 
for "binary logarithm." 

I assume that an FFPM is not reducing several independent programs 
(-A.-terms) at once; this slightly simplifies the overall control of the reduction 
process (and the description thereof). 



5.1 Introduction to the FFP Machine 

5.1.1 Project history and design goals 

Gyula Mag6 began the FFPM project in the mid-1970's at the University 
of North Carolina at Chapel Hill; his goal was to design a highly parallel 
machine to support functional languages, John Backus's FFP language in 
particular [14]. Mag6 published the first description of an FFPM in 1979 
[141], with follow-on descriptions by Mag6 and Middleton in 1984 [140], and 
Mag6 and Stanat in 1989 [14 7]. (The last is the best available description 
of the "official" FFPM; Almasi and Gottlieb's book includes a good brief 
description [4].) Besides Mag6 and Stanat, some fifteen graduate students 
have put their fingers in the pie over the years; I am one. Hundreds of FFPM 
variants have popped up, with half-lives as short as one cup of coffee. 

Though some design choices have changed during the project, its goals 
have not varied much. Mag6's paper "Making Parallel Computation Simple" 
[144] outlines these goals and design postulates: 

• As much attention should be paid to ease of programming as to exe
cution speed. An FFPM system manages all parallelism without pro
grammer intervention (implicit parallelism). 

o For the same reason, storage management (garbage collection) should 
be fully automatic, even built in hardware. 

o The design should be scalable in small increments up to an indefinitely 
large size. The design is cellular, built from many copies of a few simple 
VLSI parts. 

o A scalable design eschews shared system resources; consider a million 
processors attached to shared memory, for example. Locality becomes 
very important, and an FFPM arranges that an independent subcom
putation always runs on physically-proximate hardware, entirely unaf
fected by the rest of the computer system. 

o Similarly, sharing a planning resource, e.g., a master processor, is out 
of the question, so an FFPM has no central control. 

o An FFPM is intended for dynamic computations, those with unpre
dictable data-structure sizes and shapes and with unpredictable threads 
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of control. The hardware should be dynamically mapped onto the com
putations, rather than the computations painstakingly mapped onto 
hardware at program-design time. 

• The scalability criterion excludes programs with special knowledge of 
the Machine: number of processors, interconnection topology, etc. 

The FFPM has been examined from many angles, as one might ex
pect of an unusual design. (The interested reader would do well to get the 
FFPM project bibliography [145].) Among these angles has been support for 
non-FFP languages (machine name notwithstanding). The earliest designs 
tracked Backus's still-developing ideas about reduction languages (compare 
the original 1979 paper [141] with the 1989 one [147]). Bruce Smith has 
studied logic programming on an FFPM [185; 186]. Dybvig described how to 
support the full Scheme language [62]. Middleton and Smith [153] explored 
the potential of the FFPM equivalent of microprogramming; they later ap
plied some of their ideas in sketching an implementation of OPS5 production 
systems [187]. 

Despite the many directions of study and design-of-the-week graduate
student enthusiasms, a set of core features for an FFPM has emerged-things 
that come up in practically every design and that seem to be essential even 
when doing non-FFP things. All this is to say that my description of an 
FFPM does not exactly match any standard FFPM description, but it is 
close. 

I defer the history of A-calculus implementation on the FFPM until Sec
tion 5.4. 

5.1.2 Basic structure of an FFP Machine 

The heart of an FFPM is a linear array of small cells, each with its own CPU, 
memory, and communication hardware, capable of independent execution 
(that is, the Machine is MIMD). This string of cells is called the L-array. The 
cells do not have globally-known addresses, and actions take place because 
of their contents; the 1-array is, in some sense, an associative memory. 

Program symbols are laid out on the 1-array in a straightforward, lin
ear representation, one symbol per cell, preserving the left-to-right order 
of the symbols as they appear on paper. Figure 5.1 shows how the term 
,\y. {[x( x1 y2) (y2 y2 )]} might appear in an 1-array. The explicit ,\y informa
tion need not be kept; instead, I show the (decorative) name as a subscript 
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communication network( s) 

{y ,__ [x 1- (H 1!- Y2 ) 1- 1- ( 1- y 2-y 2- ) - J } 
~ ~ ~ ~ ~ ~ L_ ~ ~ L_ ~ L_ ~ L_ -

1-array of processing cells 

Figure 5.1: Structure of an FFP Machine 

on the left brace, {y. 1 A machine implementation would certainly throw out 
variable names, keeping only binding indices. The figure also shows how 
empty cells may be scattered through a program; we will ignore them. Stor
age management in an FFPM shifts the program symbols along the 1-array, 
preserving left-to-right order. Storage management must allow terms to grow 
and shrink. Addresses for the cells would serve little purpose because a cell's 
contents may change from cycle to cycle. Singh and Chi give a design for 
FFPM storage-management hardware [183]. 

The built-in storage management allows an FFPM to have arbitrarily 
nested dynamic arrays as its basic data structure [146]. A dynamic array 
allows insertion and deletion anywhere in the structure (as in LISP lists), 
while allowing constant-time access to its elements (as in FORTRAN arrays). 

Cells in an FFPM compute by changing their symbols in orderly ways 
that correspond to the effects of reduction rules. In other words, each cell 
executes some small conventional-looking microprogram-called a reduction 
routine-that may change the cell's symbol. Obviously, some communication 
among cells is required, as is the insertion and deletion of symbols. In this 
dissertation, I ignore questions of where reduction routines come from, where 
they are kept, and how a cell knows which one to use (Danforth's description 
of his simulator covers these issues [55]). 

An FFPM can do any kind of string reduction, rewriting one arbitrary 

1 Many program representations are possible in an FFPM, and this is a crucial question 
in real FFPM design; Middleton has done the main work [152]. 
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string of symbols into another; a crazy-looking rule-for example, ar Est ----> 

xyxytreB, would be feasible. In this sense, an FFPM is a "string reduc
tion" machine. In practice, however, the rewriting is always concerned with 
"strings" of a specific flavor: flattened representations of parse trees. All 
FFPM design has concentrated on improving this kind of reduction; there
fore, it is more reasonable to call the Machine a tree reduction architecture. 

5.1.3 Communication and partitioning 

Reduction in an 1-array will not get far unless the cells can talk to each 
other-every FFPM design will have an interconnection network perched 
atop the array, as in Figure 5.1. Traditionally, there is a set of binary tree 
networks augmented with limited computing capability. (The processing cells 
make up the Leaves of the network; hence the term "1-array.") Kellman [117] 
and Plaisted [170] have proposed richer networks for an FFPM; any networks 
that meet the requirements below would be appropriate. All analysis in this 
dissertation assumes the standard tree networks. 

In addition to the main networks, the 1-array cells have lateral con
nections between them for storage management. If an FFPM had a richer 
network, the lateral connections could be dropped. 

The tree networks support global network operations in which all cells in 
a Machine participate. More interesting, however, is that the 1-array of an 
FFPM can be partitioned into L-segments, and each segment can be allocated 
an independent sub-network all its own. Because they use different wires 
at the physical level, global network operations and those on 1-segments' 
separate subnetworks proceed concurrently. (I am glossing over the details 
of wiring, switches, buffers, etc., in the networks; Mag6 and Stanat's review 
says more [147].) 

Figure 5.2 shows partitioning with left and right parentheses as delim
iters:2 the innermost, delimited terms have subnetworks allocated to them 
(shown by solid lines). Partitioning is fast (one bit from each cell must travel 
to the root at hardware speeds), is unconstrained by program layout, and 
puts an isolated tree sub-network over each segment. Each segment/sub
network combination proceeds independently; all needed resources are local. 
The nemesis of a tree network-a bottleneck at the root-is alleviated by 
the potential for having many tree subnetworks running at once. 

2 Reduction-routine code in the cells could choose other program symbols to delimit the 
segments. 

106 



A v. 

.· . 

Figure 5.2: Partitioning in an FFP Machine 

If an FFPM is partitioned with syntactic delimiters, e.g., parentheses de
noting applications, only innermost delimited-strings will be self-contained in 
1-segments. These 1-segments, the only ones with all information locally, are 
said to be active. It is these active 1-segments that do reductions; therefore, 
at the hardware level an FFPM implements app/icative-order reduction. 

To override an FFPM's built-in innermost reduction, one chooses (and 
manipulates) partitioning delimiters more craftily. For example, to do outer
most reductions first, one might use "marked" parentheses to delimit parti
tioning. To begin, only the outermost pair is marked, and the whole expres
sion will be in the initial (active) 1-segment. Code in that first 1-segment 
may then choose to mark some inner parentheses. At the next partitioning, 
the newly-marked inner 1-segments will become active. If those inner 1-
segments want to cede control back outward, they just unmark their paren
theses. Middleton and Smith showed how such partitioning tricks can be 
used for clever non-FFP purposes (e.g., simulating systolic arrays) [153; 187]. 
They used parentheses as the partitioning delimiters, the marks on them were 
called "colors," so these partitioning tricks flew under the banner of "colored 
parentheses." 

The other communication paths in an FFPM are at its extremities. First, 
the lateral connections of the endmost cells connect to some form of "virtual 
memory," which deals with expressions too large to fit in the 1-array; Geoff 
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Frank et al. investigated it [69; 70]. Second, the topmost nodes of the 
tree networks connect to a Front-End machine (not shown in Figure 5.1). 
I assume that this device can decide when to initiate partitioning, what 
partitioning delimiters to use, when to interrupt the independent processing 
by 1-segments, and when to start storage management. I also assume that 
the Front-End can do simple associative-memory-like queries (e.g., "Is there 
a cell with a constant in it?"), allowing a data-determined machine cycle. 
Historically, FFPM designs have had a passive Front-End, with a hard-wired 
partitioning/execution/storage-management cycle; this is entirely reasonable 
when implementing FFP. I am just using what the hardware design has 
allowed all along. 

5.1.4 Broadcasting and sorting operations 

The simplest type of communication that can take place in an 1-segment is 
the broadcast of a datum from one cell to all cells. One cell sends something 
useful, all the others send some null value. Eventually, all cells receive the 
useful value. With a tree network, in the worst case, a one-datum broadcast 
requires a trip up and down the entire tree (a message wave); it is a O(lg A) 
operation, where A is the size of the "address space," the number of cells in 
the Machine.3 

If each cell in a segment sends a value and each tree node merges the 
values that come to it, then a sorted list of values will emerge from the root. 
That sorted list can be broadcast to the cells below; they, in turn, can select 
values of interest. If n values are sent from the cells, sorting is an 0( n) 
operation, because each value must pass through the root before being sent 
down. 

In doing a sort operation, each cell could send several values, the first 
being a key, the rest "baggage." If the keys are known to be sorted in 
advance, such a sort could serve to broadcast the contents of a string of cells; 
another string of cells might replace their program symbols with data from 
the sort. In this way, strings of symbols can be copied or moved around. But 
it takes time 0( n) in a tree, too expensive to use as a basic operation in an 
interpreter on a parallel machine. 

If broadcasting and sorting are done as global operations over all cells, 
the Front-End machine can observe the values that reach the root of the tree. 

3 Bruce Smith has showed that the expected time for an n-cell L-segment to do this 
basic operation is O(lg n), n :'0 A. He assumes no particular alignment and that storage 
management keeps program symbols distributed uniformly across the FFPM [186]. 
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5.1.5 Single-result operations 

In an FFPM, the network hardware can operate on the values sent up from 
the cells; examples include adding the received values or selecting the maxi
mum (or minimum) or the leftmost (or rightmost). This single result is then 
broadcast to all cells (and, if on the global network, passed to the Front-End). 
As with the broadcast of a single datum, this operation takes O(lg A) time. 

A single-result network operation may subsume the simple broadcast: 
using addition, the interesting cell sends its interesting value, and all other 
cells send 0-the result is a broadcast. 

5.1.6 Scan, or parallel prefix, operations 

An FFPM's network hardware supports scan operations. A (left-to-right) 
scan 0 operates on a sequence of values ( i 1 , i 2 , ... , in) to produce a sequence 
of result values (o1 ,o2 , ... ,on) 

. . . . . 
Oj = t0 a z1 I 22 · · ·Zj_ 2 e Zj-l; 

where i 0 is the identity value for the operation o.4 For example, here is an 
integer-addition scan (0 is identity value for + ): 

input: 2 7 -4 1 -2 
result: 0 2 9 5 6 

The results are, reading left to right, the total-so-far at each position. An 
integer-minimum (left-to-right) scan on the same sequence (using +oo as the 
identity value!): 

input: 2 7 -4 1 -2 
result: +oo 2 2 -4 -4 

A scan operation 0 makes sense if the binary operation o is associative. 
Also, a scan operation can go right-to-left; these scans are less common. 

It is easiest to think about a scan as computing a running total at each 
position (a serial operation); however, a scan can be computed in parallel in 
O(lg A) time; Meijer and Akl establish this for tree networks [151; 3], and 
Mag6 and Stanat give the FFPM details [14 7]. Part of the processing power 
in an FFPM network node is to achieve this speed. Other parallel machines 

4 A variant definition is: oj = io • i 1 • i2 · · · ij _ 1 • i1. A cell wanting that value computes 
it with its own value and the value from the network: oj = OJ • ii. 
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have special support for scan operations, notably the NYU Ultracomputer, 
with its fetch-and-op network (1983) [61; 82; 129], and the Connection Ma
chine (1985) [93]; the latter promulgated the term "scan." Scans are useful; 
Blelloch goes so far as to call them a "model of computation" [35]. 

Scans are even more useful if they can be restarted, i.e., a cell can indicate 
"Restart the running total here." If restart values are marked by an "R" 
prefix, then an integer-addition scan would be (0 as identity): 

input: 2 7 R-4 1 -2 R3 3 2 
result: 0 2 9 -4 -3 -5 3 6 

A scan with every value restarting is a right shift:5 

input: R2 R3 R4 R3 R5 
result: 0 2 3 4 3 

A comparable right-to-left scan is a left shift. Scans-with-restarting are 
still computed in parallel in O(lg A) time. 

Scan operations are also called "parallel prefix" [128] or "cumulative sum" 
[140] operations. I use "scan" because it is shortest. 

5.1.7 Computing level numbers 

An FFPM reduction-routine setting out on its mission might need, e.g., to 
distinguish rator-cells from rand-cells in a term. To this end, the Front-End 
ensures that various level numbers are periodically (re- )calculated, with the 
results kept in the cells. These calculations are scans, and they are a good 
introduction to the low-level goings-on in an FFPM. 

The simplest level numbering is a left-to-right count (1, 2, 3, ... ) of all 
(non-empty) cells, giving each cell its index. The index is a unique identifier 
for a cell-in effect, a temporary address until the symbol-string changes. 
It could be used to determine relative position: a special cell broadcasts its 
index; other cells then check if they are before or after the special cell. Indices 
must be recalculated after insertions or deletions of program symbols. 

The index is calculated by each cell submitting a one to an integer-add 
scan; the left-to-right running total will be the index. Each cell increments 
its value, so the index will begin with one. Here is a complete example: 

5 An FFPM really does a rotate right (the rightmost value ends up at the left end), 
thanks to the particulars of its networks' design. 
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···············K··········IevelO 

·······Ax· · · · · · · · · ·Ay· ·······level 1 

....... ;\ J, ''"'' 
········x;······z.-················level3 

Figure 5.3: Nesting levels for a A,-term 

( {x ( X1 z, ) } {y Yt } ) 
scan input: 
scan result: 

index: 

+1 +1 +1 +1 +1 
0 1 2 3 4 
1 2 3 4 5 

+1 +1 +1 +1 +1 +1 
5 6 7 8 9 10 
6 7 8 9 10 11 

The next level numbering is the nesting level; Figure 5.3 shows nesting 
levels for the sample A,-term. The heart of the calculation is a count of 
unmatched left syntactic-delimiters preceding a cell. It is an integer-addition 
scan, each cell contributing: 

• 1, if it is a left syntactic-delimiter (, {, [, 

• -1, if it is a right syntactic-delimiter ), }, ], or 

• 0, otherwise. 

After the scan, right syntactic-markers' values are decremented so that they 
have the same nesting level as their corresponding left syntactic-delimiter. 
Here are the scan input, result, and (after adjustment) nesting level (compare 
to Figure 5.3): 

scan input: 
scan result: 

nesting level: 

( {x ( X1 z, ) } {y Y1 } ) 

+1 +1 +1 0 0 -1 -1 +1 0 -1 -1 
01233321221 
01233211210 

If a level number is calculated for the whole 1-array, it is an absolute level 
number; e.g., if all the cells are numbered left-to-right, that is an absolute 
index. On the other hand, if a level number is calculated separately for each 
1-segment (by restarting the count at each segment left-delimiter or by doing 
the scans after partitioning) then it is a relative level number. 
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Cell's contribution 
Abbrev. Level number ( ) { } [ l other 
AIX,RIX index (absolute, relative) 1 1 1 1 1 1 1 

ANL,RNL nesting level 1 -1 1 -1 1 -1 0 
ABL,RBL binding level 0 0 1 -1 1 -1 0 
AAL,RAL application level 1 -1 0 0 1 -1 0 

1- -1 1- -1 
( ( [a a1 z. ] [b {c Ct } ( y. y. ) l ) ( {d d1 } {e {j e1 } } ) ) 

AIX: 1 2 3 4 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 
RIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 

ANL: 0 1 2 3 3 2 2 3 4 3 3 4 4 3 2 1 1 2 3 2 2 3 4 3 2 1 0 
RNL: 0 1 2 2 1 1 2 3 2 2 3 3 2 1 0 0 1 2 1 1 2 3 2 1 0 
ABL: 1 1 0 1 2 1 1 1 1 1 0 1 0 1 2 1 0 
RBL: 1 1 0 1 2 1 1 1 1 1 0 1 0 1 2 1 0 
AAL: 0 1 2 3 3 2 2 3 3 3 3 4 4 3 2 1 1 2 2 2 2 2 2 2 2 1 0 
RAL: 0 1 2 2 1 1 2 2 2 2 3 3 2 1 0 0 1 1 1 1 1 1 1 1 0 

Table 5.1: Calculating the standard level numbers 

5.1.8 Calculating exotic level numbers 

Other level numbers besides indices and nesting levels come from counting 
various sets of delimiters. If one only counts brackets (representing suspen
sions) and braces (representing A-abstractions), then one is counting "binding 
depths" from the root of the term downwards. These are binding levels. 

If one instead counts only parentheses (A-applications) and brackets (sus
pensions )-the symbols that are outermost in all rules, the resulting numbers 
are application levels. 

As before, absolute numbers are those calculated for all symbols in an 
FFPM, regardless of partitioning, and relative numbers are those calculated 
independently in each active 1-segment. Since most action takes place in 

' 1-segments, relative numbers dominate. 
I usually refer to nesting-level numbers by their acronym; Table 5.1 gives 

those I use, and the cells' contributions to the scan operations. The table 
also shows an example with all level numbers calculated; the markers 1- and 
-l set off two active 1-segments, each with its own relative level numbers; 
zeros are not always shown. 
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Figure 5.4: As-term with its selectors shown 

5.1.9 Calculating selectors and first/last bits 

For a cell to participate in a reduction routine that implements a As-inter
preter rule, it must know "where its symbol is" in the As-term. Sometimes, 
one of the level numbers is enough; for example, if the question is, "Am I on 
the same level as a particular cell?" 

Sometimes a cell needs more information than a level number can provide; 
for example, "Am I in the rator or not?" Selectors provide the needed, limited 
parse-tree information. Consider Figure 5.4: the edges coming out of each 
node are numbered, 1, 2, 3 ... The sequence of the edge-numbers from the 
root down to the node in question selects a node (subtree). I show a five-level 
selector for each variable in the figure. 

To select deeply-nested subterms, we would need arbitrarily long se
quences of edge-numbers. Fortunately, for the algorithms in this dissertation, 
two levels of selectors are enough. Only the algorithm for the [sus-rot!] rule 
(Algorithm 5.13, page 135) needs the second one. 

Cells often need to know if they are the first or last cell in a term at a 
given nesting level (RN L) n. (Levell is the top level; in Figure 5.4, it chooses 
between the body and pointee of the top suspension.) A variable with RNL 
= n is both First and Last at level n-a variable is a whole term. For delimiter 
cells with RNL= n, a left-delimiter is the First cell of a subterm on level n 
and a right-delimiter is a Last cell. Comparing the following diagram with 
Figure 5.4 should clear the air. (Zero entries shown as blank.) 
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[x ( xl {y ( ( X2 Y1 ) Z3 ) } Hx ( xl z3 ) } l 
RNL: 0 1 2 2 345544 3 2 1 1 2 3 3 2 1 0 

First1 : 1 1 
Last1 : 1 1 
Sel1 : 0 (1 1 1 1 1 1 1 1 1 1 1 1)(2 2 2 2 2 2) 0 

First2 : 1 1 1 
Last2 : 1 1 1 

input: +1 +1 RO RO +1 RO RO 
result: 0 1 2 2 2 22 2 2 2 0 0 0 1 1 1 0 0 

Sel2 : (1) (2 2 2 2 22 2 2 2) (1 1 1 1) 
First3 : 1 1 1 
Last3 : 1 1 1 
input: RO +1 RO RO +1 +1 RO 
result: 0 0 1 1 1 1 1 1 0 0 0 1 2 0 

Sel3 : (1 1 1 1 1 1 1) (1) (2) 

First; and Last; bits follow from RNL information; besides listing them 
explicitly in the example, I also show First; and Last; bits as ( and ) symbols 
on the Sel; numbers, respectively. I will use the <, > notation in the rest of 
the dissertation. 

Selectors are calculated from the First; and Last; information. The top
level selector, Sel1 , is an integer-addition scan with cells sending First1 . Then, 
for level n > 1, an integer-addition scan (order is significant): 

• Cells with Firstn set send + 1. 

• Cells with Lastn or Lastn-l set send Restart 0. This is the all-important 
restart of the left-to-right count. 

• Other cells send +0. 

I show the inputs and results of the Sel2 and Sel3 scans in the example 
above. Cells add their own input to the scan result to get the selector. 

5.1.10 Low-level programming style in an FFP Machine 

The implementer of a language system on an FFPM writes reduction rou
tines to manipulate cells' contents in accordance with the language definition. 
Scans and the communication facilities just outlined are the stock in trade. 
These routines often follow one of a few strategies; I sketch one example here. 
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The' first thing a reduction routine does is a few scan operations to cal
culate various level numbers that a cell can use to determine its position in 
the term. In this way, a cell learns about itself: "Do I hold the last paren
thesis?", "Am I in the rator or the rand?" or "Am I the second cell in a 
A-application?" Answering these questions, a cell decides its action for this 
cycle. In an active segment, each cell will typically be doing one of a few 
actions. For example, all the cells in the rator would do one thing, and all 
those in the rand another; frequently, the parentheses delimiting the term 
do something different (such as deleting themselves). Once cells have deter
mined their task, reduction will likely unfold in two phases. First, the cells 
will communicate to decide what space is needed for the impending rewriting 
of symbols; storage management will then provide the needed free cells in 
the requested slots. Next, symbols to be moved will be broadcast-or sorted 
if a reordering is taking place-and the free cells will swallow the incoming 
symbols. There are exceptions to this pattern, but it fits many cases . 

Summarizing, an FFPM has a linear array of processing cells that coop
erate to execute a reduction routine, thereby causing an efficacious rewriting 
of program symbols. The cells work in 1-segments. Besides computing in
dividually, the cells in a segment have their own sub-network that provides 
broadcast, sorting, single-result, and scan-operation services. A Front-End 
machine directs the overall computation. Storage management is automatic. 

5.1.11 Copying and sharing in an FFP Machine 

An FFPM tries to achieve high speeds by having many non-interfering com
putations proceeding at once. Each computation is self-contained, having all 
necessary program and data. 

The FFPM philosophy does not consider space sharing (to conserve mem
ory) an absolute good; sharing can be inimical to high performance. To get 
highly parallel computing in a scalable architecture, you must have multiple 
copies of program structures. In other words, an FFPM favors intelligent, 
even speculative copying. 

There are some common programming idioms in which the pro-copying 
approach suffers badly; Mag6 addresses these concerns in his 1981 paper, 
"Copying Operands versus Copying Results" [142]. A typical expression 
that he seeks to optimize is 

(.\x.{if is-null x then x else transpose x} huge-vector). 

To do the trivial is-null x test requires copying the whole huge-vector m 
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for x. Mago shows how low-level FFPM programming can get around some 
dramatically-wasteful cases that may arise in practice. 

Having to copy large homogeneous data structures (arrays, for example) is 
the most problematic aspect of an FFPM's copying policy. Other approaches 
to this problem have tied it to the related problem of virtual memory and 
how to accommodate expressions too large for a Machine's 1-array. Geoff 
Frank et a!. [69; 70] reported several possible schemes. Common to the 
schemes is moving constant subexpressions out of the 1-array into an ad
dressable secondary memory and putting pointers to the backing store in the 
1-array. This relieves the 1-array memory requirements, and sharing is possi
ble by having many pointers to a single structure in secondary memory. The 
backing store can be managed in several ways. A conventional autonomous 
virtual-memory manager is one option. A more interesting attack is to em
bed virtual-memory actions into FFP programs; Frank et a!. reported that 
this approach "makes much more sense for these [FFP] languages than for 
von Neumann languages" [70, page 8.44]. 

The second issue in sharing is computation sharing, to avoid the prolifer
ation of unevaluated redexes. Traditionally, an FFPM uses applicative-order 
evaluation, in which unevaluated redexes are never copied. But what if the 
Machine were used so that such redexes were copied? Again, its different 
philosophy comes into play. 

A sequential interpreter evaluates redexes one by one, so the duplication 
of unevaluated redexes means longer running times. Simple normal-order tree 
reduction of the A-calculus, with its likely exponential blow-up of unevaluated 
redexes, is therefore unacceptable. An FFPM, on the hand, has a high 
processor-to-memory ratio (one processor per memory cell), and the presence 
of many redexes is not problematic, provided they can be reduced in parallel 
and they do not offend by simply taking up memory. (Because normal-order 

, reduction is inherently sequential, an FFPM's abundance of processing power 
would not help; however, the point is valid for more practical .A-calculus 
systems.) 

In cases where pointer-style sharing is critical, it may be simulated in 
an FFPM's low-level software. Mago did this in his algorithm for Paterson
Wegman unification on an FFPM [143]. 

5.1.12 Related non-graph-reduction architectures 

Most parallel architectures to support functional programming use graph 
reduction; that work is reported in Section 3.5. Work on "closure-based" 
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reduction and other techniques to speed up graph reduction is also reported 
there. 

Besides the FFPM effort, the GMD Reduction Machine project was the 
other long-time advocate of string reduction to support functional languages. 
The design motivations that Berkling gave in his 1975 paper [26] are similar 
to the stated FFPM philosophy [144]. Both have their roots in Backus's early 
work on reduction languages [13]. 

The original GMD Reduction Machine [28; 124; 100; 126; 29] was a se
quential computer; notably, it was the first reduction machine "to be suc
cessfully implemented" [125]. In my review here, I examine the parallel 
"cooperating reduction machines" described by Kluge [125]; the individual 
machines are the same as the sequential one. Each machine has three stacks, 
one of which initially holds a linearized, preorder representation of a .\-term. 
A search for a reducible expression proceeds by a railyard-like shunting of 
symbols between the stacks, until the right symbols appear at the top of 
the right stacks; then an unadulterated string-replacement reduction takes 
place. Expression shunting then resumes ... Parallelism develops by peeling 
off subterms and passing them for reduction to another "virtual machine." A 
virtual machine is mapped onto a real one if it can get a "ticket;" there are a 
limited number of tickets, providing a throttle on overexuberant parallelism. 

The considerable data movement required by shunting terms around had 
its costs: Hommes says that "applications running on Berkling's reduction 
machine have shown that it is less suited for programs operating on large 
data structures" [99]. Hommes's solution was to move large data structures 
into a "heap," leaving behind appropriate pointers into the heap, and to 
have variants of data manipulation primitives (head, tail, etc.) that operate 
directly in the heap. (Note the similarities to the work of Frank et a!. on the 
same problem for an FFPM [69; 70].) Schmittgen acknowledges a "severe 
performance problem" due to "the absence of, among other things, suitable 
abstract data types that support the efficient manipulation of non-atomic 
typed objects" [181]. In other words, having to build all data types out 
of primitive list structures proves expensive; therefore, Schmittgen proposes 
new built-in types for vectors, matrices and trees. She retains Hommes's 
ideas about special heap-twiddling operators. 

Both the GMD machine and the FFPM a Ia Frank et a!. exemplify an 
approach to copying and sharing: the underlying computational model un
abashedly favors copying (pure tree reduction), but extra primitives to handle 
large aggregate data structures are provided for the occasions when copying 
would be most painful. The handling of aggregate data structures is a big 
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issue in functional programming, generally [113; 98; 101; 10]. One can imag
ine that if this particular problem were solved, then sharing-in-general would 
indeed be unnecessary. 

Other early string reduction machines include Treleaven and Hopkins's 
machine [198], which was inspired by Wilner's "recursive machines" [212]. 
The ZAPP (Zero-Assignment Parallel Processor) architecture [184; 148] is 
a "virtual tree machine" [43; 42]. ZAPP is similar to the parallel GMD in 
that tasks hand off subtasks to other processors; however, ZAPP focuses 
on divide-and-conquer algorithms in which the tasks spawn into a "process 
tree;" it depends on this "treeness" for success. 

Perhaps the easiest kinds of parallel ma~hine to build are Single-Instruc
tion-stream, Multiple-Data-stream (SIMD) machines, in which processor
memory elements work in lock-step, obeying a single stream of instructions 
from a controller. One such architecture intended to support functional pro
gramming is John O'Donnell's Applicative Programming System Architec
ture (APSA); he has built a VLSI prototype and an emulator running on 
the better-known SIMD machine, the NASA MPP [159; 160; 158]. Though 
targeted at functional languages and made from two kinds of VLSI cells con
nected in a tree network, an APSA is fundamentally different from an FFPM. 
The language interpreter runs on a conventional host; the main purpose of 
the SIMD processor/memory is to avoid or speed up the manipulation of 
complex linked data structures endemic to functional language implementa
tions (consider LISP lists and garbage collection, for example). Insofar as 
possible, linked structures are flattened into CDR-coded-like "compact linear 
structures" whose elements can be operated on concurrently by SIMD pro
cessors. In other words, an APSA also tries to improve overall performance 
by enhancing its data-structure operations. 

The Connection Machine (CM) is a commercially-available SIMD com
puter with 65,536 processors and initial applications in image analysis and 
AI [93; 95; 94]. Unlike an APSA, it has a rich interconnection network (hy
percube versus tree) and is application-driven (e.g., image analysis or AI), 
not language-driven. Nonetheless, a Common LISP variant, *Lisp, is a ma
jor programming language for the Machine; Steele and Hillis cite APL and 
FP as kindred languages [195]. They introduce a new data aggregate, the 
xapping, an unordered set of (index, value) ordered pairs: the index identifies 
a processor, the value is data at the processor; the CM then does opera
tions on xappings in parallel. Whereas O'Donnell's data structure tricks are 
low-level and presumably invisible to the programmer, Steele and Hillis ask 
programmers to go halfway and re-code their programs the xapping way. 
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Again, notice the emphasis on improving aggregate data structures. 
Hudak and Mohr looked at combinator-based graph reduction as a com

putational model to support functional languages on a CM (104]. They found 
a set of seven micro-operations ("graphinators") from which CM implemen
tations of the Turner combinators (199] could be composed. The program 
graph is spread out in the CM processors, and a language interpreter is then 
a program that repeatedly pumps instructions for the graphinators at the 
processors. Though the idea is noteworthy and Hudak and Mohr go on to 
suggest refinements to the basic idea, they concede that they "must look more 
deeply for performance improvements." They conclude, "Although faster ar
chitectures can help, we feel that preserving locality of reference is the crucial 
line for future research" (104, page 233]. 

Another way to characterize an FFP Machine is as a concurrent term 
rewriting machine. Plaisted examined this aspect of his extended FFPM 
with a richer network; please see Section 5.4 for further discussion of his 
work (171]. An architecture that has taken the term-rewriting view from 
the beginning is the Rewrite Rule Machine (RRM) at SRI, under Goguen's 
direction (134; 79; 133; 135; 80]. Their basic programming language is the 
"ultra high-level" OBJ. At the lowest level, a "processor" is a controller plus 
an ensemble of SIMD cells that hold one-or-a-few tree nodes apiece. The 
processors are grouped into "clusters" that share an address space, and the 
clusters are joined into "networks". As best I can tell, the RRM does full
blown tree reduction; however it does use "multiplexed physical mapping" of 
nodes to somewhat-larger-grain cells and a scheme of "virtual pointers" in 
which substitutions need not be done immediately. In other words, it does 
copying but not necessarily as soon as the substitution is called for. 

We have seen that the tack taken by almost all not-explicitly-graph reduc
tion machines is to pay the copying price and to recoup the most profligate 
consequences with extra support for special data structures amenable to the 
machines' architectures and intended use. 

5.2 An implementation of a \-interpreter 

This section gives the algorithms for an FFPM implementation of the .\,
interpreter in Chapter 4. The only change is that reduction is to full (3-
normal form (BNF). Strangely enough, detecting if subterms are inside .\.
abstractions is a mill-stone around an FFPM's neck, making reduction to 
weak (3-normal form (WBNF) less desirable. Because this "implementation" 
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serves mainly to provide space and time complexities for Sections 5.3.1 and 
5.3.2 and because the comparison is on a per-step basis, the difference in the 
number of steps to reduce to BNF vs. WBNF is not important. 

5.2.1 Basic algorithms 

This section presents basic FFPM algorithms for ubiquitous tasks in a As
interpreter implementation. All the algorithms are very low-level, usually 
laborious straight-line code. I have provided examples for the fascinated 
reader. Recall that First; and Last; bits are shown as ( and ) symbols on 
the Sel; numbers, respectively. All asymptotic complexities are for the worst 
case. A is the number of cells in the "address space," i.e., the whole Machine; 
n is the number of cells in the As-term or 1-segment of interest. The footnote 
on page 108 explains why lg A factors in the worst case become lg n factors 
in the expected case on an FFPM. 

Algorithm 5.1 Detecting bound variables of a given binder. 

Given a A8 -term of n cells in an 1-segment, RIXs (relative indices) and · 
RBLs (relative binding levels) calculated, we want to identify all the bound 
variables of a particular binder. Cells holding the left (cell L) and right (cell 
R) delimiters for the binder in question know their role. For example, given 
the example below, an attempt to find the bound variables in the subterm 
with cells L and R marked by -(1. will identify the variables in cells marked 
by 1- Some useful action would presumably follow this marking. Detecting 
bound variables is very common. 

-(1. -(1. 

{x ( {y ( ( X2 Y1 ) ( L ( Y2 Z1 ) } a, ) ) } z, ) } 
RIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

RBL: 0 1 1 2 2 2 2 2 2 2 3 3 3 3 2 2 2 2 1 1 1 0 
r r 

1. Cell L broadcasts its RIX; cells with smaller RIX know they are not a 
bound variable. In the example above, this excludes cells 1-2. This 
step takes O(lg A) time. 

2. Cell R broadcasts its RIX; cells with larger RIX know they are not a 
bound variable. This excludes cells 20-22. This takes O(lg A) time. 
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3. Cell L broadcasts its RBL, '1' in the example; call it top_bl. This takes 
O(lg A) time. 

4. A cell holding a variable with binding index bi = RBL - top_bl is a 
bound variable. (Recall that variables' binding indices are shown as 
subscripts in the figures.) In the example, cells marked j meet this 
condition. Other cells are not bound variables. This step takes 0(1) 
time. 

Overall, it takes O(lg A) time (and no extra space) to detect a binder's 
bound variables. 

Comments. Intuitively, a binding level counts binders, moving from the 
root to the leaves of a .\

8
-tree. Subtracting top_bl adjusts the count to start 

from the binder in question instead of the root of the whole .\8 -term. A 
binding index, on the other hand, is counting binders from the its leaf position 
upwards. Where the two counts are equal, voila!-a bound variable. 

The ability to use a simple RBL scan as the basis for an O(lg A) algorithm 
to detect bound variables is my main reason for using binding indices. 

Algorithm 5.2 Detecting free variables. 

The actions to detect free variables in an n-cell.\ 8 -term are similar to those 
for detecting bound variables (Algorithm 5.1), with different tests performed 
in the individual cells. I presume we want to detect free variables with 
binders, not constants (variables free at the top level, with negative binding 
indices). As before, cells holding the left (cell L) and right (cell R) delimiters 
for the binder in question know their role. In the following example, there 
is only one free variable in the sub term set off by .l).'s; it is marked with a j. 
(Steps 1-3 of this algorithm are identical to those of the preceding one.) 

~ ~ 
{x ( {y ( ( X2 Yr ) ( {z ( Y2 Zr ) } a, ) ) } z, ) } 

RIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 
RBL: 0 1 1 2 2 2 2 2 2 2 3 3 3 3 2 2 2 2 1 1 1 0 

i 

1. Cell L broadcasts its RIX; cells with smaller RIX know they are not in 
the interesting subterm. In the example above, this excludes cells 1-2. 
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2. Cell R broadcasts its RIX; cells with larger RIX know they are excluded 
(cells 20-22). 

3. Cell L broadcasts its RBL; call it top_bl. In the example, '1' is broadcast. 

4. A cell holding a variable with binding index bi > RBL - top_bl is free. 
Other variables are bound or constants. 

As for detecting bound variables, the algorithm takes O(lg A) time and 
uses no extra space. 

Algorithm 5.3 Substitution. 

I assume that the substitution M[x := N] appears as a suspension to be 
completed, [xM N]. We want to substitute N for the bound variables of the 
suspension in M (well-formedness precludes bound variables inN). I further 
assume that the suspension to be completed is alone in an L-segment of n 
cells, and that RIX, RBL, Sel1 , First1 , and Last1 are known. 

The algorithm proceeds in three phases: (1) mark bound variables of the 
suspension [xM NJ and free variables in N, (2) copy N in place of each 
detected bound variable, and (3) adjust binding indices. 

Mark variables. We need to find bound variables (in the suspension's 
body) and free variables in the suspension's pointee. Algorithms 5.1 and 
5.2 may be used to look for bound variables and free variables everywhere 
in the suspension; to limit ourselves to free variables in the pointee, those 
detected by Algorithm 5.2 but with Sel1 = 1 (the body) unmark themselves. 
This phase takes O(lg A) time. 

An example with it's marking bound variables and .IJ.'s marking free vari
ables in the pointee: 

.IJ. 
[x ( X1 {y ( ( Xz Y1 ) Z3 ) } ) {x ( X1 Z3 ) } ] 

it 1f 
RIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

RBL: 0 1 1 1 2 2 2 2 2 2 2 1 1 1 2 2 2 2 1 0 
Sel1 : 0 (1 1 1 11 1 1 1 1 1 1 1) (2 2 2 2 2 2) 0 
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Copy. 

1. Determine the size of the pointee (Sel1 = 2) and broadcast: the pointee 
cells that are First1 or Last1 send their RIX, and cells with bound vari
ables (marked 1t above) take the difference between the two numbers 
(call it d). It takes O(lg A) time. 

2. Each marked bound-variable cell asks to be cloned d- 1 times during 
storage management. In the worst case, tn cells would each be cloning 
tn copies of themselves, which is O(n2) clones total. Storage manage
ment follows; it is a linear process, so it takes O(n2) time. With clones 
marked by L our example becomes: 

lllll lllll 
[x ( Xt Xr Xr Xr Xr Xr {y ( ( X2 X2 X2 X2 X2 X2 YI ) Z3 ) } ) {x ( Xr Z3 ) } ] 

RIX: 1 2 3 3 3 3 3 3 4 56 7 7 7 7 7 7 8 910 1112131415161718 19 20 
RBL: 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 1 0 
Sel1 : 0 (1 1 1 1 1 1 1 111 1 1 1 1 1 1 11 1 1 1 1) (2 2 2 2 2 2) 0 

3. Each marked-bound-variable clone cell saves its binding index in old_bi, 
to remember the binding distance up to the suspension. It takes 0(1) 
time. 

4. Each cell in the pointee (Sel1 = 2) sends its symbol and whether it 
is marked as free (use RIX as a sort key, to keep them sorted). Each 
clone cell i overwrites itself with the i'h symbol received and saves the 
markedness in pteeMarked. This copying takes O(n) time. Our example 
IS now: 

[x ( {x ( Xt Z3 ) } {y ( ( {x ( Xt Z3 ) } YI ) Z3 ) } ) {x ( Xt Z3 ) } ] 

RIX: 1 2 33 3 333 456 77 7 777 891011121314151617181920 
RBL: 1 1 11 1 111 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 
Sel1 : 0 (1 11 1 111 111 11 1 111 11 1 1 1 1) (2 2 2 2 2 2) 0 

Adjust binding indices. Variables that were free in the pointee (those 
with pteeMarked set) may now be at a greater binding depth and may 
need their binding index increased to match. The adjustment is: bi := 

bi + old_bi -2. All other free variables must then be decremented by one. 
The suspension is now useless, so the cells holding its delimiters and 

the pointee erase their contents. As free variables were determined in the 
marking phase, all operations in this step take 0(1) time. The final result 
for the example is: 
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( {x ( X1 Z3 ) } {y ( ( {x ( X1 Z3 ) } Y1 ) Z3 ) } ) 

RIX: 2 3 3 3 3 3 3 4 5 6 7 7 7 7 7 7 8 9 10 11 12 13 

In the worst case, a full-fledged substitution takes O(n2 ) time and space. 
For this reason, you will not see any full-fledged substitutions in this chapter! 

Algorithm 5.4 Finding a matching syntactic delimiter. 

It often arises that we have identified a cell holding an interesting delimiter 
(the left parenthesis of a redex, for example) and we need to identify the 
matching delimiter (e.g., its right parenthesis). 

This is a simpler problem than having several delimiters marked and find
ing all of their matching delimiters in parallel. The simple case is adequate 
for the algorithms in this chapter. 

I assume that a A8 -term of n cells occupies an 1-segment. A left delimiter 
is marked as being the symbol to be matched. (To match a right delillliter, do 
everything backwards.) Nesting levels (RNL) are precalculated. For example, 
in the A-term shown, we want to match the symbol marked with 1-

l 
( ( z. z. ) {x ( X1 {y Yl } ) } ) 

RIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
RN L: 0 1 2 2 1 1 2 3 3 4 3 2 1 0 

1. The marked left-delillliter cell broadcasts its RNL, the nesting level of 
interest. It takes O(lg A) time. 

2. Do an integer-addition left-to-right scan: the marked left-delimiter con
tributes Restart-1, other left-delillliters on the playing nesting-level 
contribute Restart-0, and other cells contribute +0. The scan takes 
O(lg A) time. Our example, with cells' contributions to the scan, and 
its results: 

l 
( ( z. z. ) {x ( X 1 { y Y1 } ) } ) 

input: +O RO +0 +0 +0 R1 +0 +0 +0 +0 +0 +0 +0 +O 
result: 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

RIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
RN L: 0 1 2 2 1 1 2 3 3 4 3 2 1 0 
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3. Right delimiters on the interesting nesting level examine the result of 
the scan that they receive. The one receiving a 1 is the matching right 
delimiter. This takes 0(1) time. 

Overall, it takes O(lg A) + O(lg A)+ 0(1) = O(lg A) time and no extra 
space to find a matching delimiter. 

5.2.2 Controlling the interpreter 

We now move from low-level algorithms to the top-level routines that control 
an FFPM implementation of a .\,-interpreter. As usual, for each reduction 
step, we must search for a redex, copy the shared rator (if applicable), do 
the j3,-reduction, and tidy up. I explain the overall control of the reduction 
process first and then develop the algorithms in a top-down way. 

A Front-End processor controls an FFPM's operation, driving a four
phase cycle of: global checking, partitioning into 1-segments, executing re
duction-routines in the active segments, and doing global storage manage
ment. (A traditional FFPM does not have a global-checking phase.) Par
titioning is as described in Section 5.1.3, and storage management is un
modified from that in published FFPM descriptions [147]. Both the global 
checking and reduction-routine execution involve 1-cells operating coopera
tively on the .\,-term. The global code always operates on the whole .\,-term 
(using absolute level numbers), whereas reduction-routines execute in parti
tioned 1-segments (using relative level numbers). Most work takes place in 
the 1-segments, and I first review the control of what reduction routine is 
executed when. 

Control flow in this FFPM implementation of the .\,-interpreter is quite 
different from a conventional interpreter that controls its progress (basically) 
by pushing and popping function addresses on and off a stack. In an FFPM, 
the basic mechanisms are associative matching of symbol-patterns in cells and 
the marking (and unmarking) of delimiters. For example, the two-cell pattern 
lillJ indicates a /3,-redex; marking the left parenthesis and its matching right 
parenthesis would give "control" to that .\,-application. As Section 5.1.3 
describes, it is innermost marked symbol strings that are active and that 
execute reduction-routines. 

The marking of an inner delimiter-pair in an 1-segment, giving control 
to that substring of symbols, is analogous to a subroutine call. Conversely, 
when an 1-segment unmarks its own delimiters so that the symbol-string 
enclosing it becomes active, it is analogous to a return from a subroutine 
call. 
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I also use an FFPM technique that I call task hints. In addition to 
marking an inner subterm's delimiters, a reduction-routine may insert a "task 
hint" anywhere in the inner subterm to suggest what is expected of it. The 
first thing a newly-active 1-segment does is look for this hint (with associative 
matching). Task hints are not part of the As-term; they are not strictly 
necessary but convenient. 

Given a A8 -term T to reduce to BNF, we first wrap it in an "envelope" 
with marked delimiters and the hint reducdoJ3NF: 

( reducdo_BNF T) 

This "term" will get control initially and whenever all the delimiters in T 
become unmarked. 

5.2.3 Reducing to f)-normal or root-lambda form 

The procedure described here-looking for a redex and detecting when a term 
is in BNF-is ubiquitous in this implementation of the As-interpreter. Its 
variant, reducing to root-lambda form (RLF), does not attempt reductions 
inside the top A8 -abstraction and is used only for shared rators. Between 
them, these variants handle searching for red exes (with help from global 
checking, Section 5.2.6) and copying of shared rators. An 1-segment chooses 
between the variants depending on the task hint found: reduce_to..RLF or 
reduce_to_BNF. 

If the top-level "envelope" gets control, it tries to reduce to BNF. If an 
1-segment holding a suspension has control, it is understood that the pointee 
is to be reduced. 

Algorithm 5.5 Reduce a As-term to BNF by repeatedly finding its "left
most" redex. This algorithm is executed if a reduce_to_BNF task hint is 
present. 

The global-checking phase of the machine cycle (Section 5.2.6) will ensure 
that all cells to the left of the rightmost Follow*Fill6 As-pointer's target are 
not examined. If such a pointer exists, the search will take place in the 
pointee of the target suspension. 

1. Look for the leftmost Ptr-marked A8 -pointer (one of the two-cell as
sociative matches 1@;1, j{[r;l, or E&Jl or the leftmost redex (a two-cell 

6The name Follow* Fill means "either FollowFill or FollowNoFill." 
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match, lill]J. Algorithm 5.7 says how to do the matching and gives an 
example. 

If the leftmost match is i(f';l, make it a FollowFill pointer i; and drop 

a reduce_to..RLF hint. If the leftmost match is ~f;l or f;IJI, make it a 
Follow Fill pointer X; and drop a reduce_to_BNF int. 7 In either case, 
include a find_ptr_target hint, so the next global-checking phase (Sec
tion 5.2.6) will ensure that the correct suspension gets control. 

If the leftmost match is a redex lill], then the matching right parenthesis 
needs to be found (Algorithm 5.4). Both parentheses will be marked, 
giving control to that .\-application. A ,B.-reduction and tidying will 
follow, as Section 5.2.4 describes. 

2. If Step 1 set up a Follow*Fill pointer, global checking (Section 5.2.6) 
will pass control somewhere else. 

3. If Step 1 marked an inner .A.-application, the current 1-segment will 
be inactive in the next cycle. 

4. If Step 1 found nothing, then this 1-segment 's job is done. 

If this segment is the outermost "envelope," then the whole reduction 
is complete. 

If this segment is a suspension, then its pointee is reduced and the 
bound variables in its body may be marked Followed. Algorithm 5.1 
can be used to detect the bound variables and changing their hats is 
straightforward. Finally, erase the reduce_to_BNF hint and un-mark 
the suspension. 

Comment. Recall the imagery of Figure 4.9 and the "life cycle" of a .A.
pointer: plain-hatted pointers x; slowly become Followed-hatted pointers x; 
in a generally left-to-right sweep. The algorithm above is the main one 
responsible for the pattern. 

As already mentioned, global-checking ensures that the matching takes 
place in the pointee of the target of the rightmost .A.-pointer being followed (if 
one exists). Also, the parts of a >..-term that are already completely Followed 
simply will not generate a match. Finally, there is no need to worry that 
"indiscriminate" matching here will select something inside a suspension's 
pointee that has not been followed into. Since the overall term is tidy, there 

7 Actually, the variable mark could serve as the task hint. 
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would have to be a As-pointer aimed at the pointee and it would be to the 
left. If that were the case, the leftmost match would be there, not in the 
pointee. 

The following algorithm is applied when a suspension has a Follow Fill As
pointer aimed at it. It reduces the pointee only until it is a As-abstraction, 
then substitutes it for the FollowFill pointer. 

If the pointee does not reduce to a As-abstraction but all the way to BNF, 
then all the suspension's bound variables (including the FollowFill) need to 
be re-hatted as Followed. 

Algorithm 5.6 Reduce a -'s-term to RLF. This algorithm is executed if a 
reduce_to_RLF task hint is present. 

1. If the pointee is a -'.-abstraction, it needs to be substituted for the 
Follow Fill A8 -pointer (there will only be one). A variant of full substitu
tion (Algorithm 5.3) may be used, with obvious adjustments: only the 
Follow Fill bound-variable is substituted for, and the suspension itself is 
not deleted, as other bound variables may remain. 

If the suspension A8 -term occupies n cells, the pointee can be of size 
O(n), so the new space for the one substitution is also O(n). Storage
management time is proportional to the number of cells requested, so 
the substitution time is also 0( n ). (That there is only one bound
variable being substituted keeps it from taking O(n2 ) time and space.) 

2. If a FollowFill pointer was just filled and that pointer was the suspen
sion's last bound variable, the suspension is now useless. Therefore, a 
check for useless suspensions (Algorithm 5.9) is in order. 

3. If the pointee is not a .\..-abstraction, do one step of reducing (the 
pointee) to BNF (Algorithm 5.5). That algorithm changes bound
variables' hats to Followed if it finds nothing. 

4. If the Follow Fill pointer was filled (Step 1) or the pointee eventually 
reduced to a non-A.-abstraction BNF, erase the reduce_to..RLF hint 
and unmark this suspension. 
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Comment. The 0( n) time and space complexities for filling a Follow Fill 
pointer are the only non-O(lg A) complexities in this implementation of the 
As-interpreter. They are directly attributable to the data-movement capa
bilities of the underlying tree networks. If data movement were improved by 
a richer network, these copying complexities would benefit. 

Algorithm 5. 7 Find the leftmost two-cell match. 

The pattern 1(1{1 indicates a redex. The pattern /(@il indicates a pointer
variable that is the rand of an application (thus, needs to be filled). The 
patterns filll and l{fil indicate pointer-variables that need to be followed but 
not filled. All patterns appear in two adjacent cells.8 

1. To detect any two-cell pattern in a term, the cells do a shift-right scan 
operation, 9 each sending its symbol; an example follows. The shift 
takes place in the pointee only. 

[. ( x. ih ) ( ( .z. w4 ) ( {x x, } z. ) ) l 
RIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

rotate: ( ( z. W4 ) ( {x Xr } Z* ) ) 

r 1 

2. Each cell examines what came from its left and decides if the two cells 
fit one of the patterns; the I cells above are matches. Cells that match 
send their RIX into a Min single-result communication wave. In the 
example, the minimum RIX will be 10. 

3. The right cell of the leftmost match will receive its RIX back. It reports 
where it is and what pattern was matched with a broadcast operation. 
Cell RIX = 10 will make itself into w4 and report a FollowNoFill match. 

Each of the constituent operations takes no more than O(lg A) time. 

8 Intervening empty cells are taken care of by the FFPM hardware. 
9There is an example on page llO. 

129 



5.2.4 ,8
8
-reduction and local tidying 

If a .\,-application gains control, it is a redex. Algorithm 5.8, which imple
ments the {3, rule, may be applied immediately. The suspension that takes 
the .\,-application's place should stay marked, so it retains control. 

A /3,-reduction may cause the need for tidying. Taking a "tidy while we 
are in the neighborhood" approach (rather than a hardwired "tidying phase" 
somewhere in the overall reduction cycle), I now consider the local tidying 
that can be done without the new suspension relinquishing control. 

The local tidying rules that are tried following a {38 -reduction are the 
removal of a useless suspension (Algorithm 5.9) and the [triv-body] and [triv
ptee] rules, to remove a trivial suspension (Algorithms 5.10 and 5.11). These 
checks are mutually exclusive and may be applied sequentially. 

Tidying that may involve higher-up parts of the .\,-term is nonlocal tidy
ing; global checking takes care of it. Sections 5.2.5 and 5.2.6 address nonlocal 
tidying and global checking, respectively. 

The newly-created suspension (assuming it has not become useless and 
therefore nonexistent) may now be unmarked. 

Algorithm 5.8 This algorithm implements the /3, rule. 

The {3, rule is (.\x.{B} N) -> [xB N;f]. Unsurprisingly, its implemen
tation is closely kin to that of substitution (Algorithm 5.3). I assume Sel1 , 

First1 , and Last1 are pre-computed. 

1. The algorithm begins by detecting the rator's bound variables and the 
free variables in the rand; this works the same as in substitution (taking 
O(lg A) time). Here is an example, with a bound variable marked with 
11 and free variables (in the rand) marked with Jf. 

JJ JJ 
( {x ( {x x, } ( Zs x, ) ) } ( Z4 Z4 ) ) 

11 
RIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
Sel1 : 0 (11 1 1 11 1 1 1 1 1) (2 2 2 2) 0 

2. Bound variables in the rator get pointy hats; free variables in the rand 
are incremented by one. It takes 0( 1) time, and gives: 

130 



.u- .u-
( {x ( {x X1 } ( Zs X1 ) ) } ( Z5 Zs ) ) 

ir 
RIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
Sel1 : 0 (1 1 1 1 1 1 1 1 1 1 1) (2 2 2 2) 0 

3. Parentheses with Sel1 = 0 are changed to brackets; the A-abstraction 
rator braces (Sel1 = 1 and either First1 or Last1 set) are erased. This 
takes 0(1) time, and gives the final result: 

[ ( {x X1 } ( Zs X1 ) ) ( Zs Zs ) ] 
RIX: 1 3 4 5 6 7 8 9 10 11 13 14 15 16 17 

Overall, the f3s rule takes O(lgA) + 0(1) + 0(1) = O(lgA) time and no 
extra space. 

Algorithm 5.9 Detect and remove a useless suspension (the [useless] pseu
do-rule) 

1. Algorithm 5.1 marks the bound variables in the suspension in O(lg A) 
time; there may not be any. 

2. All the cells "vote" to determine if a bound variable exists (using a 
single-result operation). 

3. If there are no bound variables, then (a) the free variables, detected 
with Algorithm 5.2, are decremented; and (b) the suspension brackets 
[] and all the cells in the pointee (Sel1 = 2) erase themselves. 

All of the constituent operations take O(lg A) time in the worst case. 

Algorithm 5.10 The [triv-body] rule. 

The [triv-body] rule is applicable if the two-cell pattern I!E!J is present. It 
can be detected with a variant of Algorithm 5.7 in O(lg A) time. 

Strictly speaking, the [triv-body] rule is a special case of substitution 
(Algorithm 5.3), but a much simpler algorithm may be used. 
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Figure 5.5: Non-local tidying 

The trivial-body cell (RIX = 2, a variable) erases itself and the free vari
ables in the pointee (found with Algorithm 5.2) decrement themselves by 
one. The suspension delimiters (with Sel1 = 0) erase themselves. 

The two communication operations (broadcasting, finding free variables 
in the pointee) take O(lg A) time; everything else takes constant time. 

Algorithm 5.11 The [triv-ptee] rule. 

The [triv-ptee] rule is applicable if the two-cell pattern §ill is present. It 
can be detected with a variant of Algorithm 5.7 in O(lg A) time. 

The [triv-ptee] rule is a special case of substitution and that algorithm 
(5.3, page 122) may be used. Because the pointee being copied occupies one 
cell (instead of O(n) cells), no new space has to be allocated (no storage 
management costs) and the copying takes O(lgA) time. 

5.2.5 N onlocal tidying 

If a ;35 -reduction has just been done, it may have prompted the need for a [sus
rot!] tidying just above the new suspension. Figure 5.5a shows an example 
in which the newly-created [x] suspension needs to be rotated upward. 

Figure 5.5b shows an example in which the new [x] suspension exposes 
the need to move the >.y and >.z abstractions above the top suspension [b], 
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as Figure 5.5c shows. These moves correspond to applying the [.\-up] rule 
six times. By gluing in more .\,-abstractions and suspensions, an arbitrarily 
large number of [.\-up]'s might be needed. Fortunately, it is possible to have 
an FFPM reduction-routine that recognizes the symbol string 

m of them ...--.-.. 
(where [m corresponds to [[[· ·. [ ) and converts it into 

(where the primes indicate terms with adjusted binding indices). This "[mul
ti-.\-up] rule" (it is not really a rewrite rule) implements the potentially-long 
sequence of [.\-up]'s in one step. 

5.2.6 Global checking 

Global checking is a phase of the FFPM cycle that operates on the entire .\,
term in the Machine regardless of delimiter markings; it uses absolute level 
numbers. The first problem it solves is nonlocal tidying, as just described. 
To this end, global checking runs Algorithms 5.13 and 5.14. 

The second problem global checking solves comes from the marking
unmarking style of control that reduction-routines use. If the .\,-pointer 
is deeply nested within marked delimiters and its target suspension is far 
above it in the .\,-tree and that suspension must "get control," then it could 
take many cycles just to unmark all the delimiters so the target suspension 
would become innermost-marked and thereby gain control. If requested (by 
a find_ptr_target hint), global checking gives control to the suspension target 
of the rightmost Follow* Fill pointer in one step, using Algorithm 5.12. 

Algorithm 5.12 Activate the target suspension of the rightmost Follow* Fill 
.\,-pointer. This algorithm is executed only if a find_ptr_target task hint is 
present. 

If one or more Follow* Fill .\,-pointers exist (anywhere in the .\,-term), then 
be sure that the suspension to which the rightmost one points is marked and 
that it has no marked delimiters within it (i.e., erase them). 

1. To detect the rightmost Follow*Fill .\,-pointer, a single-result Max op
eration on AIXs will locate the "interesting" symbol (non-pointer cells 
do not play). It takes O(Ig A) time. 
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1 1 1 
[" [x ( x1 ih ) ( Yz z. ) ] ( [w ( z. wl ) ( z. z. ) ] z. ) ] 

AIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
ABL: 0 1 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 1 1 1 0 

In this example, the cells marked 1 participate in the Max operation; 
cell 16 is selected. 

2. The interesting cell, knowing its binding index and its (absolute) bind
ing level (ABL) can calculate the binding level of its target suspension 
(ABL -binding index) and broadcast it, so the interesting suspensions 
know who they are. In the example, they have ABL = 1. 

3. Next, do a left-to-right integer-addition scan: the interesting Follow* Fill 
pointer sends + 1, the interesting-suspension right-brackets send a Re
start-0, others do not play. The only interesting-suspension right-brac
ket that will receive a + 1 is the target suspension. Algorithm 5.4 can 
then find the matching left-bracket. The example, with scan input and 
result shown (zeros excluded, the "hit" shown by 11 ): 

[" [x ( x1 Yz ) ( Yz z. ) l ( [w ( z. w1 ) ( z. z. ) l z. ) l 
AIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

ABL: 0 1 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 1 1 1 0 
input: RO + 1 RO 
result: 1 1 1 1 1 1 

11 

4. The brackets of the now-detected desired suspension must be marked 
and any cells that are between those brackets (just compare AIXs) need 
to be unmarked so the desired suspension will be innermost. 

5. The find_ptr _target task hint will be erased. 

Comment. All together, it takes O(lg A) time. The extension of using 
binding indices for A8 -applications and suspensions, discussed in Section 6. 7, 
could be used in conjunction with this global checking as a way to quickly 
restore the markings that this step may erase. 
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Algorithm 5.13 The [sus-rot!] rule. 

The rule is: [xB [yP QJJ --> [y[xBif pi!] Qdf]. It is applicable if the two
cell pattern~ is present; it can be detected with a variant of Algorithm 5. 7 in 
O(lg A) time. The outer suspension is activated, then the algorithm proceeds 
as with any reduction routine. An example A,-term: 

[x ( X1 Zz ) [y ( Z3 fh ) ( Z3 Z3 ) ] ] 

RIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Sel1 : 0 (1 1 1 1) (2 2 2 2 2 2 2 2 2 2) 0 
Sel2 : 0 (1 1 1 1) (2 2 2 2) 0 

1. Detect and increment the free variables in B (cells with Sel1 = 1 ); 
shown by l in the example below. Algorithm 5.2 does this, in O(lg A) 
time. 

Similarly, detect and decrement the free variables in Q (cells with Sel1 

= 2 and Sel2 = 2); shown by J). in the example below. 

Also, detect and increment the bound variables of [y] in P (Sel1 = 2 and 
Sel2 = 1); shown by 11' in the example. A slight variant of Algorithm 5.1 
can do this in O(lg A) time. 

l J). J). 

[x ( xl z3 ) [y ( z3 fh ) ( z 2 z 2 ) J J 
I 

RIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Sel1 : 0 (1 1 1 1) (2 2 2 2 2 2 2 2 2 2) 0 
Sel2 : 0 (1 1 1 1) (2 2 2 2) 0 

2. The cell holding [y erases itself (Sel1 = 2 and First1 set). The last cell 
in P (Sel1 = 2, Sel2 = 1, and Last2 set) clones one copy of itself and the 
right cell becomes a suspension right-delimiter. This takes 0(1) time. 

The first cell ( RIX = 1) clones one copy of itself. The last cell (Sel1 = 0 
and holding a ]) erases itself. Both operations take 0(1) time. The 
final result is ( J).'s show rewritten cloned cells): 

J). J). 
[x [x ( X 1 Z3 ) ( Z3 fiz ) ] ( Zz Zz ) ] 

RIX: 1 1 2 3 4 5 7 8 9 10 10 11 12 13 14 15 
Sel1 : 0 0 (1 1 1 1) 2 2 2 2 2 2 2 2 2 2) 
Sel2 : (1 1 1 1) 1) (2 2 2 2) 0 
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The [sus-rot!] rule takes O(lg A)+ O(lg A)+ O(lg A)+ 0(1) + 0(1) = 
O(lg A) time and no extra space (it gives up as much as it asks for in clones). 

Comment. The creation of a new suspension by ;38 -reduction can induce 
at most one firing of the [sus-rot!] rule. The removal of a suspension from 
the top of a pointee cannot expose further suspensions below it; for that to 
arise, the lower suspension would have to have been created earlier, but that 
is impossible with normal-order evaluation. 

Algorithm 5.14 The [multi- .X-up] pseudo-rule: repeated applications of the 
[.\-up] rule. 

The pseudo-rule is: [m{nB}n PJ]P2]· • ·Pm]---> {n[mB' P{]P~]· ··P,;,]}n. It 
is applicable if the two-cell pattern [[]is present; it can be detected with a 
variant of Algorithm 5. 7 in O(lg A) time. I am using an that is not tidy (it 
has trivial pointees ), so it will fit on the page. 

m of them ,..--........ 
1. The tell-tale pair llJD is in the larger pattern [[[· · · [ 

n of them 
~ 
{ { { ... {. 

First, broadcast where the tell-tale left-bracket is (AIX = 17 below, 
marked l; presumably, there are 14 symbols to the left in the overall 
A8 -term). Then, to find the leftmost bracket [and to calculate m, the 
non-left-bracket cells to the left of the initial [ { contribute their AIX to 
a Max operation; the result-plus-one is the index of the leftmost bracket. 
The leftmost non-left-bracket has AIX = 14, so cell15 is marked (-If). 
The difference between that AIX and the initially-matched left-bracket's 
AIX ism. Here, m = 17-14 = 3. 

-If l 
[c [b [a {x {y ( X2 b4 ) } } Z4 ] Z3 ] Z2 ] 

AIX: 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

r 1t 

An analogous operation to the right finds the rightmost left brace { 
and determines n; the endmost braces are marked r and 1t above. n = 
20 - 18 = 2. These operations take O(lg A) time. 
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2. The matching right-bracket J of the leftmost left-bracket .lJ. can be found 
with Algorithm 5.4. 

The matching }n right braces can be found by delimiter matching (Al
gorithm 5.4) and the repeated-symbol detection just used. The exam
ple, with all the markers now shown for the matching delimiters also, 
IS: 

.lJ. 1 1 .lJ. 
[c [b [. {x {y ( Xz b4 ) } } Z4 ] Z3 ] Zz ] 

AIX: 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
ii'r 1ri 

3. The leftmost m + n cells-m left-brackets and n left-braces-reorder 
themselves to n left-braces followed by m left-brackets. Since the in
dices of interesting symbols and the numbers m and n are known from 
just-completed broadcast operations, this takes 0(1) time. This gives 
(changed cells marked 1): 

1 1 1 1 1 
{ { [ [ [ ( Xz b4 ) } } Z4 ] z3 ] z2 ] 

AIX: 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

4. The }n string of right-braces erases itself. 

The rightmost right-bracket clones itself n times, and the string of 
clones becomes the string J }n. This gives (interesting cells marked.!).): 

.lJ. .lJ. .lJ. 
{ { [ [ [ ( Xz b4 ) z4 ] Z3 ] z 2 ] } } 

AIX: 15 16 17 18 19 20 21 22 23 26 27 28 29 30 31 31 31 

5. It remains only to adjust binding indices. 

Variables in B that were bound to any of the {n· · ·}n A8 -abstractions 
need to have madded to them (shown by i below). Variables in B that 
were bound to any of them suspensions need to haven subtracted from 
them (shown by 1 below). 

Free variables in the terms P1 ,P2 , ••• ,Pm need to be incremented by 
n, shown here by 1r in the final result. 
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i 1 
{ { [ [ [ ( Xs bz ) zs ] zs ] z4 ] } } 

AIX: 15 16 17 18 19 20 21 22 23 26 27 28 29 30 31 31 31 
1)- 1)- 1)-

Variants of the algorithms to find bound variables (Algorithm 5.1) and 
free variables (Algorithm 5.2) that check for ranges of binding indices 
would be needed in this step. 

The basic constituent operations takes more than O(lg A) time; the clo
ning in Step 4 can take 0( n) time, but that is a vestige of the simplified 
representation used here. This is considered further on page 149. The algo
rithm here uses no extra space (it gives up as much as it asks for in clones). 

5.2. 7 Summary of the FFP Machine implementation 

Reduction of the recurring example. Figure 5.6 shows steps of the 
recurring example. You may wish to compare it with Figures 2.8 (plain tree 
reduction), 3.7 (graph reduction), and 4.20 (.\,-trees shown). 

Noteworthy aspects. The FFPM implementation of the .\,-interpreter is 
notable in several ways. 

1. It is controlled almost exclusively by searching for two-cells patterns 
using distributed associative-matching. 

2. Every algorithm is straight-line code with no repetitions (loops). 

3. Except for those in which .\,-terms are copied, every algorithm takes 
O(lg A) time in the worst case, where A is the size of the address 
space.1° Algorithms with copying take 0( n) time. No algorithm has a 
worse time complexity. 

4. Implementing the .\,-interpreter on a similar architecture but with a 
richer interconnection network would presumably improve the time 
complexity for copying and, therefore, the most "expensive" operations 
in this implementation. 

10The footnote on page 108 says why we can expect O(!gn) execution, where n is the 
size of the term. 
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The initial term, with first redex marked: 
r ~ 

{y ( {j ( A ( ft ( A ft ) ) ) } {x ( Xt Yt ) } ) } 

After one reduction and the next two-cell match (marked -lJ.): 
.u..u. 

{y [f ( A ( A ( A ft ) ) ) {x ( Xt Yt ) } ] } 

After a lazy copy of the shared rator (copy marked!): 

llllll 
{y [f ( {x ( Xt Y3 ) } ( A ( it it ) ) ) {x ( Xt Yt ) } ] } 

After the 2nd reduction and two matches are made (both marked .U.): 
.u..u. .u..u. 

{y (, (x ( Xt Y3 ) ( f2 ( f2 f2 ) ) ] {x ( Xt Yt ) } ] } 

After the 3rd reduction, before tidying (new suspension marked): 

After (sus-rot!], with two matches made (marked .U.): 
.u. .u. .u. .u. 

{y [j [x [x ( Xt Y4 ) ( X2 Y4 ) ] ( A J3 ) ] {x ( Xt Yt ) } ] } 

After lazy copy, 4th reduction, and tidy; then match made (marked .U.): 
.u..u. 

{y [f [x [x ( Xt Y4 ) ( :£2 Y4 ) ] ( i2 Y4 ) ] {x ( Xt Yt ) } ] } 

After last-instance relocation, 5th reduction, and tidy: 

After detecting that all FollowFi/1-pointer targets are reduced: 

Figure 5.6: The FFP Machine interpreter on the recurring example 
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I doubt that a richer network would significantly improve the O(lg A) 
time complexity of the tree broadcast and scan operations. 

FFPM algorithms are unusual in that storage management costs are 
not swept under the rug. 

5. Most importantly, the implementation is not specifically wedded to an 
FFPM. Any architecture that would support the linear representation 
of A

8
-terms and provide fast scan operations could support this style 

of A.-interpreter. 

6. The collected algorithms of this interpreter represent a fair sampling of 
low-level FFPM programming techniques, which are fun. 

Chapter 6 considers further extensions to the A8 -interpreter that could 
be important for a practical A8 -style implementation. 

5.3 Equivalence to graph reduction: efficiency 

This section collects the worst-case asymptotic space and time complexities 
for the just-sketched FFPM implementation of a A8 -interpreter and compares 
them with those of a graph-reducing A

9
-interpreter (Chapter 3) on a global

addressable-memory (GAM) machine. The goal is to show that a particular 
type of tree reduction of the A-calculus-with suspensions-can compare 
favorably with graph reduction; matching its sharing properties is the key. 

One cannot discuss time and space complexity of A-calculus implemen
tations without revealing the computational models used. Comparing im
plementations based on different models is not ideal. The problem is, of 
course, that neither of these interpreters would do well if implemented on 
the other computational model. Fortunately, the task here is not to show 
that one interpreter is x percent faster than the other, but to show that tree 
reduction, appropriately defined and with the right underlying primitives, is 
asymptotically comparable to graph reduction. 

Because the normal-order evaluation of the A-calculus is entirely sequen
tial, the basic algorithm (search for a redex, copy the shared rator, ... ) does 
not differ on a sequential or a parallel machine architecture. Though an 
FFPM wins hands down on some parts of a reduction step, I do not use this 
to offset another weakness because of its tree-reduction nature. 

I reiterate that my complexity figures for the A8 -interpreter are not irre
deemably bound to an FFPM architecture; any machine that would support 
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the linear representation of terms and provide fast scan primitives could likely 
do as well. 

5.3.1 Space complexity 

Theorem 5.1 An implementation of the \-interpreter (graph reduction) 
uses the same amount of space as an implementation of the >.,-interpreter, 
within a constant factor. This presumes tidied >.,-terms. 

Proof. Given that Theorem 4.9 showed that a >.9 -interpreter and .\,-inter
preter maintain an exact correspondence between plain nodes through each 
reduction step, it suffices to show that the interpreters represent plain nodes 
in comparable space and that tidied >.,-terms cannot become bloated by 
adding non-plain nodes. 

Representing plain nodes. A plain node (.\-application, .\-abstraction, 
or a variable) can be represented in a constant amount of space. In a .\9 -inter
preter, this would presumably include space for the pointers that represent 
edges in the .\9 -graph. In a .\,-interpreter, the edges in a .\,-tree are not 
explicitly represented, thanks to the linear representation. However, the non
terminal nodes represented by paired delimiters occupy two cells in the simple 
representation I have used. Middleton gives a thorough treatment of program 
representation techniques in an FFPM, and they would be applicable to the 
.\-calculus [152]. Help as they might, they would not change the 0(1) space 
requirement per plain node . 

.\,-term bloating. Besides plain nodes, a .\,-term may also include sus
pensions and .\,-pointers. Can these be added in such a way as to unbalance 
the equivalence between .\

9
-interpreter and >.,-interpreter for space to rep

resent a .\-term? No, but untidied terms must be excluded- a .\,-term can 
have arbitrarily many plain nodes if useless suspensions are hung all over it. 

The worst possible ratio of non-plain to plain nodes in a tidied .\,-term is 
in a term of the form shown in Figure 5. 7 a; Figure 5. 7b shows the equivalent 
.\-term with plain nodes only. (The superscripts are there only to show how 
many nodes there are.) The "bloated" .\,-term has 3n + 3 nodes, and the 
plain equivalent has n + 3 nodes-the difference is still only a constant factor. 

In summary, a tidied .\,-term that is equivalent to a .\
9
-graph with n plain 

nodes will have at most O(n) nodes (plain or otherwise). D 
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(a) (b) 

Figure 5.7: A >.,-term stuffed with non-plain nodes 

Comment. Searching for a redex does not in any way alter the size of the 
>.-term in either a \-interpreter or a >.,-interpreter. That copying a shared 
rator, actually /1-reducing the redex, or tidying up (in the >.,-interpreter) 
always maintain an exact correspondence between plain nodes was discussed 
in Sections 4.2-4.5. 

A minor note about last-instance relocation, which graph reduction does 
not do: this operation will use some space as it copies the pointee to its new 
place; however, it will be followed by the removal of a useless suspension, 
thus reclaiming an equal amount of space to that just used in the copy. If 
done sequentially, the >.,-interpreter would suffer a temporary "bulge" that 
the \-interpreter would not see; there is, however, no reason why the two 
operations (copying and reclaiming) could not be interleaved on an FFPM 
by an optimized reduction routine. 

5.3.2 Time complexity 

This section compares the time complexity of a \-interpreter implemented 
on a GAM machine with that of a >.,-interpreter implemented on an FFPM. 
Again, this analysis is based on Theorem 4.9, which says that the interpreters 
maintain an exact correspondence between plain nodes, step for step. 

Time for one reduction step 

Table 5.2 shows the collected worst-case asymptotic time complexities for 
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A9 -interpreter As-interpreter 
FFPM: FFPM: 

phase of GAM simple fancy 
reduction step machine representation representation 
finding the next redex O(nlgA) O(nlgA) same 
copying a shared rator O(nlgA) O(n) same 
copying a last instance O(n) same 
,8-reduction O(n lg A) O(lg A) same 
tidying O(n) O(lg A) 

Table 5.2: Comparison of asymptotic time complexities 

the implementations of the two interpreters. In all cases, n is the number 
of nodes in the A9 -graph or As-term; A is the size of the "address space" for 
that model. This section explains the table and justifies its claim. 

Memory access time. There exists an unfortunate custom of saying mem
ory access in a GAM machine takes "constant time." Each access to such 
memory requires the use of an address-decoding tree and so, strictly speaking, 
takes O(lg A), A ~ n ). This explains the "lg A" factors in the GAM machine 
column in Table 5.2. In an FFPM, tree operations may travel the full height 
of the physical tree, depending on alignment, hence the lg A factors there. 

While it is true that the constant factor is small in "log-time" memory 
access, the same might be true of the tree-network hardware in an FFPM 
that produces the "lg A" factors in the FFPM column of Table 5.2. Either 
both must be charged the logarithmic factor (my choice) or neither should 
be. 

Finding the next redex. In the worst case, a \-interpreter must exam
ine an entire n-node \-graph before finding a redex (or not finding one). An 
example not quite so bad, but still taking 0( n lg A) time, is shown in Fig
ure 5.8a; normal-order evaluation must visit roughly !n nodes in its pre-order 
walk of the graph before finding the redex (>.x.{ x1 } z.). Each pointer-hop 
takes O(lg A) time. 

Figure 5.8b shows one possible equivalent As-term to the term in Fig
ure 5.8a. This As-term would also require the same sequential search through 
the (plain) As-application nodes; the only difference is that the applications 
are connected by A3 -pointers. Each of the x As-pointers would be followed 
in turn: it would first be matched and marked as FollowFill (Algorithm 5.5) 
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Figure 5.8: Unpleasant example of looking for redex 

then, following global checking (Section 5.2.6), the search would continue at 
the suspension's pointee (Algorithm 5.6). All those algorithms take O(lg A) 
time. Therefore, it takes one FFPM cycle to follow one A.,-pointer, in O(lg n) 
time. To traverse n A.,-pointers (the worst case) will then take 0( n !g A) time. 

This O(lg A) time to follow a A.,-pointer depends on ).,-terms being tidied; 
it is the reason for tidying. Without the [triv-ptee] and [sus-rot!] rules ap
plied, getting from one plain node to the next could involve following many 

A.,-pointers, O(n) of them in the worst case. Preventing this case is the 
reason for so constraining the kinds of _\,-pointers allowed in a tidied term. 
Also, recall that the main matching algorithm for searching (Algorithm 5.7) 
depends on useless suspensions being removed. 

Of course, a ).,-interpreter on an FFPM will often find a redex much 
quicker than a sequential \-interpreter. For example, Figure 5.8a is a per
fectly good A.,-term, and the searching algorithm (Algorithm 5.7) will find 
the redex (A.x.{xd z.) with one O(lgA) match. 

Copying a shared rator. Before a f)-reduction actually happens, if the 
rator is shared, then a new copy must be made. These interpreters use lazy 
copying; Section 4.4 describes the techniques, and Lemma 4.2 ensures that 
the A.9 - and A.,-interpreters will copy corresponding plain nodes. Theorem 5.1 
has already assured that non-plain-node bloating can increase the size of a 
A.,-term only by a constant factor. If the whole term has n plain nodes, then 
in the worst case almost all of them will have to be copied, meaning 0( n) 
node copies. For both a GAM machine and an FFPM the time to copy is 
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proportional to the size of the copy; strictly speaking, 0( n lg A) on a GAM 
machine and 0( n + lg A) on an FFPM. 

The time to copy dominates the time to re-do the backpointers in the 
new term (in a >.9 -interpreter on a GAM machine) or to adjust free variables' 
binding indices (using Algorithm 5.2 in a >.,-interpreter on an FFPM). 

Last-instance relocation. As discussed in Section 4.4, if the >.-abstrac
tion rator is not shared but is the target of a >.,-pointer, then a >.,-inter
preter must move that "last instance" of the >.,-abstraction into place before 
,8,-reduction can proceed. Since the copy is just like that of a shared rator, 
it can take 0( n) time. 

Because graph reduction requires no comparable effort, this last-instance 
relocation is a blow to the step-for-step equivalence of a >.,-interpreter to a 
\-interpreter; it is the only such blow. 

It stands to reason that a reduction scheme that uses a linear represen
tation of terms and that requires any reduction rule to operate locally must 
sometimes pay the price and move symbols into a "local" position. In con
trast, every location in a global addressable memory is equally accessible (if 
not sharable); symbols need not be moved to make access more convenient. 

Several comments are in order. The first is that it is only >.,-abstractions 
that are rators of redexes about to be reduced that will be relocated. >.,
abstractions, representing functions or "code," are typically relatively small; 
large aggregate data-structures that are painful to move are unlikely to be 
relocated. Second, because the relocation works just like a shared-rator 
copy, the relocation stops when >.,-pointers are reached-the parts of the 
>.,-abstraction shared before the relocation are shared afterwards, too: they 
are not moved. This would further limit the size of relocations. 

The amount of wasted copying due to last-instance relocation is bounded 
in the case of the >.-calculus-equivalent of "straight-line code" in which no 
sharing occurs. Figure 5.9a shows a >.,-term with a repeated structure from 
which a term of arbitrary size could be constructed. Figure 5.9b shows that 
term after one reduction (to create (x]), just before the last-instance moving of 
the top pointee-practically the whole term will be moved. Figure 5.9c shows 
the result after the ,8,-reduction and the removal of two useless suspensions 
[x] and (y], just before the next last-instance relocation. With this pattern, 
each last-instance relocation will move seven fewer (plain) nodes than the 
time before. If the >.,-term starts with n nodes, the maximum extra copying 
due purely to last-instance relocation will be n + ( n- 7) + ( n- 14) + · · · , that 
is, O(n2) extra node-copies. It takes a highly contrived example to achieve 
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this. 

(a) (b) 

[x] 

~.\y 
x 1 .\a /'--..__ 

I AX b. 
at /\ 

x1 .\a 
I 

al 

(c) 

Figure 5.9: Last-instance relocation in straight-line code 

Though the amount of trouble last-instance relocation can cause by itself 
is bounded, such relocation is not bounded in general. Specifically, a subterm 
with a last instance to be moved can be embedded in a shared term that will 
be copied over and over (in graph reduction as well). Inside of each copy, there 
will be a last-instance relocation for the As-interpreter to do. For example, in 
Figure 5.10 (a non-terminating reduction), each time the .\s.{· · ·} subterm 
is copied, it carries what will become a last-instance relocation of .\z.{(z z)}. 
(The figure shows the first reduction, then omits two reductions, then shows 
the A3 -term before and after the last-instance relocation and its reduction.) 
Again, it takes effort to find such examples. 

Does the "tree reduction overhead" of last-instance relocation cripple this 
style of reduction versus graph reduction? Theoretically speaking, it certainly 
precludes their absolute equivalence in time complexity. 

I suggest that last-instance relocation is a fair price to pay for a linear 
representation with strong locality. My experience and the far-fetchedness 
of the "ill-behaved" examples suggest that the As-abstractions to be moved 
will be quite small. Moreover, .\-lifting techniques to remove (and share) free 
expressions at compile-time would tend to make them smaller still. Going 
further, Section 6.6 describes techniques that might ameliorate this cost, and 
Section 6.3 presents smarter suspensions one might use with a practical A
calculus, in which the suspension would do (part of) the work for the redex 
proper. 

The practical cost of last-instance relocation will only come from ex-
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Figure 5.10: An example with unbounded last-instance relocations 
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arnining real programs' sharing and execution behavior and studying their 
interaction with the set of t~chniques chosen for a particular implementation 
(Chapter 6 describes some extensions that would probably be used). 

,8-reduction. Once the redex is localized and in place, replacing variables 
(with conventional pointers in a A9 -interpreter, and with As· pointers in a As
interpreter) is straightforward. A conventional graph reducer walks the graph 
looking for bound variables ( O(n lg A) in the worst case); a As· interpreter on 
an FFPM does it in O(lg A) time (Algorithm 5.8). 

Tidying. If a A9 -interpreter had to do tidying, it might include the re
moval of indirection nodes. Practical graph reducers avoid such things [165, 
pages 217-218], so I do not charge graph reduction for tidying. 

The purpose of tidying in the As-interpreter is to keep a As-term in a 
form on which an FFPM implementation can use its associative matching 
effectively. Broadly speaking, we want to ensure that there is at most one 
s-connection to traverse between any two plain nodes. 

After a .Bs·reduction, any of the tidying rules may need to be applied. 
The purpose here is to ensure that each rule need not be applied more than 
once: since all the algorithms for tidying (Sections 5.2.4 and 5.2.5) take 
O(lg A) time, that will then give an O(lg A) time cost for the tidying phase 
as a whole.11 One assumes, of course, that the As-term was tidy before the 
reduction step began. 

The [triv-ptee] rule replaces bound variables in the suspension's body 
with another variable; this cannot make any other rule applicable. 

The removal of a useless suspension happens because it no longer has a 
bound variable. Such a removal cannot create the need for any additional 
tidying. 

The [sus-rot!] rule re-orders suspensions; it cannot make another rule 
applicable. In particular, a "run" of [sus-rotl]'s (as in Figure 5.11) cannot 
happen, because it would require non-leftmost ,8

8
-reductions to create the 

inner suspensions, which is not normal-order evaluation. 
As discussed in Section 5.2.5, a given ,88 -reduction may cause the need for 

an arbitrarily large number of applications of the [>,-up] rule. Fortunately, 
these always appear in the form [m{n B}n P1]P2] ... Pm] and the FFPM im
plementation of the [multi-.\-up] pseudo-rule can handle the whole thing in 

11The annoying exception of the [multi-.A-up] pseudo-rule (Algorithm 5.14) will be dealt 
with shortly. 
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Figure 5.11: Impossible sequence of [sus-rotl]'s 

Algorithm 5.14 takes O(lg A) time, except for the storage-management 
cost of making room for the n right braces to be inserted after the last 
right-bracket. In the utterly bizarre case of an n-node A8 -term representing 
a function with 0( n) parameters, this storage-management time cost could 
be O(n), wrecking the algorithm's overall worst-case time complexity. This 
0( n) time cost need not be taken seriously, as it is a vestige of the particular 
linear representation I have used (chosen mainly for simplicity). In Table 5.2, 
I report the tidying cost for both the simple representation used here and for 
a "fancy" representation that would be likely used in practice. 

The use of suspension lists and "clumped" A-abstractions, explained in 
Section 6.1, is an alternate way to do many [>,-up]'s at once without resorting 
to the hackery of Algorithm 5.14 for the [multi-.\-up] pseudo-rule. Imple
mentations of the rules for such a representation do not suffer the theoretical 
storage-management time costs just mentioned; the "fancy representation" 
column of Table 5.2 would apply. 

This completes the explanation of Table 5.2, confirming that the time 
complexity of an FFPM implementation of a A8 -interpreter is equal to or 
better than a GAM-machine implementation of a .\

9
-interpreter with the 

exception of last-instance relocations. 
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Time for k reduction steps 

An O(t2) bound, with O(n) copying. The previous section confirms 
that the worst-case time complexities of a .\

9
-interpreter and a >.,-interpreter 

on a particular reduction step are nearly the same, with the latter perhaps 
suffering an O(n) last-instance relocation. Can the extra cost of last-instance 
relocation over k reduction steps be bounded?12 

Assume a sequence of k reductions, T 1 --+ T2 --+ . . . --+ Tk. The size 
of term Ti is n;; Section 5.3.1 showed that the sizes of the .\9 - and >.,-term 
representations will differ by a constant factor, at most. We also know that 
the times for the non-last-instance-relocation parts of each reduction step in 
the two interpreters are asymptotically equivalent; call this time t; t 2: C k 
(for some constant C, to be ignored). 

The least possible work to be done is constructing the largest term in 
memory; that is, t;::: Cmax(n;), for some constant C (again ignored); tis 
the best possible graph-reduction time. 

From Table 5.2, the most possible extra work in a >.,-interpreter for k 
steps is k last-instance relocations of size max(n;), which takes time of at 
most k max( n;) ::; kt ::; t 2 • Therefore, the bound is 

worst-case for >.,-interpreter < t + t2 

= O(t2 ). 

This is not a wonderful bound, but it confirms that the defeat of exponential 
blow-ups by non-naive tree reduction is not an order-notation accounting 
trick in Table 5.2. 

An O(tlgt) bound, with O(lgn) copying. The analysis above presumes 
the usual O(n) memory-copying time of an FFPM or a conventional GAM 
machine; it is worth mentioning the result's sensitivity to that assumption. 

What if an n-node last-instance relocation could be done with a richer 
interconnection network in O(lg n) time? In this case, the extra work for last
instance relocations in k steps is at most 0( k lg( max( n;))), which is bounded 
by O(klgt)::; O(tlgt). Now the bound is 

worst-case for >.,-interpreter < t + t lg t 
O(tlg t). 

The difference between the O(t2) and O(tlg t) bounds shows the effect of the 
modest data-movement network on an FFPM. 

12I am completely indebted to David Plaisted for his help on this section. 
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An O(tlgt) bound, with O(n) copying. It is likely that an O(tlgt) 
bound can be achieved even with O(n) copying, if last-instance relocation 
is redefined to do just enough of the relocation to let the next reduction 
proceed. For example, instead of copying those whole .\,-abstraction term, 
one could copy just its root node, then put in a special .\.-pointer as the 
body. The new .\,-pointer would be aimed at the uncopied abstraction-body, 
and more copying would be done later, if required. That would mean copying 
a constant number of nodes per relocation, at most. This idea does not fit 
squarely into the current mechanisms and the extra machinery (not worked 
out) is beyond the scope of my work here. 

5.4 Previous FFP Machine implementations of 
the A-calculus 

Part of Backus's early work (1973) on functional programming included ".\
Red" (reduction) languages; they were "closed applicative languages which 
resemble the .\-calculus" [13]. They had variables and general substitution 
and worked by innermost evaluation. Since Mago was designing for Backus's 
languages, the initial drafts of Mago's original FFPM design (1979) supported 
.\-Red languages. The FFPM was a ".\-calculus machine" to begin with! 
Mago assumed pure tree-reduction-with-copying and made no efforts toward 
sharing at that time. 

Dybvig's Ph.D. dissertation describes an implementation of Scheme (a 
statically-scoped LISP) for an FFPM [62]; he translates Scheme code into a 
specialized FFP language. The interpreter uses environments (represented as 
FFP sequences) and indexes into them with FFP selector functions. Dybvig's 
method copies these environments around unapologetically, though he uses 
special primitives to "trim" them of unneeded elements. 

Plaisted [170; 171]looks at the ramifications of adding a richer intercon
nection network (a "6.2i network") to an FFPM. He shows how this network 
leads to reasonable asymptotic complexity for parallel-innermost term rewrit
mg. 

Plaisted goes on to "give methods by which lazy evaluation and a version 
of graph reduction may be simulated fairly efficiently on the FFP Machine" 
[171, page 230]. He uses a notation comparable to marked and unmarked 
delimiters (Section 5.1.3). His "evaluation" parentheses, written as (e ... e), 
are marked; unadorned parentheses are unmarked. No reduction takes place 
except inside an e-parenthesized term. Plaisted also uses "delay" parentheses 
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to inhibit evaluation, including that of enclosed e-parenthesized terms. His 
equivalent of a suspension [xB P] is a where-expression: 

[B where (x P)] or [B where (x1 P1 ) •.• (x, P,)]. 

The latter form is a full-blown environment.l3 Plaisted's equivalent of (3-
reduction creates a where-expression, as the (3, rule does with suspensions. 
The placement of e- and d-parentheses implements the desired evaluation 
order, using the FFPM trick of "colored parentheses." 

Plaisted does not suggest rules to move where-expressions around as 
the .A,-interpreter does with suspensions. When a variable x in B inside 
(,[B where (x P)],) needs to be filled in with P, he copies. This makes 
sense because his premise was adding a richer network for data movement to 
an FFPM. It certainly avoids the complications of following .A,-pointers! He 
also uses the fast network to "collect" duplicate subexpressions at run-time: 
a term E with several occurrences ofF becomes [E' where (x F)], with the 
F's in E replaced by x, giving E'. This achieves a sharing of free expressions 
comparable to graph reduction. 

Plaisted uses plain string-named variables, acknowledging binding indices 
as another alternative. He gives a matching algorithm for finding string
named bound variables (and useless where-expressions with no bound vari
ables). 

13! have altered Plaisted's notation slightly, so it blends with other parts of this 
dissertation. 
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Chapter 6 

Embellishments 

Fortran Sx appears to be well suited 
to the functional style of programming. 

-Page and Barasch (1985). 

This chapter describes extensions that could make the .\8 -interpreter of Chap
ter 4 into a more practical basis for a parallel implementation of a lazy 
functional language. I assume FFP Machine (FFPM)-like target hardware 
that supports a linear program-representation and fast scan primitives, as in 
Chapter 5. This chapter includes much opinion and no data; the true test 
of any set of ideas is its impact on the performance of realistic functional 
programs. 

All of the usual .\-calculus options would be available while designing 
a practical computational base: the different normal forms, the different 
evaluation orders, and so on. Peyton Jones's book about implementation 
describes many of these alternatives [165]. 

6.1 Suspension lists 

A basic desideratum in parallel reduction machines is for large rewrite rules 
that do considerable useful work per step; there is a non- trivial overhead per 
step, at least in all machines designed so far. In an FFPM, this desideratum 
is reflected in the basic data type, dynamic arrays, and its preference for 
shallow structures with many large components (a deep binary tree with 



[z] [[x,y,z]J 

/----__ 
[y] R ---+ 
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/\ 
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Figure 6.1: Left-skewed suspensions become a suspension list 

measly integers at its leaves is an example of the opposite) [146]. Shallowness 
is important because an FFPM often moves up and down a tree structure 
by setting and unsetting activeness information on delimiters; this can be 
done at most once per cycle. (The interpreter of Chapter 5 uses a "global 
checking" phase to avoid some of this re-setting, but such a method might 
not always be applicable or desirable.) 

The rules of the As-interpreter in Chapter 4, notably the [sus-rot!] rule, 
conspire to create unbalanced, left-linear As-trees of suspensions. This struc
ture may be replaced with a suspension list; Figure 6.1 shows an example 
without and with a suspension list ("[[ ]]" in the tree). The "meaning" of 
a suspension list is that of its left-linear, unraveled equivalent As-term. The 
names x,y,z in [[x,y,z]] are decorative of course, and match the pointees in 
the obvious left-to-right way. 

A suspension list has a body subterm and n pointee subterms, n 2:: 1. In 
counting binders (to determine binding indices), such a suspension list counts 
as n. There is a difference between binding indices in a suspension-list term 
and its ordinary As-term equivalent. Figure 6.2 gives an example. 

The rules of the As-interpreter must be adjusted for suspension lists. Be
cause they are more like FFPM dynamic arrays than simple suspensions, one 
would hope the rules' actions would be larger, and that this benefit would 
outweigh the increased tedium of managing the suspension lists. 

Incrementing and decrementing of binding indices must account for the 
multi-binder nature of suspension lists (easy). The [triv-body] rule, which 
is a "keep-it-or-throw-it-away" binary selector in its ordinary A8 -term form, 
becomes a proper selector, choosing one (or none) of the suspension list's 
pointees. 

The [sus-rot!] rule goes away and is replaced by a rule that subsumes 
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Figure 6.3: Suspension lists collapse into their parent list 

suspension lists into their parent list. Ensuring that every pointee has a 
plain node at its root is still the goal. Figure 6.3 gives an example of [sus
rotl]-like suspension-list collapsing. 

Lumping suspensions into suspension lists is similar to a standard practice 
with .\-abstractions in a name-free calculus: representing .\a.{.\b.{.\c.{B}}} 
by .\3.{B}. >.n.{T} nodes count as n binders. This representation would also 
tend to make flatter .\

8
-trees and is probably a good idea. A rule to subsume 

subordinate .\-abstractions would be needed: >.m.{.\n.{B}}-+ ).m+n.{B}. 
If one is going to be a truly enthusiastic flattener, perhaps the .\-appli

cations should also be replaced with .\-application lists. A left-linear tree 
of .\-applications, as in Figure 6.4, would be replaced by a .\-application 
list (shown by "(( ))" in the tree). A .\-application list may only absorb 
subordinate .\-applications on its left end, a greater-than-usual constraint. 

The beauty of all this listifying is that applying a function to its several 
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Figure 6.4: .\-application list and subsequent reduction 

arguments is now a one-step operation, as Figure 6.4 shows. Optimizations 
of this operation are common in the literature. Paul Watson uses "multiple 
,6-substitution" in his thesis, for multi-argument substitutions in which the 
partial evaluations are not shared [206]. Berkling goes further in his 1986 pa
per on head order reduction; he uses 'I)-expansion to make the multi-argument 
redexes as large as possible, calling the operation that follows ",6-reduction
in-the-large" [25]. The exact suspension- and .\-application-list analogues of 
his operations would be worth figuring out. Though multi-argument reduc
tion may turn out to be impractical-Harte! and Veen report that for "four 
medium-sized programs at least 90 per cent of all functions have one or two 
arguments" [89, page 24 7]-it suggests a desirable direction, one that might 
be well served by an aggressive compiler. 

As part of his .\-calculus work, Revesz has proposed a language exten
sion in which lists are fully integrated into the calculus [176, Chapter 4]. An 
example of a term might be .\x.{ (E1 , E2 , ••• , En)}. The syntax of this exten
sion and the implications thereof are too involved to describe here; however, 
I think such a base calculus might be appropriate for the style of reduction 
being promoted here. 

6.2 Dealing with recursiOn 

Recursive functions are pervasive in lazy functional programming. One rea
son for graph reduction is that cycles in the program graph can represent 
recurswn. 

With ordinary tree reduction, there is no way for a .\-term to refer to 
itself. With suspensions, it is possible, by relaxing the restriction that a 
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Figure 6.5: Two Y combinator reductions, graphs and suspensions 
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Figure 6.6: Mutually recursive functions in a suspension list 

suspension cannot have a bound variable in its pointee. Figure 6.5 shows 
two reductions of the Y combinator; the cyclic-graph reductions are shown 
above, the bound-variable-in-pointee reduction below. The [triv-body) rule 
must be changed to check for bound variables in the pointee; the rule must 
not be applied to the .\8 -term in Figure 6.5. 

The bound-variable-in-pointee method may not work well for sets of mu
tually recursive functions. Such functions can, however, be handled by ex
tending the idea to suspension lists. Figure 6.6 shows three mutually recur
sive functions f, g, and h tangled up in a suspension list. 

6.3 Exotic suspensions 

If one thinks about suspensions in the .\8 -interpreter as active entities, their 
basic operations are to scan for bound variables that need filling, then check 
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if the pointee is appropriate for copying (i.e., it is a .\-abstraction), then do 
the copying. 

One can imagine "smarter" suspensions, probably working in concert with 
other machine primitives. For example, if the machine had an array-of
numbers primitive, instead of copying the array so a selector could proceed, 
the smart suspension would do the selection itself and simply copy the result. 

6.4 More parallelism 

To have a practical fine-grained parallel machine, there must be plenty of 
parallelism. Normal-order evaluation of the pure .\-calculus is essentially se
rial and offers little parallelism. A richer base language with more primitives 
allows more parallelism, and a less stringent evaluation order might help, 
too. For example, strict functions' arguments may be evaluated eagerly (and 
concurrently); strictness analysis may find other functions with similar prop
erties. Using suspensions does not preclude these standard techniques. 

The /3, rule and the tidying rules are fast and do not consume space 
(assuming an implementation like the one in Chapter 5); the rules may be 
applied in as many places as possible at once. If the expensive operations
notably filling FollowFill pointers-are still applied only when normal-order 
evaluation demands it, then its termination properties will be preserved. 

6.5 Ordering in \-terms and supercombina
tors 

Section 4.5.6 discussed how suspensions' movement or reordering in a .\,
tree is constrained by binders remaining visible to their bound variables. 
Suspension lists with bound variables in pointees allow greater freedom in 
this ordering. This might benefit a particular implementation. 

An extreme example of re-ordering freedom comes from converting a .\
term to supercombinator form; Figure 6. 7 shows a modified example from 
Peyton Jones's book [165, page 226]. The free variable x2 is abstracted from 
the term .\y.{(y1 x2 )} and the two resulting supercombinators $X and $Y 
are put in a top-level suspension list. The order in which they appear as 
pointees in the list is completely arbitrary (it could be [[$X, $Y]]). It is 
worth mentioning that any .\-term converted to supercombinators would be 
of this form: a single top-level suspension list with trees of .\-applications 
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Figure 6. 7: Transforming to supercombinators, with a suspension list 
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Ax [z] 

.Ax 

a. A a. 
xl z2 

b. c. b. c. 

Figure 6.8: Abstracting a free expression 

and variables (no .A-abstractions) dangling from it. 
A comparable technique works for abstracting free eJo..-pressions; Figure 6.8 

shows the term (a ( b c)) lifted out of the abstraction .Ax. { ( x (a ( b c)))}. Pre
processing As-terms in this way is necessary for a .As-interpreter to be fully 
lazy, as Arvind et al. showed [9]. In general, most techniques for variable
abstraction, .A-lifting, etc., seem to carry over quite directly to the suspension
based approach. 

6.6 Speculative copying 

Asymptotic properties aside, I think it is clear that heavy use of suspensions 
and As-pointer-following are not an easy ticket to high-speed computation. 
Suspensions should only be used in cases where they really help. 

All copying beyond the necessary is speculative and potentially wasted. 
However, a parallel-machine designer welcomes speculative copying that im
proves locality or parallelism at a modest cost. There is some chance that 
decent heuristics to guide such copying would emerge for real programs. An 
example heuristic: ".A-abstractions are usually small: copy them." Or, as
suming array primitives: "Never copy arrays." This general approach is 
consistent with the common string/tree reduction-machine approach of over
coming a lack of sharing by specialized support for more complex data struc
tures (Section 5.1.11). 

More subtle variations of speculative copying spring to mind. For exam
ple, last-instance relocation of a suspension's pointee is a dead loss compared 
to graph reduction. This problem might almost always be alleviated by copy
ing earlier than necessary: when doing the next-but-last copy of the pointee, 
one could overwrite the last bound variable as well (and delete the useless 
suspension). Alternately, one could make as many copies as possible within 
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some "budget" for new cells allocated. (One would presumably fill the left
most bound variables on the hunch that they would be the next ones needed.) 
Scan primitives readily support counting bound-variables, sizing the pointee, 
and marking some of variables for overwriting after a local calculation of the 
number of new cells expected to a cell's left. 

Copying costs are mightily affected by an architecture's interconnection 
scheme. A richer network or a topology that favors a particular style of 
copying would shift the balance about what speculative copying is worth 
doing. 

6. 7 Going further with binding indices 

The FFPM implementation of the .\,-interpreter in Chapter 5 does .\,-pointer 
following and filling by looking for Follow*Fill-marked binding indices and 
matching simple two-cell patterns. Here, I want to mention an alternate 
technique that is interesting in its own right. 

In partitioning, an FFPM gives hardware resources to innermost active 
.>..,-terms and lets them proceed (Section 5.1.3). Pre-order walking of .\,
terms to find redexes can be implemented by marking subterms as active 
(corresponding to a recursive call in a tree-walker) and having those sub
terms unmark themselves when finished (corresponding to a return from the 
recursive call). Because the following of .\,-pointers introduces non-local 
jumping around the tree, repeated markings and unmarkings of "activeness" 
would make for a poor implementation of the .>..,-interpreter (even those the 
ML version onestepS (page 72) works precisely by doing all those recursive 
calls to move up and down the .>..,-term). This is the reason for the "global 
checking" phase in the implementation in Chapter 5. 

I found a fast FFPM-style way of doing the "returns" back from a suspen
sion down to the .\,-pointer that called it. The gimmick is to give "binding 
indices" to suspensions and .\-applications as well as variables. These may 
then be used beneficially. Consider Figure 6. 9a: all the nodes between the 
variable x2 and its suspension [x] have binding indices pointing to that sus
pension. The top suspension has a "binding index" of 0, marking it as active. 
If that suspension then does a simple "compare application-level (RAL) with 
binding-index" operation (there were plenty of those in Chapter 5), then all 
its bound suspensions and .\-applications can be detected and marked active 
with binding-index 0. The configuration of "activeness" that existed before 
following the .\,-pointer x2 has been restored! Figure 6.9b shows the result 
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[x]o 

p 

p. 

Figure 6.9: Binding indices on suspensions and .\-applications 

of such an operation. 
Some standard .\-lifting-style operations also work by giving binding in

dices to non-variable constructions (see Peyton Jones's book, again [165, 
pages 230 and 258]). 
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Chapter 7 

Conclusions 

I endeavour to give satisfaction, sir. 

-C. Northcote Parkinson, Jeeves (1979). 

The basic results are those I claimed in the thesis statement (Section 1.2). 

• A suspension-based As-interpreter (Chapter 4) is a correct implemen
tation of the pure A-calculus because its manipulations of As-terms 
are isomorphic to the manipulations of \-graphs by a graph-reducing 
A9 -interpreter (Chapter 3). Theorem 4.9 (page 92) proves this As

9
-

equivalence. 

• When the As-interpreter is implemented on an FFP Machine (FFPM) 
or similar architecture, its worst-case space complexity is within a 
constant factor of that of a lazy-copying graph-reducer on a global
addressable-memory (GAM) machine. Please see Theorem 5.1. 

• The worst-case time complexity of the FFPM interpreter is equal to or 
better than that of the GAM interpreter, except for the last-instance 
relocations of suspension pointees. Please see Table 5.2. 

I conclude that graph reduction does not have an inherent advantage as a 
computational model to support lazy functional programming. I now review 
the major issues raised by comparing the two interpreters. 



Reduction to fi-normal form. Graph reduction that uses lazy copying 
is only suited to reduction to weak fi-normal form (WBNF); it cannot cope 
with free variables in redexes. Also, binding indices cannot be used with this 
kind of graph reduction (Section 3.4.1). A graph reducer must either support 
a-conversion or use backpointers to avoid name-capture problems. Also, to 
enjoy maximal sharing with graph reduction, one must include expensive 
detection of maximal free expressions (MFEs) in each reduction step ("fully 
lazy" copying); when reducing to fi-normal form (BNF), the less onerous 
"lazy" copying does not work (Section 3.3). 

Suspension-based reduction to BNF works with binding indices, and lazy 
copying is a completely natural mechanism. If an implementer wants to use 
a reduction order or normal form that allows free variables in redexes-e.g., 
innermost spine reduction (see Peyton Jones [165, page 199]) or BNF-then 
suspension-based reduction is available. 

Oddly, the FFPM implementation that does so well with suspension
based reduction to BNF finds reduction to WBNF more costly. Algorithms 
for finding out if a term is inside a A-abstraction are ill-matched to what the 
hardware can do well. 

Linear representation. The attractions of suspension-based reduction to 
computer architects center around a linear representation of program sym
bols. A symbol need not be globally addressable nor stored in a global 
resource. 

Binding indices, used to avoid name-capture problems, are very amenable 
to manipulation with fast scan primitives. Algorithm 5.1, which detects all 
bound variables in a A8 -term in O(lg n) time, is a beautiful example. 

The use of associative matching to detect redexes and other "interesting" 
patterns of symbols is noteworthy. This matching can find a redex anywhere 
in a A-term is as little as one step, whereas a graph reducer must necessarily 
chain through pointers to get there. An important aspect of this matching 
(and the other FFPM algorithms) is the modest amount of "parse-tree" in
formation that must be synthesized from the raw symbols-no more than 
two selectors are ever needed. 

I think it worthwhile to have presented a sizable example using the low
level techniques possible on an FFPM. I believe that these techniques would 
work just as well on any parallel architecture with fast scans and a locality
preserving linear program-representation. 

The cost of a linear program-representation (besides the implementa
tion cost) is "last-instance relocation," which means that the last copy of 

164 



a As-abstraction must be moved into place; these movements are gruesomely 
dissected beginning on page 145. I think the analysis there shows how con
strained the "extra" copying of tree reduction can be. 

The next step. I hope I have laid to rest the notion that "string" reduc
tion is inherently, wildly inefficient for normal-order reduction. The basic 
question that follows is: Can the As-interpreter of Chapter 4 be "grown" 
into a practical mechanism for the efficient execution of lazy functional pro
grams? Intimately related to this question are the questions of what realistic 
functional programs actually do ("what happens above") and the constraints 
and properties of the target hardware architecture ("what happens below"). 
The truly successful architect for a parallel reduction machine will be master 
of all of these levels. 

I would seriously consider using some of the tricks of Chapter 6. Sus
pension lists seem a clear winner (Section 6.1), and Revesz's extensions to 
integrate lists directly into the calculus are no less intriguing (mentioned in 
the same section). I would allow bound-variables in suspension pointees and 
use that to implement recursion. I would do some speculative copying based 
on simple heuristics derived from real programs; an example might be, "if 
filling a suspension's next-but-last bound variable, fill the last one as well." 

Graph reduction without pointers. Wadsworth's invention of graph 
reduction was a breakthrough for normal-order evaluation of the .\-calculus; 
it made the unthinkable thinkable. Subsequent development of sequential 
implementations (e.g., the G-machine) have removed the glaring weaknesses 
of graph reduction, so that it now forms the basis for quite-practical lazy 
functional programming systems. 

Good parallel implementations of graph reduction seem less assured. 
They must inescapably contend with autonomous processors vying for a 
shared resource, the program .\9 -graph. The nature of the graphs does not 
build one's hopes for abundant locality. Yes, there are tricks, but ... Why not 
a suspension-based reduction mechanism that does the same reductions as 
graph reduction on each reduction step, and that has exactly the same shar
ing properties (assuming lazy copying)? Terms are represented by trees, no 
concept of global store need intrude, and no way to address the global store--
pointers-need be supplied. Besides, suspension-based reduction works per
fectly well even if redexes include free variables. Why not the benefits of 
graph reduction without pointers? 
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Appendix A 

Programming with ML 

This appendix introduces a small subset of Standard ML so you can read my 
programming examples. Common utility routines used in the dissertation 
are explained in Section A.2. 

Wikstroom's text [211] is a proper introduction to ML programming. 
There is much, much more to ML than I describe here. 

A.l The one-minute ML programmer 

Data structures. Primitive data types include booleans true and false 
(type boo!), character strings (type string), and integers (type int). Negative 
integers are written as -1, -2, -3, ... The null type is unit. 

I use only one compound data type, tuples. For example, (1, boo!, 6) is 
a 3-tuple; its type is int * boo! * int. 

A datatype declaration introduces a user-defined type; for example, 

datatype Tree= Leaf of int I Node of Tree* Tree. 

Leaf and Node are constructor functions; their types are int --> Tree and 
Tree * Tree --> Tree, respectively. (ML is strongly-typed, and it is common 
practice to give a function's type along with its name.) My main datatypes 
are Term, for .\-terms with suspensions, and Gnode, for the nodes of a .\9 -

graph. 

References. ML allows pointers, or "references." A pointer to an int has 
type int ref. I use references in the graph-twiddling code (lots of Gnode refs). 



For a bool ref x, x := true is an assignment, and !x is the value of whatever x 
points to (!xis x "dereferenced"). 

Functions. An ML function is usually written as a set of clauses, each 
specifying a pattern that an argument must match. For example: 

fun leafcount (Leaf(x)) = 1 
lleafcount (Node(L,R)) = (leafcount L) + (leafcount R) 

The function leafcount : Tree-+ int is defined with two clauses. The first 
says what to do with a Leaf and the second with a Node. Using patterns to 
unravel data structures is very common practice in ML. 

An underline "-" in a pattern is a "don't care" variable, matching any
thing in that position. 

The same result can be had with a case clause with patterns: 

fun casecount T = 
(case T 
of Leaf(x) =? 1 

I Node(L,R) =? (leafcount L) + (leafcount R) 
) 

A function doubletree: Tree--+ Tree, which doubles every leaf in the input 
Tree, giving a new Tree, might be: 

fun doubletree (Leaf(n)) = Leaf(2 * n) 
I doubletree (Node(L,R)) = Node(doubletree L, doubletree R) 

A value or function may be "cached" using a let ... in ... end expression; 
for example, 

let val x = 40 + 2 in x + x + x + x end 

is an expression with value 42 x 4 = 168. A doubletree variant might be: 

fun doubletree' (Leaf(n)) = 
Leaf(2 * n) 

I doubletree' (Node(L,R)) = 
let val L' = doubletree' L 

val R' = doubletree' R 

in Node(L', R') end 
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Let expressions can also introduce local function definitions, as in this 
silly example: 

fun add_two_to_tree (Leaf( n)) = 
let fun add_two_to x = x + 2 
in Leaf( add_two_to n) end 

I add_two_to_tree (Node(L,R)) = 
Node( add_two_to_tree L, add_two_to_tree R) 

Function application associates to the left; parentheses override the im
plicit order. So, doubletree L, doubletree(L), and (doubletree L) are all the 
same. 

Polymorphic functions. In ML, one may define polymorphic functions 
that accept arguments of more than one type. For example, 

fun firsLoLtuple (x, y) = x 

accepts 2-tuples with elements of any type and returns the first; it has type 
'a* 'b-+ 'a. Just watch out for types written as 'a, 'b, 'c, ... 

Higher-order functions. Higher-order functions are those that take func
tions as arguments or that return functions as results. The higher-order 
functions in this dissertation are partial applications of curried functions. (If 
that sounds too confusing, you may wish to consult a functional programming 
text; however, the examples here may get you through.) 

fun add' (x, y) = (x + y):int (*coerce; '+'is overloaded *) 

fun add x y = (x + y):int 

The functions shown are add' : (int * int)-+ int and add : int-+ int-+ int. 
If invoked, e.g., (add' (3, 9)) or (add 3 9), both give the same answer. The 
function add, however, may be partially applied (with fewer than its full two 
arguments), as in (add 3), in which case it returns the function that adds 
three to its argument. The function (add 3) has type int -+ int; when it is 
applied to 9, we get the expected answer 12 (type int). 

Besides add, a curried version of the built-in +, I also use orEise : 
bool -+ bool -+ boo I, a curried version of the infix orelse. 

This style of partially applying functions to yield other functions is im
portant only for the functions chk_vars (page 170) and mod_vars (page 171). 
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(*Predicate functions is_app : Term ---> bool (a J\,-application?), isJam :Term ---> bool 
(a >.,-abstraction?), and is_ptr: Term---> bool (a J\,-pointer?). 

*) 
fun is_app (App(-,-)) =true 

I is_app other = false 

fun isJam (Lam(_,_)) = true 
I isJam other = false 

fun is.ptr (Var(-,Ptr,_)) = true 
I is_ptr (Var(_,FollowFill,_)) = true 
I is.ptr (Var(_,FollowNoFill,.)) =true 
I is.ptr (Var(_,Followed,-)) = true 
I is.ptr other = false 

Exceptions. ML allows elaborate exception-handling. For my purposes, 
however, it is simple: if you see "raise something_bad_wrong," it is a fatal, 
not-supposed-to-happen error. 

A.2 Utility functions 

A.2.1 A
8
-term functions 

This section presents the ML functions that support the code for the .A,-in
terpreter in Chapter 4. The functions chk_vars (page 170), mod_vars (page 
171 ), and subst (page 172) are important, the rest are just necessary labor. 
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(*Function 

*) 

chk_vars : (int~int-+int*VarMark*stri ng---+' a)-+(' a-+' a-+' a)---+ 'b--+int--+int--+ Term -+ 'a 

(A rather horrible-looking type, no?) Many operations on Terms are of the form "Go 
down and look at all the variables (binding indices, really), check for some condition, 
and accumulate the results." For example, given the query, "Does this suspension 
have a bound variable?", we check each variable's binding index against the nesting 
level (which must be accumulated); if equal, true else false. We orelse together all 
the variable-answers and that is the answer. 

mod_vars (page 171) is a similar function, except it modified Vars (producing new 
Terms), rather than just checking them. 

If instead all the leaves report '1' and the "connective" is addition, then we have a 
leaf counter. I have given it as an example below. Now, the non-obvious arguments 
to chk_vars: 

levi and levh: Accumulate "low" and "high" numbers defining the range of nesting 
levels of interest. As we move down the tree, these numbers are bumped up 
when we meet a binding site (lam or Sus). Often, levi and levh are the same 
... or perhaps very far apart (e.g., 2 and MAXVAR). 

check: The function applied to Vars to produce the values to accumulate. It is really 
applied to the levi and levh level-numbers and the "guts" of a Var, hence the 
exotic type int---+ int--+ int * VarMark * string--+ 'a. 

connect and unit: The function that accumulates the values from the Vars; unit is 
the "unit value" used to get things going. Common combinations would be 
add,O or orEise,false. 

fun chk_vars check connect unit levllevh (App(M, N)) = 
connect ( chk_vars check connect unit levi levh M) 

(chk_vars check connect unit levllevh N) 

I chk_vars check connect unit levllevh (Sus(B, P, -)) = 
let val nlevl = levi + 1 

val nlevh = levh + 1 
in connect (chk_vars check connect unit nlevl nlevh B) 

( chk_vars check connect unit nlevl nlevh P) end 

I chk_vars check connect unit levi levh (Lam(B, -)) = 
(chk_vars check connect unit (levl+1) (levh+1) B) 

I chk_vars check connect unit levllevh (Var(bi,vmk,n)) = 
(check levllevh (bi,vmk,n)) 

fun leafcount T = (* a chk_vars example *) 
let fun var_counts_one levllevh (-,-,-) = 1 
in chk_vars var_counts_one add 0 1 1 (*levels don't matter*) Tend 
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(* Function mod_vars : 
(int-+int-+int*VarMark*string-+bool)-+ 
(int-+int-+int*VarMark*string-+int*VarMark*string)-+ 
int-+int-+ Term-+ Term . 

*) 

This is a sister function to chk_vars, except that it modifies the variables and returns a 
new Term, rather than just checking the variables and accumulating the information. 
Please see the documentation for chk_vars (page 170). 

fun mod_vars sel modfn levllevh (App(M, N)) = 
App(mod_vars sel modfn levi levh M, mod_vars sel modfn levi levh N) 

I mod_vars sel modfn levi levh (Sus(M, N, n)) = 
let val nlevl = levi + 1 

val nlevh = levh + 1 
m 

Sus(mod_vars sel modfn nlevl nlevh M, mod_vars sel modfn nlevl nlevh N, n) 
end 

I mod_vars sel modfn levi levh (Lam(B, n)) = 
Lam(mod_vars sel modfn (levl+1) (levh+1) B, n) 

I mod_vars sel modfn levi levh (Var(bi, vmk, n)) = 
if(sellevllevh (bi, vmk, n)) then 

Var(modfn levi levh (bi, vmk, n)) 
else 

Var(bi, vmk, n) 

(* The most common use of mod_vars is to change variables' binding indices. The 
function incr_var_range adjusts all the binding indices in a range of nesting levels 
0ow to high) by an incr number. 

*) 

The functions incr _free_varsl, incr _free_vars2, and incr _bd_vars are just convenient ways 
to call incr _var _range. The two versions ofincr _free_vars are needed because the binding 
indices for free variables start at '1' or '2', depending on where you start counting. 

fun incr _var _range low high incr T = 
let 

fun in_range (levl:int) (levh:int) (bi, vmk, n) = (bi 2: levi andalso bi :S levh) 
fun incr_var __ ((bi:int), vmk, n) = ((bi+incr),vmk, n) 

in mod_vars in_range incr_var low high Tend 

fun incr _free_varsl incr T = incr _var _range 1 MAXVAR incr T 

fun incr _free_vars2 incr T = incr _var _range 2 MAXVAR incr T 

fun incr_bd_vars incr T = incr_var_range 1 1 incr T 
(*Levels 1 1 assume we are working inside a Term *) 
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(* These functions are tests for various flavors of "boundness" that work with chk_vars 
(page 170) and mod_vars (page 171). The only hard one is is..higher_up_follow_ptr, 
which checks if a Follow >.,-pointer's binding index says that its binding site is above 
the point indicated by the nesting level. 

*) 
fun is_bd_var_or_ptr levllevh ((bi:int),vmk,n) = (bi ::;: levi) andalso (bi :<:; levh) 

fun is_bd_follow_ptr levi _ (bi,FollowFill,_) = (levi = bi) 
I is_bd_follow_ptr levi _ (bi,FollowNoFill,_) = (levi = bi) 
I is_bd_follow_ptr levi _ (-.-.-) = false 

fun is_bd_follow_fiiLptr levi _ (bi,FollowFill,_) = (levi = bi) 
I is_bd_follow_fiiLptr levi _ (-·-·-) =false 

fun is_higher_up_follow_ptr (levl:int) _ (bi,FollowFill,_) =(levi< bi) 
I is_higher_up_follow_ptr levi_ (bi,FollowNoFill,_) =(levi< bi) 
I is_higher_up_follow_ptr levi _ (-.-.-) =false 

(* subst : (int--.. int--.. int * VarMark *string- bool)--.. int--.. int- Term- Term-+ 
Term 

*) 

This function substitutes term S into term T for all Variables selected by the 
function sel. Uses incdree_vars1 (page 171)-this is because, asS is "dragged down" 
the tree T, its free variables are getting further away from their binding sites. 

subs! is in mu~h the same spirit as chk_vars (page 170) or mod_vars (page 171). 
std_subst is sirrlply a convenient way to call the more general subst. 

fun subs! sellevllevh S (App(M, N)) = 
App((subst sel levi levh S M), (subs! sel levi levh S N)) 

I subst sel levi levh S (Lam(B, n)) = 
Lam((subst sel (levl+l) (levh+l) (incdree_vars1 1 S) B), n) 

I subst sellevl levh S (Var(bi,vmk,n)) = 
if (sellevllevh (bi,vmk,n)) then S else Var(bi,vmk,n) 

I subs! sellevllevh S (Sus(B. P, n)) = 
let val nlevl = levi + 1 

val nlevh = levh + 1 
val S' = (incdree_vars1 1 S) 
val B' = (subst sel nlevl nlevh S' B) 
val P' = (subst sel nlevl nlevh S' P) 

in Sus(B', P', n) end 
fun std_subst S T = (* the most common use of subs! *) 

subst is_bd_var_or_ptr 1 1ST 
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(* swap_levs: Term---+ Term. 

*) 

A highly miscellaneous support function for tidyterm (page 88) that increments bind
ing indices on level ilev by 1 and decrements binding indices on level dlev by 1. 

fun swap_levs ilev dlev (App(M,N)) = 
App(swap_levs ilev dlev M, swap_levs ilev dlev N) 

I swapJevs ilev dlev (Sus(B,P,n)) = 
Sus(swap_levs (ilev+l) (dlev+l) B, swap_levs (ilev+l) (dlev+l) P, n) 

I swap_levs ilev dlev (Lam(B, n)) = 
Lam(swap_levs (ilev+l) (dlev+l) B, n) 

I swap_levs ilev dlev (Var(bi,vmk,n)) = 
if bi = ilev then 

Var(bi+l,vmk,n) 
else if bi = dlev then 

Var(bi-l,vmk,n) 
else 

Var(bi, vmk,n) 
(*Uses mod_vars (page 171) to turn bound plain-variables into Ptr variables. *) 
fun ptrize_bd_vars T = 
let 

fun make_ptr lev_ (bi,NotPtr,n) = (bi, Ptr, n) 
I make_ptr lev _ ( -· -.-) = raise ptrize_bd_vars_error 

in mod_vars is_ibd_var_or_ptr make_ptr 0 0 Tend 
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A.2.2 \-graph functions 

This section includes the few extra functions needed to support the .\9 -inter
preter in Chapter 3. Though these functions are hideous-looking because of 
all the pattern-matching on graph structure, they are all quite simple. 
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(* Simple functions to change reference counts and set subbed bits. *) 
fun incr_refcnt bump (Gas ref (AppG(_,_,_,(_,refcnt,_,_)))) = 

refcnt := (!refcnt) + bump 
I incr_refcnt bump (G as ref (LamG(-,-.-,(-,refcnt,_,_)))) = 

refcnt := (!refcnt) + bump 
I incr_refcnt bump (G as ref (VarG(-.-· (-,refcnt,_,_)))) = 

refcnt := (!refcnt) + bump 

and set..subbed bval (ref (AppG(M,N,_,(subbed,_,_,_)))) = (subbed := bval) 
I seLsubbed bval (ref (LamG(B,_,_,(subbed,_,_,_)))) = (subbed := bval) 
I set..subbed bval (ref (VarG(-.-· (subbed,_,_,_)))) = (subbed := bval) 

(* . Set visited bits to bval. *) 
and mk_graph_visited bval (ref (AppG(M,N,-,(-,-,visited,_)))) = 

(visited := bval; mk_graph_visited bval M; mk_graph_visited bval N) 
I mk_graph_visited bval (ref (LamG(B,_,_,(_,_,visited,_)))) = 

(visited := bval; mk_graph_visited bval B) 
I mk_graph_visited bval (ref (VarG(-.-, (_,_,visited,-))))= 

(visited := bval) 

(* Simple functions to change reference counts and set subbed bits. *) 
fun incr_refcnt bump (Gas ref (AppG(-.-.-.(-,refcnt,_,_)))) = 

refcnt := (!refcnt) + bump 
I incr_refcnt bump (Gas ref (LamG(-.-.-.(-,refcnt,_,_)))) = 

refcnt := (!refcnt) + bump 
I incuefcnt bump (G as ref (VarG(-.-, (_,refcnt,_,_)))) = 

refcnt := ('refcnt) + bump 

and set..subbed bval (ref (AppG(M,N,_,(subbed,_,_,_)))) =(subbed := bval) 
I set..subbed bval (ref (LamG(B,_,_,(subbed,_,_,_)))) = (subbed := bval) 
I set..subbed bval (ref (VarG(-,-, (subbed,_,_,-)))) =(subbed := bval) 

(* . Set visited bits to bval. *) 
and mk_graph_visited bval (ref (AppG(M,N,-,(-,-,visited,_)))) = 

(visited := bval; mk_graph_visited bval M; mk_graph_visited bval N) 
I mk_graph_visited bval (ref (LamG(B,_,_,(_,_,visited,_)))) = 

(visited := bval; mk_graph_visited bval B) 
I mk_graph_visited bval (ref (VarG(-,-· (_,_,visited,_)))) = 

(visited := bval) 
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(* The function rm_indir _nodes : Gnode ref ~ Gnode ref removes any AppG nodes that 
have become indirection nodes. It turns off all the visited bits (with mLgraph_visited 
(page 175)) then uses the local function rm2 to do the work; rm2 sets visited bits and 
does not do any re-visiting. Reference counts are adjusted with incr_refcnt (page 175). 

*) 
and rm_indir_nodes (ref (AppG(M,N,(ref true),(-·-·-·-))))= 

(* a toplevel indirection node *) 
(rm_indir_nodes M) 

I rm_indir_nodes ptr = 
Jet fun rm2 (Gas ref (AppG(M,N,(ref true),(-,refcnt,visited,-)))) = 

(*this is an indirection node; repeat visits; fiddle refcounts *) 
let val M' = (rm2 M) 
in ((incr_refcnt ((lrefcnt)- 1) M'); M') end 

I rm2 (app_ptr as ref (AppG(M,N,(ref false),(-.-.visited as (ref false),-))))= 
let val_= (visited := true) 

val M' = (rm2 M) 
val N' = (rm2 N) 

in M := !M'; N := IN'; app_ptr end 

I rm2 (lam_ptr as ref (LamG(B,n,_,(_,_,visited as (ref false),-)))) = 
let val _ = (visited := true) 

val B' = (rm2 B) 
in B := !B'; lam_ptr end 

I rm2 (var_ptr as ref (VarG(x,n,(_,_,visited as (ref false),-))))= 
( visited := true; 

var _ptr ) 

I rm2 visited = (* we've been here before *) visited 

in (let val _ = mk_graph_visited false ptr 
val ptr _out = rm2 ptr 
in ptr _out end 

) end 
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(* These are support routines for implementing Wadsworth backpointers. I use 
''unique" integer IDs, from -100 downwards, called "binder IDs." This avoids 
interference with binding indices, which are positive or (for constants) small 
negative numbers. A hack, to be sure. 

*) 

nexLID generates "fresh" binderiD's, needed when copying graphs. The functions 
bidx_to_bndriDs_T: int-> int-> Term-> Term and 
bndriDs_to_bidx: int -joint---+ Term -jo Term convert between binding indices and 
binderiD's in graphs and Terms. The function 
chg_bndriDs : int-> int-> Gnode ref-> unit replaces one binderiD with another in a 
graph. 

All three of these functions produce intermediate structures used by term2graph 
(page 67) and graph2term T (page 67). They have no other use. 

I do not use ML refs, because, in practice, they make conversion back and forth to 
binding indices unpleasant. 

and nexLID () = (*generate ID's sequentially*) 
( nexLbinder_ID := (!nexLbinder_ID- 1); 

!nexLbinder_ID) 

and bndriDs_to_bidx lev bndriD (App(M,N)) = 
App(bndriDs_to_bidx lev bndriD M, bndriDs_to_bidx lev bndriD N) 

I bndriDs_to_bidx lev bndriD (Sus(B,P,n)) = 
Sus(bndriDs_to_bidx (lev+1) bndriD B, bndriDs_to_bidx (lev+1) bndriD P, n) 

I bndriDs_to_bidx lev bndriD (lam(B,n)) = 
lam(bndriDs_to_bidx (lev+ 1) bndriD B, n) 

I bndriDs_to_bidx lev bndriD (Var(bi,vmk,n)) = 
Var(if bndriD = bi then lev else bi,vmk,n) 

and bidx_to_bndriDs_T lev bndriD (App(M ,N)) = 
App(bidx_to_bndriDs_T lev bndriD M, bidx_to_bndriDs_T lev bndriD N) 

I bidx_to_bndriDs_T lev bndriD (Sus(B,P,n)) = 
Sus(bidx_to_bndriDs_T (lev+l) bndriD B,bidx_to_bndriDs_T (lev+l) bndriD P,n) 

I bidx_to_bndriDs_T lev bndriD (Lam(B,n)) = 
lam(bidx_to_bndriDs_T (lev+ 1) bndriD B, n) 

I bidx_to_bndriDs_T lev bndriD (Var(bi,vmk,n)) = 
Var(ifbi =lev then bndriD else bi,vmk,n) 

and chg_bndriDs o_bndriD n_bndriD (ref (AppG(M,N,indir,-))) = 
if !indir then chg_bndriDs o_bndriD n_bndriD M 
else (chg_bndriDs o_bndriD n_bndriD M;chg_bndriDs o_bndriD n_bndriD N) 

I chg_bndriDs oJ>ndriD n_bndriD (ref (lamG(B,_,_,_))) = 
chg_bndriDs o_bndriD n_bndriD B 

I chg_bndriDs o..bndriD n_bndriD (ref (VarG(si,n,-))) = 
if o_bndriD = ('si) then si := n_bndriD 
else() 
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Entries in a sans serif font refer to functions in the ML programs; a page 
number in italics says where the function is defined. Authors of cited works 
may be traced through the bibliography. 

AAL, see absolute application level 
ABL, see absolute binding level 
absolute application level, see also 
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(binding index) 
director strings, 99 
Dix, Dorothea Lynde, iv 
dynamic arrays, 105 

eager evaluation, 19 
environments, 98 
Erskine, John, of Garnock, 53 
71-conversion, 16 
71-expansion, 16 
71-reduction, 16 
evai_BNF, 19, 22, 25, 70, 74 
evaLLF, 22, 25, 69, 74 
EvaLWBNF, 22 
evaLWBNF, 25, 54 
evaluation orders, 17 

innermost spine reduction, 164 
normal order, 5, 17 
safe, 18, 19 
unsafe, 19 

expansion, 16 
exponential blow-up, 28 
extensionality, 16 

FFP Machine 
communication 

broadcasting, 108 
message wave, 108 
sorting, 108 
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dynamic arrays, 105 
global networks, 106 
1-segments, 106 

active, 107 
reduction routines, 105 
scan operations, 109 
selectors, 113 
storage management, 105 

FFPM, see FFP Machine 
fixed-program machines, 6 
Follow*fill pointers, 126 
free variables, 14 
fully lazy copying, 38 
functional programming, 4 

g-connections, 34 
GAM, see global addressable mem

ory 
Gnode, 33, 166 
graph reduction 

parallel, 7 
graph rewriting, 51 
graph2term T, 35, 67, 177 

head-normal form, 18 
higher-order functions, 4 
HNF, see head-normal form 

implicit parallelism, 6 
incr...bd_vars, 88, 171 
incdree_vars1, 23, 25, 72, 171, 172 
incdree_vars2, 62, 79, 88, 171 
incuefcnt, 36, 67, 175, 176 
incr_var_range, 171 
index, see also level numbers 
indirection nodes, 34 
is...app, 169 
is_bd_follow_fiiLptr, 72, 172 
is_bd_follow_ptr, 72, 172 
is_bd_var _or _ptr, 61, 79, 172 



is_higher_up_follow_ptr, 72, 172 
isJam, 169 
is_ptr, 61, 169 
is_weiUormed, 57, 61, 61 

Jeeves, Reginald, 163 

1-array, 104 
1-segments, 106 
.\-abstractions, 13 
.\-applications, 14 
.\-calculus, 5, 12 
lambda form, 19 
.\-terms 

abstractions, 13 
applications, 14 
binders, 13 
bound variables, 13 
combinators, 22 
constants, 14 
free variables, 14 
supercombinators, 22 
variables, 13 

.\-trees, 14 

.\-application lists, 155 

.\-calculus rules 
a-conversion, 16 
,8-conversion, 16 
,8-expansion, 16 
,8-reduction, 15 
1)-Conversion, 16 
1)-expansion, 16 
1)-reduction, 16 

[.\-up] rule, 82 
Au-equivalence, 34 
.Au-interpreter, 31 
.A.-interpreter, 53 
.A.-interpreter, 53. 
.A.-pointers, 58 
.A.-terms, 58 
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A8u-equivalence, 63 
.\,-equivalence, 21 
last-instance relocation, 75 
lazy copying, 38 
lazy evaluation, 4, 18 
lazy_copy, 32, 35, 36, 40, 41, 76 
level numbers, 110 

absolute, 111 
application, 112 
binding, 112 
indices, 110, 111 
nesting, 111 
relative, 111 

1F, see lambda form 
linear expansion, 61 

maximal free expressions, 38 
message wave, 108 
MFE, see maximal free expressions 
mk_graph_visited, 37, 175, 176 
mod_vars, 72, 168~170, 171, 172, 
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name capture, 20 
name-free .\-calculus, 14 
necessary copying, 27 
nesting level, see also level num

bers 
nexLID, 67, 177 
normal forms 

,8-normal form, 17 
head-normal form, 18 
root-lambda form, 19, 74 
weak ,8-normal form, 19 
weak head-normal form, 19 

normal-order evaluation, 5, 17 

onestepG, 32, 35, 36, 54, 64, 66 
onestepS, 54, 57, 63, 71, 72, 74, 161 
onestepT, 22, 23, 54, 66 



parallel-prefix operations, see FFP 
Machine (scan operations) 

parse tree, 6 
plain nodes, 34, 57 
plain_equivs, 21, 23 
pointee, 58 
pointers, 27, 58 
ptrize_bd_vars, 72, 173 

RAL, see relative application level 
rand, 14 
rator, 14 
RBL, see relative binding level 
recurring example, 22, 40, 90, 138 
reduction, 5 
reduction routines, 105 
reduction rules, 5 
reentrant machines, 6 
relative application level, see also 

level numbers 
relative binding level, see also level 

numbers 
relative index, see also level num

bers 
relative nesting level, see also level 

numbers 
RIX, see relative index 
RLF, see root-lambda form 
rm_indir _nodes, 32, 78, 176 
RNL, see relative nesting level 
root path, 14 
root-lambda form, 19, 74 

s-connection, downward, 86 
s-connection, upward, 85 
s-connections, 62 
safe evaluation orders, 19 
scans, 109, see FFP Machine (scan 

operations) 
scope of a binder, 13 
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selectors, 113 
set..subbed, 36, 67, 175 
SFE, see substituted free expres

stons 
sg-connections, 62 
sharing, 9 

computation, 27 
space, 27 
trivial, 27 

sharing analysis, 98 
space sharing, 27 
speculative copying, 27 
spine of a .\-tree, 18 
std..subst, 23, 25, 62, 88, 172 
storage management, see FFP Ma-

chine (storage management) 
subst, 72, 169, 172 
substG, 32, 35, 36, 37, 67 
substituted free expressions, 39 
subterms, 13 
supercombinators, 22 
suspension lists, 154 
suspension pointee, 58 
suspensions, 58 
swapJevs, 88, 173 

task hints, 126 
Term, 59, 166 
term rewriting, 51 
term2graph, 66, 67, 177 
term2term T, 61, 62 
tidying, 86 

local, 130 
nonlocal, 130 

tidying rules, 78 
tidyterm, 57, 87, 88, 173 
toplevG, 32, 32, 35 
toplevS, 57, 57 
trashpickup, 57, 79, 79, 87 



tree reduction, 106 
trivial sharing, 27 
trivial suspensions, 80 

unnecessary copying, 27 
unsafe evaluation orders, 19 

variables, 13 
binding index, 20 
binding path, 14 
name capture, 20 
renaming, 16, 20 
root path, 14 

WBNF, see weak fJ-normal form 
weak beta-normal form, 19 
weak head-normal form, 19 
WHNF, see weak head-normal form 

xapping, 118 
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