
Graph Reduction Without Pointers

TR89-045

December, 1989

William Daniel Partain

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/Aflirmative Action Institution.

! I

Graph Reduction Without Pointers

by

William Daniel Partain

A dissertation submitted to the faculty of the
University of North Carolina at Chapel Hill in partial

fulfillment of the requirements for the degree of Doctor of
Philosophy in the Department of Computer Science.

Chapel Hill, 1989

Approved by:

Jfn F. Prins, reader

~ ~<---(
CJ)~ ~ ;=tfJ\

Donald F. Stanat, reader

@1989
William D. Partain

ALL RIGHTS RESERVED

II

WILLIAM DANIEL PARTAIN. Graph Reduction Without Pointers (Under the
direction of Gyula A. Mag6.)

Abstract

Graph reduction is one way to overcome the exponential space blow-ups
that simple normal-order evaluation of the lambda-calculus is likely to suf
fer. The lambda-calculus underlies lazy functional programming languages,
which offer hope for improved programmer productivity based on stronger
mathematical underpinnings. Because functional languages seem well-suited
to highly-parallel machine implementations, graph reduction is often chosen
as the basis for these machines' designs.

Inherent to graph reduction is a commonly-accessible store holding nodes
referenced through "pointers," unique global identifiers; graph operations
cannot guarantee that nodes directly connected in the graph will be in nearby
store locations. This absence of locality is inimical to parallel computers,
which prefer isolated pieces of hardware working on self-contained parts of a
program.

In this dissertation, I develop an alternate reduction system using "sus
pensions" (delayed substitutions), with terms represented as trees and vari
ables by their binding indices (de Bruijn numbers). Global pointers do not
exist and all operations, except searching for redexes, are entirely local. The
system is provably equivalent to graph reduction, step for step. I show that .
if this kind of interpreter is implemented on a highly-parallel machine with
a locality-preserving, linear program representation and fast scan primitives
(an FFP Machine is an appropriate architecture) then the interpreter's worst
case space complexity is the same as that of a graph reducer (that is, equiv
alent sharing), and its time complexity falls short on only one unimportant
case. On the other side of the ledger, graph operations that involve chaining
through many pointers are often replaced with a single associative-matching
operation. What is more, this system has no difficulty with free variables in
redexes and is good for reduction to full beta-normal form.

These results suggest that non-naive tree reduction is an approach to
supporting functional programming that a parallel-computer architect should
not overlook.

111

Preliminaries

Programming language. I support some of my descriptions by show
ing an implementation encoded in Standard ML, set in a sans serif font.
Appendix A is a reader's introduction to ML and defines the supporting
routines for the programs in the dissertation proper. I chose ML because
the compiler from Bell Laboratories [8] was the best-implemented functional
language available to me. The code shown is directly extracted from working
programs.

A stylistic matter. I veer from the usual habit of calling myself "we,"
siding with E. B. White:

It is almost impossible to write anything decent using the editorial
"we," unless you are the Dionne family. Anonymity, plus the "we,"
gives a writer a cloak of dishonesty, and he finds himself going around,
like a masked reveler at a ball, kissing all the pretty girls [84, page 121].

Acknowledgments. I am not sure how I got into the Ph.D. business, but
I know how I got through it. The Team Mag6 members have been the
best of colleagues, notably David Middleton, initiator into the Mysteries,
Edoardo Biagioni, with his startling imagination, and Bruce Smith, with his
breadth of understanding and good sense. Charles Molnar and his group
added more than a little spice through their collaboration with us. Vern
Chi and the Microelectronics Systems Lab have provided superb computing
facilities, even if I was mainly an intruder. "Net people" provided many small
helps and assurances; Paul Watson went beyond the call duty by sending a
copy of his hard-to-get thesis. Bharat J ayaraman and Rick Snodgrass, former
committee members, read drafts even after they had decided to leave; that is
conscientiousness! Gyiirgy Revesz provided a needed boost during his visit
from the T. J. Watson Research Center. As for sanity, my family and friends
have served admirably as bouncers for Dorothea Dix hospital, including my

IV

father who has hounded me mercilessly about finishing and my mother who
made a point not to. Ed McKenzie was as good a lunch crony as one could
hope to find, but I will never forgive him for completing his degree in only
four years. Phil and Paige LeMasters failed to disguise their deliberate effort
to keep me in contact with the world outside Sitterson Hall.

My noble and ennobling committee-Gyula Mag6, David Plaisted, Jan
Prins, Don Stanat and Jennifer Welch-have bravely weathered the drafts
from room 327 and have vastly improved my material. Prof. Stanat lured
me into the Department and has stood behind his mistakes, even as I flamed
the faculty and wrote purple prose into proposals. Prof. Mag6 has enhanced
his reputation as the best thesis advisor in the Department, unbuffeted by
the fashions of graduate-student whims, tolerant of not-always-serious meet
ings, readily available for consultation, and incisive (but not opaque) in his
critique. I offer my heartfelt thanks to each one.

I am grateful to the U. S. Army Research Office which provided financial
support for this work through an Army Science and Technology Fellowship
(grant number DAAL03-86-G-0050).

Comments. I welcome your comments and corrections. My e-mail address
is partain©cs. unc. edu, and paper mail will reach me via the Computer Sci
ence Department, UNC, Sitterson Hall, Chapel Hill, NC 27599-3175. Elec
tronic comments sent to Prof. Mag6 (mago©cs. unc. edu) will be forwarded
to me even after I leave UNC.

v

Contents

1 The problem
1.1 Motivation
1. 2 Thesis statement
1.3 Dissertation organization

2 The A-calculus
2.1 Syntax
2.2 Computing with the A-calculus
2.3 Other A-calculus reduction rules
2.4 !'~-normal form and normal-order reduction
2.5 Other normal forms and evaluation orders
2.6 The name-free A-calculus
2. 7 Combinators
2.8 The practical use of the A-calculus
2.9 The necessity of sharing for normal-order evaluation

3 Graph reduction: the A
9
-interpreter

3.1 Graph structure and terminology ..
3.2 Finding a redex and j3

9
-reduction ..

3.3 Sharing free expressions and lazy copying
3.4 More on variable bindings

3.4.1 Graph reduction with binding indices
3.4.2 Wadsworth's use of backpointers ..

3.5 Graph-reduction architectures and sharing .
3.6 Graph rewriting

4 Reduction with suspensions: the As-interpreter
4.1 As-term structure and terminology
4.2 !'is-reduction: the !'is rule

VI

1
1
9

10

12
13
15
16
17
18
20
22
26
27

30
32
35
38
40
40
42
45
51

53

58
63

4.3 Searching for the next redex . 66
4.4 Lazy copying of shared rators 75
4.5 Tidying .\,-terms 76

4.5.1 Removing useless suspensions 79
4.5.2 Removing trivial suspensions 80
4.5.3 Moving .\,-abstractions above suspensions 81
4.5.4 Rotating suspensions 84
4.5.5 Upward and downward s-connections . . . 85
4.5.6 Constraints on moving suspensions 86
4.5. 7 Tidying: definition and important properties 86
4.5.8 The recurring example on the .\,-interpreter . 90

4.6 a-equivalence of .\,-terms 90
4.7 Equivalence to graph reduction: correctness 92
4.8 Related approaches to A-calculus evaluation . 94

4.8.1 Efforts to find simpler reduction rules 94
4.8.2 Comparison with environment-based evaluation . 97
4.8.3 Environment/reduction hybrids . 100
4.8.4 Pointers versus .\,-pointers . . . 100

5 The .\,-interpreter on an FFP Machine 102
5.1 Introduction to the FFP Machine 103

5.1.1 Project history and design goals 103
5.1.2 Basic structure of an FFP Machine . 104
5.1.3 Communication and partitioning . . 106
5.1.4 Broadcasting and sorting operations 108
5.1.5 Single-result operations 109
5.1.6 Scan, or parallel prefix, operations 109
5.1. 7 Computing level numbers 110
5.1.8 Calculating exotic level numbers 112
5.1.9 Calculating selectors and first/last bits . 113
5.1.10 Low-level programming style in an FFP Machine 114
5.1.11 Copying and sharing in an FFP Machine 115
5.1.12 Related non-graph-reduction architectures . 116

5.2 An implementation of a .\,-interpreter 119
5.2.1 Basic algorithms 120
5.2.2 Controlling the interpreter 125
5.2.3 Reducing to $-normal or root-lambda form 126
5.2.4 $,-reduction and local tidying . 130
5.2.5 Nonlocal tidying 132

Vll

5.2.6 Global checking 133
5.2. 7 Summary of the FFP Machine implementation 138

5.3 Equivalence to graph reduction: efficiency 140
5.3.1 Space complexity 141
5.3.2 Time complexity 142

5.4 Previous FFP Machine implementations of the .\-calculus 151

6 Embellishments
6.1 Suspension lists
6.2 Dealing with recursion
6.3 Exotic suspensions . .
6.4 More parallelism . . .
6.5 Ordering in As-terms and supercombinators
6.6 Speculative copying
6. 7 Going further with binding indices

7 Conclusions

A Programming with ML
A.1 The one-minute ML programmer
A.2 Utility functions

A.2.1 .\s-term functions .
A.2.2 \-graph functions

Bibliography

Index

Vlll

153
153
156
157
158
158
160
161

163

166
166
169
169
174

178

201

List of Tables

4.1 Comparison of /39- and /3.-reduction 65
4.2 Comparison of >.9 - and >..-lazy copying . 77
4.3 A8 -interpreter rule summary 89
4.4 Staples's "graph-like lambda calculus" rules 95
4.5 Revesz's reduction rules 97

5.1 Calculating the standard level numbers 112
5.2 Comparison of asymptotic time complexities . 143

ix

List of Figures

2.1 >.-abstractions . 14
2.2 >.-applications . 15
2.3 ,8-reductions . . 16
2.4 A >.-term in ,8-normal form 17
2.5 A >.-term in head-normal form 18
2.6 How to capture a variable in one easy lesson . 20
2. 7 Reduction with binding indices 21
2.8 The recurring example: five tree reduction steps 24
2.9 Function composition example 29

3.1 Simple graph reduction 31
3.2 Graph nodes' structure. 33
3.3 Graph reduction with copying . 38
3.4 Graph reduction with a shared MFE 39
3.5 A lazy copy 39
3.6 Lazying copying will not work for non-weak reduction 42
3.7 The Ag-interpreter on the recurring example 43
3.8 Graph reduction with the name-free >.-calculus 44
3.9 Wadsworth's use of backpointers and indirection nodes ('"'--') 44
3.10 ALICE machine organization ("dancehall") 46
3.11 Flagship machine organization ("boudoir") 47

4.1 Graph reduction vs. reduction with suspensions 55
4.2 A \-interpreter step vs. a >.,-interpreter step 56
4.3 A >.,-term with a suspension at its root 59
4.4 Definition of a Term 59
4.5 An example with much >.,-term notation . 60
4.6 ,8,-reduction of a shared redex 64
4. 7 A term after one ,Bg- or ,8,-reduction 68
4.8 The three cases of pointer-following . 69

X

4.9 Example distribution of .\,-pointers in a .\,-term 71
4.10 A lazy copy in the .\,-interpreter . . . 76
4.11 Pointer-following run amok 78
4.12 ,8-reduction followed by [triv-ptee] rule 81
4.13 .\x rator far from the plain-node .\,-application above 82
4.14 The [.\-up] rule and its graph-reduction equivalent 83
4.15 Suspension reordering needed 84
4.16 Rotate adjacent suspensions leftward 84
4.17 The [sus-rot!] rule preserves .\,

9
-equivalence 85

4.18 Kinds of s-connections 86
4.19 How far can suspension [x] be moved? . . . 87
4.20 The .\,-interpreter on the recurring example . 91
4.21 Equivalent, non-identical .\,-terms 92
4.22 Staples's aa-rules 96
4.23 An example of director strings 100

5.1 Structure of an FFP Machine . 105
5.2 Partitioning in an FFP Machine 107
5.3 Nesting levels for a .\,-term . . . 111
5.4 .\,-term with its selectors shown . 113
5.5 Non-local tidying 132
5.6 The FFP Machine interpreter on the recurring example 139
5.7 A .\,-term stuffed with non-plain nodes 142
5.8 Unpleasant example of looking for redex 144
5.9 Last-instance relocation in straight-line code. 146
5.10 An example with unbounded last-instance relocations 147
5.11 Impossible sequence of [sus-rotl]'s 149

6.1 Left-skewed suspensions become a suspension list 154
6.2 Binding indices change in a suspension list . . 155
6.3 Suspension lists collapse into their parent list . . 155
6.4 .\-application list and subsequent reduction . . . 156
6.5 Two Y combinator reductions, graphs and suspensions 157
6.6 Mutually recursive functions in a suspension list 157
6.7 Transforming to supercombinators, with a suspension list 159
6.8 Abstracting a free expression 160
6.9 Binding indices on suspensions and .\-applications 162

XI

Chapter 1

The problem

Von Neumann languages constantly keep our noses pressed in the dirt
of address computation and the separate computation of single

words, whereas we should be focusing on the form and
content of the overall result we are trying to produce.

-John Backus, "The History of FORTRAN I, II, and III" (1978).

The broad concern behind this dissertation is how to implement functional
programming languages on highly parallel computers without recourse to
graph reduction that uses pointers into a global memory. This chapter sets
out the specific problem that I examine and why it is important. I then
present my thesis and sketch the plan of attack.

In this chapter, I presume some knowledge of the >.-calculus, graph re
duction, and the FFP Machine; Chapters 2 and 3 and Section 5.1 introduce
these topics, respectively. Less-important unfamiliar terms may be traced
through the index.

1.1 Motivation

Two major emphases in computing are the quest for faster machines and the
search for more productive, less error-prone ways to program them.

Computers today are some four orders of magnitude faster than the ear
liest machines built around the time of von Neumann's original proposal for
the stored-program serial computer in 1946 [39]. Improved technologies ac-

count for much of the speedup, as electro-mechanical parts have given way
to sub-micron VLSI chips. Faster parts built with better technologies will
continue to appear-but not indefinitely. Meanwhile, the appetite for more
speed will continue unsatisfied.

Why not improve computing speeds by using many processors at once
to solve a problem? This idea dates back to the earliest computing days:
for example, Univac lauded the "super-parallelism" of its Larc system, which
could have two processors (1956) [63]; on the software side, the first article in
the first issue of the British Computer Journal was about "Parallel Program
ming" (1958) [72]. Now, the use of many processors to achieve greater speeds
is unavoidable, as the marginal cost of a faster uniprocessor ("serial MIPS") is
high whereas the cost of a boxful of VLSI microprocessors (potential "parallel
MIPS") continues to decrease. As a result, many multiprocessor machines
have been built, and some are commercially available. Many of these designs
have a modest number of processors and run separate programs on separate
processors; typically, all processors share a global memory. These machines'
selling point is cost-effectiveness. In contrast, my concern is with raw speed
on an individual problem that has enough parallelism, and I limit myself
to machines that deploy many processors to this end. (I exclude pipelined
vector processors, because they offer only limited speedup.)

On the software side, thousands of people have worked to make program
ming a more productive human endeavor. Higher-level languages, structured
programming, and strong type-checking are among the tools and techniques
used. Yet we still have a "software crisis" revealed by error-ridden code, by
programs tenuously related to their specifications, and by bloated software
projects, years behind schedule. The field of software engineering is dedicated
to surmounting the crisis.

Programming is even harder for multiprocessors. Most importantly, an
additional kind of error, the "timing bug," enters the picture. The order in
which pieces of a program (on different processors) synchronize with each
other may vary from run to run. Instrumenting one's code to smoke out the
bugs may change the timing enough that they vanish (the "probe effect").
Correct answers on one run provide no assurance that the program's timing
is right; deadlocks may suddenly arise, perhaps when ramping up to larger
scale production work. In their report, "Exploiting Multiprocessors: Issues
and Options," McGraw and Axelrod make clear the severity of timing prob
lems in practice [150]. Alan Karp subtitles his review of tools for parallel
programming as "The state of the art of parallel programming and what a
sorry state that art is in" [112].

2

Tasks in a parallel program must communicate with each other, to share
data and to synchronize their actions. How can a program and data be
mapped onto processors so communication is efficient and parallel operations
are not delayed? Moreover, how does one re-balance the load across the
processors as the program's requirements change during execution?

Some of the approaches to the thorniness of parallel programming are
instructive. Perhaps the most common way multiprocessors are programmed
is with low-level, error-prone tools (e.g., extended FORTRAN)-but only for
"well-behaved" problems with static data structures and predictable run
time execution profiles. Happily, many important scientific programs fit this
mold. A person plans the mapping of program and data to processors, and
the results can be good: the work that yielded the impressive Sandia Labs
speedups is in this category (71; 83).

Because the coordination of many independently-controlled processors is
so difficult, another option is to retreat from autonomous processors and
have each processor apply a common instruction to its own local data. Be
cause many data are massaged by each instruction, one can get consider
able data parallelism, which can be spectacular for some problems. NASA's
MPP (172) and the Connection Machine (93) are examples of these so-called
Single-Instruction-stream, Multiple-Data-stream (SIMD) machines (Flynn's
taxonomy (67)).

The promoters of INMOS transputers do not avoid the complexity of
autonomous parallel operations; instead, they try to tame it with a clear
theoretical model (Hoare's communicating sequential processes, embodied
in the "occam" language (97)) and hot "transputer" silicon with firmware
communication primitives to make the model viable (210). Wired-together
transputers are an example of a Multiple-Instruction-stream, Multiple-Data
stream (MIMD) approach.

These and many other techniques have earned multiprocessors a useful
niche in today's computing scene. But it is worth asking: What would we
really like to see in a multiprocessor to solve one problem faster? I suggest
the following characteristics.

• It would be very fast compared to its same-technology sequential con
temporaries, assuming enough parallelism to keep it busy.

o It could be applied to many, if not all, computing tasks.

o Programming the machine would include no extra hardships compared
to programming a sequential computer. Presumably, there would no

3

longer be "sequential programming" and "parallel programming"-just
"programming."

• It would be indefinitely scalable; one could keep adding processors to the
machine with good results-either more speed on the same problems
or the ability to solve bigger problems.

Let us return to programming, again. A radical solution to the soft
ware crisis is the technique of functional programming. A program is an
ordinary mathematical function that yields an "answer" when applied to
"input data." The most notable casualty of functional programming is the
assignment statement of traditional "imperative" languages. Other features
include:

• Functional programs deal only with values, not with the memory loca
tions that happen to hold those values. John Backus describes current
programming as figuring out what is to be done and preparing a "stor
age plan" to decide what location holds what value at which time [16].
Much of the code in an imperative program micro-manages the storage
plan.

• Lazy evaluation ensures that nothing is evaluated unnecessarily. Lazy
evaluation lets programs use infinite data structures; for example, in

(firsLthree (all_primes_from 1)),

a!Lprimes_from would begin generating an infinite list of prime numbers,
just enough for firsLthree to select the first three elements. (ML, used
in this dissertation, is a functional language that does not use lazy
evaluation.)

• Functional programs often use higher-order functions, those that take
other functions as arguments or return them as results. The "compose"
function, as in f o g, takes functions f and g as arguments.

• In his article "Why Functional Programming Matters," Hughes argues
that lazy evaluation and higher-order functions make it easier to build
kits of re-usable, mix-and-match program parts from which "modular"
programs may be synthesized [106].

• Functional programs are much easier to reason about mathematically
than imperative programs. For example, "linear" recursive functions

4

may be transformed such that they can be encoded as efficient while
loops [15; 88]. Multiple passes over list-structures can often be reduced
to fewer passes, with absolute certainty that the program's semantics
are unchanged. Field and Harrison's text provides a good survey of
approaches to "program transformation" [66].

• Functional programs are typically shorter than their imperative coun
terparts, and they can be dramatically clearer. (I hope the programs
in this dissertation vindicate this viewpoint!)

There are several camps in the functional programming community. The
"lazy purists" are purists because they eschew all mathematically-opaque lan
guage features and lazy because they insist on lazy evaluation (and the pro
gramming style it makes possible); this camp is in the ascendant. Miranda1

and Haskell are lazy functional languages. The "Backus purists" also avoid
"impure" features, but they follow John Backus in advocating "function
level thinking," a constrained use of higher-order functions, and an eager
evaluation strategy (evaluate arguments before applying a function). FL is
the most recent function-level language [17]. The "impurists" make up the
largest camp; they allow imperative features but discourage their use. LISP,
Scheme, and ML are representative languages. In this dissertation, I take the
lazy purists' demands to heart, using techniques learned at my home base
in the Backus camp, and coding my sample implementations in an impure
language.

At the core of lazy functional languages is a formal system called the
A-calculus, which was developed by Alonzo Church [46]. To do lazy eval
uation, the rules of the calculus must be applied in the so-called normal
order (or a closely-related order). Chapter 2 introduces the normal-order
evaluation of the A-calculus.

Reduction, generally speaking, is an approach to computing in which pro
gram, data, and "state" are represented together in some structure, and com
putation proceeds by applying reduction rules to make incremental changes
in the structure. For example, the paper-and-pencil arithmetic expression
(4 + 9) x (3- 7) includes data (the numbers 3, 4, 7, and 9) and program
(the operator symbols +, -, and x, plus their ordering with parentheses),
and it could include other information (annotations, perhaps, to further con
strain evaluation order for numerical error-control reasons). Applying the
rules of arithmetic, the expression reduces to -52, in three reduction steps:

1 Miranda is a trademark of Research Software Ltd.

5

-> 13 x (3- 7), -> 13 x -4, and -> -52. Reduction machines stand in con
trast to fixed-program or reentrant machines, in which the computing instruc
tions are segregated from program data and are not modified during program
execution [209].

An expression in the A-calculus is represented naturally by its parse tree,
with the A-calculus reduction rules causing changes to the tree; this is how
a A-calculus computation proceeds on a blackboard, for example. Unfortu
nately, normal-order computations may lead to exponential growth in both
tree size and number of reductions to be done (Section 2.9). For this reason,
the earliest computational mechanisms based on reduction of the A-calculus
(e.g., the SECD Machine [130]) used applicative order. Wadsworth's great
contribution was to show that normal-order reduction was more practical
if A-calculus expressions were represented as graphs, with the rules of the
A-calculus carried out as changes to the graphs [201].

The main feature of graph reduction, roughly speaking, is the sharing
of common subexpressions; it eliminates the exponential-growth problems
and provides a parsimonious program representation. Furthermore, if an
expression is shared, then the result of its evaluation will also be shared.
Section 2.9 describes the space problems of standard A-calculus expressions;
Chapter 3 gives a full introduction to graph reduction, presenting a complete
A-calculus interpreter.

The prospects for multiprocessors and functional programming are linked.
Historically, the implementations of lazy functional languages on von Neu
mann computers have been grossly inefficient when compared with tradi
tional imperative languages. Recent implementations do much better; Pey
ton Jones's book covers the state of that art [165]. Still, one may argue that
an imperative language (Backus: "von Neumann language" [14]) will always
beat a functional language on von Neumann machines because the former
is only the flimsiest disguise for the underlying stored-program uniproces
sor machine. The functional language is a ballerina at an imperative square
dance. A multiprocessor of appropriate design could better serve the func
tional language's requirements.

A functional approach offers great potential benefit to parallel computing.
The powerful first Church-Rosser theorem (for the A-calculus) allows great
latitude in the order in which function applications are undertaken, guaran
teeing that the results will be the same in every case. A parallel implemen
tation is free to do the applications simultaneously. This no-intervention
needed parallelism is usually called implicit parallelism, and it is very im
portant for scalable machines: one cannot expect a programmer to pre-plan

6

the execution of hundreds of thousands of independent processing tasks "by
hand." Consequently, functional programming-which proponents claim is
superior anyway-holds the prospect for significant parallelism without any
extra effort from programmers.

To design and build a successful multiprocessor that supports lazy func
tional programming is a truly monumental task, and it has not been done yet.
Several parallel computers to support lazy functional programming have been
designed, including Redifiow (114; 116], ALICE (56; 88; 49], and the Dutch
Parallel Reduction Machine (23; 91] (Section 3.5 has the details). I will focus
on their common design decision of a computational mode]2 of parallel graph
reduction, in which the many processing entities concurrently twiddle with
a graph that represents program and data. Why did they all choose graph
reduction? What did they gain? What implications did this choice have for
their architectures? What were the eventual costs of the decision? These
questions have not been examined carefully enough.

The obvious benefits of graph reduction stem from its sharing properties.
Some of the imposed constraints are nearly as obvious. First, the program
graph must be in a global store. As execution proceeds and the graph be
comes more tangled, a node may have an outgoing edge pointing to any other
node in the graph: the hard·ware must allow for this possibility. Second, in a
distributed implementation, it becomes much harder to ensure that adjoin
ing nodes in the graph will be in physically close-together hardware units.
Third, it is difficult to move graph nodes around without leaving dangling
pointers; re-shuflling nodes to improve locality is practically impossible.

Since I have been at the University of North Carolina, Chapel Hill, I have
been privileged to work on the design team for the FFP Machine (FFPM),
a highly parallel multiprocessor that directly supports Backus's FFP class of
low-level functional languages, a suitable basis for "function-level" program
ming. (I urge you to read the introduction to the Machine in Section 5.1 if
you are not familiar with the design.) The FFPM makes a bold attempt to
be a completely scalable design (up to millions of processors), to be applica
ble to problems with dynamic data structures and unpredictable execution
patterns, to remove the exploitation of parallelism from the programmer's
worries, and to provide fully-automatic, deadlock-free storage management.

Though the main effort has been to support FFP-like languages, the
FFPM project has also studied how to support other languages; Section 5.1.1

2Dally and Wills say, "A model of computation is a set of abstractions that provides a
programmer with a simplified view of a machine. A model typically provides abstractions
for memory, operations, and sequencint' [54, page 19].

7

takes up this matter in more detail. What about lazy .A-calculus-based func
tional languages on an FFPM? Project folklore knew "it could be done;"
Plaisted published a brief description of one method in one of his 1985 pa
pers on FFPM extensions [171]. (Section 5.4 reviews previous work about
implementing .A-calculus-like languages on an FFPM.)

What are the main issues for FFPM support of lazy functional languages?
First, the FFPM has a hardwired innermost-first evaluation order, corre
sponding to applicative-order, eager reduction; normal-order reduction is
leftmost-first. (Sections 2.4-2.5 introduces a variety of normal forms and
evaluation orders.) Happily, the two can be reconciled; Section 5.1.3 de
scribes the technique.

The second issue arises because an FFPM normally operates on a linear
symbol-string representation of an expression's parse tree, just as people do
with pencil and paper. In this way, any subexpression (subtree) is local to
a contiguous segment of the symbol-string. Since most useful tree manipu
lations work entirely within a subtree, the corresponding FFPM operations
can be defined to work on localized contiguous symbol-strings. This property
fits beautifully with the requirements for a scalable machine design, which
strongly mitigate against the sharing of system resources. (For example, four
processors sharing a page table is OK, but 400,000 processors will find ac
cess slow.) The operating cycle of an FFPM reflects an aversion to sharing:
close-together processors are partitioned into groups that hold an interesting
subtree's worth of symbols, and that group tries to proceed on a reduction.
Because the subtree has all information required for a reduction to proceed,
the processor group has no need to share any resources with other groups.
But, for many reductions to be going at once, information common to many
reductions must be copied enough times so that each processor-group has
a full set of information. This may seem wasteful (and it can be), but it
allows potentially many computations to proceed entirely independently of
each other. This is what it means to say an FFPM "favors copying" and
"exploits locality."

Operations on a tree may be localized, but the tree's size will change and
may shrink dramatically or grow arbitrarily large. To deal with this fluctua
tion, an FFPM provides automatic storage management in hardware, allow
ing program symbols to be inserted or deleted anywhere in a program string.
Program execution is then an ongoing "cut and paste" re-arrangement of
symbols (Revesz, personal comment). This means there is no guarantee what
symbol a given processor will hold on any given machine cycle. Therefore,
the memory distributed across the many processors does not have addresses

8

in the usual sense, and one processor can request something from another
only by value; for example, "Will the processor holding index value 4 please
send its program symbol?" There is no such thing as "the processor with
address 4." This addressless property of memory in an FFPM-essential
for storage management-makes it less than ideal for representing graphs,
which are usually implemented as nodes with memory-cell-pointers for edges.
One can simulate memory-cells-with-addresses in software (Mag6's study of
Paterson-Wegman unification is described in Section 5.1.11), but it is not a
natural fit.

I have already mentioned that the normal-order evaluation may suffer
exponential blow-ups unless sharing is done. One would therefore assume
than an FFPM, disinclined to sharing, would make for a poor normal-order
A-calculus implementation. Perhaps ... But there may be a way to go about
sharing in an "addressless way." Can the useful features of an FFPM be
brought to bear on the A-calculus from a different angle?

Lazy functional language implementations without some form of shar
ing are completely impractical, so I will use sharing as my basic measure
of success. Graph reduction is one way to achieve the desired sharing. On
the other hand, the sharing of conventional graph reduction-nodes linked
by pointers in a global addressable memory-is ill-matched to the desider
ata for scalable highly-parallel computers. These machines strongly favor
representations that preserve locality.

1.2 Thesis statement

This dissertation examines the implementation of lazy functional languages
on highly-parallel computers by focusing on a restricted "archetypal" prob
lem, the normal-order evaluation of the pure A-calculus. This is what Wads
worth did in his original work on graph reduction [201]. Enough sharing
to avoid the likely exponential blow-ups of naive non-graph reduction is re
quired, and matching the maximal sharing of graph reduction is desirable.

This dissertation develops a system for normal-order evaluation of the
A-calculus that represents terms as trees instead of graphs (Chapter 4).
Graph manipulations imply global pointers into a common store, a major
impediment to implementation on highly-parallel computers. I compare my
tree-reducing system (Chapter 4) to a graph reducer that does "lazy" copying
of shared functions (Chapter 3). I claim:3

3It is impossible to make these claims as precise as I would prefer until the scaffolding of

9

My tree-reducing interpreter manipulates terms-as-trees in a way
isomorphic to a lazy-copying terms-as-graphs reducer, step for
step. Because graph reduction is a correct implementation of the
A-calculus, the tree-reducing interpreter must be as well.

To consider worst-case time and space complexities, one must consider a
reduction system in light of some computational model. To this end, I con
sider my interpreter implemented on an FFP Machine (Chapter 5); other ar
chitectures that support a linear program-representation and fast scan primi
tives would also work. I compare this with graph reduction on a conventional
global-addressable-memory (GAM) machine, and I claim:

The FFPM implementation of the tree-based reducer uses the
same amount of space (within a constant factor) as conventional
graph reduction on a GAM machine. Moreover, the FFPM im
plementation matches or improves on the time complexity of each
part of a reduction step, with the exception of "last-instance re
locations," a non-critical operation. (Section 5.3.2 reviews this
obscure matter in painful detail.)

I believe the general approach suggested in this dissertation might well
provide a viable base for highly-parallel computing systems to support lazy
functional programming.

1.3 Dissertation organization

After an introduction to the A-calculus in Chapter 2, the heart of the dis
sertation (Chapters 3-5) is a comparison of two interpreters for the pure
A-calculus. The first is a standard graph reducer (Chapter 3), and the sec
ond is my new "suspension-based" tree reducer (Chapter 4). I compare them
for correctness (Section 4.7), space complexity (Section 5.3.1), and time com
plexity (Section 5.3.2). The beginning of Section 4.7 describes the strategy
for the comparisons.

To compare space and time complexity, one must consider the interpreters
in the context of some computational model. For graph reduction, I use a

the next chapters is in place. These claims are recapitulated in the Conclusions, Chapter 7,
page 163.

10

conventional GAM machine; for the new interpreter, I consider its implemen
tation on an FFPM (Chapter 5); that chapter concludes with a comparison
of the two (Section 5.3).

Chapter 6 catalogs some ideas for extending the new interpreter that
might be useful in turning this work into a practical parallel computing sys
tem. Chapter 7 presents my conclusions about this work.

I review previous and related work after topics have been introduced, at
the end of the appropriate chapter or section. For example, I survey graph
reduction architectures for functional programming in Section 3.5, just after
introducing my graph reducer.

11

Chapter 2

The >.-calculus

What brings a parallel processing enthusiast into
the jungles of the lambda calculus, a harsh and

hostile territory replete with expressions so ugly
that only a mathematician could love them?

- Almasi and Gottlieb (1989).

This chapter introduces a formalism called the >.-calculus, I setting the stage
for the interpreters in Chapters 3 and 4. The >.-calculus underlies all lazy
functional languages and captures their essential properties.

Alonzo Church invented the >.-calculus as a precise notation to study
functions [46]. In the >.-calculus, a function is viewed as a rule that converts
arguments to values, rather than as a set of (argument, value) ordered pairs.
It is this rule-oriented view of functions that brings out their computational
aspects [18]. John McCarthy developed LISP, the first widely-used program
ming language influenced by the >.-calculus [149]. Peter Landin showed the
connection to other programming languages (Algol 60, in that case) [131]
and went on to suggest that future languages would be "syntactic sugarings"
of the >.-calculus [132]. Dana Scott and Christopher Strachey did the crucial
work to provide a well-founded denotational semantics for the >.-calculus and,
by implication, the programming languages based on it [182]. Wadsworth's
development of graph reduction (Chapter 3) was a major step forward for
the implementation of >.-calculus-based functional languages [201]. Backus's

1Strictly speaking, the untyped pure .AK calculus; there are other variants.

1977 Turing Award lecture [14] widened interest in functional programming,
and research has continued unabated since then.

Although the .\-calculus is spare and simple, the results about it are pro
found and sometimes taxing. For a complete treatment, Barendregt [18] is
the standard reference. Hindley and Seldin's book [96] is a more accessible
treatment; most functional programming texts devote at least one chapter
to the .\-calculus.

2.1 Syntax

Stated in programming-language terms, the .\-calculus is a systematic way of
describing functions and their application to arguments. Let us begin with
its syntactic elements.

Well-formed expressions in the .\-calculus are called terms (or .\-terms).
The simplest terms are variables (shown by a lower-case letter): x, k, y, or
b, for example.

The second kind of term is the abstraction (or .\-abstraction): this is
how functions are defined. A .\-abstraction has the form .\v.{T}, where v is
a variable and Tis any term (capital letters denote arbitrary terms). The
unconventional braces to delimit a .\-abstraction are necessary later in this
dissertation, to avoid implicit scope rules. A better notation, using only
braces, might be {vT}; however, I keep the .\ symbol, etc., because readers
expect to see .\'s in the .\-calculus.

A .\-abstraction defines a function with a formal parameter v and a body
T; the body specifies what the function "returns." For example, .\x. { x}
is a function of x that returns whatever is passed to it-it is the identity
function. Another example is .\r.{ s }, a function that returns s no matter
what is passed to it-it is the constant function s. As one would expect, the
specific name of the formal parameter x is irrelevant. .\x. { x} and .\y. {y} are
the same function.

In the term .\x.{.\y.{x}}, the subterm .\y.{x} is the body of the whole
term, and the variable x is bound to the first .\. That .\x is called the binder
of x; a variable has at most one binder. Only .\'scan be binders. Conversely,
the variable x is a bound variable of the .\x; one .\x may have many bound
variables, all denoted by the name x. In a term .\c.{D}, the bound variables
of .\c must fall within D. D--or the term enclosed by the braces { }-is the
scope of .\c.

A variable a is bound to the innermost .\a in whose scope it falls, as in

13

>.w).j AX >.r >.y
I ' I I ' I ,~/\', ' >.g >.y ~ >.r w I I

I I I I ' 0 I

h
~ ' \ ' X r y y

>.w.{w} >.j.{>.g.{h}} >.x.{>.y.{x}} >.r. {>.r. { r}} >.y.{(y y)}

Figure 2.1: >.-abstractions

lexically-scoped programming languages. In >.r. { >.r. { r}}, the variable r is
bound to the rightmost >.r. If, in a term R, there is no >.a, then occurrences
of a variable a are not bound, but free. Note that xis bound in >.x.{>.y.{x}}
but is free in the sub term >.y. { x}. A variable that has no binder anywhere
is free at the top level; such variables are constants .

Figure 2.1 shows some examples of >.-abstractions; his a constant; w, x,
r, and the y's are variables, bound in the >.-terms shown. The parse trees
or >.-trees-for the terms are shown above their text representations (dashed
arcs show bindings of variables to binders, if they exist). I find the trees
easier to understand; written-out terms of more than, say, seven symbols
make my eyes glaze over.

Variable names and bindings can be confusing when a >.-term contains
two variables named x with different binders (for example). To substitute
for one x but not the other is tricky, and the procedure cannot be automated
efficiently. I avoid this problem by changing to a name-free >.-calculus in
Section 2.6; meanwhile, I restrict myself to >.-terms in which the problem
does not arise.

The final construct of the >.-calculus is an application (or >.-application),
of the form (F X)-the function term F is applied to the argument term X.
For the term (F X), F is the rator and X is the rand; the terms come from
Landin [130] and are short for "operator" and "operand." Figure 2.2 shows
seven >.-applications (shown in the >.-trees by unlabeled two-child nodes).

Tree representations prompt some useful definitions. The binding path
(of a variable) is the (unique) path up the tree from the variable to its
binder. The root path of any syntactic element (variable, >.-abstraction, or>.
application) is the path from the element to the root of the tree representing
the whole term.

Some of the >.-applications in Figure 2.2 match our intuitions about apply
ing a function to an argument. For example, applying the identity function
>.i.{i} to z should (and does) yield z. One surprise of the >.-calculus, however,

14

1\ 1\ 1\ 1\ ~
>.i z z >.i >.J h X y AX AX

l 1. I)\)\ z z g
X X X X

(>.i.{i} z) (z>.i.{i}) (>.f.{g} h) (x y) (>.x.{(x x)} .\x.{(x x)})

Figure 2.2: >.-applications

is that the "backwards" term (z >.i.{i}) is equally well-formed.
Summarizing, a Backus-Naur-style grammar for well-formed .\-terms is:

<term> (<term> <term>)
>. <variable> . {<term>}
<variable>

2.2 Computing with the >.-calculus

How does one compute with the >.-calculus? Intuition remains a reasonable
guide: We apply a "program" rator to an "input-data" rand and hope that
an "answer" will eventually be computed. (Because all computable func
tions can be expressed in the .\-calculus, the Halting Problem precludes any
assurance of termination).

The fundamental operation of the >.-calculus is (3-reduction. It defines
what happens when a function-rator >.x.{M} is applied to a rand N. The
process is as simple as can be~N is textually substituted for every variable
bound by >.x in M. Or, as it is usually expressed, N is substituted for every
free occurrence of x in M. In symbols, a (3-reduction is written as

(>.x.{M} N)--+ M[x := N].

In a /3-reduction, the substitution for the variable is the main effort (not
the other minor adjustments to symbols in the term). Figure 2.3 shows some
/3-reductions (dotted lines show the substitutions and point downward).

Consider Figure 2.3c. The ,8-reduction substitutes >.y.{(y y)} for every
free occurrence of x in (x x)~both of them. This example also shows that a
reduction does not necessarily produce something shorter; the left and right
terms are the same~suggesting a non terminating sequence of reductions.

A term of the form (>.x.{M} N) is a (3-redex (reducible expression).
Reducing one redex is called a ,8-reduction step (or just a "step"). A term

15

1\ 1\ ~ ~
Ai z -tZ Af h -tg AX AY AY Ay
l. I A: .. :/\ -t A A ~ g

X X y y y y y y

(Ai.{i} z)-> z (Af.{g} h)--+ g (.Ax.{(x x)}Ay.{(y y)})--+ (.Ay.{(y y)}.Ay.{(y y)})

(a) (b) (c)

Figure 2.3: ~-reductions

T1 ~-reduces to a term T2 if T2 can be obtained from T1 by a finite sequence
of zero or more steps.

Though not done often, the ~-rule may be invoked in reverse:

(Ax.{M} N) <- M[x := N].

This is a ~-expansion step. To express that the ~-rule may be used "in both
directions," one speaks of ~-conversion.

2.3 Other >.-calculus reduction rules

The pure A-calculus has more fundamental rules for manipulating A-terms.
This section says why I do not pay them much attention.

The a-rule (or its use, a-conversion) renames variables to avoid name
clashes. I skirt this issue by using either a name-free calculus (Section 2.6;
Chapter 4) or backpointers (Chapter 3).

The 7]-rule (or its use, called an 71-reduction step) is

Ax.{(Mx)}--> M.

There must be no free occurrences of x in M. The 7]-rule is needed for
extensional equivalence. It is useful in compile-time transformations, but it
is not needed for "computing." Peyton Jones's book about implementing
functional languages gives further details [165, pages 19~20].

As with the ~-rule, the 7]-rule may be used in reverse: it is then 7]
expansion. Using the rule both ways is 71-conversion. When not qualified,
"reduction," "expansion," and "conversion" refer to the ~-rule.

16

Ax
I

A
X AZ y X

I
y

Figure 2.4: A .\-term in $-normal form

2.4 f)-normal form and normal-order reduction

I have introduced the three syntactic elements of the .\-calculus-variables,
.\-abstractions, and .\-applications-and the main operation, $-reduction,
which has substitution as its main component. What does one do with it?

An obvious possibility is to do reduction steps until there are no more
$-redexes. A term that contains no $-redexes is in $-normal form (BNF).
Figure 2.4 shows a term in BNF.

A term T in BNF is unique (up to renaming of variables), in that no
other term in BNF can be reduced to it. Since a term in BNF is what is left
when computation is finished-an answer, in some sense-its uniqueness is
exceedingly important.

What of a term that contains redexes than cannot be removed by any
sequence of reduction steps? Figure 2.3c is an example. Its reduction is
non-terminating, so it has no BNF.

Finally, consider a term T with many redexes that has a BNF TBNF· Will
we reach TBNF, no matter what order we do $-reductions? No---we could end
up down a blind alley of non-termination. For example, in the term

(.\q.{r} (.\s.{(s s)} .\s.{(s s)}))

if we always choose the rightmost redex, we will not reach BNF, whereas the
other (left) redex yields r in one step.

Fortunately, there does exist an evaluation order-a pre-defined order in
which $-reductions should be done-that will yield a term's BNF if it exists;
this is the second Church Rosser theorem. It is called the normal order;
evaluation using this order is called normal-order evaluation. When terms
are written as linear text, the leftmost $-redex should be reduced in each
step. The equivalent .\-tree rule is to choose the first red ex reached by a
preorder walk of the tree from the root.

17

* a a

>.b
I

>.a

a Ax b
I
a

Figure 2.5: A >.-term in head-normal form

Normal-order evaluation is lazy-it reduces a /3-redex only if necessary.
This property allows programming with infinite data structures, a feature
that the lazy functional programming community insists upon.

2.5 Other normal forms and evaluation orders

Evaluating to BNF, while conceptually simple and theoretically satisfying,
traditionally leads to inefficient implementations, mainly because free vari
ables in A-abstractions (that are rators) preclude their effective compilation
(Peyton Jones illustrates the problem in his book [165, pages 221-222]).
Therefore, one might evaluate terms to another normal form deemed suffi
cient grounds to stop reducing.

When the >.-calculus is given some semantics (a matter I am ignoring),
terms without a BNF are considered "meaningless." Head-normal form
(HNF) is a less restrictive normal form that retains this property: a >.-term
without a HNF is also "meaningless" so evaluating to HNF is just as good.
A >.-term is in HNF iff it is of the form

where n, m 2': 0, and vis a variable [165, page 199]. Figure 2.5 shows a term
in HNF. In >.-tree terms, if you throw away a term's top-level A's (>.band >.a
in Figure 2.5), then walk along the left "spine" of application nodes (three
of them in Figure 2.5), the first non-application node is at the head, shown
by a * in Figure 2.5. If the head node is not a A-abstraction (i.e., it is a
variable), then the term is in HNF. HNF is a less constraining normal form:
a term in BNF is in HNF, but a term in HNF is not necessarily in BNF;
the example in Figure 2.5 still has a redex in it. If that redex led to a non
terminating sequence of reductions, then the term would not have a BNF,

18

yet it is in HNF. Wadsworth invented HNF [201]; Barendregt also discusses
it [18, page 41 J. Berkling wrote an interesting paper about evaluating to
HNF [25].

HNF satisfies purists, but it can still have free variables in redexes. For
this, weak head-normal form (WHNF) is required. As I use it, weak re
duction means "redexes inside .\-abstractions do not count." So, even if
Figure 2.5 had a redex at its *'d head position, it would be in WHNF be
cause it is inside the top-level abstraction .\b.{ ... }. The effect of reducing
only to WHNF is that one never has to contend with free variables in a redex
(excluding constants) [165, page 198]. A term in HNF is also in WHNF, but
a term in WHNF may not have a HNF.

BNF, HNF, and WHNF are the most common normal forms; WHNF
is the most popular for lazy functional-language implementations. (Peyton
Jones's book on implementation has a lot to say about WHNF [165].)

I must introduce more forms that will be needed later on. Weak j3-
normal form is to BNF as WHNF is to HNF: redexes are not reduced inside
.\-abstractions, top-level ones excluded.2 Lambda form (LF) means that
the term's .\-abstractions that cannot possibly be rators of any redex are
in BNF. (This truly obscure definition is used in the traditional eval-apply
interpreter for BNF, evaLBNF (page 25).) Root-lambda form (RLF) is a
still-more-obscure form used the interpreter in Chapter 4, and I defer its
definition until then.

BNF is the only normal form listed that is unique, provided it exists.
A term T may have two distinct fl-convertible variants, T1 <-> T2, both in
the normal form. This can happen because of a redex in an "uninteresting"
subterm, e.g., for HNF, not in head position.

Various evaluation orders can be used to reach a particular normal form.
An order that is certain to produce the normal form for a term if it exists is a
safe order for that form. Normal order is safe for all normal forms mentioned
above.

An unsafe order is an evaluation order that may fail to find a term's
normal form in some cases (presumably rare). The most common unsafe
order is applicative order, in which the rand and rator of a redex are evaluated
before doing the (I- reduction; it is one form of eager evaluation. Applicative
order is practical-the entire LISP community uses it-but it does preclude
computing with infinite structures. This disqualifies it for lazy functional
programmmg.

2The exclusion is one of convenience and has no deeper significance.

19

~
AX .. Y _L

A.' T

X Ay !
)\j

y X

(a) wrong!

/\
y Ay

)\
y y

~ /\
AX .. Y -->

A·:
X. AY ~

y Az
)\

z y

)\!
y X

(b) right

Figure 2.6: How to capture a variable in one easy lesson

In this dissertation, I use normal-order evaluation to BNF, or WBNF
when BNF poses a major implementation hurdle. Both are adequate for lazy
functional programming.

2.6 The name-free ,\-calculus

Names for variables in the A-calculus are convenient for the reader but com
plicate some definitions, most notably the precise definition of M[x := NJ,
substitution of N for free occurrences of x in M. The classic difficulty is
name capture; the reduction in Figure 2.6 illustrates the problem (dotted
lines highlight the substitutions): Unless the AY in the left-hand side is re
named (along with the variable y bound to it), it will capture the (unrelated)
y being substituted for x. Figure 2.6b shows the same reduction with the
necessary renammg.

A common solution to the naming problem is to represent each variable
by its binding index, the number of binders on a variable's binding path.
This is easiest to see on a A-tree: start at a variable and walk toward the
root, counting binders (A's). Note that a variable with no .\'s between it and
its binder will have a binding index of 1; others might define it to be 0.

De Bruijn [59] invented binding indices, and many people call them
"de Bruijn numbers;" Berkling [27; 32] developed a closely-related scheme
independently; the term "binding index" is his [25].

To convert all variables to binding indices, constants must get indices,
too. I give them distinct negative binding indices. Different instances of the
same constant will have the same negative index. Rules for the name-free
.\-calculus must not change them. Because they do not change and convey
little information, I usually write constants' binding indices as a * subscript.

20

--Ax--

'(:\----,
' '
X '\

Z_t Ay \
I I

AX I
I

/\.'
z 1 -Ax ,' - ,A ,

I /

' -Xt x4

Ax.{(Ax.{(x2 (z_ 1 Ay.{Ax.{x3 }}))} (z_1 Ax.{(x1 x2)}))}->
Ax.{(x1 (z_ 1 Ay.{Ax.{(z_1 h.{(x1 x4)})}}))}

Figure 2. 7: Reduction with binding indices

Figure 2. 7 shows a name-free reduction; I have added the binding indices
as subscripts to the variable names. Dashed arcs show the bindings of bound
variables to binders (A's).

Once a term has had binding indices added, the variable names can be
removed. This is often done and leads to a notation such as

A.{(.\.{(2 (-1 .\.{A.{3}}))} (-1 .\.{(1 2)}))}-> .\.{(1 (-1 .\.{A.{(-1 .\.{(14)})}}))}

Readability has not improved,3 so I prefer keeping a term's original variable
names as mnemonic decoration, with the real information (binding indices)
attached as subscripts, as in the example above. The rules of a name-free
calculus operate only on the subscripts. The names are there only to make
examples easier to understand. The following definition will be used later.

Definition 2.1 Two name-free .\-terms are A1-equivalent if they are identical
(but the name decorations on the terms do not count, of course).

The predicate function plain_equivs (page 23) checks if two plain A-terms
are Arequivalent. The t subscript suggests that it operates on terms as
A-trees.

A word on still other approaches to variable naming. . . Revesz has an
alternate calculus for which "brute-force" renaming works [174]. Staples

3 We could make matters worse by removing the .X symbols, as in Chapter 5.

21

[191] and Boom [36] propose schemes in which extra information is pinned
onto .A-abstractions to keep track of their bound variables. Appendix C of
Barendregt's tome [18] discusses free and bound variables further.

A simple interpreter and the recurring example. We now have all
the pieces to put together a simple normal-order interpreter for the name-free
.A-calculus, written in ML (Appendix A gives some background information
about ML). The function onestepT : Term -+ (booi,Term) (page 23) tries
to do one ,@-reduction step. If it cannot, it returns false and the .A-term is
in WBNF; otherwise, it returns true and the reduced-one-step .A-term. A
top-level routine (not shown) repeatedly calls onestep T until it returns false.
Figure 2.8 shows all the steps in the reduction of a recurring example that
will be repeated for all interpreters in this dissertation.

The ML function evaLBNF: Term-+ Term (page 25) is a traditional en
coding of an interpreter that reduces to BNF. The auxiliary function evaLLF
ensures that a .A-abstraction used as a rator of a redex is not evaluated before
reduction; other abstractions are fully reduced. EvaLWBNF is also shown;
evaLWBNF and repeated calls to onestepT produce the same result, of course!

2. 7 Combinators

An alternate solution to the name-capture problem is remove free variables
altogether by converting .A-terms to combinators [52; 53; 164]. A combina
tor is simply a .A-term with no free variables except constants; .Ax.{ x} and
(.Ax.{Ay.{(x y)}} .Az.{z}) are examples.

Any .A-term may be converted to a combinator-term built from a fixed set
of combinators. The minimal set of building-blocks is the SK combinators.

S >.x.{.\y.{.\z.{((x3 z1)(y2 zi))}}}

J(.Ax.{.\y.{x2}}

Larger base sets of combinators may be used for more space-efficient encod
ings (e.g., Turner's combinators [199]). An alternate method is to use an
even more specialized kind of >.-term called supercombinators [105]. A su
percombinator is a combinator in which all inner .A-abstractions are also su
percombinators. Supercombinators may have several arguments, and "multi
argument" reduction must be used to avoid intermediate terms that have free
variables. Sets of supercombinators derived from specific .A-terms have some
advantages for implementation over fixed-combinator sets.

22

(* plain_equivs :Term- Term- bool.

*)

Compares two TermTs and returns true if they are identical except for decorative
names and variable marks; otherwise, returns false.

exception unexpected_suspension_error

fun plain_equivs (App(Ml,Nl)) (App(M2,N2)) =
(plain_equivs Ml M2) andalso (plain_equivs Nl N2)

I plain_equivs (Lam(Bl,_)) (Lam(B2,-)) = plain_equivs Bl 82

I plain_equivs (Var(bil,_,_)) (Var(bi2,-.-)) = (bil = bi2)

I plain_equivs (Sus(-.-.-)) (Sus(-.-.-))

I plain_equivs otherl other2

:;:::; raise unexpected_suspension_error

=false

(* onestepT: Term- (booi,Term).

*)

Uses std..subst (page 172) and incdree_varsl (page 171).

Find the first redex in T and reduce it (tree reduction); report whether or not a
red ex was done (and return the new >.-term).

All of the code except the first clause implements a preorder walk of the term
looking for a redex (an App node with a Lam rator).

When an App(Lam(B, ...),N, ...) is found, real work begins. The main effort is sub
stituting N for bound variables of the Lam(...); the standard routine std..subst does it.
The two calls to incr _free_varsl adjust the binding indices.

fun onestepT (App(Lam(B, n), N)) = (* redex *)
(true, incr_free_varsl -1 (std_subst (incdree_varsll N) B))

I onestep T (App(M, N)) = (* rator not a lambda *)
(*do preorder walk *)
let val (done_in_M, M') = onestepT Min

if done_in_M then

end

(true, App(M', N))

else let val (done_in_N, N') = onestepT N
in (done_in_N, App(M, N')) end

(*- onestepT (Lam(B, n)) =(?if we were going to {3-normal form ... ?)
let val (done_in_B, B') = onestepT B
in (done_in_B, Lam(B', n)) end

*)

I onestepT other= (false, other)(* variable or abstraction [to WBNF} *)

23

Ay AY

/---_
Af AX AX

A -+ A Ax
fr Xr Y2 Xr Y2 A '

AX AX
fr Xr Y2 A A

fr fr Xr Y2 Xr Y2

Ay Ay

Yr
-+ -+

AX Y1

A AX AX AX AX
Xr Y2 A A A A

Xr Y2 Xr Y2 X! Y2 Xr Y2

Ay Ay

AX

)\
Yr

Xr Y2 Y1 Yr

Figure 2.8: The recurring example: five tree reduction steps

24

(* evai_BNF: Term-> Term.

Uses std_subst (page 172), incr_free_vars1 (page 171), and evaLLF.

This is the traditional normal-order interpreter, following Wadsworth {201,
page 181}; the same thing is in Arvind et al. {9, page 5.3}.

evai_BNF evaluates a Term to {3-normal form. The "helper" function evaLLF
evaluates to lambda form, with no reduction inside a A-abstraction that might
become a redex-rator.

evai_WBNF: Term----+ Term evaluates a Term to weak {3-normal form; redexes inside
A-abstractions are allowed to live.

std_subst does substitution, and incr _free_varsl keeps binding indices in order.
*)
fun evaLBNF (App(M,N)) =

let val M' = evaLLF M in case M'
of Lam(B, n) =>

evai_BNF (incr_free_varsl -1 (std_subst (incdree_vars11 N) B))

1- =>
App(M', evaLBNF N)

end

I evai_BNF (Lam(B,n)) = Lam(evaLBNF B, n)

I evai_BN F a_variable = a_variable

and evaLLF (App(M,N)) =
let val M' = evaLLF Min case M'

of Lam(B. n) =>
evai_LF (incr_free_vars1 -1 (std_subst (incdree_vars11 N) B))

1- =>
App(M', evaLBNF N)

end

I evaLLF (Lam(B,n)) = Lam(B, n) (*don't eva] body! *)

I evai_LF a_variable = a_variable

(* to weak normal form ... *)

fun evaLWBNF (App(M,N)) =
let val M' = evai_WBNF M
in (case M'

of Lam(B,n) => (incdree_vars1 -1 (std...subst (incdree_vars1 1 N) B))
I- => App(M', evai_WBNF N)

) end

I evaLWBNF other= other (*abstraction or variable*)

25

Combinators have no free variables, so they are pure rewrite rules and
require no "context" for their evaluation. This property makes the nature of a
combinator-based interpreter quite different, and the strategies used diverge
widely from those used for evaluating the pure .\-calculus. I will have little
more to say about combinators.

2.8 The practical use of the ,\-calculus

The pure .\-calculus is not a practical medium for computation; for exam
ple, it has no numbers and no arithmetic. The theoretically-minded will be
happy to know that these can be represented in the pure .\-calculus. But,
even then, the pure .\-calculus remains wildly impractical, so the designer
of a .\-calculus-based language always adds numbers, arithmetic and other
primitives. Moreover, theoreticians may add different symbols or restrictions
to the formal system for their own nefarious purposes. So, there are many
.\-calculus and .\-calculus-derived systems, each contrived for a different pur
pose.

From a FORTRAN4 programmer's perspective, a normal-order inter
preter of the .\-calculus (or a practical variant) is inefficient: it is too slow,
and it uses too much memory. The impediments run deep: substitution of
full generality, as in f)-reduction, is not a bounded operation, there is no
really efficient representation for higher-order functions, and the bookkeep
ing overhead needed to track variables' freeness can be considerable. This
inefficiency has been tackled in many ways, including:

o Make infrequent use of the parts that are "inefficient." LISP, the first
programming language based on the .\-calculus, also has full impera
tive features that readily compile to good global-addressable-memory
(GAM) machine code. Most real LISP programs are not written in a
functional style. Also, LISP's applicative-order evaluation is unsafe.

o Use a different evaluation order, aim for a different normal form, and
provide many primitive operations; in short, soup up the base language.

o At compile-time, transform the initial .\-terms into something more
amenable to efficient execution on a GAM machine (e.g., to supercom
binators [105]).

4 Phil Wadler, visiting UNC in the fall of 1984, paraphrased: "Let's call all languages
with assignment 'FORTRAN'."

26

• Use hints from the programmer to improve the efficacy of compilation.

• Improve the interpreter's basic model of computation, upgrade its al
gorithms, or augment its realization (e.g., throw hardware at it).

2.9 The necessity of sharing for normal-order
evaluation

I want an interpreter for the normal-order evaluation of the >.-calculus that
does not depend on representing >.-terms as graphs. Graphs are normally
used because they can represent shared terms easily (see Chapter 3). This
section explains why the sharing is necessary.

What is "sharing?" It means that one instance of a term S is made
to stand for many occurrences of the term. For example, in the arithmetic
expressiOn

X+ X+ X, X = 2 X 2,

the product 2 X 2 is "shared;" the references to it, x, are generally called
"pointers". Whereas the shared instance of a term may be arbitrarily large,
the pointers to it are constant-sized. 5

If the size of a pointer and the shared term it points to are the same
(within a constant factor), that is trivial sharing, because it does not save
any space. In the >.-calculus, sharing a variable is trivial.

Non-trivial sharing of the kind just described is space sharing; memory
is conserved. A second form of sharing is computation sharing, in which
reduction-steps are conserved:6 when a space-shared term S is reduced to
S', all the pointers to S will (by some magic) indicate S'. If one of those
pointers is followed later, the reduction S--> S' need not be re-done.

As Section 3.3 will make clear, the >.-calculus requires some copying of
>.-terms, even for graph reduction. The copying that must be done for correct
ness' sake is necessary copying; other copying is unnecessary. Unnecessary
copying done willfully in hope of some benefit (e.g., speeding things up) is
speculative; one cannot determine the necessity of copying in advance.

Why is sharing practically required for the normal-order >.-calculus? Con
sider, informally, a simple, normal-order evaluation without sharing versus an

5 Strictly speaking, a pointer into an arbitrarily-large address-space is also unboundedly
big; however, I am following the computer-science practice of believing that any pointer
can fit into 32 or 64 or 128 ... bits.

6I am following the terminology of Arvind et al. [9].

27

applicative-order one (I follow Wozencraft and Evans's notes for MIT course
6.231 [213, pages 3.2-32-3.2-33]). Intuitively, applicative order reduces the
redexes at the bottom of the A-tree and passes the results upward to the
next level of reductions. Two good things may happen. First-and this is
the weaker argument-reductions often produce smaller A-terms, using less
space when passed upward and copied by higher-up redexes. Second, a A
term being substituted never contains a redex, so there is no proliferation
of unevaluated redexes. The problem with applicative order is that some
of those bottom-up reductions are unnecessary (their results will be thrown
away later) and, in the worst case, non-terminating-which is why applica
tive evaluation is unsafe.

Normal-order reduction, by contrast, only commits to reductions that are
certain to be needed in getting to BNF. (Determining "neededness" in general
is undecidable; Barendregt et a!. discuss some approaches to this matter
[19].) Since the leftmost redex is always needed, normal-order evaluation
reduces it at each step. Meanwhile, normal-order reductions may make many
copies of unevaluated A-terms. These terms are likely to be larger than their
,8-reduced equivalents; moreover, copying them can increase the number of
red exes in the whole A-term.

This argument is informal, because cases can be concocted to show ei
ther applicative or normal order superior. However, common cases of func
tion composition-extremely important in practice-get normal-order-evalu
ation-with-copying in trouble. Figure 2.9 shows an example in which a func
tion f is composed with itself, (Aj.{(f (J (J (Ay.{yr} z))))} Ax.{(x x)});
redexes are starred. Applicative order quickly determines the initial argu
ment [(Ay.{y1} z)-+ z], substitutes Ax.{(x1 x1)} for f, does the compositions
right-to-left, bottom-to-top, and finishes the whole job in five steps, total.
Normal-order evaluation, on the other hand, substitutes for f first, then
does the compositions left-to-right, top-to-bottom, each time substituting
the whole right part of the term, eventually making eight unevaluated copies
of the initial argument, (Ay.{yr} z). The reduction takes sixteen steps.

If there were k uses of f in Figure 2.9 (instead of three) and there were n
instances of x in the rand (instead of two), then applicative-order evaluation
would reduce the A-term in 2 + k steps. Normal-order would take roughly
nk steps. This exponential blow-up, both in space required and reductions to
do, will arise in practical normal-order reductions; therefore, some sharing
mechanism must be provided for any normal-order A-calculus interpreter.

28

>.x

A
xr xr

>.x

)\
---;

)..y z.
' Yt

3 normal-order steps

*
>.x

A
---;

>.x >.x >.x

A Xr Xr A A >.yz.)..y z.)..y z.

>.x

)\ >.x

)\

>.x

>.x)\

)..y z.
I

Yt

>.x A XtXt A >.yz. >.yz.
Xt Xt I Xt Xt I XtXt I XtXt I XtXt I

Yt Yt Yt Yt Yt

~
Af >.x

f~x~l ft ---;

ft *
>.y z.

~
>.j >.x

A ---;

ft

Yt

3 applicative-order steps

>.x
>.x

A >.x * A A
---;

Xr Xr >.x
>.x z.

A Xr Xr
A

x1 xr

z* z*
xr Xr xr xr

Figure 2.9: Function composition example

29

Chapter 3

Graph reduction: the
A.g-interpreter

This means that an argument is evaluated at most once, its
evaluation being delayed until first needed. After Wadsworth

this kind of 'lazy' evaluation has become a lifestyle.

-Aiello and Prini (1981).

This dissertation studies the normal-order evaluation of the .A-calculus by
comparing graph reduction with suspension-based reduction. The first part
of this chapter presents a full graph-reduction interpreter that will serve for
the graph-reduction half of the comparison. The next chapter presents the
alternate interpreter.

Section 3.5 reviews parallel graph-reduction architectures. The main
question there is: Why did the designers of those machines choose graph
reduction? I dwell particularly on what they say about sharing.

For illustrative purposes, the interpreter in this chapter is encoded in
ML. Appendix A provides a reader's guide to ML and describes some utility
functions for graphs (Section A.2.2). The code reflects the non-functional,
pointer-twiddling nature of graph reduction by using references (pointers),
dereferencing, and assignments.

Introduction. This chapter introduces graph reduction, an implementa
tion technique often used for functional languages, and presents a normal-

*
~

.\x }v

X

y X

(.\x.{((x y) (x (y x)))} N) --> ((N y) (N (y N)))

Figure 3.1: Simple graph reduction

order graph reducer for the .\-calculus: a .\
9
-interpreter. Wadsworth invented

graph reduction for the pure .\-calculus [201] ;1 its main virtue is that it pro
vides the needed sharing for normal-order evaluation.

Wadsworth's fundamental insight was this: when faced with a substitu
tion M[x := N] during ;]-reduction, replace each instance of x in M with
a pointer to N rather than a copy of N. Figure 3.1 shows a simple graph
;]-reduction, with dotted lines highlighting the intended substitutions. (The
graphs do not use binding indices for reasons discussed in Section 3.4.1.)

Figure 3.1 illustrates two important things a graph reducer must do. The
first is obvious: the rator's bound variables are replaced by pointers to the
rand. The rand is not duplicated; the single copy is shared (space sharing).

The second thing is more subtle-the root of the redex (marked by* in
Figure 3.1) is overwritten with the result of the reduction (the node marked
t). If the root node (node*) has several pointers aimed at it, the overwriting
lets them all "see" the result of the reduction-computation sharing. Graph
reduction provides maximal sharing of both space and computation.

Top-level structure of a .\
9
-interpreter. I now present the details of a

-\-interpreter. A .\-calculus interpreter has three essential parts: a search
strategy to find ;3-redexes, a procedure to copy shared rators (Section 3.3 de
scribes this implementation concern), and ;]-reduction (substitution, mainly)
to apply to the chosen redexes. Optionally, the interpreter may apply "tidy
ing" transformations between reduction steps for efficiency reasons.

1 Ironically, in the introduction of his thesis, Wadsworth said that he considered the
work on semantics to be "more significant" [201, pages 2-3L yet he is certainly best
known for inventing graph reduction.

31

(* Top-level loop: drives onestepG (>._-interpreter). Does the skipping over top-level
>._-abstractions. Uses onestepG (page 36) and rm_indir_nodes (page 176).

*)

fun toplevG (ref(LamG(B,_,_,_))) = toplevG B
I toplevG other = reaLtoplevG other

and reaLtoplevG G =
let val done_in_G = onestepG G (*step forward *)

val G' = rm_indir_nodes G (* tidy things up *)

in if done_in_G then(* keep going*) reaLtopleveiG G' else G'
end

The normal-order search strategy of this .\9 -interpreter is a pre-order
walk as would be used on the underlying .\-tree; however, subgraphs rooted
at already-visited nodes are not revisited. The function onestepG (page 36)
encodes this strategy; it is repeatedly invoked by toplevG (page 32) until
onestepG indicates that no relevant redexes remain.

Copying of a shared rator before ,8-reduction is the job of lazy_copy (page
41) with substG (page 37) doing the subsequent substitution. In this .\

9
-in

terpreter, the periodic removal of indirection nodes counts as "tidying," but
I ignore this in comparisons of interpreters later on.

With that bird's-eye view in mind, I begin by describing the data struc
tures that represent .\-terms in the -\-interpreter, then I present its con
stituent parts.

3.1 Graph structure and terminology

The basic data-structuring implication of graph reduction is that .\-terms
are represented by (directed acyclic) graphs, not trees. (Cyclic graphs are
sometimes used to represent recursive functions more efficiently.) When I
describe graph-related things, I often add a g subscript; for example, "\
graph," ".\9 -term" or ".\

9
-interpreter."

A .\9 -graph is a directed graph consisting of a set of nodes and a set of
directed edges. (In figures, direction on edges is from the higher node to the
lower node unless an arrowhead shows otherwise.) .\

9
-graph nodes represent

the basic constructs of the .\-calculus in the obvious way; Figure 3.2 gives
the ML definition of a \-graph node; most of the fields are updatable (all
the refs), because graph reduction modifies the graph in place. The following

32

(* Graph nodes for the Ag-calculus; names commonly used are shown. *)
type Gnodeinfo =

bool ref*
int ref *
bool ref*
(int * int) ref

datatype Gnode
= AppG of

(*subbed; true if substituted in *)
(* refcnt; reference count {debugging only} *)
(*visited; visited/marked? [housekeeping} *)
(* x_y; x,y coords for anim {debugging only}*)

Gnode ref* (* M; rator *)
Gnode ref* (* N; rand *)
boo I ref * (* indir; true if a temporary indirection node *)
Gnodeinfo (* bits to keep around *)

[lamG of
Gnode ref *
int ref*
string *
Gnodeinfo

[VarG of
int ref *
string *
Gnodeinfo

(* B; body *)
(* bndriD; binderiD for backpointers *)
(* n; variable name: decorative *)

(* bi; binderiD: backpointer *)
(* n; variable name: decorative *)

Figure 3.2: Graph nodes' structure

33

kinds of nodes may exist:

AppG: Represents a .A-application; its left and right children are pointers to
the rand and rator, respectively.

A subbed flag is set true when a node is the root of a graph that rep
resents a substituted free expression; Section 3.3 discusses the reasons
for this flag. A visited flag is set by the .A

9
-interpreter when it wants

to avoid re-visiting nodes. A reference count (i.e., number of pointers
to the node) and a pair of (x, y) coordinates (used to make figures) are
for debugging only.

An AppG may be temporarily turned into an indirection node by setting
its indir flag. If set, the rator-pointer indicates the intended target.

LamG: Represents a .A-abstraction; it has a pointer to the .A-abstraction body.
The LamG node has a unique integer binder-ID; variables can then
match against this ID to see if they are bound to this .A-abstraction.
(The support routines for these IDs are in Section A.2.2 (page 177).)
The name on an abstraction is preserved (i.e., x for a .Ax), but it is
purely decorative. The housekeeping fields are like those of AppGs.

VarG: Represents a variable; the important field is the binder-ID that iden
tifies the LamG where the variable is bound (constants have an ID
for which there is no matching LamG). The binder-ID is, in effect, a
backpointer to the variable's binder. (See Section 3.4.1 for why bind
ing indices cannot be used.) The housekeeping fields are like those of
AppGs. The name is purely decorative, as usual.

Some terminology about .A
9
-graphs is needed, especially for comparisons

later on. A node has a type: three possible types are .A-applications, .A
abstractions, and variables bound to .A-abstractions. Nodes of these partic
ular types are plain nodes; all nodes in a .A

9
-graph are plain (making it a

rather dull distinction at this point!).
If two plain nodes are directly connected by an edge, they are g-connected.

All edges in a \-graph are g-connections.

Definition 3.1 Two .A9 -graphs G1 and G2 are .A9 -equivalent if they are
isomorphic graphs in which each corresponding pair of nodes g1 E G1 and
g2 E G2 have the same type and the same subbed-flag value.

34

Converting between simple >.-terms and .X
9
-graphs. A simple, tree

structured .X-term (like those in Chapter 2) is a \-graph. (I ignore the ML
type-conversion mechanics of replacing App, Lam, and Var nodes with AppG,
LamG, and VarG nodes (respectively) and the messy conversion from binding
indices to binder-ID backpointers as done in the code in Appendix A.2.2.)

The function graph2term T : Gnode ref-> Term (page 67) converts a .X9 -

graph to its linear-expansion .X-term. (In the ML code, I use the name
"Term T" to indicate a simple .X-term made from >.-applications, >.-abstrac
tions, and variables.) All the sharing in the .X

9
-graph is unwound, producing

a plain >.-term with no sharing.

3.2 Finding a redex and ,8
9
-reduction

As already suggested, walking a >.
9
-graph to find the next redex (in pre-order)

is fundamentally the same as walking a >.-tree, except that previously-visited
subgraphs need not be re-walked. The ML function onestepG : Gnode ref->
bool (page 36) finds the next redex and then modifies the >.-graph appropri
ately, returning a boolean indicating whether a reduction took place. (I defer
the problem of shared rators to Section 3.3.)

The important lines in onestepG are the calls to lazy_copy (described in
the next section) and substG (page 37) that does a substitution: all variables
with a binder-ID matching that of the rator \-abstraction are replaced with
a pointer to the rand N. SubstG also reports the number of substitutions
done.

Purely for reasons of compatibility with the interpreter in the next chap
ter, the .X9 -interpreter handles trivial reductions specially. If the rand is a
single variable, i.e., the redex is (.Xx.{B} y), the substitution of y is actually
done and the substitutions' subbed flag are not set. Sharing a variable is
trivial and serves no purpose. This case is handled by substG (page 37).

Similarly, if the rator-body is a single bound variable, i.e., the redex
is (h.{x} P), then P is the result (as usual) but its subbed flag is left
alone. Section 4.5.2 explains about why these special cases facilitate exact
comparisons of interpreters.

OnestepS achieves the effect of overwriting the root of the redex by turning
it into an indirection node, a common technique. It is simpler than looking
through the whole >.9 -graph to find pointers to the redex and re-aiming them.
I will generally ignore indirection nodes; toplevG (page 32) removes them
between steps for simplicity's sake.

35

(* onestepG : Gnode ref-+ bool is passed a pointer to (part of) a graph; it finds the
first redex in it and reduces it (modifying the Ag-graph in place). It reports whether
or not a reduction was done; it reduces to WBNF.

*)

It uses incr_refcnt (page 175), seLsubbed (page 175), lazy_copy (page 41), and substG
(page 37).

fun onestepG (ref (AppG(M,N,(ref true),-))) =raise unexpected_indirection_node

I onestepG (ref (AppG(M as ref (lamG(B as ref (VarG(vbi,n,(-.-·-·-))).
lbi .-. (-·I refcnt, -· _))),

N,indir,(subbed,_,_,_)))) =
(* beta redex: special case of a trivial rator body *)
(indir := true; (* this AppG now an indirection node! *)

seLsubbed false N; (*the reason for the special case *)

if ((!vbi) = (!lbi)) then (*bound*)
(M :=(IN))

else (* useless reduction *)
(M :=(!B));

true
)

I onestepG (G as ref (AppG(M as ref (lamG(B,si,-.(-.lrefcnt,-.-))),
N,indir,(subbed,_,_,_)))) =

(* beta redex; special case of a trivial rand handled in substG *)
let

in (

val_ = incr_refcnt -1M; (*will lose AppG refs*)
val _ = incr_refcnt -1 N;
val _ = seLsubbed true N; (*the key to laziness! *)
val Blzcpy = lazy_copy B;
val (instance, no..subs) = (substG ('si) N Blzcpy);

indir := true; (* this AppG now an indirection node! *)
incr_refcnt -1 M; (*whatever M is will have one less ref*)
(M :=(!instance)); (* redex overwritten! *)
true

) end

I onestepG (ref (AppG(M,N,_,_))) = (*not a redex *)
(onestepG M) orelse (onestepG N)

(* onestepG (ref (LamG(B,_,_,_))) = onestepG B, if BNF were possible ... *)

I onestepG other = false (* a lamG or a VarG *)

36

(* substG : int ~ Gnode ref~ Gnode ref~ Gnode ref* int fills in bound variables
(those backpointing to bndrlD) with pointers to sub_with, or-if sub_with is just a
variable--with a copy of the variable itself (trivial substitution). substG also returns
the number of substitutions done.

*)

SubstG takes the usual precautions against revisiting subgraphs (with mk..graph_visited
(page 175)); not visiting subbed nodes would work as well. subG is the local function
that goes on to do all the work.

and substG bndrlD sub_with node =
let (*cases with 'subbed' and 'visited' false given first *)

fun subG bndrlD sub_with (Gas ref (AppG(M,N,(ref true),-)))=
(perr(" unexpected indir node:" -unparse(graph2term T G));
subG bndriD sub_with M)

I subG bndrlD sub_w (G as ref (AppG(M,N,_,(_,_,visited as (ref false),-)))) =
let val _ =(visited :=true)

val (M',mc) = (subG bndriD sub_w M)
val (N',nc) = (subG bndriD sub_w N)

in (G, (mc:int)+(nc:int)) end

I subG bndrlD sub_with (Gas ref (LamG(B,-,-.(-,_,visited as (ref false),-))))=
(*a copy of a LamG node needs all-new binderiDs *)
let val _ = (visited :=true)

val (B',bc) = (subG bndriD sub_with B)
in (G, be) end

I subG bndriD sub_with (Gas ref (VarG(si,_,(_,_,visited as (ref false),-)))) =
((visited :=true);
if (!si = bndrlD) then ((*substituting! *)

case sub_with (* but not if trivial... *)
of (ref (VarG(ssi,sn,(-.-·-·-)))) =} ((*subbed is true *)

)

((ref (VarG(ref (!ssi),sn,(ref true,ref l,ref false, ref (0,0))))),
1)

I - =} ((*non-trivial substitution *)
incr _refcnt 1 sub_with;
G := !sub_with;
(G, 1))

) else (*just copying *)
(G, 0))

(*finally, if 'visited' is true ... *)
I subG bndriD sub_with already_visited = (already_visited, 0)

in (mk_graph_visited false node; subG bndriD sub_with node) end

37

···~
AX N

//

AX

X X

b c
b c

Figure 3.3: Graph reduction with copying

3.3 Sharing free expressions and lazy copying

There is more to graph reduction than substitution with pointers to, rather
than copies of, a A

9
-term. Some copying is unavoidable. The problematic case

arises when the rator of a red ex (a A-abstraction) is shared. An abstraction
>..x.M is a "template" for a reduction; M defines the "shape" or "structure"
of the result, with the bound variables of >..x being placeholders to indicate
where the rand should be "plugged in." To fill in the placeholders of a shared
rator is to use up the other sharers' template. Consequently, shared rators
require some copying. Figure 3.3 shows a reduction, marked with a *, in
which the rator is shared (with three pointers to it). A complete copy of the
rator is kept for possible later use.

Wadsworth sought to maximize sharing of space and computation. For
those criteria, the reduction in Figure 3.3 copies too much. In particular, the
sub-term (a (b c)) includes no bound variable x, so one copy may be shared
among all instances of the A-abstraction's body. (a (b c)) is a maximal free
expression (MFE) in the term >..x.{((x x) (a (b c)))}. (Other free expressions
include c and (b c), but neither is maximal.) Figure 3.4 shows the same
reduction as Figure 3.3, but with the MFE (a (b c)) shared.

Detecting and sharing MFEs gives the most possible sharing, and there
fore the least copying, but it is an expensive task for run-time. 2 Arvind
et a!. [9] examined the alternatives in some detail; they say an interpreter
like Wadsworth's that detects and uses MFEs does fully lazy copying.

Arvind et a!. also discuss lazy-copying interpreters, citing Henderson

2 Also, the "most possible" sharing is not necessarily the ''best possible;" Peyton Jones's
book on sequential implementations of graph reduction has a section on "Excessive Shar
ing" [165, Section 23.4.2]!

38

··~
AX N

X X

b c

Figure 3.4: Graph reduction with a shared MFE

\I~
,\b A

e e

d d

(a)

//
,\b

d d

Figure 3.5: A lazy copy

(b)

e e

and Morris's evaluator as an example [90]. Lazy copying does not detect
MFEs; instead, it exploits a simple observation: If the term (,\a.{ ,\b.{M}} N)
is reduced to ,\b.{M[a := N]}, then N is free in ,\b.{M[a := N]}, because
variables in N could not "see" the ,\b abstraction to be bound to it. I call
it a substituted free expression (SFE). Lazy-copying flags SFEs when first
encountered and avoids copying them later on. Put colloquially, lazy copying
does not seek out free expressions, but it makes good use of the ones that
come its way. In figures, daggers t mark the roots of the SFEs; in the ML
code, subbed flags are set to true.

Lazy copying leads to less sharing than fully-lazy copying. Figure 3.5
shows (a) a term with a redex at the top and (b) the term after a lazy-copy
of the shared rator (the ,I)-reduction itself would follow). Laziness manifests
itself in the sharing of be-daggered (d d); fully-lazy copying would detect

39

the free expression (c c) and avoid copying it also. The function lazy_copy :
Gnode ref-+ Gnode ref (page 41) is an implementation.

Arvind et al. 's main result that is relevant here is that lazy copying gives
the same sharing as fully-lazy copying if the initial >.-terms have their free
expressions >.-lifted, as in conversion to supercombinators, for example [105].
(Section 6.5 happens to give an example of such a conversion.) With this
assurance in mind, I consider lazy or fully-lazy copying to be equally ac
ceptable. The interpreters in this chapter and the next do (non-fully) lazy
copying of shared rators.

That is the good news. The bad news is that lazying copying can give
incorrect results on >.9 -graphs with redexes inside (non-top-level) >.9 -abstrac
tions. Put another way, it is correct only for reduction to weak ,8-normal form
(WBNF). Figure 3.6a shows a >.

9
-graph after one reduction (ton the SFE).

The second reduction is inside the >.z abstraction, as Figure 3.6b shows. The
third redex will be the one marked with a *i because its rator is shared, a
lazy copy must precede the reduction. Because (z z) is a be-daggered alleged
SFE, it will not be copied. But the z's mean that (z z) is not free in the >.z
abstraction, and they must not be shared.

The >.9 -interpreter on the recurring example. Figure 3. 7 shows all the
steps of the graph reduction of the recurring example; the daggers indicate
SFEs.

3.4 More on variable bindings

3.4.1 Graph reduction with binding indices

Graph reduction is an implementation technique for the >.-calculus that has
desirable sharing properties; binding indices are an effective solution to the
problems of variable naming: can the two techniques be used together?
Oddly enough, for normal-order evaluation the answer is "No."

Figure 3.8 shows a reduction done two ways, by (a) simple tree reduction
and by (b) graph reduction. There are two substitutions for x; for tree
reduction, the binding indices in the substituted terms differ. In particular,
the free variables y and z in the two copies of rand are now different distances
from their binders. The problem is that >.-terms are represented by graphs,
so binding paths are no longer unique.

If the rand is to be shared, then something must be done to balance the

40

(* lazy.copy : Gnode ref-+ Gnode ref copies the subgraph of connected unsubbed nodes
rooted at its argument node. That is, when a subbed node representing an SFE is
seen, a pointer to that node is returned and the copy does not proceed inside that
subgraph.

*)

The function chg.bndriDs (page 177) is used to fix backpointer binderiDs in the copied
parts of graphs.

and lazy.copy node =
let (*cases with 'subbed' and 'visited' false given first *)

fun lzcp (Gas ref (AppG(M,N,(ref true),.))) =
(perr(" unexpected indir node:" ·unparse(graph2term T G)); lzcp M)

llzcp (G as ref (AppG(M,N,.,((ref false),.,visited as (ref false),x.y)))) =
let val _ = (visited := true) (*just copying an AppG node *)

val (M', N') = (lzcp M, lzcp N)
in (ref (AppG(M', N', ref false, (ref false, ref 1, ref false, ref (!x.y))))) end

llzcp (Gas ref (lamG(B,old..bndriD,n,((ref false),.,visited as (ref false),.)))) =
(* a copy of a LamG node needs all-new binderiDs *)
let val_ = (visited := true)

val new.bndriD = nexUD ()
val B' = (lzcp B)
val_ = chg.bndriDs (!old.bndriD) new.bndriD B'

in (ref (LamG(B', ref new.bndriD, n, (ref false, ref 1,ref false, ref (0,0)))))
end

llzcp (G as ref (VarG(si,n,((ref false),.,visited as (ref false),x.y)))) =
(visited :=true;
(ref (VarG(ref (!si), n, (ref false, ref 1, ref false, ref (!x.y))))))

(*now the cases with 'subbed' true but 'visited' false *)
llzcp (G as ref (AppG(.,.,.,((ref true),.,visited as (ref false),-)))) =
let val new.ptr = (ref (VarG(ref 0,"" ,(ref false,ref 1,ref false, ref (0,0)))))
in (new_ptr := !G; new.ptr) end

llzcp (G as ref (LamG(.,.,.,((ref true),.,visited as (ref false),-)))) =
let val new.ptr = (ref (VarG(ref 0,"" ,(ref false, ref 1,ref false, ref (0,0)))))
in (new.ptr := !G; new.ptr) end

llzcp (G as ref (VarG(.,.,((ref true),.,visited as (ref false),.)))) =
let val new.ptr = (ref (VarG(ref 0,"" ,(reffalse,ref 1,ref false, ref (0,0)))))
in (new_ptr := !G; new.ptr) end

(*finally, if 'visited' is true ... *)
llzcp already.visited =

(perr(" already visited:" ·unparse(graph2term T already_visited));
raise visited_when_copying)

in (mk_graph.visited false node; lzcp node) end

41

A ~
b AZ b b Az b

.Ay

A z z

y y z z

(a) (b)

Figure 3.6: Lazying copying will not work for non-weak reduction

binding-path lengths for the would-be substitutions. One can imagine insert
ing path-balancing nodes into the graph; however, allowing these nodes to ap
pear anywhere in the graph complicates the basic definitions of the .A-calculus
(e.g., ,6-reduction). Berkling's variant of binding indices [27; 31; 32] uses such
"unbinding" operators, but they do not help with graph reduction. The de
scription of a "k.A1r calculus" in Schliitter's dissertation is a clear, extended
explanation of a system that includes unbinding [180, pages 87-119].

Graph reduction and binding indices can be used together if no reduction
is done inside .A-abstractions, i.e., to a weaker normal form. Peyton Jones's
book on implementation discusses the relevant techniques, especially for weak
head-normal form (WHNF) [165, pages 198-199].

The difficulties with binding indices for normal-order evaluation are the
reason I use Wadsworth's backpointers in the .A

9
-interpreter, implemented

with global integer binder-IDs (Section A.2.2) [201]. It is esthetically un
pleasing not to have a binding-indices graph-reducer to compare with my
binding-indices tree-reducer of the next chapter, but the discrepancy is not
important.

3.4.2 Wadsworth's use of backpointers

Wadsworth suggests a clever use of backpointers and indirection nodes that
not only avoids variable-naming problems but also avoids having to search for
bound variables during ,6

9
-reduction [201, pages 176-180]; Figure 3.9 gives

an example, with backpointers shown by dashed arcs.

42

>..y

~
>..J >..x

)\
f X y

f f

>..y

X y

>..y

>..x y

A
X y

>..y

>..y

>..x

)\
X y

>..y

y y

t
>..x

~
X y

y

Figure 3. 7: The >..9 -interpreter on the recurring example

43

AX
)\

>.a
I

>.b
I

x3

>.c
I

x2

).z
I

>.y

Y1

).z
I

>.y

Y1

).z
I

>.y

~
--+ >.a >.c

I

Y2~ >.b

Y3~ z2 Y1
ZJ Y2

z4 Y3

(a) by tree reduction

Y1

Y?

(b) by graph reduction?

Figure 3.8: Graph reduction with the name-free >.-calculus

\

X y
X y X

y X

Figure 3.9: Wadsworth's use of backpointers and indirection nodes ('"'->)

44

As usual, the root of the red ex becomes an indirection node (shown by
"--*). The novelties are that the rator's .\-node also becomes an indirection
node and that the backpointers are treated as "real" pointers thereafter. For
this to work, the target of a backpointer must be examined before one knows
whether it should be followed or not. It may not be very efficient, but it is a
neat idea; Berkling provides a critique in his 1986 paper [25, page 29].

3.5 Graph-reduction architectures and sharing

This section sketches some of the parallel architectures that have been de
signed to support graph reduction and reviews some of the designers' com
ments on their experience. I want to know why they chose graph reduction
as their basic computational model.

The ALICE parallel graph-reduction machine (Imperial College, London)
[56; 88; 49] and its follow-on, Flagship (University of Manchester and ICL
also collaborating) [205], are an instructive pair of designs. ALICE was
first reported in 1981; a prototype was running in the summer of 1986; its
designers' practical experience merits close attention.

In ALICE, each node of a program graph is represented by a packet with
a globally-known address; the packet includes the node type, the addresses
of the nodes to which this node is connected, and other information (status
bits, etc.). All the packets representing the program graph are in the packet
pool (distributed) memory, shown by 'M' units in Figure 3.10 (the numbers
of units shown do not reflect any real configuration). 3 Across the switching
network sit several packet processors ('P' units). Each processor repeatedly
fishes an active packet out of the pool and tries to do the rewrite suggested by
the packet type. Further packets may have to be read, and, eventually, a set
of packets representing the result will be thrown back into the pool. Because
some packet types require evaluated arguments (e.g., arithmetic primitives),
there is a mechanism to suspend active rewrites and to re-activate them when
the required preliminaries have been done.

Flagship is a successor to ALICE that also draws heavily on the experience
of the Manchester dataflow machine group (who also built a prototype). The
basic architecture chosen for Flagship, shown in Figure 3.11,4 reflects the

3 Keller et al. call this a "dancehall" system organization, with "processors lined up
along one side of a large dancehall, and memories along the other, with a network of
switches in between" [114, page 411].

4This architecture is much closer to a "boudoir" organization, in which "each processor

45

SWITCHING NETWORK

p p p p

Figure 3.10: ALICE machine organization ("dancehall")

designers' foremost criticism of its predecessors: Having a switching network
between the processors and memories requires that the network have very
high bandwidth and that programs have massive parallelism to overcome
long network latencies. Flagship designers have great concern for locality;
they aim for "90% locality"-"9 out of 10 store accesses made by a rewrite
should be to the local processor." [205, page 127]. The machine uses local
caching of non-local parts of the program graph, so that rewriting itself
is entirely local. Still, the designers concede that preserving locality is a
"difficult problem, which forms a major aspect of Flagship research" [205,
page 128], and they advocate that algorithm, language, and compiler design,
plus dynamic mechanisms, be examined specifically to enhance locality. The
approach taken to support lazy functional languages is supercombinators
evaluated to WHNF; this means they look for large self-contained rewrites
whose graph manipulations can be encoded as big swatches of von-Neumann
code suitable for local execution [208]. (I should mention that the Flagship
group found a supercombinator approach to be "ten to a hundred times
more efficient" than a straight .\-calculus graph reducer [208; 206]; Berkling
disagrees [25; 30].) Flagship takes locality seriously indeed: they want to
preserve the "fine-grain" computational model of graph reduction but to
avoid the considerable work a literal implementation of that model must
entail [202].

There is no evidence that ALICE's designers considered a computational

is closely paired with a memory" [114].

46

(SWITCHING NETWORK (
0 0 0 p p p p 000

I I I I

... M M M M 0 0 0

Figure 3.11: Flagship machine organization ("boudoir")

model other than graph reduction, which is understandable given their un
swerving commitment to lazy functional languages. By the time of Flagship,
its designers were interested in supporting "graph rewriting," a more gen
eral mechanism discussed in Section 3.6. They note that graph reduction
subsumes string reduction and "that string reduction can be readily imple
mented in any graph reduction machine structure in those circumstances
where it may be worthwhile" [203, page 9].

Though they favor graph reduction as a computational model, the Flag
ship designers are plain-spoken about its costs. They state, unequivocally,
"Graph reduction has a fundamental requirement for a global memory space
at the level of an abstract machine architecture" [204, page 266]. Put another
way, the "notion of node identity is an essential feature of graph [reduction]
(as distinct from [tree reduction])" [207, section 2]. For a parallel design,
"it is inevitable that much of the physical memory will not be immediately
accessible by any single processor. The performance of any parallel machine
is critically dependent on the way in which remote access is handled" [204,
page 266].

The work of Keller et a!. in Utah, first reported in 1979, shows some
of the same trends as ALICE/Flagship. AMPS was the first parallel graph
reduction machine from the Utah group; it was oriented to symbolic compu
tation and intended to run LISP [115]. AMPS had a "boudoir"-ish system
organization (Figure 3.11), with a tree-structured switching network; the
Processor /Memory units are connected to the leaves of the network, im
plementing a virtual global address space. The tree-node hardware supports

47

packet-switched communication, as well as load-balancing (hardware-assisted
load-balancing is a hallmark of the Utah designs). The AMPS designers,
though influenced by fine-grained dataflow approaches, sought "task-level"
parallelism and used caching, saying "One of the most important concepts of
our architecture is an attempt to improve performance by exploiting locality
of information flow" [115, page 614].

AMPS supported graph reduction to allow programming with infinite
structures and also because "by exploiting the richer connectivity of graphs,
we can avoid much of the combinatorial explosion which takes place in purely
string-oriented reduction machines" [ll5, page 616]. The mechanism of
rewriting graphs is not fundamentally different from ALICE or Flagship:
successive rewritings of "code words" represent graph-node manipulations.

Rediflow, "a collection of ideas relating to multiprocessor system design
and attendant software capabilities," reflects the development of the Utah
group's thinking [114]. They moved toward a "hybrid model" that supports
"reduction, dataflow, and von Neumann processes." The physical configu
ration changed from AMPS's tree to a rectangular mesh of "Xputers," but
the boudoiresque, "medium grain" direct implementation of graph reduction
is unchanged. The signature concern for load distribution and balancing is
more evident [136].

Rediflow II is a "proposed multiprocessor architecture based on graph
reduction" [116]. The most notable change is away from a direct "more
interpretive, graph reduction model" to a "PSCED" 5 approach, "an efficient
method for the integration of sequential code" [116, page 204] (the authors
say the PSCED idea is similar to SECD-m [1] or the Multilisp implementation
[85; 86]). As with supercombinator machines, the goal is to have a success
ful non-von Neumann machine by shoehorning as much von-Neumann-style
execution into the implementation as possible.

Paul Hudak (Ph.D. from Utah) and his cohorts had a similar goal in
their work on "serial combinators" [102; 103]: to compile functional programs
into combinators for which the internal workings are entirely sequential, but
without a loss of parallelism in the program. The serial code is gathered into
bundles that can be executed cost-effectively by a single processor.

Another British parallel graph-reduction machine is GRIP, under the di
rection of Simon Peyton Jones [169; 168]. GRIP uses a bus for its commu
nication medium (trading scalability for modest expense and low latency)
and hopes to be a cost-effective dozens-of-processors computer. For lazy

5 A sort-of acronym for "parallel SECD machine," pronounced ''sked."

48

functional languages, GRIP intends to use supercombinators to evaluate to
WHNF, based on a parallel extension to the G-machine model (building on
the G-machine compiler technology for sequential computers [165]). Pre
cious bus bandwidth is conserved by using "intelligent memory units" that
do higher-level operations on the graph data they hold (e.g., create variable
sized nodes and do garbage collection). GRIP also has a central system
management processor.

Peyton Jones also draws attention to the importance of locality, saying,
"One issue dominates all others: how can a high degree of spatial locality be
achieved simultaneously with a high degree of processor utilisation?" (his em
phasis) [167, page 182]. He goes on to say that a "bus was chosen specifically
to make the locality issue less pressing" [167, page 183].

The Dutch Parallel Reduction Machine project is another significant
broad-based effort to support functional programming [23; 91]. The design
ers use graphs for sharing reasons, saying "graphs are an essential part in any
implementation" [23, page 264]. They aim for "coarse-grain" reduction (at
the level of "jobs"), letting a standard fast sequential reducer do the "fine
grain" reductions; they use annotations to help decompose programs to jobs.
Most interestingly, they give up a global address space and do not share at
the job level [200]. Instead, they use a "sandwich strategy" of reduction that
evaluates shared jobs first and then copies the results to the sharing reduc
ers' local address spaces. Thus, there is "a kind of string-reduction" [200,
page 301 J at the job level, with conventional graph reduction at lower levels.

Another design that uses distributed memory to implement a global ad
dress space is the HDG-Machine at the GEC Research Centre in England
[33; 40; 41]; it is implemented on a network of transputers with distributed
memories [210]. The underlying model of the HDG-Machine is the use of
evaluation transformers, in which each function argument is analyzed at
compile-time to decide how far it will need to be reduced. This information
then guides the spawning and management of tasks in the machine. Terms
are shared until reduced to WHNF; after that, they may be copied freely.
Fast context-switching is essential in this machine, so stack frames are kept
in the heap, and a context-switch is a simple pointer manipulation.

Several other proposed machines for graph reduction restrict themselves
to combinator reduction. Combinators are pure rewrite rules, unencumbered
by free/bound-variable difficulties, and mechanisms can be constructed that
give the effect of going through all the A-calculus reductions, but avoiding
the intermediate steps. With super- or serial-combinators, the goal is to
synthesize program-specific large combinators; again, to avoid intermediate

49

steps. This approach is well-represented by already-mentioned machines.
With fixed sets of combinators (e.g., S, K, I), the approach is to build them
directly into the hardware. Sequential combinator-reducing machines have
included SKIM (47], SKIM II (196], the CURRY chip (173], and NORMA
(179]. TIGRE is a threaded combinator-reducing interpreter in which the
graph is built partly from instructions, so that the graph itself is actually
executed (127]. Parallel combinator machines include COBWEB (87; 34] and
COBWEB-2 (which uses combinator-equivalent "director strings") (6; 7].

The MaRS project in France, with its background in aeronautics and
dataflow architectures, proposed a combinator-based parallel graph-reduc
tion machine (44; 48]. Of their graph-reduction choice, the designers say,

(O]ne can distinguish two kinds of reductions, string reduction
where expressions are formed of literals and values, and graph
reduction, where expressions are constituted of literals and ref
erences. In our opinion, graph reduction is more interesting for
the following reasons: because of the notion of reference, graph
reduction allows the sharing of computation, but it also provides
an efficient way for manipulating large data structures. Graphs
are uniform representations of suspensions (closures) as well as of
shared data structures (44, page 162].

There are still more proposals for "parallel graph reduction" machines;
however, they do not speak out about the basic graph-reduction design
choice. Amamiya proposes a heavily dataflow-influenced design that tries
to use eager evaluation when possible (5]. (Generally speaking, reduction
machine designers have a great debt to their dataflow-machine predecessors
and colleagues.) The G-machine group has designed a parallel variant, the
<v,G>-machine (11]. Numao and Shimuragive a graph manipulation scheme
for a system of disjoint graph reducers not sharing a common address space
but communicating by CSP-style message passing (156]. Traub proposed an
"abstract" parallel graph reduction machine, to help separate and clarify the
many design issues in such architectures (197].

There are other major issues associated with graph reduction besides
sharing, notably garbage collection and load distribution. These questions
are beyond the scope of this dissertation, but I will again quote the experi
enced Manchester group on the cost of the global address space that graph
reduction requires: "Graph Reduction requires continuous storage allocation
and reclamation. It is inevitable that our distributed global address space
will make these tasks more difficult" (204, page 271].

50

It may well be true that the use of graph reduction has been an item of
heated debate within the research groups that have chosen it; if so, the debate
is not reflected in the literature. My speculation is that graph reduction
is used because it is the best-known model that supports lazy functional
programming; threatened exponential blow-ups of "string reduction" have
kept researchers well away from that set of choices. Also, graph reduction
offers plenty of sharing; however, designers do not strive for maximal sharing,
suggesting it is not a critical design criterion. Most designers point out
the importance of locality, with the experienced groups being all the more
emphatic. Exotic and clever solutions like the Dutch "sandwich strategy" are
used to overcome the inherent indifference to locality that is implicit to graph
reduction. Given the modest success of parallel graph-reduction machines so
far, I would suggest that some re-thinking is in order.

Some close cousins of graph reduction and architectures based on it use
"closure-based reduction" or related schemes. I review that work in Sec
tion 4.8.3.

3.6 Graph rewriting

I have concentrated strictly on graph reduction as a technique for imple
menting lazy functional languages, but I should mention that many "graph
reduction" researchers, including several cited above, take a broader view~in
this context, it is usually called graph rewriting.

Graph rewriting sits on the well-explored theoretical base of term rewrit
ing systems, which are sets of rewrite rules on terms (e.g., S, K, I combi
nators can be described as a TRS). Klop [123] and Dershowitz [60] provide
good introductions to TRSs. Drawing on the field of graph grammars, graph
rewriting considers sets of rewrite rules that operate on graphs. Because
graph rewriting can represent a broad range of computational models (in
cluding both functional and logic programming), as well as many machine
level graph-twiddling tricks that a compiler might do, and because graph
rewriting is amenable to formal treatment, it is suitable as an intermediate
form and compiler target language for parallel computers.

The two main groups defining such languages for parallel machines are the
Dactl group, at Manchester and East Anglia [74; 75; 77; 78; 76; 73; 119; 120],
and the Lean group, part of the Dutch Parallel Reduction Machine project
[20; 21; 22; 38]. FLIC is Peyton Jones's entry in the intermediate language
field [166].

51

Graph rewriting is significant, as it helps to broaden our understanding of
fundamental issues in graph-based computation; however, it has not affected
my work, because I am not making claims about anything but the normal
order evaluation of the pure >.-calculus.

52

Chapter 4

Reduction with suspensions: the
,\

3
-interpreter

Suspension and reduction are ... remedies against the
iniquitous or ill-founded decrees of inferior judges ...

- John Erskine, An Institute of the Law of Scotland (1773).

The previous chapter described the .\9 -interpreter, for the normal-order graph
reduction of the .\-calculus. This chapter sets forth an alternate .\,-interpret
er that does the same reductions step-for-step but keeps .\-terms in tree form.
Using a tree representation could provide better opportunity to preserve lo
cality in a parallel implementation. To illustrate this benefit, Chapter 5
explains how an FFP Machine (FFPM) implementation would work.

Sections 4.1-4.5 present the .\,-interpreter; Section 4.7 brings together
the results of the previous sections to prove the .\,-interpreter's equivalence
to the graph-reduction .\

9
-interpreter; since the .\9 -interpreter is known to

be a correct implementation of the .\-calculus, the .\,-interpreter must be as
well. Section 4.8 examines the relationship of this work to others' efforts.

I have written a working .\,-interpreter in a functional style, using ML.
Most of the code is included in this chapter for illustrative purposes; it uses
some utility functions described in Section A.2.1.

Introduction. This section describes an interpreter for the .\-calculus that
manipulates ordinary .\-terms augmented with an additional element, the
suspension-hence the name .\,-interpreter (and the s subscript).

Wadsworth showed that graph reduction is a correct implementation of
the normal-order evaluation of the pure A-calculus (201]. If I can prove
that the A,-interpreter does the "same thing" as the graph-reducing A9 -in
terpreter on each reduction step, then it follows that the A,-interpreter is
also a correct evaluator for the A-calculus. Moreover, if the two interpreters
work in lockstep, then it is relatively easy to compare their time and space
complexities as well. This chapter is concerned with the A,-interpreter itself
and its correctness. I defer complexity questions until Section 5.3, after the
various operations' costs have been determined.

General battle plan. The diagram in Figure 4.1 suggests my broad claim,
most of which I do not pursue: given a plain (non-graph) A-term T,O that
(presumably) reduces to its weak ,8-normal form (WBNF) T,n in n graph
reduction steps, then the following do also:

o the conventional interpreter, evai_WBNF (page 25) (which will do at
least n reduction steps);

o at least n calls to the plain-tree-reducing onestepT (page 23) (the as
terisk superscripts in Figure 4.1 denote "zero or more" calls);

o n graph-reduction steps, as in the A9 -interpreter of Chapter 3 (onestepG
(page 36) is an encoding of the main routine); or

o n suspension-ridden steps of the A,-interpreter of Chapter 4 (onestepS
(page 72) is an encoding of the main routine).

The initial terms TO, T,0 , and T 0 are trivially related.
g s

I use a "super-toplevel" ML procedure that does what Figure 4.1 suggests:
it runs all the interpreters together in lockstep, converting and comparing
terms along the way, using the functions term2this and that2term of Figure 4.1
to convert between representations. The "super-toplevel" code is not shown,
as it is just several pages of error-checking.

Specific battle plan. I do not consider all the equivalences suggested
by Figure 4.1; I focus only on the step-for-step equivalence of the A

9
- and

A,-interpreters. Figure 4.2 suggests the comparison I will make-both inter
preters take comparable action in each part of a reduction step: search for
the "leftmost" redex (it may not literally be leftmost here), copy the rator if
it is shared, do the reduction, and (optionally) tidy up the resulting A-term.

54

onestep term2graph

onestep T * onestep term2graph nestepS vai_WBN F

nestepG*: term2graph i:>nestepS*

Figure 4.1: Graph reduction vs. reduction with suspensions

55

T;, -E----;:c:-::=,.,;-::=::-r--Tit
g term2gra ph s

Figure 4.2: A .\
9
-interpreter step vs. a .\8-interpreter step

56

(* top-most loop: drives onestepS (the >.,-interpreter). Does the skipping over top-level
A, -abstractions.

*)

fun toplevS (Lam(B,n)) = Lam(toplevS, n) (*skipping over ... *)
I toplevS other = reaUoplevS other

and reaUoplevS T =

let (*step forward *)
val (action_in_T, T') = onestepS T
(* tidy things up *)
val T" = trashpickup (tidyterm T')

in (*make sure all is well *)

end

if not(is_weiUormed T") then (
perr(" malformed term! "-unparse(T'));
T'

) else if action_in_ T then (*keep going *)
real_toplevS T"

else
T"

Notation: the output of reduction step i (T;' or Tj') is input to the next
(T;+I orr;+'). (Note the s, c, r, and t superscripts for the four phases.)

Assuming a function onestepS (presented later) that does one reduction
step, a .>.,-interpreter reduces a A-term to WBNF by calling onestepS repeat
edly, as the function toplevS :Term--> Term (page 57) shows. It tidies terms
with tidyterm and trashpickup; a call to is_weiUormed is a safety check. (All
these functions are presented later in this chapter.)

Representations. The functions formA2formB in Figure 4.1 indicate con
versions between different representations of A-terms; they will be introduced
in due course. All the representations used (unadorned A-trees without sus
pensions, A

9
-graphs, and A-trees with suspensions) have the plain elements

in common (applications, abstractions, constants and variables bound to ab
stractions). I routinely make comparisons between these common elements
across representational boundaries, e.g., comparing a \-abstraction to a .>.,
abstraction. Similarly, I will glibly call all of them "plain nodes."

After defining the data structures for the .>.,-interpreter, I examine how
a .>.,-interpreter tackles the four phases of a reduction step. Because the
phases interact in subtle ways, there is a chicken-and-egg problem with the

57

presentation; if something seems murky the first time, skip it and try a second
pass later.

4.1 \-term structure and terminology

The .\,-interpreter manipulates augmented .\-terms called .\,-terms. .\,
terms include the three plain elements of the .\-calculus: .\-applications,
.\-abstractions, and variables bound to abstractions.

The new construct in .\,-terms is the suspension. A suspension is a sub
stitution put "on hold" or suspended.

The notation for a suspension is [xB PJ, and it stands for a substitution
B[x := PJ. Meanwhile all the instances of variable x in B are sharing the
single copy of P. Pis the called the pointee and B the body of the suspension.
As always, the name x is a mnemonic decoration showing which variables in
Bare pointing to P. The only "cost" of removing all variable-names in .\,
terms, leaving just binding indices, is in human convenience, as the example
on page 21 showed.

In a .\,-term, variables may be bound either to a .\,-abstraction or to
a suspension: both .\,-abstractions and suspensions are binders (and have
bound variables). A variable x; bound to a suspension [xB P] "points to"
or "is aimed at" a copy of the pointee P. I will call such suspension-bound
variables .\,-pointers. Henceforth, I reinforce the pointing notion by giving
the pointers pointy hats, as in Xto y3 , etc. (to be explained shortly). The best
way to think about a suspension is as a peg on a .\,-tree on which a shared
.\,-term is hung; variables "point" to the shared term with their binding
indices.

Figure 4.3 shows a .\,-term with a suspension at its root. The three x 1

variables point to N.l
Figure 4.4 gives the ML definition for a well-formed .\,-term; Figure 4.5

illustrates the various constructs (I will eventually account for all its dots
and squiggles). A .\,-term can be:

o An App(M,N): a .\,-application; the rator M and the rand N must be
well-formed .\,-terms.

As before, a .\,-application is written as (A1 N); in .\,-tree form, it is an
unmarked two-child node. Figure 4.5 has three .\,-application nodes.

1 Following my notational convention about asterisk subscripts, the y* variables have
some unknown and uninteresting binding indices. Also, recall that capital letters denote
arbitrary ternas.

58

[x]

N

Figure 4.3: A .\8 -term with a suspension at its root

(*Terms in the pure A-calculus, plus Sus(pensions) *)

datatype VarMark

= NotPtr (*plain variable; not a pointer *)
I Ptr (* var has been turned into a pointer *)
I Follow Fill (*pointer being followed; should be illled eventually *)
I FollowNoFill (*pointer being followed; needn't be tilled *)
I Followed (* the following has been done [don't try again} *)

datatype Term (* std names used *)
= App of Term* Term (* M, N *)
I lam of Term *string (* B, n *)
I Var of int * VarMark *string (* bi, vmk, n *)
I Sus of Term* Term* string (* B, P, n *)

Figure 4.4: Definition of a Term

59

>.y

I
[x]

Yz Yz

Figure 4.5: An example with much >.,-term notation

o A Sus(B,P,n): a suspension; the body B and the pointee P must be
well-formed >.,-terms. The suspension must not have a bound variable
in P (Section 6.3 discusses lifting this restriction). n is a name, for
decorative purposes only.

A suspension is written as [nB PJ; in >.,-tree form, it is shown by a [n]
node. Figure 4.5 shows two suspensions, both for variables decorated
with the name x. Each suspension in the figure has one bound variable.

o A Lam(B,n): a >.,-abstraction; the body B must be a well-formed>.,
term. n is a variable name, for decorative purposes only.

A >.,-abstraction is written as >.n.{B}; in >.,-tree form, it is shown by
a >.n node. The topmost node,).y, is the only Lam node in Figure 4.5.

o A Var(bi, vmk, n): a variable with binding index bi. bi < 0 means the
variable is a constant (a variable free at the top level). The variable
mark vm k is an annotation saying what has happened to the variable:
NotPtr means it is a plain variable; it must have a >.,-abstraction as its
binder; a variable with any another mark must be bound to a suspen
sion. The other variable marks (FollowFill, FollowNoFill, and Followed)
are used to guide the following of >.,-pointers. Section 4.3 describes
their use. The variable name n is decorative, as always.

A variable is written as n1; in both tree and text form. "Hats" (accents)
represent the variable marks. A NotPtr variable x; has no hat; for Ptr,

60

(* is_well_formed : Term -> bool.

*)

Uses chk_vars (page 170), is_ptr (page 169), and is_bd_var_or_ptr (page 172).
A predicate function that says if a Term is "well formed." Mainly, it checks if variable
bindings are well behaved. A A-abstraction's bound variables must not be pointers, a
suspension's bound variables must be pointers, and a suspension cannot have bound
variables in its pointee.

fun is_weiLformed (Var(_,_,_)) = true

I is_weiLformed (App(M, N)) = (is_weiLformed M) andalso (is_weiLformed N)

I is_well_formed (Lam(B, _)) =
(is_weiLformed B) andalso
(if (bd_var_exists B) then (not(bd_vars..are_ptrs B)) else true)

I is_weiUormed (Sus(B, P, -)) =
(is_weiLformed B) andalso (is_weiLformed P)
andalso (if (bd_var_exists B) then (bd_vars_are_ptrs B) else true)
andalso (not(bd_var_exists P))

and bd_var _exists T =
chk_vars is_bd_var _or _ptr or Else false 1 1 T

and bd_vars_are_ptrs T =
let fun bd_var_is_ptr lev_ (bi,vmk,n) = (bi=lev) andalso (is_ptr(Var(bi,vmk,n)))

in chk_vars bd_var_is_ptr orEise false 1 1 Tend

FollowFill, FollowNoFill, and Followed marks, I use xi, ii, xi, and xi hats,
respectively.

There are six variables in Figure 4.5. All the y's are NotPtrs (and
have the same binder); the two x's are, left to right, a FollowFill and a
Followed; they are bound to different suspensions.

The ML predicate function is_weiUormed : Term --> bool (page 61) encodes
the requirements for a well-formed .),-term.

Converting between plain >.-terms and As-terms. Plain (suspension
less) A-terms are As-terms.

A As-term is converted to its linear expansion >.-term by completing
the substitutions for which the suspensions in it stand, as the function
term2termT: Term--> Term (page 62) shows.

Notation for binding-index changes. I use the following notation for
the adjustment of variables' binding indices:

61

(* term2termT: Term___, Term.

Converts a Term, possibly including suspensions, to one without suspensions (for
pure tree reduction, hence the name "TermT"). Completes the substitutions that the
suspensions represent.

Uses std_subst (page 172) and incdree_vars2 (page 171).
*)
fun term2termT (App(M,N)) = App(term2termT M, term2termT N)

I term2term T (Lam(B. n)) = lam(term2term T B, n)

I term2termT (Var(bi,vmk,n)) = Var(bi,vmk,n)

I term2termT (Sus(B,P, n))
(incdree_vars2 1 (std..subst (term2termT P) (term2termT B)))

Tif: Binding indices of free variables are incremented by 1; constants ex
cluded.

Tdf: Binding indices of free variables in T are decremented by 1; constants
excluded.

Tib: Binding indices of bound variables in T (the binder will be obvious from
context) are incremented by 1; constants excluded.

Tdb: Binding indices of bound variables are decremented by 1; constants
excluded.

Terminology for comparing with >."-graphs. Recall that >.-applica
tions, >.-abstractions, and variables bound to >.-abstractions are plain nodes.
A >.,-term, therefore, is made of plain nodes as well as suspensions and >.,
pointers. If two plain nodes in a >.,-term are directly connected by an edge
in a >.,-tree, they are g-connected (as in >."-graphs).

Two plain nodes in a >.,-term may also be s-connected, with an "indirec
tion" through suspensions and/or a >.,-pointer. As will only become clear
in Section 4.5.5, the tidying rules (Section 4.5) guarantee that s-connections
must have one of two forms in a tidied >.,-term. Meanwhile, the more intu
itive notions presented shortly will get us through.

If two plain nodes in a >.,-term are either g- or s-connected, then they are
sg-connected. (A \-graph is trivially sg-connected, because all of its nodes
are plain, and adjacent nodes are invariably g-connected.) I re-emphasize
that all this "connecting" has only to do with plain nodes in >.,-terms (and
>.9 -graphs, of course).

62

A tidied .\8-term T8 is A89 -equivalent to a .\
9
-graph T

9
(written as T8 ii T9

)

if T8 may be made .\
9
-equivalent to T

9
by converting all the s-connections in

T. tog-connections. Put colloquially and none too precisely: "Replace the .\.
pointers with real pointers and throw away the suspensions." Algorithm 4.1
(page 64) will be a more careful statement of this idea.

4.2 fis-reduction: the fis rule

This section examines how the .\.-interpreter does !1-reduction. Even though
finding redexes (Section 4.3) and copying shared rators (Section 4.4) come
first in a reduction step, looking at !1-reduction helps to clarify those more
involved tasks.

As Figure 4.2 showed, the .\8 -term input to this phase is T1' and its .\.9 -

equivalent is T;,. (Sections 4.3 and 4.4 will confirm that the searching and
g

copying phases preserve .\89-equivalence.) The reduction phase's output will
be T;r and T;r, respectively.

s g

T;, is a tidy .\8 -term; for this section, that just means that the root of the
s

redex is g-connected to its rator. (Section 4.5 defines tidying more generally
and discusses it at some length). Earlier parts of a reduction step do not
affect tidiness: searching for a redex does not alter terms and copying a
shared rator preserves tidiness (Lemma 4.8).

!1.-reduction (the !1s rule) in the .\8 -interpreter creates a suspension:

(.\x.{B} P)-> [xB PU].

Binding indices of free variables in P must be incremented because a new
binder has been thrown into their binding paths, and the variables bound by
the .\x must have their vmk's changed to Ptr because their binder is now a
suspens10n. Sample code for the !1. rule is halfway down the code for onestepS
(page 72).

Lemma 4.1 Given T;c ii T~c with corresponding redexes selected for {3-reduc
tion zf Tic is 4 -reduced to Tir and Tic is 4 -reduced to Tir then Tir = Tir.

' s fJs s g fJg g ' s sg g

Proof. The proof is by showing that the interpreters make corresponding
changes to their connected plain nodes and to the connections. There are
three special cases to consider: when the rator body includes no bound vari
ables, when the rator body is a single bound variable, and when the rand is

63

[x] [x]

>..y

A
p /:'p

Yr T fir T

Figure 4.6: ,8,-reduction of a shared redex

a single variable. These cases are inextricably linked with tidying, specifi
cally the [useless] rule (Section 4.5.1) and trivial-suspension eradication (Sec
tion 4.5.2); they are dealt with there. Lemmas 4.3, 4.4, and 4.5 guarantee
the correctness (corresponding plain nodes and connections) of those cases.

Table 4.1 carefully compares the >..
9
-interpreter and >..,-interpreter imple

mentations of /3-reduction for all cases other than those just mentioned. It
shows that the correspondence between plain nodes and their connections is
maintained. D

The blow-by-blow comparison of ,8
9

- and ,8,-reduction suggests an algo
rithm to convert a >..,-term to a >..9 -equivalent >..9 -graph.

Algorithm 4.1 Convert a tidied >..,-term to a >..9 -graph. In short, replace
each s-connection between plain nodes with a g-connection.

1. Plain nodes in the >..,-term carry over unchanged, as do any g-connec
tions (edges) directly connecting them.

2. Each >..,-pointer is replaced with a "real" pointer to the root node of
its binder's pointee; tidying ensures that the root node is a plain node.

3. Flag the plain root node of the pointee as a SFE (in \-interpreter ML
code, set subbed :=true, as in onestepG (page 36)).

4. "Short-circuit" the suspension node by replacing any pointers to it with
pointers to its body.

5. Give each variable bound to a >..-abstraction a Wadsworth-style back
pointer that points to the binder indicated by its binding index. (Recall
from Section 3.4.1 that binding indices do not work in >.. 9 -graphs).

64

A -interpreter

1. Replaces bound variables
with pointers to the rand:
g-connections.

2. Keeps (shares) only one copy
of the rand.

3. Marks the rand as a substi
tuted free expression (SFE)
(subbed flag set to true).

4. The root node of the redex
is overwritten with the root
node of the result, so that
if the redex was shared, the
sharers will all see the reduced
version. The redex-root \
application node is thus effec
tively discarded.

5. The rator-root -\9 -abstraction
node is discarded.

6. Plain nodes lost are the redex
root, the rator-root, and all
the rator-bound variables.

-\,-interpreter

Marks bound variables as
"pointing" to the rand (now a
suspension's pointee): s-con
nections.

Keeps one copy of the rand as
the suspension's pointee.

The root node of the rand can
be distinguished as "substi
tuted" because it is the root
of a suspension's pointee.

The root node of the redex
is effectively overwritten with
the root node of the result by
turning the redex into a sus
pension. A redex is shared if
it occurs in the pointee of an
other suspension, as in Fig
ure 4.6. Because the redex
root -\,-application node is re
placed by a new suspension,
all the -\,-pointers that used
to point to the redex now
point to its reduced form (the
new suspension).

The rator-root -\,-abstraction
node is discarded.

Plain nodes lost are the redex
root (it becomes a suspen
sion), the rator-root, and
all the rator-bound variables,
which become -\,-pointers.

Table 4.1: Comparison of {3
9

- and /3,-reduction

65

All the conversions in Algorithm 4.1 (real pointers for ,\,-pointers, "short
circuit wires" for suspensions, and backpointers for A-abstraction-bound vari
ables) are independent of each other, so the ,\9 -graph produced does not de
pend on the order in which the conversions are done. Term2graph :Term ->

Gnode ref (page 67) is an implementation of the algorithm.

4.3 Searching for the next redex

For comparison purposes, the inputs to this phase are T' and T', with outputs
s g

T'' and Tis, respectively, as in the battle plan, Figure 4.2.
s g

Following pointers. Evaluation to WBNF of a ,\-term repeatedly seeks
out the leftmost redex not in a top-level ,\-abstraction and reduces it. In
trees or acyclic graphs, the first redex encountered in a pre-order walk from
the root is selected. For ordinary tree reduction or the ,\

9
-interpreter, a

tree- or graph-walking algorithm that follows g-connections between plain
nodes suffices, as the functions onestep T (page 23) and onestepG (page 36)
exemplify.

How does one do a pre-order walk to the next redex in a -\,-tree with
suspensions and -\,-pointers? It should be no surprise that the principle is to
follow s-connections in the same way as the usual g-connections. Consider
Figure 4.7, which shows a term after one (3

9
- and /3,-reduction. The next

redex-the only one-is (Ax.{x} y), *'din the figure. Graph reduction will
find it with a preorder walk (call it a \-walk), visiting nodes ,\x, ,\y, (), (),

x, ,\a, (), a, () [redex found].
What does a pre-order walk of the comparable -\,-term give (a -\,-walk)?

The first part is: AX, ,\y, [z], (), (), x3, zl. We observe:

• There is a suspension node ([z]) in the -\,-walk but not in the \-walk.
This absence fits with my earlier suggestion that a suspension is just a
"peg" on the tree on which a shared term (the pointee) has been hung.
When on a redex-finding mission, we should ignore the pegs insofar as
possible.

• The new aspect of the ,\,-walk is running into the 21 . What does that
mean? At the equivalent point in the \-walk, we followed a pointer
from a -\,-application() to its rand ,\a. But what is Z? It is a -\,-pointer
to its binder's pointee! Follow it.

66

(*The functions term2graph: Term-+ Gnode ref and graph2termT: Gnode ref-+ Term
convert between A8 -terms and Ag-graphs.

*)

term2graph uses nexUD (page 177), bidx_to_bndriDs_T (page 177), incr_refcnt (page
175), seLsubbed (page 175), and substG (page 37). graph2termT uses bndriDs_to_bidx
(page 177).

and term2graph (App(M,N)) =
ref(AppG((term2graph M), (term2graph N), ref false,

(ref false, ref 1, ref false, ref (0,0))))

I term2graph (Sus(M,N, n)) =
(*finish the substitution [innermost out} *)
let val id_to_use = nexLID ()

val Mg = term2graph (bidx_to_bndriDs_T 1 id_to_use M)
val Ng = term2graph (b"idx_to_bndriDs_T 1 id_to_use N)
val _ = incuefcnt -1 Ng;
val _ = seLsubbed true Ng;
val (substituted, no..subs) = (substG id_to_use Ng Mg)

in substituted end

I term2graph (Lam(B, n)) =
let val id_to_use = nexUD ()

val Bt' = bidx_to_bndriDs_T 1 id_to_use B
val B' = term2graph Bt'

in ref(LamG(B', ref id_to_use, n, (ref false, ref 1, ref false, ref (0,0)))) end

I term2graph (Var(bi,vmk,n)) = (* VarMark info thrown away*)
ref(VarG(ref bi, n, (ref false, ref 1, ref false, ref (0,0))))

and graph2term T (Gas ref (AppG(M,N,indir,_))) =
if 'indir then (*indirection node *)

graph2term T M
else

App(graph2term T M, graph2term T N)

I graph2term T (ref(LamG(B,si,n,-))) =
Lam(bndriDs_to_bidx 1 (!si) (graph2termT B), n)

I graph2term T (ref(VarG(si,n,-))) =
Var((!si), NotPtr, n) (* NB: put binderiD in temporarily *)

67

AX
I

.\y

Ax
I

X

(a) .\9 -graph

y

AX
I

,\y

I
[z]

(b) .\,-term

Figure 4. 7: A term after one {3
9

- or f),-reduction

Therefore, to mimic graph reduction, we follow 21 by re-visiting its
binder and continuing the preorder walk at its pointee. The .\,-walk
would continue: [z], .\a,(), a1 , () [redex found].

(Alternatively, instead offollowing the .\,-pointer to its target term, we
could bring the term to the .\,-pointer-that is, copy the term. Though
this would make for a kind of "lazy" tree reduction, it would not be
anything like graph reduction.)

What if the walk down the pointee finds no redex? Where should the
search resume? Again, the cue comes from graph reduction: the search
resumes at the pointer that carried us off in the first place.

What if the walk down the pointee runs into another .\,-pointer? (Well
formedness prevents it from taking the search to an already-searched binder.)
We follow it, as before.

Running into .\,-pointers: setting variable-marks. Searching for the
next red ex in a .\,-term by doing a pre-order walk that follows both g- and
s-connections is not a difficult idea. I put it into practice in the form of a
system that manipulates .\,-pointers' hats; the system is mainly driven by
the needs of the FFPM implementation in Chapter 5.

68

[1] [2] [3]

(a) three .\,-pointers to be marked

[1] [2] [3]

(b) three .\,-pointers, marked

Figure 4.8: The three cases of pointer-following

If a .\,-interpreter is looking at a suspension, it needs to know "where the
action is." Is a .\,-pointer to some suspension higher up in the .\,-tree being
followed? Is a .\,-pointer to this suspension being followed? Have all the
.\,-pointers bound to this suspension already been followed? These kinds of
questions can be answered by the judicious changing of hats.

Consider Figure 4.8a, which illustrates the only three ways a .\,-pointer
can be a child node: as rand and rator of a .\,-application, or as the body of
a .\,-abstraction. (The case of a .\,-pointer as a suspension's child is untidy
and therefore disallowed, as discussed in Section 4.5.2.) In all three cases,
assume we are continuing a tree-walk from the *'d .\,-application node.

In Figure 4.8a[1], the .\,-application's rator is the pointer 5: 1 • If 5: 1 points
to a .\,-abstraction (i.e., N is one), then we need a copy of it here, because
this .\,-application is the next redex! On the other hand, if N is not a .\,
abstraction, then we want to look for a redex in it, in hopes that it will
become a .\,-abstraction. (This is analogous to the function of evaLLF in

69

the eval-apply interpreter evaLBNF (page 25).) If we eventually run out of
redexes inN, then we want to return to the .\,-pointer that started the search
at the pointee.

What actually happens when the .\,-interpreter reaches the rator .\,
pointer? The .\,-interpreter marks x1 with a FollowFill mark, indicating that
it decided to follow the pointer and that it should be filled (replaced by a
copy) if the pointee is or becomes a .\,-abstraction. The hat on the marked
x1 slants the same way as a rator slants off a .\,-application node.

In Figure 4.8a(2], the rator of the .\,-application is a constant (it could be
any term without a redex or unFollowed .\,-pointer), so the tree-walk search
for a red ex goes on to examine the rand, a pointer x1 • No matter what x1

points to, the .\,-application is not going to be a redex. There is no reason
to fill this pointer. So, we mark x1 with a FollowNoFill mark (shown with
a rand-ward slant accent: ±1). This means that ±1 should be followed and
eventually returned to, but never copied into.

In Figure 4.8a[3], the rator of the .\,-application is again a constant (or
any term without a redex or unFollowed .\,-pointer), and the rand is a .\,
abstraction, so the tree-walk continues into the abstraction's body, where
lurks the .\,-pointer ±2 • Again, no matter what x2 points to, there will be
no redex here. Therefore, here also, the variable will be marked FollowNoFill:
±2.

Figure 4.8b shows how the three cases would be marked so x; could be
followed effectively.

The life cycle of a .\,-pointer. Now that most of the .\,-pointer hats
have been introduced, we can consider how they are generally used. For this,
think of .X,-terms in their linear, textual representation.

Before the .\,-pointer, there is a variable bound to a .\,-abstraction, with
a NotPtr hat. When a ,6,-reduction takes place, the .\,-pointer is born, with a
Ptr hat. If and when the search for redexes reaches its part of the term, a.\,
pointer may get a Follow Fill or FollowNoFill hat. Following one .\,-pointer may
spark the need to follow another further to the right in the term. As the fol
lowing yields results (target term is reduced, target term is a .\,-abstraction,
etc.), .\,-pointers will be marked as Followed, with flat-top hats X;, meaning
it is useless to re-follow them. Very roughly, the distribution of .\,-pointers
in a linearly-represented .\,-term will be that in Figure 4.9. In the beginning,
all variables will be NotPtrs, and in the end there will be many Followed
.\,-pointers. In between, a "wave" of Ptr and Follow-type pointers will sweep
left-to-right as the leftmost redex becomes more and more to the right.

70

<> · ..\s-term · >

Followed Follow*Fill Ptr NotPtr

z
' Z;

action tends to move left-to-right · >

Figure 4.9: Example distribution of As-pointers in a As-term

Figure 4.9 reflects a general pattern of reduction and is only a visual image
that may benefit some readers. Examples with differently-hatted As-pointers
intermingled in arbitrary ways are easy to make up.

An ML implementation of searching for a red ex. Implementations of
the basic idea of following s-connections as well as g-connections may differ
dramatically in how they work. I offer as evidence the ML implementation
in this chapter, which uses an ML data type to represent ..\s-trees, and the
FFPM implementation in Chapter 5, which operates on a linear string of
symbols.

The function onestepS: Term-> Term (beginning on page 72) is the heart
of my As-interpreter implementation in ML; it encodes ,8s-reduction and the
search for a redex, with its pointer hats, following, filling, etc. Each time
onestepS is called, it looks for a ,8s-redex, reduces it, reports its success, and
returns the new ..\ 8 -term. Complexity rears its ugly head at a suspension,
on the second page of onestepS. The review here recaps some of the preceding
exposition.

If onestepS reaches a suspension in its walk, it should search the suspen
sion's body. It should not search the pointee (it should walk past the peg
on the tree) unless the suspension has a bound variable with an appropriate
Follow-type mark.

If the suspension has a bound variable with a FollowFill or FollowNoFill
hat, then attention focuses on the suspension's pointee. (In normal-order
evaluation, redex detection is serial so a suspension will have at most one of
these Follow-marked bound variables to obey.)

The easiest case is with a FollowNoFill bound variable; the tree walk
should simply continue with the pointee. The pointee should be reduced
to ,B-normal form (BNF), and (assuming termination) the FollowNoFill hat
should be changed to Followed.

71

(* onestepS: Term-+ (booi,Term).

*)

Uses ptrize_bd_vars (page 173), incdree_varsl (page 171), chk_vars (page 170),
mod_vars (page 171), is_bd_follow_ptr (page 172), is_bd_follow_fiiLptr (page 172),
is_higher_up_follow_ptr (page 172), and subs! (page 172).

Given a Term, find first redex in it and reduce it. Report whether or not a reduction
was done (and return new term). Reduces to weak f3-normal form (WBNF).

fun onestepS (Lam(B,n)) = (*easy ones first ... *)
(false, Lam(B,n))

(*if this were for j3-normal form (BNF) ...
- onestepS (Lam(B,n)) =

*)

let val (done_inJ3, B') = onestepS B
in (done_inJ3, Lam(B', n)) end

I onestepS (Var(x,Ptr, n)) =(false, Var(x,FollowNoFill,n))

I onestepS (Var(x,FollowFill, n)) =raise follow_ptr_during_search_error

I onestepS (Var(x,FollowNoFill, n)) =raise follow_ptr_during_search_error

I onestepS (Var(x,vmk, n)) =(false, Var(x,vmk,n))

I onestepS (App(Lam(B,n),N)) =(*fire the j3, rule! *)
(true, ptrize_bd_vars (Sus(B, (incdree_varsll N), n)))

I onestepS (App(Var(x,Ptr,n),N)) = (* rator is a >.,-pointer*)
(false, (App(Var(x,FollowFill,n),N)))

I onestepS (App(M,N)) = (* rator something else *)
let val (done_in_M, M') = onestepS M

fun higher _up_follow_ptr _exists T =
chk_vars is_higher _up_follow_ptr or Else false 0 0 T

in if done_in_M then
(true, App(M',N))

else if higher_up_follow_ptr_exists M' then
(false, App(M',N))

else (* truly nothing happened in M *)
let val (done_in_N, N') = onestepS N

in (done_in_N, App(M',N')) end
end

(* onestepS continues on the next page. *)

72

(* This is a continuation of onestepS; this part handles suspensions. *)

I onestepS (Sus(B,P, n)) = (* detine local functions tirst *)
let fun bd_follow_fill_ptr _exists T =

in

end

chk_vars is_bd_follow_fiiLptr or Else false 1 1 T

fun bd_follow_ptr _exists T =
chk_vars is_bd_follow_ptr orEise false 1 1 T

fun higher _up_follow_ptr _exists T =
chk-vars is_higher_up_follow_ptr orEise false 1 1 T

fun mk_bd_followed_ptrs T =
let fun make_followed_ptr lev_ (db,FollowFill,n) =(db, Followed, n)

I make_followed_ptr lev_ (db,FollowNoFill,n) =(db, Followed, n)
I make_followed_ptr lev _ (-· -.-) = raise ptrize_bd_vars_error

in mod_vars is_bd_follow_ptr make_followed_ptr 1 1 T end

if (bd_follow_fiiLptr _exists B andalso is Jam P) then

let val B' = (subst is_bd_follow_fill_ptr 1 1 P B) (*till 'er up *)
val (done_in_B',B") = onestepS B' (*do the redex just created*)

in (true, Sus(B", P, n)) end

else if (bd_follow_ptr _exists B) (* but P not a >.-abstraction *) then
let

val (done_in_P, P') = onestepS P in (* try for a red ex in P *)
if done_in_P then

(true, Sus(B, P', n))
else if higher_up_follow_ptr_exists P' then(* hit another >.,-ptr *)

(false, Sus(B, P', n))
else (*reduced; re-mark pointers; try again in body B *)

let val B' = mk_bd_followed_ptrs B
val (done_in_B', B") = onestepS B'

in (done_in_B', Sus(B" ,P, n)) end
end

else (* no Follow pointer in body B; try for a redex in there *)
let

end

val (done_in_B, B') = onestepS B in
if done_in_B then (*great, something happened *)

(true, Sus(B', P, n))
else if (bd_follow_ptr_exists B') then (*a Follow ptr was made *)

onestepS (Sus(B', P, n))
else (* >.,-ptr upward hit, or finished *)

(false, Sus(B', P, n))

73

If a FollowFill bound variable exists in a suspension's body, then a As
application down there needs a As-abstraction rator. If the pointee is a
As-abstraction, then the next redex has been found, but the rator is not "in
place." Section 4.4 is concerned with the copy (or move) that must precede
the .Bs-reduction.

If the target of a FollowFill >..-pointer is not a As-abstraction, onestepS
looks for redexes in the pointee in the usual tree-walking way. However, it
stops looking if the pointee becomes a As-abstraction (and does the single
substitution as before). This is evaluation to Root-lambda form (RLF): re
duction proceeds until the root node of the >..-term becomes a As-abstraction
or until BNF is reached, whichever comes first. RLF is tied to overwriting of
redexes' root nodes; it is analogous to lambda form (LF) attempted by the
auxiliary function evaLLF of the eval-apply interpreter evaLBNF (page 25).

If, in dealing with a FollowFill pointer, the suspension's pointee is not a
As-abstraction and does not become one, then the FollowFill pointer should
be changed to Followed and the search for a redex should resume in the
suspension body. When re-hatting, all of the suspension's bound variables
can be changed.

Further searching for redexes in a suspension's subordinate As-terms is
likely to run into another As-pointer, perhaps one with a target suspension
higher up in the overall As-tree. In the As-interpreter, active work is done
on the >.s-pointer poking highest up in the tree, and work on the others is
deferred.

Searching for a red ex: summary. Because Ti and Ti have the same sets
s g

of sg-connected plain nodes and the specification for the search is a pre-order
walk that follows s-connections as well as g-connections, corresponding plain
nodes will be chosen as the next redex (if one exists).

The only changes made to Ti while searching for a redex are changed hats
s

on As-pointers. These changes do not affect).s
9
-equivalence (Algorithm 4.1

pays no attention to variables' hats), so if r; l'i r; before searching started,
they will also be when searching is finished.

The tidiness of r; must also be preserved, because searching does not
change the >.s-term's structure.

74

4.4 Lazy copying of shared rators

For comparison purposes, the inputs to this phase are Ti• and Ti•, with
s g

outputs r;' and r;', respectively, as the battle-plan showed (Figure 4.2).
If the A-abstraction rator of a redex is shared, some or all of it must be

copied to avoid "using up" the >.-abstraction template. Section 3.3 intro
duced this idea and explained "lazy" (vs. "fully lazy") copying. A lazy copy
is one that shares SFEs, those known to be free (because they were sub
stituted into a >.-abstraction from above and cannot, therefore, include any
variables bound to that abstraction). A fully-lazy copy goes further, seeking
out maximal free expressions (MFEs) at every step.

In the >.,-interpreter, a >.,-term of the form (x; R), where X; is aimed
at a >.,-abstraction, is a redex. The .A,-pointer x; needs to be filled (that is
why it has a Follow Fill hat); there are two cases. If there is more than one
.A,-pointer pointing to the .A,-abstraction rator, then it is shared and must
be copied. I will show that the corresponding plain nodes are copied as in
graph reduction and that the same connections will be set up.

The second case is when the x; >.,-pointer is the only one aimed at the
>.,-abstraction rator. It still needs to replace x;, so all parts of the redex
will be local. After the replacement the suspension node and its pointee may
be removed (they are now useless); conceptually, the >.,-abstraction is being
moved. I call this case a last-instance relocation, because the last copy of
the >.,-abstraction is being moved to where it will be used. This relocation
does not affect .A,9 -equivalence because a set of nodes is simply being moved
from one place to another, and the upward s-connection from redex to rator
is being replaced with a g-connection. The >.,-abstraction node loses its
SFE-ness (detectable in a >.,-term by being the pointee of a suspension), but
this node is thrown away in the immediately-following ;5',-reduction, so the
).9 j >.,discrepancy goes away.

Graph reduction has no counterpart to last-instance relocation; Section
5.3.2 (page 145) discusses the matter at some length, because of its effect on
a .A,-interpreter's time complexity.

When a graph reducer copies a shared rator lazily, it copies one or more
plain, non-SFE, g-connected nodes that have a "border" of SFE root nodes.
The new copy will share the SFE border nodes with the original copy.

A lazy copy in the >.,-interpreter simply copies the >.,-abstraction pointee
of the suspension at which the FollowFill >.,-pointer is aimed. Figure 4.10
shows an example of lazy copying in the >.,-interpreter similar to that for
the >.9 -interpreter shown in Figure 3.5 (page 39). The figures show (a) just

75

[y] [xh
'~).b d.d.

x: \ ~
xtxt

Y3 b1

(a) (b)

Figure 4.10: A lazy copy in the As-interpreter

before the lazy copy and (b) just after.

Lemma 4.2 The lazy copying of a shared >.-abstraction rator in a >.
9
-inter

preter and a >.,-interpreter maintains the correspondence between plain nodes
and their connectedness· that is if Tis= Tis then Tic= Tic.

' 's"gg s"gg

Proof. Table 4.2 gives a blow-by-blow comparison of A
9

- and As-interpreter
operations and shows that the plain-nodes and connectedness equivalence is
maintained. The ML code for lazy_copy (page 41) may also be instructive.

The As-interpreter part of step 3 in Table 4.2 deals with nicely g-connected
plain nodes in the suspension's pointee and with As-pointers that are upward
s-connections to pointees higher up in the As-tree. Fortunately, there are no
other s-connections or As-pointers within the pointee because it cannot have
a suspension in it. A suspension in the pointee would indicate a tJs-reduction
was done inside a As-abstraction, which reduction to WBNF prevents. D

Comment. Because the As-interpreter does lazy copies, if >.-lifted terms
were provided as input, then, according to Arvind et a!. 's result [9], it would
give the same sharing as Wadsworth's fully-lazy-copying interpreter.

4.5 Tidying \-terms

Besides a search strategy to find redexes, a method for copying shared rators,
and a f)-reduction rule, a >.-calculus interpreter may have a tidying phase that

76

A -interpreter

1. Copy the \-abstraction root
node (a plain node). Consider
copying its body (Step 2).

2. If a node is the root of a SFE,
do not copy it but g-connect
its parent to node itself.

3. If a (plain) node is not the
root of a SFE, copy it and
g-connect it to its copied
parent.

.\,-interpreter

Copy the .\,-abstraction root
node (a plain node). Consider
copying its body (Step 2).

The corresponding thing to
a g-connection to a SFE
is a .\,-pointer aimed at a
suspension's pointee (an up
ward s-connection). Copy
the .\,-pointer, creating an
upward s-connection to the
same pointee.

Copy the corresponding plain
node and g-connect it to its
copied parent.

Table 4.2: Comparison of\- and .\,-lazy copying

77

~
[y] I C*

)Z~·
xl [z] a. b.

1\
Y3 d.

Figure 4.11: Pointer-following run amok

rearranges terms to some advantage. The removal of indirection nodes is an
example, 2 though most graph reducers avoid such overhead. I ignore tidying
for A9 -graphs.

Following the battle plan (Figure 4.2), the inputs to this phase are Tjr and
T;r, with outputs Tj' and T;', respectively. Because A9 -graphs are not tidied
and this is the last phase of reduction-step i Tit= Ti+I and Tir =Tit= Ti+1 •

's s g g g
Tidying up As-terms between ,8s-reduction steps is important for a As-

interpreter. The reason is because unrestrained As-pointer-following can
quickly get out of hand; Figure 4.11 shows why. Assuming that we begin
looking for a redex at the root node in the figure, the dotted arc shows the
next plain node that we will get to. Whereas graph reduction will make the
hop in one step (probably with one machine instruction), As-pointer-following
will visit (non-plain) nodes x1 , [x], y3 , and [y] (among others) before reach
ing the plain-node pointer target. One may put together trees of suspensions
and A8 -pointers to create arbitrarily complicated hops from one plain node
to another.

This section introduces the tidying rules for the As-interpreter designed to
improve As-pointer-following by rearranging suspensions. Most of the section
is in a tutorial style; Section 4.5. 7 summarizes the tidying enterprise. At the
A-calculus level, these rules are identities related to the substitution opera
tion; I rely on the presentation about substitution in Hindley and Seldin's
text [96, pages 7-10].

The first tidying rules are intimately related to the special cases of ,&
reduction in the \-interpreter, described in Section 3.2.

2The function rm_indir_nodes (page 176) is an implementation.

78

(* trashpickup: Term--+ Term. Suspensions without bound variables are removed.

Uses chk_vars (page 170), is_bd_var_or_ptr (page 172), and incr_free_vars2 (page 171).
*)
fun trashpickup (App(M, N)) = App(trashpickup M, trashpickup N)

I trashpickup (Lam(B, n)) = Lam(trashpickup B, n)

I trashpickup (Var(bi,vmk, n)) = Var(bi,vmk,n)

I trashpickup (Sus(B, P, n)) =
let val B' = trashpickup B

val P' = trashpickup P

in
val bd_var_in_body = (chk_vars is_bd_var_or_ptr orEise false 11 B')

if not(bd_var_in_body) then incdree_vars2 -1 B'

else Sus(B', P', n)
end

4.5.1 Removing useless suspensions

A useless suspension is one with no variables bound to it; no A5 -pointers
in its body are aimed at its pointee. This is garbage collected in LISP and
other systems with automatic storage management. Useless suspensions are
the reason I refer to "connected plain nodes," because useless suspensions
can add arbitrarily many (unconnected) plain nodes to a A5 -term.

A suspension becomes useless either because it had no bound variables
when it was created (f3s rule) or because its initially-bound variables have all
been filled in subsequently. Removing a useless suspension is not a reduction
rule in the pure sense; however for convenience, I will lump it with the more
proper rules to be applied when tidying. This pseudo-rule is:

[useless]: [B P] --t Bdf, B contains no bound variables.

The [useless] pseudo-rule is just Hindley and Seldin's Lemma 1.14b:

if x rj; Free Vars(M) then M[x := N] = M.

My ML implementation scans for useless suspensions after each step,
using the function trashpickup: Term --t Term (page 79). The FFPM imple
mentation in Chapter 5 checks for them immediately after fl.-reductions and
the filling of FollowFill A8 -pointers.

Lemma 4.3 A (3
9
-reduction Tic --t Tir in which the rator has no bound vari

ables corresponds to a (38 -redu~tion Tic --t Tir followed by an application of
s s

79

the [useless] pseudo-rule.

Pro of. It is straightforward:

g case: (.\x.{M} N) _. M
_. M s case: (.\x.{M} N) -> [xM N] 0

4.5.2 Removing trivial suspensions

One cause of needlessly painful .\8 -pointer-following is trivial suspensions:
those that have a single pointer as their body or pointee. A trivial suspension
wastes space and provides no sharing. It provides no benefit, so it can be
removed. There are two rules:

[triv-body]:

[triv-ptee]: [M Yi]

NB: cases in which the single-vari
able body is not bound to the sus-
pension are covered by the [useless]
pseudo-rule.
M' is M with bound variables re
set to i; then decrement all the free
variables (including Yi)·

The [triv-body] rule applies if the body of a suspension is a lone bound
variable; the (trivial) substitution may be completed. If the variable is not
bound here, the [useless] pseudo-rule applies.

The [triv-ptee] rule applies if the pointee of a suspension is a lone variable.
It is best to complete the substitution M[x := y;]-variables replace variables,
and an unnecessary indirection is removed.

For both rules, free variables must be decremented when the suspension
is removed, because one binder has been removed from the variables' binding
paths.

Lemma 4.4 A (3
9

-reduction Tic --> Tir in which the rat or is a lone variable
corresponds to a {38 -reduction ~ic -->

9
Tir followed by an application of the

s s
[triv-body] rule.

Proof. The \-interpreter treats this case specially by setting the rand's
subbed flag to false, even if it was set previously. This keeps .\89-equivalence
from being broken by a single subbed flag! Consider the two cases, with a
dagger superscript indicating the subbed flag is set:

80

g case: A
AX y

I

M

y y y

M
...

X X X

s case: A
AX y

I

[x]

~
M y

M

y y y

M
x x x

X X X

Figure 4.12: P'-reduction followed by [triv-ptee] rule

g case: (.\x.{x1} N) ___, Nt N
s case: (.\x.{xd N) ___, [xx 1 N] ___, N

g case: (.\x.{xd Nt) ___, Nt = N
s case: [y(.\x.{x1 } y1) N] ___, [y[xxl Y2l N] ___, [yYl N] ___, N 0

Lemma 4.5 A iJ
9
-reduction Tic -> Tir in which the rand is a lone variable

g g

corresponds to a P',-reduction Tic -> Tir followed by an application of the
' ' [triv-ptee] rule.

Proof. The .\
9
-interpreter treats this case specially by substituting copies

of the single-node rand (not sharing them) and not marking them as SFEs
Figure 4.12 shows the graph-versus-suspension comparison; the x's sticking
out of M represent whatever bound variables happen to be in there (at least
one). Note the absence of daggers representing SFEs. 0

4.5.3 Moving A
5
-abstractions above suspensions

Another problem with using suspensions and .\,-pointers is that a .\,-appli
cation may be arbitrarily far from its plain-node rator, even without trivial
suspensions; Figure 4.13 illustrates the problem. (An analogous difficulty

81

r-----_
[r] N

/-----_
[q] ~

/"---.....
[p] Q
A

AX p
I

B

Figure 4.13: ,\x rator far from the plain-node As-application above

for the \-interpreter would be to have many indirection nodes between a
As-application and its rator.) As long as As-terms of this form are allowed,
/Js-reduction is not a local operation in the As-tree.

The solution to the problem is to move a As-abstraction suspension body
above the suspension itself-the [>.-up] rule:

[>.-up]: [x>-y.{B} P]-> .\y.{[xB' PU]};

where binding indices must be adjusted as follows: free variables in P must be
incremented, because of a new binder ,\y in their binding path, and binding
indices of bound variables of ,\y and [x] in B are incremented and decre
mented, respectively, so that they still point to the correct binder. Fig
ure 4.14a shows the [>.-up] rule in As-tree form.

The [>.-up] rule guarantees that a As-application redex and its As-abstrac
tion rator will become adjacent in the As-tree, even if there are intervening
suspensions on the abstraction's root path. The only other non-locality be
tween redex and rator that is possible is if a As-pointer must be followed to
get from one to the other; As-pointer-marking and subsequent A-filling take
care of that.

The [.\-up] rule is simply one clause of the definition of substitution (see
Hindley and Seldin [96, page 7]).

Lemma 4.6 The [>.-up] rule preserves ,\s
9

-equivalence.

Proof. The ,\9 -graph equivalents (use Algorithm 4.1) of both sides of the
rule are the same, as Figure 4.14b shows. The dagger indicates that P is a
SFE, and the set of arrow- tipped lines suggest one or more pointers to P. D

82

[x] A.y

~
A.y p

I
[x]

I ~
B B' pi!

(a) The [A.-up] rule (s case)

A.y A.y

I I B __, B

(j) (j)
Pt pt

(a) Graph-reduction equivalent (g case)

Figure 4.14: The [A.-up] rule and its graph-reduction equivalent

83

[x]

1 [y]

~
xl y. [z] .\x

t't' I
xl

fJz zl xl

Figure 4.15: Suspension reordering needed

[x]

/\
~ Free variables in M are

/ "-... incremented; variables in
M [y] [x] Qdf P bound to [y] are incre-

1\
p Q

/\ mented; free variables in
M;J p;b Q are decremented.

Figure 4.16: Rotate adjacent suspensions leftward

4.5.4 Rotating suspensions

Even without trivial suspensions, getting from one plain node to the next
can still be messy; Figure 4.15 shows an example in which the desired hop is
from .\,-application 1 to .\,-application 2: a .\,-pointer hop up to suspension
[x], then a downward plunge through several suspension bodies (in general,
there could be an arbitrary number). The problem is that suspension [x] has
another suspension, [y], as its pointee. Put another way, one s-connection
simply connects to another one.

The [sus-rot!] rule solves this new problem (it is called the "[sus-rot!]"
rule because the suspensions rotate to the left):

Figure 4.16 shows the [sus-rot!] rule in tree form. The effect of the rule is
to turn suspensions unseparated by plain nodes into long left-linear suspen
sion trees. (The "suspension-list" extension builds upon this property; see
Section 6.1.)

84

B B

g case: c])
Pt

(!)
(!)

Pt

(!)
Qt Qt

s case: [xB [.P QJ] [y[xB P] Q]

Figure 4.17: The [sus-rot!] rule preserves .Xs
9
-equivalence

The [sus-rot!] rule follows from lemmas about substitution in Hindley and
Seldin [96]:

[y[xM;f QJ [xP QJJ introduce a useless suspension;
Lemma 1.14b.
Lemma 1.15d.

Lemma 4. 7 The [sus-rot!] rule preserves A89 -equivalence.

Proof. The .\9 -graph equivalents (use Algorithm 4.1) of both sides of the
rule are the same, as Figure 4.17 shows. The daggers indicate SFEs, and
the set of arrow-tipped lines suggest one or more pointers. The possibility
of pointers from B into Q is eliminated because the initial position of the
[y] suspension is invisible to any As-pointers in B. D

4.5.5 Upward and downwards-connections

Recall that a g-connection is an edge that directly connects two plain nodes
in a A8 -term (or a A9 -graph).

Plain nodes connected via a As-pointer ares-connected. Figure 4.18 shows
the only two ways a pair of plain nodes can be s-connected in a tidied A8 -term.
Figure 4.18a shows an upward s-connection: a plain node a has a As-pointer
child that s-connects it to the pointee b of the pointer's target suspension.
The dashed line shows the s-connection. Tidying guarantees that a is not a
suspension (else [triv-body]) and that b is not a suspension (else [sus-rot!])
or a variable (else [triv-ptee]).

85

(a) upward

1 a

/I
,' [x]

I .

I
I

,' [yj
I .

I ...

I .·

,'[zj
;:/·· ..

b
(b) downward

Figure 4.18: Kinds of s-connections

Figure 4.18b shows a downward s-connection: two plain nodes a and b
have one or more suspensions hung between them. The dashed line is the
s-connection. If there were another plain node c so mew here in the left-linear
tree of suspensions, the a would be s-connected to c. The [triv-body] rule
ensures that b is a plain node.

4.5.6 Constraints on moving suspensions

A suspension is a peg on a .As-tree on which a .As-term is hung so its bound
variables may share it. By the nature of binding indices, a variable (here, I
mean .As-pointers, too) can only "see" suspensions that are on the path from
itself to the root of the .As-tree. A suspension may not be moved where one
of the variables in either its body or pointee will no longer be able to see its
binder.

As an example, consider Figure 4.19. The suspension [x] could be moved
to anywhere on the dotted lines. It cannot be moved further down, or one
of its bound variables could not see it; it cannot be moved higher up, or the
z's in its pointee could not see their binder.

All tidying rules observe these constraints.

4.5.7 Tidying: definition and important properties

Definition. A .As-term is tidy if none of the [useless], [triv-body], [triv-ptee],
[.A-up], or [sus-rot!] rules applies to it.

A more informative definition of a tidied As-term is possible:

86

r---_
,\z p

[y J

(:·[C1Aa
. . ~ I
~ z3 z3 at

ih z3 i:1 x1

Figure 4.19: How far can suspension [x] be moved?

L The root (A,-application) and rator (A,-abstraction) of a redex areal
ways directly connected (a g-connection).

This guarantees that ;3,-reduction is a local tree operation.

2. The A,-term includes no "garbage," nodes that are neither g- or s
connected to the term (i.e., nodes in useless suspensions).

Aside from the impracticality of letting garbage accumulate, the FFPM
implementation of searching for redexes (notably Algorithm 5.5) may
not work correctly if useless suspensions are present.

3. The A,-term is organized so a traversal from one plain node to another
crosses one connection, either a direct connection (g-connection) or an
upward or downward s-connection.

This constraint is essential to achieving comparable time complexities
for the A

9
- and A,-interpreters.

The function tidyterm :Term -->Term (page 88) encodes all the rules ex
cept the [useless] one; it is implemented by trash pickup (page 79). Table 4.3
shows all the A,-interpreter rules collected together, including those for tidy
mg.

Important properties of tidying. ;3,-reduction may "untidy" a A,-term,
and the tidying part of a reduction step will tidy it up. The other parts of a
step (searching and copying) must preserve tidiness. Searching for the next
redex preserves tidiness trivially-searching does not change terms. The
following lemma deals with tidiness preservation by lazy copying.

87

(* tidyterm :Term--+ Term.

*)

Innermost-out "tidying" ofTerms with suspensions. Implements rules [triv-body},
[triv-ptee}, [J..-up) and {sus-rot!).

Uses std_subst (page 172), incr_bd_vars (page 171), incdree_vars2 (page 171), and
swapJevs (page 173).

fun tidyterm (App(M, N)) = App(tidyterm M, tidyterm N)

I tidyterm (Lam(B, n)) = Lam(tidyterm B, n)

I tidyterm (Var(x,vmk,n)) = Var(x,vmk,n)

I tidyterm (Sus(B, P, n)) =
let val B' = tidyterm B

val P' = tidyterm P
in (case B' (*we've tidied below; see what we got *)

)) end

of lam(IB, In) =:- (* {J..-up} rule; may be more than one *)
tidyterm (Lam(Sus(swap_levs 1 2 IB, incdree_vars2 1 P', n),ln))

I Var(bi, vmk,vn) =:- (* (triv-body} rule*)
if bi :':: 0 then (* a constant *)

Var(bi,vmk,vn)
else if bi > 1 then (*keep body; heave away suspension *)

Var((bi-1),vmk,vn)
else (*if bi = 1 *) (*replace body with suspension *)

(incdree_vars2 -1 P')

I - =:- (* otherwise, look at pointee *)
(case P'

of Var(bi,vmk,vn) =:- (* (triv-ptee} rule *)
(incdree_vars2 -1 (std_subst P' B'))

I Sus(pB, pP, pn) =:- (* {sus-rot!] rule *)
let val B" = (incdree_vars2 1 B')

val pB' = (incr_bd_vars 1 pB)
val pP' = (incdree_vars2 -1 pP)

in
Sus(Sus(B", pB', n), pP', pn)

end
I - =:- (* otherotherwise ... *)

Sus(B', P', n)

88

[useless]: [B P] ___, Bdf

[triv-body]:

[triv-ptee]:

[A-up]: [xAy.{B} P] ___, Ay.{[xB' pi!]}

B contains no bound
variables.

Cases in which the
single-variable body is not
bound to the suspension are
covered by the [useless]
pseudo-rule.

M' is M with bound variables
set to i; then decrement all
free variables (including y;).

Free variables in P are
incremented; B' is B with
bound variables of AY
incremented and bound
variables of [x] decremented.

[sus-rot!]: [xM [yP Q]] ___, [y[xMif pib] Qdf] Free variables in M are
incremented; variables in P
bound to [y] are incremented;
free variables in Q are
decremented.

Table 4.3: A8 -interpreter rule summary

89

Lemma 4.8 The >.,-term that results from lazy copying into a FollowFill >.,
pointer in a tidied >.,-term {Section 4-4) is also tidy.

Proof. Only g-connected plain nodes and >.,-pointers are copied in as the
rator of a >.,-application; no suspensions are copied. None of the tidying
rules can be applicable; they all involve suspensions. 0

There are other important properties of tidying, besides those mentioned
in the definitions above.

• No rule copies a >.,-term bigger than a variable (one node); the [triv
body] and [triv-ptee] rules do this kind of "copying." All copying of
larger terms is done when copying shared rators (Section 4.3).

• No rule requires a change in the left-to-right order of its subterms when
written out in textual form. This is important for the implementation
in Chapter 5, which would have to copy to change the order, but other
implementations might suffer no such penalty.

4.5.8 The recurring example on the .\-interpreter

And finally, Figure 4.20 shows all the steps of the recurring example. You
may wish to compare with Figures 2.8 (ordinary tree reduction) and 3. 7
(graph reduction).

4.6 a-equivalence of \-terms

>.-terms that are the same up to variable-renaming are said to be a-equi
valent. In a name-free (suspensionless) >.-calculus, a-equivalent terms are
identical. In an application where it is important to be able to determine
equality of >.-terms, a name-free >.-calculus is used mainly for this reason.
An example is Nadathur and Jayaraman's work on >.-Prolog [155].

Unfortunately, >.,-terms (with suspensions) are not necessarily identical
if equivalent, as Figure 4.21 shows. The (suspensionless) plain >.-term equiv
alents of both terms are identical, because the substitutions represented by
suspensions may be done in either order (Hindley and Seldin's Lemma 1.15d
[96, page 8]).

90

AY Ay

~ I
[!]

Af AX

A
---+ AX ---+

11 A fl xl Y2

A
xl Y3

fl

fr fr A 1r

AY AY
I I

[!] [!]
~ ---+ ~ ---+ [x] .\x [x] Ax

A [x~ A
12

X1 Y3 0 .. Xr Y3
Xr Y3 !2 !2

12 12 ir Y4 i:2 Y4

AY >.y
I I

[!] [x]
~ ---+ [x~ [x] AX

[x~ A X'A Y2 Y2 {'A . Xr Y3 il Y3 i2 Y3
f2 Y3

Xr Y4 i2 Y4
Figure 4.20: The A5 -interpreter on the recurring example

91

Figure 4.21: Equivalent, non-identical As-terms

4. 7 Equivalence to graph reduction: correct
ness

The guiding principle of a .As-interpreter is that it "does the same thing" as
a .\

9
-interpreter. The previous sections have showed that a As-interpreter's

actions are equivalent to a .\9 -interpreter in all phases of a reduction step:
searching for a redex, copying the shared rator (if applicable), doing the (J
reduction, and tidying up the result. Because Wadsworth showed that graph
reduction is a correct implementation of the normal-order evaluation of the
pure .\-calculus [201], it follows that the As-interpreter is as well.

As the battle plans of Figures 4.1 and 4.2 proclaimed, the following the
orem brings together the results about the correctness of the As-interpreter
that have been presented in this chapter.

Theorem 4.9 Given an initial plain .\-term T? on which n > 0 normal
order reduction steps can be done and

• Tsn, the result of doing n {n 2:: 1) reduction steps on T? with a As-in
terpreter,

• T
9
n, the result of doing n reduction steps on T? with a .\9 -interpreter,

then Tn = Tn. s bg g

Proof. The proof is by induction on n. For the basis and induction steps,
we must consider each of the searching, copying, reduction, and tidying
phases. As before, the notation Tjx is to suggest a term in form f at re
duction step i; x may be one of the letters s, c, r, or t, indicating one of the
four phases of a reduction step.

92

Basis: searching. The input T,0 is a plain .A-term, an acceptable input
for both the .A9 -interpreter and the .A,-interpreter. All nodes are plain and
all connections are g-connections. Both the .A9-interpreter (which follows g
connections) and the .A,-interpreter (which follows both g- and s-connections)
will do a pre-order walk to the (same) first .A-application with a .A-abstraction
for a rator.

Basis: copying. T,O has no sharing because no reductions have hap
pened yet, so the rator cannot be shared. Neither interpreter will do any
thing.

Basis: ,8-reduction. Lemma 4.1 says that .A,
9
-equivalence is preserved

for non-trivial, non-useless reductions. Lemmas 4.3, 4.4, and 4.5 prove the
same thing for the useless-, trivial-body- and trivial-rand-reduction special
cases.

Basis: tidying. If T 0r and TOr are the results of the basis-step ,8-
reduction and TOt is the re;ult of tid'ying TOr, then TOr=. TOr. Lemmas 4.3,

s s g ~ 8

4.4, 4.5, 4.6, and 4. 7 ensure that the [useless], [triv-body], [triv-ptee], [.A-up],
and [sus-rotl] rules do not affect .A,9 -equivalence, respectively.

Thus ends the basis step for Theorem 4.9.

Induction step. The induction hypothesis is that the .A
9

- and .A.
interpreters each run for i steps, producing Ti and Ti, respectively, and

g '
that Ti = Ti. The goal is to prove that Ti+l = Ti+l. gsgs gsgs

Induction: searching. For every g-connection between plain nodes
that the .A

9
-interpreter follows, the .A,-interpreter will follow an sg-connection

between the corresponding plain nodes in the .A,- term.
The .A

9
-search will stop when its finds a .A

9
-application g-connected to a

\-abstraction rator. The .A,-interpreter looks for the same pattern; tidy
ing guarantees a g-connection between redex and rator. The corresponding
application nodes will be the redex.

In the .A,-interpreter case, if the redex is connected to the rator by an s
connection, it will be an upward one. (A .A8-abstraction cannot be the target
of a downward s-connection, because of the [A-up] rule.) Either a shared
rator copy or a last-instance relocation will follow. The latter cannot affect

93

.\s9 -equivalence, as its effect is only to replace the upward s-connection with
a g-connection (Section 4.4).

Induction: copying. If the rator of the selected redex is not shared,
both interpreters proceed to ,6-reduction. If the rator is shared, Lemma 4.2
says that the two interpreters do .\s

9
-equivalent lazy copying.

Lemma 4.8 says that lazy copying of a shared rator in a tidied As-term
produces a tidied term.

Induction: ,6-reduction. As for the basis step.

Induction: tidying. As for the basis step. Thus ends the proof of
Theorem 4.9. D

4.8 Related approaches to >.-calculus evalua
tion

This section reviews previous work about normal-order evaluation of the
.\-calculus that is similar in some way to my approach in the As-interpreter.
A vast amount of work has been done on .\-calculus evaluation, much of it on
practical variants, e.g., "reduction to weak head-normal form (WHNF) of an
extended .\-calculus, using supercombinators." I do not trace the connections
to that work, but limit myself to efforts closer in spirit.

Sections 3.5 and 5.1.12 review graph-reduction and non-graph-reduction
architectures, respectively.

4.8.1 Efforts to find simpler reduction rules

I began this work in 1986 when Mag6 directed my attention to Staples's
(190] and Revesz's (174; 176] work on simpler sets of reduction rules for the
.\-calculus. We examined their rules to see how they would fit on an FFPM.

In his work in the late 1970s, Staples's major concern was with "optimality
theory," including finding an optimal reduction order for the .\-calculus (a
provably-minimal number of steps to reach BNF) (189; 188; 190; 192; 193;
194] (Kennaway provides a summary of his work (118]). In the paper "A
Graph-like Lambda Calculus for which Leftmost-Outermost Evaluation is
Optimal" (190], Staples presents reduction rules for system that is equivalent

94

[triv-body]: if i ::::; 0 (x constant)
if i = 1 (pointer bound here; re
place with pointee)
if i > 1 (pointer bound above;
pointee is unpainted to)

Only if there are no suspension
bound variables (i.e., useless sus
pension); free variables in B must
be decremented.

[.\-up]: [x.\y.{B} N] -+ .\y.{[xB' N;f]} Free variables inN are
incremented; B' is B with
bound variables of .\y incre
mented and bound variables of
[x] decremented.

Table 4.4: Staples's "graph-like lambda calculus" rules

to the .\-calculus for reductions to BNF where they exist (but not for arbitrary
reductions). Table 4.4 shows Staples's rules (converted to my notation and
to name-freeness). I use my rule-names where applicable.

The <Ta rule only applies if a term has a variable at its head position (cf.
Head-normal form (HNF)); Staples's scheme may be made fully equivalent
to the .\-calculus if rule <Ta is replaced with:

<Ta': ["(A B) P] -+(["A P] [B P]).

The effect of the <Ta or <Ta' rules is to push a suspension down through a
.\-application; this is more obvious in the tree form shown in Figure 4.22.

Staples's system works by using the (J, rule to make suspensions and the
u.\0, [.\-up], and (one of the) <Ta rules to push suspensions downward in a
.\-term until the [triv-body] rule applies.

The <T .\0 removes a useless suspension and serves little purpose in a name
free calculus. I have altered Staples's [.\-up] rule slightly to take advantage
of the name-free calculus.

For my purposes, the objection to Staples's rules is that the <Ta rules

95

[y] /-----_ c:-P [y] [y]

a a: --+ . c:-p An::-p

f"A, An+l

[\2
An

X At
X Al

[y] ~
rYa':

Ap

--+ [y] [y]
1\ 1\

A B
A p B p

Figure 4.22: Staples's aa-rules

duplicate the suspension's pointee. It is to avoid this (possibly unnecessary)
copying that the >.,-interpreter follows >.,-pointers and fills them in when
necessary.

The [sus-rot!] rule in the >.,-interpreter would serve no purpose in Staples's
scheme, even though it is sensible (not wrong). More exhaustive checking for
useless suspensions would be appropriate in Staples's system.

Michael O'Donnell [161, pages 59-62] follows Staples's remark about not
using special symbols for substitution (i.e., suspensions) [190, page 441] and
uses >.-abstractions for the purpose instead. 0 'Donnell also uses binding
indices to give a name-free calculus; his resulting rules are essentially the
same as Staples's. In related work, O'Donnell and Strandh worked on a
similar system (interestingly, with an explicit symbol for substitution) in
which they tried to avoid the adjustment of binding indices as reduction
proceeds [162]. Their approach was to add an integer tag to every >.-term
(every node, in .X-tree terms) and to augment their rules to manipulate the
tags. They could not get it to work; O'Donnell decided that a single number
cannot hold the information required (personal communication). Repeatedly
adjusting binding indices is not a problem for the implementation of the >.,
interpreter presented in Chapter 5.

Revesz also presents a simpler set of reduction rules for the >.-calculus
[174; 176]; as with O'Donnell, he is trying to break down substitution into

96

Ra: .\x.{P}, .\z.{[zj jx]P} where z is a 'fresh' variable

R,81: (.\x.{ X} Q), Q

R,82: (.\x.{P} Q), P if x is not free in P

R,83: (.\x.{Ay.{P}} Q), Az.{(.\x.{[z/ jy]P} Q)} if y # x is free in P, z a
'fresh' variable

R,84: (.\x.{(Pt P2)}Q)...., ((.\x.{P1}Q)(.\x.{P2}Q)) if xis free in (P1 P2)

Table 4.5: Revesz's reduction rules

simpler steps. He uses "brute force" variable-renaming as part of his solution
to the name-capture problem ("[z/ jx]E" means to rename x in E as z).
Table 4.5 shows Revesz's reduction rules (NB: not name-free variables).3

Revesz's system is interesting, both as an elegant reformulation of the
.\-calculus rules and as the basis for a practical implementation. Combining
it with an extension to integrate lists into the .\-calculus [175; 176], Revesz
has built an interpreter for his language on the RP3 shared-memory multi
processor [177].

The Staples and Revesz systems are similar. Staples uses an explicit sym
bol for suspension while Revesz does not. Their main difference is in variable
naming; Revesz uses his brute-force renaming, whereas Staples depends on
an infinite supply of "fresh variables."

4.8.2 Comparison with environment-based evaluation

The problem of how to best implement ,6-reduction (in particular the core
problem of substitution and the binding of variables) has received consider
able attention; Kennaway and Sleep give a succinct synopsis of known ap
proaches [121]. I have already covered reduction methods, in which program
and data are both represented in a program graph (the graph is a tree for
tree reduction), and the structure of the graph reflects binding information.
Substitution is then a matter of copying, either pointers (graph reduction)
or terms themselves (tree reduction).

3 This is "axiom system A,'' from Revesz's 1985 paper [174]; in his 1988 text, he con
centrates on axiom system Ao, which does not include brute-force renaming [176].

97

Combinator-based approaches to reduction (orthogonal to whether tree
or graph reduction is used) get rid of variables at compile-time, altering
the requirements for an interpreter (Section 2. 7 introduces combinators, and
combinator-based architectures are included in the review in Section 3.5).
Major flavors of combinator reduction include the use of a fixed set of combi
nators (as with Turner's combinators [199] or categorical combinators [50]),
of program-specific sets of combinators ("super-combinators") [105], and of
director strings [122]. Goldberg's paper on using abstract interpretation to
detect sharing at compile-time is noteworthy with respect to supercombina
tors and sharing [81]. As I say in Section 2. 7, comb ina tors are far from my
concern with the normal-order evaluation of the untransmogrified .\-calculus;
I do discuss some overlaps later in this section, particularly with director
strings.

The other main approach to implementing the .\-calculus is to use an envi
ronment: a set of variable-to- .X-term bindings, usually recorded in a separate
data structure. Any evaluation of a .\-term takes place in an environment;
bindings are added, perhaps modified, and looked up. Environment-based
interpreters date back to LISP [149] and the SECD machine [130]; both
are applicative-order evaluators, meaning that only fully-evaluated terms are
stored in an environment.

Environments become more complex when they hold unevaluated terms,
as in normal-order evaluation. Not just the ,\-term, but also the "context" in
which any later evaluation must take place (i.e., the bindings offree variables)
must be recorded. Such a structure-a .\-term plus bindings for its free
variables (an environment)-is often called a closure (e.g., Arvind et al. [9]).

Using environments allows different sharing properties, depending on
whether an unevaluated .\-term is overwritten with its evaluated equivalent
after that term has been reduced. Field and Harrison give a fascinating
synopsis of what sharing can be achieved for various types of underlying im
plementation languages; for example, a fully-lazy-copying interpreter cannot
be implemented with a fully-eager functional language [66, pages 208-211].

Some people use the term "suspension" to mean "an updatable environ
ment," one that is modified in place, analogous to overwriting the root of
a redex in graph reduction [127]. A suspension as I have defined it is in
the same vein, except that only one variable is bound. My use of the term
"suspension" comes from Staples [190]. He says "suspension is well-known
in the theory of the classical lambda calculus" (page 441) and cites Rosen
[178] and Mitschke [154] as antecedents. As I have mentioned, a "closure"
is closely related; it is an environment plus a .\-abstraction, i.e., a function,

98

hence the older name "FUNARG," from LISP. Yet another term comparable
to "suspension" as I have used it is "recipe," cited in Field and Harrison's
text [66, page 205]. In his thesis, Paul Watson uses "frozen substitutions"
[206] and the term "delayed substitutions" also comes up. My equivalent of
a more traditional environment-a set of bindings-is the set of suspensions
along a root path. A .\-term plus the suspensions along its root path is my
equivalent of a closure. Bound variables-their binding indices, that is-are
indexes into the environment.

The categorical-combinators approach taken in the Categorical Abstract
Machine also uses binding indices to index into an environment [51]. They
use an explicit environment, whereas the .\,-interpreter is really closer to
reduction, with suspensions being an integral part of the program-plus-data
structure to which reduction rules are applied.

As suggested earlier, director strings are related to traditional combina
tors; the motivation that Kennaway and Sleep give for them is similar to my
suspensiOns:

It would be better to only do the copying in response to the demands of
the rest of the computation. One method of achieving this is to intra.
duce environments ... When we encounter a beta-redex (.\x.{F} G),
we merely replace it with the pair [F, (x = G)], where (x = G) is the
environment that associates x with G ... We then continue by attempt
ing to evaluate F. If we discover further redexes, we reduce them. But
if we find an occurrence of x whose value we need before proceeding
further, then we 'push' the environment (x = G) down through F to
that occurrence of x, peeling off a copy only of the path traversed. At
the end of the path we substitute for x a pointer to G, and continue
looking for the next redex to reduce [121, page 120].

Kennaway and Sleep call this approach "lazy graph reduction" and sug
gest director strings as one implementation. These are notations in a .\-tree
that show how arguments should be pushed down the tree. The possible
directors are/,\, ·,and-, meaning send "to the left," "to the right," "both
ways," and "nowhere," respectively. Figure 4.23 shows a .\-application with
five directors, as well as the result of applying one argument.

The approach taken in the .\,-interpreter differs from director strings in
the same way it differs from Staples's rules: I avoid the potentially use
less copying of "sending both ways." Kennaway and Sleep suggest a graph
reduction base, so they need not fear such copying.

99

\\ II

11\\11 a-+

E F E G F G
Figure 4.23: An example of director strings

4.8.3 Environment/reduction hybrids

My suspensions are single-binding environments. The .\8 -interpreter is un
usual in that it works both in a "reduction mode" (e.g., the rules that move
suspensions around) and in an "environment mode" (when following and
filling .\8 -pointers).

In their paper on sharing in functional language implementations, Arvind
et a!. also describe a hybrid reduction/environment scheme [9, pages 5.5-
5.6]. It has "graph cells" that may point to "environment cells," as well as
to each other. (The environments are of the traditional multi-binding kind.)
Reduction at a (graph) cell takes place in the context of the environment cell
attached there. Pointers to environment cells are passed down the graph as
evaluation proceeds; evaluation inside an environment may also be required.
Reduction in which environments (or closures, or suspensions) are stored and
manipulated as part of the graph (or tree) are closure-based.

Fairbairn and Wray's Three Instruction Machine (TIM) is a well-devel
oped example of closure-based (supercombinator) reduction, intended for
use with stock hardware [64] (I follow the description by Koopman and Lee
[127]). When a combinator evaluation is to be delayed, the current stack
frame contains pointers to the ancestor nodes of the combinator-that is,
the environment in which the evaluation will be done if necessary. To delay
a reduction, TIM copies the current stack frame into a closure in the heap,
in much the same way as registers are copied to memory on a context-switch.
These closures have much the same flavor as "suspension lists," introduced
in Section 6.1.

4.8.4 Pointers versus \-pointers

A graph reducer like the .\9 -interpreter (Chapter 3) depends on the notion of
pointer, a unique identifier for an entity in a global name space: it provides an
absolute address of something. In the .\

8
-interpreter, I use binding indices to

point to suspensions' pointees; these .\8 -pointers are, in some sense, relative

100

addresses, saying how far to walk up a ..\-tree.
Using absolute pointers suffers when a ..\-term is copied; all pointers with

targets in the old copy must be changed to pointers into the new copy. On
the other hand, a ..\s-term, with relative As-pointers, can be copied bit-for-bit
and all will be well.

Absolute pointers regain some merit in other operations, including sub
stitution (of pointers): the absolute pointer can be put in for the bound
variables, no questions asked. Relative As-pointers, au contraire, must be re
peatedly adjusted as binding depths change. In Chapter 5, however, I show
that one can have a machine implementation in which the "disadvantages"
of relative As-pointers do not arise.

101

Chapter 5

The ..\
3
-interpreter on an FFP

Machine

Representation is the essence of programming.

-Frederick P. Brooks, Jr. (1975).

This chapter describes how to implement the -A.-interpreter on an FFP Ma
chine (FFPM), a small-grain MIMD computer architecture that supports
functional programming. (The -A.-interpreter is described in Chapter 4.)
Following an introduction to the FFPM in Section 5.1 (including a review of
other non-graph-reduction architectures aimed at functional programming),
this chapter catalogs the FFPM algorithms needed for a -A.-interpreter. Sec
tion 5.2.1 gives algorithms for basic operations that are pervasive in an in
terpreter (e.g., detecting bound variables), and the following section sets out
the rest of the implementation in a top-down fashion, with the highlights
reviewed in Section 5.2. 7. Section 5.4 goes over previous FFPM work related
to the .A-calculus.

The algorithms in this chapter are presented in English, with examples; a
more formal presentation would heighten the tedium to an unbearable level.
I give time and space complexity results as I go along; I use the symbol "lg"
for "binary logarithm."

I assume that an FFPM is not reducing several independent programs
(-A.-terms) at once; this slightly simplifies the overall control of the reduction
process (and the description thereof).

5.1 Introduction to the FFP Machine

5.1.1 Project history and design goals

Gyula Mag6 began the FFPM project in the mid-1970's at the University
of North Carolina at Chapel Hill; his goal was to design a highly parallel
machine to support functional languages, John Backus's FFP language in
particular [14]. Mag6 published the first description of an FFPM in 1979
[141], with follow-on descriptions by Mag6 and Middleton in 1984 [140], and
Mag6 and Stanat in 1989 [14 7]. (The last is the best available description
of the "official" FFPM; Almasi and Gottlieb's book includes a good brief
description [4].) Besides Mag6 and Stanat, some fifteen graduate students
have put their fingers in the pie over the years; I am one. Hundreds of FFPM
variants have popped up, with half-lives as short as one cup of coffee.

Though some design choices have changed during the project, its goals
have not varied much. Mag6's paper "Making Parallel Computation Simple"
[144] outlines these goals and design postulates:

• As much attention should be paid to ease of programming as to exe
cution speed. An FFPM system manages all parallelism without pro
grammer intervention (implicit parallelism).

o For the same reason, storage management (garbage collection) should
be fully automatic, even built in hardware.

o The design should be scalable in small increments up to an indefinitely
large size. The design is cellular, built from many copies of a few simple
VLSI parts.

o A scalable design eschews shared system resources; consider a million
processors attached to shared memory, for example. Locality becomes
very important, and an FFPM arranges that an independent subcom
putation always runs on physically-proximate hardware, entirely unaf
fected by the rest of the computer system.

o Similarly, sharing a planning resource, e.g., a master processor, is out
of the question, so an FFPM has no central control.

o An FFPM is intended for dynamic computations, those with unpre
dictable data-structure sizes and shapes and with unpredictable threads

103

of control. The hardware should be dynamically mapped onto the com
putations, rather than the computations painstakingly mapped onto
hardware at program-design time.

• The scalability criterion excludes programs with special knowledge of
the Machine: number of processors, interconnection topology, etc.

The FFPM has been examined from many angles, as one might ex
pect of an unusual design. (The interested reader would do well to get the
FFPM project bibliography [145].) Among these angles has been support for
non-FFP languages (machine name notwithstanding). The earliest designs
tracked Backus's still-developing ideas about reduction languages (compare
the original 1979 paper [141] with the 1989 one [147]). Bruce Smith has
studied logic programming on an FFPM [185; 186]. Dybvig described how to
support the full Scheme language [62]. Middleton and Smith [153] explored
the potential of the FFPM equivalent of microprogramming; they later ap
plied some of their ideas in sketching an implementation of OPS5 production
systems [187].

Despite the many directions of study and design-of-the-week graduate
student enthusiasms, a set of core features for an FFPM has emerged-things
that come up in practically every design and that seem to be essential even
when doing non-FFP things. All this is to say that my description of an
FFPM does not exactly match any standard FFPM description, but it is
close.

I defer the history of A-calculus implementation on the FFPM until Sec
tion 5.4.

5.1.2 Basic structure of an FFP Machine

The heart of an FFPM is a linear array of small cells, each with its own CPU,
memory, and communication hardware, capable of independent execution
(that is, the Machine is MIMD). This string of cells is called the L-array. The
cells do not have globally-known addresses, and actions take place because
of their contents; the 1-array is, in some sense, an associative memory.

Program symbols are laid out on the 1-array in a straightforward, lin
ear representation, one symbol per cell, preserving the left-to-right order
of the symbols as they appear on paper. Figure 5.1 shows how the term
,\y. {[x(x1 y2) (y2 y2)]} might appear in an 1-array. The explicit ,\y informa
tion need not be kept; instead, I show the (decorative) name as a subscript

104

communication network(s)

{y ,__ [x 1- (H 1!- Y2) 1- 1- (1- y 2-y 2-) - J }
~ ~ ~ ~ ~ ~ L_ ~ ~ L_ ~ L_ ~ L_ -

1-array of processing cells

Figure 5.1: Structure of an FFP Machine

on the left brace, {y. 1 A machine implementation would certainly throw out
variable names, keeping only binding indices. The figure also shows how
empty cells may be scattered through a program; we will ignore them. Stor
age management in an FFPM shifts the program symbols along the 1-array,
preserving left-to-right order. Storage management must allow terms to grow
and shrink. Addresses for the cells would serve little purpose because a cell's
contents may change from cycle to cycle. Singh and Chi give a design for
FFPM storage-management hardware [183].

The built-in storage management allows an FFPM to have arbitrarily
nested dynamic arrays as its basic data structure [146]. A dynamic array
allows insertion and deletion anywhere in the structure (as in LISP lists),
while allowing constant-time access to its elements (as in FORTRAN arrays).

Cells in an FFPM compute by changing their symbols in orderly ways
that correspond to the effects of reduction rules. In other words, each cell
executes some small conventional-looking microprogram-called a reduction
routine-that may change the cell's symbol. Obviously, some communication
among cells is required, as is the insertion and deletion of symbols. In this
dissertation, I ignore questions of where reduction routines come from, where
they are kept, and how a cell knows which one to use (Danforth's description
of his simulator covers these issues [55]).

An FFPM can do any kind of string reduction, rewriting one arbitrary

1 Many program representations are possible in an FFPM, and this is a crucial question
in real FFPM design; Middleton has done the main work [152].

10.5

string of symbols into another; a crazy-looking rule-for example, ar Est ---->

xyxytreB, would be feasible. In this sense, an FFPM is a "string reduc
tion" machine. In practice, however, the rewriting is always concerned with
"strings" of a specific flavor: flattened representations of parse trees. All
FFPM design has concentrated on improving this kind of reduction; there
fore, it is more reasonable to call the Machine a tree reduction architecture.

5.1.3 Communication and partitioning

Reduction in an 1-array will not get far unless the cells can talk to each
other-every FFPM design will have an interconnection network perched
atop the array, as in Figure 5.1. Traditionally, there is a set of binary tree
networks augmented with limited computing capability. (The processing cells
make up the Leaves of the network; hence the term "1-array.") Kellman [117]
and Plaisted [170] have proposed richer networks for an FFPM; any networks
that meet the requirements below would be appropriate. All analysis in this
dissertation assumes the standard tree networks.

In addition to the main networks, the 1-array cells have lateral con
nections between them for storage management. If an FFPM had a richer
network, the lateral connections could be dropped.

The tree networks support global network operations in which all cells in
a Machine participate. More interesting, however, is that the 1-array of an
FFPM can be partitioned into L-segments, and each segment can be allocated
an independent sub-network all its own. Because they use different wires
at the physical level, global network operations and those on 1-segments'
separate subnetworks proceed concurrently. (I am glossing over the details
of wiring, switches, buffers, etc., in the networks; Mag6 and Stanat's review
says more [147].)

Figure 5.2 shows partitioning with left and right parentheses as delim
iters:2 the innermost, delimited terms have subnetworks allocated to them
(shown by solid lines). Partitioning is fast (one bit from each cell must travel
to the root at hardware speeds), is unconstrained by program layout, and
puts an isolated tree sub-network over each segment. Each segment/sub
network combination proceeds independently; all needed resources are local.
The nemesis of a tree network-a bottleneck at the root-is alleviated by
the potential for having many tree subnetworks running at once.

2 Reduction-routine code in the cells could choose other program symbols to delimit the
segments.

106

A v.

.· .

Figure 5.2: Partitioning in an FFP Machine

If an FFPM is partitioned with syntactic delimiters, e.g., parentheses de
noting applications, only innermost delimited-strings will be self-contained in
1-segments. These 1-segments, the only ones with all information locally, are
said to be active. It is these active 1-segments that do reductions; therefore,
at the hardware level an FFPM implements app/icative-order reduction.

To override an FFPM's built-in innermost reduction, one chooses (and
manipulates) partitioning delimiters more craftily. For example, to do outer
most reductions first, one might use "marked" parentheses to delimit parti
tioning. To begin, only the outermost pair is marked, and the whole expres
sion will be in the initial (active) 1-segment. Code in that first 1-segment
may then choose to mark some inner parentheses. At the next partitioning,
the newly-marked inner 1-segments will become active. If those inner 1-
segments want to cede control back outward, they just unmark their paren
theses. Middleton and Smith showed how such partitioning tricks can be
used for clever non-FFP purposes (e.g., simulating systolic arrays) [153; 187].
They used parentheses as the partitioning delimiters, the marks on them were
called "colors," so these partitioning tricks flew under the banner of "colored
parentheses."

The other communication paths in an FFPM are at its extremities. First,
the lateral connections of the endmost cells connect to some form of "virtual
memory," which deals with expressions too large to fit in the 1-array; Geoff

107

Frank et al. investigated it [69; 70]. Second, the topmost nodes of the
tree networks connect to a Front-End machine (not shown in Figure 5.1).
I assume that this device can decide when to initiate partitioning, what
partitioning delimiters to use, when to interrupt the independent processing
by 1-segments, and when to start storage management. I also assume that
the Front-End can do simple associative-memory-like queries (e.g., "Is there
a cell with a constant in it?"), allowing a data-determined machine cycle.
Historically, FFPM designs have had a passive Front-End, with a hard-wired
partitioning/execution/storage-management cycle; this is entirely reasonable
when implementing FFP. I am just using what the hardware design has
allowed all along.

5.1.4 Broadcasting and sorting operations

The simplest type of communication that can take place in an 1-segment is
the broadcast of a datum from one cell to all cells. One cell sends something
useful, all the others send some null value. Eventually, all cells receive the
useful value. With a tree network, in the worst case, a one-datum broadcast
requires a trip up and down the entire tree (a message wave); it is a O(lg A)
operation, where A is the size of the "address space," the number of cells in
the Machine.3

If each cell in a segment sends a value and each tree node merges the
values that come to it, then a sorted list of values will emerge from the root.
That sorted list can be broadcast to the cells below; they, in turn, can select
values of interest. If n values are sent from the cells, sorting is an 0(n)
operation, because each value must pass through the root before being sent
down.

In doing a sort operation, each cell could send several values, the first
being a key, the rest "baggage." If the keys are known to be sorted in
advance, such a sort could serve to broadcast the contents of a string of cells;
another string of cells might replace their program symbols with data from
the sort. In this way, strings of symbols can be copied or moved around. But
it takes time 0(n) in a tree, too expensive to use as a basic operation in an
interpreter on a parallel machine.

If broadcasting and sorting are done as global operations over all cells,
the Front-End machine can observe the values that reach the root of the tree.

3 Bruce Smith has showed that the expected time for an n-cell L-segment to do this
basic operation is O(lg n), n :'0 A. He assumes no particular alignment and that storage
management keeps program symbols distributed uniformly across the FFPM [186].

108

5.1.5 Single-result operations

In an FFPM, the network hardware can operate on the values sent up from
the cells; examples include adding the received values or selecting the maxi
mum (or minimum) or the leftmost (or rightmost). This single result is then
broadcast to all cells (and, if on the global network, passed to the Front-End).
As with the broadcast of a single datum, this operation takes O(lg A) time.

A single-result network operation may subsume the simple broadcast:
using addition, the interesting cell sends its interesting value, and all other
cells send 0-the result is a broadcast.

5.1.6 Scan, or parallel prefix, operations

An FFPM's network hardware supports scan operations. A (left-to-right)
scan 0 operates on a sequence of values (i 1 , i 2 , ... , in) to produce a sequence
of result values (o1 ,o2 , ... ,on)

.
Oj = t0 a z1 I 22 · · ·Zj_ 2 e Zj-l;

where i 0 is the identity value for the operation o.4 For example, here is an
integer-addition scan (0 is identity value for +):

input: 2 7 -4 1 -2
result: 0 2 9 5 6

The results are, reading left to right, the total-so-far at each position. An
integer-minimum (left-to-right) scan on the same sequence (using +oo as the
identity value!):

input: 2 7 -4 1 -2
result: +oo 2 2 -4 -4

A scan operation 0 makes sense if the binary operation o is associative.
Also, a scan operation can go right-to-left; these scans are less common.

It is easiest to think about a scan as computing a running total at each
position (a serial operation); however, a scan can be computed in parallel in
O(lg A) time; Meijer and Akl establish this for tree networks [151; 3], and
Mag6 and Stanat give the FFPM details [14 7]. Part of the processing power
in an FFPM network node is to achieve this speed. Other parallel machines

4 A variant definition is: oj = io • i 1 • i2 · · · ij _ 1 • i1. A cell wanting that value computes
it with its own value and the value from the network: oj = OJ • ii.

109

have special support for scan operations, notably the NYU Ultracomputer,
with its fetch-and-op network (1983) [61; 82; 129], and the Connection Ma
chine (1985) [93]; the latter promulgated the term "scan." Scans are useful;
Blelloch goes so far as to call them a "model of computation" [35].

Scans are even more useful if they can be restarted, i.e., a cell can indicate
"Restart the running total here." If restart values are marked by an "R"
prefix, then an integer-addition scan would be (0 as identity):

input: 2 7 R-4 1 -2 R3 3 2
result: 0 2 9 -4 -3 -5 3 6

A scan with every value restarting is a right shift:5

input: R2 R3 R4 R3 R5
result: 0 2 3 4 3

A comparable right-to-left scan is a left shift. Scans-with-restarting are
still computed in parallel in O(lg A) time.

Scan operations are also called "parallel prefix" [128] or "cumulative sum"
[140] operations. I use "scan" because it is shortest.

5.1.7 Computing level numbers

An FFPM reduction-routine setting out on its mission might need, e.g., to
distinguish rator-cells from rand-cells in a term. To this end, the Front-End
ensures that various level numbers are periodically (re-)calculated, with the
results kept in the cells. These calculations are scans, and they are a good
introduction to the low-level goings-on in an FFPM.

The simplest level numbering is a left-to-right count (1, 2, 3, ...) of all
(non-empty) cells, giving each cell its index. The index is a unique identifier
for a cell-in effect, a temporary address until the symbol-string changes.
It could be used to determine relative position: a special cell broadcasts its
index; other cells then check if they are before or after the special cell. Indices
must be recalculated after insertions or deletions of program symbols.

The index is calculated by each cell submitting a one to an integer-add
scan; the left-to-right running total will be the index. Each cell increments
its value, so the index will begin with one. Here is a complete example:

5 An FFPM really does a rotate right (the rightmost value ends up at the left end),
thanks to the particulars of its networks' design.

110

···············K··········IevelO

·······Ax· · · · · · · · · ·Ay· ·······level 1

....... ;\ J, ''"''
········x;······z.-················level3

Figure 5.3: Nesting levels for a A,-term

({x (X1 z,) } {y Yt })
scan input:
scan result:

index:

+1 +1 +1 +1 +1
0 1 2 3 4
1 2 3 4 5

+1 +1 +1 +1 +1 +1
5 6 7 8 9 10
6 7 8 9 10 11

The next level numbering is the nesting level; Figure 5.3 shows nesting
levels for the sample A,-term. The heart of the calculation is a count of
unmatched left syntactic-delimiters preceding a cell. It is an integer-addition
scan, each cell contributing:

• 1, if it is a left syntactic-delimiter (, {, [,

• -1, if it is a right syntactic-delimiter), },], or

• 0, otherwise.

After the scan, right syntactic-markers' values are decremented so that they
have the same nesting level as their corresponding left syntactic-delimiter.
Here are the scan input, result, and (after adjustment) nesting level (compare
to Figure 5.3):

scan input:
scan result:

nesting level:

({x (X1 z,) } {y Y1 })

+1 +1 +1 0 0 -1 -1 +1 0 -1 -1
01233321221
01233211210

If a level number is calculated for the whole 1-array, it is an absolute level
number; e.g., if all the cells are numbered left-to-right, that is an absolute
index. On the other hand, if a level number is calculated separately for each
1-segment (by restarting the count at each segment left-delimiter or by doing
the scans after partitioning) then it is a relative level number.

111

Cell's contribution
Abbrev. Level number () { } [l other
AIX,RIX index (absolute, relative) 1 1 1 1 1 1 1

ANL,RNL nesting level 1 -1 1 -1 1 -1 0
ABL,RBL binding level 0 0 1 -1 1 -1 0
AAL,RAL application level 1 -1 0 0 1 -1 0

1- -1 1- -1
(([a a1 z.] [b {c Ct } (y. y.) l) ({d d1 } {e {j e1 } }))

AIX: 1 2 3 4 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
RIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10

ANL: 0 1 2 3 3 2 2 3 4 3 3 4 4 3 2 1 1 2 3 2 2 3 4 3 2 1 0
RNL: 0 1 2 2 1 1 2 3 2 2 3 3 2 1 0 0 1 2 1 1 2 3 2 1 0
ABL: 1 1 0 1 2 1 1 1 1 1 0 1 0 1 2 1 0
RBL: 1 1 0 1 2 1 1 1 1 1 0 1 0 1 2 1 0
AAL: 0 1 2 3 3 2 2 3 3 3 3 4 4 3 2 1 1 2 2 2 2 2 2 2 2 1 0
RAL: 0 1 2 2 1 1 2 2 2 2 3 3 2 1 0 0 1 1 1 1 1 1 1 1 0

Table 5.1: Calculating the standard level numbers

5.1.8 Calculating exotic level numbers

Other level numbers besides indices and nesting levels come from counting
various sets of delimiters. If one only counts brackets (representing suspen
sions) and braces (representing A-abstractions), then one is counting "binding
depths" from the root of the term downwards. These are binding levels.

If one instead counts only parentheses (A-applications) and brackets (sus
pensions)-the symbols that are outermost in all rules, the resulting numbers
are application levels.

As before, absolute numbers are those calculated for all symbols in an
FFPM, regardless of partitioning, and relative numbers are those calculated
independently in each active 1-segment. Since most action takes place in

' 1-segments, relative numbers dominate.
I usually refer to nesting-level numbers by their acronym; Table 5.1 gives

those I use, and the cells' contributions to the scan operations. The table
also shows an example with all level numbers calculated; the markers 1- and
-l set off two active 1-segments, each with its own relative level numbers;
zeros are not always shown.

112

[x]
1

AX

xl
1;\2 11---

1
xi

1 211--
z3

212--

1 2
z3

1212-

x2
1:ft\2 12111

Figure 5.4: As-term with its selectors shown

5.1.9 Calculating selectors and first/last bits

For a cell to participate in a reduction routine that implements a As-inter
preter rule, it must know "where its symbol is" in the As-term. Sometimes,
one of the level numbers is enough; for example, if the question is, "Am I on
the same level as a particular cell?"

Sometimes a cell needs more information than a level number can provide;
for example, "Am I in the rator or not?" Selectors provide the needed, limited
parse-tree information. Consider Figure 5.4: the edges coming out of each
node are numbered, 1, 2, 3 ... The sequence of the edge-numbers from the
root down to the node in question selects a node (subtree). I show a five-level
selector for each variable in the figure.

To select deeply-nested subterms, we would need arbitrarily long se
quences of edge-numbers. Fortunately, for the algorithms in this dissertation,
two levels of selectors are enough. Only the algorithm for the [sus-rot!] rule
(Algorithm 5.13, page 135) needs the second one.

Cells often need to know if they are the first or last cell in a term at a
given nesting level (RN L) n. (Levell is the top level; in Figure 5.4, it chooses
between the body and pointee of the top suspension.) A variable with RNL
= n is both First and Last at level n-a variable is a whole term. For delimiter
cells with RNL= n, a left-delimiter is the First cell of a subterm on level n
and a right-delimiter is a Last cell. Comparing the following diagram with
Figure 5.4 should clear the air. (Zero entries shown as blank.)

113

[x (xl {y ((X2 Y1) Z3) } Hx (xl z3) } l
RNL: 0 1 2 2 345544 3 2 1 1 2 3 3 2 1 0

First1 : 1 1
Last1 : 1 1
Sel1 : 0 (1 1 1 1 1 1 1 1 1 1 1 1)(2 2 2 2 2 2) 0

First2 : 1 1 1
Last2 : 1 1 1

input: +1 +1 RO RO +1 RO RO
result: 0 1 2 2 2 22 2 2 2 0 0 0 1 1 1 0 0

Sel2 : (1) (2 2 2 2 22 2 2 2) (1 1 1 1)
First3 : 1 1 1
Last3 : 1 1 1
input: RO +1 RO RO +1 +1 RO
result: 0 0 1 1 1 1 1 1 0 0 0 1 2 0

Sel3 : (1 1 1 1 1 1 1) (1) (2)

First; and Last; bits follow from RNL information; besides listing them
explicitly in the example, I also show First; and Last; bits as (and) symbols
on the Sel; numbers, respectively. I will use the <, > notation in the rest of
the dissertation.

Selectors are calculated from the First; and Last; information. The top
level selector, Sel1 , is an integer-addition scan with cells sending First1 . Then,
for level n > 1, an integer-addition scan (order is significant):

• Cells with Firstn set send + 1.

• Cells with Lastn or Lastn-l set send Restart 0. This is the all-important
restart of the left-to-right count.

• Other cells send +0.

I show the inputs and results of the Sel2 and Sel3 scans in the example
above. Cells add their own input to the scan result to get the selector.

5.1.10 Low-level programming style in an FFP Machine

The implementer of a language system on an FFPM writes reduction rou
tines to manipulate cells' contents in accordance with the language definition.
Scans and the communication facilities just outlined are the stock in trade.
These routines often follow one of a few strategies; I sketch one example here.

114

The' first thing a reduction routine does is a few scan operations to cal
culate various level numbers that a cell can use to determine its position in
the term. In this way, a cell learns about itself: "Do I hold the last paren
thesis?", "Am I in the rator or the rand?" or "Am I the second cell in a
A-application?" Answering these questions, a cell decides its action for this
cycle. In an active segment, each cell will typically be doing one of a few
actions. For example, all the cells in the rator would do one thing, and all
those in the rand another; frequently, the parentheses delimiting the term
do something different (such as deleting themselves). Once cells have deter
mined their task, reduction will likely unfold in two phases. First, the cells
will communicate to decide what space is needed for the impending rewriting
of symbols; storage management will then provide the needed free cells in
the requested slots. Next, symbols to be moved will be broadcast-or sorted
if a reordering is taking place-and the free cells will swallow the incoming
symbols. There are exceptions to this pattern, but it fits many cases .

Summarizing, an FFPM has a linear array of processing cells that coop
erate to execute a reduction routine, thereby causing an efficacious rewriting
of program symbols. The cells work in 1-segments. Besides computing in
dividually, the cells in a segment have their own sub-network that provides
broadcast, sorting, single-result, and scan-operation services. A Front-End
machine directs the overall computation. Storage management is automatic.

5.1.11 Copying and sharing in an FFP Machine

An FFPM tries to achieve high speeds by having many non-interfering com
putations proceeding at once. Each computation is self-contained, having all
necessary program and data.

The FFPM philosophy does not consider space sharing (to conserve mem
ory) an absolute good; sharing can be inimical to high performance. To get
highly parallel computing in a scalable architecture, you must have multiple
copies of program structures. In other words, an FFPM favors intelligent,
even speculative copying.

There are some common programming idioms in which the pro-copying
approach suffers badly; Mag6 addresses these concerns in his 1981 paper,
"Copying Operands versus Copying Results" [142]. A typical expression
that he seeks to optimize is

(.\x.{if is-null x then x else transpose x} huge-vector).

To do the trivial is-null x test requires copying the whole huge-vector m

115

for x. Mago shows how low-level FFPM programming can get around some
dramatically-wasteful cases that may arise in practice.

Having to copy large homogeneous data structures (arrays, for example) is
the most problematic aspect of an FFPM's copying policy. Other approaches
to this problem have tied it to the related problem of virtual memory and
how to accommodate expressions too large for a Machine's 1-array. Geoff
Frank et a!. [69; 70] reported several possible schemes. Common to the
schemes is moving constant subexpressions out of the 1-array into an ad
dressable secondary memory and putting pointers to the backing store in the
1-array. This relieves the 1-array memory requirements, and sharing is possi
ble by having many pointers to a single structure in secondary memory. The
backing store can be managed in several ways. A conventional autonomous
virtual-memory manager is one option. A more interesting attack is to em
bed virtual-memory actions into FFP programs; Frank et a!. reported that
this approach "makes much more sense for these [FFP] languages than for
von Neumann languages" [70, page 8.44].

The second issue in sharing is computation sharing, to avoid the prolifer
ation of unevaluated redexes. Traditionally, an FFPM uses applicative-order
evaluation, in which unevaluated redexes are never copied. But what if the
Machine were used so that such redexes were copied? Again, its different
philosophy comes into play.

A sequential interpreter evaluates redexes one by one, so the duplication
of unevaluated redexes means longer running times. Simple normal-order tree
reduction of the A-calculus, with its likely exponential blow-up of unevaluated
redexes, is therefore unacceptable. An FFPM, on the hand, has a high
processor-to-memory ratio (one processor per memory cell), and the presence
of many redexes is not problematic, provided they can be reduced in parallel
and they do not offend by simply taking up memory. (Because normal-order

, reduction is inherently sequential, an FFPM's abundance of processing power
would not help; however, the point is valid for more practical .A-calculus
systems.)

In cases where pointer-style sharing is critical, it may be simulated in
an FFPM's low-level software. Mago did this in his algorithm for Paterson
Wegman unification on an FFPM [143].

5.1.12 Related non-graph-reduction architectures

Most parallel architectures to support functional programming use graph
reduction; that work is reported in Section 3.5. Work on "closure-based"

116

reduction and other techniques to speed up graph reduction is also reported
there.

Besides the FFPM effort, the GMD Reduction Machine project was the
other long-time advocate of string reduction to support functional languages.
The design motivations that Berkling gave in his 1975 paper [26] are similar
to the stated FFPM philosophy [144]. Both have their roots in Backus's early
work on reduction languages [13].

The original GMD Reduction Machine [28; 124; 100; 126; 29] was a se
quential computer; notably, it was the first reduction machine "to be suc
cessfully implemented" [125]. In my review here, I examine the parallel
"cooperating reduction machines" described by Kluge [125]; the individual
machines are the same as the sequential one. Each machine has three stacks,
one of which initially holds a linearized, preorder representation of a .\-term.
A search for a reducible expression proceeds by a railyard-like shunting of
symbols between the stacks, until the right symbols appear at the top of
the right stacks; then an unadulterated string-replacement reduction takes
place. Expression shunting then resumes ... Parallelism develops by peeling
off subterms and passing them for reduction to another "virtual machine." A
virtual machine is mapped onto a real one if it can get a "ticket;" there are a
limited number of tickets, providing a throttle on overexuberant parallelism.

The considerable data movement required by shunting terms around had
its costs: Hommes says that "applications running on Berkling's reduction
machine have shown that it is less suited for programs operating on large
data structures" [99]. Hommes's solution was to move large data structures
into a "heap," leaving behind appropriate pointers into the heap, and to
have variants of data manipulation primitives (head, tail, etc.) that operate
directly in the heap. (Note the similarities to the work of Frank et a!. on the
same problem for an FFPM [69; 70].) Schmittgen acknowledges a "severe
performance problem" due to "the absence of, among other things, suitable
abstract data types that support the efficient manipulation of non-atomic
typed objects" [181]. In other words, having to build all data types out
of primitive list structures proves expensive; therefore, Schmittgen proposes
new built-in types for vectors, matrices and trees. She retains Hommes's
ideas about special heap-twiddling operators.

Both the GMD machine and the FFPM a Ia Frank et a!. exemplify an
approach to copying and sharing: the underlying computational model un
abashedly favors copying (pure tree reduction), but extra primitives to handle
large aggregate data structures are provided for the occasions when copying
would be most painful. The handling of aggregate data structures is a big

117

issue in functional programming, generally [113; 98; 101; 10]. One can imag
ine that if this particular problem were solved, then sharing-in-general would
indeed be unnecessary.

Other early string reduction machines include Treleaven and Hopkins's
machine [198], which was inspired by Wilner's "recursive machines" [212].
The ZAPP (Zero-Assignment Parallel Processor) architecture [184; 148] is
a "virtual tree machine" [43; 42]. ZAPP is similar to the parallel GMD in
that tasks hand off subtasks to other processors; however, ZAPP focuses
on divide-and-conquer algorithms in which the tasks spawn into a "process
tree;" it depends on this "treeness" for success.

Perhaps the easiest kinds of parallel ma~hine to build are Single-Instruc
tion-stream, Multiple-Data-stream (SIMD) machines, in which processor
memory elements work in lock-step, obeying a single stream of instructions
from a controller. One such architecture intended to support functional pro
gramming is John O'Donnell's Applicative Programming System Architec
ture (APSA); he has built a VLSI prototype and an emulator running on
the better-known SIMD machine, the NASA MPP [159; 160; 158]. Though
targeted at functional languages and made from two kinds of VLSI cells con
nected in a tree network, an APSA is fundamentally different from an FFPM.
The language interpreter runs on a conventional host; the main purpose of
the SIMD processor/memory is to avoid or speed up the manipulation of
complex linked data structures endemic to functional language implementa
tions (consider LISP lists and garbage collection, for example). Insofar as
possible, linked structures are flattened into CDR-coded-like "compact linear
structures" whose elements can be operated on concurrently by SIMD pro
cessors. In other words, an APSA also tries to improve overall performance
by enhancing its data-structure operations.

The Connection Machine (CM) is a commercially-available SIMD com
puter with 65,536 processors and initial applications in image analysis and
AI [93; 95; 94]. Unlike an APSA, it has a rich interconnection network (hy
percube versus tree) and is application-driven (e.g., image analysis or AI),
not language-driven. Nonetheless, a Common LISP variant, *Lisp, is a ma
jor programming language for the Machine; Steele and Hillis cite APL and
FP as kindred languages [195]. They introduce a new data aggregate, the
xapping, an unordered set of (index, value) ordered pairs: the index identifies
a processor, the value is data at the processor; the CM then does opera
tions on xappings in parallel. Whereas O'Donnell's data structure tricks are
low-level and presumably invisible to the programmer, Steele and Hillis ask
programmers to go halfway and re-code their programs the xapping way.

118

Again, notice the emphasis on improving aggregate data structures.
Hudak and Mohr looked at combinator-based graph reduction as a com

putational model to support functional languages on a CM (104]. They found
a set of seven micro-operations ("graphinators") from which CM implemen
tations of the Turner combinators (199] could be composed. The program
graph is spread out in the CM processors, and a language interpreter is then
a program that repeatedly pumps instructions for the graphinators at the
processors. Though the idea is noteworthy and Hudak and Mohr go on to
suggest refinements to the basic idea, they concede that they "must look more
deeply for performance improvements." They conclude, "Although faster ar
chitectures can help, we feel that preserving locality of reference is the crucial
line for future research" (104, page 233].

Another way to characterize an FFP Machine is as a concurrent term
rewriting machine. Plaisted examined this aspect of his extended FFPM
with a richer network; please see Section 5.4 for further discussion of his
work (171]. An architecture that has taken the term-rewriting view from
the beginning is the Rewrite Rule Machine (RRM) at SRI, under Goguen's
direction (134; 79; 133; 135; 80]. Their basic programming language is the
"ultra high-level" OBJ. At the lowest level, a "processor" is a controller plus
an ensemble of SIMD cells that hold one-or-a-few tree nodes apiece. The
processors are grouped into "clusters" that share an address space, and the
clusters are joined into "networks". As best I can tell, the RRM does full
blown tree reduction; however it does use "multiplexed physical mapping" of
nodes to somewhat-larger-grain cells and a scheme of "virtual pointers" in
which substitutions need not be done immediately. In other words, it does
copying but not necessarily as soon as the substitution is called for.

We have seen that the tack taken by almost all not-explicitly-graph reduc
tion machines is to pay the copying price and to recoup the most profligate
consequences with extra support for special data structures amenable to the
machines' architectures and intended use.

5.2 An implementation of a \-interpreter

This section gives the algorithms for an FFPM implementation of the .\,
interpreter in Chapter 4. The only change is that reduction is to full (3-
normal form (BNF). Strangely enough, detecting if subterms are inside .\.
abstractions is a mill-stone around an FFPM's neck, making reduction to
weak (3-normal form (WBNF) less desirable. Because this "implementation"

119

serves mainly to provide space and time complexities for Sections 5.3.1 and
5.3.2 and because the comparison is on a per-step basis, the difference in the
number of steps to reduce to BNF vs. WBNF is not important.

5.2.1 Basic algorithms

This section presents basic FFPM algorithms for ubiquitous tasks in a As
interpreter implementation. All the algorithms are very low-level, usually
laborious straight-line code. I have provided examples for the fascinated
reader. Recall that First; and Last; bits are shown as (and) symbols on
the Sel; numbers, respectively. All asymptotic complexities are for the worst
case. A is the number of cells in the "address space," i.e., the whole Machine;
n is the number of cells in the As-term or 1-segment of interest. The footnote
on page 108 explains why lg A factors in the worst case become lg n factors
in the expected case on an FFPM.

Algorithm 5.1 Detecting bound variables of a given binder.

Given a A8 -term of n cells in an 1-segment, RIXs (relative indices) and ·
RBLs (relative binding levels) calculated, we want to identify all the bound
variables of a particular binder. Cells holding the left (cell L) and right (cell
R) delimiters for the binder in question know their role. For example, given
the example below, an attempt to find the bound variables in the subterm
with cells L and R marked by -(1. will identify the variables in cells marked
by 1- Some useful action would presumably follow this marking. Detecting
bound variables is very common.

-(1. -(1.

{x ({y ((X2 Y1) (L (Y2 Z1) } a,)) } z,) }
RIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

RBL: 0 1 1 2 2 2 2 2 2 2 3 3 3 3 2 2 2 2 1 1 1 0
r r

1. Cell L broadcasts its RIX; cells with smaller RIX know they are not a
bound variable. In the example above, this excludes cells 1-2. This
step takes O(lg A) time.

2. Cell R broadcasts its RIX; cells with larger RIX know they are not a
bound variable. This excludes cells 20-22. This takes O(lg A) time.

120

3. Cell L broadcasts its RBL, '1' in the example; call it top_bl. This takes
O(lg A) time.

4. A cell holding a variable with binding index bi = RBL - top_bl is a
bound variable. (Recall that variables' binding indices are shown as
subscripts in the figures.) In the example, cells marked j meet this
condition. Other cells are not bound variables. This step takes 0(1)
time.

Overall, it takes O(lg A) time (and no extra space) to detect a binder's
bound variables.

Comments. Intuitively, a binding level counts binders, moving from the
root to the leaves of a .\

8
-tree. Subtracting top_bl adjusts the count to start

from the binder in question instead of the root of the whole .\8 -term. A
binding index, on the other hand, is counting binders from the its leaf position
upwards. Where the two counts are equal, voila!-a bound variable.

The ability to use a simple RBL scan as the basis for an O(lg A) algorithm
to detect bound variables is my main reason for using binding indices.

Algorithm 5.2 Detecting free variables.

The actions to detect free variables in an n-cell.\ 8 -term are similar to those
for detecting bound variables (Algorithm 5.1), with different tests performed
in the individual cells. I presume we want to detect free variables with
binders, not constants (variables free at the top level, with negative binding
indices). As before, cells holding the left (cell L) and right (cell R) delimiters
for the binder in question know their role. In the following example, there
is only one free variable in the sub term set off by .l).'s; it is marked with a j.
(Steps 1-3 of this algorithm are identical to those of the preceding one.)

~ ~
{x ({y ((X2 Yr) ({z (Y2 Zr) } a,)) } z,) }

RIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
RBL: 0 1 1 2 2 2 2 2 2 2 3 3 3 3 2 2 2 2 1 1 1 0

i

1. Cell L broadcasts its RIX; cells with smaller RIX know they are not in
the interesting subterm. In the example above, this excludes cells 1-2.

121

2. Cell R broadcasts its RIX; cells with larger RIX know they are excluded
(cells 20-22).

3. Cell L broadcasts its RBL; call it top_bl. In the example, '1' is broadcast.

4. A cell holding a variable with binding index bi > RBL - top_bl is free.
Other variables are bound or constants.

As for detecting bound variables, the algorithm takes O(lg A) time and
uses no extra space.

Algorithm 5.3 Substitution.

I assume that the substitution M[x := N] appears as a suspension to be
completed, [xM N]. We want to substitute N for the bound variables of the
suspension in M (well-formedness precludes bound variables inN). I further
assume that the suspension to be completed is alone in an L-segment of n
cells, and that RIX, RBL, Sel1 , First1 , and Last1 are known.

The algorithm proceeds in three phases: (1) mark bound variables of the
suspension [xM NJ and free variables in N, (2) copy N in place of each
detected bound variable, and (3) adjust binding indices.

Mark variables. We need to find bound variables (in the suspension's
body) and free variables in the suspension's pointee. Algorithms 5.1 and
5.2 may be used to look for bound variables and free variables everywhere
in the suspension; to limit ourselves to free variables in the pointee, those
detected by Algorithm 5.2 but with Sel1 = 1 (the body) unmark themselves.
This phase takes O(lg A) time.

An example with it's marking bound variables and .IJ.'s marking free vari
ables in the pointee:

.IJ.
[x (X1 {y ((Xz Y1) Z3) }) {x (X1 Z3) }]

it 1f
RIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

RBL: 0 1 1 1 2 2 2 2 2 2 2 1 1 1 2 2 2 2 1 0
Sel1 : 0 (1 1 1 11 1 1 1 1 1 1 1) (2 2 2 2 2 2) 0

122

Copy.

1. Determine the size of the pointee (Sel1 = 2) and broadcast: the pointee
cells that are First1 or Last1 send their RIX, and cells with bound vari
ables (marked 1t above) take the difference between the two numbers
(call it d). It takes O(lg A) time.

2. Each marked bound-variable cell asks to be cloned d- 1 times during
storage management. In the worst case, tn cells would each be cloning
tn copies of themselves, which is O(n2) clones total. Storage manage
ment follows; it is a linear process, so it takes O(n2) time. With clones
marked by L our example becomes:

lllll lllll
[x (Xt Xr Xr Xr Xr Xr {y ((X2 X2 X2 X2 X2 X2 YI) Z3) }) {x (Xr Z3) }]

RIX: 1 2 3 3 3 3 3 3 4 56 7 7 7 7 7 7 8 910 1112131415161718 19 20
RBL: 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 1 0
Sel1 : 0 (1 1 1 1 1 1 1 111 1 1 1 1 1 1 11 1 1 1 1) (2 2 2 2 2 2) 0

3. Each marked-bound-variable clone cell saves its binding index in old_bi,
to remember the binding distance up to the suspension. It takes 0(1)
time.

4. Each cell in the pointee (Sel1 = 2) sends its symbol and whether it
is marked as free (use RIX as a sort key, to keep them sorted). Each
clone cell i overwrites itself with the i'h symbol received and saves the
markedness in pteeMarked. This copying takes O(n) time. Our example
IS now:

[x ({x (Xt Z3) } {y (({x (Xt Z3) } YI) Z3) }) {x (Xt Z3) }]

RIX: 1 2 33 3 333 456 77 7 777 891011121314151617181920
RBL: 1 1 11 1 111 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1
Sel1 : 0 (1 11 1 111 111 11 1 111 11 1 1 1 1) (2 2 2 2 2 2) 0

Adjust binding indices. Variables that were free in the pointee (those
with pteeMarked set) may now be at a greater binding depth and may
need their binding index increased to match. The adjustment is: bi :=

bi + old_bi -2. All other free variables must then be decremented by one.
The suspension is now useless, so the cells holding its delimiters and

the pointee erase their contents. As free variables were determined in the
marking phase, all operations in this step take 0(1) time. The final result
for the example is:

123

({x (X1 Z3) } {y (({x (X1 Z3) } Y1) Z3) })

RIX: 2 3 3 3 3 3 3 4 5 6 7 7 7 7 7 7 8 9 10 11 12 13

In the worst case, a full-fledged substitution takes O(n2) time and space.
For this reason, you will not see any full-fledged substitutions in this chapter!

Algorithm 5.4 Finding a matching syntactic delimiter.

It often arises that we have identified a cell holding an interesting delimiter
(the left parenthesis of a redex, for example) and we need to identify the
matching delimiter (e.g., its right parenthesis).

This is a simpler problem than having several delimiters marked and find
ing all of their matching delimiters in parallel. The simple case is adequate
for the algorithms in this chapter.

I assume that a A8 -term of n cells occupies an 1-segment. A left delimiter
is marked as being the symbol to be matched. (To match a right delillliter, do
everything backwards.) Nesting levels (RNL) are precalculated. For example,
in the A-term shown, we want to match the symbol marked with 1-

l
((z. z.) {x (X1 {y Yl }) })

RIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
RN L: 0 1 2 2 1 1 2 3 3 4 3 2 1 0

1. The marked left-delillliter cell broadcasts its RNL, the nesting level of
interest. It takes O(lg A) time.

2. Do an integer-addition left-to-right scan: the marked left-delimiter con
tributes Restart-1, other left-delillliters on the playing nesting-level
contribute Restart-0, and other cells contribute +0. The scan takes
O(lg A) time. Our example, with cells' contributions to the scan, and
its results:

l
((z. z.) {x (X 1 { y Y1 }) })

input: +O RO +0 +0 +0 R1 +0 +0 +0 +0 +0 +0 +0 +O
result: 0 0 0 0 0 0 1 1 1 1 1 1 1 1

RIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
RN L: 0 1 2 2 1 1 2 3 3 4 3 2 1 0

124

3. Right delimiters on the interesting nesting level examine the result of
the scan that they receive. The one receiving a 1 is the matching right
delimiter. This takes 0(1) time.

Overall, it takes O(lg A) + O(lg A)+ 0(1) = O(lg A) time and no extra
space to find a matching delimiter.

5.2.2 Controlling the interpreter

We now move from low-level algorithms to the top-level routines that control
an FFPM implementation of a .\,-interpreter. As usual, for each reduction
step, we must search for a redex, copy the shared rator (if applicable), do
the j3,-reduction, and tidy up. I explain the overall control of the reduction
process first and then develop the algorithms in a top-down way.

A Front-End processor controls an FFPM's operation, driving a four
phase cycle of: global checking, partitioning into 1-segments, executing re
duction-routines in the active segments, and doing global storage manage
ment. (A traditional FFPM does not have a global-checking phase.) Par
titioning is as described in Section 5.1.3, and storage management is un
modified from that in published FFPM descriptions [147]. Both the global
checking and reduction-routine execution involve 1-cells operating coopera
tively on the .\,-term. The global code always operates on the whole .\,-term
(using absolute level numbers), whereas reduction-routines execute in parti
tioned 1-segments (using relative level numbers). Most work takes place in
the 1-segments, and I first review the control of what reduction routine is
executed when.

Control flow in this FFPM implementation of the .\,-interpreter is quite
different from a conventional interpreter that controls its progress (basically)
by pushing and popping function addresses on and off a stack. In an FFPM,
the basic mechanisms are associative matching of symbol-patterns in cells and
the marking (and unmarking) of delimiters. For example, the two-cell pattern
lillJ indicates a /3,-redex; marking the left parenthesis and its matching right
parenthesis would give "control" to that .\,-application. As Section 5.1.3
describes, it is innermost marked symbol strings that are active and that
execute reduction-routines.

The marking of an inner delimiter-pair in an 1-segment, giving control
to that substring of symbols, is analogous to a subroutine call. Conversely,
when an 1-segment unmarks its own delimiters so that the symbol-string
enclosing it becomes active, it is analogous to a return from a subroutine
call.

125

I also use an FFPM technique that I call task hints. In addition to
marking an inner subterm's delimiters, a reduction-routine may insert a "task
hint" anywhere in the inner subterm to suggest what is expected of it. The
first thing a newly-active 1-segment does is look for this hint (with associative
matching). Task hints are not part of the As-term; they are not strictly
necessary but convenient.

Given a A8 -term T to reduce to BNF, we first wrap it in an "envelope"
with marked delimiters and the hint reducdoJ3NF:

(reducdo_BNF T)

This "term" will get control initially and whenever all the delimiters in T
become unmarked.

5.2.3 Reducing to f)-normal or root-lambda form

The procedure described here-looking for a redex and detecting when a term
is in BNF-is ubiquitous in this implementation of the As-interpreter. Its
variant, reducing to root-lambda form (RLF), does not attempt reductions
inside the top A8 -abstraction and is used only for shared rators. Between
them, these variants handle searching for red exes (with help from global
checking, Section 5.2.6) and copying of shared rators. An 1-segment chooses
between the variants depending on the task hint found: reduce_to..RLF or
reduce_to_BNF.

If the top-level "envelope" gets control, it tries to reduce to BNF. If an
1-segment holding a suspension has control, it is understood that the pointee
is to be reduced.

Algorithm 5.5 Reduce a As-term to BNF by repeatedly finding its "left
most" redex. This algorithm is executed if a reduce_to_BNF task hint is
present.

The global-checking phase of the machine cycle (Section 5.2.6) will ensure
that all cells to the left of the rightmost Follow*Fill6 As-pointer's target are
not examined. If such a pointer exists, the search will take place in the
pointee of the target suspension.

1. Look for the leftmost Ptr-marked A8 -pointer (one of the two-cell as
sociative matches 1@;1, j{[r;l, or E&Jl or the leftmost redex (a two-cell

6The name Follow* Fill means "either FollowFill or FollowNoFill."

126

match, lill]J. Algorithm 5.7 says how to do the matching and gives an
example.

If the leftmost match is i(f';l, make it a FollowFill pointer i; and drop

a reduce_to..RLF hint. If the leftmost match is ~f;l or f;IJI, make it a
Follow Fill pointer X; and drop a reduce_to_BNF int. 7 In either case,
include a find_ptr_target hint, so the next global-checking phase (Sec
tion 5.2.6) will ensure that the correct suspension gets control.

If the leftmost match is a redex lill], then the matching right parenthesis
needs to be found (Algorithm 5.4). Both parentheses will be marked,
giving control to that .\-application. A ,B.-reduction and tidying will
follow, as Section 5.2.4 describes.

2. If Step 1 set up a Follow*Fill pointer, global checking (Section 5.2.6)
will pass control somewhere else.

3. If Step 1 marked an inner .A.-application, the current 1-segment will
be inactive in the next cycle.

4. If Step 1 found nothing, then this 1-segment 's job is done.

If this segment is the outermost "envelope," then the whole reduction
is complete.

If this segment is a suspension, then its pointee is reduced and the
bound variables in its body may be marked Followed. Algorithm 5.1
can be used to detect the bound variables and changing their hats is
straightforward. Finally, erase the reduce_to_BNF hint and un-mark
the suspension.

Comment. Recall the imagery of Figure 4.9 and the "life cycle" of a .A.
pointer: plain-hatted pointers x; slowly become Followed-hatted pointers x;
in a generally left-to-right sweep. The algorithm above is the main one
responsible for the pattern.

As already mentioned, global-checking ensures that the matching takes
place in the pointee of the target of the rightmost .A.-pointer being followed (if
one exists). Also, the parts of a >..-term that are already completely Followed
simply will not generate a match. Finally, there is no need to worry that
"indiscriminate" matching here will select something inside a suspension's
pointee that has not been followed into. Since the overall term is tidy, there

7 Actually, the variable mark could serve as the task hint.

127

would have to be a As-pointer aimed at the pointee and it would be to the
left. If that were the case, the leftmost match would be there, not in the
pointee.

The following algorithm is applied when a suspension has a Follow Fill As
pointer aimed at it. It reduces the pointee only until it is a As-abstraction,
then substitutes it for the FollowFill pointer.

If the pointee does not reduce to a As-abstraction but all the way to BNF,
then all the suspension's bound variables (including the FollowFill) need to
be re-hatted as Followed.

Algorithm 5.6 Reduce a -'s-term to RLF. This algorithm is executed if a
reduce_to_RLF task hint is present.

1. If the pointee is a -'.-abstraction, it needs to be substituted for the
Follow Fill A8 -pointer (there will only be one). A variant of full substitu
tion (Algorithm 5.3) may be used, with obvious adjustments: only the
Follow Fill bound-variable is substituted for, and the suspension itself is
not deleted, as other bound variables may remain.

If the suspension A8 -term occupies n cells, the pointee can be of size
O(n), so the new space for the one substitution is also O(n). Storage
management time is proportional to the number of cells requested, so
the substitution time is also 0(n). (That there is only one bound
variable being substituted keeps it from taking O(n2) time and space.)

2. If a FollowFill pointer was just filled and that pointer was the suspen
sion's last bound variable, the suspension is now useless. Therefore, a
check for useless suspensions (Algorithm 5.9) is in order.

3. If the pointee is not a .\..-abstraction, do one step of reducing (the
pointee) to BNF (Algorithm 5.5). That algorithm changes bound
variables' hats to Followed if it finds nothing.

4. If the Follow Fill pointer was filled (Step 1) or the pointee eventually
reduced to a non-A.-abstraction BNF, erase the reduce_to..RLF hint
and unmark this suspension.

128

Comment. The 0(n) time and space complexities for filling a Follow Fill
pointer are the only non-O(lg A) complexities in this implementation of the
As-interpreter. They are directly attributable to the data-movement capa
bilities of the underlying tree networks. If data movement were improved by
a richer network, these copying complexities would benefit.

Algorithm 5. 7 Find the leftmost two-cell match.

The pattern 1(1{1 indicates a redex. The pattern /(@il indicates a pointer
variable that is the rand of an application (thus, needs to be filled). The
patterns filll and l{fil indicate pointer-variables that need to be followed but
not filled. All patterns appear in two adjacent cells.8

1. To detect any two-cell pattern in a term, the cells do a shift-right scan
operation, 9 each sending its symbol; an example follows. The shift
takes place in the pointee only.

[. (x. ih) ((.z. w4) ({x x, } z.)) l
RIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

rotate: ((z. W4) ({x Xr } Z*))

r 1

2. Each cell examines what came from its left and decides if the two cells
fit one of the patterns; the I cells above are matches. Cells that match
send their RIX into a Min single-result communication wave. In the
example, the minimum RIX will be 10.

3. The right cell of the leftmost match will receive its RIX back. It reports
where it is and what pattern was matched with a broadcast operation.
Cell RIX = 10 will make itself into w4 and report a FollowNoFill match.

Each of the constituent operations takes no more than O(lg A) time.

8 Intervening empty cells are taken care of by the FFPM hardware.
9There is an example on page llO.

129

5.2.4 ,8
8
-reduction and local tidying

If a .\,-application gains control, it is a redex. Algorithm 5.8, which imple
ments the {3, rule, may be applied immediately. The suspension that takes
the .\,-application's place should stay marked, so it retains control.

A /3,-reduction may cause the need for tidying. Taking a "tidy while we
are in the neighborhood" approach (rather than a hardwired "tidying phase"
somewhere in the overall reduction cycle), I now consider the local tidying
that can be done without the new suspension relinquishing control.

The local tidying rules that are tried following a {38 -reduction are the
removal of a useless suspension (Algorithm 5.9) and the [triv-body] and [triv
ptee] rules, to remove a trivial suspension (Algorithms 5.10 and 5.11). These
checks are mutually exclusive and may be applied sequentially.

Tidying that may involve higher-up parts of the .\,-term is nonlocal tidy
ing; global checking takes care of it. Sections 5.2.5 and 5.2.6 address nonlocal
tidying and global checking, respectively.

The newly-created suspension (assuming it has not become useless and
therefore nonexistent) may now be unmarked.

Algorithm 5.8 This algorithm implements the /3, rule.

The {3, rule is (.\x.{B} N) -> [xB N;f]. Unsurprisingly, its implemen
tation is closely kin to that of substitution (Algorithm 5.3). I assume Sel1 ,

First1 , and Last1 are pre-computed.

1. The algorithm begins by detecting the rator's bound variables and the
free variables in the rand; this works the same as in substitution (taking
O(lg A) time). Here is an example, with a bound variable marked with
11 and free variables (in the rand) marked with Jf.

JJ JJ
({x ({x x, } (Zs x,)) } (Z4 Z4))

11
RIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Sel1 : 0 (11 1 1 11 1 1 1 1 1) (2 2 2 2) 0

2. Bound variables in the rator get pointy hats; free variables in the rand
are incremented by one. It takes 0(1) time, and gives:

130

.u- .u-
({x ({x X1 } (Zs X1)) } (Z5 Zs))

ir
RIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Sel1 : 0 (1 1 1 1 1 1 1 1 1 1 1) (2 2 2 2) 0

3. Parentheses with Sel1 = 0 are changed to brackets; the A-abstraction
rator braces (Sel1 = 1 and either First1 or Last1 set) are erased. This
takes 0(1) time, and gives the final result:

[({x X1 } (Zs X1)) (Zs Zs)]
RIX: 1 3 4 5 6 7 8 9 10 11 13 14 15 16 17

Overall, the f3s rule takes O(lgA) + 0(1) + 0(1) = O(lgA) time and no
extra space.

Algorithm 5.9 Detect and remove a useless suspension (the [useless] pseu
do-rule)

1. Algorithm 5.1 marks the bound variables in the suspension in O(lg A)
time; there may not be any.

2. All the cells "vote" to determine if a bound variable exists (using a
single-result operation).

3. If there are no bound variables, then (a) the free variables, detected
with Algorithm 5.2, are decremented; and (b) the suspension brackets
[] and all the cells in the pointee (Sel1 = 2) erase themselves.

All of the constituent operations take O(lg A) time in the worst case.

Algorithm 5.10 The [triv-body] rule.

The [triv-body] rule is applicable if the two-cell pattern I!E!J is present. It
can be detected with a variant of Algorithm 5.7 in O(lg A) time.

Strictly speaking, the [triv-body] rule is a special case of substitution
(Algorithm 5.3), but a much simpler algorithm may be used.

131

[y]

A
[z] [x]

1\ 1\
P Q R S

(a)

[b]

~
[a] L

~
[x] J(

~
>.y J

I
),z

I

(b)

>.y
I

),z

I
[b]

~
[a] L

~
[x] J(

~
:rl J

(c)

Figure 5.5: Non-local tidying

The trivial-body cell (RIX = 2, a variable) erases itself and the free vari
ables in the pointee (found with Algorithm 5.2) decrement themselves by
one. The suspension delimiters (with Sel1 = 0) erase themselves.

The two communication operations (broadcasting, finding free variables
in the pointee) take O(lg A) time; everything else takes constant time.

Algorithm 5.11 The [triv-ptee] rule.

The [triv-ptee] rule is applicable if the two-cell pattern §ill is present. It
can be detected with a variant of Algorithm 5.7 in O(lg A) time.

The [triv-ptee] rule is a special case of substitution and that algorithm
(5.3, page 122) may be used. Because the pointee being copied occupies one
cell (instead of O(n) cells), no new space has to be allocated (no storage
management costs) and the copying takes O(lgA) time.

5.2.5 N onlocal tidying

If a ;35 -reduction has just been done, it may have prompted the need for a [sus
rot!] tidying just above the new suspension. Figure 5.5a shows an example
in which the newly-created [x] suspension needs to be rotated upward.

Figure 5.5b shows an example in which the new [x] suspension exposes
the need to move the >.y and >.z abstractions above the top suspension [b],

132

as Figure 5.5c shows. These moves correspond to applying the [.\-up] rule
six times. By gluing in more .\,-abstractions and suspensions, an arbitrarily
large number of [.\-up]'s might be needed. Fortunately, it is possible to have
an FFPM reduction-routine that recognizes the symbol string

m of them ...--.-..
(where [m corresponds to [[[· ·. [) and converts it into

(where the primes indicate terms with adjusted binding indices). This "[mul
ti-.\-up] rule" (it is not really a rewrite rule) implements the potentially-long
sequence of [.\-up]'s in one step.

5.2.6 Global checking

Global checking is a phase of the FFPM cycle that operates on the entire .\,
term in the Machine regardless of delimiter markings; it uses absolute level
numbers. The first problem it solves is nonlocal tidying, as just described.
To this end, global checking runs Algorithms 5.13 and 5.14.

The second problem global checking solves comes from the marking
unmarking style of control that reduction-routines use. If the .\,-pointer
is deeply nested within marked delimiters and its target suspension is far
above it in the .\,-tree and that suspension must "get control," then it could
take many cycles just to unmark all the delimiters so the target suspension
would become innermost-marked and thereby gain control. If requested (by
a find_ptr_target hint), global checking gives control to the suspension target
of the rightmost Follow* Fill pointer in one step, using Algorithm 5.12.

Algorithm 5.12 Activate the target suspension of the rightmost Follow* Fill
.\,-pointer. This algorithm is executed only if a find_ptr_target task hint is
present.

If one or more Follow* Fill .\,-pointers exist (anywhere in the .\,-term), then
be sure that the suspension to which the rightmost one points is marked and
that it has no marked delimiters within it (i.e., erase them).

1. To detect the rightmost Follow*Fill .\,-pointer, a single-result Max op
eration on AIXs will locate the "interesting" symbol (non-pointer cells
do not play). It takes O(Ig A) time.

133

1 1 1
[" [x (x1 ih) (Yz z.)] ([w (z. wl) (z. z.)] z.)]

AIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
ABL: 0 1 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 1 1 1 0

In this example, the cells marked 1 participate in the Max operation;
cell 16 is selected.

2. The interesting cell, knowing its binding index and its (absolute) bind
ing level (ABL) can calculate the binding level of its target suspension
(ABL -binding index) and broadcast it, so the interesting suspensions
know who they are. In the example, they have ABL = 1.

3. Next, do a left-to-right integer-addition scan: the interesting Follow* Fill
pointer sends + 1, the interesting-suspension right-brackets send a Re
start-0, others do not play. The only interesting-suspension right-brac
ket that will receive a + 1 is the target suspension. Algorithm 5.4 can
then find the matching left-bracket. The example, with scan input and
result shown (zeros excluded, the "hit" shown by 11):

[" [x (x1 Yz) (Yz z.) l ([w (z. w1) (z. z.) l z.) l
AIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ABL: 0 1 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 1 1 1 0
input: RO + 1 RO
result: 1 1 1 1 1 1

11

4. The brackets of the now-detected desired suspension must be marked
and any cells that are between those brackets (just compare AIXs) need
to be unmarked so the desired suspension will be innermost.

5. The find_ptr _target task hint will be erased.

Comment. All together, it takes O(lg A) time. The extension of using
binding indices for A8 -applications and suspensions, discussed in Section 6. 7,
could be used in conjunction with this global checking as a way to quickly
restore the markings that this step may erase.

134

Algorithm 5.13 The [sus-rot!] rule.

The rule is: [xB [yP QJJ --> [y[xBif pi!] Qdf]. It is applicable if the two
cell pattern~ is present; it can be detected with a variant of Algorithm 5. 7 in
O(lg A) time. The outer suspension is activated, then the algorithm proceeds
as with any reduction routine. An example A,-term:

[x (X1 Zz) [y (Z3 fh) (Z3 Z3)]]

RIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Sel1 : 0 (1 1 1 1) (2 2 2 2 2 2 2 2 2 2) 0
Sel2 : 0 (1 1 1 1) (2 2 2 2) 0

1. Detect and increment the free variables in B (cells with Sel1 = 1);
shown by l in the example below. Algorithm 5.2 does this, in O(lg A)
time.

Similarly, detect and decrement the free variables in Q (cells with Sel1

= 2 and Sel2 = 2); shown by J). in the example below.

Also, detect and increment the bound variables of [y] in P (Sel1 = 2 and
Sel2 = 1); shown by 11' in the example. A slight variant of Algorithm 5.1
can do this in O(lg A) time.

l J). J).

[x (xl z3) [y (z3 fh) (z 2 z 2) J J
I

RIX: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Sel1 : 0 (1 1 1 1) (2 2 2 2 2 2 2 2 2 2) 0
Sel2 : 0 (1 1 1 1) (2 2 2 2) 0

2. The cell holding [y erases itself (Sel1 = 2 and First1 set). The last cell
in P (Sel1 = 2, Sel2 = 1, and Last2 set) clones one copy of itself and the
right cell becomes a suspension right-delimiter. This takes 0(1) time.

The first cell (RIX = 1) clones one copy of itself. The last cell (Sel1 = 0
and holding a]) erases itself. Both operations take 0(1) time. The
final result is (J).'s show rewritten cloned cells):

J). J).
[x [x (X 1 Z3) (Z3 fiz)] (Zz Zz)]

RIX: 1 1 2 3 4 5 7 8 9 10 10 11 12 13 14 15
Sel1 : 0 0 (1 1 1 1) 2 2 2 2 2 2 2 2 2 2)
Sel2 : (1 1 1 1) 1) (2 2 2 2) 0

135

The [sus-rot!] rule takes O(lg A)+ O(lg A)+ O(lg A)+ 0(1) + 0(1) =
O(lg A) time and no extra space (it gives up as much as it asks for in clones).

Comment. The creation of a new suspension by ;38 -reduction can induce
at most one firing of the [sus-rot!] rule. The removal of a suspension from
the top of a pointee cannot expose further suspensions below it; for that to
arise, the lower suspension would have to have been created earlier, but that
is impossible with normal-order evaluation.

Algorithm 5.14 The [multi- .X-up] pseudo-rule: repeated applications of the
[.\-up] rule.

The pseudo-rule is: [m{nB}n PJ]P2]· • ·Pm]---> {n[mB' P{]P~]· ··P,;,]}n. It
is applicable if the two-cell pattern [[]is present; it can be detected with a
variant of Algorithm 5. 7 in O(lg A) time. I am using an that is not tidy (it
has trivial pointees), so it will fit on the page.

m of them ,..--........
1. The tell-tale pair llJD is in the larger pattern [[[· · · [

n of them
~
{ { { ... {.

First, broadcast where the tell-tale left-bracket is (AIX = 17 below,
marked l; presumably, there are 14 symbols to the left in the overall
A8 -term). Then, to find the leftmost bracket [and to calculate m, the
non-left-bracket cells to the left of the initial [{ contribute their AIX to
a Max operation; the result-plus-one is the index of the leftmost bracket.
The leftmost non-left-bracket has AIX = 14, so cell15 is marked (-If).
The difference between that AIX and the initially-matched left-bracket's
AIX ism. Here, m = 17-14 = 3.

-If l
[c [b [a {x {y (X2 b4) } } Z4] Z3] Z2]

AIX: 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

r 1t

An analogous operation to the right finds the rightmost left brace {
and determines n; the endmost braces are marked r and 1t above. n =
20 - 18 = 2. These operations take O(lg A) time.

136

2. The matching right-bracket J of the leftmost left-bracket .lJ. can be found
with Algorithm 5.4.

The matching }n right braces can be found by delimiter matching (Al
gorithm 5.4) and the repeated-symbol detection just used. The exam
ple, with all the markers now shown for the matching delimiters also,
IS:

.lJ. 1 1 .lJ.
[c [b [. {x {y (Xz b4) } } Z4] Z3] Zz]

AIX: 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
ii'r 1ri

3. The leftmost m + n cells-m left-brackets and n left-braces-reorder
themselves to n left-braces followed by m left-brackets. Since the in
dices of interesting symbols and the numbers m and n are known from
just-completed broadcast operations, this takes 0(1) time. This gives
(changed cells marked 1):

1 1 1 1 1
{ { [[[(Xz b4) } } Z4] z3] z2]

AIX: 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4. The }n string of right-braces erases itself.

The rightmost right-bracket clones itself n times, and the string of
clones becomes the string J }n. This gives (interesting cells marked.!).):

.lJ. .lJ. .lJ.
{ { [[[(Xz b4) z4] Z3] z 2] } }

AIX: 15 16 17 18 19 20 21 22 23 26 27 28 29 30 31 31 31

5. It remains only to adjust binding indices.

Variables in B that were bound to any of the {n· · ·}n A8 -abstractions
need to have madded to them (shown by i below). Variables in B that
were bound to any of them suspensions need to haven subtracted from
them (shown by 1 below).

Free variables in the terms P1 ,P2 , ••• ,Pm need to be incremented by
n, shown here by 1r in the final result.

137

i 1
{ { [[[(Xs bz) zs] zs] z4] } }

AIX: 15 16 17 18 19 20 21 22 23 26 27 28 29 30 31 31 31
1)- 1)- 1)-

Variants of the algorithms to find bound variables (Algorithm 5.1) and
free variables (Algorithm 5.2) that check for ranges of binding indices
would be needed in this step.

The basic constituent operations takes more than O(lg A) time; the clo
ning in Step 4 can take 0(n) time, but that is a vestige of the simplified
representation used here. This is considered further on page 149. The algo
rithm here uses no extra space (it gives up as much as it asks for in clones).

5.2. 7 Summary of the FFP Machine implementation

Reduction of the recurring example. Figure 5.6 shows steps of the
recurring example. You may wish to compare it with Figures 2.8 (plain tree
reduction), 3.7 (graph reduction), and 4.20 (.\,-trees shown).

Noteworthy aspects. The FFPM implementation of the .\,-interpreter is
notable in several ways.

1. It is controlled almost exclusively by searching for two-cells patterns
using distributed associative-matching.

2. Every algorithm is straight-line code with no repetitions (loops).

3. Except for those in which .\,-terms are copied, every algorithm takes
O(lg A) time in the worst case, where A is the size of the address
space.1° Algorithms with copying take 0(n) time. No algorithm has a
worse time complexity.

4. Implementing the .\,-interpreter on a similar architecture but with a
richer interconnection network would presumably improve the time
complexity for copying and, therefore, the most "expensive" operations
in this implementation.

10The footnote on page 108 says why we can expect O(!gn) execution, where n is the
size of the term.

138

The initial term, with first redex marked:
r ~

{y ({j (A (ft (A ft))) } {x (Xt Yt) }) }

After one reduction and the next two-cell match (marked -lJ.):
.u..u.

{y [f (A (A (A ft))) {x (Xt Yt) }] }

After a lazy copy of the shared rator (copy marked!):

llllll
{y [f ({x (Xt Y3) } (A (it it))) {x (Xt Yt) }] }

After the 2nd reduction and two matches are made (both marked .U.):
.u..u. .u..u.

{y (, (x (Xt Y3) (f2 (f2 f2))] {x (Xt Yt) }] }

After the 3rd reduction, before tidying (new suspension marked):

After (sus-rot!], with two matches made (marked .U.):
.u. .u. .u. .u.

{y [j [x [x (Xt Y4) (X2 Y4)] (A J3)] {x (Xt Yt) }] }

After lazy copy, 4th reduction, and tidy; then match made (marked .U.):
.u..u.

{y [f [x [x (Xt Y4) (:£2 Y4)] (i2 Y4)] {x (Xt Yt) }] }

After last-instance relocation, 5th reduction, and tidy:

After detecting that all FollowFi/1-pointer targets are reduced:

Figure 5.6: The FFP Machine interpreter on the recurring example

139

I doubt that a richer network would significantly improve the O(lg A)
time complexity of the tree broadcast and scan operations.

FFPM algorithms are unusual in that storage management costs are
not swept under the rug.

5. Most importantly, the implementation is not specifically wedded to an
FFPM. Any architecture that would support the linear representation
of A

8
-terms and provide fast scan operations could support this style

of A.-interpreter.

6. The collected algorithms of this interpreter represent a fair sampling of
low-level FFPM programming techniques, which are fun.

Chapter 6 considers further extensions to the A8 -interpreter that could
be important for a practical A8 -style implementation.

5.3 Equivalence to graph reduction: efficiency

This section collects the worst-case asymptotic space and time complexities
for the just-sketched FFPM implementation of a A8 -interpreter and compares
them with those of a graph-reducing A

9
-interpreter (Chapter 3) on a global

addressable-memory (GAM) machine. The goal is to show that a particular
type of tree reduction of the A-calculus-with suspensions-can compare
favorably with graph reduction; matching its sharing properties is the key.

One cannot discuss time and space complexity of A-calculus implemen
tations without revealing the computational models used. Comparing im
plementations based on different models is not ideal. The problem is, of
course, that neither of these interpreters would do well if implemented on
the other computational model. Fortunately, the task here is not to show
that one interpreter is x percent faster than the other, but to show that tree
reduction, appropriately defined and with the right underlying primitives, is
asymptotically comparable to graph reduction.

Because the normal-order evaluation of the A-calculus is entirely sequen
tial, the basic algorithm (search for a redex, copy the shared rator, ...) does
not differ on a sequential or a parallel machine architecture. Though an
FFPM wins hands down on some parts of a reduction step, I do not use this
to offset another weakness because of its tree-reduction nature.

I reiterate that my complexity figures for the A8 -interpreter are not irre
deemably bound to an FFPM architecture; any machine that would support

140

the linear representation of terms and provide fast scan primitives could likely
do as well.

5.3.1 Space complexity

Theorem 5.1 An implementation of the \-interpreter (graph reduction)
uses the same amount of space as an implementation of the >.,-interpreter,
within a constant factor. This presumes tidied >.,-terms.

Proof. Given that Theorem 4.9 showed that a >.9 -interpreter and .\,-inter
preter maintain an exact correspondence between plain nodes through each
reduction step, it suffices to show that the interpreters represent plain nodes
in comparable space and that tidied >.,-terms cannot become bloated by
adding non-plain nodes.

Representing plain nodes. A plain node (.\-application, .\-abstraction,
or a variable) can be represented in a constant amount of space. In a .\9 -inter
preter, this would presumably include space for the pointers that represent
edges in the .\9 -graph. In a .\,-interpreter, the edges in a .\,-tree are not
explicitly represented, thanks to the linear representation. However, the non
terminal nodes represented by paired delimiters occupy two cells in the simple
representation I have used. Middleton gives a thorough treatment of program
representation techniques in an FFPM, and they would be applicable to the
.\-calculus [152]. Help as they might, they would not change the 0(1) space
requirement per plain node .

.\,-term bloating. Besides plain nodes, a .\,-term may also include sus
pensions and .\,-pointers. Can these be added in such a way as to unbalance
the equivalence between .\

9
-interpreter and >.,-interpreter for space to rep

resent a .\-term? No, but untidied terms must be excluded- a .\,-term can
have arbitrarily many plain nodes if useless suspensions are hung all over it.

The worst possible ratio of non-plain to plain nodes in a tidied .\,-term is
in a term of the form shown in Figure 5. 7 a; Figure 5. 7b shows the equivalent
.\-term with plain nodes only. (The superscripts are there only to show how
many nodes there are.) The "bloated" .\,-term has 3n + 3 nodes, and the
plain equivalent has n + 3 nodes-the difference is still only a constant factor.

In summary, a tidied .\,-term that is equivalent to a .\
9
-graph with n plain

nodes will have at most O(n) nodes (plain or otherwise). D

141

(a) (b)

Figure 5.7: A >.,-term stuffed with non-plain nodes

Comment. Searching for a redex does not in any way alter the size of the
>.-term in either a \-interpreter or a >.,-interpreter. That copying a shared
rator, actually /1-reducing the redex, or tidying up (in the >.,-interpreter)
always maintain an exact correspondence between plain nodes was discussed
in Sections 4.2-4.5.

A minor note about last-instance relocation, which graph reduction does
not do: this operation will use some space as it copies the pointee to its new
place; however, it will be followed by the removal of a useless suspension,
thus reclaiming an equal amount of space to that just used in the copy. If
done sequentially, the >.,-interpreter would suffer a temporary "bulge" that
the \-interpreter would not see; there is, however, no reason why the two
operations (copying and reclaiming) could not be interleaved on an FFPM
by an optimized reduction routine.

5.3.2 Time complexity

This section compares the time complexity of a \-interpreter implemented
on a GAM machine with that of a >.,-interpreter implemented on an FFPM.
Again, this analysis is based on Theorem 4.9, which says that the interpreters
maintain an exact correspondence between plain nodes, step for step.

Time for one reduction step

Table 5.2 shows the collected worst-case asymptotic time complexities for

142

A9 -interpreter As-interpreter
FFPM: FFPM:

phase of GAM simple fancy
reduction step machine representation representation
finding the next redex O(nlgA) O(nlgA) same
copying a shared rator O(nlgA) O(n) same
copying a last instance O(n) same
,8-reduction O(n lg A) O(lg A) same
tidying O(n) O(lg A)

Table 5.2: Comparison of asymptotic time complexities

the implementations of the two interpreters. In all cases, n is the number
of nodes in the A9 -graph or As-term; A is the size of the "address space" for
that model. This section explains the table and justifies its claim.

Memory access time. There exists an unfortunate custom of saying mem
ory access in a GAM machine takes "constant time." Each access to such
memory requires the use of an address-decoding tree and so, strictly speaking,
takes O(lg A), A ~ n). This explains the "lg A" factors in the GAM machine
column in Table 5.2. In an FFPM, tree operations may travel the full height
of the physical tree, depending on alignment, hence the lg A factors there.

While it is true that the constant factor is small in "log-time" memory
access, the same might be true of the tree-network hardware in an FFPM
that produces the "lg A" factors in the FFPM column of Table 5.2. Either
both must be charged the logarithmic factor (my choice) or neither should
be.

Finding the next redex. In the worst case, a \-interpreter must exam
ine an entire n-node \-graph before finding a redex (or not finding one). An
example not quite so bad, but still taking 0(n lg A) time, is shown in Fig
ure 5.8a; normal-order evaluation must visit roughly !n nodes in its pre-order
walk of the graph before finding the redex (>.x.{ x1 } z.). Each pointer-hop
takes O(lg A) time.

Figure 5.8b shows one possible equivalent As-term to the term in Fig
ure 5.8a. This As-term would also require the same sequential search through
the (plain) As-application nodes; the only difference is that the applications
are connected by A3 -pointers. Each of the x As-pointers would be followed
in turn: it would first be matched and marked as FollowFill (Algorithm 5.5)

143

1\ d.

A.y z.
I

Y1

(a)

a.

(b)

Figure 5.8: Unpleasant example of looking for redex

then, following global checking (Section 5.2.6), the search would continue at
the suspension's pointee (Algorithm 5.6). All those algorithms take O(lg A)
time. Therefore, it takes one FFPM cycle to follow one A.,-pointer, in O(lg n)
time. To traverse n A.,-pointers (the worst case) will then take 0(n !g A) time.

This O(lg A) time to follow a A.,-pointer depends on).,-terms being tidied;
it is the reason for tidying. Without the [triv-ptee] and [sus-rot!] rules ap
plied, getting from one plain node to the next could involve following many

A.,-pointers, O(n) of them in the worst case. Preventing this case is the
reason for so constraining the kinds of _\,-pointers allowed in a tidied term.
Also, recall that the main matching algorithm for searching (Algorithm 5.7)
depends on useless suspensions being removed.

Of course, a).,-interpreter on an FFPM will often find a redex much
quicker than a sequential \-interpreter. For example, Figure 5.8a is a per
fectly good A.,-term, and the searching algorithm (Algorithm 5.7) will find
the redex (A.x.{xd z.) with one O(lgA) match.

Copying a shared rator. Before a f)-reduction actually happens, if the
rator is shared, then a new copy must be made. These interpreters use lazy
copying; Section 4.4 describes the techniques, and Lemma 4.2 ensures that
the A.9 - and A.,-interpreters will copy corresponding plain nodes. Theorem 5.1
has already assured that non-plain-node bloating can increase the size of a
A.,-term only by a constant factor. If the whole term has n plain nodes, then
in the worst case almost all of them will have to be copied, meaning 0(n)
node copies. For both a GAM machine and an FFPM the time to copy is

144

proportional to the size of the copy; strictly speaking, 0(n lg A) on a GAM
machine and 0(n + lg A) on an FFPM.

The time to copy dominates the time to re-do the backpointers in the
new term (in a >.9 -interpreter on a GAM machine) or to adjust free variables'
binding indices (using Algorithm 5.2 in a >.,-interpreter on an FFPM).

Last-instance relocation. As discussed in Section 4.4, if the >.-abstrac
tion rator is not shared but is the target of a >.,-pointer, then a >.,-inter
preter must move that "last instance" of the >.,-abstraction into place before
,8,-reduction can proceed. Since the copy is just like that of a shared rator,
it can take 0(n) time.

Because graph reduction requires no comparable effort, this last-instance
relocation is a blow to the step-for-step equivalence of a >.,-interpreter to a
\-interpreter; it is the only such blow.

It stands to reason that a reduction scheme that uses a linear represen
tation of terms and that requires any reduction rule to operate locally must
sometimes pay the price and move symbols into a "local" position. In con
trast, every location in a global addressable memory is equally accessible (if
not sharable); symbols need not be moved to make access more convenient.

Several comments are in order. The first is that it is only >.,-abstractions
that are rators of redexes about to be reduced that will be relocated. >.,
abstractions, representing functions or "code," are typically relatively small;
large aggregate data-structures that are painful to move are unlikely to be
relocated. Second, because the relocation works just like a shared-rator
copy, the relocation stops when >.,-pointers are reached-the parts of the
>.,-abstraction shared before the relocation are shared afterwards, too: they
are not moved. This would further limit the size of relocations.

The amount of wasted copying due to last-instance relocation is bounded
in the case of the >.-calculus-equivalent of "straight-line code" in which no
sharing occurs. Figure 5.9a shows a >.,-term with a repeated structure from
which a term of arbitrary size could be constructed. Figure 5.9b shows that
term after one reduction (to create (x]), just before the last-instance moving of
the top pointee-practically the whole term will be moved. Figure 5.9c shows
the result after the ,8,-reduction and the removal of two useless suspensions
[x] and (y], just before the next last-instance relocation. With this pattern,
each last-instance relocation will move seven fewer (plain) nodes than the
time before. If the >.,-term starts with n nodes, the maximum extra copying
due purely to last-instance relocation will be n + (n- 7) + (n- 14) + · · · , that
is, O(n2) extra node-copies. It takes a highly contrived example to achieve

145

this.

(a) (b)

[x]

~.\y
x 1 .\a /'--..__

I AX b.
at /\

x1 .\a
I

al

(c)

Figure 5.9: Last-instance relocation in straight-line code

Though the amount of trouble last-instance relocation can cause by itself
is bounded, such relocation is not bounded in general. Specifically, a subterm
with a last instance to be moved can be embedded in a shared term that will
be copied over and over (in graph reduction as well). Inside of each copy, there
will be a last-instance relocation for the As-interpreter to do. For example, in
Figure 5.10 (a non-terminating reduction), each time the .\s.{· · ·} subterm
is copied, it carries what will become a last-instance relocation of .\z.{(z z)}.
(The figure shows the first reduction, then omits two reductions, then shows
the A3 -term before and after the last-instance relocation and its reduction.)
Again, it takes effort to find such examples.

Does the "tree reduction overhead" of last-instance relocation cripple this
style of reduction versus graph reduction? Theoretically speaking, it certainly
precludes their absolute equivalence in time complexity.

I suggest that last-instance relocation is a fair price to pay for a linear
representation with strong locality. My experience and the far-fetchedness
of the "ill-behaved" examples suggest that the As-abstractions to be moved
will be quite small. Moreover, .\-lifting techniques to remove (and share) free
expressions at compile-time would tend to make them smaller still. Going
further, Section 6.6 describes techniques that might ameliorate this cost, and
Section 6.3 presents smarter suspensions one might use with a practical A
calculus, in which the suspension would do (part of) the work for the redex
proper.

The practical cost of last-instance relocation will only come from ex-

146

[s]

~As
.sl .51 ~

AX s1

A
AY AZ

A A
Y1 X2 Z1 Z1 Y1 X2 Z1 Z1

Figure 5.10: An example with unbounded last-instance relocations

147

arnining real programs' sharing and execution behavior and studying their
interaction with the set of t~chniques chosen for a particular implementation
(Chapter 6 describes some extensions that would probably be used).

,8-reduction. Once the redex is localized and in place, replacing variables
(with conventional pointers in a A9 -interpreter, and with As· pointers in a As
interpreter) is straightforward. A conventional graph reducer walks the graph
looking for bound variables (O(n lg A) in the worst case); a As· interpreter on
an FFPM does it in O(lg A) time (Algorithm 5.8).

Tidying. If a A9 -interpreter had to do tidying, it might include the re
moval of indirection nodes. Practical graph reducers avoid such things [165,
pages 217-218], so I do not charge graph reduction for tidying.

The purpose of tidying in the As-interpreter is to keep a As-term in a
form on which an FFPM implementation can use its associative matching
effectively. Broadly speaking, we want to ensure that there is at most one
s-connection to traverse between any two plain nodes.

After a .Bs·reduction, any of the tidying rules may need to be applied.
The purpose here is to ensure that each rule need not be applied more than
once: since all the algorithms for tidying (Sections 5.2.4 and 5.2.5) take
O(lg A) time, that will then give an O(lg A) time cost for the tidying phase
as a whole.11 One assumes, of course, that the As-term was tidy before the
reduction step began.

The [triv-ptee] rule replaces bound variables in the suspension's body
with another variable; this cannot make any other rule applicable.

The removal of a useless suspension happens because it no longer has a
bound variable. Such a removal cannot create the need for any additional
tidying.

The [sus-rot!] rule re-orders suspensions; it cannot make another rule
applicable. In particular, a "run" of [sus-rotl]'s (as in Figure 5.11) cannot
happen, because it would require non-leftmost ,8

8
-reductions to create the

inner suspensions, which is not normal-order evaluation.
As discussed in Section 5.2.5, a given ,88 -reduction may cause the need for

an arbitrarily large number of applications of the [>,-up] rule. Fortunately,
these always appear in the form [m{n B}n P1]P2] ... Pm] and the FFPM im
plementation of the [multi-.\-up] pseudo-rule can handle the whole thing in

11The annoying exception of the [multi-.A-up] pseudo-rule (Algorithm 5.14) will be dealt
with shortly.

148

one step.

[a]

A~
Ab B
I

[c]
/'...

p Q

[b]
;----.__

[a] B

/\
A [c]

/\
p Q

[a]

~
A [b]

~
[c] B

/\
p Q

[b]
;----.__

[c] B

~
[a] Q

/\
A p

Figure 5.11: Impossible sequence of [sus-rotl]'s

Algorithm 5.14 takes O(lg A) time, except for the storage-management
cost of making room for the n right braces to be inserted after the last
right-bracket. In the utterly bizarre case of an n-node A8 -term representing
a function with 0(n) parameters, this storage-management time cost could
be O(n), wrecking the algorithm's overall worst-case time complexity. This
0(n) time cost need not be taken seriously, as it is a vestige of the particular
linear representation I have used (chosen mainly for simplicity). In Table 5.2,
I report the tidying cost for both the simple representation used here and for
a "fancy" representation that would be likely used in practice.

The use of suspension lists and "clumped" A-abstractions, explained in
Section 6.1, is an alternate way to do many [>,-up]'s at once without resorting
to the hackery of Algorithm 5.14 for the [multi-.\-up] pseudo-rule. Imple
mentations of the rules for such a representation do not suffer the theoretical
storage-management time costs just mentioned; the "fancy representation"
column of Table 5.2 would apply.

This completes the explanation of Table 5.2, confirming that the time
complexity of an FFPM implementation of a A8 -interpreter is equal to or
better than a GAM-machine implementation of a .\

9
-interpreter with the

exception of last-instance relocations.

149

Time for k reduction steps

An O(t2) bound, with O(n) copying. The previous section confirms
that the worst-case time complexities of a .\

9
-interpreter and a >.,-interpreter

on a particular reduction step are nearly the same, with the latter perhaps
suffering an O(n) last-instance relocation. Can the extra cost of last-instance
relocation over k reduction steps be bounded?12

Assume a sequence of k reductions, T 1 --+ T2 --+ . . . --+ Tk. The size
of term Ti is n;; Section 5.3.1 showed that the sizes of the .\9 - and >.,-term
representations will differ by a constant factor, at most. We also know that
the times for the non-last-instance-relocation parts of each reduction step in
the two interpreters are asymptotically equivalent; call this time t; t 2: C k
(for some constant C, to be ignored).

The least possible work to be done is constructing the largest term in
memory; that is, t;::: Cmax(n;), for some constant C (again ignored); tis
the best possible graph-reduction time.

From Table 5.2, the most possible extra work in a >.,-interpreter for k
steps is k last-instance relocations of size max(n;), which takes time of at
most k max(n;) ::; kt ::; t 2 • Therefore, the bound is

worst-case for >.,-interpreter < t + t2

= O(t2).

This is not a wonderful bound, but it confirms that the defeat of exponential
blow-ups by non-naive tree reduction is not an order-notation accounting
trick in Table 5.2.

An O(tlgt) bound, with O(lgn) copying. The analysis above presumes
the usual O(n) memory-copying time of an FFPM or a conventional GAM
machine; it is worth mentioning the result's sensitivity to that assumption.

What if an n-node last-instance relocation could be done with a richer
interconnection network in O(lg n) time? In this case, the extra work for last
instance relocations in k steps is at most 0(k lg(max(n;))), which is bounded
by O(klgt)::; O(tlgt). Now the bound is

worst-case for >.,-interpreter < t + t lg t
O(tlg t).

The difference between the O(t2) and O(tlg t) bounds shows the effect of the
modest data-movement network on an FFPM.

12I am completely indebted to David Plaisted for his help on this section.

150

An O(tlgt) bound, with O(n) copying. It is likely that an O(tlgt)
bound can be achieved even with O(n) copying, if last-instance relocation
is redefined to do just enough of the relocation to let the next reduction
proceed. For example, instead of copying those whole .\,-abstraction term,
one could copy just its root node, then put in a special .\.-pointer as the
body. The new .\,-pointer would be aimed at the uncopied abstraction-body,
and more copying would be done later, if required. That would mean copying
a constant number of nodes per relocation, at most. This idea does not fit
squarely into the current mechanisms and the extra machinery (not worked
out) is beyond the scope of my work here.

5.4 Previous FFP Machine implementations of
the A-calculus

Part of Backus's early work (1973) on functional programming included ".\
Red" (reduction) languages; they were "closed applicative languages which
resemble the .\-calculus" [13]. They had variables and general substitution
and worked by innermost evaluation. Since Mago was designing for Backus's
languages, the initial drafts of Mago's original FFPM design (1979) supported
.\-Red languages. The FFPM was a ".\-calculus machine" to begin with!
Mago assumed pure tree-reduction-with-copying and made no efforts toward
sharing at that time.

Dybvig's Ph.D. dissertation describes an implementation of Scheme (a
statically-scoped LISP) for an FFPM [62]; he translates Scheme code into a
specialized FFP language. The interpreter uses environments (represented as
FFP sequences) and indexes into them with FFP selector functions. Dybvig's
method copies these environments around unapologetically, though he uses
special primitives to "trim" them of unneeded elements.

Plaisted [170; 171]looks at the ramifications of adding a richer intercon
nection network (a "6.2i network") to an FFPM. He shows how this network
leads to reasonable asymptotic complexity for parallel-innermost term rewrit
mg.

Plaisted goes on to "give methods by which lazy evaluation and a version
of graph reduction may be simulated fairly efficiently on the FFP Machine"
[171, page 230]. He uses a notation comparable to marked and unmarked
delimiters (Section 5.1.3). His "evaluation" parentheses, written as (e ... e),
are marked; unadorned parentheses are unmarked. No reduction takes place
except inside an e-parenthesized term. Plaisted also uses "delay" parentheses

151

to inhibit evaluation, including that of enclosed e-parenthesized terms. His
equivalent of a suspension [xB P] is a where-expression:

[B where (x P)] or [B where (x1 P1) •.• (x, P,)].

The latter form is a full-blown environment.l3 Plaisted's equivalent of (3-
reduction creates a where-expression, as the (3, rule does with suspensions.
The placement of e- and d-parentheses implements the desired evaluation
order, using the FFPM trick of "colored parentheses."

Plaisted does not suggest rules to move where-expressions around as
the .A,-interpreter does with suspensions. When a variable x in B inside
(,[B where (x P)],) needs to be filled in with P, he copies. This makes
sense because his premise was adding a richer network for data movement to
an FFPM. It certainly avoids the complications of following .A,-pointers! He
also uses the fast network to "collect" duplicate subexpressions at run-time:
a term E with several occurrences ofF becomes [E' where (x F)], with the
F's in E replaced by x, giving E'. This achieves a sharing of free expressions
comparable to graph reduction.

Plaisted uses plain string-named variables, acknowledging binding indices
as another alternative. He gives a matching algorithm for finding string
named bound variables (and useless where-expressions with no bound vari
ables).

13! have altered Plaisted's notation slightly, so it blends with other parts of this
dissertation.

152

Chapter 6

Embellishments

Fortran Sx appears to be well suited
to the functional style of programming.

-Page and Barasch (1985).

This chapter describes extensions that could make the .\8 -interpreter of Chap
ter 4 into a more practical basis for a parallel implementation of a lazy
functional language. I assume FFP Machine (FFPM)-like target hardware
that supports a linear program-representation and fast scan primitives, as in
Chapter 5. This chapter includes much opinion and no data; the true test
of any set of ideas is its impact on the performance of realistic functional
programs.

All of the usual .\-calculus options would be available while designing
a practical computational base: the different normal forms, the different
evaluation orders, and so on. Peyton Jones's book about implementation
describes many of these alternatives [165].

6.1 Suspension lists

A basic desideratum in parallel reduction machines is for large rewrite rules
that do considerable useful work per step; there is a non- trivial overhead per
step, at least in all machines designed so far. In an FFPM, this desideratum
is reflected in the basic data type, dynamic arrays, and its preference for
shallow structures with many large components (a deep binary tree with

[z] [[x,y,z]J

/----__
[y] R ---+

~ B p Q R
[x] Q

/\
B p

Figure 6.1: Left-skewed suspensions become a suspension list

measly integers at its leaves is an example of the opposite) [146]. Shallowness
is important because an FFPM often moves up and down a tree structure
by setting and unsetting activeness information on delimiters; this can be
done at most once per cycle. (The interpreter of Chapter 5 uses a "global
checking" phase to avoid some of this re-setting, but such a method might
not always be applicable or desirable.)

The rules of the As-interpreter in Chapter 4, notably the [sus-rot!] rule,
conspire to create unbalanced, left-linear As-trees of suspensions. This struc
ture may be replaced with a suspension list; Figure 6.1 shows an example
without and with a suspension list ("[[]]" in the tree). The "meaning" of
a suspension list is that of its left-linear, unraveled equivalent As-term. The
names x,y,z in [[x,y,z]] are decorative of course, and match the pointees in
the obvious left-to-right way.

A suspension list has a body subterm and n pointee subterms, n 2:: 1. In
counting binders (to determine binding indices), such a suspension list counts
as n. There is a difference between binding indices in a suspension-list term
and its ordinary As-term equivalent. Figure 6.2 gives an example.

The rules of the As-interpreter must be adjusted for suspension lists. Be
cause they are more like FFPM dynamic arrays than simple suspensions, one
would hope the rules' actions would be larger, and that this benefit would
outweigh the increased tedium of managing the suspension lists.

Incrementing and decrementing of binding indices must account for the
multi-binder nature of suspension lists (easy). The [triv-body] rule, which
is a "keep-it-or-throw-it-away" binary selector in its ordinary A8 -term form,
becomes a proper selector, choosing one (or none) of the suspension list's
pointees.

The [sus-rot!] rule goes away and is replaced by a rule that subsumes

154

.\z
I

[y]

[x~ [w(A z2 Z2

w(\ z3 Y2

±2 Y3
Figure 6.2: Binding indices change in a suspension list

[b] [[a, b, c, d]]

~
[a] [d]

1\ ~
B P1 [c] P4 B

1\
p2 p3

Figure 6.3: Suspension lists collapse into their parent list

suspension lists into their parent list. Ensuring that every pointee has a
plain node at its root is still the goal. Figure 6.3 gives an example of [sus
rotl]-like suspension-list collapsing.

Lumping suspensions into suspension lists is similar to a standard practice
with .\-abstractions in a name-free calculus: representing .\a.{.\b.{.\c.{B}}}
by .\3.{B}. >.n.{T} nodes count as n binders. This representation would also
tend to make flatter .\

8
-trees and is probably a good idea. A rule to subsume

subordinate .\-abstractions would be needed: >.m.{.\n.{B}}-+).m+n.{B}.
If one is going to be a truly enthusiastic flattener, perhaps the .\-appli

cations should also be replaced with .\-application lists. A left-linear tree
of .\-applications, as in Figure 6.4, would be replaced by a .\-application
list (shown by "(())" in the tree). A .\-application list may only absorb
subordinate .\-applications on its left end, a greater-than-usual constraint.

The beauty of all this listifying is that applying a function to its several

155

.\x
I

.\y
I

.\z
I

B

pl

B

Figure 6.4: .\-application list and subsequent reduction

arguments is now a one-step operation, as Figure 6.4 shows. Optimizations
of this operation are common in the literature. Paul Watson uses "multiple
,6-substitution" in his thesis, for multi-argument substitutions in which the
partial evaluations are not shared [206]. Berkling goes further in his 1986 pa
per on head order reduction; he uses 'I)-expansion to make the multi-argument
redexes as large as possible, calling the operation that follows ",6-reduction
in-the-large" [25]. The exact suspension- and .\-application-list analogues of
his operations would be worth figuring out. Though multi-argument reduc
tion may turn out to be impractical-Harte! and Veen report that for "four
medium-sized programs at least 90 per cent of all functions have one or two
arguments" [89, page 24 7]-it suggests a desirable direction, one that might
be well served by an aggressive compiler.

As part of his .\-calculus work, Revesz has proposed a language exten
sion in which lists are fully integrated into the calculus [176, Chapter 4]. An
example of a term might be .\x.{ (E1 , E2 , ••• , En)}. The syntax of this exten
sion and the implications thereof are too involved to describe here; however,
I think such a base calculus might be appropriate for the style of reduction
being promoted here.

6.2 Dealing with recursiOn

Recursive functions are pervasive in lazy functional programming. One rea
son for graph reduction is that cycles in the program graph can represent
recurswn.

With ordinary tree reduction, there is no way for a .\-term to refer to
itself. With suspensions, it is possible, by relaxing the restriction that a

156

1\
y fi --> -->

--> -->

fi

fi

[x)

A'A
!; ±1 !; ±1

Figure 6.5: Two Y combinator reductions, graphs and suspensions

[[f,g, h]]

A A .A
fh X1 h4 Y1 fz Z1

Figure 6.6: Mutually recursive functions in a suspension list

suspension cannot have a bound variable in its pointee. Figure 6.5 shows
two reductions of the Y combinator; the cyclic-graph reductions are shown
above, the bound-variable-in-pointee reduction below. The [triv-body) rule
must be changed to check for bound variables in the pointee; the rule must
not be applied to the .\8 -term in Figure 6.5.

The bound-variable-in-pointee method may not work well for sets of mu
tually recursive functions. Such functions can, however, be handled by ex
tending the idea to suspension lists. Figure 6.6 shows three mutually recur
sive functions f, g, and h tangled up in a suspension list.

6.3 Exotic suspensions

If one thinks about suspensions in the .\8 -interpreter as active entities, their
basic operations are to scan for bound variables that need filling, then check

157

if the pointee is appropriate for copying (i.e., it is a .\-abstraction), then do
the copying.

One can imagine "smarter" suspensions, probably working in concert with
other machine primitives. For example, if the machine had an array-of
numbers primitive, instead of copying the array so a selector could proceed,
the smart suspension would do the selection itself and simply copy the result.

6.4 More parallelism

To have a practical fine-grained parallel machine, there must be plenty of
parallelism. Normal-order evaluation of the pure .\-calculus is essentially se
rial and offers little parallelism. A richer base language with more primitives
allows more parallelism, and a less stringent evaluation order might help,
too. For example, strict functions' arguments may be evaluated eagerly (and
concurrently); strictness analysis may find other functions with similar prop
erties. Using suspensions does not preclude these standard techniques.

The /3, rule and the tidying rules are fast and do not consume space
(assuming an implementation like the one in Chapter 5); the rules may be
applied in as many places as possible at once. If the expensive operations
notably filling FollowFill pointers-are still applied only when normal-order
evaluation demands it, then its termination properties will be preserved.

6.5 Ordering in \-terms and supercombina
tors

Section 4.5.6 discussed how suspensions' movement or reordering in a .\,
tree is constrained by binders remaining visible to their bound variables.
Suspension lists with bound variables in pointees allow greater freedom in
this ordering. This might benefit a particular implementation.

An extreme example of re-ordering freedom comes from converting a .\
term to supercombinator form; Figure 6. 7 shows a modified example from
Peyton Jones's book [165, page 226]. The free variable x2 is abstracted from
the term .\y.{(y1 x2)} and the two resulting supercombinators $X and $Y
are put in a top-level suspension list. The order in which they appear as
pointees in the list is completely arbitrary (it could be [[$X, $Y]]). It is
worth mentioning that any .\-term converted to supercombinators would be
of this form: a single top-level suspension list with trees of .\-applications

158

[$YJ

$X2 a.
r:::--AI

f., .. ,A,
$Y2 xl

Figure 6. 7: Transforming to supercombinators, with a suspension list

159

Ax [z]

.Ax

a. A a.
xl z2

b. c. b. c.

Figure 6.8: Abstracting a free expression

and variables (no .A-abstractions) dangling from it.
A comparable technique works for abstracting free eJo..-pressions; Figure 6.8

shows the term (a (b c)) lifted out of the abstraction .Ax. { (x (a (b c)))}. Pre
processing As-terms in this way is necessary for a .As-interpreter to be fully
lazy, as Arvind et al. showed [9]. In general, most techniques for variable
abstraction, .A-lifting, etc., seem to carry over quite directly to the suspension
based approach.

6.6 Speculative copying

Asymptotic properties aside, I think it is clear that heavy use of suspensions
and As-pointer-following are not an easy ticket to high-speed computation.
Suspensions should only be used in cases where they really help.

All copying beyond the necessary is speculative and potentially wasted.
However, a parallel-machine designer welcomes speculative copying that im
proves locality or parallelism at a modest cost. There is some chance that
decent heuristics to guide such copying would emerge for real programs. An
example heuristic: ".A-abstractions are usually small: copy them." Or, as
suming array primitives: "Never copy arrays." This general approach is
consistent with the common string/tree reduction-machine approach of over
coming a lack of sharing by specialized support for more complex data struc
tures (Section 5.1.11).

More subtle variations of speculative copying spring to mind. For exam
ple, last-instance relocation of a suspension's pointee is a dead loss compared
to graph reduction. This problem might almost always be alleviated by copy
ing earlier than necessary: when doing the next-but-last copy of the pointee,
one could overwrite the last bound variable as well (and delete the useless
suspension). Alternately, one could make as many copies as possible within

160

some "budget" for new cells allocated. (One would presumably fill the left
most bound variables on the hunch that they would be the next ones needed.)
Scan primitives readily support counting bound-variables, sizing the pointee,
and marking some of variables for overwriting after a local calculation of the
number of new cells expected to a cell's left.

Copying costs are mightily affected by an architecture's interconnection
scheme. A richer network or a topology that favors a particular style of
copying would shift the balance about what speculative copying is worth
doing.

6. 7 Going further with binding indices

The FFPM implementation of the .\,-interpreter in Chapter 5 does .\,-pointer
following and filling by looking for Follow*Fill-marked binding indices and
matching simple two-cell patterns. Here, I want to mention an alternate
technique that is interesting in its own right.

In partitioning, an FFPM gives hardware resources to innermost active
.>..,-terms and lets them proceed (Section 5.1.3). Pre-order walking of .\,
terms to find redexes can be implemented by marking subterms as active
(corresponding to a recursive call in a tree-walker) and having those sub
terms unmark themselves when finished (corresponding to a return from the
recursive call). Because the following of .\,-pointers introduces non-local
jumping around the tree, repeated markings and unmarkings of "activeness"
would make for a poor implementation of the .>..,-interpreter (even those the
ML version onestepS (page 72) works precisely by doing all those recursive
calls to move up and down the .>..,-term). This is the reason for the "global
checking" phase in the implementation in Chapter 5.

I found a fast FFPM-style way of doing the "returns" back from a suspen
sion down to the .\,-pointer that called it. The gimmick is to give "binding
indices" to suspensions and .\-applications as well as variables. These may
then be used beneficially. Consider Figure 6. 9a: all the nodes between the
variable x2 and its suspension [x] have binding indices pointing to that sus
pension. The top suspension has a "binding index" of 0, marking it as active.
If that suspension then does a simple "compare application-level (RAL) with
binding-index" operation (there were plenty of those in Chapter 5), then all
its bound suspensions and .\-applications can be detected and marked active
with binding-index 0. The configuration of "activeness" that existed before
following the .\,-pointer x2 has been restored! Figure 6.9b shows the result

161

[x]o

p

p.

Figure 6.9: Binding indices on suspensions and .\-applications

of such an operation.
Some standard .\-lifting-style operations also work by giving binding in

dices to non-variable constructions (see Peyton Jones's book, again [165,
pages 230 and 258]).

162

Chapter 7

Conclusions

I endeavour to give satisfaction, sir.

-C. Northcote Parkinson, Jeeves (1979).

The basic results are those I claimed in the thesis statement (Section 1.2).

• A suspension-based As-interpreter (Chapter 4) is a correct implemen
tation of the pure A-calculus because its manipulations of As-terms
are isomorphic to the manipulations of \-graphs by a graph-reducing
A9 -interpreter (Chapter 3). Theorem 4.9 (page 92) proves this As

9
-

equivalence.

• When the As-interpreter is implemented on an FFP Machine (FFPM)
or similar architecture, its worst-case space complexity is within a
constant factor of that of a lazy-copying graph-reducer on a global
addressable-memory (GAM) machine. Please see Theorem 5.1.

• The worst-case time complexity of the FFPM interpreter is equal to or
better than that of the GAM interpreter, except for the last-instance
relocations of suspension pointees. Please see Table 5.2.

I conclude that graph reduction does not have an inherent advantage as a
computational model to support lazy functional programming. I now review
the major issues raised by comparing the two interpreters.

Reduction to fi-normal form. Graph reduction that uses lazy copying
is only suited to reduction to weak fi-normal form (WBNF); it cannot cope
with free variables in redexes. Also, binding indices cannot be used with this
kind of graph reduction (Section 3.4.1). A graph reducer must either support
a-conversion or use backpointers to avoid name-capture problems. Also, to
enjoy maximal sharing with graph reduction, one must include expensive
detection of maximal free expressions (MFEs) in each reduction step ("fully
lazy" copying); when reducing to fi-normal form (BNF), the less onerous
"lazy" copying does not work (Section 3.3).

Suspension-based reduction to BNF works with binding indices, and lazy
copying is a completely natural mechanism. If an implementer wants to use
a reduction order or normal form that allows free variables in redexes-e.g.,
innermost spine reduction (see Peyton Jones [165, page 199]) or BNF-then
suspension-based reduction is available.

Oddly, the FFPM implementation that does so well with suspension
based reduction to BNF finds reduction to WBNF more costly. Algorithms
for finding out if a term is inside a A-abstraction are ill-matched to what the
hardware can do well.

Linear representation. The attractions of suspension-based reduction to
computer architects center around a linear representation of program sym
bols. A symbol need not be globally addressable nor stored in a global
resource.

Binding indices, used to avoid name-capture problems, are very amenable
to manipulation with fast scan primitives. Algorithm 5.1, which detects all
bound variables in a A8 -term in O(lg n) time, is a beautiful example.

The use of associative matching to detect redexes and other "interesting"
patterns of symbols is noteworthy. This matching can find a redex anywhere
in a A-term is as little as one step, whereas a graph reducer must necessarily
chain through pointers to get there. An important aspect of this matching
(and the other FFPM algorithms) is the modest amount of "parse-tree" in
formation that must be synthesized from the raw symbols-no more than
two selectors are ever needed.

I think it worthwhile to have presented a sizable example using the low
level techniques possible on an FFPM. I believe that these techniques would
work just as well on any parallel architecture with fast scans and a locality
preserving linear program-representation.

The cost of a linear program-representation (besides the implementa
tion cost) is "last-instance relocation," which means that the last copy of

164

a As-abstraction must be moved into place; these movements are gruesomely
dissected beginning on page 145. I think the analysis there shows how con
strained the "extra" copying of tree reduction can be.

The next step. I hope I have laid to rest the notion that "string" reduc
tion is inherently, wildly inefficient for normal-order reduction. The basic
question that follows is: Can the As-interpreter of Chapter 4 be "grown"
into a practical mechanism for the efficient execution of lazy functional pro
grams? Intimately related to this question are the questions of what realistic
functional programs actually do ("what happens above") and the constraints
and properties of the target hardware architecture ("what happens below").
The truly successful architect for a parallel reduction machine will be master
of all of these levels.

I would seriously consider using some of the tricks of Chapter 6. Sus
pension lists seem a clear winner (Section 6.1), and Revesz's extensions to
integrate lists directly into the calculus are no less intriguing (mentioned in
the same section). I would allow bound-variables in suspension pointees and
use that to implement recursion. I would do some speculative copying based
on simple heuristics derived from real programs; an example might be, "if
filling a suspension's next-but-last bound variable, fill the last one as well."

Graph reduction without pointers. Wadsworth's invention of graph
reduction was a breakthrough for normal-order evaluation of the .\-calculus;
it made the unthinkable thinkable. Subsequent development of sequential
implementations (e.g., the G-machine) have removed the glaring weaknesses
of graph reduction, so that it now forms the basis for quite-practical lazy
functional programming systems.

Good parallel implementations of graph reduction seem less assured.
They must inescapably contend with autonomous processors vying for a
shared resource, the program .\9 -graph. The nature of the graphs does not
build one's hopes for abundant locality. Yes, there are tricks, but ... Why not
a suspension-based reduction mechanism that does the same reductions as
graph reduction on each reduction step, and that has exactly the same shar
ing properties (assuming lazy copying)? Terms are represented by trees, no
concept of global store need intrude, and no way to address the global store--
pointers-need be supplied. Besides, suspension-based reduction works per
fectly well even if redexes include free variables. Why not the benefits of
graph reduction without pointers?

165

Appendix A

Programming with ML

This appendix introduces a small subset of Standard ML so you can read my
programming examples. Common utility routines used in the dissertation
are explained in Section A.2.

Wikstroom's text [211] is a proper introduction to ML programming.
There is much, much more to ML than I describe here.

A.l The one-minute ML programmer

Data structures. Primitive data types include booleans true and false
(type boo!), character strings (type string), and integers (type int). Negative
integers are written as -1, -2, -3, ... The null type is unit.

I use only one compound data type, tuples. For example, (1, boo!, 6) is
a 3-tuple; its type is int * boo! * int.

A datatype declaration introduces a user-defined type; for example,

datatype Tree= Leaf of int I Node of Tree* Tree.

Leaf and Node are constructor functions; their types are int --> Tree and
Tree * Tree --> Tree, respectively. (ML is strongly-typed, and it is common
practice to give a function's type along with its name.) My main datatypes
are Term, for .\-terms with suspensions, and Gnode, for the nodes of a .\9 -

graph.

References. ML allows pointers, or "references." A pointer to an int has
type int ref. I use references in the graph-twiddling code (lots of Gnode refs).

For a bool ref x, x := true is an assignment, and !x is the value of whatever x
points to (!xis x "dereferenced").

Functions. An ML function is usually written as a set of clauses, each
specifying a pattern that an argument must match. For example:

fun leafcount (Leaf(x)) = 1
lleafcount (Node(L,R)) = (leafcount L) + (leafcount R)

The function leafcount : Tree-+ int is defined with two clauses. The first
says what to do with a Leaf and the second with a Node. Using patterns to
unravel data structures is very common practice in ML.

An underline "-" in a pattern is a "don't care" variable, matching any
thing in that position.

The same result can be had with a case clause with patterns:

fun casecount T =
(case T
of Leaf(x) =? 1

I Node(L,R) =? (leafcount L) + (leafcount R)
)

A function doubletree: Tree--+ Tree, which doubles every leaf in the input
Tree, giving a new Tree, might be:

fun doubletree (Leaf(n)) = Leaf(2 * n)
I doubletree (Node(L,R)) = Node(doubletree L, doubletree R)

A value or function may be "cached" using a let ... in ... end expression;
for example,

let val x = 40 + 2 in x + x + x + x end

is an expression with value 42 x 4 = 168. A doubletree variant might be:

fun doubletree' (Leaf(n)) =
Leaf(2 * n)

I doubletree' (Node(L,R)) =
let val L' = doubletree' L

val R' = doubletree' R

in Node(L', R') end

167

Let expressions can also introduce local function definitions, as in this
silly example:

fun add_two_to_tree (Leaf(n)) =
let fun add_two_to x = x + 2
in Leaf(add_two_to n) end

I add_two_to_tree (Node(L,R)) =
Node(add_two_to_tree L, add_two_to_tree R)

Function application associates to the left; parentheses override the im
plicit order. So, doubletree L, doubletree(L), and (doubletree L) are all the
same.

Polymorphic functions. In ML, one may define polymorphic functions
that accept arguments of more than one type. For example,

fun firsLoLtuple (x, y) = x

accepts 2-tuples with elements of any type and returns the first; it has type
'a* 'b-+ 'a. Just watch out for types written as 'a, 'b, 'c, ...

Higher-order functions. Higher-order functions are those that take func
tions as arguments or that return functions as results. The higher-order
functions in this dissertation are partial applications of curried functions. (If
that sounds too confusing, you may wish to consult a functional programming
text; however, the examples here may get you through.)

fun add' (x, y) = (x + y):int (*coerce; '+'is overloaded *)

fun add x y = (x + y):int

The functions shown are add' : (int * int)-+ int and add : int-+ int-+ int.
If invoked, e.g., (add' (3, 9)) or (add 3 9), both give the same answer. The
function add, however, may be partially applied (with fewer than its full two
arguments), as in (add 3), in which case it returns the function that adds
three to its argument. The function (add 3) has type int -+ int; when it is
applied to 9, we get the expected answer 12 (type int).

Besides add, a curried version of the built-in +, I also use orEise :
bool -+ bool -+ boo I, a curried version of the infix orelse.

This style of partially applying functions to yield other functions is im
portant only for the functions chk_vars (page 170) and mod_vars (page 171).

168

(*Predicate functions is_app : Term ---> bool (a J\,-application?), isJam :Term ---> bool
(a >.,-abstraction?), and is_ptr: Term---> bool (a J\,-pointer?).

*)
fun is_app (App(-,-)) =true

I is_app other = false

fun isJam (Lam(_,_)) = true
I isJam other = false

fun is.ptr (Var(-,Ptr,_)) = true
I is_ptr (Var(_,FollowFill,_)) = true
I is.ptr (Var(_,FollowNoFill,.)) =true
I is.ptr (Var(_,Followed,-)) = true
I is.ptr other = false

Exceptions. ML allows elaborate exception-handling. For my purposes,
however, it is simple: if you see "raise something_bad_wrong," it is a fatal,
not-supposed-to-happen error.

A.2 Utility functions

A.2.1 A
8
-term functions

This section presents the ML functions that support the code for the .A,-in
terpreter in Chapter 4. The functions chk_vars (page 170), mod_vars (page
171), and subst (page 172) are important, the rest are just necessary labor.

169

(*Function

*)

chk_vars : (int~int-+int*VarMark*stri ng---+' a)-+(' a-+' a-+' a)---+ 'b--+int--+int--+ Term -+ 'a

(A rather horrible-looking type, no?) Many operations on Terms are of the form "Go
down and look at all the variables (binding indices, really), check for some condition,
and accumulate the results." For example, given the query, "Does this suspension
have a bound variable?", we check each variable's binding index against the nesting
level (which must be accumulated); if equal, true else false. We orelse together all
the variable-answers and that is the answer.

mod_vars (page 171) is a similar function, except it modified Vars (producing new
Terms), rather than just checking them.

If instead all the leaves report '1' and the "connective" is addition, then we have a
leaf counter. I have given it as an example below. Now, the non-obvious arguments
to chk_vars:

levi and levh: Accumulate "low" and "high" numbers defining the range of nesting
levels of interest. As we move down the tree, these numbers are bumped up
when we meet a binding site (lam or Sus). Often, levi and levh are the same
... or perhaps very far apart (e.g., 2 and MAXVAR).

check: The function applied to Vars to produce the values to accumulate. It is really
applied to the levi and levh level-numbers and the "guts" of a Var, hence the
exotic type int---+ int--+ int * VarMark * string--+ 'a.

connect and unit: The function that accumulates the values from the Vars; unit is
the "unit value" used to get things going. Common combinations would be
add,O or orEise,false.

fun chk_vars check connect unit levllevh (App(M, N)) =
connect (chk_vars check connect unit levi levh M)

(chk_vars check connect unit levllevh N)

I chk_vars check connect unit levllevh (Sus(B, P, -)) =
let val nlevl = levi + 1

val nlevh = levh + 1
in connect (chk_vars check connect unit nlevl nlevh B)

(chk_vars check connect unit nlevl nlevh P) end

I chk_vars check connect unit levi levh (Lam(B, -)) =
(chk_vars check connect unit (levl+1) (levh+1) B)

I chk_vars check connect unit levllevh (Var(bi,vmk,n)) =
(check levllevh (bi,vmk,n))

fun leafcount T = (* a chk_vars example *)
let fun var_counts_one levllevh (-,-,-) = 1
in chk_vars var_counts_one add 0 1 1 (*levels don't matter*) Tend

170

(* Function mod_vars :
(int-+int-+int*VarMark*string-+bool)-+
(int-+int-+int*VarMark*string-+int*VarMark*string)-+
int-+int-+ Term-+ Term .

*)

This is a sister function to chk_vars, except that it modifies the variables and returns a
new Term, rather than just checking the variables and accumulating the information.
Please see the documentation for chk_vars (page 170).

fun mod_vars sel modfn levllevh (App(M, N)) =
App(mod_vars sel modfn levi levh M, mod_vars sel modfn levi levh N)

I mod_vars sel modfn levi levh (Sus(M, N, n)) =
let val nlevl = levi + 1

val nlevh = levh + 1
m

Sus(mod_vars sel modfn nlevl nlevh M, mod_vars sel modfn nlevl nlevh N, n)
end

I mod_vars sel modfn levi levh (Lam(B, n)) =
Lam(mod_vars sel modfn (levl+1) (levh+1) B, n)

I mod_vars sel modfn levi levh (Var(bi, vmk, n)) =
if(sellevllevh (bi, vmk, n)) then

Var(modfn levi levh (bi, vmk, n))
else

Var(bi, vmk, n)

(* The most common use of mod_vars is to change variables' binding indices. The
function incr_var_range adjusts all the binding indices in a range of nesting levels
0ow to high) by an incr number.

*)

The functions incr _free_varsl, incr _free_vars2, and incr _bd_vars are just convenient ways
to call incr _var _range. The two versions ofincr _free_vars are needed because the binding
indices for free variables start at '1' or '2', depending on where you start counting.

fun incr _var _range low high incr T =
let

fun in_range (levl:int) (levh:int) (bi, vmk, n) = (bi 2: levi andalso bi :S levh)
fun incr_var __ ((bi:int), vmk, n) = ((bi+incr),vmk, n)

in mod_vars in_range incr_var low high Tend

fun incr _free_varsl incr T = incr _var _range 1 MAXVAR incr T

fun incr _free_vars2 incr T = incr _var _range 2 MAXVAR incr T

fun incr_bd_vars incr T = incr_var_range 1 1 incr T
(*Levels 1 1 assume we are working inside a Term *)

171

(* These functions are tests for various flavors of "boundness" that work with chk_vars
(page 170) and mod_vars (page 171). The only hard one is is..higher_up_follow_ptr,
which checks if a Follow >.,-pointer's binding index says that its binding site is above
the point indicated by the nesting level.

*)
fun is_bd_var_or_ptr levllevh ((bi:int),vmk,n) = (bi ::;: levi) andalso (bi :<:; levh)

fun is_bd_follow_ptr levi _ (bi,FollowFill,_) = (levi = bi)
I is_bd_follow_ptr levi _ (bi,FollowNoFill,_) = (levi = bi)
I is_bd_follow_ptr levi _ (-.-.-) = false

fun is_bd_follow_fiiLptr levi _ (bi,FollowFill,_) = (levi = bi)
I is_bd_follow_fiiLptr levi _ (-·-·-) =false

fun is_higher_up_follow_ptr (levl:int) _ (bi,FollowFill,_) =(levi< bi)
I is_higher_up_follow_ptr levi_ (bi,FollowNoFill,_) =(levi< bi)
I is_higher_up_follow_ptr levi _ (-.-.-) =false

(* subst : (int--.. int--.. int * VarMark *string- bool)--.. int--.. int- Term- Term-+
Term

*)

This function substitutes term S into term T for all Variables selected by the
function sel. Uses incdree_vars1 (page 171)-this is because, asS is "dragged down"
the tree T, its free variables are getting further away from their binding sites.

subs! is in mu~h the same spirit as chk_vars (page 170) or mod_vars (page 171).
std_subst is sirrlply a convenient way to call the more general subst.

fun subs! sellevllevh S (App(M, N)) =
App((subst sel levi levh S M), (subs! sel levi levh S N))

I subst sel levi levh S (Lam(B, n)) =
Lam((subst sel (levl+l) (levh+l) (incdree_vars1 1 S) B), n)

I subst sellevl levh S (Var(bi,vmk,n)) =
if (sellevllevh (bi,vmk,n)) then S else Var(bi,vmk,n)

I subs! sellevllevh S (Sus(B. P, n)) =
let val nlevl = levi + 1

val nlevh = levh + 1
val S' = (incdree_vars1 1 S)
val B' = (subst sel nlevl nlevh S' B)
val P' = (subst sel nlevl nlevh S' P)

in Sus(B', P', n) end
fun std_subst S T = (* the most common use of subs! *)

subst is_bd_var_or_ptr 1 1ST

172

(* swap_levs: Term---+ Term.

*)

A highly miscellaneous support function for tidyterm (page 88) that increments bind
ing indices on level ilev by 1 and decrements binding indices on level dlev by 1.

fun swap_levs ilev dlev (App(M,N)) =
App(swap_levs ilev dlev M, swap_levs ilev dlev N)

I swapJevs ilev dlev (Sus(B,P,n)) =
Sus(swap_levs (ilev+l) (dlev+l) B, swap_levs (ilev+l) (dlev+l) P, n)

I swap_levs ilev dlev (Lam(B, n)) =
Lam(swap_levs (ilev+l) (dlev+l) B, n)

I swap_levs ilev dlev (Var(bi,vmk,n)) =
if bi = ilev then

Var(bi+l,vmk,n)
else if bi = dlev then

Var(bi-l,vmk,n)
else

Var(bi, vmk,n)
(*Uses mod_vars (page 171) to turn bound plain-variables into Ptr variables. *)
fun ptrize_bd_vars T =
let

fun make_ptr lev_ (bi,NotPtr,n) = (bi, Ptr, n)
I make_ptr lev _ (-· -.-) = raise ptrize_bd_vars_error

in mod_vars is_ibd_var_or_ptr make_ptr 0 0 Tend

173

A.2.2 \-graph functions

This section includes the few extra functions needed to support the .\9 -inter
preter in Chapter 3. Though these functions are hideous-looking because of
all the pattern-matching on graph structure, they are all quite simple.

174

(* Simple functions to change reference counts and set subbed bits. *)
fun incr_refcnt bump (Gas ref (AppG(_,_,_,(_,refcnt,_,_)))) =

refcnt := (!refcnt) + bump
I incr_refcnt bump (G as ref (LamG(-,-.-,(-,refcnt,_,_)))) =

refcnt := (!refcnt) + bump
I incr_refcnt bump (G as ref (VarG(-.-· (-,refcnt,_,_)))) =

refcnt := (!refcnt) + bump

and set..subbed bval (ref (AppG(M,N,_,(subbed,_,_,_)))) = (subbed := bval)
I seLsubbed bval (ref (LamG(B,_,_,(subbed,_,_,_)))) = (subbed := bval)
I set..subbed bval (ref (VarG(-.-· (subbed,_,_,_)))) = (subbed := bval)

(* . Set visited bits to bval. *)
and mk_graph_visited bval (ref (AppG(M,N,-,(-,-,visited,_)))) =

(visited := bval; mk_graph_visited bval M; mk_graph_visited bval N)
I mk_graph_visited bval (ref (LamG(B,_,_,(_,_,visited,_)))) =

(visited := bval; mk_graph_visited bval B)
I mk_graph_visited bval (ref (VarG(-.-, (_,_,visited,-))))=

(visited := bval)

(* Simple functions to change reference counts and set subbed bits. *)
fun incr_refcnt bump (Gas ref (AppG(-.-.-.(-,refcnt,_,_)))) =

refcnt := (!refcnt) + bump
I incr_refcnt bump (Gas ref (LamG(-.-.-.(-,refcnt,_,_)))) =

refcnt := (!refcnt) + bump
I incuefcnt bump (G as ref (VarG(-.-, (_,refcnt,_,_)))) =

refcnt := ('refcnt) + bump

and set..subbed bval (ref (AppG(M,N,_,(subbed,_,_,_)))) =(subbed := bval)
I set..subbed bval (ref (LamG(B,_,_,(subbed,_,_,_)))) = (subbed := bval)
I set..subbed bval (ref (VarG(-,-, (subbed,_,_,-)))) =(subbed := bval)

(* . Set visited bits to bval. *)
and mk_graph_visited bval (ref (AppG(M,N,-,(-,-,visited,_)))) =

(visited := bval; mk_graph_visited bval M; mk_graph_visited bval N)
I mk_graph_visited bval (ref (LamG(B,_,_,(_,_,visited,_)))) =

(visited := bval; mk_graph_visited bval B)
I mk_graph_visited bval (ref (VarG(-,-· (_,_,visited,_)))) =

(visited := bval)

175

(* The function rm_indir _nodes : Gnode ref ~ Gnode ref removes any AppG nodes that
have become indirection nodes. It turns off all the visited bits (with mLgraph_visited
(page 175)) then uses the local function rm2 to do the work; rm2 sets visited bits and
does not do any re-visiting. Reference counts are adjusted with incr_refcnt (page 175).

*)
and rm_indir_nodes (ref (AppG(M,N,(ref true),(-·-·-·-))))=

(* a toplevel indirection node *)
(rm_indir_nodes M)

I rm_indir_nodes ptr =
Jet fun rm2 (Gas ref (AppG(M,N,(ref true),(-,refcnt,visited,-)))) =

(*this is an indirection node; repeat visits; fiddle refcounts *)
let val M' = (rm2 M)
in ((incr_refcnt ((lrefcnt)- 1) M'); M') end

I rm2 (app_ptr as ref (AppG(M,N,(ref false),(-.-.visited as (ref false),-))))=
let val_= (visited := true)

val M' = (rm2 M)
val N' = (rm2 N)

in M := !M'; N := IN'; app_ptr end

I rm2 (lam_ptr as ref (LamG(B,n,_,(_,_,visited as (ref false),-)))) =
let val _ = (visited := true)

val B' = (rm2 B)
in B := !B'; lam_ptr end

I rm2 (var_ptr as ref (VarG(x,n,(_,_,visited as (ref false),-))))=
(visited := true;

var _ptr)

I rm2 visited = (* we've been here before *) visited

in (let val _ = mk_graph_visited false ptr
val ptr _out = rm2 ptr
in ptr _out end

) end

176

(* These are support routines for implementing Wadsworth backpointers. I use
''unique" integer IDs, from -100 downwards, called "binder IDs." This avoids
interference with binding indices, which are positive or (for constants) small
negative numbers. A hack, to be sure.

*)

nexLID generates "fresh" binderiD's, needed when copying graphs. The functions
bidx_to_bndriDs_T: int-> int-> Term-> Term and
bndriDs_to_bidx: int -joint---+ Term -jo Term convert between binding indices and
binderiD's in graphs and Terms. The function
chg_bndriDs : int-> int-> Gnode ref-> unit replaces one binderiD with another in a
graph.

All three of these functions produce intermediate structures used by term2graph
(page 67) and graph2term T (page 67). They have no other use.

I do not use ML refs, because, in practice, they make conversion back and forth to
binding indices unpleasant.

and nexLID () = (*generate ID's sequentially*)
(nexLbinder_ID := (!nexLbinder_ID- 1);

!nexLbinder_ID)

and bndriDs_to_bidx lev bndriD (App(M,N)) =
App(bndriDs_to_bidx lev bndriD M, bndriDs_to_bidx lev bndriD N)

I bndriDs_to_bidx lev bndriD (Sus(B,P,n)) =
Sus(bndriDs_to_bidx (lev+1) bndriD B, bndriDs_to_bidx (lev+1) bndriD P, n)

I bndriDs_to_bidx lev bndriD (lam(B,n)) =
lam(bndriDs_to_bidx (lev+ 1) bndriD B, n)

I bndriDs_to_bidx lev bndriD (Var(bi,vmk,n)) =
Var(if bndriD = bi then lev else bi,vmk,n)

and bidx_to_bndriDs_T lev bndriD (App(M ,N)) =
App(bidx_to_bndriDs_T lev bndriD M, bidx_to_bndriDs_T lev bndriD N)

I bidx_to_bndriDs_T lev bndriD (Sus(B,P,n)) =
Sus(bidx_to_bndriDs_T (lev+l) bndriD B,bidx_to_bndriDs_T (lev+l) bndriD P,n)

I bidx_to_bndriDs_T lev bndriD (Lam(B,n)) =
lam(bidx_to_bndriDs_T (lev+ 1) bndriD B, n)

I bidx_to_bndriDs_T lev bndriD (Var(bi,vmk,n)) =
Var(ifbi =lev then bndriD else bi,vmk,n)

and chg_bndriDs o_bndriD n_bndriD (ref (AppG(M,N,indir,-))) =
if !indir then chg_bndriDs o_bndriD n_bndriD M
else (chg_bndriDs o_bndriD n_bndriD M;chg_bndriDs o_bndriD n_bndriD N)

I chg_bndriDs oJ>ndriD n_bndriD (ref (lamG(B,_,_,_))) =
chg_bndriDs o_bndriD n_bndriD B

I chg_bndriDs o..bndriD n_bndriD (ref (VarG(si,n,-))) =
if o_bndriD = ('si) then si := n_bndriD
else()

177

Bibliography

[1] Samson Abramsky and R. Sykes. SECD-m: A virtual machine for
applicative multiprogramming. In FPCA '85 [110], pages 81-98. Cited
on page 48.

[2] Luigia Carlucci Aiello and Gianfranco Prini. An efficient interpreter
for the lambda-calculus. Journal of Computer and System Sciences,
23(3):383-424, December, 1981.

[3] Selim G. Akl. The Design and Analysis of Parallel Algorithms.
Prentice-Hall, Englewood Cliffs, NJ, 1989. Cited on page 109.

[4] GeorgeS. Almasi and Allan Gottlieb. Highly Parallel Computing. Ben
jamin/Cummings Publishing Co., Redwood City, CA, 1989. Cited on
page 103.

[5] Makoto Amamiya. Data flow computing and parallel reduction ma
chine. Future Generations Computing Systems, 4(1):53-67, August,
1988. Cited on page 50.

[6] Paul Anderson, Chris L. Hankin, Paul Kelly, Peter E. Osmon, and Mal
colm J. Shute. COBWEB-2: Structured specification of a wafer-scale
supercomputer. In PARLE '87 [57], pages 51-67. Cited on page 50.

[7] Paul Anderson, Paul Kelly, and Phil Winterbottom. The feasibility of
a general-purpose parallel computer using WSI. In PARLE '89 [157],
pages 251-258. Cited on page 50.

[8] Andrew W. Appel and David B. MacQueen. A Standard ML compiler.
In FPCA '87 [111], pages 301-324. Cited on page x.

[9] Arvind, Vinod Kathail, and Keshav Pingali. Sharing of computation in
functional language implementations. In High-Level Architecture '84
[92], pages 5.1-5.12. Cited on pages 25, 27, 38, 76, 98, 100, and 160.

[10] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. !-structures: Data
structures for parallel processing. In Fasel and Keller [65], pages 336-
369. Cited on page 118.

[11] Lennart Augustsson and Thomas Johnsson. The <v,G>-machine.
In Functional Programming Languages and Computer Architecture
(FPCA), London, England, September 11-13, 1989. ACM Press (with
Addison-Wesley). Cited on page 50.

[12] John Backus. The history of FORTRAN I, II, and III. In Richard L.
Wexelblat, editor, History of Programming Languages. Proceedings of
the ACM SIGPLAN Conference, pages 25-74. Academic Press, June
1-3, 1978.

[13] John W. Backus. Programming language semantics and closed ap
plicative languages. In 1st ACM Symposium on Principles of Program
ming Languages (POPL), pages 71-86, Boston, MA, October 1-3, 1973.
Cited on pages 117 and 151.

[14] John W. Backus. Can programming be liberated from the von
Neumann style? A functional style and its algebra of programs. Com
munications of the ACM, 21(8):613-641, August, 1978. 1977 Turing
Award lecture. Cited on pages 6, 13, and 103.

[15] John W. Backus. The algebra of functional programs: Function level
reasoning, linear equations, and extended definitions. In J. Dfaz and
I. Ramos, editors, Formalization of Programming Concepts. Proceed
ings of an International Colloquium, volume 107 of Lecture Notes in
Computer Science, pages 1-43, Peniscola, Spain, April 19-25, 1981.
Springer-Verlag. Cited on page 5.

[16] John W. Backus. From function level semantics to program transfor
mation. In Hartmut Ehrig, C. Floyd, Maurice Nivat, and J. Thatcher,
editors, Proceedings of the International Joint Conference on Theory
and Practice of Software Development (TAPSOFT), volume 185 of Lec
ture Notes in Computer Science, pages 60-91, Berlin, Germany, March
25-29, 1985. Springer-Verlag. Cited on page 4.

[17] John W. Backus, John H. Williams, and Edward L. Wimmers. FL lan
guage manual (preliminary version). Research Report RJ 5339 (54809),
IBM Almaden Research Center, San Jose, CA, November 7, 1986. Cited
on page 5.

179

[18] H. P. Barendregt. Lambda Calculus. Its Syntax and Semantics, volume
103 of Studies in Logic and the Foundations of Mathematics. North
Holland, Amsterdam, The Netherlands, revised edition, 1984. Cited
on pages 12, 13, 19, and 22.

[19] Henk P. Barendregt, J. Richard Kennaway, Jan Willem Klop, and
M. Ronan Sleep. Needed reduction and spine strategies for the lambda
calculus. Information and Computation, 75(3):191-231, December,
1987. Cited on page 28.

[20] Henk P. Barendregt, M. C. J. D. van Eekelen, John R. W. Glauert,
J. Richard Kennaway, M. J. Plasmeijer, and M. Ronan Sleep. Term
graph rewriting. In PARLE '87 [58], pages 141-158. Cited on page 51.

[21] Henk P. Barendregt, M. C. J. D. van Eekelen, John R. W. Glauert,
J. Richard Kennaway, M. J. Plasmeijer, and M. Ronan Sleep. Towards
an intermediate language based on graph rewriting. In PARLE '87 [58],
pages 158-175. Cited on pages 51 and 180.

[22] Henk P. Barendregt, M. C. J. D. van Eekelen, M. J. Plasmeijer, John
R. W. Glauert, J. Richard Kennaway, and M. Ronan Sleep. LEAN: An
intermediate language based on graph rewriting. Parallel Computing,
9(2):163-177, January, 1989. Revised version of [21]. Cited on page 51.

[23] Henk P. Barendregt, M. C. J. D. van Eekelen, M. J. Plasmeijer,
Pieter H. Hartel, L. 0. Hertzberger, and Willem G. Vree. The Dutch
Parallel Reduction Machine project. Future Generations Computing
Systems, 3(4):261-270, December, 1987. Cited on pages 7, 49, and 49.

[24] C. Gordon Bell and A. Newell. Computer Structures: Readings and
Examples. McGraw-Hill, New York, NY, 1971. Cited on page 182.

[25] Klaus Berkling. Head order reduction: A graph reduction scheme for
the operational lambda calculus. In Fasel and Keller [65], pages 27-48.
Cited on pages 19, 20, 45, 46, and 156.

[26] K[laus] J. Berkling. Reduction languages for reduction machines. In
2nd International Symposium on Computer Architecture (ISCA}, pages
133-140, Houston, TX, January 20-22, 1975. IEEE Computer Society
Press. Cited on page 117.

180

[27] Klaus J. Berkling. A symmetric complement to the lambda calculus.
Technical Report ISF-76-7, Gesellschaft fiir Mathematik und Daten
verarbeitung (GMD), Bonn, W. Germany, September 14, 1976. Cited
on pages 20 and 42.

[28] Klaus J. Berkling. Computer architecture for correct programming. In
5th International Symposium on Computer Architecture (ISCA), pages
78-84, Palo Alto, CA, April 3-5, 1978. IEEE Computer Society Press.
Cited on page 117.

[29] Klaus J. Berkling. Experiences with integrating parts of the GMD
Reduction-Languages machine. In Brian Randell and Philip C. Tre
leaven, editors, VLSI Architecture. An Advanced Course, pages 381-
394, Bristol, UK, July 19-30, 1982. University of Bristol, Prentice-Hall
International. Cited on page 117.

[30] Klaus J. Berkling. The pragmatics of combinators. Technical Re
port 8803, CASE Center, Syracuse University, Syracuse, NY, February,
1988. Cited on page 46.

[31] Klaus J. Berkling and Elfriede Fehr. A consistent extension of the
lambda calculus as a base for functional programming languages. Infor
mation and Control, 55(1-3):89-101, October-December, 1982. Cited
on page 42.

[32] Klaus J. Berkling and Elfriede Fehr. A modification of the .\-calculus as
a base for functional programming. In M. Nielsen and E. M. Schmidt,
editors, 9th International Colloquium on Automata, Languages and
Programming (ICALP), volume 140 of Lecture Notes in Computer
Science, pages 35-47, Aarhus, Denmark, July 12-16, 1982. Springer
Verlag. Cited on pages 20 and 42.

[33] D. I. Bevan, G. L. Burn, R. J. Karia, and J. D. Robson. Principles
for the design of a distributed memory architecture for parallel graph
reduction. Computer Journal, 32(5):461-469, October, 1989. Cited on
page 49.

[34] David I. Bevan, Geoffrey L. Burn, and Rajeev J. Karia. Overview of a
parallel reduction machine project. In PARLE '87 [57], pages 394-413.
Cited on page 50.

181

[35] Guy E. Blelloch and James J. Little. Parallel solutions to geometric
problems on the scan model of computation. In David H. Bailey, edi
tor, Proceedings of the 1988 International Conference on Parallel Pro
cessing (ICPP)- Vol. III Algorithms and Applications, pages 218-222,
University Park, PA, August 15-19, 1988. Pennsylvania State Univer
sity Press. Cited on page 110.

[36] H. J. Boom. Lazy variable-renumbering makes substitution cheap. In
formation Processing Letters, 29(5):229-232, November 24, 1988. Cited
on page 22.

[37] Frederick P. Brooks, Jr. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley Publishing Co., Reading, MA, 1975.

[38] T. H. Brus, M. C. J. D. van Eekelen, M. 0. van Leer, and M. J.
Plasmeijer. Clean, a language for functional graph rewriting. In FPCA
'87 [111], pages 364-384. Cited on page 51.

[39] A. W. Burks, H. H. Goldstine, and J. von Neumann. Preliminary
discussion of the logical design of an electronic computing instrument.
Report to the U. S. Ordnance Department, 1946. Reprinted in Bell
and Newell, 1971 [24]. Cited on page 1.

[40] Geoffrey L. Burn. Developing a distributed memory architecture
for parallel graph reduction. In CONPAR88: Conference on Algo
rithms and Hardware for Parallel Processing, UMIST, Manchester, UK,
September 12-16, 1988. Cambridge University Press. Cited on page 49.

[41] G[eoffrey] L. Burn. Overview of a parallel reduction machine project
II. In PARLE '89 [157], pages 385-396. Cited on page 49.

[42] F. Warren Burton and Matthew M. Huntbach. Virtual tree archi
tectures. IEEE Transactions on Computers, C-33(3):278-280, March,
1984. Cited on page 118.

[43] F. Warren Burton and M. Ronan Sleep. Executing functional programs
on a virtual tree of processors. In FPCA '81 [68], pages 187-194. Cited
on page 118.

[44] Michel Castan, Guy Durrieu, Bernard Lecussan, Michel Lemaitre,
Alessandro Contessa, Eric Cousin, and Paulino Ng. Toward the de
sign of a parallel graph reduction machine: The MaRS project. In
Fasel and Keller [65], pages 161-180. Cited on pages 50 and 50.

182

[45] Yaohan Chu, Leonard Haynes, Lee W. Hoevel, Arthur Speckhard, Ed
ward A. Stohr, and Ralph H. Sprague, Jr., editors. 19th Hawaii Inter
national Conference on System Sciences (HICSS), volume I, Honolulu,
HI, January 7-10, 1986. Cited on pages 194 and 197.

[46] Alonzo Church. The Calculi of Lambda-Conversion. Princeton Univer
sity Press, Princeton, NJ, 1941. Cited on pages 5 and 12.

[47] T. J. W. Clarke, P. J. S. Gladstone, C. D. MacLean, and A. C. Norman.
SKIM-the S,K,I reduction machine. In Conference Record of the 1980
LISP Conference, pages 128-135, Stanford University, Palo Alto, CA,
August 25-27, 1980. Cited on page 50.

[48] A. Contessa, E. Cousin, C. Couset, M. Cubero-Castan, G. Durrieu,
B. Lecussan, M. Lemaitre, and P. Ng. MaRS, a combinator graph
reduction multiprocessor. In PARLE '89 [157], pages 176-192. Cited
on page 50.

[49] Martin D. Cripps, Anthony J. Field, and Michael J. Reeve. An in
troduction to ALICE: A multiprocessor graph reduction machine. In
Susan Eisenbach, editor, Functional Programming: Languages, Tools,
and Architectures, Series in Computers and their Applications, pages
111-127. Ellis Horwood Ltd., 1987. Cited on pages 7 and 45.

[50] Pierre-Louis Curien. Categorical combinators. Information and Con
trol, 69(1-3):188-254, April-June, 1986. Cited on page 98.

[51] Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms
and Functional Programming. Research Notes in Theoretical Computer
Science. John Wiley and Sons, 1986. Cited on page 99.

[52] Haskell B. Curry and R. Feys. Combinatory Logic, volume I. North
Holland, Amsterdam, 1958. Cited on page 22.

[53] Haskell B. Curry, J. Roger Hindley, and Jonathan P. Seldin. Combi
natory Logic, volume II. North Holland, Amsterdam, 1972. Cited on
page 22.

[54] William J. Dally and D. Scott Wills. Universal mechanisms for con
currency. In PARLE '89 [157], pages 19-33. Cited on page 7.

183

[55] Scott Danforth. DOT, a distributed operating system model of a tree
structured multiprocessor. In Howard J. Siegel and Leah Siegel, editors,
International Conference on Parallel Processing (ICPP), pages 194-
201, Columbus, OH, August 23-26, 1983. Department of Computer
and Information Sciences, Ohio State University. Cited on page 105.

[56] John Darlington and Michael J. Reeve. ALICE-a multi-processor
reduction machine for the parallel evaluation of applicative languages.
In FPCA '81 [68]. Cited on pages 7 and 45.

[57] J. W. de Bakker, A. J. Nijman, and Philip C. Treleaven, editors.
PARLE: Parallel Architectures and Languages Europe. Volume I:
Parallel Architectures. Proceedings, volume 258 of Lecture Notes in
Computer Science, Eindhoven, The Netherlands, June 15-19, 1987.
Springer-Verlag. Cited on pages 178, 181, and 193.

[58] J. W. de Bakker, A. J. Nijman, and Philip C. Treleaven, editors.
PARLE: Parallel Architectures and Languages Europe. Volume II: Par
allel Languages. Proceedings, volume 259 of Lecture Notes in Computer
Science, Eindhoven, The Netherlands, June 15-19, 1987. Springer
Verlag. Cited on pages 180 and 180.

[59] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation. Indagationes Mathematicae,
34(5):381-392, 1972. Cited on page 20.

[60] Nachum Dershowitz. Computing with rewrite systems. Information
and Control, 65(2,3):122-157, May-June, 1985. Cited on page 51.

[61] Susan Dickey, Richard Kenner, Marc Snir, and Jon Solworth. A
VLSI combining network for the NYU Ultracomputer. In Proceed
ings of the IEEE International Conference on Computer Design {ICCD
'85), pages 110-113, Port Chester, NY, October 7-10, 1985. Cited on
page 110.

[62] R. Kent Dybvig. Three Implementation Models for Scheme. Ph.D. dis
sertation, University of North Carolina at Chapel Hill, 1987. Technical
Report 87-011. Cited on pages 104 and 151.

[63] J. P. Eckert. Univac-Larc, the next step in computer design. In Pro
ceedings of the Easter Joint Computer Conference. Theme: New Devel-

184

opments in Computers, pages 16-20, New York, NY, December 10-12,
1956. Cited on page 2.

(64] Jon Fairbairn and Stuart Wray. Tim: A simple, lazy abstract machine
to execute supercombinators. In FPCA '87 (111], pages 34-45. Cited
on page 100.

(65] Joseph H. Fasel and Robert M. Keller, editors. Graph Reduction. Pro
ceedings of a Workshop, volume 279 of Lecture Notes in Computer
Science, Santa Fe, NM, September 29-0ctober 1, 1986. LANL, MCC,
Springer-Verlag. Cited on pages 179, 180, 182, 186, 190, and 199.

(66] Anthony J. Field and Peter G. Harrison. Functional Programming.
International Computer Science Series. Addison-Wesley, Reading, MA,
1988. Cited on pages 5, 98, and 99.

(67] Michael J. Flynn. Some computer organizations and their effectiveness.
Computer Journal, C-21(9):948-960, September, 1972. Cited on page 3.

(68] Proceedings of the ACM Conference on Functional Programming Lan
guages and Computer Architecture (FPCA), Portsmouth, New Hamp
shire, October 18-22, 1981. Cited on pages 182, 184, and 193.

(69] Geoffrey A. Frank. Virtual Memory Systems for Closed Applicative
Language Interpreters. Ph.D. dissertation, University of North Carolina
at Chapel Hill, 1979. Cited on pages 108, 116, and 117.

(70] Geoffrey A. Frank, William E. Siddall, and Donald F. Stanat. Virtual
memory schemes for an FFP machine. In High-Level Architecture '84
(92], pages 8.37-8.45. Cited on pages 108, 116, 116, and 117.

(71] R. E. Genner, J. L. Gustafson, and R. E. Montry. Development and
analysis of scientific applications programs on a 1024-processor hyper
cube. Technical Report 88-0317, Sandia National Laboratories, Albu
querque, NM, February, 1988. Cited on page 3.

(72] S. Gill. Parallel programming. Computer Journal, 1(1):2-10, April,
1958. Cited on page 2.

(73] John R. W. Glauert, Kevin Hammond, J. Richard Kennaway, M. Ro
nan Sleep, G. W. Somner, Nicholas P. Holt, Michael J. Reeve, and Ian
Watson. Extensions to Core Dactl 1. Technical report, Declarative

185

Systems Project, School of Information Systems, University of East
Anglia, 1987. Cited on page 51.

[74] John R. W. Glauert, Nicholas P. Holt, J. Richard Kennaway, M. J.
Reeve, and M. Ronan Sleep. An active term rewrite model for parallel
computation. Document, Alvey DACTL Group, February, 1985. Cited
on page 51.

[75] John R. W. Glauert, Nicholas P. Holt, J. Richard Kennaway, Michael J.
Reeve, M. Ronan Sleep, and Ian Watson. DACTLO: A computational
model and an associated compiler target language. Technical report,
University of East Anglia, May 7, 1985. Cited on page 51.

[76] John R. W. Glauert, J. Richard Kennaway, and M. Ronan Sleep. Cate
gorical descriptions of graph rewriting and garbage collection (in prepa
ration), 1987. Cited on page 51.

[77] John R. W. Glauert, J. Richard Kennaway, and M. Ronan Sleep.
DACTL: A computational model and compiler target language based
on graph reduction. ICL Technical Journal, 5(3):509-537, May, 1987.
Also Internal Report SYS-C87-03, Declarative Systems Project, Uni
versity of East Anglia, December 10, 1987. Cited on page 51.

[78] John R. W. Glauert, J. Richard Kennawa.y, M. Ronan Sleep, Nicholas P.
Holt, Michael J. Reeve, and Ian Watson. Specification of core Dactl
1. Internal Report SYS-C87-09, Declarative Systems Project, School of
Information Systems, University of East Anglia, March 26, 1987. Cited
on page 51.

[79] Joseph Goguen, Claude Kirchner, and Jose Meseguer. Concurrent term
rewriting as a model of computation. In Fasel and Keller [65], pages
53-93. Cited on page 119.

[80] Joseph A. Goguen and Jose Meseguer. Software for the Rewrite Rule
Machine. In ICOT '88 [107], pages 628-637. Cited on page 119.

[81] Benjamin F. Goldberg. Detecting sharing of partial applications in
functional programs. In FPCA '87 [lll], pages 408-425. Cited on
page 98.

[82] Allan Gottlieb. An overview of the NYU Ultracomputer project. In
J. J. Dongarra, editor, Experimental Parallel Computing Architectures,

186

volume 1 of Special Topics in Supercomputing, pages 25-95. North
Holland, 1987. Cited on page 110.

[83] John L. Gustafson. Reevaluating Amdahl's Law. Communications of
the ACM, 31(5):532-533, May, 1988. Cited on page 3.

[84] Dorothy Lobrano Guth, editor. Letters of E. B. White. Harper and
Row, New York, NY, 1976. Cited on page x.

[85] Robert H. Halstead, Jr. Implementation of Multilisp: Lisp on a multi
processor. In Lisp/FP '84 [138], pages 9-17. Cited on page 48.

[86] Robert H. Halstead, Jr. An assessment of MultiLisp: Lessons from
experience. International Journal of Parallel Programming, 15(6):459-
501, December, 1986. Cited on page 48.

[87] Chris L. Hankin, Peter E. Osmon, and Malcolm J. Shute. COBWEB
a combinator reduction architecture. In FPCA '85 [110], pages 99-112.
Cited on page 50.

[88] Peter G. Harrison and Hess am Khoshnevisan. Efficient compilation of
linear recursive functions into object level loops. In Proceedings of the
SIGPLAN '86 Symposium on Compiler Construction, pages 207-218,
Palo Alto, CA, June 25-27, 1986. ACM, ACM SIGPLAN. Cited on
pages 5, 7, and 45.

[89] Pieter H. Hartel. A comparative study of three garbage collection
algorithms. PRM Project Internal Report D-23, Department of Com
puter Systems, University of Amsterdam, Amsterdam, The Nether
lands, February, 1988. Cited on page 156.

[90] Peter Henderson and James H. Morris, Jr. A lazy evaluator. In 3rd
ACM Symposium on Principles of Programming Languages {POPL),
pages 95-103, Atlanta, GA, January 19-21, 1976. Cited on page 39.

[91] L. 0. Hertzberger and W[illem] G. Vree. A coarse grain parallel archi
tecture for functional languages. In PARLE '89 [157], pages 269-285.
Cited on pages 7 and 49.

[92] Proceedings of the International Workshop on High-Level Computer
Architecture 84, Los Angeles, CA, May 21-25, 1984. Department of
Computer Science, University of Maryland, College Park, MD. Cited
on pages 178, 185, and 193.

187

[93] W. Daniel Hillis. The Connection Machine. MIT Press, 1985. Cited
on pages 3, 110, and 118.

[94] W. Daniel Hillis. The Connection Machine. Scientific American,
256(6):108-115, June, 1987. Cited on page 118.

[95] W. Daniel Hillis and Guy L. Steele Jr. Data parallel algorithms. Com
munications of the ACM, 29(12):1170-1183, December, 1986. Cited on
page 118.

[96] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combina
tors and >.-Calculus, volume 1 of London Mathematical Society Student
Texts. Cambridge University Press, 1986. Cited on pages 13, 78, 82,
85, and 90.

[97] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall
International, 1985. Cited on page 3.

[98] S. Holmstrom. A simple and efficient way to handle large data struc
tures in applicative languages. In Proceedings of the Declarative Pro
gramming Workshop, pages 185-188, University College, London, April
11-13, 1983. Cited on page 118.

[99] F. Hommes. The heap/substitution concept-an implementation of
functional operations on data structures for a reduction machine. In
ISCA '82 [108], pages 248-256. Cited on page 117.

[100] F. Hommes, Werner E. Kluge, and Heinz Schliitter. A reduction
machine architecture and expression oriented editing. Technical Re
port ISF 80.04, Gesellschaft fiir Mathematik und Datenverarbeitung
(GMD), 1980. Cited on page 117.

[101] Paul Hudak and Adrienne Bloss. The aggregate update problem in
functional programming systems. In 12th A CM Symposium on Princi
ples of Programming Languages (POPL), pages 300-314, New Orleans,
LA, January 14-16, 1985. Cited on page 118.

[102] Paul Hudak and Benjamin F. Goldberg. Distributed execution of func
tional programs using serial combinators. IEEE Transactions on Com
puters, C-34(10):881-891, October, 1985. Cited on page 48.

188

[103] Paul Hudak and Benjamin F. Goldberg. Serial combinators: "optimal"
grains of parallelism. In FPCA '85 [110], pages 362~399. Cited on
page 48.

[104] Paul Hudak and Eric Mohr. Graphinators and the duality of SIMD and
MIMD. In Proceedings of the Jg88 ACM Conference on LISP and Func
tional Programming (Lisp/FP), pages 224-234, Snowbird, UT, July
25~27, 1988. Cited on pages 119 and 119.

[105] R. John M. Hughes. Super-combinators: A new implementation
method for applicative languages. In Lisp/FP '82 [137], pages 1~10.
Cited on pages 22, 26, 40, and 98.

[106] [R.] J[ohn] [M.] Hughes. Why functional programming matters. Com
puter Journal, 32(2):98~107, April, 1989. Cited on page 4.

[107] !COT '88. Proceedings of the International Conference on Fifth Gen
eration Computer Systems, Tokyo, Japan, December, 1988. Cited on
pages 186 and 192.

[108] 9th International Symposium on Computer Architecture (ISCA),
Austin, Texas, April 26~29, 1982. Cited on pages 188 and 199.

[109] 12th International Symposium on Computer Architecture (ISCA),
Boston, MA, June 17~19, 1985. Cited on pages 199 and 200.

[110] Jean-Pierre Jouannaud, editor. Functional Programming Languages
and Computer Architecture (FPCA), volume 201 of Lecture Notes in
Computer Science, Nancy, France, September 16~19, 1985. Springer
Verlag. Cited on pages 178, 187, 189, 195, and 196.

[111] Gilles Kahn, editor. Functional Programming Languages and Com
puter Architecture (FPCA), volume 274 of Lecture Notes in Computer
Science, Portland, Oregon, September 14-16, 1987. Springer-Verlag.
Cited on pages 178, 182, 185, 186, 196, and 200.

[112] Alan H. Karp. Programming for parallelism. Computer, 20(5):43~57,
May, 1987. Cited on page 2.

[113] Takuya Katayama. Treatment of big values in an applicative language
HFP. In Eiichi Go to, Koichi Furukawa, Reiji Nakajima, Ikuo Nakata,
and Akinori Yonezawa, editors, RIMS Symposia on Software Science

189

and Engineering. Proceedings, volume 147 of Lecture Notes in Com
puter Science, pages 35-48, Kyoto, Japan, October, 1982. Springer
Verlag. Cited on page 118.

[114] Robert M. Keller, Frank C. H. Lin, and Jiro Tanaka. Rediflow multi
processing. In Intellectual Leverage: The Driving Technologies. Digest
of Papers. 28th COMPCON, Spring 84, pages 410-417, San Francisco,
CA, February 27-March 1, 1984. Cited on pages 7, 45, 46, and 48.

[115] Robert M. Keller, Gary Lindstrom, and Suhas Patil. A loosely-coupled
applicative multi-processing system. In AFIPS Conference Proceedings,
1979 National Computer Conference, pages 613-622, June, 1979. Cited
on pages 47, 48, and 48.

[116] Robert M. Keller, Jon W. Slater, and Kevin T. Likes. Overview of
Rediflow II development. In Fasel and Keller [65], pages 203-214. Cited
on pages 7, 48, and 48.

[117] J. N. Kellman. Parallel execution of functional programs. Technical
Report UCLA-ENG-83-02, UCLA Computer Science Department, Los
Angeles, CA, 1983. Cited on page 106.

[118] J. Richard Kennaway. An outline of some results of Staples on op
timal reduction orders in replacement systems. Technical Report
CSA/19/1984, School of Information Systems, University of East An
glia, Norwich, England, March 20, 1984. Cited on page 94.

[119] J. Richard Kenna way. The correctness of an implementation of "func
tional" Dactl by non-atomic rewriting. Draft, Declarative Systems
Project, School of Information Systems, University of East Anglia,
June, 1987. Cited on page 51.

[120] J. Richard Kennaway. Implementing term rewrite languages in Dactl.
In M. Dauchet and Maurice Nivat, editors, CAAP '88. 13th Colloquium
on Trees in Algebra and Programming, volume 299 of Lecture Notes in
Computer Science, pages 102-116, Nancy, France, March 21-24, 1988.
Springer-Verlag. Cited on page 51.

[121] J. R[ichard] Kennaway and M. R[onan] Sleep. The 'language first'
approach. In Fred B. Chambers, David A. Duce, and Gillian P. Jones,
editors, Distributed Computing, number 20 in APIC Studies in Data

190

Processing, pages 111-124. Academic Press, London, UK, 1984. Cited
on pages 97 and 99.

[122] Richard Kennaway and Ronan Sleep. Director strings as combina
tors. ACM Transactions on Programming Languages and Systems,
10(4):602-626, October, 1988. Reviewed CR 8903-0130. Cited on
page 98.

[123] Jan Willem Klop. Term rewriting systems: A tutorial. Note CS
N8701, Centrum voor Wiskunde en Informatica (CWI), Amsterdam,
The Netherlands, May, 1987. Also in Bulletin of the EATCS, No. 32,
1987. Cited on page 51.

[124] Werner E. Kluge. The architecture of a reduction machine hardware
model. Technical Report ISF 79.03, Gesellschaft fiir Mathematik und
Datenverarbeitung (GMD), August, 1979. Cited on page 117.

[125] Werner E. Kluge. Cooperating reduction machines. IEEE Transac
tions on Computers, C-32(11):1002-1012, November, 1983. Cited on
pages 117 and 117.

[126] Werner E. Kluge and Heinz Schliitter. An architecture for direct ex
ecution of reduction languages. In Proceedings of the International
Workshop on High-Level Computer Architecture, Ft. Lauderdale, FL,
May 27-28, 1980. Cited on page 117.

[127] Philip J. Koopman, Jr. and Peter Lee. A fresh look at combinator graph
reduction (or, having a TIGRE by the tail). In SIGPLAN '89 Con
ference on Programming Language Design and Implementation, pages
110-119, Portland, OR, June 21-23, 1989. Cited on pages 50, 98, and
100.

[128] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. The power of parallel
prefix. IEEE Transactions on Computers, C-34(10):965-968, October,
1985. Cited on page 110.

[129] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. Efficient synchroniza
tion on multiprocessors with shared memory. ACM Transactions on
Programming Languages and Systems, 10(4):579-601, October, 1988.
Cited on page 110.

191

[130] P. J. Landin. The mechanical evaluation of expressions. Computer
Journal, 6(4):308-320, January, 1964. Cited on pages 6, 14, and 98.

[131] P. J. Landin. A correspondence between ALGOL 60 and Church's
lambda-notation (2 parts). Communications of the ACM, 8(2,3):89-
101,158-165, February-March, 1965. Cited on page 12.

[132] P. J. Landin. The next 700 programming languages. Communications
of the ACM, 9(3):157-166, March, 1966. Cited on page 12.

[133] Sany Leinwand and Joseph Goguen. Architectural options for the
Rewrite Rule Machine. In Lana P. Kartashev and Steven I. Kartashev,
editors, Supercomputing '87. Proceedings of the Second International
Conference on Supercomputing, volume III, pages 63-70, 1987. Cited
on page 119.

[134] Sany Leinwand and Joseph A. Goguen. A Rewrite Rule Machine: Ar
chitectural options and testbed facilities for the Rewrite Rule Machine
(final report). SRI Project ECU 1243, SRI, July, 1986. Cited on
page 119.

[135] Sany Leinwand, Joseph A. Goguen, and Timothy C. Winkler. Cell
and ensemble architecture for the Rewrite Rule Machine. In ICOT '88
[107], pages 869-878. Cited on page 119.

[136] Frank C. H. Lin and Robert M. Keller. Gradient model: A demand
driven load balancing scheme. In 6th International Conference on Dis
tributed Computing Systems (ICDCS), pages 329-336, Cambridge, MA,
May 19-23, 1986. IEEE Computer Society Press. Cited on page 48.

[137] Conference Record of the 1982 ACM Symposium on LISP and Func
tional Programming (LispjFP), Pittsburgh, PA, August 15-18, 1982.
Cited on pages 189 and 193.

[138] Conference Record of the 1984 ACJ\1 Symposium on LISP and Func
tional Programming (LispjFP), Austin, Texas, August 6-8, 1984. Cited
on pages 187 and 198.

[139] Proceedings of the 1986 ACM Conference on LISP and Functional Pro
gramming (LispjFP), Cambridge, MA, August 4-6, 1986. Cited on
pages 196, 197, and 198.

192

[140] Gyula Mag6 and David Middleton. The FFP Machine--a progress
report. In High-Level Architecture '84 [92], pages 5.13-5.25. Cited on
pages 103 and llO.

[141] Gyula A. Mag6. A network of microprocessors to execute reduction lan
guages (2 parts). International Journal of Computer and Information
Sciences, 8(5 and 6):349-385 and 435-471, 1979. Cited on pages 103
and 104.

[142] Gyula A. Mag6. Copying operands versus copying results: A solution
to the problem of large operands in FFP's. In FPCA '81 [68], pages
93-97. Cited on page ll5.

[143] Gyula A. Mag6. Data sharing in an FFP Machine. In Lisp/FP '82
[137], pages 201-207. Cited on page 116.

[144] Gyula A. Mag6. Making parallel computation simple: The FFP Ma
chine. In Technological Leverage: A Competitive Necessity. Digest of
Papers. 30th COMPCON, Spring 85, pages 424-428, San Francisco,
CA, February 25-28, 1985. Cited on pages 103 and 117.

[145] Gyula A. Mag6. Bibliography of UNC faculty and students on func
tional programming and the FFP machine, April 4, 1988. Cited on
page 104.

[146] Gyula A. Mag6 and Will[iam D.] Partain. Implementing dynamic ar
rays: A challenge for high-performance machines. In Lana P. Karta
shev and Steven I. Kartashev, editors, Supercomputing '87. Proceedings
of the Second International Conference on Supercomputing, volume I,
pages 491-493, 1987. Cited on pages 105 and 154.

[147] Gyula A. Mag6 and Donald F. Stanat. The FFP Machine. In
Veljko M. Milutinovic, editor, High-Level Language Computer Archi
tectures, pages 430-468. Computer Science Press, 1989. Cited on
pages 103, 104, 106, 109, and 125.

[148] D. L. McBurney and M. Ronan Sleep. Transputer-based experiments
with the ZAPP architecture. In PARLE '87 [57], pages 242-259. Cited
on page ll8.

[149] John McCarthy. Recursive functions of symbolic expressions and their
computation by machine. Communications of the ACM, 3(4):184-195,
April, 1960. Cited on pages 12 and 98.

193

[150] James R. McGraw and Timothy S. Axelrod. Exploiting multiproces
sors: Issues and options. In Robert G. Babb II, editor, Programming
Parallel Processors, pages 7-25. Addison-Wesley Publishing Co., Read
ing, MA, 1988. Cited on page 2.

[151] Henk Meijer and Selim G. Akl. Optimal computation of prefix sums
on a binary tree of processors. International Journal of Parallel Pro
gramming, 16(2):127-136, April, 1988. Cited on page 109.

[152] David Middleton. Alternative program representations for the FFP
Machine. In K. Waldschmidt and B. Myhrhaug, editors, Microcom
puters, Usage and Design. 11th EUROMICRO Symposium on Micro
processing and Microprogramming., pages 85-93, Brussels, Belgium,
September 3-6, 1985. Cited on pages 105 and 141.

[153] David Middleton and Bruce T. Smith. FFP machine support for lan
guage extensions. In HICSS '86 [45], pages 59-66. Cited on pages 104
and 107.

[154] G. Mitschke. Eine algebraische Behandlung von A-K-Kalkiil und
Kombinatorischer Logik. Ph.D. dissertation, Rheinischen Friedrich
Wilhelms Universitiit, Bonn, W. Germany, 1970. Cited on page 98.

[155] Gop alan N a.dathur and Bha.ra.t J aya.ra.man. Towards a. WAM model
for lambda. Prolog. Submitted for publication, March, 1989. Cited on
page 90.

[156] Ma.sa.yuki Numa.o and Masamichi Shimura.. Evaluation of graph repre
sentations with active nodes. In Eiichi Goto, Keijiro Araki, and Taiichi
Yua.sa., editors, RIMS Symposia on Software Science and Engineering
II. Proceedings of the Symposia 1983 and 1984, volume 220 of Lec
ture Notes in Computer Science, pages 17-43, Kyoto, Japan, 1984.
Springer-Verlag. Cited on page 50.

[157] Eddy Odijk, Martin Rem, and Jean-Claude Syre, editors. PARLE '89:
Parallel Architectures and Languages Europe. Volume I: Parallel Ar
chitectures. Proceedings, volume 365 of Lecture Notes in Computer Sci
ence, Eindhoven, The Netherlands, June 12-16, 1989. Springer-Verlag.
Cited on pages 178, 182, 183, 183, 187, and 196.

194

[158] John O'Donnell. Supporting functional and logic programming lan
guages through a data parallel VLSI architecture. In Jose G. Delgado
Frias and Will R. Moore, editors, VLSI for Artificial Intelligence (Pro
ceedings of an International Workshop), pages 49-60, Oxford, England,
July, 1988. Kluwer Academic Publishers. Cited on page 118.

[159] John T. O'Donnell. An architecture that efficiently updates associative
aggregates in applicative programming languages. In FPCA '85 [110],
pages 164-189. Cited on page 118.

[160] John T. O'Donnell, Timothy Bridges, and Sidney W. Kitchel. A VLSI
implementation of an architecture for applicative programming. Future
Generations Computing Systems, 4(3):245-254, October, 1988. Cited
on page 118.

[161] Michael J. O'Donnell. Equational Logic as a Programming Language.
MIT Press, Cambridge, MA, 1985. Cited on page 96.

[162] Michael J. O'Donnell and Robert I. Strandh. Toward a fully parallel
implementation of the lambda calculus. Technical Report JHU /EECS-
84/13, Johns Hopkins University, 1984. Cited on page 96.

[163] Rex L. Page and Linda S. Barasch. Parallel computation, functional
programming, and Fortran 8x. In Michael T. Heath, editor, Hypercube
Multiprocessors, 1986: Proceedings of the 2nd Conference on Hyper
cube Multiprocessors, pages 57-69, Knoxville, TN, August 26-27, 1985.
SIAM.

[164] G. W. Petznick. Combinatory Programming. Ph.D. dissertation, Uni
versity of Wisconsin, Madison, WI, 1970. Cited on page 22.

[165] Simon L. Peyton Jones. The Implementation of Functional Program
ming Languages. Prentice-Hall, 1987. Cited on pages 6, 16, 18, 18, 19,
19, 38, 42, 49, 148, 153, 158, 162, and 164.

[166] Simon L. Peyton Jones. FLIC-a functional language intermediate
code. ACM SIGPLAN Notices, 23(8):30-48, August, 1988. Cited on
page 51.

[167] S[imon] L. Peyton Jones. Parallel implementations of functional pro
gramming languages. Computer Journal, 32(2):175-186, April, 1989.
Cited on pages 49 and 49.

195

[168] Simon L. Peyton Jones, Chris Clack, and Jon Salkild. High-
performance parallel graph reduction. In PARLE '89 [157], pages 193-
206. Cited on page 48.

[169] Simon L. Peyton Jones, Chris Clack, Jon Salkild, and Mark Hardie.
GRIP-a high performance architecture for parallel graph reduction.
In FPCA '87 [111], pages 98-112. Cited on page 48.

[170] David A. Plaisted. An architecture for fast data movement in the FFP
Machine. In FPCA '85 [110], pages 147-163. Cited on pages 106 and
151.

[171] David A. Plaisted. An architecture for functional programming and
term rewriting. In J. Vivian Woods, editor, Fifth Generation Computer
Architectures. Proceedings of the IFIP TC 10 Working Conference on
Fifth Generation Computer Architectures, pages 221-234, Manchester,
U.K., July 15-18, 1985. North-Holland. Cited on pages 8, 119, 151,
and 151.

[172] Jerry L. Potter, editor. The Massively Parallel Computer. MIT Press,
Cambridge, MA, 1985. Cited on page 3.

[173] John D. Ramsdell. The CURRY chip. In Lisp/FP '86 [139], pages
122-131. Cited on page 50.

[17 4] Gyiirgy Revesz. Axioms for the theory of lambda-conversion. SIAM
Journal on Computing, 14(2):373-382, May, 1985. Cited on pages 21,
94, 96, and 97.

[175] Gyiirgy E. Revesz. An extension of lambda-calculus for' functional
programming. Journal of Logic Programming, 1(3):241-251, October,
1984. Cited on page 97.

[176] G[yiirgy] E. Revesz. Lambda-Calculus, Combinators, and Functional
Programming, volume 4 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1988. Cited on pages 94, 96, 97,
97, and 156.

[177] Gyiirgy E. Revesz. Parallel graph-reduction with a shared memory
multiprocessor system. Technical report, IBM T. J. Watson Research
Center, Yorktown Heights, NY, 1988. Cited on page 97.

196

[178] Barry K. Rosen. Tree-manipulating systems and Church-Rosser the
orems. Journal of the ACM, 20(1):160-187, January, 1973. Cited on
page 98.

[.179] Mark Scheevel. NORMA: A graph reduction processor. In Lisp/FP
'86 [139], pages 212-219. Cited on page 50.

[180] Heinz Schliitter. Investigations into the Foundations of Functional Pro
gramming and an Implementation of Existential Quantification on a
Lambda Calculus Based Reduction Machine. Ph.D. dissertation, CASE
Center, Syracuse University, Syracuse, NY, May, 1987. Available in re
vised form as CASE Center Technical Report No. 8714 (August 1987).
Cited on page 42.

[181] Claudia Schmittgen. A data type architecture for reduction machines.
In HICSS '86 (45], pages 78-87. Cited on page 117.

[182] Dana S. Scott and Christopher Strachey. Toward a mathematical se
mantics for computer languages. In Proceedings of the Symposium on
Computers and Automata, 21, pages 19-46, Polytechnic Institute of
Brooklyn, 1971. Also report PRG-6, Oxford University Computing
Laboratory. Cited on page 12.

(183] Raj K. Singh and Vernon L. Chi. The design of a memory manage
ment subsystem for the FFP Machine. Technical Report TR 89-017,
University of North Carolina at Chapel Hill, May 1, 1989. Version 1.0.
Cited on page 105.

[184] M. Ronan Sleep and J. Richard Kennaway. The zero assignment par
allel processor (ZAPP) project. In David A. Duce, editor, Distributed
Computing Systems Programme, volume 5 of lEE Digital Electronics
and Computing Series, pages 250-269. Peter Peregrinus Ltd., 1984.
Cited on page 118.

[185] Bruce T. Smith. Logic programming on an FFP Machine. In 1984
International Symposium on Logic Programming (SLP), pages 177-
186, Atlantic City, NJ, February 6-9, 1984. IEEE Computer Society
Press. Cited on page 104.

[186] Bruce T. Smith. Logic Programming on an FFP Machine. Ph.D. dis
sertation, University of North Carolina at Chapel Hill, 1989. In prepa
ration. Cited on pages 104 and 108.

197

[187] Bruce T. Smith and David Middleton. Exploiting fine-grained paral
lelism in production systems. In R. Goebel, editor, Proceedings of the
7th Biennial Conference of the Canadian Society for Computational
Studies of Intelligence, pages 262-270, Edmonton, Alberta, June 6-10,
1988. Cited on pages 104 and 107.

[188] John Staples. A class of replacement systems with simple optimality
theory. Bulletin of the Australian Mathematical Society, 17(3):335-350,
1977. Cited on page 94.

[189] John Staples. Optimal reduction in replacement systems. Bulletin of
the Australian Mathematical Society, 16(3):341-349, 1977. Cited on
page 94.

[190] John Staples. A graph-like lambda calculus for which leftmost
outermost evaluation is optimal. In Volker Claus, Hartmut Ehrig,
and Grzegorz Rozenberg, editors, Graph-Grammars and their Appli
cation to Computer Science and Biology, volume 73 of Lecture Notes
in Computer Science, pages 440-454, Bad Ronne£, W. Germany, Octo
ber 30-November 3, 1978. Springer-Verlag. Cited on pages 94, 94, 94,
96, and 98.

[191] John Staples. A lambda calculus with naive substitution. Journal of
the Australian Mathematical Society (Series A), 28(Part 3):269-282,
November, 1979. Cited on page 22.

[192] John Staples. Computation on graph-like expressions. Theoretical
Computer Science, 10(2):171-185, February, 1980. Cited on page 94.

[193] John Staples. Optimal evaluations of graph-like expressions. Theoreti
cal Computer Science, 10(3):297-316, March, 1980. Cited on page 94.

[194] John Staples. Speeding up subtree replacement systems. Theoretical
Computer Science, 11(1):39-47, May, 1980. Cited on page 94.

[195] Guy L. Steele Jr. and W. Daniel Hillis. Connection Machine LISP:
Fine-grained parallel symbolic processing. In Lisp /FP '86 [139], pages
279-297. Cited on page 118.

[196] W. R. Stoye, T. J. Clarke, and A. C. Norman. Some practical methods
for rapid combinator reduction. In Lisp/FP '84 [138], pages 197-204.
Cited on page 50.

198

[197] Kenneth R. Traub. An abstract parallel graph reduction machine. In
ISCA '85 [109], pages 333-341. Cited on page 50.

[198] Philip C. Treleaven and Richard P. Hopkins. A recursive computer for
VLSI. In ISCA '82 [108], pages 229-238. Cited on page 118.

[199] David A. Turner. A new implementation technique for applicative
languages. Software-Practice and Experience, pages 31--49, January,
1979. Cited on pages 22, 98, and 119.

[200] W[illem] G. Vree. Experiments with coarse-grain parallel graph reduc
tion. Future Generations Computing Systems, 4(4):299-306, March,
1989. Cited on pages 49 and 49.

[201] Christopher P. Wadsworth. Semantics and Pragmatics of the Lambda
Calculus. D. Phil. thesis, University of Oxford, September 1, 1971.
Cited on pages 6, 9, 12, 19, 25, 31, 31, 42, 42, 54, and 92.

[202] Ian Watson, John Sargeant, Paul Watson, and J. Vivian Woods. The
cost of parallel graph reduction (draft). FLAGSHIP Project internal
report, 1987. Cited on page 46.

[203] Ian Watson, John Sargeant, Paul Watson, and Viv Woods. Flagship
computational models and machine architecture. Technical report,
Dept. of Computer Science, University of Manchester, 1986. Cited
on page 47.

[204] Ian Watson and Paul Watson. Graph reduction in a parallel virtual
memory environment. In Fasel and Keller [65], pages 265-274. Cited
on pages 47, 47, and 50.

[205] Ian Watson, Viv Woods, Paul Watson, Richard Banach, Mark Green
berg, and John Sargeant. Flagship: A parallel architecture for declar
ative programming. In 15th International Symposium on Computer
Architecture (ISCA), pages 124-130, Honolulu, HI, May 30-June 3,
1988. Cited on pages 45, 46, and 46.

[206] Paul Watson. Parallel Reduction of Lambda Calculus Expressions.
Ph.D. dissertation, University of Manchester, Manchester, England,
1986. Cited on pages 46, 99, and 156.

199

[207] Paul Watson and Nicholas P. Holt. Extended graph reduction as a
general purpose parallel computation model (issue no. 1). Flagship
Project Internal Report FS/MU JPW /024-88, University of Manch
ester, Manchester, England, November 1, 1988. Submitted to PARLE
89. Cited on page 47.

[208] Paul Watson and Ian Watson. Evaluating functional programs on
the FLAGSHIP machine. In FPCA '87 [111], pages 80-97. Cited on
pages 46 and 46.

[209] Peter Wegner. Programming Languages, Information Structures, and
Machine Organization. McGraw-Hill, 1968. Cited on page 6.

[210] Colin Whitby-Strevens. The transputer. In ISCA '85 [109], pages 292-
300. Cited on pages 3 and 49.

[211] A. Wikstroom. Functional Programming Using Standard ML. Prentice
Hall International, Englewood Cliffs, NJ, 1988. Cited on page 166.

[212] Wayne T. Wilner. Recursive machines. Internal report, Xerox PARC,
1980. Cited on page 118.

[213] John M. Wozencraft and Arthur Evans, Jr. Notes on programming
linguistics. Class notes for MIT EE course 6.231, Programming Lin
guistics, July, 1969. Cited on page 28.

200

Index

Entries in a sans serif font refer to functions in the ML programs; a page
number in italics says where the function is defined. Authors of cited works
may be traced through the bibliography.

AAL, see absolute application level
ABL, see absolute binding level
absolute application level, see also

level numbers
absolute binding level, see also le

vel numbers
absolute index, see also level num

bers
absolute nesting level, see also le-

vel numbers
abstractions, 13
active 1-segments, 107
AIX, see absolute index
a-conversion, 16
ANL, see absolute nesting level
application level, see also level num-

bers
applications, 14
applicative-order evaluation, 19
archetypal problem, 9
associative matching, 125

backpointers, 34

$-conversion, 16
,8-expansion, 16
,8-normal form, 17
$-reduction, 15

201

,B, rule, 63
,8,-reduction, 63
bidx_to_bndriDs_T, 67, 177
binder-IDs, 34

binders, 13
scope, 13

binding index, 20
binding level, see also level num-

bers
binding path, 14
bndriDs_to_bidx, 67, 177
BNF, see ,8-normal form
body

A-abstraction, 13
suspension, 58

bound variables, 13

chg_bndriDs, 41, 177
chk_vars, 61, 72, 79, 168, 169, 170,

172
closure-based reduction, 100
closures, 98
colored parentheses, see FFP Ma-

chine (partitioning)
combinators, 22
computation sharing, 27
computational models, 7

constants, 14
conversion, 16
copymg

necessary, 27
speculative, 27
unnecessary, 27

cumulative-sum operations, see FFP
Machine (scan operations)

data parallelism, 3
de Bruijn numbers, see variables

(binding index)
director strings, 99
Dix, Dorothea Lynde, iv
dynamic arrays, 105

eager evaluation, 19
environments, 98
Erskine, John, of Garnock, 53
71-conversion, 16
71-expansion, 16
71-reduction, 16
evai_BNF, 19, 22, 25, 70, 74
evaLLF, 22, 25, 69, 74
EvaLWBNF, 22
evaLWBNF, 25, 54
evaluation orders, 17

innermost spine reduction, 164
normal order, 5, 17
safe, 18, 19
unsafe, 19

expansion, 16
exponential blow-up, 28
extensionality, 16

FFP Machine
communication

broadcasting, 108
message wave, 108
sorting, 108

202

dynamic arrays, 105
global networks, 106
1-segments, 106

active, 107
reduction routines, 105
scan operations, 109
selectors, 113
storage management, 105

FFPM, see FFP Machine
fixed-program machines, 6
Follow*fill pointers, 126
free variables, 14
fully lazy copying, 38
functional programming, 4

g-connections, 34
GAM, see global addressable mem

ory
Gnode, 33, 166
graph reduction

parallel, 7
graph rewriting, 51
graph2term T, 35, 67, 177

head-normal form, 18
higher-order functions, 4
HNF, see head-normal form

implicit parallelism, 6
incr...bd_vars, 88, 171
incdree_vars1, 23, 25, 72, 171, 172
incdree_vars2, 62, 79, 88, 171
incuefcnt, 36, 67, 175, 176
incr_var_range, 171
index, see also level numbers
indirection nodes, 34
is...app, 169
is_bd_follow_fiiLptr, 72, 172
is_bd_follow_ptr, 72, 172
is_bd_var _or _ptr, 61, 79, 172

is_higher_up_follow_ptr, 72, 172
isJam, 169
is_ptr, 61, 169
is_weiUormed, 57, 61, 61

Jeeves, Reginald, 163

1-array, 104
1-segments, 106
.\-abstractions, 13
.\-applications, 14
.\-calculus, 5, 12
lambda form, 19
.\-terms

abstractions, 13
applications, 14
binders, 13
bound variables, 13
combinators, 22
constants, 14
free variables, 14
supercombinators, 22
variables, 13

.\-trees, 14

.\-application lists, 155

.\-calculus rules
a-conversion, 16
,8-conversion, 16
,8-expansion, 16
,8-reduction, 15
1)-Conversion, 16
1)-expansion, 16
1)-reduction, 16

[.\-up] rule, 82
Au-equivalence, 34
.Au-interpreter, 31
.A.-interpreter, 53
.A.-interpreter, 53.
.A.-pointers, 58
.A.-terms, 58

203

A8u-equivalence, 63
.\,-equivalence, 21
last-instance relocation, 75
lazy copying, 38
lazy evaluation, 4, 18
lazy_copy, 32, 35, 36, 40, 41, 76
level numbers, 110

absolute, 111
application, 112
binding, 112
indices, 110, 111
nesting, 111
relative, 111

1F, see lambda form
linear expansion, 61

maximal free expressions, 38
message wave, 108
MFE, see maximal free expressions
mk_graph_visited, 37, 175, 176
mod_vars, 72, 168~170, 171, 172,

173

name capture, 20
name-free .\-calculus, 14
necessary copying, 27
nesting level, see also level num

bers
nexLID, 67, 177
normal forms

,8-normal form, 17
head-normal form, 18
root-lambda form, 19, 74
weak ,8-normal form, 19
weak head-normal form, 19

normal-order evaluation, 5, 17

onestepG, 32, 35, 36, 54, 64, 66
onestepS, 54, 57, 63, 71, 72, 74, 161
onestepT, 22, 23, 54, 66

parallel-prefix operations, see FFP
Machine (scan operations)

parse tree, 6
plain nodes, 34, 57
plain_equivs, 21, 23
pointee, 58
pointers, 27, 58
ptrize_bd_vars, 72, 173

RAL, see relative application level
rand, 14
rator, 14
RBL, see relative binding level
recurring example, 22, 40, 90, 138
reduction, 5
reduction routines, 105
reduction rules, 5
reentrant machines, 6
relative application level, see also

level numbers
relative binding level, see also level

numbers
relative index, see also level num

bers
relative nesting level, see also level

numbers
RIX, see relative index
RLF, see root-lambda form
rm_indir _nodes, 32, 78, 176
RNL, see relative nesting level
root path, 14
root-lambda form, 19, 74

s-connection, downward, 86
s-connection, upward, 85
s-connections, 62
safe evaluation orders, 19
scans, 109, see FFP Machine (scan

operations)
scope of a binder, 13

204

selectors, 113
set..subbed, 36, 67, 175
SFE, see substituted free expres

stons
sg-connections, 62
sharing, 9

computation, 27
space, 27
trivial, 27

sharing analysis, 98
space sharing, 27
speculative copying, 27
spine of a .\-tree, 18
std..subst, 23, 25, 62, 88, 172
storage management, see FFP Ma-

chine (storage management)
subst, 72, 169, 172
substG, 32, 35, 36, 37, 67
substituted free expressions, 39
subterms, 13
supercombinators, 22
suspension lists, 154
suspension pointee, 58
suspensions, 58
swapJevs, 88, 173

task hints, 126
Term, 59, 166
term rewriting, 51
term2graph, 66, 67, 177
term2term T, 61, 62
tidying, 86

local, 130
nonlocal, 130

tidying rules, 78
tidyterm, 57, 87, 88, 173
toplevG, 32, 32, 35
toplevS, 57, 57
trashpickup, 57, 79, 79, 87

tree reduction, 106
trivial sharing, 27
trivial suspensions, 80

unnecessary copying, 27
unsafe evaluation orders, 19

variables, 13
binding index, 20
binding path, 14
name capture, 20
renaming, 16, 20
root path, 14

WBNF, see weak fJ-normal form
weak beta-normal form, 19
weak head-normal form, 19
WHNF, see weak head-normal form

xapping, 118

205

