
IlataStructures

7 ± 2 criteria for assessing and comparing spatial data
structures

Jurg Nievergelt
ETH Zurich and UNC at Chapel Hill

Abstract

Spatial data structures have evolved under the influence of several forces: 1)
Database technology, with its emphasis on modeling and logical organization;
2) the long history of data structures developed in response to requirements
from other applications; and 3) the recent rapid progress in computational
geometry, which has identified typical queries and access patterns to spatial
data. Rather than attempting a comprehensive survey of many spatial data
structures recently developed, we aim to identify the key issues that have
created them, their common characteristics, the requirements they have to meet,
and the criteria for assessing how well these requirements are met. As a
guideline for tackling these general goals, we begin with a brief history and
recall how past requirements from other applications have shaped the
development of data structures. Starting from the very early days, five major
types of applications generated most of the known data structures. But the
requirements of these applications do not include one that is basic to spatial data:
That objects are embedded in Euclidian space, and access is mostly determined
by location in space.

We present_s~~.fill~@y g~w~tri~ !~uirements spati_al data structures must
!!_~~ess. Sections 3, 4, 5 discuss the mostly j1iUii;._ll_sp~C~§. of how space is
organized, and how objects are represented and embedded in space. Sections 6,
7, 8 consider the ~aiiJlQ. asp~_cts .. of how objects are processed. We
differentiate three types of processing, of increasing complexity, that call for
different solutions: common geometric transformations such as translation and
rotation; {>roximity search, aria traversal __ .of the object by different types of
algorithmf.'l'ogether with the general requirement of effective implementability,
we propose these seven criteria as a profile for assessing spatial data structures.
This survey leads us to two main conclusions: 1) That the current emphasis on
comparative search trees is perhaps unduly influenced by the great success
balanced trees enjoyed as a solution to the requirements of older applications
that rely on single-key access, and 2) that spatial data structures are increasingly
of the 'metric' type based on radix partitions of space.

Affiliation of author: Jurg Nievergelt Gn@inf.ethz.ch, jn@cs.unc.edu)
Informatik, ETH, CH-8092 Zurich, Switzerland and
Dept. Computer Sci., Univ. of North Carolina, Chapel Hill, NC 27514, USA

4

Contents

1 The problem
1.1 The conventional data base approach to "non-standard" data
1. 2 Geometric modeling separated from storage considerations
1.3 Structures for spatial data bases
2 The development of data structures: Requirements drive design
2.1 Scientific computation: Static data sets
2.2 Batch processing of commercial data: Single key access to dynamic sets
2.3 Interactive transaction processing: Multikey access to dynamic sets
2.4 Knowledge representation: Associative recall in random nets
2.5 Spatial data management: Proximity access to objects embedded in space
3 Representation of space
3.1 Space partitioning and cell addressing
3.2 Radix trees in various dimensions: quadtrees, oct-trees, rd-trees. Grid File
3.3 Space partitions induced by comparative search trees. Load balancing
3.4 Constrained space partitions: BSP trees, Octet
4 Representing a useful class of objects
4.1 Geometric modeling: CSG, boundary and sweep representations
4.2 Hierarchical approximations
4.3 Object specification by means of parameters
5 A scheme for embedding objects in space
5.1 Anchors: representative points or vectors
5.2 Mark inhabited space
5.3 Transformation to parameter space
6 Support for geometric transformations
7 Proximity search: simplify complex objects to access disk sparingly
8 Support data access patterns of typical geometric algorithms
9 Implementation: Reconcile conceptual simplicity and efficiency

5

1 The problem

1.1 The conventional data base approach to "non-standard" data

Data base technology developed over the past two decades in response to the
needs of commercial data processing, characterized by large, record-oriented,
fairly homogeneous data sets, mostly retrieved in response to relatively simple
queries: Point queries that ask for the presence or absence of a particular record,
interval or range queries that ask for all records whose attribute values lie within
given lower and upper bounds. But today, data base research and practice are
increasingly concerned with other applications, such as real-time control,
hypertext and multimedia. Collectively lumped into the amorphous pool of
"non-standard" applications, they confront data base research with new
requirements that stretch conventional technology to its limits, and beyond.
Among these new applications, none is more important or imposes more
stringent new requirements than the management of spatial data, as used in
graphics, computer-aided design (CAD), and geographical data bases.

Spatial daia lends itself naturally to geometric computation, a topic that has
progressed very rapidly in recent years. Thus it is understandable that data base
software has yet to take into account the specific requirements and results of
geometric computation. Geometric objects are lumped into the amorphous pool
of non-standard data, often ignoring any specific properties they might have.
But in fact geometric problems possess a great deal of structure to be exploited
by efficient algorithms and data structures. This is due primarily to the fact that
geometric objects are embedded in space, and are typically accessed through
their position in space (as opposed to access by means of identifiers or other
non-spatial attributes). Let us begin with a plausible example of how geometry
is often introduced as an afterthought to other properties.

1.2 Geometric modeling separated from storage considerations

In this early stage of development of geometric data base technology, we cannot
afford to focus on modeling to the exclusion of implementation aspects. In
graphics and CAD the real issue is efficiency: 1/10-th of a second is the limit of
human time resolution, and a designer works at maximal efficiency when
"trivial" requests are displayed "instantaneously". This allows a couple of disk
accesses only, which means that geometric and other spatial attributes must be
part of the retrieval mechanism if common geometric queries (intersection,
inclusion, point queries) are to be handled efficiently.

The sharp distinction between the logical view presented to the user and the
physical aspects that the implementor sees has been possible in conventional
data base applications because data structures that allow efficient handling of

6

point sets are well understood. The same distinction is premature for geometric
data bases: in interactive applications such as CAD efficiency is today's
bottleneck, and until we understand geometric storage techniques better we may
not be able to afford the luxury of studying geometric modeling divorced from
physical storage. Consider the frequent example where a spatial object is
represented (or approximated) as the union of a set of disjoint tetrahedra. If the
latter are stored in a relational data base by using the boundary representation
(BR) approach, a tetrahedron t is given by its faces, a face f by its bounding
edges, an edge e by its endpoints p and q. Four relations tetrahedra, faces,
edges and points might have the following tuple structure:

- tetrahedra: a pair(~, fk) identifies a tetrahedron~ and one of its faces fk.
-faces : a pair (fk, ej) identifies a face fk and one of its edges ej.
-edges: a triple (ej, Pm• Pn) identifies an edge ej and its two points Pm and Pn·
-points: a tuple (pn, x, y, z) identifies a point and its coordinates x, y, z.

This representation smashes as simple an object as a tetrahedron into parts
spread over different relations and therefore over the storage medium. The
question whether a tetrahedron t intersects a given line L is answered by
intersecting each of its faces fk with L. If the tuple (~, fk) in the relation
tetrahedra contains the equation of the corresponding plane, the intersection
point of the plane and the line L can be computed without accessing other
relations. But in order to determine whether this intersection point lies inside or
outside the face fk requires accessing tuples of edges and points, i.e. accessing
different blocks of storage, resulting in many more disk accesses than the
geometric problem requires.

Efficiency requires, at least, retrieving as a unit all the data that defines a basic
volume element such as a tetrahedron. In addition, we can use geometric
properties to design representations that answer certain proximity queries more
efficiently, for example by representing an primitive object by a suitable chosen
set of parameters. A tetrahedron can be defined by 12 parameters in many
useful ways: 4 vertices of 3 coordinates each, or 4 faces, each of whose
equations has 3 coefficients; or as the minimal containing sphere (4 parameters)
and 4 vertices that lie on the surface of the sphere, each one given by 2 spherical
coordinates. The 4-parameter sphere serves as a simple container to provide a
negative answer to many intersection queries more efficiently than the
12-parameter tetrahedron can. If we represent a more complex polyhedron as a
union of tetrahedra, the latter can often be ordered so as to support efficient
processing (for example through hierarchical decomposition in the case of a
convex solid). The point of these examples is that, if geometric objects are
merely considered to be logical entities, we fail to take advantage of the rich
structure of geometry, with grievous consequences for efficiency.

7

1.3 Structures for spatial data bases

In recognition of the fact that modeling is only the peripheral part of spatial data
management, and physical storage is the key to efficiency, many data
structures, old and new, have been studied in conjunction with computational
geometry and CAD: [EL 80] is a comprehensive bibliography, [Me 84], [Gun
88], and [Sa 89] are survey books. The majority of these are variations and
combinations of a few themes: Mostly, multidimensional trees based on
comparative search, used to organize different types of objects such as points,
intervals, segments, or rectangles. A smaller number of structures, such as
quad trees and oct-trees, is based on hierarchical radix partitions of space.

Recent years have seen intense efforts in studying spatial data structures, and
many new have been developed (for example [Gut 84], [SRF 87], [SK 88],
[HSW 89]). Rather than attempting a comprehensive survey of many spatial
data structures recently developed, I aim to identify the key issues that have
created them, their common characteristics, the requirements they have to meet,
and the criteria for assessing how well these requirements are met. As a
~Jideline for tackling this more general endeav·or, let us begin with a brief
history and recall how past requirements from other applications have shaped
the development of data structures. Starting from the very early days, the
following sections summarize f~y~ type,s of applic~t!<ms whose specific
requirements led to most of the known data structures. This survey leads us to
two main conclusion~,; 1) That the current emphasis on comparative search trees
is perliaps\ii1diiT.f influenced by the great success balanced trees enjoyed as a
solution to the requirements of older applications that rely on single-key access,
and 2) that spatial data structures are increasingly of the 'metric' type based on
radix partitions of space.

2 The development of data structures:
Requirements drive design

2.1 Scientific computation: Static data sets

Numerical computation in science and engineering mostly leads to linear algebra
and hence matrix computations. Matrices are static data sets: The values change,
but the shape and size of a matriX"" rarely does - this is true even for most sparse
matrices, such as band matrices, where the propagation of nonzero elements is
bounded. Arrays were Goldstine and von Neumann's answer to the
requirement of random access, as described in their venerable 1947 report
"Planning and coding of problems for an electronic computing instrument".
FORTRAN '54 supported arrays and sequential files, but no other data

8

structures, with statements such as DIMENSION, READ TAPE, REWIND,
and BACKSPACE.

Table look-up was also solved early through hash,,!pg. J'he software pioneers of
the first decade did not look beyond address computation because memories
were so small that any structure that "wastes" space on pointers was considered
a luxury. Memories of a few K words restricted them to using only the very
simplest of data structures, and the limited class of problems dealt with let them
get away with it. The discipline of data structures had not yet been born.

2.2 Batch processing of commercial data:
Single key access to dynamic sets

This application led to the most prolific phase in the development of data
structures, comprehensively presented in Knuth's pioneering books on "The
Art of Computer Programming" [K 68, 73]. Commercial dat(l processing
brought an entirely different set of requirements for managing data typically
organized according to a single key, the 'primary key'. When updating an
ordered master file with unordered transaction files, sorting and merging
algorithms determine data access patterns. The emergence of disk drives
extended the challenge of data structure design to secondary storage devices.
Bridging the 'memory-speed gap' became the dominant practical problem.
Central memory and disk both look like random access devices, but they differ
in the order of magnitude of two key parameters:

Access time (seconds):
Size of transfer unit (bits):

Memory
10-6

10-102

Disk
10-2- 10-1

lo4

Ratio
lo4- 105
103-102

Whereas technology, time- and space-parameters have changed a lot, the ratios
have hardly changed. This speed gap of 4 orders of magnitude makes the
number of disk accesses the most relevant performance parameter of data
structures. Many data structures make effective use of central memory, but disk
forces us to be more selective; in particular, to avoid following pointer chains
that cross disk block boundaries. The game in designing data structures suitable
for disk has two main rules: the easy one is to use a small amount of central
memory effectively to describe the current allocation of data on disk, for rapid
retrieval; the hard one is to ensure that this scheme adapts gracefully to the ever­
changing content of the file.

__ Index-sequential access methods (ISAM) order records according to a single
key so that a small directory, preferably kept in central memory, ideally directs
any point query to the correct data bucket where the corresponding record is
stored, if it is present at all. But the task of maintaining this single-disk-access

9

performance in a dynamic file, under insertions and deletions, is far from
trivial. The first widely used idea splits storage into two areas, a primary and an
overflow area. It suffers from several defects, by now well-known: 1) Once the
primary area has been allocated, it is not easily extended, even if there is space
on disk, as an extension may force data to be moved between many buckets.
2) Insertions or deletions of real data are usually biased (non-uniformly
distributed and dependent), so some primary buckets will become the heads of
long overflow chains, and others may become sparsely populated. The former
degrades access time, the latter storage utilization. Many studies have reached
the conclusion that ISAM with overflow works effectively only as long as the
amount of data in the overflow area is below about 20%. With the high rate of
change typical of transaction processing, this bound is reached quickly, causing
frequent reorganization of the entire file.

Balanced trees of any kind [e.g. AL 62, BM 72, and many others] provided a
onniarit solution to the problem of 'maintaining large ordered indexes' without
degradation: Frequent small rebalancing operations that work in logarithmic
time eliminate the need for periodic reorganization of the entire file. Trees based
on comparative search derive their strength from the ease of modifying list
structures in central memory. They have been so successful that we tend to
apply and generalize them beyond their natural limitations. In addition to
concerns about the suitability of comparative search trees for multikey access,
discussed in the next section, these limitations include [Ni 81]:
1) The number of disk accesses gl-ows with the height of the tree. The fan-out
from a nooe~"or from a page containing many nodes, varies significantly. (from
dozens to hundreds) depending on page size, on page occupancy, and on the
space required to store a key. For files containing HP records, the tree may well
have more than 2 or 3 levels, making the goal of "instantaneous" retrieval
impossible.
2)~Concurrency. Every node in a tree is the sole entry point to the entire subtree
rooted at that node, and thus a bottleneck for concurrent processes that pass
through it, even if they access different leaves (physical storage units). Early
papers (e.g. [BS 77, KL 80) showed that concurrent access to trees
implemented as lists requires elaborate protocols to insure integrity of the data.

2.3 Interactive transaction processing:
Multikey access to dynamic sets

Whereas single-key access may suffice for batch processing, transaction
processing, as used in a reservations or banking system, calls for for multikey
access (by name, date, location, ..). The simplest ideas were tried first.
Inverted files try to salvage single-key structures by ordering data according to a
'primary key', and 'inverting' the resulting file with respect to all other keys,
called 'secondary'. Whereas the primary directory is compact as in ISAM, the

10

secondary directories are voluminous: Typically, each one has an entry for
every record. Just updating the directories makes insertions and deletions time­
consuming.

Comparative search trees enhanced ISAM by eliminating the need for overflow
chains, so it was natural to generalize them to.multikey access and improve on
inverted files. This is easy enough, as first shown by k_.d tre~s[Be 751: But the
resulting multi-key structures are neither as elegant nor as efficient as in the
. single-key case. The main hindrance is that no total" 9r4er can be imposed on
multidimensional space without destroying some proximity relationships. As a
consequence, the simple rebalancing operations that work for single-key trees
fail, and rebalancing algorithms must resort to more complicated and less
efficient techniques, such as general dynamization [Wi 78, Ov 81].

Variations and improvements on multidimensional comparative search trees
continue to appear [e.g. LS 89]. Their main virtue, acceptable worst case
bounds, comes from the fact that they partition the actual data to be stored into
(nearly) equal parts. The other side of this coin is that data is partitioned
regardless of where in space it is located. Thus the resulting space partitions
exhibit no regularity, in marked contrast to radix partitions that organize space
into cells of predetermined size and location.

2.4 Knowledge representation: Associative recall in random nets

There is a class of applications where data is most naturally thought of as a
graph, or network, with nodes corresponding to entities and arcs to
relationships among these. Library catalogs in information retrieval, hypertexts
with their many links, semantic nets in artificial intelligence are examples. The
characteristic access pattern is 'browsing': A probe into the net followed by a
walk to adjacent nodes. Typically, a node is not accessed because of any
inherent characteristic, but because it is associated with (linked to) a node
currently being visited. The requirements posed by this type of problem
triggered the development of list processing techniques and list processing
languages.

These graphs look arbitrary, and the access patterns look like random walks -
neither exhibit any regular structure to be exploited. The general list structures
designed for these applications have not evolved much since list processing was
created, at least not when compared to the other data structures discussed. The
resulting lack of sophisticated data structures for processing data collections
linked as arbitrary graphs reminds us that efficient algorithms and data
structures are always tailored to specific properties to be exploited. The next
application shows such a special case.

11

2.5 Spatial data management:
Proximity access to objects embedded in space

1]1.!~~-k~y- chwacteristis~ distinguish spatial data management from the other
four applications described:
l) Data represents objects embedded in some d-dimensional Euclidian space Rd.
2) These objects are mostly accessed through their location in space, in
response to a proximity query such as intersection or containment in some
query region.
3) A typical spatial object has a significantly more complex structure than a
'record' in the other applications mentioned.
Although other applications share some of these characteristics to a small extent,
in no other do they play a comparably important role. Let us highlight the
contrast with the example of a collection of records, each with two attributes,
'social security number' and 'year of birth'.
1) Although it may be convenient to consider such a record to be a point in a 2-d
attribute space, this is not a Euclidian space; the distance between two such
points, for example, or even the distance between two SSNs, is unlikely to be
meaningful.
2) Partial match and orthogonal range queries are common in data processing
applications, but more complex query regions are rare. In contrast, arbitrarily
complex query regions are common in geometric computation (e.g. iQtersection
of objects, or ~y tracing):
3) Although a record in commercial d~ta processing may contain a lot of data,
for search purposes it is just a point. A typical spatial object, on the other hand,
is a polyhedron of arbitrary complexity, and we face the additional problem of
reducing it to predefined primitives, such as points, edges, triangles, tetrahedra.

3 Representation of space

3.1 Space partitioning and cell addressing

The first point to be made about spatial data structures sounds so trite that it is
often overlooked: The ~n tasls_.of a spatial data structure is to f.t;2.~e,~gn.:[_§J2f!£t:~
The way empty space IS organized and represented has important consequences
for the representation and storage of objects, much as the choice of a coordinate
system has important consequences for the manipulation of geometric formulas.
A representation of space suitable for data storage and management has two
main components:
1. A scheme for partitioning the entire space into cells.
2. A two-way mapping that relates regions of space to the cells that inhabit

them.
The space partition serves as a skeleton for organizing objects located in space,

12

and leads to a characteristic two-step procedure for accessing objects: Given a
region of space, first find the cells that intersect the region (cell addressing),
then find the objects that inhabit those cells (data access). ·

~' y
cell data

X x y < addressing)' { cells} < access '). { objects }

cell "~,-
r- Space partition, often a grid

~----------~~ X
Posing the issue of space representation in this generality makes some useful
observations obvious:
- For efficient addressing, cells must have a simple shape, usually boxes.
- The simplest space partitions are orthogonal grids.
-We want to control the size of cells, most easily done by means of hierarchical
grids.

These desiderata lead directly to [r~ trees, the archetypal hierarchical space
partitions, discussed in the next secuon.1mftirst, consider an inverted file as an
example of a data structure that was not designed for spatial access. Like any
data structure, it partitions space by the way it allocates data to buckets. If x is
the primary key, and y a secondary key, space is cut up into slices orthogonal to
the x-axis, thus revealing that it is really a 1-d data structure. Inverted files
support queries with specified x-values efficiently, but not withy.

~~ y

0 0

0
0 0

0 2 3 6

0

0
0

9

... --

Inverted file (shown managing data buckets
of capacity 2) partitions space into slices.

X

We now turn our attention to hierarchical space partitions, which come in two
major classes: radix trees and comparative-search trees.

3.2 Radix trees in various dimensions:
quadtrees, oct-trees, rd..trees. Grid file

All general-purpose schemes for partitioning space into regions must permit
refinement, and thus are naturally hierarchical. Radix trees, more exactlyt
rd-trees, apply to arbitrary dimension d and radix r > 1 and generate the most
easily computed refmable space partitions. The picture below shows the space
partition generated by a quad tree (the case d=2, r=2), and three ways of
addressing its cells.

11

10

01

00

13

Breadth-first addressing: parent i <-> children 4i + (1, 2, 3, 4 }

10 1 9
-2-
11 1

I
-3-

1

6 1 5
-1-

7 I s
0---

1
-4-

1

Bit interleaving

00 01 10 11

0 2 3 4 5 6

Path addressing

2.2 1 2.1 1.2 1 u
-2- -1-
2.3 1 2.4 1.3 1 1 .4

-t~l-1-

7

1) B:r:eadth-frrst add.ressing leads to the simplest address computation based on
formulas that make tree traversal very efficient: the node at address (index) i has
children at addresses 4i+l, 4i+2, 4i+3, 4i+4; conversely, the node at address j
has its parent at (j-1) div 4. The analogous breadth-first storage of a binary tree
(d=1, r=2) is well known as the key idea that makes heap sort efficient and
elegant. ~-

2)\ Bit J!!!.e!l~'!Xin&. or~z~o.!~~r, is another way ~o treat all dimensions (axe~)
equally. The {!ill~-'.1!) ~d<fress of a cell at coordinates (x, y), for example, IS
obtained by writing x and y as binary integers: x = x1 xO, y =y1 yO, and
constructing the address a as the binary integer a= x1 y1 xO yO.

3) _;Rath .~c!9f~.si!!_g assigns a string over the alphabet { 1, .. , r } to each cell.
The null string X to the entire space, strings of length 1 to the quadrants at depth
1, strings of length 2 to the subquadrants at depth 2, etc. When these strings are
ordered lexicographically we obtain breadth-first addressing.

The point of listing these addressing schemes is not to argue about minor
advantages or disadvantages, but to show that rd-trees partition space in such a

14

rd-trees partition space in such a regular manner that any reasonable way of
numbering them leads to a simple and efficient computation that relates a cell
identifier to the region of space occupied by the cell.

The ~d filejNHS 84], [Hin 85] space partition is almost an rd-tree space
partition: Boundaries are introduced at multiples of powers of a radix r, e.g. at
1/2, 1/4, 3/4 as in a quad tree. But each dimension is partitioned independently.
c;>f the others, and a boundary cUts across the entire space. A grid file partition is
compactly represented by 'linear scales', ori'e'j)er dimension, that make the
computation of the intersection of a query region with the grid cells
comparatively simple. The regularity of the grid partition, and its compact
representation in scales, make it possible to develop a number of reasonable
structures for managing such a dynamic grid, and several variations on the grid
file have been introduced (e.g. [Fr 87])

1

::1 ~ 1~1111----------+ grid file space partition,
and scales that defme it

0 1 1 1/l
318

7/16

3.3 Space partitions induced by comparative search trees.
Load balancing

In contrast to the regularity of the rd-tree space partition, those based on
comparative search generate less regular partitions. Drawing a boundary so as
to balance the load among the left and right subtrees works much better for 1-d
data than for multi-dimensional space. The result is shown in the figure below:

J
I,__ ----

k-d tree space partition

orthogonal range query
matched against a broken boundary

Among the disadvantages:
-Crafty but complicated rebalancing techniques, called 'general dynamization'

15

are necessary. These are less effective than the logarithmic rebalancing
algorithms (such as those for height- or weight-balanced trees) that work in
totally ordered domains, but not w .r.t. the partial order natural in
multidimensional spaces.

-Ill-suited for concurrent access- the root of a tree represented as a list structure
is a bottleneck through which all processes must travel as they access data.
(Notice that this objection need not hold for radix trees, as these permit access
by means of address computation).

- A multitude of small boundaries (e.g. along the bottom of the figure)
complicates the computation of queries as simple as orthogonal range queries.

3.4 Constrained space partitions: BSP trees, Octet

The space partitions presented so far have some structure that is independent of
the objects that populate the space. Radix partitions, in particular, have a fixed
'skeleton', and the set of objects merely determines the degree of refinement.
Space partitions for comparative search trees are more data-dependent, but there
is some choice in placing boundaries. In some applications, such as computer
graphics or finite element computations, we want space partitions that are
determined by the objects to be represented. For these, the distinction between
'organizing space' and 'representing objects' gets blurred.

JH!lary sp11ce partition trees [FKN 80] were introduced to speed up image
generation of objects in situations where the world model changes less
frequently than the viewpoint of the observer. Consider an object consisting of
many polygons in space. We select a suitable polygon (e.g. one whose plane f
cuts only a few other polygons), and make it the root of a binary tree.
Recursively, one of its subtrees partitions the half-space r+ in front off, the
other the half-spacer- behind f. Polygons that stick out into both t+ and r- get
cut into two. The following figure shows a 2-d example.

2

BSP tree partitions the letter A into quadrilaterals

16

We are working on Octet, a space partition scheme designed for mesh
generation for 3-d finite element analysis. We typically have a static collection
of objects, or, equivalently, one large complex object. The space inside the
object must be partitioned into cells that meet stringent conditions: (1) simple
polyhedra, such as tetrahedra or hexahedra (distorted boxes), (2) with a good fit
to the boundary of the objects, (3) that avoid excessively acute angles and
excessive elongation, (4) that can be refined in such a way that condition (3)
holds again for all subcells generated. Oct-trees do a great job on 1), 3) and 4),
but not on 2) - even simple surfaces such as planes force the oct tree to its level
of resolution unless they are orthogonal to an axis.

Octet partitions arbitrary 3-d regions of space hierarchically into tetrahedra and
octahedra in such a way that aspect ratios of all cells (their elongation) is
bounded. Consider a good and a bad way of tessellating the plane into triangles.

At left, the outer traingle is refined into 4 triangles of similar shape.
At right, into 3 increasingly elongated triangles.

The problem gets harder in 3-d space. It is clear how to refme a tetrahedron into
4 tetrahedra by introducing a new vertex in the middle, but that generates
elongated tetrahedra that quickly become useless. The refinement analogous to
the picture at left goes as follows. From each of the original vertices, cut off 4
tetrahedra that are all similar to the original: all linear extensions are halved, for
a volume of 1!8 of the original. That leaves an octahedron at the core, whose
volume is 1/2 of the volume of the original tetrahedron. In order to complete the
recursion, we partition an octahedron into a smaller octahedron surrounded by
12 tetrahedra. This partition can be done in such a way that the aspect ratios of
all the solids generated remain bounded, and can often be improved so that
elongated solids generate more sphere-like subsolids.

4 Representing a useful class of objects

In geometry, it is useful to distinguish between two concepts that are often
confused: an 'object' and an 'object embedded in space'. The distinction may be
unnecessary if objects never move, but we are concerned with the increasing

17

number of interactive applications of geometric computation where the data
configuration is highly dynamic. All the representations we discuss allow us to
make a clean distinction except one. In the technique that we call 'mark
inhabited space', an object is represented, or at least approximated, by marking
all the space cells it occupies. This is the traditional use of quad trees in image
processing, for example, which supports only the concept 'object embedded in
space' but lacks the notion of a 'generic object' independent of its location.
Thus we do not consider this a true object representation technique. We discuss
it in 5.2 as a scheme for embedding objects in space.

4 .1 Geometric modeling:
CSG, boundary and sweep representations

Computer science has developed a great variety of object representations. Wire­
frame and surface patch models, the early workhorses of computer graphics,
were the precursors of boundary representation (BR). BR, constructive solid
geometry (CSG), and sweep representations are most widely used in solid
modeling. [Man 88] contains a recent survey that describes several others.
These representations have the advantage that they can model any type of spatial
objects. But they were designed primarily for processing in central memory, not
for their suitability for retrieval from disk in response to geometric queries.

A representation for complex objects necessarily contains two distinct types of
data:
:.. The primitive data items from which complex objects are built (points, line

segments, surface patches, volume elements, ..).
- The relationships between these items (e.g., who touches whom, who

belongs to whom).

Conventional object representations intermingle all this data, which serves a
good purpose when drawing an object on the screen: Traversing the relationship
structure one encounters the definition of all primitives, and can draw them as
one goes along. But this intermingling can have a negative effect on retrieval
performance, as I will argue in the next section.

These two types of data (primitive items and relationships) usually have rather
distinct characteristics that suggest they should be treated separately. Many
engineering applications use only a small number of different types of
primitives from which they build complex structures with a rich, irregular
network of relationships. For these cases we advocate a representation that
separates primitives from relationships in the following manner.

~!i'!litives. Each type of primitive is characterized by a number of parameters:
circlesana-spheres by their radius, intervals by their lengths, triangles by their
shape and size. Thus an instance of each type is fully defmed by giving the

18

values of each of its parameters, and can be considered to be a point in its
parameter space. Points are the simplest objects to store and retrieve, and many
data structures do a creditable job in managing large collections of points.
Geometric proximity queries start by identifying primitives that meet the query
condition, and only access the relationship data as needed.
The relationships between the primitives are represented as a graph tied to the
embedding space through the primitives.

4.2 Hierarchical approximations

Computational geometry has developed some object representations that are
highly effective in particular circumstances. Hierarchical representations
approximate a convex object by piling layers of simple primitives on top of each
other, as the following example illustrates. We inscribe a triangle as a level-0
approximation to a given polygon. This triangle is surrounded by a layer of
level-1 triangles that are also inscribed in the target polygon. The approximation
improves with each additional layer. The structure of these approximations is a
tree, and if care has been taken to grow a balanced tree, some operations on an
target object of size n can be done in time O(log n).

Hierarchical approximation
of a convex 9-gon as a 3-level tree
of triangles. The root is in black,
its children in dark grey,
grandchildren in light grey.

4.3 Object specification by means of parameters

In some applications, for example VLSI design, the data consists of a large
number of very simple primitives, such as aligned rectangles in the plane (i.e.
with sides parallel to the axes). In many more engineering applications, for
example technical drawing, all objects are constructed from relatively few types
of simple primitives, such as points, line segments, arcs, triangles, rectangles,
or the 3-d counterparts of such typical primitives. Under these circumstances it
is natural and often efficient to split the representation of a complex object into
two parts: A graph or network that specifies the relationships among the
primitives, and, for each type of primitive, an unstructured set of all the
instances of the primitives.

Each instance of a primitive is given by as many parameters as are necessary to
specify it within its type. Continuing the example of the class of aligned
rectangles in the plane, we observe that each rectangle is determined by its
center (ex, cy) and the length of each side, dx and dy. We consider the size
parameters dx and dy to represent the object, and the location parameters ex and

19

cy to specify the embedding of the object in the space. The representation of
simple objects in terms of parameters becomes interesting when we consider
how the metric in the object space gets transformed into parameter space - we
continue this topic in section 5.3.

5 A scheme for embedding objects in space

The question of how objects are represented can be asked, and partly answered,
independently of how space is organized. But obviously, representation of
space and of objects must be compatible, and their interrelationship is the key
issue in designing SDSs. The problem is to ensure that the relationship between
1) regions of space, and 2) objects that inhabit these regions, can be computed
efficiently in both directions: S ~ 0, space-to-objects; and 0 ~ S, objects­
to-space. Consider how the following schemes for embedding objects in space
fare in this respect.

5.1 Anchors: representative points or vectors

Every object has some prominent point, such as the center of gravity, or the
lower left comer, that can be used to anchor an object in space. Many practical
objects also have a prominent axis, such as a symmetry axis, that is
conveniently used to orient the object. Such a representative point or vector is
an anchor: if all the parameters of the anchor are specified, the object is located
(anchored) in space.

CSG, boundary and sweep representations often use coordinates relative to an
anchor. Relative coordinates have the great advantage that common
transformations, translations and rotations,become efficient 0(1) operations:
transforming the anchor transforms the whole object.

Both functions S ~ 0 (given a region, e.g. a cell, retrieve the objects in it) and
0 ~ S (given an object, what cells does it intersect) can be implemented
efficiently if the objects satisfy constraints, as is often the case in practice. If we
know a bound r on the size of all objects, for example, the sphere of radius r
centered at the anchoring point is a container that often eliminates the need to
examine objects in detail. If there are only a few distinct types of objects,
anchoring becomes similar to the parameter specification approach of 5.3

5.2 Mark inhabited space

The most straightforward embedding is based on the idea t]!,iit each. object leaves
i_ts m~ (name, identifier, pointer to itself) in lverx srt:~e cell that it occupies~
This is the technique traditionally used wit radix trees, illustrated by the
segment tree and quad tree below. Some of its properties include:

20

- Potential! y high redundancy; an object may require a lot of pointers to itself.
- S ~ 0: as efficient as is practically possible;
- 0 ~ S: not as efficient as one might hope for: Many an object (e.g. a
rectangle) has a simple description, but a radix tree forces us to break up the
region it occupies.

The picture below shows the 1-d space [0, 8) hierarchically partitioned into cells
by a binary tree (r = 2) of depth t = 3 One interval at level 0, 2 at levell, 4 at
level 2, 8 = 2t at level t = 3. This scheme is called 'buddy or twin system' in
systems programming, ·~~W~I1! tree' in computational geometry, and, for
various radices r, is the basis for mosisystems of measurement.

Segment tree I I
stores I I I inteiVal
A= [2, 5]

I A I I by marking
2 cells of the
space partition. I I A I

0 1 2 3 4 5 6 7 8

A

The following picture of a digitized quadrant of a circle stored in a quad tree
(d = 2, r = 2) shows not only the underlying space partitions, but also the
correspondence between space cells and nodes in the tree.

A quarter circle
digitized on a
16 * 16 grid,
and its
representation
as a 4-level
quad tree

21

When used in image processing, the tree typically serves both as a directory and
as actual storage. In other applications the tree is just a directory, with a leaf of
the tree holding not just a black/white bit, but a pointer to all the data associated
with the corresponding space cell. Notice that this technique has no way of
capturing the concept of a quarter circle independent of its location - if the object
is moved ever so slightly, its representation changes completely.

5.3 Transformation to parameter space

Given a parameter space assigned to a class of objects as in section 4.3, we
construct the cartesian product with a space of)()cation parameters to obtain a
higher-dimensional space that tells us everything about a collection of objects of
ihis t)'pe located in space [NH 85]. As an example, consider a collection of
circles in the plane. Each instance of a circle is specified by its radius, the size
parameter r, and by its center, given by two location parameters ex and cy. Thus
the collection of circles to be stored is transformed into a set of points in the
parameter space with axes ex, cy, r shown in the two figures below.

Under this transformation, common proximity queries in object space tum into.
r,egion queries to retrieve 'points in parameter space. Continuing with the
example of the circles, it is straightforward to verify that the point query
'retrieve all circles that cover the point q' gets transformed into the region query
'retrieve all points in parameter space that lie in the search cone shown in the
figure at left'. A region query in the object space of circles, such as 'retrieve all
circles that intersect (or contain) the line L' is a union of point queries and gets
transformed into the reqion query which is the union of search cones, namely
'retrieve all points in parameter space that lie in the search region shown in the
figure at right'.

22

r
r

~pt~----~~~=t~~~c
y

ex
ex

Search cone for a point query
in the class of circles in the plane. Search region for an intersection query with a line L

Transformation to parameter space reduces object retrieval to point retrieval in a
parameter space that is typically of higher dimensionality than the original object
space. And it generates region queries of a large variety of shapes. The grid file
was designed to evaluate complex region queries with a minimum of disk
accesses. The data buckets that may contain points in the search region are
identified on the basis of a small amount of directory information (the 'scales')
that is kept in central memory. Thus a search region of complex shape affects
the computation time, but not the number of disk accesses - the latter are
determined primarily by the size of the answer.

6 Support for geometric transformations

Geometry is the study of object-properties that remain invariant under some
group of geometric transformations. Thus a general purpose spatial data
structure must be judged according to the efficiency with which the most
common transformations can be performed, in particular linear transformations
such as translation, rotation, scaling, and stretching.

The efficiency of the two most frequently used transformations, translation and
rotation, depends primarily on the scheme chosen for embedding objects in
space. All embeddings based on the principle 'mark inhabited space' fare poorly
in this respect. But the other embeddings we discussed all have the potential of
transforming an object of arbitrary complexity as an 0(1) operation. The
common geometric models used in CAD, by using relative coordinates, make it
possible to embed objects using the anchoring technique. Parameter space
representations also make it possible to separate the six location and orientation
parameters from the size parameters.

23

The efficiency of scaling and stretching depends primarily on the object­
representation scheme, but in general no scheme can do better than O(n), the
inherent complexity of the object.

7 Proximity search: simplify complex objects to access
disk sparingly

The most basic query a spatial data structure must be designed to answer
efficiently is of the type 'retrieve the object(s) at or near point p = (x, y, ..)'.
This point-proximity search is the prototype on which more complex proximity
queries are based (region queries, intersection, containment, etc.).

The main idea that serves to speed up proximity search is to make the
processing effort independent of the complexity n of the objects involved.
Although this ideal cannot be achieved in general, it can often be approximated
fairly well, in at least two ways:

1) Certain objects of complexity n can be represented exactly in terms of a
structure that permits proximity search in time o(n). Example: The hierarchical
representation of a convex polygon or polyhedron (see section 4.2) serves to
answer the point-in-object query in time O(log n). Although this search time
does depend on the complexity n of the object, for practical values of n the
difference between logarithmic time and constant time may not tell.

2) Approximation of a complex object by a simpler one is a more generally
applicable idea. The two most prominent kinds of approximations are containers
and kernels. Both serve to replace costly proximity searches by cheaper ones.
Containers are used when we expect most searches to fail, kernels when we
expect them to succeed.
-By enclosing the object in a simple container such as a bounding box or a

circumscribed sphere we achieve the saving that when the low-cost search for
the container fails, we know that the expensive search for the actual object
must also fail. Only when the container search succeeds we must follow up
with a search for the object.

- By inscribing a simple kernel, such as a sphere or tetrahedron, inside an
object we achieve the analogous effect. Successful kernel searches give a
definite answer, only failed kernel searches must be followed by the costlier
object search.

Different classes of objects require different types of containers or kernels if the
approximation is to be effective. For example, aligned objects with sides
parallel to the coordinate axes call for box-shaped approximations, whereas

24

rounded object are better approximated by spheres or ellipsoids. A data
structure that permits rapid answers to the point-proximity query for standard
containers or kernels such as aligned boxes, tetrahedra, and spheres provides a
basis for the efficient implementation of proximity search for a more general
class of objects also.

Among all the geometric operations performed on a collection of objects stored
on disk, proximity search is the m...Q§t critical in terms of its potential for saving
9r wastirig disk accesses. Disk accesses are not the bottleneck of most other
operations: These rely on proximity search to identify the objects they must
process, read them off disk, then spend considerable time processing this data.
Proximity search is the main filter that takes a quick look at many objects, in the
hope of discarding most of them. Simple approximations to complex objects
may make it possible to keep the containers (only) of most objects in central
memory, and be highly selective in accessing entire objects.

8 Support data access patterns of typical geometric
algorithms

Having discussed separately the two most important special cases of object
processing, namely transformation and proximity search, we now attempt to
characterize the requirements imposed by arbitrary algorithms that may be used
to process objects. Fortunately, the majority of the practical geometric
algorithms we are aware of fall naturally into three classes only:
- Sweeping the plane with a line, or sweeping 3-d space with a plane.
- Boundary traversal
- Recursive data partitioning in divide-and-conquer algorithms.
Each of these types of algorithms generates distinct data access patterns.

Sweep algorithms ask for the data sorted in lexicographic order: by
increasing x, for equal x by increasing y, etc. This is by far the easiest data
access pattern to implement efficiently. Indeed, the initial step of sorting the data
dominates the work in practically all plane-sweep algorithms: Most of them run
in time O(n log n), the time complexity of sorting, and some of them run in
linear time O(n) on data that is already sorted. Data access in sweep algorithms
satisfies a locality principle both in object space and in address space: In object
space, because we move from one event (typically a point) to the next event to
the right; in address space, because lexicographically sorted data is easily
mapped monotonically into a linear address space.

Boundary traversal algorithms start at some point of a boundary line or
surface and march from a vertex to an adjacent vertex selected according to local
conditions. Computing the intersection of two surfaces serves as an example:

25

Once any intersection point has been found, one follows the intersection line.
Data access in boundary traversal satisfies a locality principle in object space,
but usually not in address space: when data is allocated, we have no way of
knowing which one among several neighboring vertices will be visited next.
Thus most geometric neighbors reside far apart in address space. This is no
problem as long as all the data resides in memory, but is likely to cause many
page faults when data is processed off disk.

Recursive data partitioning typically generates the most irregular data
access patterns. A recursive computation may hop around its data at 'random',
but even when it can be sequenced to exhibit locality in object space, not much
locality in address space is gained. This is simply because of the ever-present
problem that proximity in multi-dimensional space gets lots under a mapping to
1-d address space.

A systematic experimental investigation of how well different spatial data
strucures support these access patterns would be useful, but we are unaware of
any.

9 Implementation:
Reconcile conceptual simplicity and efficiency

Geometric computation and data bases, the two main forces that affect the
development of spatial data structures, evolved independently, emphasizing
goals that are often incompatible. Computational geometry focused on
sophisticated algorithms tailored to a particular problem, using intricate data
structures to obtain asymptotic optimality. Data bases, on the other hand,
emphasized very general architectures that can model anything by breaking
complex structures into constituent pieces and using the decomposition
relationships as access paths, with a resulting loss of direct access.

Neither of these two extreme points serve as a good model for implementations.
Practical software requires a careful balance between conceptual simplicity,
which leads to understandable programs, and sophisticated algorithms and data
structures, which lead to efficiency. If a data structure is implemented in a
stand-alone test program, this point may not be of great importance. But when it
is used as a component in a complex data management system, this point can
hardly be overemphasized. The data structures mentioned have proven their
value as systems components, and we urge designers of new ones to attach as
great an importance to this aspect of implementability as to any of the other
criteria.
Acknowledgement. I am grateful to Klaus .!::!!!!!i9.h.~ for helpful comments.
This work was supported in part by the National Science Foundation under
grant DCR 8518796.

26

References

[AL62] G. M. Adelson-Velskii, Y. M. Landis: An algorithm for the
organization of information (in Russian), Dokl. Akad. Nauk SSSR,
Vol146, 263-266, 1962.

[BM 72] R. Bayer, E. M. McCreight: Organization and maintenance of large
ordered indexes, Acta Informatica, Vol 1, 173-189, 1972.

[BS 77] R. Bayer, M. Schkolnick: Concurrency of operations on B-trees,
Acta Informatica, Vol9, 1-21, 1977.

[Be 75] J. L. Bentley: Multidimensional binary search trees used for
associative searching, Comm. ACM, 18, No 9, 509-517, Sep 1975.

[EL 80] H. Edelsbrunner, J. van Leeuwen: Multidimensional algorithms and
data structures (bibliography), Bulletin of the EATCS, 1980.

[Fr 87] M. W. Freeston: The Bang file: a new kind of grid file, Proc. ACM
SIGMOD Conf. 1987.

[FKN 80] H. Fuchs, Z.M. Kedem, B.F. Naylor: On visible surface generation
by priority tree structures, Computer Graphics (Proc. SIGGRAPH
'80), Vol 14, 3, 123-133, 1980.

[Gun 88] 0. Gunther: Efficient structures for geometric data management,
Lecture Notes in Computer Science, 337, Springer 1988.

[Gut 84] A. Guttman: R-trees: a dynamic index structure for spatial
searching, Proc. ACM SIGMOD Conf. on Management of Data,
47-57, 1984.

[HSW 89] A. Henrich, H-W. Six, P. Widmayer: The LSD tree: spatial access
to multidimensional point- and non-point-objects, Proc. VLDB,
Amsterdam, 1989.

[Hin 85] K. Hinrichs: Implementation of the grid file: design concepts and
experience, BIT 25 (1985), 569- 592.

[K 68,73] D. E. Knuth: "The Art of Computer Programming", Addison­
Wesley. Vol1 "Fundamental Algorithms", 1968; Vol 3 "Sorting and
Searching", 1973.

[KL 80] H. T. Kung, P. L. Lehman: Concurrent manipulation of binary
search trees, ACM TODS, Vol5, No 3, 354-382, Sep 1980.

27

[LS 89] D. Lomet, B. Salzberg: The hB-tree: A robust multiattribute search
structure, Proc. 5-th Int. Conf. on Data Engineering, Feb 1989.

[Man 88] M. Mantyla: An introduction to solid modeling, Computer Science
Press, Rockville, MD, 1988.

[Me 84] K. Mehlhorn: Data structures and algorithms, Vol 3, Multi­
dimensional search and computational geometry, Springer, 1984.

[Ni 81] J. Nievergelt: Trees as data and file structures. In CAAP '81, Proc.
6th Coli on Trees in Algebra and Progamming, (E. Astesiano and C.
Bohm, eds.), Lecture Notes in Comp Sci 112, 35-45, Springer
1981.

[NHS 84] J. Nievergelt, H. Hinterberger, K. C. Sevcik: The grid file: an
adaptable, symmetric multikey file structure, ACM Trans. on
Database Systems 9, 1, 38- 71, 1984.

[NH 85] J. Nievergelt, K. Hinrichs: Storage and access structures for
geometric data bases, Proc. Kyoto 85 Intern. Conf. on Foundations
of Data Structures (eds. Ghosh et al.), 441-455, Plenum Press, NY
1987.

[Ov 81] M. H. Overmars: Dynamization of order decomposable set
problems, J. Algorithms, Vol 2, 245-260, 1981.

[PS 85] F. Preparata, M. Shamos: Computational Geometry, Springer­
Verlag, 1985.

[Sa 89] H. Samet: The design and analysis of spatial data structures, and
Applications of spatial data structures, Addison Wesley, 1989

[SK 88] B. Seeger, H-P. Kriegel: Techniques for design and implementation
of efficient spatial access methods, 360-371, Proc. 14-th VLDB,
1988.

[SRF 87] T. Sellis, N. Roussopoulos, C. Faloutsos: The R+-tree: A dynamic
index for multidimensional objects, 507-518, Proc. VLDB, 1987.

[Wi 78] D. E. Willard: Balanced forests of h-d trees as a dynamic data
structure, Harvard Report, 1978.

