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Random Sequences m Frechet Spaces 
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This article deals with the generation of arbitrarily distributed sequences tP of 
random variables in a Frechet space, using sequences of canonical random 
variables (c.r.v.)-i.e., independently uniformly distributed random variables 
taking real values in the unit interval [0, 1)--or canonical random digits 
(c.r.d.)-i.e., independently uniformly distributed random variables taking 
integer values in some finite interval [0, B- 1]. Two main results are 
established. First, that the members of a sequence of real random variables in 
[0, 1) are c.r.v. if and only if all the digits of all the base-B digital representations 
of the members of the sequence are c.r.d. Secondly, that, given any sequence tP 
of random variables in a Frechet space, there is a sequence 'P of functions 
l/ln(~ 1 ,~ 2 , ••• ,~n), for n=1, 2, 3, ... (where ( 1, ~ 2 , ... ,(n,··· are c.r.v.) which is 
distributed identically to tP. 

KEY WORDS: Random sequences; Frechet spaces; pseudorandom numbers. 

1. INTRODUCTION 

The performance of a stochastic simulation or Monte Carlo experiment 
depends on the availability of appropriately prescribed random sequences. 
A practical device (such as a book of tables, a deck of punched cards, a 
roulette wheel, a noisy electronic circuit, or a programmed algorithm) that 
yields such a sequence is called a random generator. It is clearly of great 
advantage to be able to limit random generators to as small a class as 
possible. In fact, nearly all available devices are approximations to the 
canonical random generators A and A B defined below; and it is the purpose 
of this article to demonstrate that either of these suffices for all practical 
purposes. 

1 Computer Science Department, The University of North Carolina, Chapel Hill, North 
Carolina 27599. 
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2. PRELIMINARIES 

The discussion will be clearer if we adopt certain conventions of 
notation. Real numbers (and unrestricted integers) will be denoted by lower 
case Italic letters: 

(2.1) 

(The letters from i through r will usually denote integers.) Infinite sequences 
of real numbers will be denoted by corresponding boldface letters: 

a, b, c, ... , x, y, Zn 

J= [/,],= [frJ~l = [/1,/2,···,/n···J (2.2) 

fn = UnrJr = UnrJ~ 1 = [fnl Jn2,•••Jnn···] 

sequences of sequences will be denoted by corresponding boldface capital 
letters: 

(2.3) 

and finite (truncated) sequences will be denoted by the same symbols, 
superscripted: 

Jm= [/,];"~! = [/1,/2, ... ,/mJ 

r::= UnrJ:"=l = Un1Jn2, ... ,JnmJ 

pm= [fnJ:;'=l = [/1,/2,···,/mJ 

(2.4) 

Probability spaces will be denoted by triples of the customary form, 
typified by 

(M, M, Jl) (2.5) 

where M is a set (the sample space), M is a IT-algebra of subsets of M (the 
set of events), and J1 is a totally finite measure on (M, M) with Jl(M) = 1 
(the probability). Points in sample spaces will be denoted by lower-case 
Greek letters. 

Functions in general will be denoted by both Italic and Greek letters. 
Real-valued measurable functions on probability spaces (random variables) 
will be denoted by lower-case Greek letters: 

(2.6) 
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Infinite sequences of such random variables will be denoted by boldface and 
capital Greek letters, by analogy with (2.2 )-(2.4 ): 

r/J= [q)rJr= [qjrJ~1 = [q$1, qJ2, ... , qJw.J (2.7) 

r/Jn = [q)nrJr = [q)nrJ~ 1 = [q7n1' qJn2, ... , qJnn"'] 

sequences of sequences by capital letters: 

(2.8) 

and truncated sequences by superscripts: 

(2.9) 

Digits (i.e., integers restricted to a finite interval, 0::::; q::::; B- 1 ), will be 
denoted by lower-case, sans-serif Roman letters: 

(2.10) 

Again, by analogy with (2.2)-(2.4) and (2.7)-(2.9), sequences of digits will 
be denoted by corresponding boldface and capital letters: 

(2.11) 

A, B, C 0 ... , X, Y, Yn 
(2.12) 

(2.13) 

Finally, we use lower-case script letters to denote random digits: 

(2.14) 

854/6/1-5 
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Again, by analogy with (2.2H2.4), (2.7)-(2.9), and (2.11)-(2.13), sequences 
of random digits will be denoted by corresponding boldface and capital 
letters: 

(2.15) 

d, f!lJ' l/1 n···' f!£' llJI' :!Z' n 
(2.16) 

(2.17) 

Let H be a topological space, and suppose that a homeomorphism 
(i.e., a one-to-one correspondence mapping open sets onto open sets) ' 
maps H onto an open subset H 0 of the Frechet metric space F of real 
infinite sequences f= [fr] = [frJ;:: 1 (see, e.g., Pervin, 1964, pp. 112-114, 
or Sierpinski, 1956, pp. 133-142). (It is well known that, in particular, if H 
is any separable metric space, such a ' can always be found for some 
H 0 t;; F.) For simplicity, and with no danger of confusion, we shall identify 
the sets H 0 and H, so that every element of H will be associated with a 
distinct real infinite sequence f = Url E H 0

, and we shall then simply write 

(2.18) 

Clearly, with this identification, H is metrizable, by the Frechet metric 

(2.19) 

where 

(2.20) 

As is easily verified from (2.19) and (2.20), convergence in terms of this 
metric is equivalent to convergence in each component of the member 
sequences of F. Let H denote the O"-algebra generated by the open subsets 
of H. 



Random Sequences 65 

Let (M, M, f.l) be a probability space and let t/J = [¢>rl be a function 
mapping Minto the set H of real sequences. That is to say, since 1/J maps 
Minto H; for any 1J EM, t/J(IJ) must be a real infinite sequence-[¢>r(IJ)Jr, 
say-and this defines unambiguously the functions ¢r: M ~ IR, where IR 
denotes the real line. Now, t/J is a random variable (r.v.) in H, if and only 
if, 

(V p E H) fjJ - 1 p E M (2.21) 

that is, if and only if 

(2.22) 

The probability space (H, H, f.ltP- 1 
), induced by t/J on H, is the distribution 

of t/J in H. And further, as is easily verified, t/J is a r.v. if and only if each 
of its components r/Jr (r = 1, 2, 3, ... ) is a r.v. in the real line R 

Given a probability space (M, M, f.1 ); an event A (i.e., a set A EM) 
may be described as the set { IJ: 'QI(IJ)} of all points 1J EM for which the 
statement 'QI(IJ) is true. Then the (unconditional) probability of the event A 
will be denoted by 

(2.23) 

and the conditional probability of the event A= { IJ: 'Ql(IJ) }, given the 
occurrence of the event C = { '7: G:(11 )}, will similarly be denoted by 
p~'['QI I G:]. As is well known, when f.l(C)>O, we have 

['Ql I G:] = f.l(A n C) 
p~' f.l(C) 

(2.24) 

Let tP = [t/JnJn be an arbitrary sequence of r.v., each mapping 
(M, M, f-1) into H. The distribution (K, K, K) of this random sequence, in the 
infinite Cartesian product set, 

(2.25) 
n=l 

has the corresponding product-O"-algebra, 

K=H 00 = }( H (2.26) 

and the probability 

K = f.ltjj-1 (2.27) 

where tP - 1 denotes the inverse image under the mapping tP: M ~ K. 
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Given the random sequence tP = [~nJn, we can (for all posttlve 
integers n, r, and elements A= [anJn of K) define the family of conditional 
cumulative distribution functions ( c.c.d.f.) of the component r/Jnr of ~n, 

Fnr(A)=Fnr(An-t, a:- I I anr) 

=p [A. <a [A.r-J=ar-1 ,pn-J=An-1] 
p If' nr nr V' n n ' (2.28) 

That is to say, we define FnAA)=Fnr(An-t,a:- 1 lanr) to be the 
probability-under (M, M, fl )-that, for some sample point Yf EM, r/Jnr(Yf ), 
the rth component of the nth sequence ~n(Yf ), takes a sample value less 
than anr; given that r/Jni(Yf)=anl• ¢n2(Yf)=an2•···•¢n(r-J)(Yf)=an(r-J)• and 
that ~1(17) = aJ, ~2(Yf) = a2, ... , ~n-J(Yf) = an-J· 

The random generator corresponding to the random sequence tP will 
be denoted by 

Q = ff(M, M, fl; t/J) = "§(K, K, K = fl,p-J) (2.29) 

It selects a point Yf of M in accordance with the probability fl and generates 
successive elements ~n(Yf) of H. 

Let (R, R, p) be a probability space and~= [~nJ::'~ 1 a sequence ofr.v. 
mapping R into the unit interval U = { x E IR: 0 ~ x < 1 }, where IRis the real 
line. If L = uoo and L is the a-algebra of Borel subsets of L, then the 
random generator 

A= ff(R, R, p; ~) = "§(L, L, p~- 1 ) (2.30) 

is called a canonical real random generator if and only if 

(2.31) 

where A is the infinite-dimensional Lebesgue measure on L, which ensures 
the statistical independence of the ~n- More loosely, we shall then say that 
the ~n are canonical (real) random variables ( c.r.v. ). 

Similarly, for any integer B?: 2, if (S, S, a) is a probability space, x = 
[xrJ~~~ is a random sequence in the set VB= {0, 1, 2, ... , B-1}, LB= U'J:, 
and L is the infinite-product-a-algebra of U B = 2 us, the power set of U B; 

then the random generator 

(2.32) 

is called a canonical random digit generator (modulo-B) if and only if 

(2.33) 
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where As is the infinite-dimensional uniform product measure on Ls, which 
ensures the statistical independence of the x,. More loosely, we shall then 
say that the x, are canonical random digits (c.r.d.) adding "(mod B)" 
whenever it is necessary for clarity. 

Let us write the digital representation, to base B, of a real number x 
in [0, 1), as 

00 

x=ds(X)=(0·X)s=(O·X 1 X2 X3 ···X,···)s= L x,B-r (2.34) 
r=l 

with all integer x, E Us (i.e., 0 :( x, :( B- 1 ). This is unique, except when x 
is an integer multiple of some B-r (i.e., the digital fraction terminates), 
when there are two forms, one (the "finite" form) with xr = q, say, and all 
xs = 0, for s > r, and the other (the "infinite" form) with xr = q- 1 and all 
xs = B- 1, for s > r. (If q = 0, we interpret "q- 1" in the usual way as a 
"borrowing" subtraction, affecting digits xs with s < r.) As we shall see 
later, this exceptional ambiguity will be found to make no difference to our 
considerations. 

We shall require two theorems, in order to show that either type of 
canonical random generator suffices for the generation of any random 
sequence f/J, as defined above. 

3. THE FIRST THEOREM 

First, we need a preliminary lemma. 

Lemma 1. The distribution of the random sequence f/J = [tftnJn is 
determined by the family of c.c.d.f. FnAA) defined in (2.28 ). 

Proof By Loeve, 1960, p. 364 (or Loeve, 1978, p. 30), since f/J 
constitutes a countable family of r. v. in ( H, H), its distribution ( K, K, K) 
is determined by the family of conditional probabilities 

(3.1) 

for all PEH and all An- 1 EHn- 1
• By the same general result, since 

ifln = [¢nrJ is a countable family of r.v. in the real line IR, its distribution 
(3.1) in (H,H) (for fixed f/Jn- 1 =An- 1

) is determined by the family of 
conditional probabilities 

(3.2) 

for all Borel sets B r;;_ IR; and, finally, by Loeve, 1960, p. 170 (or Loeve, 
1977, p. 172), this last distribution is determined by the family of c.c.d.f. 
Fn,(A) defined in (2.28). 0 



68 Halton 

Theorem A. If~= [~nl:~ 1 is a random sequence of points in [0, 1) 
with digital representation ~n = (0 · xn)s [see (2.34 )], then the r.v. ~n are 
c.r.v., if and only if all the random digits xnr are c.r.d. (mod B). 

Proof First, let ~ n (n = 1, 2, 3, ... ) be c.r.v., with digital representation 
(0 · xn)s, as defined in (2.34 ), and joint distribution (L, L, A). The distribu
tion of the xnr is determined by a family of conditional probabilities like 
the Fnr in (2.28 ). Since the ~ n are all independently uniformly distributed in 
[0, 1 ), by our hypothesis; for all ar and Cnr in Us' we have 

p;_[xnr < ar I X~-!= ar-l, (Vn' < n) Xn· =en.] 

= p;.[xnr < ar I x~-~ = ar-1] 

p }.[ (0. a I a2 ... ar- I O)s :(: ~n < [0. a I a2 ... ar -I ar Js] 

p ;_[(0. a! a2 ... ar- I O)s :(: ~n < [0. a! a2 ... (ar-1 + 1 )OJs] 

arB-r ar 
=--=- (3.3) 

(If ar-l + 1 = B, so that a carry is required above, the probability in the 
denominator is unaffected.) This result is clearly in accordance with the 
distribution (Ls, Ls, As), which requires that all the xnr be independently 
uniformly distributed in Us· Thus, all the xnr are c.r.d. (mod B). 

Conversely, let all the xnr be c.r.d. (mod B), with joint distribution 
(Ls, Ls, As). By our hypothesis, all the xnr are independently uniformly 
distributed in Us· We note that, if (2.34) holds and 

a=ds(a)=(0-a)s=(O·ala2a 3 ···h (3.4) 

then the condition x <a is equivalent to one and only one of the disjoint 
conditions, xr-l=ar-l and Xr<ar (r= 1, 2, 3, ... ).Thus, if 

en= ds( en)= (0. enh = (0. en! cn2 cn3 ... )s 

then, for all a and en in [0, 1 ), we have 

P;.B[~n<a I ~n-I=Cn-1] 
CX) 

= L P.l.B[xnr<ar 1\ x~-l=ar-11 (Vn'<n)xn·=en.] 
r~l 

r~l 

00 r- 1 

= L P;B[xnr < arJ X TI P;.B[xns =as] 
r=l s=l 

(3.5) 

"" a 1 
=I~xnr-l=a (3.6) 

r=l 
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by (2.34 ), in accordance with the distribution (L, L, )" ), which requires that 
all the ~n be independently uniformly distributed in [0, 1 ). Thus, all the ~n 
are c.r.v. 0 

4. THE SECOND THEOREM 

Again, we begin with some preliminary results. 

Lemma 2. If K = [ K r Jr is a random sequence on the real line IR, then 
we can always construct a sequence of functions 

(4.1) 

such that, if the ~rare c.r.v., then the random sequence m = [m,];:: 1 , where 

(4.2) 

has the same distribution as K. (See Levy, 1954, pp. 29-30, 71-72, and 
121-123.) 

Proof The distribution of [~<,Jr is determined, as we have seen 
[compare (2.28) ], by the family of conditional probabilities, for all integers 
r and all real sequences u, 

Successively define the sequence of r.v., 

( 4.4) 

where we write 

( 4.5) 

and~= [~r]r is a sequence of c.r.v. The distribution of [mr]r is determined 
by conditional probabilities 

analogous to the F,(u) above. Since Fr(u'- 1 I h) is monotone-non
decreasing with h, we see that 

inf{ h: x ::(: Fr(ur- 1 I h)}< u, 

=>(3h)[x::S;Fr(ur-l I h) 1\ h<urJ 

( 4.7) 
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that is, 

{x:inf{h:x:(;Fr(ur- 1
1 h)}<ur} 

~ {x: (:Jh)[x:(;Fr(ur- 1 I h) 1\ h<urJ} 

<;; {x: x:(;Fr(ur- 1 I ur)} 

Halton 

( 4.8) 

On the other hand, since Fr(ur- 1 I h) is continuous to the left in h, and 
since inf{ h: 6(h)} cannot exceed any particular h for which 6(h) is true, 
we have 

that is, 

x<Fr(ur- 1 I ur) 

~(:lh)[x::::;Fr(ur- 1 I h) 1\ h<urJ 

~inf{h: x:(;Fr(ur- 1 I h)} <ur 

{ x: X< Fr(ur- 1 I ur)} 

~ {x: (:lh)[x:(;Fr(ur- 1 I h) 1\ h<urJ} 

<;:{x:inf{h:x:(;Fr{ur- 1
1 h)}<ur} 

(4.9) 

( 4.10) 

But the sets { x: x :(; Fr(ur- 1 I ur)} and { x: x < Fr(ur- 1 I ur)} obviously 
differ by the single point Fr(ur- 1 I ur), whose probability, in a uniform 
distribution over [0, 1 ), is zero; so that the probabilities induced by A. on 
these two sets are equal; whence, by (4.8) and (4.10), we have 

Therefore, 

Gr(ur- 1
1 ur)=pJwr<ur I wr- 1 =ur- 1

] 

= p ;Jinf { h: ~ r ::::; F r( g( ~ r- 1 I h) } < u r I g( ~ r -1 = ur- 1
] 

= P.ic[inf{h: ~r:(;Fr(ur- 1 1 h)} <urJ 

( 4.12) 

This demonstrates the identity of the distributions Fr and G" proving the 
lemma and providing a suitable sequence of functions fr in (4.4). D 

Now, let 

(4.13) 
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be a sequence of real numbers, with 0 ~ z, < 1 for all r = 1, 2, 3, ... , and write 
the corresponding base-B digital representations [compare (2.34 ), (3.4 ), 
and (3.5)] as 

( 4.14) 
Let 

( 4.15) 

By the well-known diagonal interlacing technique of G. Cantor (which he 
invented to prove the countability of the rationals and, in general, of a 
countable collection of countable sets), we can combine all the digits of Z 
into a single sequence, 

( 4.16) 

(see Halmos, 1974, pp. 153-154 and 159-160). This allows us to define a 
single new real number x with the representation (2.34 ). 

Lemma 3. The mapping flB: Lfj-+ LB, defined in (4.16), is a 
bijection (an invertible, one-to-one mapping). 

Proof The set L B is defined in connection with (2.32 ). The function 
flB maps the set L f) of all infinite sequences of infinite sequences of digits, 
in which Z lies, onto the set L B of all infinite sequences of digits, in which 
x lies. If we write xs = z,b then it is easily verified that 

r+k-2 

s=9'(r,k)=r+ L t=r+~(r+k-1)(r+k-2) ( 4.17) 
t~ 1 

Since, clearly, r + k > r?: 1, we have 

~(r+ k-1)(r + k- 2) < s~ ~(r+ k)(r +k-1) ( 4.18) 

whence a little algebra shows that 

r+k=/ (2s+~) 112 +~ I ( 4.19) 

where n denotes the "roof" (or "ceiling") function-the integer 
supremum of x. From ( 4.16) and ( 4.17 ), we can easily derive that 

r=Yl(s) =s- ~ (/ (2s+ ~) 1 ;2 + ~ l-1 )(I (2s+ ~) 1;2 + ~ 1-2) (4.20) 

k = ~ ( s) = ~ I ( 2s + ~) 112 + ~ I ( I ( 2s + ~) l/2 + ~ 1- 1 ) - s + 1 ( 4.21 ) 
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Thus, !7: d: + x d: + ---+ d: + (where d: + is the set of positive integers) is a 
bijection (an invertible, one-to-one mapping), whose inverse is (~,X). 
Since every digit can take any value in U B• it follows immediately that flB 

itself is a bijection from v; onto LB. 0 

Lemma 4. The mapping dB: LB- U, defined in (2.34 ), is a sur
jection [i.e., dB(LB) = U]. With respect to Lebesgue measure in IR, or to 
the uniform product measure in LB, it is almost everywhere a bijection. 

Proof It is clear that dB maps every digit-sequence into U. It is also 
evident that every real number x in U has a digital representation of the 
form shown in (2.34 ), through the algorithm 

x 1 =1 Bx I• 
(\fr )d) Xr+ 1 =I Bur I• 

( 4.22) 

where LzJ denotes the "floor" function-the integer infinum of z. In this 
representation, terminating fractions take the "finite" form, for some index 
r, with Xr = q, say, and all xs = 0, for s > r [see the explanation after 
(2.34)]. Thus, dB is a surjection from L B onto U. 

Define the set of digit-sequences, 

TB= {xELB: (::lr)(:lkr)(\fh~kr)XSI'(r,h)=O} 

U {X E LB: (::Jr)(::Jkr)(\fh ~ kr) XSI'(r,h) = B -1} 
00 w 

= U U Tj;·k) (4.23) 
r~ 1 k~ 1 

where !f(r, h) is defined as in (4.17) and 

Tj;·k) = {x E LB: (\fh ~k) XSI'(r,h) = 0} 

u {x E LB: (\fh ~ k) XSI'(r,h) = B -1} (4.24) 

This means that, in T B• at least one of the "unraveled" numbers obtained 
by reversing the interlacing-namely, zr [see (4.14) and (4.15)]
terminates (taking either the "finite" or the "infinite" form). 

Note, too, from (4.17), that, for any given r, s increases with k, and the 
least s that is greater than t requires 

r + ~(r + k-1)(r + k- 2) > t (4.25) 

with minimal k ~ 1; this reduces to 

(r + k- ~) 2 > 2t- 2r + ~ 
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I.e., 

{
if r ~ t, then kr =max { 1, I ~- r + [2(t- r) +!] 112 1}} 
if r > t, then kr = 1 

Thus, the case of x itself terminating, 

C3t)[(\fs>t)xs=B-l) v ((\fs>t)xs=O)] 

73 

(4.26) 

( 4.27) 

requires termination of every zr according to ( 4.26), and corresponds to the 
set 

(4.28) 

Now, since the sets T);·hJ are all finite, Ts is itself a countable set. 
Since the set L s = U; is uncountable infinite, while its subset T s is count
able; in terms of the uniform product measure in Ls, the set Ts has 
measure zero. Similarly, the set 

(4.29) 

is countable, and therefore has Lebesgue measure zero. 
The restriction of ds: L s -+ U to 

( 4.30) 

is clearly a bijection; the excluded set T s is of measure zero, so the bijective 
property applies almost everywhere. 0 

Let the countable set of r.v. 

( 4.31) 

be a set of c.r.v. By analogy with (4.14) and (4.16), write 

(4.32) 

and (for n = 1, 2, 3, ... ) define the sequence of r.v. in U, 

( 4.33) 

By Theorem A, if the (nr are c.r.v., then all the digits :<:nrk will be c.r.d., and 
therefore, again by Theorem A, the ~n must be c.r.v., too; and, vice versa, 
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if the ~n are c.r.v., then all the digits xnrk will be c.r.d., and hence all the (nr 

must be c.r.v., too. 
In probabilistic terms, the measures used in Lemma 4 become 

probabilities [the Lebesgue measure of U is 1, whence Jc(L) = 1, and the 
uniform measure of Us is 1, whence As(Ls)= 1], and anything that 
happens with probability zero may be neglected, if we append the 
rubric "(a.s.)," meaning "almost surely." Now, by Lemma 4, ds is (a.s.) a 
bijection, and therefore (a.s.) invertible. Consider the product mapping 
'fJ s: L 'If ----+ L, defined by [compare (2.34)] 

( 4.34) 

Then 'fls will evidently be a bijection in the product set (Ls\Tst'", whose 
complement has probability zero. Thus, 'fJ s is ( a.s.) invertible. Hence, we 
may write 

@'s=dso2lso'fl]/ (a.s.) 

It follows that @'s is itself ( a.s.) invertible, and 

@' i/ = 'fJ so 22 i 1 
o d ;/ ( a.s.) 

( 4.35) 

( 4.36) 

The relationship between the various mappings discussed here is shown in 
the diagram below. 

'fJ -1 
B 

We can now extend the result of Lemma 2 from the real line to the 
Frechet space H, in the theorem below. 

Theorem B. If l/J = [~nJn is a random sequence in H, then we can 
always construct a sequence of functions 

(4.37) 
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where 

( 4.38) 

such that, if the ~n are c.r.v., then the random sequence F= [rnJ:~u where 

( 4.39) 

has the same distribution (K, K, K) as f/>. 

Proof First, taken= 1. We need to make lf/ 1 (~ 1 ) have the same dis
tribution as f/1 1 . By Lemma 2 [see (4.4)], if Z is a countable set of c.r.v., 
defined as in ( 4.31 ), then C 1 = [ ( tr], are c.r. v. and we can successively 
define the real-valued r.v. [see (2.28), (4.4), and (4.5)] 

Ytr=gtJC~)=inf{h:(lr~Flr(gt(Cdr~ll h)} (4.40) 

and l't = [y 1rl will have the same distribution as f/1 1 . If we now define~= 
&l8 oZ, as in (4.33), so that Z=&l1J 1 o~ (a.s.) and ~=[~nJn are c.r.v., we 
observe that &ln and &l;; 1 are pointwise mappings (with respect to the 
index n) and we may, without fear of confusion, write 

and ( 4.41) 

Thus, we may put 

( 4.42) 

and y1 will have the same distribution as f/1 1 . 

Now suppose that we have already defined )1 1 = lf/ 1 (~d, )1 2 = 
lflz(~u ~z), ... , l'n~t = lfln~t(~t' ~ 2 , .•• , ~n-d, having the same joint distribu
tion as f/1 1 , f/1 2 , ... , ¢ln ~ u and we write G(Z) = [g n(Cn) Jn and define 

Note that (4.43) reduces to (4.40) for n = 1. By Lemma 1, the distribution 
of all the l'n is determined by the conditional probabilities [see (2.28)] 

GnJA)=Gnr(An~l, a~~l I anr) 

=p..![Ynr<anrll'~~l=a~~t,rn~l=An~l] (4.44) 

The argument yielding ( 4. 7 )-( 4.11) in the proof of Lemma 2 is not 
affected if we replace Fr( ur ~ 1 I h) by any other appropriate, monotone-
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nondecreasing, continuous-to-the-left function of h; in particular, we may 
use the function F nA An- \ a~- 1 I h). In place of ( 4.11 ), we then get 

P;.[inf{h: (nr~1nr(An-~, a~- 1 I h)} <anrJ 

Arguing just as in deriving ( 4.12 ), we see that 

G nJ A ) = PA [ Y nr < a nr I l' ~- 1 = a~- 1
, r n - 1 = An - 1 

] 

= P;.[inf{h: (nr~Fnr(An- 1 , a~- 1 I h)} <anrJ 

= P;.[(nr~Fnr(An-1, a~- 1 I anr)J 

=FnAAn-1, a~- 1 I anr)=FnAA) 

( 4.45) 

( 4.46) 

Thus F and G are identical distributions; i.e., the distribution of l'n• condi
tional on y1 , y2 , .•• , Jln_ 1 , is the same as that of t/Jn, conditional on t/J 1 , 

t/J 2 , ••. , t/Jn_ 1 . Thus, the induction is completed, and we have shown that the 
distribution of r, defined in ( 4.40) and ( 4.43 ), is the same as that of f/J. 

Now, we note that, by (4.43), l'n depends only on zn = [,1 , , 2 , ..• , 'nJ; 
so that, by applying the transformation ( 4.41 ), we see that we can put 

This completes the proof of Theorem B. 

5. CONCLUSION 

( 4.47) 

D 

Theorem A shows that, in an ideal situation, we may use A to generate 
[xnJn, or AB to generate [~nJn- Theorem B shows that we can generate the 
behavior of any [t/JnJn by means of A (and thus also by means of AB). 
However, some cautionary remarks are appropriate here. 

First, the canonical real random generators A*, say, which are used in 
practice, only approximate the theoretical ideal generator A. In fact, they 
are often deterministic numerical algorithms called pseudorandom, and, in 
many cases, the digits x~r of the corresponding sequence [~,;Jn are, for 
each n, less and less "random," as r increases. Thus it is advisable to use 
only the few most significant digits of the random numbers ~,; to generate 
practically acceptable random digits. 

Secondly, it will be noted that the computer algorithms A* generate 
digital representations of finite length, so that they really are better viewed 
as canonical random digit generators A~ with C a large integer, such as 236 

or 248
, the ostensive ~,; really being x,;;c. Theorem A still applies; and so 
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does Theorem B, to within the accuracy, 1/C, of the computer arithmetic. 
Some care will be needed, however, to ensure that the functions IJI rn do not 
accumulate computer errors in such a way as to render them worthless. 
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