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ABSTRACT 

Application-specific languages can offer productivity boosts under the appropriate circumstances, but 

there is an impediment to their proliferation: language implementation is inherently difficult. interest in 

a tool for rapidly prototyping these "little languages" motivates this thesis. It identifies three specific 

problem areas that offer undue hindrance to language prototypers. These are (1) concrete syntax 

specification, (2) abstract parse tree construction, and (3) the definition of a language's semantics. This 

thesis describes conventional approaches to these issues and explains why they are inappropriate for the 

language prototyper. A simplified approach to each problem is developed and a unified tool implement-

ing these techniques is described. 
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1. Language Implementation 

CHAPTER I 
INTRODUCTION 

Executing a program in some particular language involves two phases. First its syntactic structure 

must be examined to ensure that it has the correct form. If so, a semantic synthesis step must analyze 

this structure to produce results prescribed by the program. Hence language implementation involves the 

construction of components that perform these tasks. 

The syntactic structure of the language in question should be formally defined with conveniences 

like Backus-Naur Form (BNF) grammars or regular expressions. A parser that embodies this syntactic 

definition must be crafted to read input programs and determine whether they are in the specified form. 

If so, a translator must map this input to an internal representation that can be consulted during subse-

quent analysis. 

The second phase, called semantic synthesis, operates on the representation of a syntactically valid 

program as determined by the previous phase. The semantics of the language must be defined either on 

an ad-hoc basis or with the help of certain formalisms like those of attribute grammars and denotational 

semantics. This definition is based on the syntactic structure of input programs and either yields an exe-

cution of the program or produces a program in yet another language. If the yield is an execution, the 

term "interpreter" describes the system; otherwise, the term "translator" is used. Collectively this thesis 

will refer to these as language processors. 

2. Problems with Language Implementation 

This thesis begins with a look at various methods of syntactic analysis. The traditional approach 

distributes this task between a scanner and parser. This approach has much to commend it, but it also 

has implications that are unpleasant for the language prototyper. Because unified grammar specifications 

appear to resolve these problems, previous systems aimed at this goal are discussed. But each of these 
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is shown to have problems of its own. The most promising approach has been to permit a unified gram

mar specification with an extended BNF from which both a scanner and parser can be generated; this 

thesis develops certain refinements to this approach. 

Next, the problem of constructing an internal representation of source programs is examined. This 

representation traditionally takes the form of a rooted graph called the abstract parse tree, and is the 

result of a translation step that maps concrete syntax to abstract syntax. This translation has previously 

been performed in an ad-hoc way during parsing (with the use of reduction-time actions) or it has been 

managed with the help of an expen system. But both methods seems too inconvenient and complex, so 

this thesis develops conventions and BNF extensions that permit this translation to be specified at a high 

level. 

Finally, the problem of semantic synthesis is attacked. It is fair to say that most language proces

sors indulge in ad-hoc semantic synthesis. This is because no formal approaches have gained the 

universal approval and suppon that their counterparts in syntactic analysis enjoy. But there are some 

disciplines that can assist the language prototyper. Two of these are attribute grammars and denotational 

semantics. The former involves attaching attributes and equations to grammar rules, and includes sys

tems which walk parse trees to find attribute values by evaluating equations. Denotational semantics is 

predicated on the assumption that the semantics of a laoguage are most clearly and easily defined by 

specifying (with highly mathematical notation) an interpreter for the language. Its approach to inter

preter specification, viz., by semantic functions tied directly to abstract grammar productions, seems to 

be a nice principle for interpreter organization. 

This thesis observes that an object-oriented approach to programming could assist those who 

intend to follow (at least loosely) the disciplines of either attribute grammars or denotational semantics. 

Thus a flexible but suggestive framework for interpreter implementation is presented: tree nodes will be 

instances of classes in some object-oriented language, and a special notation will permit the user to asso

ciate attribute fields and semantic functions directly with grammar productions. 
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This thesis makes several contributions. It develops a convenient method for specifying a 

language's syntax so that a parser and scanner can be constructed automatically. It shows how the 

concrete-to-abstract syntax translation can be specified at a high level so that this too can take place 

automatically. Finally, it develops a framework that assists in the semantic synthesis phase. These are 

concrete suggestions, and in order to see their effect on a real system they are implemented in an experi

mental tool called LLPT, which stands for the "Little-Language Prototyping Tool". This tool is 

described in the final portions of the thesis. 

Remark: the reference to "little" languages deserves some comment LLPT will not be targeted toward 

the prototyping of arbitrary languages, because a narrower scope will be used to justify decisions 

that introduce restrictions but result in greater convenience. "Little languages" are relatively sim

ple, from both user and machine perspectives; it is this simplicity that LLPT trades on. 
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CHAPTER II 
THREE IMPROVEMENTS 

This section of the thesis identifies three problems which are common to language prototyping and 

have heretofore made this task difficult and error-prone. (1) The task of syntactic analysis is typically 

distributed over a scanner and parser (requiring the two to cooperate carefully). (2) Concrete grammars 

do not correspond to abstract grammars (making automatic parse tree construction difficult). (3) Assign-

ing semantics to a language is still an art, not a science (making it difficult to provide support that is 

convenient without being restrictive). Work that addresses these difficulties will be analyzed, and 

specific suggestions will be made for improving the language prototyper's lot. 

1. Full Grammar Specification 

1.1. Motivation 

The language recognition subtask has traditionally been broken up into two major pieces: the 

language scanner and the language parser. Input to a scanner consists of a stream of characters. The 

scanner takes these characters and assembles them into tokens. A stream of these tokens is then 

presented to a component which parses them according to some grammar. 

Assuming this division of labor, one must use a certain amount of discretion to fix on the 

appropriate granularity of scanning. At one end of the spectrum lies the trivial scanner, which recog-

nizes each character as a token. This leaves all of the language recognition task to the parser com-

ponent The other end of the spectrum is that in which the scanner is a parser in its own right, with the 

ability to recognize an entire program as a token. This implies a degenerate parser. 

This division of tasks is organized around the following rule of thumb. A complete (character-

based) grammar for a language is imagined or designed. Those nonterminals deriving language com-

ponents that could be described conveniently with regular expressions are declared as tokens. The 

scanner is then implemented as a finite automaton. This pruning has left the designer with a grammar 

which requires a more powerful recognition mechanism, such as a pushdown automaton. 
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There are a number of good things to be said about this plan related to the fact that notation and 

automata for regular languages are simpler than those for the more powerful context-free languages. 

Regular expressions are more compact and easier to use (because of the many R.E. operators) than 

grammars, and if one had to implement the underlying machines one would find that grammars require 

more complex, slower, and larger programs. Thus a scheme which permits one to use either regular 

expressions or grammars may result in clearer, faster, smaller recognition mechanisms. 

Also, by making the distinction between parser and scanner it is possible to do things that are 

difficult to describe grammatically. For instance, it is hard and tedious to account for whitespace with 

an LALR(l) grammar, yet easy for the scanner simply to strip it away before attempting to recognize 

tokens. 

Finally, this division provides an opportonity to describe languages that are not even context-free. 

In C[I], for instance, the typedef facility changes the token class of a given string. Unfortunately, this 

feature takes C out of the class of context-free languages (intuitively, this can be seen by noting that a 

pushdown automaton has no place to store these new keywords for later recall), even though it is easy to 

accommodate by adding state to the scanner. 

But if the scanner and parser are developed separately a developer must manage the interface 

between them carefully. Maintaining this interface is an onerous burden to the prototyper on three 

counts. There is redundancy because there must be a way for the scanner and parser to communicate 

with meaning about the tokens that are recognized, apd some convention must therefore be embodied in 

each tool. In addition, as changes to the language are made they must be reflected in both the scanner 

and the parser. Finally, the decision as to scanner granularity is itself hard. One would prefer to retain 

the advantages of a separate scanner without succumbing to the problem of managing such an interface. 

1.2. Scanner/Parser Partnerships. 

Scanner and parser generators exist and are generally based on finite automata and pushdown auto

mata, respectively. Lex[2] and yacc[3] are two of the most popular tools for these tasks, and do a nice 
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job in their respective fields. One of their most helpful features is that they are designed to work well 

together. For instance, lex produces a scanner that can be invoked as the procedure yylexO; not coin

cidentally, this is the precisely the function that yacc assumes will invoke the scanner. 

Lex and yacc represent substantial advances in the technology of syntactic analysis. These tools 

contain much knowledge about their special functions, the creation of language recognition automata. 

Furthermore, they provide convenient interfaces to this expertise. Thus it is no longer necessary to 

understand how such automata are created: only the ability to specify them is required. 

Aficionados of lex and yacc might say that the problem of redundancy is well worth the flexibility 

that results from the separation of tasks, and they would argne that these tools minimize redundancy by 

virtue of their design. Nonetheless, it will be shown that one can do better. 

1.3. Scannerless Parsing 

A paper which recognizes the problem of redundancy and tries to resolve it is presented by Salo

mon[4], who proposes that langnage recognizers be specified without scanners: that is, the grammar is 

to be fully specified on a character level. Although this seems a simple matter, two kinds of ambiguity 

are hard to resolve with context-free grammars. These are called "reserved-identifier" ambiguities and 

"longest-match" ambiguities. Salomon's solution is to permit these ambiguities in a typical BNF gram

mar and then to restrict the language generated with two new directives: "exclusion" rules and 

"adjacency-restriction" rules. 

The reserved-identifier problem involves confusion due to the fact that keywords are frequently a 

subset of identifiers. If the parser uses a scanner, then the scanner generally distinguishes between these 

by consulting a table. But how should scannerless parsers accomplish that task? Salomon's solution is 

to extend the BNF with an "exclusion rule". This rule can be used to say that the language generated by 

some symbol does not contain the language generated by another symbol. For example, the exclusion 

rule 
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id ::!= begin I end I if I while ; 

indicates that certain keywords are not identifiers. 

In addition, Salomon introduces an adjacency-reslriction rule. This rule is intended to resolve the 

kinds of ambiguity that result from, for instance, keywords embedded in identifiers. It works by making 

a statement about which symbols are forbidden to occupy adjacent positions. Here is an example of the 

rule: 

identifier if else ... -1- identifier if else ... 

Items that could be generated by the symbols to the left of -1- are not permitted next to items that could 

be generated by items on the right. Thus, this example indicates that an identifier may not abut any 

keywords or other identifiers. 

But as expected, this solution has a number of problems. First, whitespace is still hard to account 

for grammatically because of its pervasive nature: in many languages it can appear virtually anywhere. 

Second, it becomes necessary to specify tokens using BNF rather than regular expressions. Third, it 

does not permit the description of languages that are not context free. Finally, experiments indicate that 

larger, slower parsers result from this method than from standard scanner/parser solutions. 

Moreover, these BNF extensions do not provide any additioual expressive power beyond that pro

vided by, for instance, yacc and its disambiguating rules. The reserved-identifier problem is in fact just 

a reduce/reduce ambiguity, and yacc users are capable of solving by ordering the grammar appropriately. 

Likewise, the adjacency-reslriction rule is introduced to resolve the kinds of shift/reduce conflicts that 

yacc users have been resolving for years. Thus Salomon goes to much effort to introduce extensions to 

BNF that do not solve any new problems and (at least in the case of the adjacency-reslriction rule) have 

effects that are hard to understand. 

Salomon's system solves the redundancy of separate parser/scanner specification without alleviat

ing any of the problems that are inherent in a character-level specification of the grammar. 
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1.4. Implicit Scanners. 

The best thing about scannerless parsing is that a language can be completely specified in one fell 

swoop. Other approaches try to maintain this single-specification advantage in different ways. One 

solution is to allow an extended BNF that replaces terminal identifiers with regular expressions describ

ing a token. A scanner can then be constructed using these regular expressions. This approach is taken 

by a number of systems, including Eli[5] and FrEGe[6]. This approach has the advantages of a separate 

parser/scanner architecture without its deficiencies. 

For instance, a description of C's while loops might look as follows (although the exact syntax 

varies from system to system): 

whileloop -> "while" "(" expression ")" strut ; 

By examining such a grammar it is possible to determine what the various tokens are, and a scanner that 

recognizes these tokens can be systematically constructed. 

This certainly solves the problem of redundancy in language specifications. Unfortunately, none 

of these tools is very sophisticated, and only simple languages can be described because of two major 

restrictions. 

One restriction is that the scanners are constructed in a context-insensitive manner: that is, the 

question of which tokens may be scanned is not answered on the basis of the parser's state. Consider 

the task of writing a parser for the yacc language. Yacc programs consist of three different sections 

(declarations, rules, and functions). Each of these has a different grammatical structure, and it could be 

said that each has a different lexical environment as well, in the sense that one section may have key

words that are meaningless in another. For instance, the keyword %token is meaningful in the declara

tion section but not the rules section. Consequently, a scanner needs to behave with due regard for the 

environment in which it is invoked. 

The second major restriction involves whitespace. These systems permit one to describe com

ments and whitespace but they are not general enough: languages with more than one whitespace 
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environment cannot be accounted for. Yet any langnage that includes string values, such as sh (the 

UNIX shell command langnage), must include rules for strings surrounded by double quotes. Because 

strings may contain metacharacters mixed with ordinary characters, it is necessary to parse them 

character-by-character. In parsing such strings the usual whitespace characters like blanks and tabs must 

be attended, although any backslash-newline combinations should be ignored! (Note that this example 

also exhibits another manifestation of the multiple-lexical-environment problem: parsers should not be 

tempted to recognize keywords within strings, even though they may well appear there). 

The implicit scanner approach eliminates the redundancy inherent in two-level grammar 

specifications. Heretofore, however, scanner inference systems have not been flexible enough to accom

modate multiple whitespace and lexical environments. 

1.5. The LLPT Solution to Parser Specification 

The challenge is to eliminate redundancy that arises from separate interfaces to a scanner and 

parser while simultaneously maintaining the advantages that result from this division of labor. To this 

end the solution of Eli and FrEGe is taken and various modifications are applied to eliminate difficulties. 

The resulting scheme uses a BNF which has been extended in two ways: first, arbitrary regular 

expressions are permitted in place of termiual symbols, and second, each of these regular expressions is 

associated implicitly or explicitly with a whitespace environment. Analysis of a grammar presented in 

this form permits the inference of a scanner and a parser, and certain rules are used to resolve the ambi

guities that arise from the use of regular expressions in the grammar. 

The primary difference between an ordinary BNF grammar and our extended LLPT grammar is 

that where terminals appeared in the BNF grammar, regular expressions appear in the LLPT version. 

LLPT parser construction initially ignores the fact that terminals are regular expressions containing vital 

information; it constructs a parser on the assumption that a scanner will be built separately from this 

information. 
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The quality of the scanner is of concern to LLPT. Previously mentioned systems create relatively 

unintelligent scanners that do not alter their behavior on the basis of the parser's current state. This can 

always be done. But analysis of the parser permits the construction of much smarter scanners when 

parsers are implemented as automata that are driven from state on the basis of their input 

The controlling observation is that each of the parser's states can be associated with a "lexical 

context". A lexical context for some parser state is the set of tokens which do not drive the parser to an 

error state. If the parser is an automaton, then the information must be encoded somewhere and can be 

extracted. This information can then be used to construct a scanner which, when invoked, takes note of 

the parser's state and carefully recognizes only tokens in the corresponding lexical context. One way of 

thinking about this is to pretend that a different scanner is constructed for each lexical context. 

LLPT will treat whitespace as follows. The user will be permitted to associate any terminal in the 

grammar with some notion of whitespace as described by a regular expression. The scanner will be con

structed such that each invocation results in two operations (I) whitespace will be stripped away, and (2) 

an attempt will then be made to find a token which is part of the current lexical context All tokens in 

the current lexical context should be associated with the same notion of whitespace; if this is not the 

case then error messages can be generated at compile time. 

Ambiguity might well be introduced when the user embeds regular expressions in an LLPT gram

mar. It turns out that disallowing these ambiguities would cause the prototyper more harm than good, 

so they will be dealt with through the introduction of disambiguating rules. Naturally the user should be 

warned about the existence of any ambiguity in his specification. 

One kind of possible ambiguity is that two tokens in the same lexical context may be regular 

expressions describing sets with a non-null intersection. This situation is not at all unlikely, and is in 

fact exhibited by the reserved-identifier problem mentioned earlier. If the scanner finds some string in 

this intersection it must decide which token to recognize. Some son of disambiguating rule is needed 

here, and it will be chosen to mirror yacc's resolution of reduce/reduce conflicts. If two regular expres-
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sions match the current input, the one that appears earlier in the grammar will be recognized. 

A second situation involves lexical contexts in which there are two regular expressions with the 

property that a string could match one, but an even longer string could match the other (one regular 

expression includes some string that is a prefix of a string in the second regular expression). This is 

analogous to yacc's shift/reduce conflicts, and a similar disambiguating rule will be chosen: the longest 

possible string will always be matched. 

These ambiguities do not pose an objection to the use of implied scanners. The reason for this is 

that any ambiguities discovered through such analysis must exist even if the scanner and parser are 

separately specified. By presenting them together one provides the generator with enough information to 

discover and report such ambiguities properly. 

This scheme does not permit semantic actions to be associated with the recognition of tokens. 

This is a serious drawback in the sense that it makes LLPT an unattractive choice for implementing 

complicated (i.e. non-context-free) languages like C. Ho_wever, little languages are not likely to call for 

such subtleties. 

2. Concrete-to-Abstract Syntax Translation 

2.1. Motivation 

A language processor must do much more than simply decide whether its input is in the correct 

form. It must act on that input as well. Actions are conveniently expressed according to the structure of 

the input as defined by the grammar of the language. However, the parse according to the grammar is 

rarely the perfect platform for defining semantics, because many syntactic features exist only to impart 

structure to the token stream and have no intrinsic semantic value. Consequently there is no need to 

preserve them. In practice, an abstract parse tree is preferred to the concrete parse tree, because it elides 

superficial distinctions of form and in some instances has a different shape as well. 

This section discusses previous work aimed at automatic parse tree construction, with reference to 

the way in which a language's abstract syntax is specified. A suggestion is then made as to how this 
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might be done in such a way as to please the language prototyper. 

2.2. Ad-Hoc Construction 

The usual way to produce a parse tree is to auach semantic actions to a grammar. These semantic 

actions contain descriptions, in some programming language, of what should be done to construct a tree. 

This method gives the progranuner total flexibility over the tree that is constructed. 

However, this flexibility is rarely called for. In the first place, code that describes how to build 

trees is monotonous: whenever there is a reduction (assuming a bottom-up parse) space is allocated for 

a node of the appropriate type, and then pointers to its children are installed in the node. One would 

certainly think that at least this much could be automated. In the second place, there is a small set of 

transformations that translate concrete syntax into abstract syntax (as will be seen later); thus only a few 

variations on tree building tend to be used in practice. 

Another objection to ad-hoc tree construction is that the nature of the abstract grammar cannot be 

divined without poring through the various semantic actions attached to the grammar. 

2.3. Systems with Specific Directives 

A number of systems capitalize on the observation that the semantic actions which cause nodes 

(and, synthetically, trees) to be built are harder to understand than some notation which simply describes 

what these nodes should look like. This is true because certain typical actions can be inferred: space 

allocation and pointer assignment are good examples. Therefore, the reasoning goes, it would be nice if 

these descriptions could be used in place of the semantic actions. Two systems which follow this philo

sophy are y+[7] and FrEGe[5]. 

Y + permits users to decorate a grammar rule with a Lisp-like expression that indicates how to 

build nodes of that type. Briefly, the notation uses braces, parentheses, and components of the rule. 

Any part of the rule may appear in the expressions, surrounded by either square brackets or parentheses. 

Square brackets around production items indicate that the enclosed items are to be siblings. Parentheses 
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around items indicate that the first item is to be the parent of the succeeding ones; if there is more than 

one item in the tail of the list, a sibling relationship is implied for these nodes. This notation is particu

larly good for eliminating unnecessary syntactic details from the parse tree and describing parent/sibling 

relationships. But this generality is somewhat unnecessary, as exceptionally complex relationships are 

unlikely to arise in practice. In any case, little languages should avoid this complexity. 

FrEGe has a similar notation, with extensions involving keywords @propagate, @list, and 

@unitlist, amongst others. The first of these is a mechanism for chain rule elimination, and indicates 

that there is no node corresponding to the given production: rather, some value is to propagated 

upward. @list and @unitlist are used to add children to an existing node (for instance if one is trying to 

create list nodes). These extensions provide certain useful flexibility above and beyond that of y+'s 

notation. In addition, FrEGe provides a default rule, which is an elementary but nonetheless substantial 

improvement over y+. The existence of a default rule suggests that there may in fact be a small number 

of "typical" node constructions; this observation will be useful later. 

Using high-level directives to simplify the task of tree building has the advantage that these 

actions are much easier to understand and use than equivalent semantic actions written in a language like 

C. On the other hand, this method suffers from much the same criticism that can be applied to ad-hoc 

constructions: it is necessary to pore through what really amount to semantic actions in order to under

stand the form of abstract syntax trees. One has to question whether the flexibility of these systems 

really provides tremendous advantages; if one observes that unusual constructions rarely arise in prac

tice, an even higher -level description may suffice for constructing parse trees. 

2.4. Expert Systems 

Bahrani has developed an interactive system called CAGT[8] which takes a concrete grammar and, 

with the user's help, identifies opportunities for simplification that yield a more convenient grammar. 

There are two major kinds of transformation. Chain rule elimination involves the elimination of rules 

like that of parentheses in arithmetic expression grammars. Similar-rule coalescing is a second kind of 
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transformation: CAGT identifies "similar" rules and factors out the differences, yielding a more 

manageable collection of rules. 

The important aspect of CAGT is that it is an interactive expert system. Its input is a concrete 

grammar. Its output consists of a concrete grammar with appropriate semantic actions for building an 

abstract parse tree. 

To a certain degree, CAGT relieves the programmer of the obligation to think. It dives into a 

concrete grammar, digests it, and then provides the programmer with a number of suggestions about the 

details of abstract syntax. The programmer signals yea or nay to each of these, and these responses are 

incorporated into a parser that automatically builds.a tree. 

However, this approach has the disadvantage that the user must be prepared to endure a session 

with the system each time a grammar is produced. This in and of itself is not so terrible, but as a 

consequence the relationship between concrete and abstract syntax is defined by the history of this ses

sion, which is a clumsy way to represent a relationship. One would prefer to define this relationship 

directly, perhaps with annotations to the grammar. 

2.5. The LLPT Approach to Parse Trees 

Cleady, many people have noted that parse trees should be built automatically by parsers. How

ever, discrepancies between abstract and concrete syntax stand as a barrier to this goal. The nature of 

the abstract grammar has generally been clarified only by actual rules provided for tree construction 

(except in Bahrani's system). Some systems improve the situation by removing a level of detail from 

semantic actions that direct node construction, but the nature of the abstract grammar is still hidden in 

tree-building rules scattered throughout the grammar. 

LLPT will build abstract parse trees automatically. However, the differences between its abstract 

and concrete grammars will be defined using certain conventions and very high-level decorations to the 

grammar. These will be sufficient for directing the process of tree construction. The observation which 

makes this possible is that there are a few "typical" node-building scenarios. It is sufficient to provide 
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for conventions and annotations that take these into account 

Of the various language features, arithmetic expressions seem to cause the most serious discrepan

cies between the abstract and concrete syntax trees. Here is an abstract grammar for a simple expression 

language: 

expr: expr '-' expr I expr '*' expr I id ; 

Even though this grammar expresses the form of a convenient abstract syntax tree, it is unsuitable for 

parsing on several grounds. It cannot be handled by a top-down parser (it is left-recursive and ambigu

ous) and it fails to enforce the common notions of precedence. A grammar which does not exhibit these 

unfortunate properties is contorted 'indeed. But happily there is no reason to worry about this particular 

case, because by using an LR parser with disambiguating rules both objections to the above rule are 

waved away! Bottom-up parsers like left-recursion, and clever use of disambiguating rules can cause 

ambiguous grammars to behave properly, even to the point of reflecting operator precedence. This 

demonstrates the importance of using the best parser generators available. 

Thus it becomes necessary only to consider less serious differences between concrete and abstract 

syntax trees. The first involves the difficulty in specifying sequences, as in the following production: 

strutlist: /* empty *I I strut I strutlist strut ; 

the problem here is that this production has a parse tree which is tall and thin, when in fact one wants a 

single strutlist node with any number of strut's as its children. Therefore the BNF will be extended with 

the following shorthand for the above. 

strutlist: [ strut ]* ; 

When LLPT encounters an alternation enclosed by brackets and followed with a*,+, or? it will inter

pret the rule as meaning zero-or-more, one-or-more, and zero-or-one of the entity within brackets, 

respectively. Note that the grammar is still specified unambiguously, but there are implications to the 

abstract syntax: the shape of the parse tree is understood differently as a result of this notation. Note: 

brackets are not permitted within a rule (these are not meant to be general regular-expression operators).· 
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Remark: the standard BNF has only two operators, concatenation and alternation. Above, we have pro

posed that three extensions be made, with the restriction that they be used only on the top level. 

One might observe that if these extensions were made in a fully general way then the BNF might 

have the same economy of expression that characterizes regular expressions. Why, then, is this 

not done here? The reason is that syntactic analysis is not the final goal of the system. The parse 

tree that is implied by the grammar will actually be built and analyzed. Our intention is to assigu 

meaning to productions by decorating them with user-definable attributes and semantic functions. 

This approach is convenient if productions are closely coupled to nodes in the parse tree. But 

general regular expression operators permit the implication of a parse tree in which certain nodes 

do not have corresponding productions. The restriction on these operators is imposed because it 

would be hard to find a convenient notation for coupling these anonymous nodes with functions 

and attributes. 

A second difference between concrete and abstract syn.tax involves trivial leaves. A concrete syn

tax tree accounts for every terminal encountered during parsing: these become leaves of the tree. But 

many of these symbols are fixed strings (like + or while) that are useful only because they reveal which 

rule a node corresponds to. However, if each node is labeled explicitly these leaves become unnecessary 

as they can be recovered by implication from the name of the node. For example, an if-else rule can be 

described by this production: 

ifelse: 'if expr 'then' strnt 'else' strnt 

The concrete and abstract nodes for this production are as follows. 

-16-



12.lf 789 

ifelse 

'if' expr 'then' stmt#l 'else' stmt#2 

(concrete syntax tree) 

12Jf 785 

ifelse 

expr stmt#l stmt#2 

(abstract syntax tree) 

The terminals in the concrete node are superfluous, as they are the same for every instance of an 'ifelse' 

node. Therefore no fixed strings will be reflected in the parse tree; rather, each node will be labeled 

with an indication of which grammar rule caused it to be instantiated. 

A third difference between concrete and abstract syntaxes involves the use of chain rules, which 

are rules in which the right-hand side of the productit>n effectively involves a single symbol; one exam. 

pie of such a rule arises from arithmetic parenthesization. 

expr: '(' expr ')' 

one would not be happy to see a node corresponding to this rule in the abstract syntax tree because 

parentheses are only grouping operators without any semantic implications of their own. 

LLPT will recognize any rule enclosed in angled brackets ( < and >) to be a chain rule. No parse 

node will constructed for such rules. Rather, the single nonterminal or complex terminal (one containing 
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regular expression metacharacters) on the right will be propagated upward. 

These extensions to the standard BNF help somewhat in describing the nature of the abstract syn

tax; in any case, the most common uses of notation provided by FrEGe and y+ are accounted for. And 

in one case, there is a bonus in that the concrete syntax is more easily specified because of a notation 

that is reminiscent of regular expression operators. 

Most important, however, is the fact that the concrete syntax of a language and its abstract syntax 

are clearly related. Because of this it will be possible to construct parse trees in a predictable way. 

This scheme permits the user to describe the concrete syntax of a language while simultaneously 

specifying its abstract syntax. The unfortunate aspect of this is that ·in real life abstract syntax trees 

encode more syntactic information than can be reflected by context-free grammars. For instance, if a 

programming language includes variables the abstract syntax tree will most likely contain pointers from 

instances of a variable to the node in which it is declared. Because it is not possible to describe such 

things using CFG' s there is no way for them to be reflected in our automatically built tree. Therefore, 

such information must be gained by walking the tree during the semantic phase. 

3. Semantic Synthesis 

3.1. Motivation 

At some point in the compilation process it becomes necessary to determine whether the program 

is correct in ways that cannot be expressed using the syntactic specifications discussed up till now. In 

addition, if the program is a valid one, it will be necessary to imbue it with the appropriate interpreta

tion. The language prototyper should be able to accomplish these things with a minimum of effort. 

Unfortunately, this is one of the least well-understood components of language processing. However, 

there are two formal approaches to the problem which should provide hints as to how it can be accom

plished. Rather than present a new formalism for this aspect of the process, LLPT will encourage users 

to draw from the best of these by providing a model and some notation to assist in this process. 
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3.2. Attribute Grammars 

One way to assign meaning to a program involves the use of attribute grammars. This approach 

considers that each node in the abstract syntax tree is associated with certain values called attributes. 

There are two kinds of attributes. Synthesized attributes are assigned a value on the basis of computation 

involving the attributes of a node's children. Inherited attributes are assigned a value on the basis of 

computation involving the attributes of a node's ancestors. These computations are described by equa

tions. It is possible to determine which attributes are associated with a node by referring to the node's 

type. Likewise, the node's type determines the semantic equations that define the value of its attributes. 

(Two nodes with the same attribute may compute the value of that attribute with different semantic 

equations.) 

One of the principal advantages of this approach is its declarative nature. One simply specifies the 

attributes of each node and the equations that can be used to determine their value. The task of walking 

through the parse tree to assign values to the attributes can be carried out automatically once the system 

of equations is known[9,10]. That this activity is implicit in attribute grammar systems is a boon to pro

grammers. 

But possibly more useful, for our purposes, is the fact that attribute grammars are a formal discip

line for carrying out certain activities during the synthesis phase. The requirements of systematic 

approaches can often be anticipated, and support for them can be prepared in advance. We will see 

shortly how LLPT will support attribute grammars. 

On the other hand, attribute grammars have their limitations. See [9,10,11] for more details on the 

theory and practice of attribute grammars. 

3.3. Denotational Semantics 

One of the problems with programming language semantics is that they are hard to define. In 

practice, compilers are frequently the best definitions of their languages' semantics. No matter how con

voluted and hard to understand, they are improvements over other descriptions in that they are 
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completely unambiguous. Nonetheless, few compilers are error-free. And if a compiler can be said to 

have an error then there must be some ideal to which it is attempting to conform. Denotational seman

tics tries to define this ideal. At its heart lies the conviction that it ought to be easier to understand 

mathematically what a compiler ought to do than it is to define the operation of the program that imple

ments it. This mathematical statement of the compiler's behavior is then to be taken as the language's 

semantic definition. 

The idea behind denotational semantics is that the meaning of any given syntactic construct can be 

defined as a function of the elements which compose it and some notion of state; thus the meaning of a 

program (which is a syntactic urtit) can be defined in terms of the semantics of those syntactic units that 

compose it, and so on in an inductive sort of way. 

Thus a denotational semantics for some language is a collection of functions related to the syntac

tic units that compose the language. Note that by defining the denotational semantics of a program one 

is simply writing what is ordinarily recognized as an interpreter! The only difference between an "ordi

nary" interpreter and the denotational semantics of a language is that the latter utilizes highly mathemati

cal notation and abstractions that could well be hard to implement efficiently. 

A language processor can take the form of a translator, which generates code, or an interpreter, 

which executes it directly. The language prototyper should find it more convenient to specify an inter

preter than a translator, for the reasons that (I) only the interpretation language and the source language 

need be mastered, whereas translators reqnire the additional burden of treating a target language 

correctly, and (2) the result is something which can directly execute programs, eliminating an entire step 

from the write-compile-debug cycle common to software development Thus there is a clear advantage 

to using denotational semantics for compiler prototyping. 

Remark: some systems [6,12,13,14] are able to analyze the denotational semantics of a language, that is, 

an interpreter for it, in order to produce a translator for the language. Although interesting, this 

fact is irrelevant to compiler prototypers, as translation offers only improvements in time 
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efficiency. 

Another advantage of denotational semantics is its systematic approach to interpreter construction, 

involving the association of semantic functions with syntactic units. This provides a convenient point of 

reference for the prototyper, who by following this recipe does not need to invent his own interpreter 

framework. 

Finally, denotational semantics may not always be preferable to an operational semantics: some 

programming languages are convenient for operational definitions. McCarthy[l5), for instance, had no 

qualms about using a meta-circular evaluator to define Lisp. 

Whereas the mathematical notation of denotational semantics is an advantage in a descriptive 

sense, it is a severe drawback if there is no interpreter available for it: without such an interpreter one 

could never produce a working product by giving a denotational semantics for some language. In any 

case many mathematical constructs do not athnit of practical implementation. Thus one would like to be 

able to take the formal approach of denotational semantics while stealing the practical advantages of a 

real-life language with which to define semantic functions and equations. 

3.4, The LLPT Approach to Semantics 

Because neither of the above methods is entirely appropriate in all situations, no attempt will be 

made to force LLPT users into either mold But certain details of each method will be drawn upon to 

form a platform that supports the user, should either approach be found useful. The fact that both 

methods attach either code (in the form of equations and semantic function) or values (attributes) to 

rules in the abstract grammar suggests that LLPT' s model and notational conveniences should assist this 

work. One way for LLPT to do this is to create automatically classes corresponding to grammar pro

ductions (using an object-oriented language). The nodes of the parse tree can then be instances of these 

classes, and synthesis can be accomplished by invoking the various methods associated with nodes. 

An analysis of LLPT grammars will consequently result in the definition of C++[l6) classes 

corresponding to each production. Further, a notation will permit the definition of semantic functions 
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and attributes that will be implemented as methods and fields of the class. 

The class mechanism pennits one to take advantage of denotational semantics' interpreter

construction methodology while simultaneously retaining an ability to perfonn activity much like that 

performed by attribute grammar systems. · In addition, because C++ has mechanisms for defining 

abstract data types it will be possible for users to define classes that implement mathematical abstrac

tions. Thus, if desired, the expressive power of mathematical abstractions can be introduced to facilitate 

the prototyper' s job. 

One drawback to this scheme, however, is that whereas it is easy to associate attributes with gram

mar rules and attach to a class methods which act as semantic equations for defining those attributes, 

LLPT will not provide a system which automatically walks the syntax tree to activate these functions. 

The user will have to manage that task explicitly. Another drawback is that whereas C++ provides a 

method for defining abstract data types, its users have a limited ability to define their own notation. 

Thus it is likely that the notation of denotational semantics will not be eq_naled. 

4. Summary 

The language implementation process is a difficult one. Certain traditional approaches to that task 

pose problems to those who are interested in rapid language prototyping. This thesis has now looked at 

three obstacles to that goal. It has found a way to simplify the problem of syntactic definition. It has 

found a way to describe an abstract grammar conveniently by decorating a concrete grammar. And it 

has found a way to encourage a structured approach to interpreter construction without being overbear

ing. It now remains to see how these have been implemented in a working system. 

-22-



CHAPTER ill 
DESCRIPTION OF LLPT 

The major features of LLPT are a convenient grammar specification format, an automatic tree-

building facility, and a mechanism for associating grammar productions with functions to perform the 

semantic synthesis. It is based heavily on yacc, and in fact is implemented largely by modifications to 

the standard yacc compiler. Many yacc featureS have been left in LLPT, and these will not be discussed 

in detail. 

parts: 

LLPT takes as input a program in the LLPT specification language. An LLPT program has three 

declarations (precedence, associativity, whitespace, C++) 
%% 
rules (grammar productions, semantic actions, etc). 
%% 
C++ functions 

after examining this program, LLPT produces (1) a lexical analyzer, (2) a parser, and (3) a series of C++ 

class definitions corresponding to grammar productions. The parser recognizes and verifies input and 

also builds a parse tree from instantiations of the C++ classes corresponding to the rules recognized. 

These class definitions may well contain user-defined fields and member functions. 

Thus the user ends up with a parser which, when invoked upon correct input, builds a tree 

automatically. If the user has defined the appropriate functions, it will be possible to walk the tree to 

perform type checking, evaluation, or code production as desired. 

5. Grammar Specification 

5.1. Implicit Scanners 

LLPT users specify a language with a grammar that includes regular expressions wherever termi-

nal symbols are desired. LLPT is able to analyze these grammars to create both a parser and an intelli-

gent scanner. LLPT grammars specify an entire langnage, whereas ordinary grammars do not (because 

they elide token descriptions). 
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Here, for instance, is the specification of an LLPT parser for simple arithmetic expressions: 

%left'+' 
%left '*' 
%% 

!* Precedence, associativity */ 
!* as in yacc... *I 

expr : expr '+' expr 
I expr '*' expr 
I '(' expr ')' 
I integer 

integer: "(+ 1-)?[0-9]+" 

All rules are composed of nonterminals, literal terminals, and complex terminals. Quote marks enclose 

Single quotes enclose literal terminals, and denote strings of characters. Complex terminals are sur-

rounded by double quotes, and denote lex regular expressions mther than fixed strings. Note that the 

only difference between single and double quotes is that within the former lex regular expression meta-

characters have no special significance, whereas in the latter they do. Any token not enclosed with sin-

gle or double quptes is assumed to be a nonterminal, and must appear on the left of some rule. 

LLPT initially treats such specifications as though the embedded regular expressions were simple 

terminals mther than notation with special significance. It then constructs an LALR{l) parser precisely 

as yacc itself would, reporting any ambiguities present on this level in the form of shift/reduce and 

reduce/reduce conflicts. These can be resolved as in yacc, by assigning precedences and defining the 

associativity of terminals. 

After the parser has been constructed, LLPT examines both the parser and these regular expres-

sions in order to create a scanner for the language. First, the LALR parse table is consulted. This table 

is an array with parser states along one dimension and tokens along the other. For each state, there is an 

indication of what should be done when a given token is encountered: shift, reduce, accept, or signal an 

error. Those tokens that do not cause an error are called the "lexical context" of that state. LLPT con-

structs context-sensitive scanners which consult the parser's state and look only for tokens in the 

corresponding lexical context. 
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Regular expressions describe sets, and it may happen that the input to the scanner matches more 

than one regular expression in the current lexical context In this case, the scanner will choose the long

est possible match. If the longest possible match is described by more than one expression, the scanner 

returns the token which was described earliest in the LLPT grammar. LLPT analyzes each lexical con

text and issues warning messages at compile-time whenever it finds the possibility of such ambiguity. 

These disambiguating rules were chosen to mimic yacc's treatment of shift/reduce and 

reduce/reduce conflicts. However, because the latter rule may appear arbitrary, and since reordering the 

grammar may not seem a pleasing way to resolve the same·length ambiguities properly, a keyword 

% tokprec exists in LLPT which can be used to state the user's preference. It is used in the declaration 

section, and followed by the terminal expressions in the desired order as in this example. 

%tokprec 'while', 'for'. 'if, 'else', "[a-z]+" 

This has the effect of stating that the usual keywords are to be returned even if there is a possible 

conflict with the regular expression [a-z)+, regardless of where these terminals appear in the subsequent 

grammar. 

5.2. Wbitespace Conventions 

Scanners do more than recognize keywords: they are also used to strip away whitespace and com

ments. LLPT users can direct this activity by using the %whitespace keyword. This, like the 

% tokprec keyword, should be used in the declaration section of the program. It must be followed by a 

single regular expression which describes which characters should be stripped away before any attempt 

is made to match a token regular expression. Example: 

%whitespace "(( \t'nJ/I':N.*))*" 

will cause LLPT to iguore any combination of blanks, tabs, or C++ line-terminated comments. 

There is also a provision for multiple definitions of whitespace within a single program. Suppose 

one wished to describe a C string with grammar rules. Such rules would look like this: 
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string: '"' chartist '"' 

chartist: char 
I charlist char 
I !*empty*/ 

char: "[\"]"<STR> 
I '\\"<STR> 

!* single characters other than " • I 
!* backslash escapes any character*/ 

Ordinary whitespace is significant within strings, whereas backslash-newline combinations are not. In 

effect, tokens that make up C strings are associated with a non-standard kind of whitespace. This effect 

can be implemented by introducing the second kind of whitespace and giving it a nametag, say <STR>, 

that can be appended to tokens as required. 

%whitespace "[ \n\t]*" 
%whitespace<STR> '\n" 
%% 
string: '"' char list '" '<STR> 

chartist: char 
I chartist char 
I !*empty*/ 

char: "[\"]"<STR> 
I '\\"<STR> 

This example provides an opportunity for a more precise explanation of whitespace semantics, which are 

as follows. In general, every input character is significant unless there is a global whitespace declared 

by use of the %whitespace keyword without a <name> suffix. Unless otherwise indicated, such global 

whitespace is stripped away before any attempt is made to match tokens. However, named whitespace 

expressions may exist, and if a terminal is tagged with a name then it is this kind of whitespace which is 

stripped away before the token can be recognized, rather than the usual kind. Thus in the modified rules 

above, the default whitespace is ignored before the first double quote, whereas only backslash-newline 

combinations are ignored before the second. 

It is possible to tag an entire grammar rule with a whitespace name, as in 
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char<STR>: "['\"]" 
I ''\.11 

In this case every tenninal mentioned in the rule obeys the indicated convention. In fact, one should 

think of every rule-name as being associated with the default whitespace, even though there is no print-

able name for it. 

However, one must be careful when using alternate whitespace conventions. The following 

demonstrates why. 

%whitespace "[ \t]" 
%whitespace<NL> '"n" 
%% 
confusing: ''\t"<NL> 

I ''\n" 

Under the default whitespace convention, newlines are significant. Under the NL convention, newlines 

are significant but tabs are not Suppose there is an effort to match a string to the confusing rule: then 

both \t<NL> and \n are valid lookahead tokens for some parser state. But each uses a different whi-

tespace convention. If the scanner pennitted such things, it would not know upon input tab-newline 

whether to treat the tab as significant (under the <NL> convention) or skip over it (under the default 

convention). Since there is no obvious answer to this question, the situation is not pennitted; it gen-

erates an error. The rule is that all tokens in a given lexical context must follow the same whitespace 

convention. 

Note that the semantics of LLPT whitespace closely follow the semantics of most hand-generated 

scanners. At each invocation the scanner first strips away whitespace and then finds a token. 

5.3. Conclusions on Grammar Specification 

Thus an LLPT grammar is more detailed than an ordinary one in the sense that its tokens are 

described, not merely mentioned. In fact, it completely specifies a language. However, the use of regu-

Jar expressions to describe tokens opens the way to certain ambiguities that would not be noticed in cer-
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tain systems. These ambiguities are resolved in a natural way. In addition, a language construct is 

introduced which allows one to define whitespace conventions. 

6. Tree Construction 

Since the goal of LLPT is to produce entire interpreters and translators, it is not enough simply to 

recognize a language. Once input has been established as being correct some steps must be taken to 

perform the indicated activity. This synthesis phase can be performed during parsing (with reduction· 

time actions), or after parsing. LLPT permits the former just as yacc does, in the form of semantic 

actions associated with rules. Alternately, a parse tree can be constructed to represent the program for 

later consultation. Semantic activity can then be deferred until the program is fully parsed. LLPT anti

cipates this by constructing parse trees automatically. The details of parse tree construction are dis

cussed in this section. 

6.1. Parse Trees 

Parse trees are rooted trees in which each node is closely related to some specific grammar pro

duction. LLPT must do two things before automatic parse tree construction is possible. First, it must 

be able to determine from the grammar what nodes corresponding to a given production will look like. 

This information is used to define C++ classes for each production so each node can be implemented as 

an object instantiated from the appropriate class. Second, LLPT must construct a parser that builds a 

parse tree as it recognizes programs. 

LLPT constructs abstract, rather than concrete, parse trees. Whereas there is an isomorphism 

between nodes in concrete parse trees and grammar productions, abstract parse trees are composed of 

nodes which correspond less closely to grammar productions. LLPT grammars carefully define the 

nature of the abstract tree. First, abstract trees do not contain leaves corresponding to literal terminals 

(keywords, operators, etc.). LLPT is able to identify literal terminals because they are enclosed in single 

quotes. Second, nodes corresponding to chain rules are eliminated. LLPT finds chain rules by looking 

for the angled brackets that are used to indicate them. Finally, lists are represented as a single parent 
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node with many children rather than as tall trees. Lists are identified by the square brackets followed by 

regular expression operators'+', '?',and'*'. 

Although there are a number of convenient representations for such trees, it seems natural (and 

will in fact prove helpful later) to use C++, because nodes can then be instances of classes, and the user 

can easily add to these classes fields and methods which are associated with particular semantics. 

The primary advantages of this scheme are: (I) it is possible to hide the internal representation of 

the tree as long as one gives the user a convenient way to access a given node's important attributes; 

(2) the instantiation and destruction of nodes become trivial, given the appropriately defined methods 

associated with these tasks; and most importantly (3) semantic actions (like type-checking and evalua-

tion) are generally associated with grammar productions, and it will be helpful to include functions for 

these tasks as methods of a given class. 

The following is the inheritance hierarchy for LLPT nodes, which may have three levels. First, 

there is a base class node which looks as follows: 

class node { 
slist children; 
node *parent; 

II pointers to children 
II pointer to parent 

public: 

}; 

II Identification members 
int production; II production name 
int alternation; II alternation number 
II Informational members 
int cloop; II controls implicit looping 
int numchildrenQ { return children.howmanyQ; } 
II Inquiry members 
void * getchild(int n) { return children.get(n); } 
node • getparentO { return parent; } 
II Construction members 
void setparent(node *n) { parent=n; } 
void addchild(void *n) { children.append(n); } 

This class contains methods and fields common to all nodes. Ideally, the class members presented 

above transparent to the user; they are used by the parser as it construct trees and by C++ code that uses 

implicit looping or child access. However, they are available to the user should finer control be neces-

-29-



sary. 

There is also a class for each nontenninal symbol appearing in the grammar. For instance, if there 

is a nontenninal 

stmt: expr ·;' 

then there will be a class stmt. If there is only one stmt alternation, then stmt will look as follows. 

class sunt: public node { 
public: 

strnt(node * cl,char * c2) 
{ 

production=prod _ strnt; 
alternation= 1; 
clooP=2; 
addchild(cl); 
(*(node *)getchild(l)).setparent(this); 
addchild( c2); 

}; 

} 
strntO 
{ 

production=prod _strnt; 
alternation=!; 
clOOP=2; 

} 
-strntO 
{ 

} 

delete getchild(l); 
delete getchild(2); 

Note that (so far) class stmt has essentially one function: to define constructors and destructors specific 

to that production. By and large a user will never invoke these: they are called automatically by the 

parser as the tree is built. 

So far there are two levels to the class hierarchy: first, a node, and second, a class associated with 

a production. However, a production may have more than one alternation. In this case, a third level is 

added to the hierarchy. To illustrate this, consider these two productions: 
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stmt: expr ';' 

expr: expr '+' expr 
I expr '*' expr 
I number 

The classes defined for these will have the following outline. 

class node { 
II all the stuff a node should have 

}; 
class stmt public node { 

II all the stuff a stmt should have 
}; 
class expr: public node { 

II an empty container class 
}; 
class expr _1: public expr { 

II all the stuff for the '+' alternation 
}; 
class expr _ 2: public expr { 

II all the stuff for the '*' alternation 
}; 
class expr_3: public expr { 

II all the stuff for the 'number' alternation 
}; 

A parse tree will be built out of instances of these classes. In order to use the tree properly, it will be 

necessary for the user to become familiar with the scheme used here; the best way to do this is to write 

a small example and look at the output 

7. Semantic Actions 

The features presented thus far compose a fine platfonn for language description, but it is still 

necessary to introduce a mechanism which assists the user in assigning meaning to whatever programs 

are recognized during parsing. LLPT's assumption is that this meaning, the semantics of a program, 

will be defined by the actions caused by the user either as the program is parsed or after parsing is com-

plete. In either case, these actions will revolve around the number and kinds of productions which are 

recognized. In fact, the close relationship between actions and grammar rules is one of the motivations 

for using C++ class instances as parse tree nodes: one can implement these actions as methods of the 
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parse tree nodes. These are then available for invocation by the user either as the parse tree is built 

(with reduction-time actions, precisely as in yacc) or after the tree has been constructed. 

7 .1. Example 

Consider the following grnmmar production: 

stmt: "while" "(" expr ")" stmt 

Suppose one wishes to assign a meaning to this production which corresponds to the expected iterative 

notion. Then it is sufficient to describe the process of evaluating such a statement node with C++ code. 

For example, we would like to associate the following evaluation method with the above production: 

II evaluate a node corresponding to the "expr" production 
void eva!O { 

} 

while ($expr->eva!O!=O) 
$strnt->eva!O; 

This fragment assumes that nodes of type expr have an int eva!() method attached. It also assumes, 

correctly, that $expr and $stmt are recognized by LLPT and replaced with appropriate genuine C++ 

code that retrieves the correct children (this will be discussed later). 

The syntax for this rule/method association is that any production may be followed by a dot, in 

which case the code between the next set of curly braces is enclosed in the class definition of that node. 

For example 

stmt: "while" "(" expr ")" stmt 
. { II '.' introduces method definitions. 

void eva!() { 

} 
} 

while ($expr->eval0!=0) 
$strnt->eval(); 

It is now possible, given a node of type strnt, to invoke its eva!() method to perform the indicated task. 

This could be done at reduction time as follows: 

-32-



stmt: 'while' '(' expr ')' stmt { $$->eva!O; } 
0 { 

} 

void eva! { 

} 

while ($expr->eval0!=0) 
$stmt->eva!O; 

Alternatively it could be done later on, probably after the entire tree is built. Note that the reason for 

the "." above is to distinguish between a reduction action and a class method definition. 

Two kinds of preprocessing are done to the C++ code within the method definition braces. The 

first involves the dollar symbol $, which signals that the user wishes to refer to a child node correspond-

ing to either a terminal or nonterminal on the right-hand-side of the given production. It is followed by 

an identifier that must match a nonterminal in the production. Thus in the above code, $expr refers to 

the first child of the current node (remember that simple terminals are elided from the tree). If there is 

more than one child with the same name, it is possible to use a #.suffix: a second expr would be 

referred to as $expr#2, and so on. 

Because the user may wish to access child nodes from plain C++ codes, it is necessary for the 

user to understand the precise translation of such expressions. The above $expr is translated into ((expr 

*)getchild(l)). That is, the first child is retrieved, and because children are stored as void pointers it is 

necessary to cast the return value of getchild(l) into an expr pointer. It is always desirable to cast the 

return value of getchild() into the a pointer of the class at the lowest level of the node hierarchy, 

because then one has access to the most specific methods. 

One problem which arises from the use of C++ involves productions with more than one alterna-

tion. Suppose we were to define an expr production for use with the above while loop: 
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expr: expr '+' expr 
. { 

int evalO { return $expr->eva!O + $expr#2->evalQ; } 
} 
I expr '*' expr 
. { 

int evalO { return $expr->eval0 • $expr#2->evalQ; } 
} 
I "[0-91+" 
. { 

int evalO { return atoi($" [0-9]+ "); } 
} 

stmt: 'while' '(' expr ')' stmt { $$->evalO; } 
. { 

} 

void evalO { 

} 

while ($expr->eval0!=0) II ! !! 
$stmt->eval0; 

Note that expr has more than one production, with a different evaluation scheme for each one. The 

$expr reference in the line marked !!!, however, is by itself a bug. C++ is unable to resolve this refer-

ence at compile· time, because it doesn't know that each class which inherits from node stmt contains an 

eva!() method. This must be explained to the C++ compiler by inserting virtual function declarations 

into the expr node declaration. LLPT permits this as follows. 

expr 
{ 

} 
virtual int evalO; II function declaration 

expr '+' expr 
. { 

} 

I 

int evalO { return $expr->eval0 + $expr#2->eva!Q; } 

... etc ... 

Now the expression $expr->eval() is meaningful, because care has been taken to inform C++ that each 

class associated with the expr alternations has an eval() function. 

Remark: A perfect prototyping tool would insert such declarations automatically. In addition, it would 

extract method definitions from the class definitions and place them in a separate file, enabling one 
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to use the class header file without obtaining "multiple function declaration" error messages. This 

has not been done largely because of the difficulty involved in creating a C++ parser, and also 

because these are intrinsically C++ failures that might well be resolved by choosing a better 

object-oriented language as a base for LLPT. 

A second preprocessing stage involves productions which use the extended BNF for lists. Sup-

pose one has the following production for statement lists. 

stmtlist: [ stmt ';' ]* 

then the evaluation of stmtlist would probably involve a straightforward iteration over each of the stmt 

children. This could be accomplished as follows: 

stmtlist: [ stmt ';' ]* 
. { 

} 

II possible C++ code ... 
[ $stmt.evalQ; l 
II possible C++ code ... 

Here, any C++ statements within the '[' and ']' are placed in a loop which is executed once for each 

occurrence of a statement. Note that the $stmt reference is changed into code which appropriately refer-

ences each successive statement node. 

8. Summary 

LLPT provides mechanisms which assist in the language implementation task. It provides a way 

to specify the entire grammar of the language, notation to assist the user in building a parse tree of the 

correct shape, and a way to associate semantic actions with nodes of the parse tree. 
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CHAPTER IV 
CONCLUSION 

1. Advantages 

At this point, it is appropriate to step back and look at the results of this effort. First, a unified 

and compact approach to a large portion of syntactic specification has been developed in which many 

advantages of the traditional approach are retained. The solution is superior to other attempts in two 

ways. It can be judged more convenient than the scannerless parsing method because of its ability to 

handle whitespace easily and disambiguating rules. In addition, it exhibits a flexibility (with respect to 

whitespace and lexical environment) that is not evidenced by other scanner-implication systems. 

The second issue involves parse trees. The problem of correlating abstract syntax with concrete 

syntax is a difficult one. The approach which specifies abstract syntax with reduction-time actions is 

completely flexible but opaque. The CAGT approach is reasonably flexible but obscures the relationship 

between concrete and abstract syntax. The idea that one should be able to specify an abstract syntax by 

armotating a concrete grammar seems a good one. The BNF extensions proposed here serve that pur-

pose. 

The final issue involves semantics. The fact that both denotational semantics and attribute gram-

mars tie semantics to grammar rules suggested an object-oriented approach to semantic synthesis. LLPT 

parse tree nodes are instantiations of C++ classes, and the user is capable of tailoring these classes with 

the appropriate methods and fields. 

There is no question that the three issues can be wrapped up into a neat bundle, because this has 

in fact been done in LLPT. It is not a production tool, but has served well in the role of experimental 

platform. The appendix contains a working LLPT program that defines the syntax and semantics of a 

simple desk calculator. 
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2. Drawbacks 

There are a number of problems with LLPT. Most can be solved with a reasonable amount of 

effort. Here is a list of the most irritating flaws. 

2.1. C++ 

In the same way that yacc is associated with C, LLPT is associated with C++. The reasons for 

the "upgrade" are clear: C++ is an object-oriented language, and something akin to its class mechanism 

is clearly called for by LLPT. However, it may be that C++ is not the best basis for LLPT. It is an 

exceedingly complicated language and, although there may be advantages to the experienced user, a 

tremendous amount of effort is requited to learn even the minimal amount required of LLPT users. 

Only time will tell whether the tradeoff is favorable. 

2.2. Interpretation 

In addition, any tool which claims to assist in prototyping ought to have an interpretive mode to 

cut down a part of the write-compile-test cycle that is prevalent in software development It would be 

nice if the semantic actions of LLPT could be specified in a language that could be interpreted; this 

would pave the way for a fully interpreted prototyping tool, rather than one which requires the compila

tion of a scanner, a parser, and whatever C++ code is included in the LLPT specification. 

2.3. Conditional Compilation 

In any case, a polished product would understand how to deal with incremental changes to an 

interpreter specification. For instance, changes to a regular expression embedded in the grammar should 

not necessarily cause a new parser to be built. 

3. Suggestions 

LLPT is not a finished product, in the sense that there are a number of things which could and 

should be done to improve it Areas for further exploration are discussed below. 
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3.1. C++ Libraries 

Although it is not at all clear that C++ provides an appropriate basis for a prototyping tool, the 

benefits of object-oriented programming, particularly with respect to this kind of task, are clear. Thus, 

regardless of which language is appropriate, an effort should be made to find the abstractions which are 

useful to the task of language development; once these are determined, an effort should be made to 

equip LLPf with a suitable library of abstract data types corresponding to these abstractions. Offhand, 

there are a handful of obvious choices: symbol table management, environment management, and type 

checking could each be facilitated by the provision of C++ classes corresponding to each abstraction. 

No doubt there are a host of candidates, and with. a little thought such a library could be made useful 

not only to LLPf users but anybody who does language development in C++. 

3.2. Error Messages 

To date, little effort has gone into reporting errors in a clean and helpful way. No prototyping 

system should lack useful diagnostics. LLPf should generate helpful messages to assist the user when 

bugs are introduced in the grammar, the regnlar expressions embedded in the grammar, or the C++ code 

which is also embedded in the grammar. 
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Appendix A: A desk calculator 

I* 
* What follows is LLPT code for a small desk calculator. It 
* supports integer arithmetic, variables and functions with 
• single-letter names, and various looping and conditional 
* constructs. 
*I 

%{ 
extern double atof(const char*); 
double memory[26]; 
node *functions[26]; 

%} 

%start program 

!* variable storage *I 
!* function storage *I 

!* The usual notions of precedence and associativity 
*I 

%right'=' 
%left 'II' 
%left'&&' 
%left '=' '!=' 
%left'<' '<=' '>' ">=' 
%left'+''-' 
%left '*' ·'/' 
%left 11UMINUS" 

!* Whitespace is zero or more blanks, tabs, newlines, or C++ 
*comments. 
*I 
%whitespace "([ \\t\\nJI C:..Y\V.*))*" 

%% 

expr 
{ 

} 

II All expr's have an evalO method 
virtual double evalO { cout << "Undefined; sorry\\n"; return O; }; 

"[a-z]" '=' expr 
. { 

II assignment. Note overloaded '$'. 
double evalO {return memory[*$"[a-z]"-'a']=$expr->eval0; } 

} 
I ''[a-z]" '(' actuals ')' 
. { 

} 

II methods can be declared now and defined later. 
double evalO; 
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I "[a-z]" 
. { 

double eva!O { return memory[*$"[a-z]"-'a']; } 
} 
I expr '>=' expr 
. { 

II Note tbe disambiguating suffix on $expr#2. 
double eva!O { return $expr->eva!O >= $expr#2->eva!O; } 

} 
I expr '<=' expr 
. { 

double eva!O { return $expr->eva!O <= $expr#2->eva!O; } 
} 
I expr '==' expr 
. { 

double eva!O { return $expr->eval0 = $expr#2->eva!O; } 
} 
I expr '!=' expr 
. { 

double eva!O { return $expr->eval0 != $expr#2->eva!O; } 
} 
I expr '<' expr 
. { 

double eva!O { return $expr->eval0 < $expr#2->eva!O; } 
} 
I expr '>' expr 
. { 

double eva!O { return $expr->eva!O > $expr#2->evalO; } 
} 
I expr '-' expr 
. { 

double eva!O { return $expr->eva!O - $expr#2->eva!O; } 
} 
I expr '+' expr 
. { 

double eva!O { return $expr->eva!O + $expr#2->evalQ; } 
} 
I expr '/' expr 
. { 

double eva!Q { return $expr->evalO I $expr#2->eva!Q; } 
} 
I expr '*' expr 
. { 

double eva!Q { return $expr->eval0 * $expr#2->eva!O; } 
} 
I '-' expr %prec "UMINUS" 
. { 

double eva!Q { return -$expr->evalQ; } 
} 
I "[0-91+" 
. { 
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double evaiO { return atof($"[0-9]+"); } 
} 
I < '(' expr ')' > I* Chain rule: does not require an eva! *I 

stmt
{ 

} 

II All stmts have an eva! as well. The value of a stmt is 
II the value of the last expression evaluated. 
virtual double evaiO { 

} 

cout << "unimplemented evaluation scheme for strnt\\n"; 
return 0; 

'{' strntlist '}' 
. { 

double evaiO; 
} 
I expr ';' 
. { 

double evaiO { return $expr->evaiO; } 
} 
I 'print' expr ';' 
. { 

} I 

double evaiO { 

} 

double retval; 
retval=$expr->evaiO; 
cout << "Result:" << retval << '\.\n"; 
return retval; 

'while' '(' expr ')' strnt 
. { 

double evaiO; 
} 
] 'for' 'C expr ';' expr ';' expr ')' stmt 
. { 

double evaiO; 
} 
I 'if' '(' expr ')' strnt 
. { 

} 

double evaiO { 

} 

double retvai=O; 
if ($expr->eval0) 

retval=$stmt->eva!O; 
return retval; 

I 'if' '(' expr ')' strnt 'else' strnt 
. { 

double evaiO { 
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} 
} 

if ($expr->evaiQ) 
return $strnt->evaiO; 

else return $strnt#2->evalO; 

I 'func' "[a-z]" '(' formals ')' strnt 
. { 

II evaluating a function definition just stores 
II the function body and argwnent list 
double evaiO { 

} 
} 

int c; 
c=*$"[a·z]"-'a'; 
functions[c]=this; 
return 0; 

I* Function parameters *I 
formals: 

"[a·zr 
I formals ',' "[a-z]" 

I* Function argwnent list *I · 
actuals: expr 

I actuals ',' expr 

strntlist: [ strnt ]* 
. { 

double evaiO; 
} 

I* Note the reduction-time evaluation *I 
program: [ strnt { $strnt->evaiO; } ]* 
%% 
mainO 
{ 

} 

extern int yyparseO; 
extern node *yytree; 

yyparseO; 

double strnt_l::evaiO { return ((strntlist *)getchild(l))->evaiO; } 

double strntlist::evalO { 
double retval; 
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} 

for (int yyloop=O; yyloop<numchildrenO; yyloop+=cloop) 
retval=((stmt *) getchild(l+yyloop))->evalO; 

return retval; 

double stackvals(stmt *body, formals *f, actuals *a) 
{ 

} 

//let C++ manage recursive stacks 
cbar c; 
double retval, save; 

c=*(char *)f->getchild(f->alternation); 
save=memory[c-'a']; 
memory[c-'a']=((expr *)a->getchild(a->alternation))->evalO; 
f=(formals *)((f->alternation=2)?f->getchild(l):NUlL); 
a=(actuals *X(a->alternation 2)?a->getchild(l):NUlL); 
retval=(f && a)?stackvals(body, f, a):body->evalO; 
memory[c- 'a']=save; 
return retval; 

double expr _ 2::evalO 
{ 

} 

node *func; 
stmt *body; 
formals *f; 
actuals *a; 
cbar c; 

c=*(char *)getchild(l); 
func=functions[c-'a']; 
body=(stmt *)func->getchild(3); 
if (!func) { 

} 

cerr << "Undefined function " << c << ''\\n"; 
return 0; 

f=(formals *)func->getchild(2); II get formals 
a=(actuals *)getchild(2); // get actuals 
if (f && a) 

return stackvals(body, f, a); 
else return body->evalO; 

double stmt_ 4::evalO 
{ 

} 

double retval=O; 
while (((expr *) getchild(l))->evalO) 

retval=((stmt *) getchild(2))->eval0; 
return retval; 
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double sttnt_ 5::eval0 
{ 

} 

double retval=O; 
((expr *) getchild(l))->eva!Q; 
while (((expr *) getchild(2))->eval0) { 

retval=((expr *) getchild(4))->eva!O; 
((expr *) getchild(3))->eva!O; 

} 
return retval; 
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Appendix B: Source listings 

Because LLPT is based on lex and yacc, which are copywrited programs, it is not possible to produce 

the entire text of LLPT. Thus this listing includes only the output of the Unix diiT command invoked 

on the myacc/yacc and mlex/lex source directories. The truly interested reader should be able to piece 

the source together with this listing and the original lex and yacc source files. 

First, the difference between the parser and yacc. 

Only in myacc: lexer.awk 
BEGIN { 

FS="" 
while (getline > 0) { 

} 

if ($0=="%%" && $0!"":") break 
if ($0="%tokprec" && $0!"":") 

TP++ 
else TOKPREC[$1,$2]=TP 

while ( getline > 0) { 

} 

if ($0=="%%" && $0!"":") break 
sub(J:$/,"" ,$2) 
WSPACE[$1]=$2 

while ( getline > 0) 
print $0 I "sort + 1 -2 I sort > lexer2.tmp" 

close ("sort + 1 -2 I sort > Iexer2.tmp") 
MAXSTATE=O 
PREVSTATE="" 
exit 

} 
# TOKPREC[expr:env SUBSEP [IOJJ=precnurn 
# BASESTATES[statenum] exists and is -I if it is a "core" state 
# SAMESTATES[statenum] otherwise; set to number of the equivalent core state 
# TOKV AL[expr:env]=tokenvalue >256 
# TOKENV[expr:env]=env 
# TOKSTR[expr:env]=expr 
END{ 
while (getline < "lexer2.tmp" > 0) { # < "lexer2.tmp" > 0) { 

if ($l>MAXSTATE) MAXSTATE=$1; 
if (PREVSTATE=="") PREVSTATE=$1 
if {$l!=PREVSTATE) { 

Appendix B 

if (!(STERMS in DIFFSTATES)) { 
DIFFSTATES[STERMS]=PREVSTATE 
BASEST A TES[PREVSTATE]=-1; 

} else SAMESTATES[PREVSTATE]=DIFFSTATES[STERMS] 
STERMS="" 
PREVSTATE=$1 
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} 

} 

} 
base=3 
if (NF>6) 

for (i=3; i-+4<=NF; i++) { 
$2=$2 "" $i 
base=i+l 

} 
num=split($2,stuff,": ") 
if (num>2) { 

} 

for (i=2; i+ I <=num; i++) 
stuff[l]=stuff[l] ":" stuff[i] 

stuff[2]=stuff[num] 

TOKENV[$2]=stuff[2] 
TOKV AL[$2]=$(NF-3) 
TOKS1R[$2]=stuff[l] 
TOKLIT[$2]=$NF 
STERMS=S1ERMS SUBSEP $2 

if (!{STERMS in DIFFSTA1ES)) { 
DIFFSTA1ES[STERMS]=PREVSTA1E 
BASESTA1ES[PREVSTA1E]=-l; 

} else SAMESTA1ES[PREVSTA1E]=DIFFSTA1ES[STERMS] 
outputO 
#system("rm -f lexer2.tmp") 

func output( 
{ 

start, i, sts, num) 

print"%{" 
print "void yylsterror(short);" 
print "#include <stdlib.h>" 
print "#include <strings.h>" 
print "#include <stream.h>" 
print "#include 
print "extern short yyystate;Ohort yyyswitch;48}" 
printf "%%start dummy " 
for (i in DIFFSTA1ES) 

printf" S%d", DIFFSTA1ES[i] 
printf "48%%%0{0 
print "switch(yyystate) {" 
for (i=O; i<=MAXSTA1E; i++) { 

if (i in BASEST A 1ES) { 
printf("case %d: BEGIN S%d; yyyswitch=%d; break;O, i, i, i) 

} else if (i in SAMESTA1ES) { 
printf("case %d: BEGIN S%d; yyyswitch=%d; break;O, i, SAMESTA1ES[i], SAMESTATES[i]) 

} 
} 
print"}}" 
for (wspaces in WSPACE) { 

if (WSPACE[wspaces]) { 
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printf "<dummy" 
for (stokens in DIFFSTA1ES) { 

num=split(stokens, sts, SUBSEP) 
x=TOKENV[sts[2]] 
if (x=wspaces) 

printf(",S%d",DIFFSTA1ES[stokens]); 
} 
printf(">%s;O, WSPACE[wspaces]) 

} 
} 
for (stokens in DIFFST A 1ES) { 

num=split(stokens, sts, SUBSEP) 
x=TOKENV[sts[2]] 
for (i=3; i<=num; i++) { 

if (x!=TOKENV[sts[i]J) { 
print x, TOKENV[sts[i]], sts[i], i, num 

error('Error in state" DIFFSTATES[stokens] ": which whitespace to strip?") 
} 

} 
for (j=2; j<=num; j++) 

soutput(sts[j], DIFFSTATES[stokens]) 
} 
print ".1\n{ yylsterror(yyyswitch); exit(-1); }" 
print"%%" 

} 

print "yywrapQOOreturn -1;0" 
yylsterrorO 

func soutput(t, s, i, ntstr,c) 
{ 

if (TOKLIT[t]=O) { 
ntstr=TOKS1R[t] 
gsub(" 

printf("<S%d> 
} else printf("<S%d>%s{yylval.st.rptr=new char[l+strlen(yytext)];Ostrcpy(yylval.st.rptr, yytext);Oreturn %d;);O, s, TO! 

} 

func stroutput(t, s,i, ntstr,c) 
{ 

) 

if (TOKLIT[t]=O) { 
ntstr=TOKS1R[t] 
gsub{" 
printf(" 

) else printf(" 

func yylsterror( start, i) 
{ 

print "void yylsterror{short i)O" 
printf(" fprintf( stderr, 
for (i=O; i<MAXSTA1E; i++) { 
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} 

} 

if (i in BASESTA1ES) { 
if (start) 

} 

printf "} else" 
start=1 
printf "if' 
printf("(i=%d) {0, i) 
errinfo(i) 

print "}" 
printf(" fprintf(stderr, 
print"}" 

func errinfo(i) 
{ 

} 

for (stokens in DIFFSTA1ES) { 

} 

if (DIFFSTA1ES[stokens]!=i) continue; 
num=split(stokens, sts, SUBSEP) 
x=TOKENV[sts[2]] 
for (j=2; j<=num; j++) { 

printf("fprintf(stderr, 

} 

stroutput(sts[j], DIFFSTA1ES[stokens]) 
printf(");O); 

func error(s) 
{ 

} 

print s I "cat 1>&2" 
exit(1) 

Only in myacc: classes.awk 
BEGIN { 

inf=ARGV[1] 
while (getline < inf > 0) { 

if ($()/startdecll) { 
while ((getline < inf > 0) && $0!-/enddecl/) 

} 

getline < inf 
} 
if ($()/startevall) { 

while ((getline < inf > 0) && $0!-/endevall) 

getline < inf 
} 
maxes[$1]++ 

close( in!) 
} 
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/startdecV { 
decl="" 
while ((getline>O) && $0nenddecl!) 

decl=decl "0 $0 
getline 

} 
/st;a.rtzval/ { 

} 

eval="" 
while ((getline>O) && $0nendeval!) 

eval=eval "0 $0 
getline 

$0 != 1111 { 

if (maxes[$1]>1 && $2=1) { 

} 

print "Olass " $1 ":public node {" 
print "public:" 
print dec! 
print "};" 

if (maxes[$1]>1) 
cn=$1 "_" $2 

else cn=$1 
if (maxes[$1]>1) 

print "Oiass " en ": public " $1 " {'' 
else print "Olass " en ": public node {" 
print "public:" 
printf "" en "(" 
for (i=3; i<NF; i++) 

printf xval($i)" c" i-2 "," 
if (NF>=3) 

printf xval($i) " c" i-2 
print ")0{'' 
print "production=prod_" $1 ";" 
print "alternation=" $2 ";" 
print "cloop=" NF-2 ";" 
for (i=3; i<NF; i++) { 

print "addchild(" mn(i-2) ");" 
if ($i="nptr") 

print "(*(node *)getchild(" i-2 "))_setparent(this);" 
} 
if (i NF) 

print "addchild(" mn(i-2) ");" 
if ($i="nptr") 

print "(*(node *)getchild(" i-2 ")).setparent(this);" 
print"}" 
# for empty init 
if (NF>2) { 

print '"' en "00{" 
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} 

print "production=prod _" $1 ";" 
print "alternation=" $2 ";'' 
print "cloop=" NF-2 ";" 
print"}" 

print "-" en nOO{" 
for (i=3; i<NF; i++) 

print "delete getchild(" i-2 ");" 
print "delete getchild(" i-2 ");" 
print"}" 
print eva! 
print 11

};" 

if (maxes[$1]==1) { 
print "Olass "$1 " 1: public" $1 "{" 
print "public:" - , 
print "//empty container class" 

printf "" $1 "_1('' 
for (i=3; i<NF; i++) 

printf xval($i) " c" i-2 "," 
if (NF>=3) 

printf xval($i) " c" i-2 
printf ") : ('' 
for (i=3; i<NF; i++) 

printf" c" i-2 "." 
if (NF>=3) 

printf" c" i-2 
print ") {}" 

print"};'' 
} 

} 

func mn(i) 
{ 

if ($(i+2)="nptr") return "c" i 
return "c" i 

} 

func xval(x) 
{ 

if (x=="nptr") return "node *" 
return "char*" 

} 
Only in myacc: y5.c 
#include <stdio.h> 
#include "dextern" 

extern FILE *fclasses, *faction; 
extern int *mem; 
extern int *prdptr[NPROD]; 
extern char *typeset[NTYPES]; 
extern char *symnamO; 



closeunp(np, end, special) 
int np; 
int end; 
int special; 
{ 

} 

int offset, i, j, unp; 

offset= mem-prdptr[np]-1; 
offset ~ end; 
fprintf(fclasses, "%s ", symnam(*prdptr[np])); 
for G=O,i=l; i<=np; i++) 

if (*prdptr[np]==*prdptr[i]) j++; 
fprintf(fclasses, "%d", j); 
for (i=l; i<=offset; i++) { 

} 

if (absym(prdptr[np][i])) 
continue; 

unp=fdtype(prdptr[np][i]); 
fprintf(fclasses, " %s", typeset[unp]); 

fprintf(fclasses, "0); 

buildtree(np, end, special) 
int 
int 
int 
{ 

np; 
end; 
special; 

int offset, i, j, k, m, unp; 
extern int chainrule[NPROD]; 

offset= mem-prdptr[np]-1; 
offset ~ end; 
fprintf(faction, "0* build tree */0); 
if (chainrule[np]) { 

fprintf(faction, "0* chain rule */0); 
for (i= I; i<=offset; i++) { 

} 

if (absym(prdptr[np][i])) continue; 
if (prdptr[np][i]>=NTBASE) 

if (prdptr[np][i]!=*prdptr[np]) 
error("chain rule will foul up C++"); 

unp=fdtype(prdptr[np][i]); 
fprintf(faction, "yyval.nptr=yypvt[%d]. %s;", 

i-offset, typeset[unp]); 
i++; 
break; 

if (i>offset) 
error("chain rule without signicant elements"); 

for(; i<=offset; i++) { 
if (absym(prdptr[np][i])) continue; 
error("chain rule with more than I significant ell''); 

Appendix B -53-



} 

} 
return; 

} 
for (m=O, i=l; i<=offset; i++) { 

if (absym(prdptr[np][i])) continue; 
m++; 

} 
for (j=O,i=l; i<=np; i++) 

if (*prdptr[np]==*prdptr[i]) j++; 
if (special) { 

if (offset) { 
for (k=2; k<=offset; k++) { 

} 

if (absym(prdptr[np][k])) 
continue; 

trnp=fdtype(prdptr[np][k]); 
fprintf(faction,"(*(yypvt[%d].nptr)).addchild('', 

!-offset); 
fprintf(faction, "yypvt[%d]. %s", 

k-offset, typeset[trnp]); 
fprintf(faction, ");0); 

} else fprintf(faction, "yyval.nptr=new %s _ %d(", 
symnam(*prdptr[np])j-1 ); 

} else fprintf(faction, "yyval.nptr=new %s_%d(", 
symnam(*prdptr[np])j); 

for (i=l; i<=offset; i++) { 

} 

if (absym(prdptr[np][i])) 
continue; 

trnp=fdtype(prdptr[np][i]); 
if (!special II !offset) { 

} 

fprintf(faction, "yypvt[%d].%s", i-offset, typeset[trnp]); 
!*if (i<offset) fprintf(faction, ",0); *I 
if (--m) fprintf(faction, ",0); 

if (!special II !offset) 
fprintf(faction, ");0); 

Only in myacc: node.h 
class node { 

slist children; 
node *parent; 

public: 

II pointers to children 
II pointer to parent 

int production; II production name 
int alternation; II alternation number 
int cloop; II how many rhs were there? 
nodeQ { 

} 
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parent=O; 
production=(); 
alternation=(); 
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void *getchild(int n) { return children.get(n); } 
int numchildrenO { return children.howmanyO; } 
node • getparentO { return parent; } 
void setparent(node *n) { parent=n; } 
void addchild(void *n) { children.append(n); } 

}; 
Only in myacc: slistC 
#include <stdlib.h> 
#include <stream.h> 
#include "slisth" 

int slist:append(void *a) 
{ 

} 

num++; 
if (last) { 

} 

last->next = new slink(a, 0); 
last = last->next; 

else first = last = new slink(a, 0); 
return 0; 

void *slist::get(int n) 
{ 

void default_ error( char*); 

if (n>num) default_ error(" not that many elements"); 
if (n<O) default_ error("negative get"); 

} 

slink *trnp:first; 
for (int i=l; i<n; i++) 

trnp:trnp->next; 
return trnp->e; 

void slist: :clearO 
{ 

} 

while (first) { 

} 

slink *trnp=first->next; 
delete first; 
first = trnp; 

first = last = 0; 
num =0; 

void default_ error( char *s) 
{ 

} 

cerr << s << "0; 
exit(!); 

Only in myacc: slisth 
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class slink { 
friend class slist; 

slink *next; 
void *e; 
slink( void *a, slink *p) { e=a; next=p; } 

}; 

class slist { 
slink* last; 
slink* first; 
int num; 

public: 
int append(void *a); II add at tail of list 
void *get(int n); II return and remove head of list 
void clearO; II remove all links 
int howmanyO { return num; } II how many links? 

slistO { first=last=O; num=O;} 
slist(void *a) { first=last=new slink(a, 0); num=l;} 
-slistO { clearQ; } 

}; 
diff yaccpar.C yaccpar 
4a5 
> !* #define YYDEBUG */ 
IOdiO 
< 
19a20,24 
> short yyystate; 
> extern int yylexO, yyylexO; 
> extern void yyerror( char *); 
> extern int yyparseQ; 
> node *yytree; 
2lc26,27 
< yyparseQ { 

> int yyparseO 
> { 
30c36 
< yystate = 0; 

> yyystate = yystate = 0; 
42c48,50 
< if( ++yypS> &yys[YYMAXDEPTH) ) { yyerror( "yacc stack overflow" ); return(!); } 

> if( ++yypS> &yys[YYMAXDEPTH] ) { 
> yyerror( "yacc stack overflow" ); return(!); 
> } 
53c61 
< if( yychar<O ) if( (yychar=yylexO)<O ) yychar=O; 

> if( yychar<O ) if( (yychar=yyylexQ )<0 ) yychar=O; 
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59c67 
< yystate = yyn; 

> yyystate = yystate = yyn; 
68c76 
< if( yychar<O ) if( (yychar=yylexQ)<O ) yychar = 0; 

> if( yychar<O ) if( (yychar=yyylexQ)<O ) yychar = 0; 
76c84,86 
< if( (yyn = yyxi[l]) < 0) return(O); /* accept */ 

> if( (yyn = yyxi[l]) < 0 ) { 
> yytree = yyval.nptr; 
> return(O); /* accept */ 
77a88 
> } 
86a98 
> goto yyerrlab; /* just so used */ 
100c112 
< yystate = yyact[yyn]; /* simulate a shift of "error" */ 

> yyystate = yystate = yyact[yyn]; /* simulate a shift of "error"*/ 
147c159 
< if( yyj>=YYLAST II yychk[ yystate = yyact[yyj]] != -yyn) yystate = yyact[yypgo[yyn]]; 

> if( yyj>=YYLAST II yychk[ yyystate = yystate = yyact[yyj]] != -yyn ) yyystate = yystate = yyact[yypgo[yyn 
153a166,188 
> 
> int yyylexQ 
>{ 
> int i; 
> extern char *yytext; 
> 
> #ifdef YYDEBUG 
> if (yydebug) 
> fprintf(stderr, "LEX: (state==%d)O, yyystate); 
> #endif 
> i=yylexQ; 
> #ifdef YYDEBUG 
> if (yydebug) 
> fprintf(stderr, "LEXRET: %d (%s)O, i, yytext); 
> #endif 
> return i; 
>} 
> 
> void yyerror(char *s) 
>{ 
> cerr << "There was an error: " << s << "0; 
> exit(l); 
>} 
diff myacc/Makefile oyacc/Makefile 
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la2 
> # @(#)Makefile 4.2 (Berkeley) 83/02111 
3,5c4 
< # @(#)Makefile 1.1 86109/25 SMI; from UCB 4.2 83102/11 
<# 
< DESIDIR=/homeljcrlsrc/llpl/ 

> DESIDIR= 
8c7 
< yl.c y2.c y3.c y4.c y5.c ---
> yl.c y2.c y3.c y4.c llclO 
<all: myacc 

>all: yacc 
13,17cl2,17 
< myacc: yl.o y2.o y3.o y4.o y5.o 
< $(CC) -o myacc y? .o 
< install -s myacc $(DES1DIR)/hin 
< install -c yaccpar.C $(DES1DIR)/lib 

· < yl.o y2.o y3.o y4.o y5.o: dextem files 

> yacc: yl.o y2.o y3.o y4.o 
> $(CC) -o yacc y?.o 
> y I.o y2.o y3 .o y4 .o: dextem files 
> install: 
> install -s yacc $(DES1DIR)Iusr/hin 
> install -c yaccpar $(DES1DIR){usr/lib 
19cl9 
< -rm -f * .o myacc 

> -rm -f • .o yacc 
diff myaccldextem oyaccldextem 
243c243 
< # define OFILE "y .tab.C" 

> # define OFILE "y.tab.c" 
250,266d249 
< # endif 
< 
< I* lexer output file name *I 
< 
< # ifndef FILELTMP 
< # define FILELTMP "lexer.bnp" 
< # endif 
< I* lexer output file name *I 
< 
< # ifndef FILEL 
< # define FILEL "y.lexer.l" 
< # endif 
< 
< /* output file for C++ class defs *I 
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< 
< # ifndef FILECPP 
< # define FILECPP "classes.unp" 
diff myacclfiles oyacclfiles 
14,19c14 
<#define PARSER "/homeljcrlsrc/llpt/myacclyaccpar.C" 
< I* how to build a C++ classes from a specification file *I 
< # define CCMD "awk -f /homeljcrlsrc/llpt/myacclclasses.awk classes.unp >> y.classes.h" 
< /* how to build a lex program from a specification file *I 
< # define LCMD "awk -f /homeljcrlsrc/llpt/myacc/lexer.awk lexer.unp > y.lexer.l" 
< /* basic size of the Y ace implementation *I 

> # define PARSER "lusr/lib/yaccpar" 
21,23cl6,17 
<#define INCFILE1 "#include 
< #define INCFILE2 "#include 
< #define HUGE 

> /* basic size of the Y ace implementation *I 
> # define HUGE 
diff myacclyl.c oyacclyl.c 
40,43d39 
< int indebug = 1; 
< int cldebug = 0; /* debugging flag for closure *I 
< int gsdebug = 1; 
< int pidebug = 0; /* debugging flag for putitem *I 
53d48 
< extern int zapflag; 
58,67d52 
< if (indebug && foutput != NULL) { 
< int i, j; 
< for (i=O; prdptt[i]; i++) { 
< for (j=O; prdptt[i] [j]>O; j++) { 
< fprintf(foutput, "%d ", prdptr[i][j]); 
< } 
< fprintf(foutput, "%d ", prdptt[i][j]); 
< fprintf(foutput, "0); 
< } 
< } 
79,85d63 
< system(LCMD); I* build a lexer *I 
< system(CCMD); /* build a lexer *I 
< if (zapflag) { 
< ZAPFILE("classes.unp"); 
< ZAPFILE("lexer.ttnp"); 
< ZAPFILE("y.output"); 
< } 
173c151 
< if( *cp = ' ' II *cp == " ) ++cp; 

> if( *cp = ' ' ) ++cp; 
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177,194dl54 
< char sympref(i){ 
< char *cp; 
< 
< cp = (i>=NTBASE) ? nontrst[i-NTBASE].name : tokset[i].name ; 
< if( *cp = ' ')return 'I'; 
< if( *cp = " ) return '0'; 
< return' '; 
<} 
< 
< int absym(i) { 
< char *cp; 
< cp = (i>=NTBASE) ? nontrst[i-NTBASE].name : tokset[i].name ; 
< if {cp[O]==" II (cp[O]='$' && cp[l]='$')) 
< return I; 
< return 0; 
<} 
< 
< 
304a265 
> int indebug = 0; 
4!5a377 
> int pidebug = 0; /* debugging flag for putitem */ 
495a458 
> int gsdebug = 0; 
564a528 
> int cldebug = 0; !* debugging flag for closure */ 
diff myacc/y2.c oyacc/y2.c 
20,2ldl9 
<#define WHITESPACE 271 
< #define TOKPREC 272 
29,30d26 
<char wtag[NAMESIZE]; !* current whitespace tag */ 
< char swtag[NAMESIZE]; !* save current whitespace tag */ 
42,44d37 
< int nwhites; !* number of whitespaces defined */ 
<char • whiteset[NTYPES]; !* pointers to whitespace tags */ 
< char • whitespaces[NTYPES]; !* pointers to whitespace exprs */ 
5!d43 
< int tokprec[NTERMS]; !* store lexical precedence */ 
58,59d49 
< !* rewind variable */ 
< long actplace, ftellO; 
64d53 
< FILE * fclasses; 
70d58 

!* file for C++ class defs *I 

< FILE • !output; 
79,8ld66 

/* y .lexer.l file */ 

< int extbnf[NPROD] ; !* is this production+, ? , or*? *I 
< int chainrule[NPROD]; !* '<' '>'rule?*/ 
< int zapflag=l; !* zap temp files, or not? *I 
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82a68 
> 
87a74 
> 
91,98d77 
< fdefine = fopen( FILED, "w" ); 
< if( fdefine ==NULL ) error( "cannot open header file" ); 
< fclasses = fopen( FILECPP, "w" ); 
< if( fclasses ==NULL ) error( "cannot open y.classes.h file" ); 
< !output= fopen( FILEI..TMP, "w" ); 
< if( !output== NULL) error( "cannot open lexer file" ); 
< foutput = fopen(FILEU, "w" ); 
< if( foutput == NULL ) error( "cannot open y.output" ); 
104c83,84 
< 

> 
> 
10&88 
< 

zapflag=O; 

foutput = fopen(FILEU, "w" ); 
if( foutput = NULL ) error( "cannot open y.output" ); 

fprintf(stderr, "-d option now default in yaccO); 

> fdefine = fopen( FILED, "w" ); 
129,133d108 
< fprintf( ftable, "#include <stdlib.h>O ); 
< · fprintf( ftable, "#include <stream.h>O ); 
< fprintf( ftable, INCFILE 1 ); 
< fprintf( ftable, INCFILE2 ); 
< fprintf( ftable, "#include 
152,153d126 
< typeset[++ntypes] = cstash( "strptr" ); 
< typeset[++ntypes] = cstash( "nptr" ); 
216,269d188 
< case WHITESPACE: 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
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c = getc(finput); 
if ( c != '<') ungetc(c, finput); 
if (c = '<') { 

int j; 
for G=O; (c = getc(finput)) != '0 && 

c!=" && c!=' ' && c!=EOF; 
j++) 
tokname[j]=e; 

if (tokname[j-1]!='>') 
error("Unterrninated whitespace tag"); 

tokname[j-1]=' '; 
} else tokname[O]=' '; 
if (nwhiteS>=NTYPES) 

error("Too many kinds of whitespace"); 
for G=O; j<nwhites; j++) 

if (!strcmp(tokname, whiteset[j])) 
error("Multiple declaration of whitespace"); 

whiteset[nwhites]=estash(tokname); 
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< 
< 
< 
< 
< 
< 
< 
< 
< 
< 

t = gettokO; 
if (!(t == IDENTIFIER && 

(tokname[O] == ' ' II tokname[O]="))) 
error("invalid whitespace definition"); 

whitespaces[nwhites]=cstash(tokname+ I); 
t = gettokO; 
++nwhites; 
continue; 

< 
< 

case TOKPREC: 

< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
297,298d215 
< 
< 
338d254 

fprintf(loutput, "%%tokprec0); 
t = gettokO; 
for(;;) { 

} 

switch( t ){ 
case',': 

t = gettokO; 
continue; 

case '·'· ' . 
break; 

case IDENTIFIER: 

} 

break; 

if (tokname[OJ!=' ' && tokname[O]!=") 
error("No symbolic terminals"); 

j = chfind(O,tokname); 
fprintf(loutpu~ "%s%c0, tokname+l, 

(*tokname==")?'O':'l '); 
t=gettokO; 
continue; 

continue; 

if (tokname[OJ!=' ' && tokname[O]!=") 
error("No symbolic terminals"); 

< fprintf( ftable, "#include 
352,353c268 
< fprintf( fdefine, "class node;O); 
< fprintf( fdefine, "typedef union { char *strptr; node *nptr; } YYSTYPE;O ); 

> if( !ntypes ) fprintf( ftable, "#ifndef YYSTYPEOdefine YYSTYPE intOendifO ); 
355d269 
< fprintf( fdefine, "extern YYSTYPE yylval;O ); 
392,398d305 
< if (t='[') { 
< extbnf[nprod]=l; 
< t = gettokQ; 
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< } else if (t=='<') { 
< chainrule[nprod]=1; 
< t=gettokO; 
< } 
400,401<1306 
< 
< 
420,421c325,326 

if (*wtag && (*tokname=' ' II *tokname=")) 
strcat(tokname, wtag); /* add on rule's default wspace */ 

< actplace=ftell(finput); 
< cpyact((int)(mem-prdptr[nprod]-1), 0, 0); 

> 
> 
423,424<1327 
< 
< 
448,452d350 
< 
< 
< 
< 
< 
462,467c360,361 
< 
< 
< 
< 
< 
< 

cpyact( mem-prdptr[nprod]-1 ); 
fprintf( faction, " break;" ); 

fprintf( faction, "yyval.nptr=(node *) NULL;O); 
fprintf( faction, " break;" ); 

!* update the ext. bnf info *I 

extbnf[nprod+1] = extbnf[nprod]; 
extbnf[nprod] = 0; 

} else { 
!* Last action - better do some tree 

building here 
*I 

buildtree(nprod, 0, 0); 
fprintf( faction, " break;" ); 

> } 
> 
469,492<1362 
< } 
< if (extbnf[nprod]) { 
< if ( t != ']') 
< error("Expecting the end of BNF brackets"); 
< switch(t=gettokO) { 
< case '+': extbnf[nprod]='+'; t = gettokO; break; 
< case '?': extbnf[nprod]='?'; t = gettokO; break; 
< case '*': extbnf[nprod]='*'; t = gettokO; break; 
< default: extbnf[nprod]='+'; break; 
< } 
< } 
< else if (chainrnle[nprod]) { 
< if(t!='>') 
< error("Expected a closing chain rule '> "'); 
< t=gettokO; 
< } 
< if ( t=' .'){ 
< !* class members */ 
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< if {chainrule[nprod]) 
< error(" Attempt to attach method to chain rule"); 
< cpyact((int)(mem-prdptr[nprod]-1), 1, 0); 
< t=gettokQ; 
< } else fprintf(fc1asses, "startevaiOndevaiO); 
< *mem++ = -nprod; 
494,499<1363 
< if (!{levprd[nprod]&AC1FLAG)) { 
< fprintf( faction, "Oase %d: ", nprod ); 
< buildtree(nprod,1,0); 
< closettnp(nprod,1,0); 
< fprintf( faction, " break;" ); 
< } else closettnp(nprod, 1, 0); 
501,503d364 
< if (extbnf[nprod]) { 
< int i~ base; 
< base=nprod; 
505,509<1365 
< if (exthnf[base]=='*' II extbnf[hase]='?') { 
< if( ++nprod >= NPROD ) error( "more than %d rules", NPROD ); 
< prdptr[nprod] = mem; 
< levprd[nprod]=O; 
< *mem++=prdptr[hase][O]; 
511,53lc367 
< fprintf( faction, "Oase %d:", nprod ); 
< buildtree(nprod,l,exthnf[base]); 
< fprintf( faction, " break;" ); 
< levprd[nprod] I= AC1FLAG; 
< } 
< if (extbnf[base]=='*' II extbnf[hase]='+') { 
< if( ++nprod >= NPROD) error( "more than %d rules", NPROD ); 
< prdptr[nprod] = mem; 
< levprd[nprod]=levprd[hase]; 
< *mem++=prdptr[hase][O]; 
< for (i=O; prdptr[hase][i]>=D; i++) 
< *mem++ = prdptr[hase][i]; 
< *mem++ = -nprod; 
< fprintf( faction, "Oase %d:", nprod ); 
< buildtree(nprod,l,extbnf[base]); 
< if {levprd[nprod]&AC1FLAG) 
< cpyact((int)(mem-prdptr[nprod]-1), 0, actplace); 
< fprintf( faction, " break;" ); 
< levprd[nprod] I= AC1FLAG; 
< } 
<} 

> 
554d389 
< fprintf(loutput, "%%%%0); 
557c392 
< !* fprintf( ftable, "0 line %d 
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> fprintf( ftable, "0 line %d 
561d395 
< defoutO; 
564,566c398 
< finactO 
<{ 
< int i9 j; 

> finactO{ 
570,587d401 
< fclose(fclasses); 
< fclasseS=fopen("y.classes.h", "w"); 
< fprintf(fclasses, "enum prodname {"); 
< /* how many are there? (need to know for commas) *I 
< for (j=O, i=l; i<=nnonter; i++) { 
< if (nontrst[i].name[O]!='$') 
< j++; 
< } 
< /* print them out *I 
< for (i=l; i<=nnonter; i++) { 
< if (nontrst[i].name[O]!='$') 
< fprintf(fclasses, "Oprod _ %s", nontrst[i].name); 
< if (--j>=l) 
< fprintf(fclasses, ",0); 
< else fprintf(fclasses, "0); 
< } 
< fprintf(fclasses, "0;0); 
< fclose(fclasses); 
591c405 
<} 

> } 
610,6llc424 
< /* Don't care about this any more 
< if( s[O]=' ' && s[2]=' ' ) 

> if( s[O]=' ' && s[2]=' ' ) /* single character ljteral */ 
613,615c426,429 
< else if ( s[O]=' ' && s[l]='\' ) { 
< if(s[3] =' '){ 
< switch ( s[2] ) { 

> else if ( s[O]=' ' && s[l]='\' ) { /* escape sequence */ 
> if( s[3] = ' ' ){ /* single character escape sequence */ 
> switch ( s[2] ){ 
> /* character which is escaped */ 
624a439 
> 
626,630c441,443 
< } 
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< else if( s[2] <= '7' && s[2]>='0' && 
< s[3] <='7' && s[3]>='0' && 
< s[4] <= '7' && s[4]>='0' && 
< s[5]==' ') { 

> 
> 

else if( s[2] <= '7' && s[2]>='0' ){ /* On sequence */ 
if( s[3J<'O' II s[3J > '7' II s[4l<'O' II 

> 
633,636c446,450 

s[4]>'7' II s[5] !=' ') error("illegal \rum construction"); 

< } 
< } 
< *I 
< val = extval++; 

> } 
> } 
> else { 
> val = extval++; 
> } 
647a462 
> 
649,65&464,469 
< if(*cp==''ll*cp="){ 
< if (tokset[i].value>255) 
< fprintf(fdefine;"/* tOI<en %sis %d */0, 
< tokset[i].name, 
< tokset[i].value); 
< }else{ 
< for( ; (e= *cp)!=' '; ++cp) { 
< if(islower(c)llisupper(c)llisdigit(c)lle=='_') 
< 
< else break; 

> if( *cp = ' ' ) ++cp; /* literals *I 
> 
> for( ; (c= *cp)!=' '; ++cp ){ 
> 
> if( islower(c) II isupper(c) II isdigit(c) II c='_' ); /*VOID*/ 
> else goto nodef; 
660,663c471,475 
< if (c==' ') 
< fprintf( fdefine, "# define %s %dO, 
< tokset[i].name, tokset[i].value ); 
< else error('Invalid token name"); 

> 
> fprintf( ftable, "# define %s %dO, tokset[i].name, tokset[i]. value ); 
> if( fdefine !=NULL) fprintf( fdefine, "#define %s %dO, tokset[i].name, tokset[i].value ); 
> 
> nodef: 
665c477 
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< } 

> 
666a479 
> 
707. 709c520 
< I* need to return '<' as such due to chain rules 
< case'<': 
< error("Type specification no longer needed"); 

> case '<': /*get, and look up, a type name (union member name) *I 
725d535 
< *I 
730c540 
< tokname[O] = (="")?' ':"; 

> tokname[O] =' '; 
732c542 
< for(;;) { 

> for(;;){ 
739,740c549 
< 
< 

if( ++i >= NAMESIZE ) 
error("Token too big"); 

> 
744,745c553 
< 

if( ++i >= NAMESIZE ) --i; 

< 
if( ++i >= NAMESIZE ) 

error("Token too big"); 

> if( ++i >= NAMESIZE ) --i; 
747,773d554 
< if ((c = getc(finput))=-'<') {!*specify lenv *I 
< int j, bpoint; 
< tokname[i]=':'; 
< if( ++i >= NAMESIZE ) 
< error("Token too big"); 
< bpoint=i; 
< while ((e=getc(finput))!='O && c!=" && 
< c!=' '&& c!=EOF) { 
< tokname[i]=c; 
< if( ++i >= NAMESIZE ) 
< error("Token too big"); 
< 
< 
< 
< 
< 
< 
< 
< 
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} 
if (tokname[i-1]!='>') 

error("Unterminated whitespace environment tag"); 
tokname[i- I]=' '; 
ungetc(c, finput); 
for G=O; j<nwhites; j++) 

if (!strcmp(tokname+bpoint,whiteset[j])) 
break; 
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< if (i>=nwhites) 
< error("mis-specified whitespace env"); 
< }else{ 
< tokname[i]=':'; 
< if( ++i >= NAMESIZE ) 
< error("Token too big"); 
< } 
< ungetc(c, finput); 
803 ,804c584 
< !* no longer possible to have '.' in id *I 
< else if( islower(c) II isupper(c) II c=='_' II c='$' ){ 

> else if( islower(c) II isupper(c) II c=='_' II c='.' II c='$' ){ 
806c586 
< while( islower(c) II isupper(c) II isdigit(c) II c='_' II c=='$' ){ 

> while( islower(c) II isupper(c) II isdigit(c) II c=' ' II c=='.' II c=='$' ){ 
825,826d604 
< if( !strcmp(tokname,"whitespace")) return( WHITESPACE ); 
< if( !strcmp(tokname,"tokprec")) return( TOKPREC ); 
832c610 
< I* if( !strcmp(tokname,"union")) return( UNION ); *I 

> if( !strcmp(tokname,"union")) return( UNION); 
837,84ld614 
< c = getc(finput); 
< strcpy(swtag, wtag); 
< wtag[O]=' '; 
< if (c='<') { 
< int i; 
843,84&616 
< for (i=O; (c=getc(finput))!='>' && c!=' ' && c!='O && c!=EOF; i++) 
< wtag[i]=c; 
< wtag[i]=' '; 
< if (c='>') c=getc(finput); 
< else error("Unterrninated whitespace tag"); 
< } 

> c = getc(finput); 
85Ic619 
< else if( c = 'I' ) { I* look for comments *I 

> else if( c = 'I' ){ !* look for comments *I 
853c621 
< } 

> } 
855,860c623,624 
< } 
< if( c == ': ') return ( C _IDENTIFIER ); 
< if(c == '"') { 
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< cpyact(O, 2, 0); 
< return( C _IDENTIFIER ); 
< } 

> } 
> if( c = ':' ) return( C_IDENTIFIER ); 
862<1625 
< strcpy(wtag, swtag); 
867 ,86&1629 
< return t>=NTBASE?2: I; 
<I* 
875d635 
<*I 
881c641 
< if (s[O]=' ' II s[OJ=")t=O; 

> if (s[O]=' ')t=O; 
883c643 
< if(!tstrcmp(s,tokset[i].name)) { 

> if(!strcmp(s,tokset[i].name)){ 
898,902<1657 
< tstrcmp(a, b) 
< { 
< return sircmp(a,b); 
<} 
< 
907c662 
< /* fprintf( ftable, "0 line %d 

> fprintf( ftable, "0 line %d 
946c701 
< /* fprintf( ftable, "0 line %d 

> fprintf( ftable, "0 line %d 
969,97Ic724,726 
< while( c == '*' ) 

< if( (c=getc(finput)) = 'I' ) 
< return( i ); 

> while( c == '*' ){ 
> 
> 
974c729 

if( (c=getc(finput)) = '/' ) return( i ); 
} 

< } 

> } 
976c731, 732 
<} 

> !* NOTREACHED *I 
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> } 
978,980c734 
< cpyact( offset, eva!, rewind) 
< long rewind; 
< { I* copy C action to the next ; or closing } *I 

> cpyact(offset){ /* copy C action to the next; or closing } */ 
982,984d735 
< int begs~ brac2, incloop, outer= I; 
< F1LE *outf; 
< long thisplace; 
986,1000c737 
< if (rewind) { 
< thisplace=ftell(finput); 
< fseek(finpu~ rewind, 0); 
< } 
< if (eval=l) { 
< outf=fclasses; 
< fprintf(outf, "starteva!O); 
< } else if ( eval=2) { 
< outf=fclasses; 
< fprintf(outf, "startdec!O); 
< }else{ 
< outf=faction; 
< } 
< /* if (!eva!) fprintf( outf, "0 line %d 
< *I 

> fprintf( faction, "0 line %d 
1003,1005d739 
< brac2=0; 
< begst=l; 
< incloop=O; 
1012,1033d745 
<case '[': 
< if (!incloop && begst && eva!) { 
< incloop=l; 
< fprintf(outf, "0* loop over children */0); 
< fprintf(outf, "for (int yyloop=O; yyloop<numchildrenO; yyloop+=cloop) {0); 
< }else{ 
< ++brac2; 
< goto lcopy; 
< } 
< c = getc(finput); 
< goto swt; 
<case']': 
< if (incloop && !brac2 && eva!) { 
< incloop=O; 
< begst=l; 
< fprintf( outf, "00* endcloop* /0); 
< }else{ 
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< --brac2; 
< goto lcopy; 
< } 
< c = getc(finput); 
< goto swt; 
1035d746 
< begst=l;. 
1037,1041c748 
< 
< 
< 
< 
< 

> 
1047d753 

putc( c , outf ); 
if ( eval= 1) fprintf( outf, "OndevaiO); 
else if ( eval==2) fprintf( outf, "OnddeclO); 
if (rewind) 

fseek(finput, thisplace, 0); 

putc( c , faction ); 

< begst=l; 
1049,1052d754 
< if (outer && eval) { 
< outer=O; 
< goto loop; 
< } 
1060d761 
< error("$<ident> clauses no longer in use"); 
1067c768 
< fprintf( outf, "yyval"); 

> fprintf( faction, "yyval"); 
1070c771 
< fprintf( outf, ". %s", typeset[tok] ); 

> fprintf( faction, ".%s", typeset[tok] ); 
1074,111ld774 
< if< isalpha(c) II c=='" II c == '"') { 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
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int t, x, k, m, savek; 
char errmsg[lOO]; 

k=savek=l; 
ungetc(c, finput); 
t = gettokQ; 
x = chfind(2, tokname ); 
if (absym(x)) 

error("$ reference to constant or action"); 
c = getc(finput); 
if (c='#') { /* more than one of it in prod*/ 

k=O; 
c=getc(finput); 
while( isdigit( c) ) { 

} 

k= k*lO+c-'0'; 
c = getc(finput); 
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< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< } 
1117d779 
< 
1123,112Sd784 
< foundnum: 
< 
< 
1127,1132d785 
< 
< 
< 
< 
< 

} 
savek=k; 
for (m=j=l; j<=offset; j++) { 

if (prdptr[nprod][j]=x) { 

} 

} 

if ( --k<=O) { 
j=m; 

} 

if (rewind) j++; 
goto foundnum; 

if (eva!) { 
if (!absym(prdptr[nprod][j])) 

m++; 
} else m++; 

if (savek) 
sprintf(errmsg, "Nothing matches $%s#%d", tokname, savek); 

else sprintf(errmsg, "Nothing matches $%s", tokname); 
error( errmsg); 

error("Illegal non-symbolic $ reference''); 

if (eva!) { 
char *which; 

which=(tokname[O]=' ')?"char":tokname; 
if (incloop) 

fprintf(outf, "((%s *)getchild(%d+yyloop))", which, j); 
else fprintf(outf, "((%s *)getchild(%d))", which, j); 
goto swt; 

< } 
I !37,1149c790,796 
< { 
< char *which; 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 
< 

> 
> 
> 
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} 

which=(tokname[O]=' ')?"char":tokname; 
fprintf(outf, "((%s *)",which); 
fprintf( outf, "yypvt[-%d]", -j ); 
if( ntypes ){ /* put out the proper tag*/ 

if( j+offset <= 0 && tok < 0 ) 
error( "must specify type of $%d", j+offset ); 

if( tok < 0 ) tok = fdtype( prdptr[nprod](j+offset] ); 
fprintf( outf, ". %s", typeset[tok] ); 
} 

fprintf(outf, ")"); 

fprintf( faction, "yypvt[ -%d]", -j ); 
if( ntypes ){ /* put out the proper tag*/ 
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> 
> 
> 
> 

if( j+offset <= 0 && tok < 0 ) error( "must specify type of $%d", j+offset ); 
if( tok < 0) tok = fdtype{ prdptr[nprod][j+offset] ); 
fprintf( faction, ". %s", typeset[tok] ); 
} 

1152, 1153c799 ,800 
< putc( '$' , outf ); 
< if( s<O ) putc('-', outf ); 

> 
> 
1157d803 

putc( '$' , faction ); 
if( s<O ) putc('-', faction ); 

< begst=l; 
1159,1163c805 
< if (!eva!) putc( c, outf ); 
< if (eva!= I) fprintf(outf, "Ondeva!O); 
< else if (eval=2) fprintf(outf, "OnddeclO); 
< if (rewind) 
< fseek(finput, thisplace, 0); 

> putc( c, faction ); 
1168c810 
< putc( c , outf ); 

> putc( c , faction ); 
1170,1173c812 
< if( c != '*' ) { 
< begst=O; 
< goto swt; 
< } 

> if( c != '*' ) goto swt; 
1177c816 
< putc( c , outf ); 

> putc( c , faction ); 
1181c820 
< putc( c , outf ); 

> putc( c , faction ); 
1184c823 
< putc( c , outf ); 

> putc( c , faction ); 
1198d836 
< begst=O; 
1200c838 
< putc( c , outf ); 

> putc( c , faction ); 
1204c842 
< putc( c , outf ); 
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> pule( c , faction ); 
12!0c848 
< pule( c , outf ); 

> putc( c , faction ); 
1217,1219d854 
<case ' ·: 
<case": 
< goto !copy; 
1222d856 
< default: begst=O; 
1227c861 
< pule( c , outf ); 

> pule( c , faction ); 
cliff myacc/y3.c oyacc/y3.c 
IO,lld9 
< int g2debug = I; 
< int pkdebug = 0; 
17,19dl4 
< extern F1LE *!output; 
< extern char *whiteset[NTYPES], *whitespaces[NTYPES]; 
< extern int nwhites; 
23,25dl7 
< for (i=O; i<nwhites; i++) 
< fprintf(Ioutput, "%s%s0, whiteset(i], whitespaces[il); 
< fprintf(Ioutput, "%%%%0); 
78c70 
< fclose(Ioutput); 

> 
80a73 
> int pkdebug = 0; 
182al76 
> int g2debug = 0; 
244,245c238 
< if( foutput != NULL ) 
< fprintf( foutput, "74d: shift/reduce conflict (shift %d, red'n %d) on %s", 

> if( foutput !=NULL ) fprintf( foutput, "74d: shift/reduce conflict (shift %d, red'n %d) on %s", 
298,306c291 
< TLOOP(p) { 
< if( templ(p]+lastred = 0 ) { 
< tempi (p]=O; 
< if (lastred && 
< strcmp(symnam(p),"$end") && 
< stremp(symnam(p),"error")) 
< makelexeme(p, i, lastred, 0); 
< } 
< } 
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> 1LOOP(p) if( ternp1[p]+lastred = 0 )ternp1[p]=0; 
366,36&351 

else { < 
< 
< 

fprintf( foutput, "shift %d", j1 ); 
rnakelexerneGO, i, j1, 1); 

> else fprintf( foutput, "shift %d", j1 ); 
370,372c353 
< }else{ 
< fprintf( foutput, "reduce %d" ,-j1 ); 
< rnakelexerneGO, i, -j1, 0); 

> else fprintf( foutput, "reduce %d",-j1 ); 
374<1354 
< } 
378,380c358,359 
< if( lastred ) { 
< fprintf( foutput, "0. reduce %dO, lastred ); 
< } else fprintf( foutput, "0. errorO ); 

> if( lastred ) fprintf( foutput, "0. reduce %dO, lastred ); 
> else fprintf( foutput, "0. errorO ); 
390,406d368 
< 
< rnakelexerne(i, s, whatto, toshift) 
<{ 
< int dnum; 
< extern Fll.E *!output; 
< extern char syrnprefO; 
< 
< if (tokset[i].value<256) 
< fprintf(loutput, "%d%s%d%s%d%c0, 
< s, (syrnnam(i)[OJ=""?'\ 
< tokset[i]. value, 
< toshift?"shift":"reduce", 
< whatto,sympref(i)); 
< else fprintf(loutput, "%d%s%d%s%d%c0, 
< s, syrnnam(i), tokset[i]. value, 
< toshift?"shift":"reduce", whatto,syrnpref(i)); 
<} 
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