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ABSTRACT 

The design space exploration has been a goal of silicon-compilation 
for quite a while. But the function module generators (for functions 
such as adder, shifter and multiplier) do not have a concise model 
for their design space. This limits their ability to explore the design 
space. Hence they produce a fixed design which in turns hampers the 
design space exploration ability of the design synthesis environment. 
We describe an algebraic model of design space that helps incorporate 
this flexibility into module generators. 

1 Overview 

A function module generator refers to a layoutfnetlist module 
generator for a function such as multiplication as opposed to a 
module generator for a structure such as PLA or RAM. By the 
very definition of a structure, the structural design space of a 
structure is very constrained. There is not much latitude for 
a structure module generator to explore asymptotic area-time
power resource trade-offs. On the other hand, a function does 
not specify the underlying topological structure needed to real
ize it. Hence the design space for a function is extremely rich. 
For example, a. multiplier ca.n, on one extreme, be realized as a. 
Wallace tree schema or it could be implemented as a bit-serial 
multiplier. However, we don't know of any research that has de
veloped a methodology to build module generators exploring the 
design-space extensively. 

We describe an algebraic approach that characterizes the de
sign space of various functions very succinctly. For instance, a 
choice of algebraic group elements with a set of operators cor
responds to a VLSI design for an adder. What does this gain 
us? Let a user specify the desired performance characteristics 
for a.n adder. The adder module generator has a. syntax for a.n 
acceptable algebraic expression that corresponds to an adder de
sign. Moreover, the asymptotic area-energy-time performance of 
this design can be derived from the set of group elements and 
operators in this expression. (This gives an a priori measure 
of performance for every selection of group elements, and hence 
for the corresponding design.) The original task is to explore 
the adder design space to find an adder design that matches the 
user specifications. An equivalent task is to traverse through a 
more limited space of the acceptable algebraic expressions. An 
expression with the performance parameters matching the user's 
specifications is chosen and mapped into netlist. The process of 
converting this algebraic expression to a. netlist uses a simple re
cursive one-to-one mapping. We use this methodology to build 
very flexible module generators for adder, shifter and multiplier. 
However, this approach can also be used for a high level syntheds 
system's design space exploration in a. wa.y similar to Chen's (3]. 
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There is nothing new about the process of module generation. 
What is novel about our approach is that we provide an efficient 
back-end to a module generator that explores the design space of 
the given function to make a. good choice for the design. Notice 
that we are not attempting to develop a language to describe 
circuits as in vFP {8} and then to compile this language into 
circuits. Our objective is more limited and pragmatic. We wish 
to capture the attributes of the design space in a concise way. 
These attributes are then used to guide the module generator 
towards the optimal design space. Johnsson a.nd Cohen [6] do 
this in a limited way. 

In this way, our module generators would replace a. family of 
module generators in a traditional design synthesis system. Due 
to their space requirements, these families of generators support a 
very small number of designs. Thus we believe that our paradigm 
of module generation does a better job of design space exploration 
than can be done with a. small finite family of module generators 
for a function. 

Motivation: Module generation has become an integral com
ponent of silicon-compilation (9] and (2]. A typical approach to 
module-generator design proceeds as follows. Let us assume that 
a generator for a shifter needs to be designed. We would first 
determine the most commonly used architecture for a. shiftt~r. 

Let us say that we settle on the barrel shifter design shown in 
Figure 2. Since this design consists of a very regular array of a. 
"switch" cell, this will be our leaf cell. The module generator 
can easily put together an array of these cells for the desired bus 
width. We can either use a. procedural system or a graphical sys
tem to build this generator. Other architectural options such as a 
shifter for a. dual-bus data.path or electrical optimization options 
such as sizing of the power bus with the bus width can also be 
easily supported. Notice however that the area. taken by all the 
shifter designs generated is proportional to n2 , where n is the bus 
width. Similarly the time taken by this design is proportional to 
n, assuming an RC delay model. The average power consumed 
by this design is approximately ~ times the power consumed hy 
the leaf cell. Hence in an asymptotic sense, we have fixed the 
area-power-time performance of the shifter designs generated by 
this module-generator. This in turn restricts the design-space of 
a. silicon compiler incorporating this module generator. 

Some systems (4] allow for a limited design space exploration. 
For example, One may decide that only two designs: a carry
ripple adder and an adder with a carry-look-ahead of 4 bits, need 
to be supported. Then only two sets of leaf cells need be built, 
one to construct a a. carry-ripple adder a.nd the other one for 
the 4-bit carry-look-ahead adder. But this kind of enumerative 
approach has a very limited potential. This corresponds to using 
table-lookup as a programming solution to every problem. 



2 An Algebraic Approach 

Our approach does not attempt to understand and explore the 
intricate design space trade-offs at the mask geometry level. In
stead, we study the structure of communication between n bit 
slices. This communication has a very rich mathematical (alge
braic) structure for three functions we have considered: addition, 
shifting and multiplication. The leaf cells are designed for the 
basic elements of this structure. The larger blocks consisting of 
these leaf cells are equivalent to applying an operation on the ba
sic elements. The area-power-time performance of a leaf cell (or 
any basic building block) can be related to the area-power-time 
performance of the complete design using this characterization. 
Let us clarify these points using two examples of addition and 
shifting. 

2.1 Addition 

The communication component of addition is not very complex 
and hence addition gives rise to a simple algebraic structure, 
monoid*. Not surprisingly, then, the addition has a space-time 
dimensionality of one as defined in Chen (3]. The addition of 
two n-bit numbers, an an-I ••. a1 and bnbn-l ... bt can be looked 
upon as computing the generate and propagate bits, g; and p;, 
for all the n bit positions. The following relationships between 
g;, p;, a;, b;, c; (carry bit) and s; (sum bit) are well known (where 
Ell, A, V stand for exclusive-or, Boolean and, Boolean or respec
tively). g; = a; A b;. p; = a; Ell b;. co = 0. c; = g; V (p; A Ci-I ). 

s; = p;E!lc;_1 . First consider the tuples (g,p) as defined in Brent, 
Kung [1]. The first entry in the tuple, g, corresponds to the gen
erate bit of a bit position while the second entry corresponds to 
the propagate bit. Note that in order to add we need to eval
uate such tuples for every bit position 1 ~ i ~ n. When two 
bit positions are put together, composite generate and propagate 
signals can be generated. Let us define an operator o to model 
this: (g,p)o(g',p') = (gV(pAg'),pAp'). 

Thus (g,p) o (g',p') gives the composite generate and propa
gate signals for a pair of bit positions. But to build an adder, we 
need the concept of block-generate and block-propagate signals. 
The following definition extends the definition of o to a block. 

A tuple (G;,P;)(j) denotes the block-generate and block
propagate signals of a block of i contiguous bit positions starting 

4-bit parallel 

prefix block 2-bit block 

Figure 1: 6-bit Adder Given by (G4,P4)(J) o (G2,P2)(1) 

• A monoid is just a set closed under an associative operation o with an 
identity element. 
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with the LSB of the block at the jth bit position. Recall that 
the formulation of parallel prefix adder in Brent, Kung [1] also 
defines syntactically similar looking operators. But the semantic 
difference is significant. Their (G;,P;) corresponds to the block 
carry for the block of the least significant i bits with eo = 0. 

Note that the set {(Go, Po), (Gt.P1), ••. ,(Gn,Pn)} forms a 
monoid of order n with the operator o modified slightly as follows. 
The identity element for this monoid is (0, 1). 

(G· P.·) o(G R) _ { (Gn,Pn) if i + l > n 
"' t. 1 

- (G;v(P;AGI),P;APt) 

Adder Design Space: The use of an element (G;,P;) corre
sponds to using a carry-look-ahead block with a span of i bitst. 
One can prove by induction that (G;,P;)(j) = (Di+j-I,Pi+i-t)o 
(Di+i-2•Pi+j-2), ... ,(gi,Pi)., To realize an adder, we need to 
compute (Gn,Pn)(1). The selection of the elements from this 
monoid to realize ( Gn, Pn) corresponds to a design for an adder. 
On one extreme one could choose only (Gn,Pn)(1) which gives 
us the parallel prefix adder of Brent and Kung (1]. The other ex
treme would be to use n copies of ( G 1, Pt) elements (as ( G n, Pn) = 

n copies 

(Gt.Pt)o(Gt.Pt)o ... o(Gt,Pt)). This corresponds with the 
complete carry-ripple adder. Thus, in general, a collection of 
elements from this monoid such that (Gn,Pn) = (G;,P;

1
) o 

(G;, P;2 ) o ... o (G;.,P;.) with L~=I i1 = n uniquely identifies a 
design for an adder. For example, (G4,P4)(3) o (G2 ,P2 )(1) gives 
a 6- bit adder as shown in Figure 1. In a practical design, one 
would probably choose all the carry-look-ahead blocks to be the 
same size, it = i2 = ... = ik. 

So far, we can handle adders with n/ k carry-look-ahead blocks 
of lookahead k for 1 ~ k ~ n with carry rippling between these 
blocks. As we mentioned earlier, a carry-look-ahead block with 
look-ahead of k is just a k-bit parallel-prefix block. Architec
turally, all the look-ahead schemes are equivalent to parallel
prefix. An optimization program to increase the fanin from 2 
to a larger number will convert a parallel-prefix block netlist to 
a netlist for any other carry-look-ahead scheme. 

How does this description of adders handle carry-select blocks? 
One can encode this information in the type of operators used 
in an algebraic expression to realize ( Gn, Pn)· Thus there is an
other operator * whose semantics is exactly that of the opera
tor o. But the design corresponding to (G;,Pi) * (Gj,Pj) will 
make two copies of the design corresponding to (G;,P;). One 
copy evaluates with (1,0) (carry 1) as the input and the other 
one evaluates with (0, 0) (carry 0). Then a carry-select mux will 
choose between the output values of these two blocks on the basis 
of the carry-out value of the ( G i, Pi) block. Now a specification 
an n-bit adder can consist of expressions containing both o and 
* operators as long as the indices (span of look-ahead) of the 
monoid elements sum upto n. 

Design Space Exploration: Every bit position 1 ~ k ~ n 
should be covered by a (G;,P;)(j) such that j ~ k ~ j + i- 1. 
There is an additional choice of the operator, o or *• between 
two elements (G;,P;)(l + j) and (G1,Pt)(j) (between bit posi
tions l + j - 1 and l + j). The operator o just abuts the ciruit 
segments corresponding to (G;,P;)(l + j) and (Gt.~)(j). While 

1We support the carry-look-ahead of parallel-prefix variety. 



the operator * gives rise to additional circuitry for carry-select 
interface between (G;, P;)(l + j) and (G1, P,)(j). We maintain an 
array of n bit positions. This is where we record the element 
that covers a bit position and the type of operator if that bit 
position is at the interface of two elements. This provides a rich 
design space. But many designs in this scheme are clearly sub
optimal. For instance, the adder in Figure 1 corresponding to 
(G4 , P4)(3) o (G2, P2)(1) is clearly suboptimal. Thus we explore 
only the expressions with ( G, P) elements with the same look
ahead value (equivalently the same index value). Additionally, 
all the interfaces are either all abut ( o) kind or all carry-select ( *) 
kind. Let us note here that we can build parallel-prefix blocks 
that generate the block carry-out signal for both the cases (block 
carry-in 0 and 1) at a very small additional cost. It was shown 
in [1] that the block carry-out for (G;, P;)(1) equals G; when the 
block carry-in is 0. We can prove that the block carry-out is 
G; V P; when the block carry-in is 1. Thus for carry-select opera
tion, rather than duplicating the circuitry for a block, we use the 
optimized version of the block. Similarly, there is no need to du
plicate all the circuitry of a a carry-ripple block to get carry-out 
for two cases: carry-in being 0 and 1. We can share most of the 

type area time 
carry-ripple with look-ahead k nlogk ~ 
carry-select with look-ahead k ¥- + 1.2n k+¥-

parallel-prefix with look-ahead k n.!?,gn logn 

Table 1: Area-Time Performance of Several Adders 

circuitry and generate the sum and carry bits for the two values 
of carry-in in a bit-slice at an additional cost of 3 gates [10]. 

The time taken by an adder specified by the expression ( G;1 , P;1 )o 
( G;2 , P;2 ) o ... o ( G;., P;.) is given by 2:~1 log( i1 + 1 ). The area is 
given by l:t=l i,log( i1 + 1) and the average case energy consump
tion is l:t=l i,. Let us tabulate the area-time performances of 
the design options actually generated by our system in Table 1. 
Notice that we don't really explore the whole design space for 
a given user specification. This table along with the user spec
ifications directs us towards a subspace right away. The choice 
of the parameter k gives us the flexibility of satisfying the user 
specifications. 

User Specifications: The user specification for time must be 
in the unit transistor delay units. We chose not to work with ab
solute time units to keep the technology independence. For the 
same reason, the area should be specified in terms of the num
ber of transistors. Since we generate the output in MIT netlist 
format, we generate CMOS transistors and wires. The wire cross
ings sometimes contribute more to the area of a circuit than the 
number of transistors. For this reason, each wire crossing counts 
as one transistor in our area estimates. 

2.2 Shifter 

shifting has a very rich communication between bit-slices. It is 
a transitive function as observed by Vuillemin [12]. Hence it em
beds a computation of a permutation group *. We have looked at 
several designs for a shifter. Table 2 summarizes the area-energy-

I A permutation group consists of a set of permutations, II, that permute 
a set {12 ... n}. The set II is closed under permutation composition. There 
is an identity permutation and every permutation has an inverse. 

time performance of these shifters. We use the familiar cyclic 

notation (1 3) (2 4) to denote the permutation ( ~ ~ ~ ~ ) . 

The result of applying the permutation (1 3) (2 4) to a 4-bit 
input (x1 x2 X3 x4) is (x3 X4 x1 x2)· The (1 3) part of (1 3) (2 4) 
specifies that the bit in the first position should be routed to the 
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1 
type 

linear, one 
barrel, one 
square, one 

linear, k 

barrel, k 

square, k 

stage log n stage 1 

0 0 0 

0 0 0 

Figure 2: A Barrel Shifter 

---Jn----
rnx2Jl 

1\ 

\ 
X n-Jil +1 

Figure 3: A Square Shifter 

energy area time group 
n2 n n G1 
n2 n• logn G2 

n3f2 n v'n G3 
n2k2 + ~ nk + ~ ~ G4 

nk + !f. nk +!f. logn Gs 

~ k 
n k+Ji Gs 

Table 2: Area-Energy-Time Performance of Several Barrel 
Shifters 

third position and the bit in the third position goes to the first 
position. 



Shifter Design Space: Table 2 specifies the design space of 
shifters. The type can be either a barrel shifter as shown in 
Figure 2 or the square shifter as described in Ullman [11] (shown 
in Figure 3). It can also be a linear shift-register. A linear shift
register is a one-dimensional array of shift-store elements. They 
can either shift their value to their right hand side neighbor or 
they can just retain it. A barrel shifter works as follows. The 
control input specifying the amount of shift, 0:::; c:::; n-1, can be 
considered as a log n bit binary number, c = CJog n • • • c2 c1 • Each 
c; corresponds to a stage in the barrel shifter that can shift by 
2i-t bits. Hence there are log n such stages in a barrel shifter with 
an interconnection pattern similar to that in a Butterfly network. 
Since the value of cis l:~~t c;2i-l, all the stages combined shift 
the input by c positions. In the unit delay model, this takes 
time proportional to log n with an area requirement of n2. A 
square shifter saves area by giving up speed. It is designed as a 
Vn X Vn array. The input bits Xt ... Xn are stored in this array 
as follows. Let the lower-left corner be the array position (1, 1) 
and the upper-right corner be ( fo, fo). Then the array position 
( i, j) stores the input bit X;+ (j-t)fo· The cell in this array is 
capable of shifting either up or to the right. Notice that the top 
cell in each column shifts to the bottom cell of the next column 
during an upshift. The shift value c = CJogn • •• c1 can be split 
into two values: Cup = c12p · .. c1 and Cright = Cfogn ••• c!2p+I· 
A shift by c consists of shifting all the values right by Cright in 
time Vn followed by shifting up by Cup in time fo. Thus the 
complete shift takes time ..;n with area n. 

The second argument in type indicates the number of times an 
input bit is available. In the most likely situation, this argumE>nt 
is 1. 

Some observations regarding this group decomposition schema 
are in order. The group computed by a cyclic shifter must con
tain the permutations corresponding to all the values for the shift. 
This consists of permutations (12 ... n), (13 5 ... ), (148 ... ) · · · 
( 1 n ... ). The first permutation corresponds to a left shift by one, 
the second one to a left shift by two and the last one to a left shift 
by n - 1. We don't need physical circuitry corresponding to each 
of these permutations. Only a few of these permutations gener
ate the whole shifting group. We call such a set of permutations, 
IT, a set of generators for the shifting group, i.e., any permuta
tion in the shifting group is a composition of permutations from 
IT. We wish to analyze the mimimal sets of generators. Then a 
minimal amount of hardware is needed to implement a minimal 
set of generators to provide a shifter. 

LINEAR SHIFTER: A linear shifter is generated by {(12 ... n )}. 
The permutation (1 2 ... n) shifts every bit by one. The repeated 
sl,ifting provides a shift by any amount. An implementation of 
(12 ... n) gives a linear shifter. This is the group G1 in Table 2. 

BARREL SHIFTER: Note that the realization of the permuta
tion (12 ... n) provides the complete shifting group. A barrel 
shifter realizes (12 ... n) in log n - 1 compositions of log n per
mutations of the following type. A permutation (1 F + 1) (2 F + 
2)···(-F~)(~+l~:H)···(~~) ... (n-~+1n-¥+ 
1) · · · ( n - F n) corresponds to the (log n - i + 1 )th stage of a 
barrel shifter. For example, (1 ~ + 1) (2 ~ + 2) ... (~ n) shifts 
every bit by n/2 positions. Thus it corresponds to log nth stage 
of Figure 2. The dimensionality of data flow is still one. A cell for 
a barrel shifter can be derived from the one for a linear shifter. 
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A linear shifter has only one outgoing path from every cell. A 
barrel shifter, on the other hand needs two paths. The cell in 
stage i for bit j participates in the cycle (j j + 2i-t ). HencE> it 
needs paths to bits j and j + 2i-t in stage i - 1. Group G2 in 
Table 2 

SQUARE SHIFTER: It realizes the permutation (12 ... n) in an 
interesting way. It breaks up the cycle (12 ... n) into vn cycles 
( 1 2 ... vn) ( vn + 1. .. 2fo) · · · ( n - ..;n + 1. .. n) corresponding 
to the Vn columns of Figure 3. To jump between these cycles, 
another group of Vn cycles is created. To connect the first ele-
ments of the previous cycles, we need (1 Vn + 1 ... n- Vn + 1). 
Similarly to connect the ith elements ( i vn + i ... n- ..;n + i) is 
needed. This gives rise to the permutation relating to the rows 
of a square shifter. This set of generators is called G3 in Table 2. 
Notice that a square shifter leaf cell has 2 outgoing paths as well. 
Hence two copies of a leaf cell for a linear shifter can be com
bined to give a leaf cell for a square shifter. Also note that each 
generator can be decomposed into m cycles which corresponds 
to m slices of data flow. Thus in the square, one design thPre 
are Vn rows (columns) corresponding to the first (second) gen
erator's cyclic representation. This gives us a control over the 
aspect ratio of the design. To achieve an aspect ratio of a, one 
needs to decompose the horizontal group generator into b cycles 
and the vertical one into c cycles such that n = b + c and a = b /c. 

The groups G4, G5 and Gs are the groups Gt. G2 and G3 
respectively when each input bit is repeated k times. 

Design Space Exploration: The task of creating a shifter de
sign is equivalent to choosing a set of generators as described in 
the preceding discussion. One can automatically verify if a given 
collection of permutations generates the shifting group. The area 
and time performance of the corresponding design can be de
duced in the following way. Count the number of cycles a given 
position participates in. This number gives a worst case time 
bound on shifting that input bit position by any value. Simi
larly, the number of permutations in the set of generators is an 
indicator of the area requirements. But one need not attempt to 
walk through the space of all the sets of generators blindly. We 
consider only the following design space in our generators. 

Given the user specifications in terms of gate delay units and 
number of gates, the shifter generator determines whether Group 
G4, G 5 or Group G6 is required. Then the parameter k is chosen 
to give a tight fit with the user specifications. The leaf cells 
for G1 , G2 and G3 based shifters have a close relationship as 
observed earlier. We use this fact to keep only one. leaf cell: a 
shift-register cell for Gt. The other leaf cells are built from this 
cell very efficiently. The generation of the netlist for a given 
group and k is described later. 

3 Implementation 

The adder and shifter generators have been implemented in 'C' 
programming language. A module generator for multiplier is be
ing developed. The basic methodology is as follows. Note that 
our formalism attempts to capture the naturE' of the communi
cation in a function. Hence there are parts of the circuit that es
sensially remain invariant within the design-space. This invariant 
part is our primitive leaf cell. A primitive leaf cell is identified: a 
full-adder cell for adder, a shift-register cell for shifter. This cell 



is built in the VPNR netlist format (7]. The generator program 
reads this cell and builds a corresponding circuit data-structure. 
After the user specifications are read, the system explores the 
design space as described. A group or an algebraic expression 
is chosen and the corresponding circuit is built. The next phnse 
transforms the circuit data-structure into a netlist file. 

(5] D. Johanssen. Silicon Compilation. In Proceedings of the 
1989 Decennial Caltech Conference on VLSI, pages 17-<.6, 
MIT Press, 1989. 

The generator programs are modularized around the group/monoid 

[6] L. Johnsson and D. Cohen. A Mathematical Approach to 
Modelling the Flow of Data and Control in Computational 
Networks. In Proceedings of the CMU Conference on VLSI, 
pages 213-225, CMU, Computer Science Press, 1981. 

element units. For example, the adder generator has a procedure 
to build a parallel-prefix carry block of k bits given a parallel
prefix carry block of k /2 bits. Similarly, the operators have corre
sponding procedures to achieve the desired affect. For instance, 
the adder generator has a procedure corresponding to the * op
erator that takes two arguments (G;,P;) and (G;,P;). It builds 
a new block that selects the carry-out and sum bits of (G;,P;) 
block on the basis of the carry-out of ( G;, Pj) block. 

4 Conclusions and Future Research 

The need for the design space exploration at the architecture 
level is succintly brought out by Johannsen (5]. CATHEDRAL 
(9] also uses the knowledge about its domain (DSP) to make 
a good choice for the design. However, providing this capabil
ity to module-generators as well enhances the quality of designs 
produced by a silicon compiler. We proposed an algebraic de
sign space model that facilitates easy design space exploration 
at function level. The models for the design space of adder and 
shifter were built from our knowledge about these functions. If 
a function h is derived as a composition of two functions f and 
g, where the models off and g are already known, can we de
rive the model for h from the models off and g in an automatic 
way? In practice, two modules rarely have a clean mathemat
ical composition. But the designers tend to use very few ways 
of putting together two modules, such as: a bus, a latch. We 
are working on a chracterization of these hardware compositbn 
schemes in terms of our algebraic models. A global design can 
be seen as a function composition of constituent functions. For 
instance, an ALU in a microprocessor is a complex composition 
of shifter, AL U, memory and some other functions. This extends 
the applicability of our work to very large systems. 
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