
An Algebraic Model for Design Space with Applications to Function
Module Generation·

AKHJLESH TYAGI

Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175

ABSTRACT

The design space exploration has been a goal of silicon-compilation
for quite a while. But the function module generators (for functions
such as adder, shifter and multiplier) do not have a concise model
for their design space. This limits their ability to explore the design
space. Hence they produce a fixed design which in turns hampers the
design space exploration ability of the design synthesis environment.
We describe an algebraic model of design space that helps incorporate
this flexibility into module generators.

1 Overview

A function module generator refers to a layoutfnetlist module
generator for a function such as multiplication as opposed to a
module generator for a structure such as PLA or RAM. By the
very definition of a structure, the structural design space of a
structure is very constrained. There is not much latitude for
a structure module generator to explore asymptotic area-time
power resource trade-offs. On the other hand, a function does
not specify the underlying topological structure needed to real
ize it. Hence the design space for a function is extremely rich.
For example, a. multiplier ca.n, on one extreme, be realized as a.
Wallace tree schema or it could be implemented as a bit-serial
multiplier. However, we don't know of any research that has de
veloped a methodology to build module generators exploring the
design-space extensively.

We describe an algebraic approach that characterizes the de
sign space of various functions very succinctly. For instance, a
choice of algebraic group elements with a set of operators cor
responds to a VLSI design for an adder. What does this gain
us? Let a user specify the desired performance characteristics
for a.n adder. The adder module generator has a. syntax for a.n
acceptable algebraic expression that corresponds to an adder de
sign. Moreover, the asymptotic area-energy-time performance of
this design can be derived from the set of group elements and
operators in this expression. (This gives an a priori measure
of performance for every selection of group elements, and hence
for the corresponding design.) The original task is to explore
the adder design space to find an adder design that matches the
user specifications. An equivalent task is to traverse through a
more limited space of the acceptable algebraic expressions. An
expression with the performance parameters matching the user's
specifications is chosen and mapped into netlist. The process of
converting this algebraic expression to a. netlist uses a simple re
cursive one-to-one mapping. We use this methodology to build
very flexible module generators for adder, shifter and multiplier.
However, this approach can also be used for a high level syntheds
system's design space exploration in a. wa.y similar to Chen's (3].

*This research was supported in part by NSF Grant #MIP-8806169

2024!90t0000~H 14$01.00©1990 IEEE
114

There is nothing new about the process of module generation.
What is novel about our approach is that we provide an efficient
back-end to a module generator that explores the design space of
the given function to make a. good choice for the design. Notice
that we are not attempting to develop a language to describe
circuits as in vFP {8} and then to compile this language into
circuits. Our objective is more limited and pragmatic. We wish
to capture the attributes of the design space in a concise way.
These attributes are then used to guide the module generator
towards the optimal design space. Johnsson a.nd Cohen [6] do
this in a limited way.

In this way, our module generators would replace a. family of
module generators in a traditional design synthesis system. Due
to their space requirements, these families of generators support a
very small number of designs. Thus we believe that our paradigm
of module generation does a better job of design space exploration
than can be done with a. small finite family of module generators
for a function.

Motivation: Module generation has become an integral com
ponent of silicon-compilation (9] and (2]. A typical approach to
module-generator design proceeds as follows. Let us assume that
a generator for a shifter needs to be designed. We would first
determine the most commonly used architecture for a. shiftt~r.

Let us say that we settle on the barrel shifter design shown in
Figure 2. Since this design consists of a very regular array of a.
"switch" cell, this will be our leaf cell. The module generator
can easily put together an array of these cells for the desired bus
width. We can either use a. procedural system or a graphical sys
tem to build this generator. Other architectural options such as a
shifter for a. dual-bus data.path or electrical optimization options
such as sizing of the power bus with the bus width can also be
easily supported. Notice however that the area. taken by all the
shifter designs generated is proportional to n2 , where n is the bus
width. Similarly the time taken by this design is proportional to
n, assuming an RC delay model. The average power consumed
by this design is approximately ~ times the power consumed hy
the leaf cell. Hence in an asymptotic sense, we have fixed the
area-power-time performance of the shifter designs generated by
this module-generator. This in turn restricts the design-space of
a. silicon compiler incorporating this module generator.

Some systems (4] allow for a limited design space exploration.
For example, One may decide that only two designs: a carry
ripple adder and an adder with a carry-look-ahead of 4 bits, need
to be supported. Then only two sets of leaf cells need be built,
one to construct a a. carry-ripple adder a.nd the other one for
the 4-bit carry-look-ahead adder. But this kind of enumerative
approach has a very limited potential. This corresponds to using
table-lookup as a programming solution to every problem.

2 An Algebraic Approach

Our approach does not attempt to understand and explore the
intricate design space trade-offs at the mask geometry level. In
stead, we study the structure of communication between n bit
slices. This communication has a very rich mathematical (alge
braic) structure for three functions we have considered: addition,
shifting and multiplication. The leaf cells are designed for the
basic elements of this structure. The larger blocks consisting of
these leaf cells are equivalent to applying an operation on the ba
sic elements. The area-power-time performance of a leaf cell (or
any basic building block) can be related to the area-power-time
performance of the complete design using this characterization.
Let us clarify these points using two examples of addition and
shifting.

2.1 Addition

The communication component of addition is not very complex
and hence addition gives rise to a simple algebraic structure,
monoid*. Not surprisingly, then, the addition has a space-time
dimensionality of one as defined in Chen (3]. The addition of
two n-bit numbers, an an-I ••. a1 and bnbn-l ... bt can be looked
upon as computing the generate and propagate bits, g; and p;,
for all the n bit positions. The following relationships between
g;, p;, a;, b;, c; (carry bit) and s; (sum bit) are well known (where
Ell, A, V stand for exclusive-or, Boolean and, Boolean or respec
tively). g; = a; A b;. p; = a; Ell b;. co = 0. c; = g; V (p; A Ci-I).

s; = p;E!lc;_1 . First consider the tuples (g,p) as defined in Brent,
Kung [1]. The first entry in the tuple, g, corresponds to the gen
erate bit of a bit position while the second entry corresponds to
the propagate bit. Note that in order to add we need to eval
uate such tuples for every bit position 1 ~ i ~ n. When two
bit positions are put together, composite generate and propagate
signals can be generated. Let us define an operator o to model
this: (g,p)o(g',p') = (gV(pAg'),pAp').

Thus (g,p) o (g',p') gives the composite generate and propa
gate signals for a pair of bit positions. But to build an adder, we
need the concept of block-generate and block-propagate signals.
The following definition extends the definition of o to a block.

A tuple (G;,P;)(j) denotes the block-generate and block
propagate signals of a block of i contiguous bit positions starting

4-bit parallel

prefix block 2-bit block

Figure 1: 6-bit Adder Given by (G4,P4)(J) o (G2,P2)(1)

• A monoid is just a set closed under an associative operation o with an
identity element.

115

with the LSB of the block at the jth bit position. Recall that
the formulation of parallel prefix adder in Brent, Kung [1] also
defines syntactically similar looking operators. But the semantic
difference is significant. Their (G;,P;) corresponds to the block
carry for the block of the least significant i bits with eo = 0.

Note that the set {(Go, Po), (Gt.P1), ••. ,(Gn,Pn)} forms a
monoid of order n with the operator o modified slightly as follows.
The identity element for this monoid is (0, 1).

(G· P.·) o(G R) _ { (Gn,Pn) if i + l > n
"' t. 1

- (G;v(P;AGI),P;APt)

Adder Design Space: The use of an element (G;,P;) corre
sponds to using a carry-look-ahead block with a span of i bitst.
One can prove by induction that (G;,P;)(j) = (Di+j-I,Pi+i-t)o
(Di+i-2•Pi+j-2), ... ,(gi,Pi)., To realize an adder, we need to
compute (Gn,Pn)(1). The selection of the elements from this
monoid to realize (Gn, Pn) corresponds to a design for an adder.
On one extreme one could choose only (Gn,Pn)(1) which gives
us the parallel prefix adder of Brent and Kung (1]. The other ex
treme would be to use n copies of (G 1, Pt) elements (as (G n, Pn) =

n copies

(Gt.Pt)o(Gt.Pt)o ... o(Gt,Pt)). This corresponds with the
complete carry-ripple adder. Thus, in general, a collection of
elements from this monoid such that (Gn,Pn) = (G;,P;

1
) o

(G;, P;2) o ... o (G;.,P;.) with L~=I i1 = n uniquely identifies a
design for an adder. For example, (G4,P4)(3) o (G2 ,P2)(1) gives
a 6- bit adder as shown in Figure 1. In a practical design, one
would probably choose all the carry-look-ahead blocks to be the
same size, it = i2 = ... = ik.

So far, we can handle adders with n/ k carry-look-ahead blocks
of lookahead k for 1 ~ k ~ n with carry rippling between these
blocks. As we mentioned earlier, a carry-look-ahead block with
look-ahead of k is just a k-bit parallel-prefix block. Architec
turally, all the look-ahead schemes are equivalent to parallel
prefix. An optimization program to increase the fanin from 2
to a larger number will convert a parallel-prefix block netlist to
a netlist for any other carry-look-ahead scheme.

How does this description of adders handle carry-select blocks?
One can encode this information in the type of operators used
in an algebraic expression to realize (Gn, Pn)· Thus there is an
other operator * whose semantics is exactly that of the opera
tor o. But the design corresponding to (G;,Pi) * (Gj,Pj) will
make two copies of the design corresponding to (G;,P;). One
copy evaluates with (1,0) (carry 1) as the input and the other
one evaluates with (0, 0) (carry 0). Then a carry-select mux will
choose between the output values of these two blocks on the basis
of the carry-out value of the (G i, Pi) block. Now a specification
an n-bit adder can consist of expressions containing both o and
* operators as long as the indices (span of look-ahead) of the
monoid elements sum upto n.

Design Space Exploration: Every bit position 1 ~ k ~ n
should be covered by a (G;,P;)(j) such that j ~ k ~ j + i- 1.
There is an additional choice of the operator, o or *• between
two elements (G;,P;)(l + j) and (G1,Pt)(j) (between bit posi
tions l + j - 1 and l + j). The operator o just abuts the ciruit
segments corresponding to (G;,P;)(l + j) and (Gt.~)(j). While

1We support the carry-look-ahead of parallel-prefix variety.

the operator * gives rise to additional circuitry for carry-select
interface between (G;, P;)(l + j) and (G1, P,)(j). We maintain an
array of n bit positions. This is where we record the element
that covers a bit position and the type of operator if that bit
position is at the interface of two elements. This provides a rich
design space. But many designs in this scheme are clearly sub
optimal. For instance, the adder in Figure 1 corresponding to
(G4 , P4)(3) o (G2, P2)(1) is clearly suboptimal. Thus we explore
only the expressions with (G, P) elements with the same look
ahead value (equivalently the same index value). Additionally,
all the interfaces are either all abut (o) kind or all carry-select (*)
kind. Let us note here that we can build parallel-prefix blocks
that generate the block carry-out signal for both the cases (block
carry-in 0 and 1) at a very small additional cost. It was shown
in [1] that the block carry-out for (G;, P;)(1) equals G; when the
block carry-in is 0. We can prove that the block carry-out is
G; V P; when the block carry-in is 1. Thus for carry-select opera
tion, rather than duplicating the circuitry for a block, we use the
optimized version of the block. Similarly, there is no need to du
plicate all the circuitry of a a carry-ripple block to get carry-out
for two cases: carry-in being 0 and 1. We can share most of the

type area time
carry-ripple with look-ahead k nlogk ~
carry-select with look-ahead k ¥- + 1.2n k+¥-

parallel-prefix with look-ahead k n.!?,gn logn

Table 1: Area-Time Performance of Several Adders

circuitry and generate the sum and carry bits for the two values
of carry-in in a bit-slice at an additional cost of 3 gates [10].

The time taken by an adder specified by the expression (G;1 , P;1)o
(G;2 , P;2) o ... o (G;., P;.) is given by 2:~1 log(i1 + 1). The area is
given by l:t=l i,log(i1 + 1) and the average case energy consump
tion is l:t=l i,. Let us tabulate the area-time performances of
the design options actually generated by our system in Table 1.
Notice that we don't really explore the whole design space for
a given user specification. This table along with the user spec
ifications directs us towards a subspace right away. The choice
of the parameter k gives us the flexibility of satisfying the user
specifications.

User Specifications: The user specification for time must be
in the unit transistor delay units. We chose not to work with ab
solute time units to keep the technology independence. For the
same reason, the area should be specified in terms of the num
ber of transistors. Since we generate the output in MIT netlist
format, we generate CMOS transistors and wires. The wire cross
ings sometimes contribute more to the area of a circuit than the
number of transistors. For this reason, each wire crossing counts
as one transistor in our area estimates.

2.2 Shifter

shifting has a very rich communication between bit-slices. It is
a transitive function as observed by Vuillemin [12]. Hence it em
beds a computation of a permutation group *. We have looked at
several designs for a shifter. Table 2 summarizes the area-energy-

I A permutation group consists of a set of permutations, II, that permute
a set {12 ... n}. The set II is closed under permutation composition. There
is an identity permutation and every permutation has an inverse.

time performance of these shifters. We use the familiar cyclic

notation (1 3) (2 4) to denote the permutation (~ ~ ~ ~) .

The result of applying the permutation (1 3) (2 4) to a 4-bit
input (x1 x2 X3 x4) is (x3 X4 x1 x2)· The (1 3) part of (1 3) (2 4)
specifies that the bit in the first position should be routed to the

116

1

1
type

linear, one
barrel, one
square, one

linear, k

barrel, k

square, k

stage log n stage 1

0 0 0

0 0 0

Figure 2: A Barrel Shifter

---Jn----
rnx2Jl

1\

\
X n-Jil +1

Figure 3: A Square Shifter

energy area time group
n2 n n G1
n2 n• logn G2

n3f2 n v'n G3
n2k2 + ~ nk + ~ ~ G4

nk + !f. nk +!f. logn Gs

~ k
n k+Ji Gs

Table 2: Area-Energy-Time Performance of Several Barrel
Shifters

third position and the bit in the third position goes to the first
position.

Shifter Design Space: Table 2 specifies the design space of
shifters. The type can be either a barrel shifter as shown in
Figure 2 or the square shifter as described in Ullman [11] (shown
in Figure 3). It can also be a linear shift-register. A linear shift
register is a one-dimensional array of shift-store elements. They
can either shift their value to their right hand side neighbor or
they can just retain it. A barrel shifter works as follows. The
control input specifying the amount of shift, 0:::; c:::; n-1, can be
considered as a log n bit binary number, c = CJog n • • • c2 c1 • Each
c; corresponds to a stage in the barrel shifter that can shift by
2i-t bits. Hence there are log n such stages in a barrel shifter with
an interconnection pattern similar to that in a Butterfly network.
Since the value of cis l:~~t c;2i-l, all the stages combined shift
the input by c positions. In the unit delay model, this takes
time proportional to log n with an area requirement of n2. A
square shifter saves area by giving up speed. It is designed as a
Vn X Vn array. The input bits Xt ... Xn are stored in this array
as follows. Let the lower-left corner be the array position (1, 1)
and the upper-right corner be (fo, fo). Then the array position
(i, j) stores the input bit X;+ (j-t)fo· The cell in this array is
capable of shifting either up or to the right. Notice that the top
cell in each column shifts to the bottom cell of the next column
during an upshift. The shift value c = CJogn • •• c1 can be split
into two values: Cup = c12p · .. c1 and Cright = Cfogn ••• c!2p+I·
A shift by c consists of shifting all the values right by Cright in
time Vn followed by shifting up by Cup in time fo. Thus the
complete shift takes time ..;n with area n.

The second argument in type indicates the number of times an
input bit is available. In the most likely situation, this argumE>nt
is 1.

Some observations regarding this group decomposition schema
are in order. The group computed by a cyclic shifter must con
tain the permutations corresponding to all the values for the shift.
This consists of permutations (12 ... n), (13 5 ...), (148 ...) · · ·
(1 n ...). The first permutation corresponds to a left shift by one,
the second one to a left shift by two and the last one to a left shift
by n - 1. We don't need physical circuitry corresponding to each
of these permutations. Only a few of these permutations gener
ate the whole shifting group. We call such a set of permutations,
IT, a set of generators for the shifting group, i.e., any permuta
tion in the shifting group is a composition of permutations from
IT. We wish to analyze the mimimal sets of generators. Then a
minimal amount of hardware is needed to implement a minimal
set of generators to provide a shifter.

LINEAR SHIFTER: A linear shifter is generated by {(12 ... n)}.
The permutation (1 2 ... n) shifts every bit by one. The repeated
sl,ifting provides a shift by any amount. An implementation of
(12 ... n) gives a linear shifter. This is the group G1 in Table 2.

BARREL SHIFTER: Note that the realization of the permuta
tion (12 ... n) provides the complete shifting group. A barrel
shifter realizes (12 ... n) in log n - 1 compositions of log n per
mutations of the following type. A permutation (1 F + 1) (2 F +
2)···(-F~)(~+l~:H)···(~~) ... (n-~+1n-¥+
1) · · · (n - F n) corresponds to the (log n - i + 1)th stage of a
barrel shifter. For example, (1 ~ + 1) (2 ~ + 2) ... (~ n) shifts
every bit by n/2 positions. Thus it corresponds to log nth stage
of Figure 2. The dimensionality of data flow is still one. A cell for
a barrel shifter can be derived from the one for a linear shifter.

117

A linear shifter has only one outgoing path from every cell. A
barrel shifter, on the other hand needs two paths. The cell in
stage i for bit j participates in the cycle (j j + 2i-t). HencE> it
needs paths to bits j and j + 2i-t in stage i - 1. Group G2 in
Table 2

SQUARE SHIFTER: It realizes the permutation (12 ... n) in an
interesting way. It breaks up the cycle (12 ... n) into vn cycles
(1 2 ... vn) (vn + 1. .. 2fo) · · · (n - ..;n + 1. .. n) corresponding
to the Vn columns of Figure 3. To jump between these cycles,
another group of Vn cycles is created. To connect the first ele-
ments of the previous cycles, we need (1 Vn + 1 ... n- Vn + 1).
Similarly to connect the ith elements (i vn + i ... n- ..;n + i) is
needed. This gives rise to the permutation relating to the rows
of a square shifter. This set of generators is called G3 in Table 2.
Notice that a square shifter leaf cell has 2 outgoing paths as well.
Hence two copies of a leaf cell for a linear shifter can be com
bined to give a leaf cell for a square shifter. Also note that each
generator can be decomposed into m cycles which corresponds
to m slices of data flow. Thus in the square, one design thPre
are Vn rows (columns) corresponding to the first (second) gen
erator's cyclic representation. This gives us a control over the
aspect ratio of the design. To achieve an aspect ratio of a, one
needs to decompose the horizontal group generator into b cycles
and the vertical one into c cycles such that n = b + c and a = b /c.

The groups G4, G5 and Gs are the groups Gt. G2 and G3
respectively when each input bit is repeated k times.

Design Space Exploration: The task of creating a shifter de
sign is equivalent to choosing a set of generators as described in
the preceding discussion. One can automatically verify if a given
collection of permutations generates the shifting group. The area
and time performance of the corresponding design can be de
duced in the following way. Count the number of cycles a given
position participates in. This number gives a worst case time
bound on shifting that input bit position by any value. Simi
larly, the number of permutations in the set of generators is an
indicator of the area requirements. But one need not attempt to
walk through the space of all the sets of generators blindly. We
consider only the following design space in our generators.

Given the user specifications in terms of gate delay units and
number of gates, the shifter generator determines whether Group
G4, G 5 or Group G6 is required. Then the parameter k is chosen
to give a tight fit with the user specifications. The leaf cells
for G1 , G2 and G3 based shifters have a close relationship as
observed earlier. We use this fact to keep only one. leaf cell: a
shift-register cell for Gt. The other leaf cells are built from this
cell very efficiently. The generation of the netlist for a given
group and k is described later.

3 Implementation

The adder and shifter generators have been implemented in 'C'
programming language. A module generator for multiplier is be
ing developed. The basic methodology is as follows. Note that
our formalism attempts to capture the naturE' of the communi
cation in a function. Hence there are parts of the circuit that es
sensially remain invariant within the design-space. This invariant
part is our primitive leaf cell. A primitive leaf cell is identified: a
full-adder cell for adder, a shift-register cell for shifter. This cell

is built in the VPNR netlist format (7]. The generator program
reads this cell and builds a corresponding circuit data-structure.
After the user specifications are read, the system explores the
design space as described. A group or an algebraic expression
is chosen and the corresponding circuit is built. The next phnse
transforms the circuit data-structure into a netlist file.

(5] D. Johanssen. Silicon Compilation. In Proceedings of the
1989 Decennial Caltech Conference on VLSI, pages 17-<.6,
MIT Press, 1989.

The generator programs are modularized around the group/monoid

[6] L. Johnsson and D. Cohen. A Mathematical Approach to
Modelling the Flow of Data and Control in Computational
Networks. In Proceedings of the CMU Conference on VLSI,
pages 213-225, CMU, Computer Science Press, 1981.

element units. For example, the adder generator has a procedure
to build a parallel-prefix carry block of k bits given a parallel
prefix carry block of k /2 bits. Similarly, the operators have corre
sponding procedures to achieve the desired affect. For instance,
the adder generator has a procedure corresponding to the * op
erator that takes two arguments (G;,P;) and (G;,P;). It builds
a new block that selects the carry-out and sum bits of (G;,P;)
block on the basis of the carry-out of (G;, Pj) block.

4 Conclusions and Future Research

The need for the design space exploration at the architecture
level is succintly brought out by Johannsen (5]. CATHEDRAL
(9] also uses the knowledge about its domain (DSP) to make
a good choice for the design. However, providing this capabil
ity to module-generators as well enhances the quality of designs
produced by a silicon compiler. We proposed an algebraic de
sign space model that facilitates easy design space exploration
at function level. The models for the design space of adder and
shifter were built from our knowledge about these functions. If
a function h is derived as a composition of two functions f and
g, where the models off and g are already known, can we de
rive the model for h from the models off and g in an automatic
way? In practice, two modules rarely have a clean mathemat
ical composition. But the designers tend to use very few ways
of putting together two modules, such as: a bus, a latch. We
are working on a chracterization of these hardware compositbn
schemes in terms of our algebraic models. A global design can
be seen as a function composition of constituent functions. For
instance, an ALU in a microprocessor is a complex composition
of shifter, AL U, memory and some other functions. This extends
the applicability of our work to very large systems.

References

[1] R.P. Brent and H.T. Kung. A Regular Layout for Parallel
Adders. IEEE Transactions on Computers, 260-264, March
1982.

[2] M. R. Burich. Design of Module Generators and Silicon
Compilers. In D.D. Gajski, editor, Silicon Compilation,
chapter 2, pages 49-94, Addision-Wesley Publishing Com
pany, Reading, Mass., 1988.

[3] M. C. Chen. The Generation of a Class of Multipliers : A
Synthesis Approach to the Design of Highly Parallel Algo
rithms in VLSI. In Proceedings of the Int1-rnational Confer
ence on Computer Design: VLSI in Computer, IEEE, 1985.

(4] K. Chu and R. Sharma. A Technology Independent MOS
Multiplier Generator. In Proceedings of the 21st Design Au
tomation Conference, IEEE-ACM, 1984.

(7] G. Kedem and F. Brglez. OASIS: Open Architecture Sili
con Implementation System. Technical Report MCNC TR
88-06, Microelectronics Center of North Carolina, February
1988.

[8] D. Patel, M. Schlag, and M. Ercegovac. v:FP: An Environ
ment for the Multi-level Specification, Analysis, and Synthe
sis of Hardware Algorithms. In Proceedings of the Functional
Programming Language and Computer Architecture Confer
ence, pages 233-255, 1985.

[9] P. Six, L. Claesen, J. Rabaey, and H. De Man. An Intelligmt
Module Generator Environment. In Proceedings of the 23rd
Design Automation Conference, IEEE-ACM, 1986.

[10] A. Tyagi. A Reduced Area Scheme for Carry Select Adders.
1989. submitted for publication.

[11] J.D. Ullman. Computational Aspects of VLSI. Computer
Science Press, Rockville, Md., 1984.

[12] J. Vuillemin. A Combinatorial Limit to the Computing
Power of VLSI Circuits. IEEE Transactions on Computers,
294-300, March 1983.

118

