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0. Abstract 

Solving Computer Graphics Problems 
through Boolean Combinations of Polygons 

John M. Airey 
UNC @ Chapel Hill 

Several important computer graphics problems can be solved by formulating the problem as a 
boolean combination of sets of coplanar polygons. We describe an implementation of an efficient 
plane sweep algorithm, which solves these problems by triangulating the polygonal regions 
defined by boolean combinations of sets of polygons. Example applications include, but are not 
limited to, triangulating a concave polygon with holes, computing complex clipping operations, 
detecting modelling errors, transforming a tiling into a planar sutxlivision and even the hidden 
surface problem. We present new techniques to handle the difficulties encountered with real world 
input, which are typically omitted in presentations of geometric algorithms in the computational 
geometry literature. Finally, we describe how the above applications may be cast as boolean 
combinations and solved with our algorithm. 

1. Introduction 

Technology transfer from computational geometry to computer graphics has been slow. The 
published algorithms are efficient and can be proven correct, but the programmer attempting to 
implement these algorithms faces many obstacles. The focus of the computational geometry 
literature is primarily theoretical and secondarily pragmatic while the emphasis is reversed for most 
graphics programmers. The main difficulty faced by the practicing programmer is the liberal 
assumptions made by many algorithms about the input. In particular, published geometric 
algorithms often assume that the input is in general position, i.e., that no two input vertices 
coincide, that no two vertices have the same x-coordinate or that edges intersect only at end points, 
etc. This makes the analysis of the algorithm much simpler but makes the task of implementation 
much harder. Input that is not in general position is termed degenerate even though it may occur 
more often in practice than input in general position. Secondary difficulties are those of data 
representation. The universal unit of information for computer graphics is the oriented convex 
polygon represented by a list of vertices. Algorithms in the literature may assume some other 
representation for input or output. 

We have developed an algorithm that handles degenerate input while maintaining good 
performance. Simply stated, it computes boolean operations on sets of polygons. The input may 
consist of such normally troublesome entities as concave polygons with holes. The output is a 
triangular sutxlivision of the plane over which the boolean function is true. Although this appears 
to be rather abstract, many problems encounted by graphics programmers can be cast as boolean 
operations on sets of polygons. We list some applications here briefly and discuss them in greater 
detail in section 6. 

1) Many graphics algorithms demand convex polygons. Concave polygons, possibly with holes, 
must be decomposed into convex parts. Obviously, triangles are convex, so triangulation yields a 
convex decomposition. This is the simplest application of our algorithm but may be the most 
useful. In section 2 we discuss less obvious advantages of the triangular sutxlivision, such as how 
to join triangles together with a single pass over the triangles to get a good convex decomposition 
of a concave polygonal region. 

2) Generalized clipping operations appear often in graphics applications. For example, CSG 
algorithms which operate on boundary representation data need to special case coincident coplanar 
faces. If two cubes are placed so that they abut and we take the union of the cubes, it is necessary 
to remove the portion of the faces that touch since those portions are no longer boundaries; they are 
inside the union of the cubes. Computing the exclusive-or of those faces solves the problem. We 
present other instances of generalized clipping in section 6. 
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3) Detecting and counting overlapping polygons is another common problem. In some modeling 
applications, it is necessary to detect overlapping or coincident faces because we consider them a 
modelling error. A wall in a building should not be modelled with overlapping polygons because 
this will produce rendering errors. Detecting regions where two polygons overlap can be 
formulated as a boolean expression problem and computed by our algorithm. The algorithm can 
also be modified to count overlaps. 

4) In other applications, it is necessary to cover a curved surface with a planar subdivision rather 
than a simpler tiling to ensure that cracks do not appear. Analogously, if a flat surface is shaded we 
can think of the intensity values as a curved surface. With a tiling, the cracks in the intensity 
surface appear as shading discontinuities. Since our program produces a triangular subdivision, it 
can be used to eliminate cracks and shading discontinuities. 

5) Lastly, it is possible to the solve the hidden surface problem with an algorithm based on 
polygon clipping. Since polygon clipping can be formulated as a boolean expression it is possible 
to base a hidden surface program on our plane sweep boolean expression algorithm. 

Our algorithm is a generalization of a O(n logn) plane sweep algorithm to triangulate a simple 
polygon [Mehlhorn]. Plane sweep algorithms without the triangulation feature have been used by 
the VLSI community to analyse circuits through boolean combinations of mask artwork 
[Syzmanski], [Ottman], [Niev]. The plane sweep paradigm offers several advantages which make 
it possible to run the algorithm on huge VLSI circuit designs with only a moderately sized 
machine. It is iterative rather than recursive so external devices may be used for very large input 
sets and the amount of primary memory required is usually less than the square root of input size. 

However, VLSI applications can make assumptions about the input such as restricting edges to lie 
horizontally or vertically. Our presentation is the first we know of which addresses the difficult 
problems raised by the unrestricted input encountered in graphics applications. We offer a new 
interpretation of the local geometry of the transition vertex which eliminates the extensive special 
casing that would otherwise be necessary to handle real world input 

The only other boolean expression algorithm we know of is Weiler's algorithm [Weiler80] which 
ignores the geometric structure and looks only at the topologic or graph theory aspects of the 
problem. Ignoring the geometric structure makes it impossible 13_ compute polygon edge 
intersections efficiently. If the input has 1 million vertices, Weiler's O(n ) algorithm will run about 
30,000 times slower than our O(nlogn) algorithm. 

We begin with a short note on representation of data in section 2. Then we present a simple 
triangulation algorithm in section 3 and extend it in section 4 to get the main algorithm. In Section 5 
we discuss implementation issues. Section 6 presents applications we have implemented ourselves 
and applications which might interest others. 

2. Why Triangulation?. 

Although there are many ways to represent polygonal regions of the plane, such as the DCEL 
(doubly connected edge list) represetation of a planar graph [Shamos], or boolean combinations of 
halfspaces [Dobkin], we chose to represent regions of the plane with a triangular subdivision. 
Fortunately, it is known that any polygonal region may be triangulated and in fact many different 
triangulations may exist for the same polygonal region. We represent a triangular subdivision 
simply by listing the triangles. The triangles are represented by listing the vertices in 
counterclockwise order. The geometric content of the edges is thus represented indirectly. We 
represent the topologic content of the edges with three pointers to the neighboring triangles. 

The primary reason we have developed our algorithm to output triangles is that many display 
devices and rendering algorithms require this representation of a surface. However, a triangular 
subdivision has many other desirable attributes. For example, the number of triangles is 
proportional to the number of vertices. This means that any operation that was originally 
implemented in time proportional to the number of vertices, such as computing the area of the 
region or testing point inclusion can be implemented with the same performance by operating on 
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the triangles. If it is of great importance to reduce the number of convex components of a region, 
we can join some of the triangles together to get a good convex decomposition in linear time. This 
is fortunate because computing the optimal convex decomposition takes cubic time! Many other 
problems in computational geometry are trivial once given a triangular subdivision [O'Rourke], 
[Mehlhorn]. These include path-planning and two dimensional visibility calculations which are 
useful to robotics. 

We do not require, however, that the input be a triangular subdivision. We have kept the unit of 
information for the input down at the level of the directed line segment. By convention, the region 
the line segment bounds lies to the left as we travel from the first vertex to the next. This allows 
concave polygons with holes to be used in the input. It does, however, preclude self-intersecting 
polygons since, in that case, the orientation of some edges are not defined. 

3. A Plane-sweep algorithm for triangulation. 

Before we consider the triangulation of an arbitrary region of the plane defined by a boolean 
expression over sets of polygons we review a plane-sweep algorithm [Mehlhorn] to compute a 
triangulation of a simple polygon, P. 

The plane sweep algorithm puts the vertices of P into a priority queue, which we call the Xqueue, 
with the vertices ordered lexicographically from left to right and then from top to bottom. A vertex 
is tagged as a start, bend or end vertex depending upon whether its neighbors in P both follow it in 
the Xqueue, one follows and one precedes, or both precede, respectively. A typical procedural 
interface to such a module is: 

xq_init( ); 
xq delete min(); 
xq -insert[vertex); 
xq)erm(); 

The Xqueue should be implemented with something that guarantees O(log n) performance· for 
xq_insert and xq_delete_min such as a heap [Sedgewick]. 

The algorithm sweeps a vertical line across the plane from left to right, stepping from vertex to 
vertex using xq_delete_min. At any point in time, the sweep line defines a vertical ordering on 
the edges of P that it intersects. Between the edges are regions. The regions will be either inside or 
outside P and furthermore, the sweep line will intersect these in and out regions alternately. The 
edges and regions currently intersected by the sweep line and their vertical order are represented by 
a data structure which we call the Ytable. A typical procedural interface to such a module is: 

ytbl init(); 
ytb(insert(edge); 
ytbl_ delete( edge); 
ytbl findabove(vertex); 
ytbCfindbelow(vertex); 
ytbl=:pred(edge); 
ytbl_succ(edge); 
ytbl_term(); 

Ideally, the Ytable should be implentated with a balanced tree such as a red-black implementation 
of top-down 2-3-4 trees [Guibas78] to ensure O(log n) cost for each of the above operations, 
excluding ytbl_init and ytbl_term. 

The position of the sweep line is advanced by taking a vertex from the Xqueue using 
xq_delete_min and the Ytable is updated by deleting edges that end at the current vertex and 
inserting edges that start at the current vertex. This reflects the changes in intersection order of 
edges of P with the sweep line. This maintenance of the Ytable is common to the invariant of all 
plane sweep algorithms. The skeleton of any plane sweep algorithm takes the form: 



sweep() 
{ 

} 

vertex v; 

xq init( list of input polygons); 
ytlil init( ); 
wbiie ((v = xq_delete_min()) is not 

transition (v); 
xq term(); 
yt6i term(); 

transition(v) 
vertex v; 
{ 

null) 

1. maintain tbe Ytable ordering invariant by deleting edges that end at v and 
inserting edges that start at v. 

2. maintain the invariant particular to this plane sweep algorithm. 
} 

Generally a plane sweep algorithm will have some other processing at each transition. In this plane 
sweep algorithm we associate with every in region a chain of vertices, VIo· ···vk where v1 and Vk 
are endpoints of the boundary edges of the region in the Ytable and edges (vi,Vi+ t) will become 
edges of the triangulation. The invariant maintained at each transition that is specific to triangulation 
is that no triangle can be constructed from any chain. Basically, the chain must be "concave" or 
have less than three vertices, i.e. if we closed the chain with an edge from v1 to Vk we would get 
either a polygon that is oriented clockwise or a simple line segment 

The important property of this invariant is that if we are given a chain satisfying the invariant, and a 
new point is added at either end of the chain, it is sufficient to check for a possible output triangle 
with the new point and its two closest neighbors in the chain. If no counterclockwise triangle can 
be constructed, then no triangle can be constructed anywhere in the chain. If a triangle can be 
constructed, the chain is reduced by one vertex and the process may be repeated on the reduced 
chain. This means that if k triangles can be constructed, O(k ) steps will find them and construct 
them. This action of triangulating up or down a chain when given a chain and a new point is the 
action that maintains the invariant and produces the triangles. 

The maintenance of this second invariant is depicted below. The left hand side shows a chain of 
five vertices associated with an in region and a new vertex, vnew, which has been added to the top 
of the chain. Since vnew,vl,v2 form a triangle, vl is removed from the chain and the triangle is 
output. The process is repeated twice more with vnew, v2, v3 and vnew, v3, v4. This leaves the 
reduced chain seen on the right 
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The algorithm must be designed to maintain this invariant and the Ytable invariant on each 
transition point. There are three main transition cases to consider depending upon whether the 
transition vertex has been tagged as a start, bend or end vertex. We consider the action of the 
algorithm on an example. The progress of a sweep line and the resulting triangles is depicted in the 
accompanying figure. The interior triangulation edges are the same thickness as the polygon if they 
are part of a chain and are thinner if they have been output. The sweep line appears bent in some 
instances because vertices with equal x-coordinate values are processed from top to bottom. · 

a a a 
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a a a 
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f f f 
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There are two possibilities for a start vertex. It can appear in an out region in which case the action 
is especially simple. The two edges that emanate from the vertex are inserted into the Ytable. They 
form a new in region and their chain is simply the new vertex. The transition on vertex cis an 
example of this case. If the point appears in an in region, the action is slightly more complex. The 
transition on vertex his an example of this case. The chain that "surrounds" the transition vertex is 
broken into two chains and the transition vertex is appended to the end of the upper chain and the 
·head of the lower chain. The old chain is broken at its rightmost point. Any triangles that can be 
constructed from these new chains are output. In this case the old chain a,/ becomes a,h and h, a, 
f. The latter chain yields one triangle and is reduced to h,f. 

If the vertex is a bend vertex, we add the new vertex to the appropriate end of the chain and then 
output triangles if the new addition allows us to do so. Vertex a is an example of this type of 
transition. The chain b,dfbecomes a,b,d/ and the triangles abd and adf are output and the chain 
becomes simply af. The entry in the Ytable which ended in a is replaced by the edge that starts at 
a. 

As with the start vertex, there are two possibilities for an end vertex. The transition on vertex d 
illustrates the first possibility where the vertex appears in an out region. The two chains, b,c and 
e, are triangulated with the new vertex and then they are joined. The two edges that bounded the 
out region are deleted from the Ytable and the neighboring regions become one region. In this case 
one triangle was produced when the chain b,c,d was reduced to b,d. The chains b,d and d,e are 
then joined to become chain b,d,e. The second possibility, that the vertex appears in an in region is 
illustrated by vertex i . The chain becomes closed and is entirely reduced to triangles. In this case 
there is only one triangle produced The edges that ended in vertex i, ia and hi, are deleted from the 
Ytable and the neighboring out regions are merged into one out region. 

The correctness of any part of the triangulation rests upon the idea that the chains are kept 
"concave" and that maintaining the invariant does not result in overlapping triangles. The only 
questionable case is when an end point appears in an out region. Mehlhorn provides a rigorous 
proof of correctness for this case. All plane sweep algorithms have the property that maintaining 
the Ytable and getting the next value from the Xqueue can be performed in O(log n) time. Since 
there are n vertices, the result is an O(nlogn) algorithm. Maintaining the chain invariant can also be 
done within this bound. This follows from the fact that the number of triangles is proportional to 
the number of vertices and only a constant amount of work was done for each triangle. 

4. Generalizing the Simple Triangulation Algorithm 

We now present the extensions and generalizations of the plane-sweep triangulation algorithm 
necessary to triangulate an arbitrary region of the plane defined by a boolean expression over sets 
of polygons rather than simply the interior of one polygon. 

First, we will need some mechanism to handle transition vertices formed by the intersection of 
polygon edges. We will also need some technique to determine what regions of the plane satisfy 



the boolean function. We can't rely on alternating in and out regions as in the simple triangulation 
algorithm. 

The last problem is the most difficult to handle in practice. If the input is not in general position, 
we also must expect vertices to coincide with other vertices and edges. A nasty consequence is that 
a transition vertex may have any number of edges entering it from behind the sweep line and any 
number of edges exiting it ahead of the sweep line. This means that each transition vertex can not 
be neatly characterized as a start, bend or end vertex. Trying to process vertices that coincide as 
independent events is not sufficient. 

A programmer could methodically transform the explanation of what to do in each of the transition 
configurations in the simple polygon triangulation algorithm with one case for each of the start, 
bend and end transitions described in the simple triangulation algorithm above. However, now the 
number of configurations is no longer finite and cannot be handled with such a taxonomic 
approach. We propose a new interpretation for these complicated transitions which allows them to 
be processed without special cases. 

4.1 Handling Transitions Introduced by Edge Intersections 

Edge intersections must be detected so that they may be treated as transition points in the same 
sense as vertices of the input polygons are treated. Each time an edge is inserted into the Ytable we 
check whether it intersects the edges that are adjacent in the Ytable. Similarly, when an edge is 
deleted from the Ytable we check whether the edges that are now adjacent intersect. A little thought 
convinces one that this will catch all intersections. When an intersection is detected and it is ahead 
of the sweep line it is inserted into the Xqueue. The xq_insert() routine is used for this purpose. 
This will not change the O(logn) complexity of operations done at each transition but it m~ 
increase the number of transitions. In the worst case the number of intersections could be O(nZ) 
but in practice it is much less than n. 

4.2 Determining which Regions Satisfy the Boolean Expression 

In the triangulation algorithm above we kept track of whether a region was an in region or an out 
region. The regions alternated and were bounded on either side by neighbors in the Ytable. This 
implies that each edge in the Ytable could be treated as a transition from an in region to an out 
region. Now we will keep track of whether a region between two edges in the Ytable is in or out 
with respect to our desired boolean function. It is no longer true that regions will alternate so our 
interpretation of edges in the Ytable as transitions from in regions to out regions or vice versa will 
have to be augmented the concept of a non-transition edge. If two neighboring regions are in 
regions, or out regions, the edge between them is a non-transition edge. 

Since the boolean expression evaluation for a region depends upon what sets of inputs "cover" the 
region we associate an array with each region that has one entry for each distinct set in the input. 
The entry will hold a count of the number of polygons from that input set which cover the region. 
This array can be evaluated by a function which will determine whether the region is in or out. 
When an edge from a set of polygons is inserted into the Ytable, the count for that set in the Ytable 
region bounded by the edge is incremented. Similarly, an edge deletion requires decrementing the 
appropriate counter. 

4.3 Processing Complex Transitions Caused by Degenerate Input 

If we assumed that the input was in general position, the extensions outlined in sections 4.1 and 
4.2 would be sufficient. The algorithm will run in time 0( (n+s)(v+logn)) where n is the number 
of vertices in the input, s is the number of vertices created by edge intersections and v is the size of 
the array used to evaluate the boolean expression for a region or equivalently is equal to the 
number of distinct variables in the boolean expression. Typically v will be a small integer so that 
the complexity can be simplified to O((n+s)(logn)). 

However, if the program is to be useful it must be modified to handle degenerate input. When 
many vertices in the input coincide with other vertices or with other edges, the transition vertex 
may have any number of edges entering it from behind the sweep line and any number of edges 



exiting after the sweep line. 

The following diagram gives an example of such a situation. The scan-line is drawn vertically as a 
thick line, the transition vertex is the circle and the entries in the Ytable that intersect the transition 
vertex before and after the transition are shown as polygon edges while the entries in the Ytable 
above and below the transition vertex are shown as horizontal thick lines. The regions between 
edges are labeled with either a 1 or 0 depending upon whether the evaluation of the boolean 
function is true or false. The labeling of the edges indicates whether the edge extends through the 
vertex or ends or starts at the vertex. For example, edges al and a2 are sequential edges in 
polygon a and they both end at the transition vertex. Edges bl and d1 intersect at the transition 
vertex and have been drawn over the the transition vertex to emphasize that they do not end or start 
at the vertex. The numbering of the edges reflects the counterclockwise orientation of the 
polygons. Possible global connections of these edges are suggested by the thin lines connecting 
edges from a common polygon. 

Ytable 

Ytable[i+6] 

1 

0 

YTable[i+4] 

Sets are g1 ={a} 
g2=={b,c,d} 

Expression is 
g1-g2 

We now show the geometric interpretation of the transition vertex that allows it to be processed 
without special cases for degenerate situations. Our algorithm will consider each of the edges in 
counterclockwise order around the transition vertex. If an edge is a transition from a 0-region to a 
1-region we will call it a R(ising) edge and if it is a transition from a 1-region to a 0-region we will 
call it a a F(alling) edge. Other edges are C(onstant) edges. In our example, bl is an R edge to the 
right of the scan-line and dl is an F edge to the right of the scan-line. All other edges are C edges. 
We will look for pairs of Rand F edges as we travel counterclockwise around the transition vertex. 
Clearly, two R edges seperated by zero or more C edges cannot occur, similarly for two F edges. 
This implies that R and F edges seperated by zero or more C edges will occur in pairs. This is the 
necessary abstraction; we consider pairs ofR and F edges instead of simply pairs of edges. 

Each R-F pair may be treated just as the pair of edges bounding the "in" region were treated in the 
simple polygon triangulation algorithm. We need a mildly complicated loop strucn.rre to detect the 
R-F pairs but once they are found they may be handled with a simple case or if-elseif type control 
structure: 

1. The R and F pair are to the left of the scan-line. 
Depending upon which edge was encountered first, this corresponds to one or 
the other of the end cases described in the triangulation algorithm 

2. The R edge is on one side of the scan-line, the F edge is on the other. 
This is equivalent to the bend case in the triangulation algorithm. 

3. The Rand F pair are to the right of the scan-line. 
Depending upon which edge was encountered first, this corresponds to one or the 
other of the start cases described in the triangulation algorithm. 



We may now consider the details of the loop used to detect the R,F pairs of edges in the order 
described. The Ytable will provide the counterclockwise ordering if we find YTable[i] using 
ytbl_findabove() and use ytbl_succ() to traverse the Ytable from al down to cl, and then 
traverse the Ytable from bl back to dl using ytbl_pred(). Any edges that ended at the transition 
vertex are deleted during the downward traversal. Any edges that begin at the transition vertex are 
inserted after the downward traversal. Edges that extend through the vertex do not need to be 
deleted and reinserted, they can have their order in the Ytable reversed before beginning the 
upward traversal. 

It is necessary to associate with each vertex entered into the Xqueue the edges that emanate from 
that vertex so that they can be inserted into the Ytable. It is no longer necessary or even possible to 
associate a bend, start or end "type" as was done in the simple polygon triangulation algorithm. 
After the vertex has been processed the edges closest to the edges above and below the transition 
vertex are checked for intersections and if an intersection is found it is entered into the X queue. 

Another detail facing the programmer during the transition operation is the problem of correctly 
maintaining the set count arrays associated with the new regions. Although the edges entering the 
transition vertex were deleted in top to bottom order, the order in which exiting edges are inserted 
into the Ytable is arbitrary. It depends upon the order in which the exiting edges associated with the 
transition vertex were inserted into the Ytable. Until the last edge is inserted, the Ytable is in a state 
that may not correspond to any possible physical configuration and hence it is impossible to update 
any of the set count arrays until the last edge is inserted. After the last edge is inserted, and the 
upwards traversal begins, the set count arrays can be updated as each is encountered. We may 
simply copy the set count array from the previous edge and then increment or decrement the entries 
that correspond to the sets that the current edge bounds. 

The transition algorithm is depicted below: 

transition( v) 
Vertex v; 
{ 

Edge h,l,e,next,r ,f; 
going_down = TRUE; 

h = ytbl findabove(v); 
I = ytbl findbelow(v); 
e = ytbC succ(h); 

while (e != h){ 
r = f =NULL; 
while (r is NULL or f is NULL and e != h){ 

if (e == I) { 

} 

going down = FALSE; 
inserf_exiting edges(v); 
e = ytbl pred(i); 

else { 

} 

if (e is a R edge) r = e; 
else if (e is an F edge) f = e; 
if (going_ down) { 

next = ytbl succ(e); 
ytbl delete(e}; 

} 
else 

} 

{ 
next = ytlb pred(e); 
fix _set _arrays( e,next); 

e = next; 



} 

} 

} 

if (r and f are not NULL) 
process the R-F pair 

check for intersection(h,ytbl succ(h)); 
check :ror :intersection(l,ytbl j>red(l)); 

4.4 Handling Edges that Inhabit the Same Line 

Edges may exist on the same line and intersect along line segments rather than singles points. This 
degenerate condition gives rise to dangling edges and polygons with no area. The generalized 
transition algorithm is not changed appreciably by the steps taken to handle this problem. We let 
the entries in the Ytable be characterized by a line equation and append a list of the edges that share 
that line equation. This makes checking for intersections between new neighbors in the Ytable 
slightly more complicated because we have to ascertain that an intersection of two parent lines is 
contained by at least one edge lying on each line. Deletions and insertions are also complicated 
somewhat because we can't delete an entry from the Ytable until all the edges on the line are 
deleted. Similarly, we have to check to see whether an edge we are inserting already has a parent 
line in the Yfable. 

S. Implementation 

The generalized algorithm has been implemented in a just under two thousand lines of C. A 
streamlined implementation suitable for one particular application could no doubt be implemented 
in much less. Our implementation is augmented to optionally animate its progress and compute 
certain other information associated with the input. We implemented the Xqueue on top of an 
implementation of top-down 2-3-4 red-black trees, a balanced tree algorithm. Originally a heap was 
used but because a heap is only a partially ordered data structure it can not combine identical 
vertices until they are removed together. Since coincident. vertices are the norm rather than the 
exception in our applications, the balanced tree implementation has performed as well as the heap. 

Because our applications have typically involved thousands of vertices and not millions we have 
gotten away with implementing the Ytable with an array. In practice one can often achieve good 
performance simply by making swe that the Xqueue is implemented efficiently due to the fact that 
the Ytable is usually far below worst case capacity at any given time. Intuitively, if the region being 
swept is roughly square and edges are distributed evenly over the region any vertical line will 
intersect roughly the square root of the total number of edges. Thus, the Ytable will be fllled to the 
square root of maximum capacity on average. These intuitive ideas are made precise and 
conflrmed by Bentley, Haken and Hon [Bent80]. For the sake of doing things correctly, we plan 
to implement the Ytable on top of the balanced tree package in the future. 

The implementation was coded so that a pointer to the function that evaluates the boolean 
expression could be passed as an argument to the transition routine. This was a good decision 
because it allows experimentation with new applications without the duplication of code for the 
transition routine which is fairly complex. 

Our biggest single implementation problem has been tuning the algorithm to allow for floating 
point errors. Since all decisions in the algorithm are local it really only cares about the relative 
ordering of values and not about their absolute value. Unfortunately, this is exactly what floating 
point is not designed to do. The optimal data type to use for vertices and other geometric values 
would be rational numbers represented with a big integer for numerator and denominator since that 
would allow exact calculations but this is not possible in our version of C since we are limited to 
32 bit integers. Double precision floating point, 64 bit IEEE format, was used for the coefficients 
of edges in the Ytable but even then a little bit of numerical analysis and experimentation was 
necessary to prevent edges being inserted into the Ytable incorrectly. 

6. Applications 
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We list here three applications that we have implemented ourselves. We also describe how the 
algorithm might be employed to solve the hidden surface problem. The key to applying the 
algorithm is to recognize that a problem can be viewed as a boolean expression. This is not always 
obvious. 

6.1. Arbitrary region clipping 

Clearly, the polygon clipping operation is a boolean expression. It is the boolean AND of the 
clipping window and the rest of the polygons which may be grouped into one set. While we don't 
advocate implementing clipping an environment to a rectangular window with this algorithm there 
are plenty other clipping applications that crop up in computer graphics research. 

One of our clipping applications is to determine the portion of the boundary of a rectangular 
volume that is not covered by polygons. We subdivided the model of a building into rectangular 
volumes and wished to compute the location of openings between subdivisions. Subtracting the 
polygons inhabiting the plane of the boundary from the rectangular boundary of the volume gave 
us those polygons explicitly. The subtraction operation is the AND-NOT operation. Conversely, a 
programmer could place doors and windows in the boundary of a rectangular volume and subtract 
them away from the boundary to model a room. This type of coplanar CSG operation can be 
troublesome for CSG algorithms that operate on boundary representation data. 

As another example of an unusual clipping application we had an odd shaped region known to be 
the window in a plane through which two polygons on opposite sides of the plane had to look to 
"see" each other. Determining that the window was completely covered allowed us to deduce that 
those two polygons could not see each other. We again used the AND-NOT operation to subtract 
polygons known to inhabit the plane of the given window from the window. If anything remained 
after the operation, the polygons could see each other. 

6.2 Detecting coincident polygons 

It is well known that two objects cannot inhabit the same spot in space. This does not seem to be 
known by the geometric modelling programs available to many of us. As a consequence, it is 
possible to model a wall in a building with overlapping polygons. If the two walls have different 
colors, the result of rendering this object can be disasterous. We have used ~ur program to detect 
coincident polygons in our models of buildings. The algorithm is run on each set of coplanar 
polygons in a model. Each polygon is a member of a distinct set. The boolean function is the OR 
of any two or more polygons. Because our implementation maintains an array with one entry for 
each set in each element of the Ytable this is not the most efficient method possible. However in 
this case it works efficiently enough, which in practical terms is the bottom line. An 
implementation which used linked lists instead of the array or hardwired the boolean function in 
some way could be used if efficiency became of utmost concern. It is also possible to use 
something more than a true boolean operation to determine the region of the plane to triangulate. 
For example a count of the number of polygons covering a region might be used. This is advisable 
in the cases where the boolean function becomes very large and inefficient to evaluate. 

6.3 Transforming a Tiling into a Triangular Subdivision 

We define a tiling of a planar region as some decomposition of the region into polygons so that the 
region is covered at every point by one and only one polygon. A tiling in which edges intersect 
other edges only at vertices is a planar subdivision. The advantage of a planar subdivision over a 
tiling becomes clear when the tiling is laid over a curved surface. The tiling of a curved surface 
may have cracks in it while the planar subdivision avoids this problem. Von Herzen notes this 
problem in approximating curved surfaces with restricted quadtrees [Von Herzen]. 

Even if the surface tiled is actually flat, such as the wall of a building, radiosity shading 
calculations produce a variation in intensity over the surface that can be thought of as a curved 
surface. Here the cracks will appear as shading discontinuities. Transforming the tiling to a planar 
subdivision will remove the shading discontinuities. 

We made a small modification to our algorithm that allowed it to keep the edges induced by the 



... 

tiling and computed the OR of the tiles to get a triangular subdivision. The subdivision allowed 
proper averaging of radiosity patch values at the vertices and removed the shading discontinuities. 

The modification was to treat edges that normally would be ignored, the interior edges, as a 
Falling and Rising pair of edges rather than as a Constant edge. Since the function passed in as an 
argument determines whether an edge is a Rising, Falling or Constant edge, this change is fully 
backward compatible with the implementation as described above. 

6.4. The visible surface problem 

We have not implemented this application but we describe it because it is such an important 
problem. The environment could be projected onto the plane. We make each polygon a distinct set 
Then compute the OR of these polygons while keeping the interior edges as in the application in 
section 6.3. The array maintained with each entry in the Ytable tells us which polygons from the 
input covered each triangle. We can then do a depth test for each of those covering polygons to 
determine the closest polygon whose surface attributes would be used to render the triangle. 

The worst case complexity is 0(n2logn) where n is the number of vertices including intersections 
induced by the projection because the array that must be maintained at each entry in theY table is the 
size of the input. This is another case where a psuedo-boolean function should be used. We want 
to triangulate everything and keep track of the input polygons that covered each output triangle. 
The array of the covering polygons is clearly not the best since it will usually have only a few 
non-zero values and a lot of work will be wasted maintaining the zero values. · 

However, if a linked list was used to keep track of which sets an edge in the Ytable bounded, it is 
likely that the average case complexity would rival other rendering algorithms. It would also have 
the advantage of computing the analytic definition of the visible surface rather than just a point 
sampling, which allows proper filtering for antialiasing. Furthermore, the rigorous basis of the 
design would eliminate the glitches produced by all the intersection cases that conventional scanline 
renderers fail to handle. · 

7. Conclusion 

The applications we have outlined demonstate the utility of a program which can compute boolean 
combinations of polygons. The plane sweep algorithm provides an efficient method to compute 
these boolean combinations of polygons. Previous presentations of plane sweep algorithms have 
stressed theoretical analysis of the algorithm at the expense of completeness. We have stressed 
robustness and offered a new interpretation of the local geometry of the transition vertex which 
allows real world input to be processed without extensive special casing. 
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