
..

; .,

Solving Computer Graphics Problems
through Boolean Combinations of Polygons

TR89-031

August, 1989

Jobn M . Airey

The University of North Carolina at Chapel Hill
Department of Computer Science
CB# 3175, Sitterson Hall
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunityj ARirmative Action Institution.

~
~

I

..

0. Abstract

Solving Computer Graphics Problems
through Boolean Combinations of Polygons

John M. Airey
UNC @ Chapel Hill

Several important computer graphics problems can be solved by formulating the problem as a
boolean combination of sets of coplanar polygons. We describe an implementation of an efficient
plane sweep algorithm, which solves these problems by triangulating the polygonal regions
defined by boolean combinations of sets of polygons. Example applications include, but are not
limited to, triangulating a concave polygon with holes, computing complex clipping operations,
detecting modelling errors, transforming a tiling into a planar sutxlivision and even the hidden
surface problem. We present new techniques to handle the difficulties encountered with real world
input, which are typically omitted in presentations of geometric algorithms in the computational
geometry literature. Finally, we describe how the above applications may be cast as boolean
combinations and solved with our algorithm.

1. Introduction

Technology transfer from computational geometry to computer graphics has been slow. The
published algorithms are efficient and can be proven correct, but the programmer attempting to
implement these algorithms faces many obstacles. The focus of the computational geometry
literature is primarily theoretical and secondarily pragmatic while the emphasis is reversed for most
graphics programmers. The main difficulty faced by the practicing programmer is the liberal
assumptions made by many algorithms about the input. In particular, published geometric
algorithms often assume that the input is in general position, i.e., that no two input vertices
coincide, that no two vertices have the same x-coordinate or that edges intersect only at end points,
etc. This makes the analysis of the algorithm much simpler but makes the task of implementation
much harder. Input that is not in general position is termed degenerate even though it may occur
more often in practice than input in general position. Secondary difficulties are those of data
representation. The universal unit of information for computer graphics is the oriented convex
polygon represented by a list of vertices. Algorithms in the literature may assume some other
representation for input or output.

We have developed an algorithm that handles degenerate input while maintaining good
performance. Simply stated, it computes boolean operations on sets of polygons. The input may
consist of such normally troublesome entities as concave polygons with holes. The output is a
triangular sutxlivision of the plane over which the boolean function is true. Although this appears
to be rather abstract, many problems encounted by graphics programmers can be cast as boolean
operations on sets of polygons. We list some applications here briefly and discuss them in greater
detail in section 6.

1) Many graphics algorithms demand convex polygons. Concave polygons, possibly with holes,
must be decomposed into convex parts. Obviously, triangles are convex, so triangulation yields a
convex decomposition. This is the simplest application of our algorithm but may be the most
useful. In section 2 we discuss less obvious advantages of the triangular sutxlivision, such as how
to join triangles together with a single pass over the triangles to get a good convex decomposition
of a concave polygonal region.

2) Generalized clipping operations appear often in graphics applications. For example, CSG
algorithms which operate on boundary representation data need to special case coincident coplanar
faces. If two cubes are placed so that they abut and we take the union of the cubes, it is necessary
to remove the portion of the faces that touch since those portions are no longer boundaries; they are
inside the union of the cubes. Computing the exclusive-or of those faces solves the problem. We
present other instances of generalized clipping in section 6.

:

3) Detecting and counting overlapping polygons is another common problem. In some modeling
applications, it is necessary to detect overlapping or coincident faces because we consider them a
modelling error. A wall in a building should not be modelled with overlapping polygons because
this will produce rendering errors. Detecting regions where two polygons overlap can be
formulated as a boolean expression problem and computed by our algorithm. The algorithm can
also be modified to count overlaps.

4) In other applications, it is necessary to cover a curved surface with a planar subdivision rather
than a simpler tiling to ensure that cracks do not appear. Analogously, if a flat surface is shaded we
can think of the intensity values as a curved surface. With a tiling, the cracks in the intensity
surface appear as shading discontinuities. Since our program produces a triangular subdivision, it
can be used to eliminate cracks and shading discontinuities.

5) Lastly, it is possible to the solve the hidden surface problem with an algorithm based on
polygon clipping. Since polygon clipping can be formulated as a boolean expression it is possible
to base a hidden surface program on our plane sweep boolean expression algorithm.

Our algorithm is a generalization of a O(n logn) plane sweep algorithm to triangulate a simple
polygon [Mehlhorn]. Plane sweep algorithms without the triangulation feature have been used by
the VLSI community to analyse circuits through boolean combinations of mask artwork
[Syzmanski], [Ottman], [Niev]. The plane sweep paradigm offers several advantages which make
it possible to run the algorithm on huge VLSI circuit designs with only a moderately sized
machine. It is iterative rather than recursive so external devices may be used for very large input
sets and the amount of primary memory required is usually less than the square root of input size.

However, VLSI applications can make assumptions about the input such as restricting edges to lie
horizontally or vertically. Our presentation is the first we know of which addresses the difficult
problems raised by the unrestricted input encountered in graphics applications. We offer a new
interpretation of the local geometry of the transition vertex which eliminates the extensive special
casing that would otherwise be necessary to handle real world input

The only other boolean expression algorithm we know of is Weiler's algorithm [Weiler80] which
ignores the geometric structure and looks only at the topologic or graph theory aspects of the
problem. Ignoring the geometric structure makes it impossible 13_ compute polygon edge
intersections efficiently. If the input has 1 million vertices, Weiler's O(n) algorithm will run about
30,000 times slower than our O(nlogn) algorithm.

We begin with a short note on representation of data in section 2. Then we present a simple
triangulation algorithm in section 3 and extend it in section 4 to get the main algorithm. In Section 5
we discuss implementation issues. Section 6 presents applications we have implemented ourselves
and applications which might interest others.

2. Why Triangulation?.

Although there are many ways to represent polygonal regions of the plane, such as the DCEL
(doubly connected edge list) represetation of a planar graph [Shamos], or boolean combinations of
halfspaces [Dobkin], we chose to represent regions of the plane with a triangular subdivision.
Fortunately, it is known that any polygonal region may be triangulated and in fact many different
triangulations may exist for the same polygonal region. We represent a triangular subdivision
simply by listing the triangles. The triangles are represented by listing the vertices in
counterclockwise order. The geometric content of the edges is thus represented indirectly. We
represent the topologic content of the edges with three pointers to the neighboring triangles.

The primary reason we have developed our algorithm to output triangles is that many display
devices and rendering algorithms require this representation of a surface. However, a triangular
subdivision has many other desirable attributes. For example, the number of triangles is
proportional to the number of vertices. This means that any operation that was originally
implemented in time proportional to the number of vertices, such as computing the area of the
region or testing point inclusion can be implemented with the same performance by operating on

. ~

the triangles. If it is of great importance to reduce the number of convex components of a region,
we can join some of the triangles together to get a good convex decomposition in linear time. This
is fortunate because computing the optimal convex decomposition takes cubic time! Many other
problems in computational geometry are trivial once given a triangular subdivision [O'Rourke],
[Mehlhorn]. These include path-planning and two dimensional visibility calculations which are
useful to robotics.

We do not require, however, that the input be a triangular subdivision. We have kept the unit of
information for the input down at the level of the directed line segment. By convention, the region
the line segment bounds lies to the left as we travel from the first vertex to the next. This allows
concave polygons with holes to be used in the input. It does, however, preclude self-intersecting
polygons since, in that case, the orientation of some edges are not defined.

3. A Plane-sweep algorithm for triangulation.

Before we consider the triangulation of an arbitrary region of the plane defined by a boolean
expression over sets of polygons we review a plane-sweep algorithm [Mehlhorn] to compute a
triangulation of a simple polygon, P.

The plane sweep algorithm puts the vertices of P into a priority queue, which we call the Xqueue,
with the vertices ordered lexicographically from left to right and then from top to bottom. A vertex
is tagged as a start, bend or end vertex depending upon whether its neighbors in P both follow it in
the Xqueue, one follows and one precedes, or both precede, respectively. A typical procedural
interface to such a module is:

xq_init();
xq delete min();
xq -insert[vertex);
xq)erm();

The Xqueue should be implemented with something that guarantees O(log n) performance· for
xq_insert and xq_delete_min such as a heap [Sedgewick].

The algorithm sweeps a vertical line across the plane from left to right, stepping from vertex to
vertex using xq_delete_min. At any point in time, the sweep line defines a vertical ordering on
the edges of P that it intersects. Between the edges are regions. The regions will be either inside or
outside P and furthermore, the sweep line will intersect these in and out regions alternately. The
edges and regions currently intersected by the sweep line and their vertical order are represented by
a data structure which we call the Ytable. A typical procedural interface to such a module is:

ytbl init();
ytb(insert(edge);
ytbl_ delete(edge);
ytbl findabove(vertex);
ytbCfindbelow(vertex);
ytbl=:pred(edge);
ytbl_succ(edge);
ytbl_term();

Ideally, the Ytable should be implentated with a balanced tree such as a red-black implementation
of top-down 2-3-4 trees [Guibas78] to ensure O(log n) cost for each of the above operations,
excluding ytbl_init and ytbl_term.

The position of the sweep line is advanced by taking a vertex from the Xqueue using
xq_delete_min and the Ytable is updated by deleting edges that end at the current vertex and
inserting edges that start at the current vertex. This reflects the changes in intersection order of
edges of P with the sweep line. This maintenance of the Ytable is common to the invariant of all
plane sweep algorithms. The skeleton of any plane sweep algorithm takes the form:

sweep()
{

}

vertex v;

xq init(list of input polygons);
ytlil init();
wbiie ((v = xq_delete_min()) is not

transition (v);
xq term();
yt6i term();

transition(v)
vertex v;
{

null)

1. maintain tbe Ytable ordering invariant by deleting edges that end at v and
inserting edges that start at v.

2. maintain the invariant particular to this plane sweep algorithm.
}

Generally a plane sweep algorithm will have some other processing at each transition. In this plane
sweep algorithm we associate with every in region a chain of vertices, VIo· ···vk where v1 and Vk
are endpoints of the boundary edges of the region in the Ytable and edges (vi,Vi+ t) will become
edges of the triangulation. The invariant maintained at each transition that is specific to triangulation
is that no triangle can be constructed from any chain. Basically, the chain must be "concave" or
have less than three vertices, i.e. if we closed the chain with an edge from v1 to Vk we would get
either a polygon that is oriented clockwise or a simple line segment

The important property of this invariant is that if we are given a chain satisfying the invariant, and a
new point is added at either end of the chain, it is sufficient to check for a possible output triangle
with the new point and its two closest neighbors in the chain. If no counterclockwise triangle can
be constructed, then no triangle can be constructed anywhere in the chain. If a triangle can be
constructed, the chain is reduced by one vertex and the process may be repeated on the reduced
chain. This means that if k triangles can be constructed, O(k) steps will find them and construct
them. This action of triangulating up or down a chain when given a chain and a new point is the
action that maintains the invariant and produces the triangles.

The maintenance of this second invariant is depicted below. The left hand side shows a chain of
five vertices associated with an in region and a new vertex, vnew, which has been added to the top
of the chain. Since vnew,vl,v2 form a triangle, vl is removed from the chain and the triangle is
output. The process is repeated twice more with vnew, v2, v3 and vnew, v3, v4. This leaves the
reduced chain seen on the right

·-

out

ytable i+1
out

out
ytable i+1

The algorithm must be designed to maintain this invariant and the Ytable invariant on each
transition point. There are three main transition cases to consider depending upon whether the
transition vertex has been tagged as a start, bend or end vertex. We consider the action of the
algorithm on an example. The progress of a sweep line and the resulting triangles is depicted in the
accompanying figure. The interior triangulation edges are the same thickness as the polygon if they
are part of a chain and are thinner if they have been output. The sweep line appears bent in some
instances because vertices with equal x-coordinate values are processed from top to bottom. ·

a a a

f f f

a a a

c

f f f

a a a

c

f f f
There are two possibilities for a start vertex. It can appear in an out region in which case the action
is especially simple. The two edges that emanate from the vertex are inserted into the Ytable. They
form a new in region and their chain is simply the new vertex. The transition on vertex cis an
example of this case. If the point appears in an in region, the action is slightly more complex. The
transition on vertex his an example of this case. The chain that "surrounds" the transition vertex is
broken into two chains and the transition vertex is appended to the end of the upper chain and the
·head of the lower chain. The old chain is broken at its rightmost point. Any triangles that can be
constructed from these new chains are output. In this case the old chain a,/ becomes a,h and h, a,
f. The latter chain yields one triangle and is reduced to h,f.

If the vertex is a bend vertex, we add the new vertex to the appropriate end of the chain and then
output triangles if the new addition allows us to do so. Vertex a is an example of this type of
transition. The chain b,dfbecomes a,b,d/ and the triangles abd and adf are output and the chain
becomes simply af. The entry in the Ytable which ended in a is replaced by the edge that starts at
a.

As with the start vertex, there are two possibilities for an end vertex. The transition on vertex d
illustrates the first possibility where the vertex appears in an out region. The two chains, b,c and
e, are triangulated with the new vertex and then they are joined. The two edges that bounded the
out region are deleted from the Ytable and the neighboring regions become one region. In this case
one triangle was produced when the chain b,c,d was reduced to b,d. The chains b,d and d,e are
then joined to become chain b,d,e. The second possibility, that the vertex appears in an in region is
illustrated by vertex i . The chain becomes closed and is entirely reduced to triangles. In this case
there is only one triangle produced The edges that ended in vertex i, ia and hi, are deleted from the
Ytable and the neighboring out regions are merged into one out region.

The correctness of any part of the triangulation rests upon the idea that the chains are kept
"concave" and that maintaining the invariant does not result in overlapping triangles. The only
questionable case is when an end point appears in an out region. Mehlhorn provides a rigorous
proof of correctness for this case. All plane sweep algorithms have the property that maintaining
the Ytable and getting the next value from the Xqueue can be performed in O(log n) time. Since
there are n vertices, the result is an O(nlogn) algorithm. Maintaining the chain invariant can also be
done within this bound. This follows from the fact that the number of triangles is proportional to
the number of vertices and only a constant amount of work was done for each triangle.

4. Generalizing the Simple Triangulation Algorithm

We now present the extensions and generalizations of the plane-sweep triangulation algorithm
necessary to triangulate an arbitrary region of the plane defined by a boolean expression over sets
of polygons rather than simply the interior of one polygon.

First, we will need some mechanism to handle transition vertices formed by the intersection of
polygon edges. We will also need some technique to determine what regions of the plane satisfy

the boolean function. We can't rely on alternating in and out regions as in the simple triangulation
algorithm.

The last problem is the most difficult to handle in practice. If the input is not in general position,
we also must expect vertices to coincide with other vertices and edges. A nasty consequence is that
a transition vertex may have any number of edges entering it from behind the sweep line and any
number of edges exiting it ahead of the sweep line. This means that each transition vertex can not
be neatly characterized as a start, bend or end vertex. Trying to process vertices that coincide as
independent events is not sufficient.

A programmer could methodically transform the explanation of what to do in each of the transition
configurations in the simple polygon triangulation algorithm with one case for each of the start,
bend and end transitions described in the simple triangulation algorithm above. However, now the
number of configurations is no longer finite and cannot be handled with such a taxonomic
approach. We propose a new interpretation for these complicated transitions which allows them to
be processed without special cases.

4.1 Handling Transitions Introduced by Edge Intersections

Edge intersections must be detected so that they may be treated as transition points in the same
sense as vertices of the input polygons are treated. Each time an edge is inserted into the Ytable we
check whether it intersects the edges that are adjacent in the Ytable. Similarly, when an edge is
deleted from the Ytable we check whether the edges that are now adjacent intersect. A little thought
convinces one that this will catch all intersections. When an intersection is detected and it is ahead
of the sweep line it is inserted into the Xqueue. The xq_insert() routine is used for this purpose.
This will not change the O(logn) complexity of operations done at each transition but it m~
increase the number of transitions. In the worst case the number of intersections could be O(nZ)
but in practice it is much less than n.

4.2 Determining which Regions Satisfy the Boolean Expression

In the triangulation algorithm above we kept track of whether a region was an in region or an out
region. The regions alternated and were bounded on either side by neighbors in the Ytable. This
implies that each edge in the Ytable could be treated as a transition from an in region to an out
region. Now we will keep track of whether a region between two edges in the Ytable is in or out
with respect to our desired boolean function. It is no longer true that regions will alternate so our
interpretation of edges in the Ytable as transitions from in regions to out regions or vice versa will
have to be augmented the concept of a non-transition edge. If two neighboring regions are in
regions, or out regions, the edge between them is a non-transition edge.

Since the boolean expression evaluation for a region depends upon what sets of inputs "cover" the
region we associate an array with each region that has one entry for each distinct set in the input.
The entry will hold a count of the number of polygons from that input set which cover the region.
This array can be evaluated by a function which will determine whether the region is in or out.
When an edge from a set of polygons is inserted into the Ytable, the count for that set in the Ytable
region bounded by the edge is incremented. Similarly, an edge deletion requires decrementing the
appropriate counter.

4.3 Processing Complex Transitions Caused by Degenerate Input

If we assumed that the input was in general position, the extensions outlined in sections 4.1 and
4.2 would be sufficient. The algorithm will run in time 0((n+s)(v+logn)) where n is the number
of vertices in the input, s is the number of vertices created by edge intersections and v is the size of
the array used to evaluate the boolean expression for a region or equivalently is equal to the
number of distinct variables in the boolean expression. Typically v will be a small integer so that
the complexity can be simplified to O((n+s)(logn)).

However, if the program is to be useful it must be modified to handle degenerate input. When
many vertices in the input coincide with other vertices or with other edges, the transition vertex
may have any number of edges entering it from behind the sweep line and any number of edges

exiting after the sweep line.

The following diagram gives an example of such a situation. The scan-line is drawn vertically as a
thick line, the transition vertex is the circle and the entries in the Ytable that intersect the transition
vertex before and after the transition are shown as polygon edges while the entries in the Ytable
above and below the transition vertex are shown as horizontal thick lines. The regions between
edges are labeled with either a 1 or 0 depending upon whether the evaluation of the boolean
function is true or false. The labeling of the edges indicates whether the edge extends through the
vertex or ends or starts at the vertex. For example, edges al and a2 are sequential edges in
polygon a and they both end at the transition vertex. Edges bl and d1 intersect at the transition
vertex and have been drawn over the the transition vertex to emphasize that they do not end or start
at the vertex. The numbering of the edges reflects the counterclockwise orientation of the
polygons. Possible global connections of these edges are suggested by the thin lines connecting
edges from a common polygon.

Ytable

Ytable[i+6]

1

0

YTable[i+4]

Sets are g1 ={a}
g2=={b,c,d}

Expression is
g1-g2

We now show the geometric interpretation of the transition vertex that allows it to be processed
without special cases for degenerate situations. Our algorithm will consider each of the edges in
counterclockwise order around the transition vertex. If an edge is a transition from a 0-region to a
1-region we will call it a R(ising) edge and if it is a transition from a 1-region to a 0-region we will
call it a a F(alling) edge. Other edges are C(onstant) edges. In our example, bl is an R edge to the
right of the scan-line and dl is an F edge to the right of the scan-line. All other edges are C edges.
We will look for pairs of Rand F edges as we travel counterclockwise around the transition vertex.
Clearly, two R edges seperated by zero or more C edges cannot occur, similarly for two F edges.
This implies that R and F edges seperated by zero or more C edges will occur in pairs. This is the
necessary abstraction; we consider pairs ofR and F edges instead of simply pairs of edges.

Each R-F pair may be treated just as the pair of edges bounding the "in" region were treated in the
simple polygon triangulation algorithm. We need a mildly complicated loop strucn.rre to detect the
R-F pairs but once they are found they may be handled with a simple case or if-elseif type control
structure:

1. The R and F pair are to the left of the scan-line.
Depending upon which edge was encountered first, this corresponds to one or
the other of the end cases described in the triangulation algorithm

2. The R edge is on one side of the scan-line, the F edge is on the other.
This is equivalent to the bend case in the triangulation algorithm.

3. The Rand F pair are to the right of the scan-line.
Depending upon which edge was encountered first, this corresponds to one or the
other of the start cases described in the triangulation algorithm.

We may now consider the details of the loop used to detect the R,F pairs of edges in the order
described. The Ytable will provide the counterclockwise ordering if we find YTable[i] using
ytbl_findabove() and use ytbl_succ() to traverse the Ytable from al down to cl, and then
traverse the Ytable from bl back to dl using ytbl_pred(). Any edges that ended at the transition
vertex are deleted during the downward traversal. Any edges that begin at the transition vertex are
inserted after the downward traversal. Edges that extend through the vertex do not need to be
deleted and reinserted, they can have their order in the Ytable reversed before beginning the
upward traversal.

It is necessary to associate with each vertex entered into the Xqueue the edges that emanate from
that vertex so that they can be inserted into the Ytable. It is no longer necessary or even possible to
associate a bend, start or end "type" as was done in the simple polygon triangulation algorithm.
After the vertex has been processed the edges closest to the edges above and below the transition
vertex are checked for intersections and if an intersection is found it is entered into the X queue.

Another detail facing the programmer during the transition operation is the problem of correctly
maintaining the set count arrays associated with the new regions. Although the edges entering the
transition vertex were deleted in top to bottom order, the order in which exiting edges are inserted
into the Ytable is arbitrary. It depends upon the order in which the exiting edges associated with the
transition vertex were inserted into the Ytable. Until the last edge is inserted, the Ytable is in a state
that may not correspond to any possible physical configuration and hence it is impossible to update
any of the set count arrays until the last edge is inserted. After the last edge is inserted, and the
upwards traversal begins, the set count arrays can be updated as each is encountered. We may
simply copy the set count array from the previous edge and then increment or decrement the entries
that correspond to the sets that the current edge bounds.

The transition algorithm is depicted below:

transition(v)
Vertex v;
{

Edge h,l,e,next,r ,f;
going_down = TRUE;

h = ytbl findabove(v);
I = ytbl findbelow(v);
e = ytbC succ(h);

while (e != h){
r = f =NULL;
while (r is NULL or f is NULL and e != h){

if (e == I) {

}

going down = FALSE;
inserf_exiting edges(v);
e = ytbl pred(i);

else {

}

if (e is a R edge) r = e;
else if (e is an F edge) f = e;
if (going_ down) {

next = ytbl succ(e);
ytbl delete(e};

}
else

}

{
next = ytlb pred(e);
fix _set _arrays(e,next);

e = next;

}

}

}

if (r and f are not NULL)
process the R-F pair

check for intersection(h,ytbl succ(h));
check :ror :intersection(l,ytbl j>red(l));

4.4 Handling Edges that Inhabit the Same Line

Edges may exist on the same line and intersect along line segments rather than singles points. This
degenerate condition gives rise to dangling edges and polygons with no area. The generalized
transition algorithm is not changed appreciably by the steps taken to handle this problem. We let
the entries in the Ytable be characterized by a line equation and append a list of the edges that share
that line equation. This makes checking for intersections between new neighbors in the Ytable
slightly more complicated because we have to ascertain that an intersection of two parent lines is
contained by at least one edge lying on each line. Deletions and insertions are also complicated
somewhat because we can't delete an entry from the Ytable until all the edges on the line are
deleted. Similarly, we have to check to see whether an edge we are inserting already has a parent
line in the Yfable.

S. Implementation

The generalized algorithm has been implemented in a just under two thousand lines of C. A
streamlined implementation suitable for one particular application could no doubt be implemented
in much less. Our implementation is augmented to optionally animate its progress and compute
certain other information associated with the input. We implemented the Xqueue on top of an
implementation of top-down 2-3-4 red-black trees, a balanced tree algorithm. Originally a heap was
used but because a heap is only a partially ordered data structure it can not combine identical
vertices until they are removed together. Since coincident. vertices are the norm rather than the
exception in our applications, the balanced tree implementation has performed as well as the heap.

Because our applications have typically involved thousands of vertices and not millions we have
gotten away with implementing the Ytable with an array. In practice one can often achieve good
performance simply by making swe that the Xqueue is implemented efficiently due to the fact that
the Ytable is usually far below worst case capacity at any given time. Intuitively, if the region being
swept is roughly square and edges are distributed evenly over the region any vertical line will
intersect roughly the square root of the total number of edges. Thus, the Ytable will be fllled to the
square root of maximum capacity on average. These intuitive ideas are made precise and
conflrmed by Bentley, Haken and Hon [Bent80]. For the sake of doing things correctly, we plan
to implement the Ytable on top of the balanced tree package in the future.

The implementation was coded so that a pointer to the function that evaluates the boolean
expression could be passed as an argument to the transition routine. This was a good decision
because it allows experimentation with new applications without the duplication of code for the
transition routine which is fairly complex.

Our biggest single implementation problem has been tuning the algorithm to allow for floating
point errors. Since all decisions in the algorithm are local it really only cares about the relative
ordering of values and not about their absolute value. Unfortunately, this is exactly what floating
point is not designed to do. The optimal data type to use for vertices and other geometric values
would be rational numbers represented with a big integer for numerator and denominator since that
would allow exact calculations but this is not possible in our version of C since we are limited to
32 bit integers. Double precision floating point, 64 bit IEEE format, was used for the coefficients
of edges in the Ytable but even then a little bit of numerical analysis and experimentation was
necessary to prevent edges being inserted into the Ytable incorrectly.

6. Applications

•

We list here three applications that we have implemented ourselves. We also describe how the
algorithm might be employed to solve the hidden surface problem. The key to applying the
algorithm is to recognize that a problem can be viewed as a boolean expression. This is not always
obvious.

6.1. Arbitrary region clipping

Clearly, the polygon clipping operation is a boolean expression. It is the boolean AND of the
clipping window and the rest of the polygons which may be grouped into one set. While we don't
advocate implementing clipping an environment to a rectangular window with this algorithm there
are plenty other clipping applications that crop up in computer graphics research.

One of our clipping applications is to determine the portion of the boundary of a rectangular
volume that is not covered by polygons. We subdivided the model of a building into rectangular
volumes and wished to compute the location of openings between subdivisions. Subtracting the
polygons inhabiting the plane of the boundary from the rectangular boundary of the volume gave
us those polygons explicitly. The subtraction operation is the AND-NOT operation. Conversely, a
programmer could place doors and windows in the boundary of a rectangular volume and subtract
them away from the boundary to model a room. This type of coplanar CSG operation can be
troublesome for CSG algorithms that operate on boundary representation data.

As another example of an unusual clipping application we had an odd shaped region known to be
the window in a plane through which two polygons on opposite sides of the plane had to look to
"see" each other. Determining that the window was completely covered allowed us to deduce that
those two polygons could not see each other. We again used the AND-NOT operation to subtract
polygons known to inhabit the plane of the given window from the window. If anything remained
after the operation, the polygons could see each other.

6.2 Detecting coincident polygons

It is well known that two objects cannot inhabit the same spot in space. This does not seem to be
known by the geometric modelling programs available to many of us. As a consequence, it is
possible to model a wall in a building with overlapping polygons. If the two walls have different
colors, the result of rendering this object can be disasterous. We have used ~ur program to detect
coincident polygons in our models of buildings. The algorithm is run on each set of coplanar
polygons in a model. Each polygon is a member of a distinct set. The boolean function is the OR
of any two or more polygons. Because our implementation maintains an array with one entry for
each set in each element of the Ytable this is not the most efficient method possible. However in
this case it works efficiently enough, which in practical terms is the bottom line. An
implementation which used linked lists instead of the array or hardwired the boolean function in
some way could be used if efficiency became of utmost concern. It is also possible to use
something more than a true boolean operation to determine the region of the plane to triangulate.
For example a count of the number of polygons covering a region might be used. This is advisable
in the cases where the boolean function becomes very large and inefficient to evaluate.

6.3 Transforming a Tiling into a Triangular Subdivision

We define a tiling of a planar region as some decomposition of the region into polygons so that the
region is covered at every point by one and only one polygon. A tiling in which edges intersect
other edges only at vertices is a planar subdivision. The advantage of a planar subdivision over a
tiling becomes clear when the tiling is laid over a curved surface. The tiling of a curved surface
may have cracks in it while the planar subdivision avoids this problem. Von Herzen notes this
problem in approximating curved surfaces with restricted quadtrees [Von Herzen].

Even if the surface tiled is actually flat, such as the wall of a building, radiosity shading
calculations produce a variation in intensity over the surface that can be thought of as a curved
surface. Here the cracks will appear as shading discontinuities. Transforming the tiling to a planar
subdivision will remove the shading discontinuities.

We made a small modification to our algorithm that allowed it to keep the edges induced by the

...

tiling and computed the OR of the tiles to get a triangular subdivision. The subdivision allowed
proper averaging of radiosity patch values at the vertices and removed the shading discontinuities.

The modification was to treat edges that normally would be ignored, the interior edges, as a
Falling and Rising pair of edges rather than as a Constant edge. Since the function passed in as an
argument determines whether an edge is a Rising, Falling or Constant edge, this change is fully
backward compatible with the implementation as described above.

6.4. The visible surface problem

We have not implemented this application but we describe it because it is such an important
problem. The environment could be projected onto the plane. We make each polygon a distinct set
Then compute the OR of these polygons while keeping the interior edges as in the application in
section 6.3. The array maintained with each entry in the Ytable tells us which polygons from the
input covered each triangle. We can then do a depth test for each of those covering polygons to
determine the closest polygon whose surface attributes would be used to render the triangle.

The worst case complexity is 0(n2logn) where n is the number of vertices including intersections
induced by the projection because the array that must be maintained at each entry in theY table is the
size of the input. This is another case where a psuedo-boolean function should be used. We want
to triangulate everything and keep track of the input polygons that covered each output triangle.
The array of the covering polygons is clearly not the best since it will usually have only a few
non-zero values and a lot of work will be wasted maintaining the zero values. ·

However, if a linked list was used to keep track of which sets an edge in the Ytable bounded, it is
likely that the average case complexity would rival other rendering algorithms. It would also have
the advantage of computing the analytic definition of the visible surface rather than just a point
sampling, which allows proper filtering for antialiasing. Furthermore, the rigorous basis of the
design would eliminate the glitches produced by all the intersection cases that conventional scanline
renderers fail to handle. ·

7. Conclusion

The applications we have outlined demonstate the utility of a program which can compute boolean
combinations of polygons. The plane sweep algorithm provides an efficient method to compute
these boolean combinations of polygons. Previous presentations of plane sweep algorithms have
stressed theoretical analysis of the algorithm at the expense of completeness. We have stressed
robustness and offered a new interpretation of the local geometry of the transition vertex which
allows real world input to be processed without extensive special casing.

References

[Bent80]
Statistics on VLSI Designs
Jon L. Bentley, Dorothea Haken, and Robert W. Hon
CMU-CS-80-111, Carnegie-Mellon University, Pittsburgh PA,1980.

[Dobkin]
An Efficient Algorithm for Finding the CSG Representation of a Simple Polygon
David Dobkin, Leonidas Guibas, John Hershberger, and Jack Snoeyink
Siggraph 1988 Conference Proceedings, pp. 31-40

[Guibas78]
A Dichromatic Framework For Balanced Trees
Leo J. Guibas and Robert Sedgewick
19th Annual Symposium on Foundations of Computer Science, IEEE, 1978

• -

Kurt Mehlhorn
Springer -Verlag

[Niev]
Plane-Sweep Algorithms for Intersecting Geometric Figures
J. Nievergelt and F.P. Preperata
Communications of the ACM
Oct. 1982 V 25 No. 10.

[ORourke]
Art Gallery Theorems and Algorithms
Joseph O'Rourke
Oxford Press. 1986

[Ottman]
A Fast Algorithm f<?r the Boolean Masking Problem
Thomas Ottman, Peter Widmayer and Derick Wood
Computer Vision, Graphics and Image Processing, 30 249-268 1985

[Sedgewick]
Algorithms, Second Edition
Robert Sedgwick
Addison Wesley

[Shamos]
Computational Geometry
Michael Shamos and Franco Preperata
Springer-Verlag

[Syzmanski]
Goalie: A space efficient System for VLSI Artwork Analysis,
T. G. Szymanski and C. J. VanWyk:
IEEE Design and Test. 64-72, June 1985.

[Von Herzen]
Accurate Triangulations of Deformed, Intersecting Surfaces
Brian Von Herzen, Alan H. Barr
Siggraph 1987 Conference Proceedings, pp. 103-110.

[Weiler80]
Polygon Comparison using a Graph Representation
Kevin Weiler
Siggraph 1980 Conference Proceedings, pp. 10-18

