
A Model, Architecture, and Operating System
Support for Shared Workspace Cooperation

TR89-029

August, 1989

Sheng- Uei Guan

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/Affirmative Action Institution.

A Model, A:·chitecture, ancl Operating System Support
for Shared Work~pace Cooperation

by

Sheng-Uei Guan

A dissertation submitted to the faculty of the
University cf North Carolina at Chapel Hill in
partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Computer
Science.

Chapel Hill

1989

Approved by:

(c) 1989
Sheng-Uei Guan

ALL RIGHTS RESERVED

-ii-

Sheng-Uei Guan. A Model, Architecture, and Operating System Support for Shared

Workspace Cooperation (Under the direction of Hussein M. Abdel-Wahab.)

ABSTRACT

As more and more special-purpose real-time user cooperation tools are being
built, the impact of these new applications to operating systems has just emerged.
Instead of directly implementing an operating system for such applications, we try to
identify user requirements for such cooperation and the support that designers of such
tools seek. With this investigation, the desirable requirements and support can then be
achieved through different approaches, e.g. operating system kernels, on-line libraries,
or user module libraries. Rather than tackle the problem in its full generality, we focus
on real-time cooperation with shared workspaces, which is the core of most real-time
cooperation.

This dissertation describes a shared workspace model. Subtleties supporting this
shared workspace have been studied. A Remote Shared Workspaces facility has been
built as a research vehicle. Desirable features for shared workspace cooperation are
investigated; the relevance of operating systems supporting them is also discussed. An
architecture supporting dynamic groups formation and activities is presented. It sup
ports remote cooperation and also cooperation with existing single-user applications.
Operating system mechanisms are also described to support multi-user tools develop
ment and sharing of user privileges in a session, namely: multi-user processes and
shared capabilities-lists. A system-call level programmers' interface has been
specified.

We also introduce jointly-owned objects, found in real life and the computer
world. The use of multi-user tools makes the existence of jointly-owned objects a
necessity: a participant who joins a multi-user tool written by others knows that the user
agent executed in his name is not a Trojan horse if the multi-user tool is jointly owned
by all the participants. The concept of "jointly-owned" is generalized to "condition
ally jointly-owned", which helps resolve conflicts among joint-owners. Graham and
Denning's protection model is extended to incorporate these conditionally jointly
owned entities. Authority- and quorum-based objects are investigated as instances of
conditionally jointly-owned objects.

. iii .

ACKNOWLEDGEMENTS

My deepest appreciation goes first to my advisor, Hussein M. Abdel-Wahab, for
numerous discussions, comments, and guidance. His insight has kept me pursuing a
fruitful path. His practical knowledge with the system helped me solve difficulties
encountered building the prototypes. His encouragement made three years' research a
valuable experience.

I would also like to express my sincere gratitude to my committee members whose
guidance and endurance were essential to the development of this study.

To Peter Calingaen, for much valuable advice, constructive comments on
numerous versions of my draft, and generous giving of time in proofreading the
final version.
To Jay Nievergelt, for initiating the Remote Shared Workspaces project and pro
viding much helpful advice.
To Don Smith, for much valuable comments in reading my dissertation draft and
the final version.
To Dean Brock and Jan Prins, for helping me realize an attainable goal.

I am also grateful to John Smith and Michael Stumm for making comments on my
initial dissertation proposal, to Richard Snodgrass and Keith Lantz for making com
ments on my initial dissertation draft, to Joey Hughey for making comments on my ini
tial dissertation proposal and assisting in the implementation of the Remote Shared
Workspaces user agent, and to Jih-Fang Wang for implementing the Remote Shared
Workspaces communications server.

I am also indebted to my parents, Homg-Tzou and Fong-Mei, for their constant
encouragement. Finally, this work would not be possible without the support and love
from my wife, Julia Wang Feng, and the constant joy from my son, David Shaofang.

(This work was partially supported by the Office of Naval Research, under con
tract N00014-86-K-0680, and under IBM Shared University Research Agreement
#826.)

-lv-

TABLE OF CONTENTS

Chapter 1. INTRODUCTION .. 1

1.1. OveJView ... 1

1.2. The Thesis ... 2

1.3. Major Results .. 7

1.4. Related Worlc ... 8

1.4.1. OveJView of Computer-Supported Cooperative Worlc 8

1.4.2. Conceptual Worlc in Computer-Supported Cooperative Worlc 10

1.4.3. Sharing Existing Single-User Applications for Cooperation 11

1.4.4. Operating System Functions for Cooperative Worlc 12

1.4.5. Protection Model for Jointly-Owned Objects 13

1.5. Outline of Dissertation 13

Chapter 2. SHARED WORKSPACE COOPERATION.. 15

2.1. Definitions ... 15

2.2. Shared Workspace Model ... 16

2.3. Dynamic Groups .. 20

2.4. Sharing in Workspaces 21

2.5. Token Management in a Session ... 23

2.6. Design Aspects of Shared Workspace Cooperation Tools 25

2. 7. Desirable Features for Shared Workspace Cooperation 26

2.7.1. Dynamic Groups Formation and Activities 26

2.7.2. Development of Multi-User Tools ... 27

2.7.3. Sharing a Single-User Tool in a Real-Time Cooperation 27

2.7.4. Sharing of User Privileges Within a Session 28

2.7.5. Provision of Jointly-Owned Objects .. 29

2.8. Requirements for Shared Workspace Cooperation ... 31

Chapter 3. AN ARCHITECTURE SUPPORTING DYNAMIC GROUPS 32

3.1. Design Concepts and Functional Interface 34

3.2. Examples ... 41

-v-

3.3. Possible Extensions and Discussion .. 45

Chapter 4. MULTI-USER PROCESSES AND SHARED CAPABILITIES-LISTS 49

4.1. Multi-User Processes ... 49

4.1.1. Design Concepts and Functional Interface 49

4.1.2. An Example.. 53

4.1.3. Design Alternatives and Discussion ... 57

4.2. Shared Capabilities-Lists .. 60

4.2.1. Design Concepts and Functional Interface 60

4.2.2. An Example .. 64

4.2.3. Possible Extensions and Discussion ... 67

Chapter 5. PROTECTION MODEL FOR CONDITIONALLY JOINTI.Y-OWNED
OBJECfS .. 69

5.1. Graham and Denning's Protection Model ... 69

5.2. Conditionally Jointly-Owned Objects ... 70

5.3. Creation and Maintenance of Conditionally Jointly-Owned Objects 71

5.4. Jointly-Owned Subjects ... 73

5.5. The Extended Model ... 75

5.5.1. Access ... 75

5.5.2. Protection System Commands ... 77

5.5.3. Correctness and Trust ... 80

5.6. Authority- and Quorum-Based Objects... 81

5.7. Examples ... 83

Chapter6. IMPLEMENTATION... 85

6.1. Purpose and Outline 85

6.2. Dynamic Groups Formation and Activities .. 87

6.2.1. Prototype Implementation .. 87

6.2.2. Token Management Implementation ... 91

6.2.3. Implementation Notes, Issues, and Suggestions 93

6.2.3.1. Implementation Notes ... 93

6.2.3.2. Implementation Issues ... 94

6.2.3.3. Implementation Suggestions ... 95
6.3. Multi-User Processes ... 96

6.3.1. Prototype Implementation .. 96

6.3.2. Sketch of Direct Implementation ... 98

·vi ..

6.4. Shared Capabilities-Lists .. 99

6.4.1. Prototype Implementation .. 99

6.4.2. Sketch of Direct Implementation ... 103

6.5. Conditionally Jointly-Owned Objects ... 103

6.5.1. Prototype Implementation .. 103

6.5.2. Sketch of Direct Implementation ... 108

Chapter 7. CONCLUSIONS .. 109

7.1. Summary and Comparison .. 109

7.2. Future Directions and Conclusions ... 112

BffiLIOGRAPHY .. 115

Appendix A. REMOTE SHARED WORKSPACES APPLICATION.............................. 124

Appendix B. RECODED REMOTE SHARED WORKSPACES APPLICATION 132

.. vii-

LIST OF FUNCTION CALLS

add_ authority
add _joint
allow _join .. .
change_ quorum
close _group
create_ clist .. .
create _group .. .
delete_ clist .. .
destroy _group .. .
dup _public .. .

t • . en er _ wySIWIS

join _group .. .
join _proc
leave _group .. .
I . . eave_ wysiwis .. .
list _group .. .
list _groupname
I' t . . IS _ wySIWIS ••

k .. t ma e ..JOin •.••••••••••••.•...•.••••••...•.•...••••••.........•••••........•••••.........••••...••.•.••••••........•••••..

put_public
receive .. .
send .. .

•t . . Wai ...JOID ••••••••••••••••••••••••••••••••••.••••••••••••.•••.•

withdraw_ authority .. .
withdraw _joint
wysiwis
_close
_read
_write

· viii ..

83
82
51
83
36
60
34
62
40
62
40
35
52
35
40
35
35
39
82
62
36
36
51
83
82
37
63
62
63

LIST OF FIGURES

Figure 1.1: Shared Workspace ... 3
Figure 1.2: Research Map .. 4
Figure 1.3: Remote Shared Workspaces .. 5
Figure 2.1: Multi-User Tool (Centralized Control)... 18
Figure 2.2: Multi-User Tool (Decentralized Control) ... 18
Figure 2.3: Sharing a Single-User Tool in a Real-Time User Cooperation 19
Figure 2.4: Cognitive Models .. 22
Figure 2.5: Token Control States for User Process .. 24
Figure 3.1a: Cluster ... 33
Figure 3.1 b: Implementation of Dynamic Groups ... 33
Figure 3.2: WYSIWIS ... 38
Figure 4.1: Multi-User Process ... 50
Figure 4.2: Multi-User-Threaded Task ... 58
Figure 4.3: Shared C-list ... 61
Figure 5.1: Extended Access Matrix ... 76
Figure 5.2: Protection System Commands ... 78
Figure 6.1: Implementation of Shared Viewing .. 90
Figure 6.2: Implementation of Multi-User Processes ... 97
Figure 6.3: Implementation of Shared C-Lists .. 102
Figure 6.4: Implementation of Conditionally Jointly-Owned Objects 105
Figure A.1: RSW Tool Agent ... 125
Figure A.2: Single Shared Workspace Copy .. 127
Figure A.3: Replicated Shared Workspace Copies .. 128

- ix-

LIST OF EXAMPLES

Example 3.1: Multi-User Session Tool .. 41
Example 3.2: Conversion of a Single-User Tool into a Multi-User Tool.................. 43
Example 4.1: Joint-Browsing Tool .. 53
Example 4.2: Session Tool Using a Shared C-list ... 64
Example 5.1: Contract .. 83
Example 5.2: Joint Account ... 83
Example 5.3: Bank Safe .. 84
Example 5.4: Multi-User Tool (Solving the Trojan Horse Problem) 84

-x-

CHAPTER 1

INTRODUCTION

1.1. Overview

With maturing network technology and readily available personal computers or
workstations, real-time collaboration is experimented with frequently nowadays. Colla
boration occurs among intra-machine, intra-LAN, or inter-network users. Although the
distance varies, the basic user requirements are mostly the same.

Computer supported cooperative work (CSCW) [Greif88] touches a wide range of
fields, including computer science, group communication [Goldberg75], office systems,
psychology, and organizational design. Tools developed include electronic mail
[Hiltz81, Vallee83], electronic bulletin boards [Essick85], computer conferencing
[Greif82, Sarin84, Lantz86, Walters87, Hughes88, Sakata88, Abdel-Wahab88], meeting
schedulers [Sarin85], group decision support systems [Bui86, Gray87, Kraemer88],
brainstorming and group problem solving tools [Stefik86, Stefik87, Malone87,
Malone87a], collaborative writing [Seliger85, Smith87, Fish88], hypertext systems
[Trigg86, Delisle87, Conklin87, Trigg88], and project management tools [Tichy82,
Sathi86, Perry87].

As more and more special-purpose cooperation tools are being built, the impact of
these new applications on operating systems has just emerged. This statement is sup
ported by the observation that a few recent operating systems are designed with an
explicit goal of supporting cooperative work (see Sec. 1.4.4). Instead of going directly
to implement an operating system for such applications, we try to ask ourselves first:
how should operating systems be designed to support these CSCW applications? More
specifically, how should operating systems be designed to support real-time (on-line,
synchronous) cooperation?

Before attempting to answer these questions, someone may ask: what is the differ
ence between real-time and non-real-time cooperation? Why is it so important to sup
port real-time cooperation? Real-time cooperation differs from non-real-time

cooperation in two aspects. First, users are able to interact and coordinate with each
other promptly. For example, there is a significant difference between contacting a per
son by phone versus by electronic mail. Second, users are able to share objects in a
real-time fashion. For example, the process output of an editor can be shared. With
these differences, we see that users can cooperate more effectively in a real-time
cooperation. To answer the question how operating systems should be designed to sup
port real-time cooperation, our approach is to first find out user requirements for such
cooperation and to identify the support that designers of such tools seek. We also look
for the infrastructure of cooperation tools. With this research, the desirable cooperation
features and support can then be achieved through any one of several different
approaches, e.g. operating system kernels, on-line libraries, and user module libraries.
This research is rewarding because in many existing systems real-time user cooperation
is usually poorly supported and cannot be achieved without substantial implementation
effort.

A related and rewarding research topic is to investigate the use of existing single
user tools for real-time cooperation. To name a few examples, an editor can be used for
co-writing a paper, a learning-guide can be used for group tutoring, a debugger can be
used for co-debugging, etc. Since a large investment has already been made in
developing and learning these tools, it would be fruitful for any general support to
include this capability.

1.2. The Thesis

THESIS Shared workspace cooperation is the core of most real-time cooperation.
Existing operating systems do not provide adequate support for user requirements in
such cooperation, nor do they have enough support for builders of such cooperation
tools. To support the above requirements either from the server/library or system-call
level will serve the needs of users in such cooperation and reduce significantly the
implementation effort of cooperation tool builders. Mechanisms can be developed to
support these requirements.

GOALS The goals of this research are: to identify the desirable features and support
for shared workspace cooperation, to develop architectures and operating system
mechanisms to support them, and to extend the related protection model. We also look
for mechanisms to support sharing of existing single-user applications.

-2-

WORKSPACE

\
USERS

Fig. 1. 1 Shared Workspace

- 3 -

(BEGIN)

Shared Workspaces
Application

I \.
~bstraction of cooperative Desirable operating system
~ork in shared workspaces features for cooperation in

~
shared workspaces

I • r
Operating system

Protection model for requirements for
conditionally jointly - Solutions cooperation In
owned objects shared workspaces

~
lr

Examples

~ '
'- Implementation

•
8\1)

Fig. 1.2 Research Map

- 4 -

To Other Communications Server

t

.

-.Q

• • • • • •

SESSION 1 SEssiON n

Fig. 1.3 Remote Shared Workspaces

• 5 •

Rather than tackle the problem in its full generality, we will focus on cooperation
with shared workspaces (Fig. 1.1), which is the core of most real-time cooperation,
especially in distributed applications (see Sec. 2.4 for examples supporting this claim).
Our approach (Fig. 12) is to build and experiment with a general-purpose Remote
Shared Workspaces (RSW) facility (Fig. 1.3) [Abdel-Wahab88] on top of an existing
operating system, and derive an abstract view of shared workspace cooperation.

RSW is an application that achieves low-cost remotely shared workspaces based
on widely available systems and single-user application programs. Issues for building
such a distributed application are investigated. For example, how is remote real-time
cooperation achieved when a user usually has no account on machines other than his
own? What are the security problems incurred by using such cooperation tools? What
effect is there on the users if a single shared workspace or replicated shared
workspaces are maintained? What floor passing (chalk passing) scheme can be
developed for a close cooperation using the existing technology? What are the issues or
restrictions in sharing an existing single-user tool?

Using experience from building and experimenting with such shared workspace
cooperation tools that operate over a network, desirable features and requirements are
then identified either from a user's or a programmer's point of view. Next, we investi
gate whether to support these features from an application, an on-line library, or the
operating-system level. Architectures or operating system mechanisms to support these
features can be developed, and a programmers' interface at the level of system or
library calls can be specified. Multi-user cooperation examples are designed using these
system or library calls to show how the proposed mechanisms provide the desirable
cooperative work features. The protection model is also investigated to see whether any
generalization is needed to support shared workspace cooperation.

An initial implementation has been done to ascertain the realizability of the pro
posed mechanisms. The Remote Shared Workspaces prototype [Abdel-Wahab88] has
been re-implemented with the proposed primitives.

RESEARCH OUTLINE

1. Offer abstract view of shared workspace cooperation and specify the related
requirements.

2. Build general-purpose remote shared workspaces: investigate design aspects,
architecture and operating system support.

3. Identify the desirable features and requirements for shared workspace cooperation.

4. Investigate the following, and operating system support therefor:
a. dynamic groups formation and activities;
b. mechanisms to support cooperation using existing single-user application;
c. infrastructure of shared workspace cooperation tools;

-6-

d. mechanisms for sharing privileges in cooperation;
e. jointly-owned objects.

5. Develop the protection model for jointly-owned objects.

I should point out here that this is still a burgeoning field, so the major purpose of
this research is investigation, identification and solutions. No guarantee for complete
treatment can be made because the ever-changing user requirements and evolving tech
nology.

1.3. Major Results

Four mechanisms have been developed, namely:

1. dynamic groups and shared viewing;

2. multi-user processes;

3. shared capabilities-lists;

4. conditionally jointly-owned objects.

These mechanisms are independent of each other, except for multi-user processes
and conditionally jointly-owned objects. This will be explained shortly.

A general Remote Shared Workspaces (RSW) facility has been built as our
research vehicle and reported in [Abdel-Wahab88]. A brief description is provided in
Appendix A. RSW provides the large community of UNIX [Ritchie78] users linked by
Internet [Postel81, Cerf83] with a general-purpose facility that effectively converts a
single-user software tool into one that can be used for real-time collaboration by a
group of mutually remote users. The prototype has been used between the departments
of computer science at University of North Carolina - Chapel HiJI (UNC) and North
Carolina State University (about 25 miles apart). It has also been tested between Old
Dominion University in Norfolk, Virginia, and UNC-Chapel Hill (about 180 miles
apart).

A shared workspace model has also been developed. Subtleties of supporting this
shared workspace have been studied. Requirements of shared workspaces have been
specified. Activities and modes commonly seen in a real-time cooperation have been
studied. An effective and graceful scheme for multi-user floor-passing has been
developed. Design aspects of shared workspace cooperation tools have been studied.
An architecture supporting dynamic groups formation and activities has also been
developed. It can be applied to a distributed system and supports cooperation using
existing single-user applications. The architecture has been specified in the details of
library calls.

-7-

Operating system mechanisms have been investigated to support multi-user tool
development and sharing of user privileges in a session, namely: multi-user processes
and shared capabilities-lists. A multi-user process is a process jointly owned by several
users. It runs under the union of these owners' privilege domains and provides a multi
user terminal interface to the joint-owners. A shared capabilities-list is a capabilities-list
shared by multiple users, where each participant may post a capability to his private
object and allow others to share access. This permits a dynamic and controlled sharing
of workspace objects. The shared capabilities-list mechanism can be applied to a distri
buted system. A programmers' interface at the system-call level has been specified.
Multi-user cooperation examples using these system calls have been designed to show
how the proposed mechanisms provide the desirable cooperation features.

Jointly-owned objects are found in real life and the computer world. The use of
multi-user tools makes the existence of jointly-owned objects a necessity: if a partici
pant joins a multi-user tool written by others, how can he be sure that the user agent
executed in his name is not a Trojan horse [Saltzer75]? This doubt can be removed by
making the multi-user tool jointly owned by all the participants so that each one knows
the multi-user tool cannot be replaced without his presence.

The concept of "jointly-owned" is generalized to "conditionally jointly-owned".
Conditions can be imposed on the presence of joint-owners or users who have the rights
to access or make a protection state change on an object. A jointly-owned object is then
a conditionally jointly-owned object with a null condition. A mechanism realizing con
ditionally jointly-owned objects is presented. Conditionally jointly-owned objects can
be useful in resolving conflicts among joint-owners or users. The same concept can be
applied to subjects (i.e. processes). Graham and Denning's protection model [Gra
ham72] has been extended to incorporate these conditionally jointly-owned entities.

Quorum- and authority-based objects are instances that have been investigated.
Conditions such as a quorum or a list of users can be imposed on the presence of joint
owners or users who have the rights to access or make a protection state change of an
object.

1.4. Related Work
1.4.1. Overview of Computer-Supported Cooperative Work

Electronic Mail and Bulletin Boards

Electronic mail systems are widely used nowadays; their functions are well
developed. They are used primarily for non-real-time communication. At the New Jer
sey Institute of Technology, Starr R. Hiltz and Murray Turoff designed the Electronic
Information Exchange System (EIES) [Hiltz81]. This system provides four general-

-8-

purpose structures: 1. messages- delivery to individuals or groups; 2. conferences
asynchronous meetings, transcripts, and voting; 3. notebooks -private to an individual
or shared among a group of users; 4. directory- a membership directory containing
both individuals and defined groups with self-entered interest descriptions.

At the University of lllinois, a discussion-oriented, computer bulletin-board sys
tem called Notefile has been developed [Essick85]. It contains a number of notefiles.
Each notefile contains many discussions. The applications of Notefile include problem
repon filing, mail processing, project workbooks, and automatic logs.

Computer Conferencing and Meeting Schedulers

At the Xerox Palo Alto Research Center (PARC), an experimental meeting room
- Colab, provides computer suppon for collaborative activities in face-to-face meet
ings. Several prototypes have been built, such as Boardnoter, a multi-user interface
that expresses many characteristics of a chalkboard in face-to-face meetings [Stefik86,
Stefik87].

At Stanford University, an experimental prototype has been implemented to sup
pon integrated multimedia conferencing [Lantz86]. It offers a window-based computer
conferencing system that permits existing applications to run in the context of a confer
ence. At NEC, a computer-supported desk-to-desk conference system has been
developed for users to conduct a meeting from their telephone-attached workstations
[Sakata88]. Panicipants can jointly view and manipulate relevant multimedia informa
tion distributed through a local area network, and discuss the shared information over
the telephones.

At the MIT Laboratory for Computer Science, several prototypes [Greif82,
Sarin84, Sarin85, Seliger85] have been developed for office activities. RTCAL
[Seliger85], a real-time meeting scheduler, suppons scheduling of meetings by building
a shared information workspace from panicipants' on-line calendars. Panicipants may
speak over the phones and use their workstation displays as blackboards.

Group Decision Support

Decision suppon systems (DSS) are systems that try to improve the performance
of information workers in organizations. Group decision suppon systems are DSS
designed to help groups of senior management and professional groups reach consensus
[Gray87]. Some commercial systems have already been built: Applied Future Inc.'s
CONSENSOR, Decisions & Design Inc.'s Decision Conference, etc. [Gray87].

Brainstorming and Group Problem Solving

At Xerox PARC, a Colab tool Cognoter [Stefik87, Foster86] is used to prepare
presentations collectively by a group of people. Its output is an annotated outline of

·9·

ideas and associated text. Cognoter organizes a meeting into three distinct phases -
brainstonning, organizing, and evaluation, each of which emphasizes a different set of
activities.

At MIT, a prototype called Information Lens [Malone87, Malone87a] is designed
to include not only good user interfaces for supporting the problem-solving activities of
individuals, but also good organizational interfaces for supporting the problem-solving
activities of groups.

Collaborative Writing and Hypertext

At MIT, an editing system CES has been developed for co-authors working asyn
chronously on a shared document. Authors can work independently on different sec
tions of the document [Seliger85].

Hypertext systems contain linked texts and figures that can be used for reading
documents nonlinearly. At Tektronix Inc., a hypertext system, Contexts [Delisle87],
has been implemented; it extends the existing hypertext technology to support colla
borative writing. At Xerox Pare, two tools- guided tours and tabletops, implemented
in the NoteCards [Trigg86] environment, allow authors to employ annotation, graphic
layout, and ordered presentation when communicating to readers [Trigg88].

Project Management

The Callisto project [Sathi86] was initiated by the Digital Equipment Corporation
to study and support the management of large projects. Research goals were established
in the following four areas for this project: activity modeling, configuration manage
ment, activity scheduling, and project control.

1.4.2. Conceptual Work in Computer-Supported Cooperative Work

Many pioneers have worked in this field [Greif88]. Douglas Engelhart began to
experiment with systems using computers to support collaboration in the late 1960's.
NLS (oN-Line-System) [Engelbart68, Engelbart75], later called AUGMENT [Engel
bart82, Engelbart84, Engelbart84a], supported useful functions for collaboration, as ela
borated in the next section. The following two dissertations represent a comprehensive
treatment of the related subject.

Sunil Sarin's dissertation [Sarin84] serves as a guideline for designing and imple
menting real-time conferences on distributed computer systems. He pointed out that a
real-time conference allows a group of users, each at his or her own workstation, to
conduct a problem-solving meeting by collectively viewing and manipulating a shared
space of on-line application information while using a voice communication channel
for discussion and negotiation. He proposed useful functions for real-time conferences

-10-

and evaluated different implementation techniques. He also provided criteria for choos
ing alternative techniques when designing a real-time conferencing system.

Gregg Foster claimed in his dissertation [Foster86a] that a real-time computer
based environment can be built from network-connected workstations and that such a
system can enhance group work. Colab [Foster86a, Stefik86] is such a system built to
provide the meeting participants with simultaneous and shared access to the meeting
database. Colab and its tools explored the following properties of computer-based
cooperation: the structure of the problem-solving process, the design of multi-user
interfaces, social coordination, simultaneous activity, maintenance of consistent views
of shared objects, and uses for digitally captured meetings [Foster86a]. Gregg Foster
also investigated real-time software tools to support groups working together in the
same room. Strict and relaxed versions of WYSIWIS (what you see is what I see) are dis
cussed.

The research of Sunil Sarin and Gregg Foster is based on a broad area of real-time
CSCW and touches the general concepts and issues; mine differs from theirs in that a
narrower scope - shared workspace cooperation - is investigated; support from the
operating system point of view is investigated.

1.4.3. Sharing Existing Single-User Applications for Cooperation

Nl.S was the first terminal-based conferencing system that allows integration with
the existing software environment. Stanford's multimedia conferencing prototype
[Lantz86] was the first window system-based conferencing system that achieves similar
function. These systems allow existing application programs to be used without
modification by users in a conference through use of a communication system. A simi
lar system built at AT&T Bell Laboratories is the Rapport multimedia conferencing
system [Ensor88]. It uses the X window system [Scheifler86] executing on UNIX
[Ritchie74] as a standard input/output environment. Many programs based on this
environment can be run by conferees without modification.

The Remote Shared Workspaces prototype [Abdel-Wahab88] offers similar func
tions. It is a general-purpose utility that achieves remote shared workspaces and con
verts any appropriate single-user tool into one that can be used for real-time collabora
tion. An example of an appropriate single-user tool is a text editor or a debugger. No
special-purpose resources are required to use it. For example, the required windows can
be created using any available window system such as the Berkeley UNIX 4.3BSD
[Leffler89] window program that runs on any ASCII terminal, or the MIT X window
system that runs on a variety of workstations.

All the prototypes mentioned above are application-level solutions to sharing
existing single-user applications for cooperation. Instead of implementing every CSCW

-11-

application from scratch, this dissertation research goes a step further: it tries to identify
the infrastructure of CSCW applications and investigates the support from operating
system or library/server level, with a clear programmers' interface defined.

1.4.4. Operating System Functions for Cooperative Work

Operating systems evolved historically: serial processing, batch, multiprogram
ming, timesharing, virtual memory, virtual machine [Adair66, Creasy81], networking
[Tanenbaum85], and user interactive [Beretta82]. Most computers can be networked
today and cooperation among users occurs often. Cooperation tools have been built on
top of existing operating systems that have meager real-time cooperation support. Even
the user interactive operating systems with multiple windows and user-friendly environ
ments are oriented toward single-user applications or non-real-time cooperation. As a
result, real-time cooperation is usually poorly supported and cannot be achieved
without substantial implementation effort.

Terminal Linking, Floor Passing, Shared File, Journal

Some operating systems, e.g. NLS!AUGMENT, TENEX Link, provide terminal
linking, i.e. shared screen mode for multiple users [Engelbart68, Engelbart75]. Such
systems do not work properly unless all linked terminals are of the same type.
Tymshare's AUGMENT [Engelbart82, Engelbart84, Engelbart84a] aims toward sup
porting close collaboration among groups of workers. The support includes "virtual"
terminal linking, floor-passing commands, shared file, and journal. Virtual terminal
linking allows screen sharing across dissimilar terminal types. The shared file is a
hypertext-like shared file system where files can be interlinked to create a shared net
work of information among collaborators. An authorship-change record is maintained
for each statement in the file. The journal system supports a recorded history of dialogs
having attributes similar to those provided to professionals, with libraries to store, cata
log, and access them.

Group Programming

A distributed file system, CFS [Schroeder85] was designed to support group pro
gramming. It supports two jobs: to help each programmer manage a private file
environment in which to work, and to help the group share consistent versions of the
software being developed in parallel. A special feature is that all remote files in CFS
are immutable and only remote files are shared. A new version is created whenever a
remote file is modified.

-12-

WYSIWIS Conference

Another distributed system has been built [Suzuki86] to suppon real-time con
ferencing. The concept of group network directory, which corresponds to a group of
nodes (LAN stations), is introduced to suppon WYSIWIS meetings. Any access via
group network directory is broadcast to every node of the group and executed simul
taneously.

The research described above represents pioneering effons by operating system
designers to suppon cooperative work. Cooperation suppon in these operating systems
can be classified into two categories: 1. linking of objects: object versions, linked file
system, and group network directory; 2. linking of terminals: suppon for convening a
single-user tool for multi-user cooperation. Terminal linking and floor-passing provide
a low-level suppon for collaboration. The convened tool is restrictive: only one user is
active at a time, hence multi-user freedom in real-time collaboration cannot be
achieved.

Take an editor as an example [Stumm88]. Shared viewing with a single-user editor
is like several users sitting at the same terminal using the same editor, except that the
network allows remote users. Only one user at a time can be using the editor. In con
trast, a multi-user editor allows several users to use it simultaneously. As we can see,
an imponant step is missing in the research described above, namely, identifying the
junctional deficiencies of existing operating systems to support real-time cooperation.
In many cases, ad hoc approaches have been adopted instead.

1.4.5. Protection Model for Jointly-Owned Objects

Graham and Denning [Graham72] proposed a protection model based on one
developed by Lampson [Lampson71] to permit the cooperation of mutually suspicious
subsystems. They left the case of "jointly-owned" unsolved [Graham72, Harrison76,
Linden76, Landwehr81]. As real-time cooperation becomes more frequent, the possi
bility of "jointly-owned" can no longer be ignored. Graham and Denning's work is
extended for jointly-owned objects. Their model is chosen here for extension because it
represents the widely used access matrix model [Landwehr81, Maekawa87]. The prob
lem of conflicts among the joint-owners is solved with presence conditions.

1.5. Outline of Dissertation

Chapter 2 discusses the shared workspace cooperation: the model, dynamic
groups, sharing, floor passing, design aspects of tools for such cooperation, and desir
able features. Requirements for such cooperation are then summarized. Chapter 3

-13-

presents an architecture supporting dynamic group formation, activities, and sharing of
single-user tool for multi-user collaboration. A library call interface is specified. Exam
ples are provided to show the use of such a mechanism. Possible extensions and issues
are discussed.

In Chapter 4, two mechanisms are proposed: multi-user processes and shared
capabilities-lists. A system call interface is specified. Examples are provided to show
the use of such mechanisms. Design alternatives and issues are also discussed. Chapter
5 summarizes Graham and Denning's protection model, discusses jointly-owned objects
and subjects, presents the extended protection model, and introduces the design of two
instances of conditionally jointly-owned objects: quorum- and authority-based objects.
Examples are also provided.

Chapter 6 desc;ribes the prototype indirect implementation for each mechanism
proposed, sketches a direct implementation, and presents implementation issues and
conclusions. Chapter 7 summarizes the research results and related work; future direc
tions and conclusions are then presented. Appendix A describes the Remote Shared
Workspaces application. Formation of a cluster and a session are described. Issues for
single and replicated workspaces are also discussed. Appendix B gives a listing of a C
program for the Remote Shared Workspaces prototype rebuilt using the proposed
dynamic group library interface. It has been implemented and tested under UNIX.

-14-

CHAPTER 2

SHARED WORKSPACE COOPERATION

In everyday life people meet for certain purposes: to review documents, to solve
problems, to develop programs, etc. For office work, the data on managerial communi
cations indicate that top managers spend most of their time in meetings [Panko64,
Mintzberg79]. It would be beneficial if computers could be used to support physical
meetings. Through this support, the users could be more efficient in meeting activities,
information exchange, and retrieval. In the following we give a model based on which
meeting support applications can be built. We begin with some definitions.

2.1. Definitions

Object: a protected entity in a computer system. Examples are data arrays sitting in
main memory and files containing texts, graphs, or images.

Subject: an identifiable active entity in a computer system to which authorizations are
granted, and whose access to objects must be controlled. Examples are a process and a
person with a computer account.

User: a person as a subject, who is usually bound to his login identifier.

Privilege: the set of rights owned by a subject.

Domain: the set of objects that currently may be accessed by a subject.

Owner: a subject who has full rights to an object. He is usually the one who creates the
object.

Objects can be jointly owned. There are two possibilities: the ownership is shared
equally among the users, or the ownership is delegated by others to a user.

Tool: an interactive program whose execution provides user interfaces (standard
input/output/error channels) to the user(s) to manipulate objects.

Single-User Tool: a tool whose execution provides interfaces to one user.

Multi-User Tool: a tool whose execution provides interfaces to more than one user.

Cooperation (collaboration): an activity in which people work jointly to achieve a goal.

Session: a cooperation that has several users meeting together at the same time.

A user joining a cooperation is called a participant and the union of participants is
called a group. A cooperation can be real-time (on-line) or non-real-time (off-line). In
a real-time cooperation (also called a session), participants cooperate simultaneously.
A session usually has a chairman. Participants may cooperate either face-to-face or
remotely. A distinction should be made between static and dynamic groups. A static
group usually corresponds to the structure of an organization and is formed for a long
term, e.g. a project team. A dynamic group is usually formed for one session, where the
members may come from different static groups.

The mode of a session is defined as some condition imposed on users' participa
tion or behavior. The mode of a session can be open: a user not on the initial meeting
list may join an ongoing session on approval of the chairman, or closed: the session is
restricted only to participants on the initial list. It can be public: everyone can join, or
secret: the system does not release any information about the session, and the flow of
information is encrypted.

Two modes that influence different aspects (output/input) of group and subgroup
activities are: WYSIWIS mode and token mode. In the WYSIWIS mode - what you see
is what I see, some or all participants share the same view (the current screen or window
output). In the token mode - some or all participants of a group work closely; only one
participant who has the token (floor or chalk) may make his input at one time. The latter
is useful when close coordination is required. Token mode usually implies WYSIWIS,
but not vice versa. Users sharing a chalkboard view may be active simultaneously on
different parts; no token is imposed.

A single-user tool converted to a multi-user tool will usually have the WYSIWIS
and token modes throughout the session [Sarin84, Lantz86, Abdel-Wahab88]. A token
is needed for a converted single-user tool because if more than one user simultaneously
issues tool commands, the tool commands will be interleaved into the tool. If the com
mands cause conflict, problems may occur. These problems are serious if no roll-back
or only single-step roll-back function is provided by the tool.

2.2. Shared Workspace Model

Workspace is an abstraction that denotes a collection of objects belonging to some
cooperative work and the software tools needed to access these objects. For example,
researchers writing a joint paper will have in their workspace objects such as sections,

-lli-

figures and tables, and tools such as editors abd formatters. Figure 1.1 shows a meet
ing: each participant has in front of him a workspace where he can operate with some
tools on the same objects that other participants see. A shared workspace is a
workspace shared by users for cooperation.

At first sight, this model looks simple. Several variations complicate the scene:

1. Users may vary: the joining participants may not be fixed, e.g. in a public session.
Users may form subgroups sharing different workspace objects. Or an object
owner who allows some users to share may change his mind later and allow more
users to share or retract sharing. A departing user may want the remaining partici
pants to share his objects.

2. Objects may vary: a user may not foresee all the objects to be shared within a ses
sion, and may bring an object into the workspace at any time during a session. It
may not be possible to predict what will be contained in the workspace.

3. Tools may vary; a session may use several tools. A tool can be a general multi
user tool or a single-user tool converted for multi-user cooperation. Figure 2.1
shows a multi-user tool with a centralized control scheme: the server mediates user
agents' access to the shared workspace. The edge between a user agent and a
workspace object or between the server and an object represents an access path.
The server may allow each user agent to access an object after mediation or it may
require that all user agents access an object through it. The edge between each user
agent and the server represents a control path, used to send and receive requests
and control messages. Figure 2.2 shows a decentralized control scheme: user
agents coordinate among themselves their access to the shared workspace. In Fig.
2.3, a centralized control scheme is used in converting a single-user tool to multi
user cooperation. A token is created and managed by the session server. The ses
sion server also mediates access to the shared workspace.

4. Access may vary: workspace objects can be shared for different levels of access:
e.g. read-only, write-only, read/write, execute-only, etc. The user who brings an
object into the workspace may change his mind during a session and allow other
participants greater access rights to his object, or he may reduce or cancel their
rights. Different objects accessed by a tool may lie in different user domains.
Under what privilege domain should a tool be run? Sharing a single-user tool for
real-time cooperation has its own problems (see Sec. 2.7.3).

5. Working mode may'vary: different working modes may imply different security
concerns. For example, an object initially not available for access may be made
available for access under the owner's supervision, made possible by shared view
ing (WYSIWIS).

-17-

-------------------------------------· I I

I 0 II obJ"ects 0 0
I

I I

Fig. 2.1

objects

•----- ------------- ----------- ____ J

SERVER

Multi-User Tool (Centralized Control)

i------------------------------------1
I

0
I

I I

: 0 0 :
I
I --------- --------- ----------

Fig. 2.2 Multi-User Tool (Decentralized Control)

• 18 •

workspace objects

0 oo

SESSION Hoet

•••••
• TOKEN

USER Hoot

Fig. 2.3 Sharing a Single-User Tool
in a Real-Time User Cooperation

• 19 •

In some cooperation, roles are assigned, with each role having different access
rights to objects in the workspace [Fish88]. A user joining a cooperation is assigned one
or more roles. Even with this scheme, the same requirements may still arise. The degree
of sharing an object may depend not only on the roles, but also on the degree of trust
among the participants. It is possible that a user shares some object with another user,
but not with a third user in the same role as the second user. These variations are com
mon to cooperation.

2.3. Dynamic Groups

Envision people having a meeting in a conference room, communicating with each
other and occasionally forming discussion subgroups. People in the conference have
freedom in exchanging messages and sharing their views. As people join or leave the
conference, the union of participants forms a dynamic group.

To create a computer-supported dynamic group session, there are two possibilities:

1. The system assigns a name (usually a numeric identifier) when the chairman
creates a session; he then communicates it to the participants through some real
time channel like telephones.

2. The chairman specifies a name in advance and communicates it to the participants;
this can be done through some real-time or non-real-time channel like electronic
mail.

Both approaches are used in the operating system world. For example, when a pro
cess is created, an identifier is assigned. Or when a file is created, the user gives it a
name. For multi-user sessions, the first approach is not user-friendly and causes incon
venience, as real-time channels may not be available when a session is being created. It
cannot be adopted when a real-time channel is not present. The system-assigned
identifier approach usually has no problem for single-user applications because
mechanisms are provided to establish real-time channels between cooperating processes
under a single-user domain. For example, if the cooperating processes are parent and
child, the parent can create a channel and pass to the child a capability to use the chan
nel.

The second approach has no such inconvenience, as users furnish a name on which
they agree beforehand. This approach allows the possibility of naming conflicts: two
sessions may be created with the same name. This problem can be overcome with the
partitioned name space approach as used in most recent file systems. A solution is
presented inCh. 3.

With the introduction of multi-programming computer systems, a user is able to
run several programs simultaneously. This implies that a user is able to create or join

-20-

several computer sessions simultaneously. Here are the requirements of a dynamic
group, analogous to the scenario of a session:

1. A user should be able to create one or more dynamic groups simultaneously.

2. A user should be able to join one or more dynamic groups simultaneously.

3. A user should be able to leave a dynamic group at any time he wishes. He should
be able to re-join if the group still exists.

4. One-to-one or one-to-many communication should be provided to dynamic group
users.

5. Different cooperation modes should be available for dynamic group users.

The requirements have not included whether the chairman or a participant of a ses
sion should be allowed to terminate the session, because this depends on the particular
session itself. Sometimes a started session is deemed as owned by all the participants
and should not be terminated without the agreement of all or a majority of the partici
pants. Dynamic groups and the shared workspace model together form the basis of
shared workspace cooperation.

2.4. Sharing in W orkspaces

Shared workspace cooperation is the core of most real-time cooperation. The fol
lowing observation sustains this claim. Cooperation is done through sharing. In Fig.
1.1, it can be seen that the workspace objects and tools are shared. Further, pointers
(cursors), the token, views and user privileges can be shared. Sharing of the token,
pointers, or views is usually done within a real-time cooperation.

An object can be partially shared: there is one owner, who grants some rights to
collaborators. An object can also be fully shared: there is more than one owner. Tools
can be shared real-time or non-real-time. The owner of a tool grants his collaborators
access rights to his tool. He may allow the tool to be used in an off-line cooperation
under his domain: "setuid" process in UNIX [Ritchie78] is an example. A single-user
tool can be converted for real-time cooperation by letting users share it. User
privilege(s) can be partially shared: a user lets his collaborators work with him under
his domain. User privilege(s) can be fully shared: a group cooperates real-time on an
object has as its access privilege the union of the participants' privileges .

• 21-

\

writing

exploring

encoding

reading

remembering

comprehending

decoding

;

I

A B c !
:~ ~

A

network \.
network'\

a. Reading/Writing (John B. Smith)

co- writing

co- encoding

B c

sequence

reading I
remembering

comprehending

decoding

sequence

b. Reading/Co-writing

hierarchy

networ~

Fig. 2.4 Cognitive Models

- 22 -

The claim is also supported by the following observation of a co-writing activity
from the cognition point of view. John Smith proposes a cognitive model for a
reading/writing activity as shown in Fig. 2.4a [Smith87]. He explains reading as an
activity of taking the linear stream of text, comprehending it by structuring the ideas
hierarchically, and transforming it into long-term memory as a network. Writing is seen
as the reverse activity.

Based on his model, I propose the following (Fig. 2.4b) for a reading/co-writing
activity. Traditional support for cooperative writing, via electronic mail and comment
ing, occurs at stage C in an off-line fashion. A co-writer or commentator understands
his colleague's work by following a reader's decoding sequence. With real-time
cooperation tools like Cognoter [Foster86] or WE [Smith87], the cognitive activities of
co-writers or commentators are facilitated by shared visual spaces through stages A, B,
and C. Each worker knows his co-worker's activity by observing him in each stage,
reducing the overhead of the decoding sequence. From this point of view, the shared
workspace is a necessity for cooperation to achieve a shared structure of understanding.
An efficient mechanism is needed to facilitate shared workspace cooperation in each
cognition stage.

2.5. Token Management in a Session

When users want to have a close coordination or when a single-user tool is con
verted for multi-user cooperation, a token is needed. How can users share access to a
token efficiently and fairly? For effective work, the token holder must be guaranteed an
uninterrupted quantum of time, once he gets the token. For fairness, other participants
must be able to request the token and obtain it within a certain known waiting time.
When the token holder has to release the token, he is given a brief grace period, to
complete his current task. When the grace period expires and if the token holder still
has not released the token, it is then grabbed away. The values of quantum and grace
period should be adjustable, and may depend on the tool in use and the number of users.

When several users request the token, they are placed in a queue according to
some criterion (e.g. FIFO, priority first). The first user in the queue is the next to get the
token. A user should be able to cancel his request, after which he is removed from the
queue. Figure 2.5 shows the detailed user token states, which are explained in Sec.
6.2.2.

-23-

Receive KEEP_ TOKI

Type RELEASE_TOKEN/
Send TOK REL

__ / -

After G seconds I
Send TOK_REL a. "token seized"

Fig. 2.5 Token Control States for User Process

• 24 •

2.6. Design Aspects of Shared Workspace Cooperation Tools

In this section, we summarize aspects of a tool for shared workspace cooperation.

Input Control

Input control concerns who has the floor to talk. Input control can be thought of as
a special case of concurrency control: resolving the conflict of access to the token.
Because input control is directly related the human interface, it deserves a separate dis
cussion. For close coordination, the users are provided a token, and whoever has the
token can make input. Interesting issues regarding how to share the token effectively
and fairly have been discussed in the previous section. Alternatively, no token is
imposed for maximum freedom, i.e. more pieces of chalk are provided and the users are
free to make their input.

Replication

A session workspace can have a single copy of workspace objects and tools; this is
useful when tools are not available on all participants' machines or when the objects are
large. Alternatively, a session workspace can have replicated copies of objects and tools
for all the participants; this is useful when performance is the issue. A session can also
have replicated copies of objects and a single copy of tools [Suzuki86] or vice versa.

When replicated copies are used, issues to be resolved are: whether we let the
users be aware of the replicated objects or not, whether the replicated objects are
removed after the session or not, whether objects are updated instantly or occasionally,
how to synchronize updates to all the replicated copies, how to insure that the replicated
workspaces are identical.

Synchronization

A session can be centralized (Fig. 2.1) with a server synchronizing messages or
resolving contentions to object access, or decentralized (Fig. 2 2) with all user agents
coordinating and synchronizing distributedly. The former offers ease of design and
synchronization. The latter is more reliable because there is no single point of failure: if
one site goes down, the other sites can still continue with their copies. Centralized con
trol can have hierarchies: if the cooperating users span a large area, one can link neigh
boring user machines into hierarchical groups to reduce message overhead, with a
server for each group. A "root" server then coordinates and synchronizes all the group
servers. The issue of replication is also closely related here: we can have a replicated
copy for each group, with users in the same group sharing the same workspace copy.

-25-

ItO Transfer

User input and tool output sometimes need to be transferred during a session (Fig.
2.3). User input may be processed locally, with an encoding specified by a high-level
protocol like VGTP [Lantz84] transferred to the session server. In a single copy
workspace, the tool output can be similarly encoded and transferred to the local user
agents. Alternatively, user input and tool output can be transferred in a low-level form
(raw keystrokes or bitmaps). The architecture can be a mixture of these two, e.g. low
level input and high-level output encoding.

2.7. Desirable Features for Shared Workspace Cooperation

The basic entities of a shared workspace cooperation are users, tools, and objects.
We elaborate on each entity and describe the features important to cooperative work.

2.7.1. Dynamic Groups Formation and Activities

A protection group [Saltzer75] mechanism exists in most operating systems, but it
is usually oriented toward static groups: group structure cannot be changed easily. In a
multi-user cooperation, participants may come from different groups. A dynamic group
is formed for each session. The members of a dynamic group may not even be fixed,
which is the case in a public session. A dynamic process group mechanism can be
found in some operating systems, e.g. the V system [Cheriton84]. It is difficult to join a
group in V: a group is created by asking the system for an identifier. For processes to
join the group, this dynamically assigned identifier needs to be distributed first through
some channel. Also V suppons only the communication aspect of group activities.
Other activities in a dynamic group, like view sharing or token passing, are not sup
poned. Most effon of implementing multi-user tools is spent providing these functions
(see Sec. 6.1).

A dynamic user group structure to model these cooperative sessions is needed. The
structure should be easy to extend to a homogeneous distributed network, with comput
ers running the same operating system. Based on this structure, functions can be pro
vided to suppon dynamic group activities. Without such suppon, the formation and
activities of dynamic groups need to be implemented from scratch for each application.

-26-

2. 7.2. Development of Multi-User Tools

Section 2.6 discusses some design aspects of multi-user cooperation tools. Can
mechanisms be provided to support the development of these tools? For example, what
can be done by an operating system to support replicated workspaces? Should an
operating system support replicated workspaces explicitly or (for performance only)
implicitly? This interesting issue, although challenging, has not been dealt with in the
dissertation research.

Let's take a closer look at Figs. 2.3 and 2.1. In Fig. 2.3: the users are sharing the
tool process within a session. For multiple users to share this process, their standard
input/output channels need to be redirected to it. This is because a traditional process
(e.g. in UNIX) is attached with a single-user standard input/output channel. This effort
of connection/redirection and communication overhead can be saved if the operating
system allows a process to be attached with multiple users. Sharing is also easier with
this mechanism. The same observation applies to Fig. 2 .1.

2.73. Sharing a Single-User Tool in a Real-Time Cooperation

Many single-user tools can be converted for real-time, multi-user cooperation. Can
general-purpose operating system mechanisms be developed to support this function?
The following elaborates a problem that needs to be taken care of in the development of
such mechanisms.

Suppose a group of remote users forms a shared workspace and uses a single-user
tool for real-time collaboration (Fig. 2.3). Each member of the group should be able to
access resources in the shared workspace. On the other hand, he should not be able to
access resources outside the shared workspace, if he is not permitted. Now comes the
problem: a group of users cooperates with a converted single-user tool on a machine
where one group member grants them access. Since many tools have escape com
mands, the users may escape from the tool, and either access another object or execute
another tool. Also many tools have built-in commands to access objects other than the
workspace objects.

This kind of tool escape can be dealt with if the users share the same view all the
time and the tool is run under an active participant's privilege domain. That participant
acts as a host and is responsible for any problem caused by an escape. It must be noted
that when that participant wants to leave then the tool needs either to be terminated, or
to be run under another active participant's privilege domain.

-27.

2.7.4. Sharing of User Privileges Within a Session

First some definitions are given: an access control list is a list of subjects that are
authorized to access some object. A capability is a token that allows the possessor to
access an object. It is usually implemented as a data structure that contains a unique
object identifier and access rights to the object.

For capability systems where a capability cannot be sent from a user to another
user directly or access control list systems where the access control list cannot specify
all possibilities or cannot be changed by a user freely, sharing privilege across domains
is usually done in two approaches. It can be done by associating each domain with a
process; the communication is done via interprocess communication. Or it can be done
by associating multiple domains with a single process; the communication among pro
tected subsystems is done via domain switching [Saltzer75].

Sharing objects via interprocess communication sometimes implies storage over
head: objects need to be replicated. Passing an object by reference is not feasible
because the receiving process still does not have an access right to the object. If partici
pants aim at working on the same objects, then the replicated objects need to be con
sistent. Sharing objects via interprocess communication also has the following prob
lems. With centralized control (Fig. 2.1), the server is usually created by the chairman
of the session. When he leaves the session, he may not want the server to continue run
ning under his domain, and a new server needs to be started (departing chairman prob
lem). Another problem (departing workspace-object-owner problem) related to both
schemes (Figs. 2.1, 2 .2) is that if an owner of workspace objects or tools leaves the ses
sion, he may still want the remaining participants to share his objects. There is no way
to achieve this goal unless he leaves his agent process running under his domain, which
may lead to an undesirable security break.

By thinking of the privilege each user owns as a domain, the second approach
associates multiple domains with a process by domain switching. The essence of chang
ing domains is, in access control list terms, to change principal identifiers; in capability
terms it is to acquire the set of capabilities of the new domain. In both cases, domain
switching is usually achieved through a protected procedure call [Saltzer75].

Sharing via the protected procedure call in a real-time cooperation has the follow
ing shared workspace problem: 1. a cooperating user may not foresee all the objects to
be shared within a session. The pre-written protected procedure may not cover all the
shared objects; 2. an object owner may change his mind in a session to allow other par
ticipants more access rights to his object, or he may want to reduce or cancel their
rights; 3. for an open or public session where the participants vary, it is difficult to write
the protected procedure in advance because an object owner may want to share his
object with only a subset of the participants or he may want to grant different access

-28-

rights to different users; 4. even when an object owner disallows write access to his
object normally, he may relax this in a session and let a participant write over his object
under his supervision. They share the same view so that the owner knows what the
other is doing to his object; 5. when simultaneous manipulation of objects across multi
ple user domains is needed, changing principal identifiers cannot achieve this require
ment; 6. even though distributed systems [Svobodova84, Tanenbaum85] exist, dynamic
sharing in a distributed network is usually difficult to achieve.

Although it is possible for users to write real-time cooperation tools using the
domain-switching mechanism to achieve privilege sharing, it is awkward and inflexible
to deal with the shared-workspace problem. The programmers can be relieved of this
burden if a simple mechanism can be provided by the operating system.

To summarize, traditional protection systems originated from a military environ
ment that assumes an off-line cooperation environment where users are mutually suspi
cious. For real-time cooperation, the users are usually trustworthy. Through the interac
tion and the ability to supervise in a session, a user may allow others access to some of
his objects that he would not allow otherwise. In this sense, permission of "who can do
what to which object when" in a session is not necessarily identical to that of an off
line cooperation. The domain switching mechanism serves well for a mutually suspi
cious environment because the security concern is usually strict and static. While in a
real-time session, however, the security concern can be flexible and dynamic. The same
mechanism then seems not to serve well.

Note that we are not suggesting replacement of the usual protection mechanism.
Instead, some mechanism that better supports real-time cooperative work needs to be
provided, making up for the rigidity and inconveniences of the usual protection
mechanism.

2.7.5. Provision of Jointly-Owned Objects

In real life, people own objects jointly: like the husband and wife sharing a joint
account, partners jointly signing a contract, etc. In computer systems, an object is usu
ally owned by a single user. Examples of jointly-owned objects can nevertheless be
seen in computer systems: a virtual circuit [Tanenbaum88] that, once established, each
party can read from, write into or disconnect; a link in a hypertext environment that
spans across nodes in files of two users [Engelbart84a], each of whom jointly owns the
link and should be able to tear it down whenever appropriate; a multi-threaded task
[Accetta85, Rashid86] where each thread shares the same address space and capabili
ties, and can destroy the whole task.

With the falling cost of hardware and communication, today more and more peo
ple are experimenting with computer-supported cooperative work. We see people co-

• 29.

writing a paper, or developing or debugging a program together. The object being
worked on is usually jointly owned. Another requirement arising from such an environ
ment is the following.

A multi-user cooperation tool when executed usually creates for each participant a
user agent (Figs. 2.1, 2 2), running under that participant's domain. As multi-user tools
are written, some of them will be written by system programmers, and some by the col
laborators themselves. For the former case, tools installed will be trusted by the colla
borators and used without any security concern, as users usually trust system utilities.
For the latter case, if a participant joins a multi-user tool written by others, how can he
know that the user agent executed in his name is not a Trojan horse [Saltzer75]? This
doubt can be relieved when a collaborator knows about the multi-user tool he joins. But
it cannot be totally removed unless he is sure that the multi-user tool has been installed
and cannot be replaced unless he is notified. This requirement cannot be fulfilled with
traditional single-owner objects, since one of the authors of the multi-user tool usually
has full ownership of it and has rights to make such a change.

Under certain circumstances, an object may not be accessed until a sufficient
number of users are together (referred to as quorum-based object). An example is a
committee meeting that requires the presence of the majority of members. Another pos
sible requirement is that an object may not be accessed without certain user's or users'
presence (referred to as authority-based object). An example is a meeting that cannot be
started without the chairman. What mechanism meets these requirements?

The problem of using a single-owner object mechanism to support jointly-owned
objects is that when an object is created, one member of the group is overtrusted with
the full ownership. Even if the group decides that the object is read-only, the assigned
owner can still change its protection mode and write over it. Deletion of the single
owner from the group would mean a reassignment of all the jointly-owned objects to
another user in the group.

Questions arise: how to maintain or verify access to a jointly-owned object? A
difficult problem is the following: how to handle an access request to a quorum-based
object? With computer access, the joint-owners need not even gather together to access
a jointly-owned object. For some instance, say users with different interests collaborat
ing in subgroups on different sections of an object, the system needs to know whether
the requests issued from the joint-owners' processes are related. For example, if a
jointly-owned object has four owners, and a quorum equal to two, suppose the owners
form two groups. The read requests from these two groups of joint-owners should not
be correlated by the system. The system needs some evidence to distinguish between
requests from these two groups. The problem is the same with authority-based objects.

What is the protection model for jointly-owned objects? Although many protection
models have been seen in the literature [Lampson71, Graham72, Harrison76, Linden76,

-30-

Landwehr81], none have dealt with this possibility.

2.8. Requirements for Shared Workspace Cooperation

The following criteria are suggested for an operating system that supports
cooperative work:

1. It provides a dynamic group structure to model cooperative sessions.

2. It supports building of multi-user tools.

3. It supports conversion of single-user tools for real-time cooperation.

4. It facilitates sharing in a real-time collaborating environment. In addition to shar-
ing of messages, we need sharing of views, the token, and capabilities.

5. It does not overlook the usefulness of jointly-owned objects.

6. It does not cause security breaches.

7. It supports remote cooperation in distributed networks.

Note that we do not claim the above is a complete list of requirements, e.g. con
currency control is not included. The list is compiled according to the desirable
features identified. In the following chapters, solutions are presented to support these
requirements.

-31-

CHAPTER 3

AN ARCHITECTURE SUPPORTING DYNAMIC GROUPS

The shared workspace model sheds light on how objects and tools are shared
within a cooperation. To support real-time cooperation more effectively, we also need
to support the users. This chapter presents a mechanism that supports dynamic groups
and sharing single-user tools for cooperation, the requirements having been described in
Sees. 2.7.1 and 2.7.3. A functional interface is proposed with a UNIX-style C [Ker
nighan78) library call format. Section 6.2 contains a complete list of the proposed
dynamic group interface.

A dynamic group architecture is proposed to be placed at the system library/server
level. It makes no assumption about the existence of a windowing system. Considering
the diversity of group activities and the possibility of remote collaboration, support
from this level is most appropriate (see Sec. 6.1 for more arguments supporting this).

Machines form a cluster (Fig. 3.la) to facilitate users' cooperative work. Resident
on each machine in the cluster is a system-server daemon, forming the backbone of
dynamic groups (Fig. 3.lb). A global dynamic group pool is maintained by all system
servers in the cluster. Each dynamic group and its activities can then be maintained by a
spawned group agent. Detailed implementation is discussed in Sec. 6.2. Note that the
proposed architecture is only one possible solution. It is made as general as possible to
provide a basis for user group formation and activities. More features can be added.

Several assumptions have been made here:

1. Machines within a cluster run the same operating system. Extensions to a hetero
geneous environment need more investigation.

2. Each system-server has some way to authenticate the others, and has the ability to
authenticate users on its machine.

3. Each user in a cluster is uniquely identifiable, and can be authenticated by at least
one machine within the cluster.

4. Each process is invoked by a user and tagged with his user identifier. Each pro
cess has a set of standard input, output and error channel descriptors.

NCSU

SS: system-server

Fig. 3.1a Cluster

dynamic groups 1ist

arne creator participants address

Fig 3.1 b Implementation of Dynamic Groups

- 33 -

3.1. Design Concepts and Functional Interface

A dynamic group structure is provided to allow users to join or leave dynamically,
to send or receive messages, and to share their views dynamically. Participants need
not come from the same machine. As mentioned earlier, requiring the participants use a
system-assigned identifier to join a meeting group is not user-friendly. Instead, we
allow people the liberty to name their conference or meeting group. The system is not
responsible for assigning a unique name for each group. Instead, the system keeps a
record of all the groups created. Two groups may be named identically. To avoid such
name conflicts, the record for each group should include the name of its creator.

To join a dynamic group, a user simply provides the group name and its creator's
name. As users generally know who the meeting chairman is (usually the user who
informs participants of such a meeting), this should cause no difficulty.

With this dynamic group structure, users in a group can send messages to each
other or the whole group. For sharing views and the token, a wysiwis (what you see is
what I see) mode is provided.

Any user in the cluster is free to create a non-existing dynamic group by specify
ing its name, mode (public, closed, secret), and participants-list:

create _group (group_ name, mode, participants _list)

char *group_name; name of the group, '*' means a pointer
char mode; mode can be 's' (secret), 'p' (public), 'c' (closed)
char *participants_list;

a NUU-terminated list of participants' names separated by spaces
a here names are cluster-unique user identifiers

The participants _list is specified without the creator's name on it. For a public
group the participants _list is not specified (null), because anyone in the same machine
or cluster can join. Secret or closed groups are defined as in Sec. 2.1. A user can create
more than one group through his process(es), i.e. he can create several groups through
one single process or through several processes - assuming he is able to run con
current processes.

Similarly, a user can join more than one group simultaneously. A user joins a
group by issuing join _group from his process. The call will return successfully if he is
one among the participants _list. The user becomes an active participant in the dynamic
group. An active user's process may leave its group and then rejoin if the group still
exists. When a user process exits, it leaves all its groups.

·34-

join _group (group_ name, ifnotexist, time_ out)

char *group_name;
int ifnotexist; whether to block if the specified group does not exist
int time_out; the call is blocked until the group is created or time-out expires

leave_group (group_name)

char *group_name;

Flag ifnotexist can be BLOCKED (the call will be blocked if the group does not
exist), NON_BLOCKED (the call will return error if the group does not exist) or
TIMED _BLOCK (if the group does not exist, the call will be blocked until the group is
created or the specified time_out expires). Note that time_out need not be specified
(null) if the flag ifnotexist is not TIMED _BLOCK.

To avoid naming contentions, a joining participant is required to specify the
group_name in the format of group_name:creator_name. The combination of
group_ name and creator_ name spans a global name space to the extent of a machine
boundary or a distributed cluster of machines, if a cluster has been formed. Joining a
dynamic group should not require knowledge of its location, which makes session
migration possible. More implementation details are discussed in Sec. 6.2.3.

The names of a group and its creator can be known beforehand or ascertained by
the following list_groupname primitive.

char * list _groupname ()

This call returns a NULL-terminated list of all existing groups in the cluster, in the
format {group_name:creator_name {participant_name)*)*,where "*"means repeat
ing zero or more times. The list will include those secret groups only when the issuing
user is one of the participants in those secret groups or when the issuing user is a
superuser. A user can get further details of a non-secret group through the following:

GROUP _LIST * list _group (group_ name)

char *group_name;

A list of the following information is returned:

typedef struct group _info {
char mode;
char *p_list; a NULL-terminated list of participants' names separated by spaces
char *ap_list;

a NULL-terminated list of active participants' names separated by spaces

-35-

) GROUP _LIST;

Participants are users on the participants _list specified in create _group. Active
participants are participants who have already joined. A user on a secret group list can
get information from that group also through this primitive.

close _group (group_name)

char *group_name;

Close _group allows a dynamic group entry to be marked as closed: the dynamic
group will no longer accept new or late-joining participants, yet the session continues
until all current participants leave. It is analogous to closing the conference door and is
useful when a session has started and does not want to be disturbed. Only the group
creator is able to do this.

In the following it is shown how some features can be supported through this
dynamic group structure. Based on different design considerations or tradeoffs, this
support can be optional. Several calls are provided for active users of a group to share
views or messages. For a system that has full-fledged message communication support,
a designer may choose not to provide the following send or receive primitives.

send (user_ name, group _name, message, length)

char *user_name, *group_name, *message;
int length;

MESSAGE *receive (user_name, group_name, buffer, length, blockornot,
time_out)

char *user_name, *group_name, *buffer;
int length, blockomot, time_out;

A message can be sent to an active participant within the same group or broadcast
to all active participants in the group (excluding the sender). We leave it to the imple
mentors to decide whether to buffer a message when some users have not joined yet.
For sending a message to the whole group, the field user_ name is left null. For receiv
ing a message from anyone in the group, the field user_ name is also left null. If a user
has two representatives (i.e. processes) in the same group, then the message will be sent
to each one. A user provides a buffer and the maximum length of data he wants to
receive. The blockornot flag specifies whether the call is BWCKED, NON BLOCKED
or TIMED _BWCK if no message is available. In receive, the caller may specify from
whom the message is to be received. NULL is returned if there is no message; other
wise the message is placed in buffer and the following information is returned:

• 36.

typedef struct ms {
char *from_user;
int length;
}MESSAGE;

from which user this message comes
length of the received message

The output, or view, of a process can be shared through a wysiwis mode in the
same group. A participant allows the standard output of his process to be shared by
issuing wysiwis (Fig. 3.2). View sharing is enabled until the mode is ended. Each user
in a group is eligible to create a wysiwis mode. A token is created, a token queue is
associated with it._ Other participants in the same group can get information about
wysiwis modes by Iist_wysiwis and enter one by enter_wysiwis. Assuming a coopera
tive environment, any user process in the same dynamic group as a wysiwis-creator
may enter the mode. A group thus defines a secure and cooperating environment like a
conference: outsiders are not able to enter a wysiwis in the group; insiders are free to
enter any wysiwis in the group. Wheri enter_ wysiwis is issued, the entering process is
suspended for a reason to be explained shortly. Thereafter the participant shares the
same view as the user who created the mode.

To make his input, a wysiwis participant first needs to get the token. Each
wysiwis participant is eligible to request the token. Users requesting the token are
placed in the token queue according to a policy chosen by the implementors. When
released, the token is given to the first user in the queue. Input from a user holding the
token is fed into the wysiwis-creator' s standard input channel until the token is
released. Users not holding the token are disabled for input. Standard output of the
wysiwis-creator' s process is replicated to each wysiwis participant. From this descrip
tion, we see it is best to suspend a wysiwis participant's process after issuing the
enter_ wysiwis call because he is no longer in control of his original process. Note here
that a process that issues wysiwis is not suspended.

A user process can el)ter only one wysiwis mode. If it were allowed to enter more
than one wysiwis mode, there would be conflict in redirecting its standard input chan
nel.

int wysiwis (group_ name, quit _signal, get _signal, release _signal, quantum,
grace _period)

char *group_name;
char quit_signal, get_signal, release_signal;
int quantum, grace_period;

-37-

Fig. 3.2

dynamic groups list
name creator partiCipant s etc
rsw guan jn, pc, wahab

wysiwis list

creator participants token
guan pc, wahab wahab

Token Queue

user
process

WYSIWIS

• 38 •

The quantum and grace _period are as described in Sec. 2.5. Values for the quan
tum and grace_period are specified in seconds by the wysiwis-creator. Get_signal,
release_signal, and quit_signal are special control signals (e.g. ·c, ·o) that will be
interpreted even if the issuing user does not have the token. Get _signal is used to get
the token; release _signal is used to release the token or cancel a token request. When a
user in the wysiwis mode issues the quit_signal, he leaves the wysiwis mode, and his
process is resumed. His standard channels are also restored. If the wysiwis-creator
issues the quit_signal, the wysiwis mode is ended. The other participants' processes are
resumed, with their standard channels restored.

An identifier is returned for each wysiwis, unique within each group. This
identifier is required because a user may have several representatives joining the same
group. Hence, "group_name:user_name" may not be sufficient for identification when
a user tries to enter wysiwis. This wysiwis identifier can be chosen the same as the
process identifier of the process that issues the wysiwis call.

WYSIWIS_LIST * Iist_wysiwis (group_name)

char *group_name;

This call returns a linked list of the. following information:

typedef struct w _list {
char *creator_name; name of the user who creates a wysiwis mode
int id; identifier of a wysiwis mode
char *name; a NUlL-terminated list of names of users who are in the wysiwis mode
char *token_queue_status;
char quit_signal, get_signal, release_signal; signals used in this wysiwis mode
int quantum, grace_period;
struct w _list *next; next entry in the list
} WYSIWIS_LIST;

The variable token_queue _status is a pointer to a NULL-terminated list of names
of users. The first user name on the list stands for the user who is holding the token; the
remaining names represents users waiting in the token queue.

-39-

enter wysiwis (group name, identifier) - -
char *group_name;
int identifier;

The identifier can be made known by Iist_wysiwis or learned from the wysiwis
creator. When a participant process enters a wysiwis, his process is suspended until
either he leaves the wysiwis mode or the wysiwis mode is ended by its creator.

Several wysiwis modes may be going on simultaneously within the same group;
the group is partitioned into several disjoint wysiwis modes. This is analogous to a
conference with several ongoing panel discussions. A wysiwis mode is ended by
leave_wysiwis in the creator's process or by the quit_signal issued by the creator. This
kind of control is similar to the use of exit call or a control signal to terminate a process
execution.

leave wysiwis ()

Since a process can be in only one wysiwis mode, no identifier needs to be
specified. As a wysiwis is ended, the participants' processes are resumed, with their
standard channels restored. When a process quits execution, it ends the wysiwis mode
it has created.

A shared workspace can be achieved by several participants accessing objects in
the wysiwis mode. The participants can also achieve real-time sharing of a tool by exe
cuting a program in the wysiwis mode. A shared workspace consists of all objects and
tools accessed under such mode. When in the wysiwis mode, the wysiwis-creator may
execute a single-user tool, and the other wysiwis-participants will be able to share the
same tool using the token. Example 3.2 shows how wysiwis is used to convert a single
user tool into a multi-user tool.

The following primitive has been added in the implementation phase to assist in
system maintenance:

destroy_group (group_name)

char *group_name;

Destroy _group allows a dynamic group to be removed, i.e. the corresponding
dynamic group no longer exists and ongoing wysiwis's are ended. As this call has a
destructive effect, it can be made only by a privileged user, e.g. superuser. It is useful
when an error occurs or a shutdown is imminent.

Wysiwis provides functions similar to terminal linking [Engelbart68, Engel
bart75]. The wysiwis primitives provide the possibilities of shared-viewing in different
subgroups and in different windows during a group session. Users can form disjoint

-40-

subgroups by being active in different wysiwis. Each user can simultaneously join more
than one wysiwis and still have his own private workspaces through the use of multiple
windows. (This requires the user to invoke multiple processes, one per wysiwis.)
Further, wysiwis need not be enforced throughout the whole session as is the case with
terminal linking. The values of quantum and grace _period can also be changed accord
ing to user needs and the application itself. In these aspects, the proposed mechanism
offers more flexibility than the terminal linking mechanism.

This computer-supported dynamic group model is actually more powerful than the
real-world dynamic group model: a user may create or join several group sessions
simultaneously; he may even join a group session with two representatives.

To achieve remote cooperation, each machine that wishes to cooperate will join a
cluster. A global dynamic group pool is maintained for this distributed cluster. A user
within a cluster may join any group if eligible. He does not have to log in or have an
account on the same machine as that of the group creator. Interesting implementation
issues arise in maintaining this distributed dynamic group, for example: how to achieve
a unique user naming scheme, how to achieve consistency of dynamic group informa
tion across the cluster, how to achieve session migration when the performance of a
machine becomes intolerable, and how to perform error recovery, etc. These are inves
tigated in Sec. 6.2.3.

3.2. Examples

Two examples are presented. It is assumed that the following system calls exist:
execlp (execute), getlogin (get user login name), exit.

Example 3.1- Multi-User Session Tool

The following C program represents a multi-user session tool built with the pro
posed dynamic group primitives. It is similar to an N-party talk utility [Hughes88] with
additional session information provided. It can be easily expanded into a multi-N-party
talk utility, with a user participating simultaneously in several group talks.

main(argc, argv)

int argc;
char *argv[];
{

char chair_name{30], *group_name, tmp_group_name{30];
char command[80], message[80], *message_ptr, *uname, whom[30];
GROUP _LIST *group_!;

-41-

MESSAGE *ml;

printf ("Group N arne:");
I* prinif: a C-library function to write to standard output *I

scanf ("%s", unp_group_name);
I* scan!: a C-library function to read from standard input *I

if(strcmp(argv[l], "-c")) [I* the chairman *I
I* strcmp: a C-library function to compare two character strings *I

create...JP"oup (unp_group_name, "c", "wahab pc"); 1* create a closed group *I
strcat(unp_group_name, ":");

1* strcat: a C-library function to concatenate two character strings *I
group_name = strcat(unp_group__name, getloginO);

1* in the following, group _name is specified with the creator's name *I

else (I* a participant *I
printf ("who is the chainnan ?");
scanf ("%s", chair_name);
strcat(unp_group__name, ":");
group_name = strcat(unp_group_name, chair_ name);
join...JP"OUp (group_name, BLOCKED,"");

I* join the specified group, block if not exist, time_out need not be specified *I
uname = getlogin (); I* get user login name *I
message_ptr = strcat(uname, " joining the session");
send ("", group_name, message_ptr, strlen(message_ptr));

I* il!form the whole group "I am joining" *I
I* strlen: a C-library function to return the length of a string *I

}

while (TRUE) (I* loop forever until exit *I
if((ml =receive ("", group_name, message, 80, NON_BLOCKED, '"')) !=NULL)

I* receive from any member, time_ out is not specified *I
printf ("Messages from %s : %s", ml->from_user, message);

scanf ("%s", command);

if (strcmp (command, "list") = 0) (I* display session il!{ormation *I
group_l = list _group (group_name);
printf("mode:%c users:%s active users:%s", group_l->mode, group_l->p_list,
group_l->ap_list);
} else

-42-

if (strcmp (command, "talk")= 0) {
printf ("message:");
scanf ("%s", message);

1* address to the whole group *I

send ("", group_name, message, strlen(message));

} else

if (strcmp (command, "chat")== 0) {
printf ("with whom?");
scanf ("%s", whom);
printf ("message:");
scanf ("%s", message);

I* chat with someone *I

send (whom, group_name, message, strlen(message));
} else

if (str"Cmp (command, "exit") = 0) {
leave group (group_name);
exit();
}

} 1* end while loop *I
} I* end main *I

Example 3.2- Conversion of a Single-User Tool into a Multi-User Tool

The following is a multi-user tool built by the conversion of a single-user editor.
The first main is the chainnan's program. The second main is the user agent that a join
ing user executes. Unlike the previous example, the chairman agent program and user
agent program are separated because of their significant difference.

main()
{

I* chairman's agent *I

char *group_name, trnp_group_name[30], tool[30], object[30];
char *enter_message = "enter WYSIWIS mode, ·c to quit, ·o to get the token, "R to release";

printf ("Group Name:");
scanf ("%s", trnp_group_name);
create _group (trnp_group_name, "p", ""); I* create a public group *I
strcat(trnp_group_name, ":");
group_name = strcat(trnp_group_name, getlogin());

• 43.

I* enter wysiwis and run a single-user tool, which is converted for multi-user cooperation *1
printf("Tool Name");
scanf("%s", tool);
printf("Object Name");
scanf("%s", object);

wysiwis (group_name, ""'C", ""G'', II'"'R", 20, 10);
I* '"C" to leave WYSIWIS, '"'G" to request the token, '"R" to release the token *I

I* Quantum: 20 seconds; Grace _period: 10 seconds *I
send ("", group_name, enter_message, strlen(enter_message));

I* itiform other participants that I am in wysiwis *I
execlp (tool, tool, object, NULL); I* execute the tool *I
exitO;
} I* end main *I

mainO I* user agent *I
(

WYSIWIS_LIST *w_info;

char chair_name[30], command[80], *group_name, tmp_group_name[30];
MESSAGE *ml;

printf ("Group Name:");
scanf ("%s", tmp_group_name);
strcat(tmp_group_name, ":");
printf ("who is the chairman ?");
scanf ("%s", chair_name);
group_name = strcat(tmp_group_name, chair_name);

join_group (group_name, BLOCKED,"");

while(.TR UE)(

if((ml =receive ("", group_name, message, 80, NON_BLOCKED, "")) !=NULL)
I* receive from any member *I

printf ("Messages from %s : %s", ml->from_user, message);

printf("Command:");
scanf ("%s", command);

if (strcmp (command, "list_wysiwis") == 0) (/*display wysiwis i'lformation *I
w _info = list_ wysiwis (group_name);

-44-

printf("%s in WYSIWIS, %c to quit, %c to get token, %c to release", w _info->creator_name,
w _info->quit_signal, w _info->get_signal, w _info->release_signal);

I else
if (strcmp (command, "enter_wysiwis") == 0) (

enter wyslwls(group_name, w _info->id);
I* Assume only one wysiwls, now users cooperate through sharing a tool *I

I else
if (strcmp (command, "exit") = 0) (

leave_group(group_name);
exit();

I
I I* end while *I

I I* end main *I

3.3. Possible Extensions and Discussion

Heterogeneous Distributed Cluster

How do we extend the proposed dynamic group to a cluster of machines running
different operating systems? The following are issues that need to be dealt with. What
communication protocol is to be used? A possible candidate is the Internet protocol
[Postel81, Cerf83]. What session protocol is to be used? The protocol should cover
most session routines. What presentation protocol is to be used? It should define the
shared textual/graphic workspaces details (e.g. virtual terminal, height and width of a
windbw, data formats of process input/output, fonts, and bitmap resolution). What
naming scheme is to be used? Names may have to be translated across machines.

Cluster Creation and Maintenance

As mentioned earlier, a cluster needs to be formed for the dynamic group mechan
ism to be used within a distributed system. Creation and maintenance of a cluster can be
done by the system staff without system support. Alternatively, a set of privileged func
tion calls can be provided to them, e.g. create_cluster, delete_cluster, join_cluster, and
leave_ cluster. Interesting issues that need to be resolved are: what cluster naming
scheme should be used? How should a cluster respond to errors or network problems?
How should the cluster information be maintained? Chapter 6 discusses some of the
implementation issues.

-45-

Dynamic Group Users

It may be useful to allow a new user to be added to the participants_list after a
group is created or to allow a user to be deleted from the participants _list. This makes
a group more dynamic. It may also be useful to allow an active user to be removed from
a group, when the performance of that user's machine (or the user!) becomes harmful to
a session. The group can either ask him to withdraw or dismiss him from the session.
For the latter, a primitive needs to be provided.

Dynamic Group Modes

Three group modes are provided: public, closed, and secret. Public mode allows
users within the same machine or cluster to join. It may be useful to consider other
modes, such as universe (everyone from the network can join). Also a useful primitive
may be to allow a group to change mode, e.g. from closed to public.

Permanent Dynamic Groups

Permanent dynamic groups may be allowed to exist. This is useful because it can
subsume the functions of a bulletin board or a newsgroup, with additional real-time
conference functions. A permanent group is no longer destroyed when the last partici
pant leaves.

Token Control Signals

Get _signal is used to get the token; release _signal is used to release the token or
cancel a request. A case when no token signals need to be specified is to get/release the
token through mouse movement. A user gets the token whenever he is the first to move
his mouse into the wysiwis window focus. His token is released when he moves his
mouse out of the wysiwis window. If an implicit token scheme is adopted, then users
do not have to specify the foregoing signals. An implicit token scheme can be done
through human coordination, e.g. through handshaking over the phones.

To simplify our design, there are only two token signals, but others may be con
sidered: queue_signal (who is in the queue), grab_signal (grab the token), etc. Instead
of letting a user specify these signals in the wysiwis system call, the terminal 1/0 con
trol system routines (e.g. in UNIX: stty) may be modified to allow users to define these
signals if the mechanism is to be supported from the operating-system level. The
conflict of token control signals and tool commands can be alleviated by having a
separate window for each. The window for the token control signals can be smaller and
used also for displaying the token status messages. To enter wysiwis, users are required
to have the identical window size. The system is responsible for adjusting their window
sizes to that of the creator's and for restoring them when they leave this mode.

-46-

Token Status

The system may need to provide a status line to show any message that informs
users of the token status. If there is a separate system status window (e.g. console
display window), it can be used for displaying the token status. Otherwise, the cursor
shape can be changed when the token is received. Another alternative when using a ter
minal with meager screen space is to have a token status message displayed temporarily
for a short period. The terminal bell can also be used to reflect status change of the
token.

Wysiwis can be relaxed so that no token is imposed: users are free to make their
input at any time. This can be useful in some applications, e.g. a brainstorming tool.

Terminal Characteristics

Another problem has to do with achieving wysiwis when users are collaborating
with different kinds of terminals. As different terminals have different interpretations
for the escape sequences, the replicated output from the wysiwis-creator needs transla
tions. To overcome this, a virtual terminal [Tanenbaum88] is introduced. A virtual ter
minal is an abstract representation of a real terminal, with various abstract operations.
The operations may include writing text on the virtual screen, reading text from the
keyboard, etc. In the wysiwis mode, the tool output will be produced according to a
virtual terminal protocol. Each user's window, created the same size, will be associated
with the same virtual terminal. Examples of virtual terminals are: xterm in the MIT X
window package for the bit-mapped terminals [Scheifler86], Stanford's VGTP virtual
graphics terminals [Lantz84] or a network virtual terminal [Tanenbaum88].

Secret Sessions

Most operating systems will release the information of who is currently logged on,
and what processes are running on the system. By some reasoning and guesses, a user
will be able to know who is involved in a secret session. The objects or tools they are
currently using may also be inferred from system status commands. To achieve secret
dynamic groups, such information should not be disclosed. Authentication of a joining
user is required, to prevent a malicious user from joining with a false identifier.
Authentication of messages received is also required, to prevent a malicious user from
jamming messages into a session. Information flow among the session components
needs to be encrypted. Connections among the session components need to be robust,
e.g. it should be secure from jamming or tampering .

• 47-

Closing or Destroying a Dynamic Group

Closing a group is like closing the conference door. Should every joining user be
granted this capability? Or only the creator? Destroying a group is useful when a shut
down is imminent, or an error occurs and the superuser wants to delete a dangling group
(explained in Sec. 6.2.3), or a permanent group is to be removed .

• 48.

CHAPTER 4

MULTI-USER PROCESSES AND SHARED CAPABILITIES-LISTS

With the investigation of Sec. 2.7, the following two chapters present operating
system level solutions for real-time shared workspace cooperation. In this chapter, two
mechanisms are proposed: multi-user processes and shared capabilities-lists.

4.1. Multi-User Processes

The multi-user process mechanism is a solution to multi-user tool development
and sharing of user privileges in real-time cooperation, the requirements having been
described in Sees. 2.7.2 and 2.7.4. General concepts and the system call interface are
first described. An example is provided to demonstrate the design of a joint-browsing
tool using the multi-user process. Design issues and alternatives are then discussed.
Section 6.3 discusses implementation details and contains a complete list of the pro
posed multi-user process interface.

4.1.1. Design Concepts and Functional Interface

Traditionally, a process is associated with a single user. For real-time cooperation,
multi-user process is proposed for access control list systems and systems with mixed
strategy [Saltzer75]. A system with mixed strategy is a system where an access control
list is used for the secondary storage or file system, while a capability scheme is used
for the rest; the capabilities cannot be copied into the file system [Saltzer75].

Standard Input/Output Array

User list: ••. , ... , •.• , .. .
Owner list: .•. , ... , .. .

ACTIVE USERS

Fig. 4.1 Multi-User Process

• so •

A process runs initially with its creator as the owner (against whom the protection
check is made). The creator makes the process multi-user by issuing allow _join: a nick
name and a list of users who may join are specified (Fig. 4.1). The creator then issues
wait _join when ready to accept participants to join. When a process issues join_proc,
if the issuing user is one on the list, the process is suspended. A standard
input/output/error channel is created in the multi-user process for this user, whose ter
minal becomes connected to the channels. The user becomes active in the multi-user
process. The multi-user process can read the input of the joining user by reading from
his standard input channel and can write output into his standard output channel. An
active user leaves the multi-user process by issuing an exit control signal from his ter
minal or when the process executes exit. The process can be killed by an active user
with some special control signal.

allow _join (nickname, users _list)

char *nickname;
char *users_list;

If a multi-user process with the same name and created by the same creator
already exists, then it returns ERROR. The creator is an assumed participant whose
name need not be specified in the users _list. If users _list is not specified, then any eli
gible user on this machine can join.

wait_join (flag, time_out,joint_user)

int flag, time_ out;
JOIN_INFO *joint_user;

typedef struct j_user (
char *username;
int in, out, err;
} JOIN_INFO;

Wait _join waits for one user (process) at a time to join. A program can be coded
with a simple loop so that wait _join is executed several times until all the users on the
users_list join. Flag can be BLOCKED (the system call will be blocked if no user
issued join _proc; it will return when the process of a user on the specified users _list
issues join_proc), NON_BWCKED (the system call will return if no user issued
join_proc) or TIMED _BLOCK (the system call will be blocked if no user issued
join _proc; it will wait until either the specified time_ out expires or the process of a user
on the specified users_list issues join_proc). With this call, the multi-user process is
ready to accept participants. The returned information joint_ user includes the name of

-51-

the joining user and the created standard input/output/error descriptors for his terminal.

join_proc (nickname, creator _name, ifnotexist, time_out)

char *nickname, *creator_name;
int ifnotexist, tirne_out;

The naming requirement of a multi-user process is the same as that of dynamic
groups. To avoid naming conflicts, a joining participant is required to specify the name
of the multi-user process creator in addition to the nickname. The flag ifnotexist can be
BWCKED (the system call will be blocked if the multi-user process does not exist or is
not ready to accept participants; it will return when the multi-user process issues
waitjoin), NON _BLOCKED (the system call will return if the multi-user process does
not exist or is not ready to accept participants) or TIMED _BWCK (the system call will
be blocked if the multi-user process does not exist or is not ready to accept participants;
it waits until either the specified time _out expires or the multi-user process issues
waitjoin).

A multi-user process is jointly owned by its active users, i.e. the participants. The
process has its active users as joint-owners, against whom the protection check is made.
If an active user leaves by issuing an exit control signal, then that user loses his owner
ship to the multi-user process and his original process is resumed. An object or a pro
cess created during the execution of the multi-user process will generally be owned by
the joint-owners (see Ch. 5).

A shared workspace is achieved this way: a joining user's resource can be shared
whenever the process opens it or acquires a capability for it Simultaneous manipulation
of objects across multiple user domains (e.g. simultaneous opening of objects under dif
ferent users' domains by a process) is possible because the process runs under the union
of multiple user domains.

The departing workspace-object-owner problem (Sec. 2.7.4) is solved by having a
departing user leave behind capabilities of his objects so that others can continue work
ing on his objects. There is no departing chairman problem (Sec. 2.7.4) because when
the creator of a multi-user process leaves, the process continues with the remaining
users.

Note that having multiple standard output channels in a multi-user process does
not imply WYSIWIS. Shared viewing is achieved by writing simultaneously to the
standard output channels of participants in the program. The decision whether or not a
token is imposed to control users' input is also left to the participants. If they judge that
close coordination is required then the program is implemented with a token control
scheme.

-52-

4.1.2. An Example

Example 4.1-Joint-Browsing Tool

The following is a multi-user process formed to access files across two users'
domains simultaneously. It shows how a multi-user tool can be written with the multi
user process system calls and how users can share their objects dynamically. It is a
two-party joint-browsing tool that opens a file under one user's domain, and presents
the file contents buffer by buffer simultaneously to two participants. After viewing over
a buffer, each participant acknowledges by striking a key when he is ready. The buffer
is then written to a file under another user's domain, and the next buffer is presented.
The program can be easily generalized to the N-party case.

It is assumed that the following system calls exist: read, write, open, and close; the
protection checking of these calls has been also changed to incorporate the multi-user
process mechanism. FD_ZERO, FD_SET, FD_ISSET and select are 4.3BSD UNIX
interprocess communication primitives [Leffler86].

#define N 2 /* 2-party *I

I* global data *I
JOIN_INFO joint_user;
int in[N], out[N], err[N];
int fl, f2, i, rc, nb, ack[N];
char bufl80], ackbufllO];
char multi_upname[30];
char whom[30];
char file_name1[50];
char file_name2[50];
fd_set read_template;
struct timeval wait;

I* standard Input/output/error channel descriptor array *I

I* multi-user process nickname array *I

I* name of the file to be read *I
I* name of the file to be written *I

1* bit array used for 'selecting' user input *I
I* time-out variable for 'select' *I

mainO I* multi-user process creator's agent *I
{
in[O] = 0;
out[O] = 1;
err[O] = 2;

printf("\n Name of the multi-user process?");
I* prlntfis addressed to the standard output descriptor 1 *I

scanf("%s", multi_upname);
I* scanfis addressed to the standard input descriptor 0 *I

-53-

printf(''\n Who is joining?");
scanf("%s", whom);

allow _join (mu1ti_upname, whom);

wait_user(); I* subroutine *I
request_fi1enamesO; I* subroutine *I
f1 =open (fi1e_name1, O_RDONLY);

f2 =open (fi1e_name2, O_WRONLY);

while((rc =read(fl, buf, sizeof(but))) > 0) { 1* read while not EOF *I
FD_ZERO (&read_template);

I* a macro call that clears a bit-array *I
for(i = 0; i < N; i++) {

if(in[i] >= 0) I* if this channel is open *I
ack[i] =FALSE;

else ack[i] = TRUE;

}

wait_acksO; 1* subroutine: wait for users' acknowledgements *I
I* now all participants have acknowledged *I

for (i = O;i < N; i++) { I* display another buffer of output *I
if(out[i] > 0){ 1* if this channel is open *I

if(write (out[i], buf, rc) <=0) { 1* user leaves *I
out[i] = -1; I* reset his standard channel array *I
in[i]=-1;

}

}
write (1'2, buf, rc); I* write this buffer into another file *I
} I* end for *I

} I* end while *I
cleanupO;
} I* end main *I

wait_ user() I* subroutine: wait for user(s) to join *I
{

char *join_message = "joining the process";

for (i = l;i < N; i++) { I* waiting for each participant to join *I
wait _join (BLOCKED,"", &joint_user); 1* time-out not specified *I
in[i] = joint_user.in;

out[i] = joint_user.out;
I* joining user's stdin, stdout, stderr descriptors *I

-54.

err[i] = joint_user.err;

l
for (i = O;i < N; i++) { I* i'!formparticipants that a new user is joining *I

write (out{i], joint_user.username, strlen(joint_user.username));
write (out[i], join_message, strlen(join_message));

l
} I* endwait_user *I

request_filenamesO

I* subroutine: request file names from the creator, let the other(s) know too *I

char *view _message = ''\n N arne of the file to be viewed?";
char *write_message = ''\n Name of the file to be written?";

for (i = O;i < N; i++) {

write (out[i), view_message, strlen(view_message));
} I* end for *I
rc = 80; I* assume 80 is the maximum name length *I
nb =read (in[O], file_namel, rc);

I* Assume the creator furnishes the name of a file of his own, say: "lunclguanlftlel'l *I
file_namel[nb) = "\0";

for (i = l;i < N; i++) {

write (out[i), file_namel, strlen(file_namel));
} I* end for *I

for (i = O;i < N; i++) {

write (out[i], write_message, strlen(write_message));
} I* end for *I
rc = 80; I* assume 80 Is the maximum name length *I
nb =read (in[O], file_name2, rc);

I* Assume the creator furnishes the name of a participant's file, say: "lunclchenlftle2" *I
file_name2[nb] = '"ll";

for (i = l;i < N; i++) {

write (out[i], file_name2, strlen(file_name2));

} I* end for *I
} I* end request _filenames *I

wait_acks()
{

1* subroutine: wait until all users acknowledge *I

• 55.

wait. tv _sec = 5;
wait.tv _usee = 0;
do {

for(i=O; i<N; i++) {
if(in[i] >= 0)

FD_SET (in[i] , &read_template);
I* FD _SET: a macro call that sets a bit in a bit-array *I

] I* end for *I

nb =select (FD_SETSJZE, &read_template, (fd_set *) 0, (fd_set ") 0, &wait);

I* select: examines the 110 descriptor set to see whether some of them are ready to be read *I
for (i = 0; i < N; i++) {

if (FD_ISSET (in[i], &read_template)) {

I* a macro call that tests whether a bit is set in a bit-array *I
if (read (in[i], ackbuf, sizeof(ackbuf)) <=0) { I* the channel is closed *I

in[i] = -1;

)

)
ack[i] = TRUE;
)

) I* end for *I
) while (!(ack [0] && ack [1]));

I* endwalt_acks *I
I* end do *I

cleanup() 1* subroutine: clean up *1
{
for(i=O;i<N;i++) {

close (in[i]);
close (out[i]);
close (err[i]);
)

close(f1);
close(f2);
) I* end cleanup *I

I* The following code is for a joining participant. *I
mainO
{

int rc;

-56-

char multi_upname[30], whom[30];
char *leave _message= "Leaving the multi-user process ... \n";

printf("\n Name of the multi-user process?");
scanf("%s", multi_upname);
printf("\n.Join whom?");
scanf("%s", whom);
join_proc (multi_upname, whom, BLOCKED);
write (l,leave_message, stden(leave_message));
} /* end main *I

4.1.3. Design Alternatives and Discussion

Multi-User-Threaded Task

Instead of letting multiple users share a single process, a multi-user-threaded task
could have been provided so that each user would have his own thread. Here a thread
can be thought of as a light-weight process. The multi-user-threaded task (Fig. 4.2) is
similar to the multi-threaded task [Accetta85, Rashid86] except that each thread is asso
ciated with a different user. The thread runs with that user's privilege. All user threads
within the same multi-user-threaded task share the same virtual address space, includ
ing capabilities-lists. A shared workspace is achieved by envisioning the multi-user
threaded task as providing an environment, resources inside which are available to the
participants. A participant can bring to the environment any object he wants to share.
This is done by sharing his capability to the object. He may also disable sharing by
withdrawing the capability any time he wishes.

The departing workspace-object-owner problem (See. 2.7.4) is solved when a
departing user leaves behind capabilities for his objects so that the others can continue
working on them. This multi-user-threaded task provides sharing of different user
domain objects under the same computation, useful in real-time cooperation. Any
conflict of using the resource is coordinated within the environment, e.g. by locking or
implementing a monitor [Hoare74] within the multi-user-threaded task. Simultaneous
manipulation of objects across multiple user domains is possible because each thread
shares resources in the same task. An initial design has been laid out in [Guan88];
further effort is needed to study this mechanism.

-57-

Shared VIrtual Address Space

t-List Shued

Threads

ACTIVE USERS

shared objects
(e.g. files)

Fig. 4.2 Multi-User-Threaded Task

• 58 •

Group_ Owned Process

Another design choice is the following. The multi-user process is run with the
union of the active participants' privileges. Under some circumstances, this may be
undesirable. One example is a group of slightly-untrusted cooperating users who
cooperate through a tool process (Fig. 2 .3), but none would like the tool process run
under his domain. This may happen either because the accounting will be made singly
to the user who runs the tool process when actually this is a group job or because the
user who runs the tool process would not like the other participants to abuse his
privilege. What mechanism supports such a requirement?

Most existing operating systems do not provide this capability. For example in
UNIX, a process can be run with a certain GID (group identifier), but the UID (user
identifier) comes into effect first. So either accounting or protection will be made
against the user who runs the process for the group. A mechanism is needed to run a
process with group privilege. Further effort is required to study this mechanism.

Naming and Creation of Multi-User Processes

Similar multi-user process naming conventions have been adopted as for the
dynamic groups (see Sec. 3.1). Alternatively, the system can assign an identifier when a
multi-user process is created. Then the creator communicates it to other participants
through some real-time or pre-established channels.

The proposed system call allow join is one way of creating a multi-user process:
by granting ownership of a process to other users. Another way of creating a multi-user
process is to allow a process to be jointly created. When a multi-user process spawns or
creates another process, the newly created process is jointly owned by owners of the
original multi-user process.

Joining a Multi-User Process

Wait join and join_proc use a synchronous rendezvous protocol. It is possible to
use an asynchronous rendezvous protocol, with which a user joins a multi-user process
without the process waiting for him (i.e. wait join). Similarly in the real world, a user
may join a conference through some receptionist, or he may join without any reception.
With the latter approach, some mechanism needs to be developed for a multi-user pro
cess to know its current participants and their standard channel descriptors.

Waitjoin allows waiting for one user at a time. An alternative is to wait for
several users at a time, i.e. the system call returns until the number of join _proc
reaches the number the creator specified. The returned information should include all
attaching users' information. Each corresponding join_proc will return only when
wait join returns.

-59-

Suspending a Multi-User Process

If the participants of a multi-user process cannot finish their work within a certain
length of time, they may want to suspend (stop) the multi-user process temporarily.
This can be done by one participant issuing some control signal from his terminal.
Later when the participants decide to resume their work, each participant may do so by
informing each other and issuing a resume command with the corresponding multi-user
process identifier (or nickname + creator _name). If any participant decides not to
resume, then the resuming procedure will fail (after a time_ out period expires).

4.2. Shared Capabilities-Lists

This section presents the functional design of shared capabilities-lists (C-lists).
They provide a solution to sharing user privileges in real-time cooperation, the require
ment having been described in Sec. 2.7.4. General concepts and the system call inter
face are first described. An example is provided to demonstrate the use of a shared C
list to achieve a shared workspace in a session. Design issues and extensions are then
discussed. Section 6.4 discusses the implementation details and contains a complete list
of the proposed shared-clist interface.

4.2.1. Design Concepts and Functional Interface

Achieving a fully shared workspace through a multi-user process can be useful for
most applications, but if users want finer control of sharing as stated in the shared
workspace problem in Sec. 2.7 .4, then the following solution is proposed. It is intended
for capability systems and systems with mixed access strategy, with capabilities kept in
the kernel space. Descriptors or indexes are used to reference the capabilities. Each
process runs under its own address spaces and has its own capabilities-list (C-list).
Every C-list is assumed to have the same number of entries, including empty ones. A
process can create a shared C-list, returning a key for further access (Fig. 4.3). To share
the shared C-list, the process provides this key to other processes. Keys should be
sparse and difficult to guess. The key is verified for each access to see if it points to a
valid shared C-list.

double create_ clist (count)

int count;

-60-

Key
iadez

n+l

0 0 0

n+•

Processes

principal
I

1aclez bject_id

l

n

objeat_ld aaa•••-E"1gkt•

0 0 0 0 0 0

sharing

l

"

Fig. 4.3 Shared C-List

• 61 •

Count specifies the number of entries to be created for the shared C-list. The
range of descriptors for each shared C-list is disjoint from the set of private capability
descriptors held by a process (Fig. 4 3). This allows the system to distinguish easily a
private capability descriptor from a shared one.

To use a shared C-list, a process presents the key to the system. A process makes
public a capability of its own by issuing put _public or dup_public. The former moves
the corresponding capability entry into the shared C-list; the latter copies the
corresponding capability entry into the shared C-list. Dup_public is useful when the
contributing process still needs access to the object in its own way. After a capability is
placed in the shared C-list, a shared capability descriptor is returned for further access,
and can be made known to other processes sharing this C-list. A shared C-list is
removed whenever anyone who has the key issues delete_ clist.

int put _public (key, pd)

double key;
int pd;

The key specifies which shared C-list is to be used. The capability indexed by the
private descriptor pd is moved into the shared C-list. A shared capability descriptor is
returned.

int dup_public (key, pd)

double key;
int pd;

The capability indexed by the private descriptor pd is replicated into the shared
C-list. A shared capability descriptor is returned.

delete_ clist (key)

double key;

After the key is validated, the shared C-list is deleted. Note here that users sharing
a C-list are responsible for deleting it whenever it is not needed.

To reference an object through a shared capability descriptor, the associated key is
also presented. The system calls dealing with capability descriptors (e.g. read, write,
close) need to be extended to handle the shared capability descriptors:

_read (fd, buffer, length[, key])

int fd, length; char *buffer; double key;

-62-

_write (fd, buffer, length[, key])

int fd, length; char *buffer; double key;

close (fd [,key])

int fd; double key;

These extended system calls check the specified capability descriptor fd. If it is a
shared one, a key is required. If it is a private one, a key is not needed and the process
ing proceeds as before.

Shared C-lists can be used with the dynamic group mechanism or other interpro
cess communication facility (e.g. BSD 4.3 IPC) so that a process after creating a shared
C-list sends the key to participants that it wants to have share its objects. A user has
freedom in choosing partners in a session. By creating different shared C-lists, a process
may share with different processes different shared C-lists. For a capability made avail
able in a shared C-list, a user may let other participants know by sending the returned
shared capability descriptor to their processes through some channels. A concurrency
control scheme like locking or a monitor is needed to avoid conflicts using these shared
objects.

Unlike passing a capability directly, the proposed shared C-list does not have the
difficulty revoking capabilities, i.e. canceling granted capabilities, because the capabili
ties are kept by the operating system. A shared capability, once granted into the shared
C-list, can be removed by closing the shared capability descriptor. Allowing greater
access rights (e.g. from read-only to read/write) to a shared workspace object can be
done by closing the shared capability descriptor first, then reopening and posting it with
new access right. Reducing an access right (e.g. from read-write to read-only) to a
shared workspace object can be done in a similar manner. Using shared C-lists allows
user processes to share capabilities in a dynamic way.

With shared C-lists, it is possible for users to achieve shared memory or data struc
ture by sharing a capability to a data segment. A shared workspace is achieved in a
flexible manner. The departing workspace-object-owner problem (Sec. 2.7.4) is solved,
because a departing user can leave behind capabilities to his objects so that the others
may continue working on his objects. Simultaneous manipulation of objects across mul
tiple user domains is possible because a shared C-list can have capabilities to objects
across multiple user domains. The protection domain of each participating process
sharing a C-list is the union of domains referenced through its private capabilities and
the capabilities in its shared C-lists.

-63-

4.2.2. An Example

Example 4.2- Session Tool Using a Shared C-list

This example shows how the shared C-list system calls are used together with the
dynamic group mechanism to achieve a shared workspace. The following two agent
programs, used by the chairman and another user, cooperate by forming a 2-party ses
sion and sharing a C-list. Each user opens a file, deposits the capability into the shared
C-list, and reads the other file.

Assume system calls open and exit exist. Note here ntohs and htons belong to the
43BSD UNIX /PC mechanism [Leffler86].

char messag[30] = "this IS a tesful";

main()
(

I* chairman's agent *I

char response[80], message[80], whom[50], buf[80], gr_nm[80], *group_name;
char *g_name = "rsw";
char key_str[20], key _string[10];
char fd_str[20], fd_string[lO];
MESSAGE *ml;
int agenda, pub_agenda;
int priv _fd, rc, key;

I* The session chairman opens the 'agenda' file for read access, creates a shared C-list, posts

the agenda descriptor to the shared C-llst, passes the key and shared agenda descriptor to the
other participant. *I

agenda= open ("agenda", O_RDONL Y);
key = create_ cllst(5);
pub_agenda = put _public (key, agenda);

printf("\nSession with whom?");/* a 2-party session *1

scanf("%s", whom); I* name of the other participant *I
strcat(whom, getlogln()); I* form the participant list *I

I* getlogin: get my login name *1

create _group (g_name, "c", whom); I* create a closed group *I
group_name = strcat (g_name, ":");

1* concatenate the group _name with the chairman's name *I

-64-

strcpy (gr_nm, group_name);
group_name = strcat (gr_nm, getloglnO);

if((ml =receive (whom, group_name, message, 80, BLOCKED,"")) !=NULL)
{

printf{"%s'n", message);
sprintf(key _string, "%d", htons(key));

I* htons: convert host byte order to network byte order *I
I* spriniftranslates "htons(key)" according to the format "%d" and places the output,

followed by the null character (\0), in consecutive bytes starting at "key_string" *I

send (whom, group_name, key_string, strlen(key_string));
I* share the key with the group *I

sprintf(fd_string, "%d", htons(pub_agenda));
send (whom, group_name, fd_string, strlen(fd_string));

I* send the agenda shared file descriptor to the group *I

If((ml = receive (whom, group_name, message, 80, BLOCKED,"")) != NULL)
{

I* waiting for his peer to join, receive a shared file descriptor to his peer's private file. *I
sscanf(message, "%s", &fd_str);

}

I* ssclllif,· read from the character string "message", interpret it according to
format "%s", and store the results infd_str *I

priv _fd = ntohs(atoi(fd_str));
I* ntohs: convert network byte order to host byte order *I

I* atoi: ASCII to integer conversion *1

while((rc =_read(priv _fd, buf, sizeof(but), key)) > 0) {
I* _read: extended 'retuf system call *I

write(1, buf, rc);
I* _write: extended 'write' system call *I

_write(priv _fd, messag, strlen(messag), key);
}

printf("Type any character to quit:");
scanf ("%s", &response);
_close(pub_agenda, key);

I* _close: extended 'close' system call *I
delete_ clist (key);
leave _group (group_name);

• 65.

}

exitO;
}

The following code is for a participant who shares his private file with the chair
man for READ/WRITE access.

mainO
{

I* user agent *I

char chair_name[30], response[80), *group_name, message[80], buf[80);
char *g_name = "rsw:";
char *join_message = "Joining the session.\n";
char priv _string[10], key _str[20], agen_fd_str[20];
MESSAGE *ml;
int private; I* file descriptor for "private" file *I
int pub _private; I* shared file descriptor for "private" file *I
int key, agenda_fd, rc;

private =open ("private", O_RDWR);
printf (''\nShare with whom?");
scanf ("%s", &chair_name);
group_name = strcat (g_name, chair_name);

if(join _group (group_name, BLOCKED, "")>=0) {
send (chair_name, group_name, join_message, strlen(join_message));
if((ml = receive (chair_name, group_name, message, 80, BLOCKED,"")) !=NULL)
{

}

sscanf(message, "%s", &key _str);
key= ntohs(atoi(key_str));

pub_private =put _public (key, private);
sprintf(priv_string, "%d", htons(pub_private));
send (chair_name, group_name, priv _string, strlen(priv _string));
if((ml = receive (chair_name, group_name, message, 80, BLOCKED,"")) != NULL)
(

}

sscanf(message, "%s", &agen_fd_str);
agenda_fd = ntohs(atoi(agen_fd_str));

while((rc =_read(agenda_fd, buf, sizeof(buf), key))> 0) {

-66-

I

_write(1, buf, rc);

I

printf("Type any character to quit:");
scanf ("%s", &response);
_close(pub _private, key);
leave _group (group_name);
exitO;
I /*end if*!

4.2.3. Possible Extensions and Discussion

The same shared C-list mechanism applies to a homogeneous distributed environ
ment, i.e. a shared C-list can be shared across a distributed system where each machine
runs the same operating system. Distributed shared C-lists are accessible within the
cluster of trusted systems, e.g. a cluster of machines on a campus. Maintaining distri
buted shared C-lists can be done by system-servers. Each system-server maintains an
identical table of shared C-lists, with address information for each shared C-list (see
Sec. 6.4 for more implementation details). User processes sharing a C-list can reside on
different machines. The capability descriptors specified in the extended _read, _write
or _close calls can reference a remote object. Remote access to a shared capability will
be forwarded to and processed by the system-server where the shared capability resides.
An implementation of distributed shared C-lists is sketched in Sec. 6.4.1. Implementa
tion issues are discussed in Sec. 6.4.2.

The key should be generated by the system and that the key space should be sparse
enough so that a key cannot be forged without substantial effort. As the Data Encryp
tion Standard (DES, [NBS77]) uses 56-bit keys, we suggest here that a key uses at least
as many bits (the double data type has 8 bytes).

It is also possible to let a user specify the key when creating a shared C-list. The
case in which two identical keys are presented when two processes are creating dif
ferent shared C-lists is difficult to deal with, because if the second request is rejected
then the system reveals that there is a shared C-list using the same key.

As it is useful to replicate capabilities (e.g. through dup public), it can also be
useful to provide a mechanism to replicate a shared C-list. The replicated shared C-Iist
is associated with a different key and has its capabilities replicated from the original
shared C-list.

• 67-

As capability systems can be expensive [Cohen75, Levy84], shared C-lists can be
restricted to the ffie system only, as has been shown in the prototype implementation.
Systems with mixed strategy [Saltzer75] like UNIX can be easily adapted with shared
C-lists restricted to the file system only .

. 68.

CHAPTERS

PROTECTION MODEL FOR CONDITIONALLY JOINTLY -OWNED OBJECTS

In this chapter, Graham and Denning's protection model [Graham72] is summar
ized first. Jointly-owned objects are generalized to conditionally jointly-owned objects
to help resolve conflicts among joint-owners. A mechanism realizing conditionally
jointly-owned objects is presented, the requirements having been described in Sec.
2.7.5. Graham and Denning's protection model is extended to provide a protection basis
for conditionally jointly-owned objects and subjects. A design of conditionally jointly
owned objects is specified at the system-call level in Sec. 5.6. Examples are provided
in Sec. 5.7. Implementation details are discussed in Sec. 6.5.

5.1. Graham and Denning's Protection Model

Graham and Denning [Graham72] proposed a protection model based on
Lampson's work [Larnpson71] to permit the cooperation of mutually suspicious subsys
tems. Their model is summarized below. Readers are encouraged to read their original
paper.

There are three components in their model: objects, subjects and rules. An object
is an entity to which access must be controlled. A unique identifier is assigned to each
object. A subject is an active entity whose access to objects must be controlled. A sub
ject may create an object, and becomes the owner of the object. The owner right allows
him to grant himself any access to his object. When a subject is being created, a con
trol right is granted to him by his creator. This right allows him to read or delete rights
from his protection state. Subjects are also objects, as they must be protected.

Rules control the accessing of objects by subjects. The information specifying the
types of access subjects have to objects constitutes a protection state of the system.
The protection state can be represented conceptually as an access matrix A, with sub
jects identifying the rows and objects the columns. The entry A[S, X] specifies the
access rights held by subject S to object X. A copy flag can be associated with an

access right. If the flag is on, it pennits a subject to grant to any other subject any
access right he holds for an object. If the flag is off, it prevents a subject from giving
away access to the object.

A monitor exists for each type of object; it validates all accesses to objects of that
type. An access proceeds as follows:

1. S initiates access to X in manner a, e.g. read, write, etc.

2. The computer system supplies the triple (S, a, X) to the monitor of X.

3. The monitor of X interrogates the access matrix to detennine whether a is in A[S,
X]. If so, access is permitted; otherwise, it is denied.

There is an access matrix monitor that enforces several rules ([Graham72], Table
I). For example, when a subject has owner right to an object (or subject), he may
change or read the protection state of his object (or subject) in the matrix.

Graham and Denning make a restriction that each subject is owned or controlled
by at most one other subject. By enforcing this, a tree hierarchy of relation "subject" is
maintained. It is still possible in their model for the owner attribute of a nonsubject
object to be granted, but they argued that either multiple ownership should not be pro
vided or coordination among the joint-owners themselves needs to be done to avoid
contradictory actions, e.g. one joint-owner grants access the others do not want granted.

5.2. Conditionally Jointly-Owned Objects

If multiple ownership is allowed and each owner has full right to the object jointly
owned, the joint-owners need to coordinate among themselves to resolve conflicts.
There is no way to prevent one owner from accessing the object abusively unless the
system has some knowledge about the owners' coordination and enforces it.

In this section, a design is presented to allow multiple owners to specify some con
dition to the system. A condition defines one or more subsets of the set of users who
have the rights to an object. It can be a quorum (e.g. at least two joint-owners must be
present), an authority-list (e.g. joint-owners A and B must be present), or a feature say,
"more than 60% of the number of joint.owners must be present". These objects are
called conditionally jointly-owned (CJO) objects. The system ensures that the condition
is met before the object can be accessed or its protection state can be changed.

An object's condition has two distinct parts. An access-condition (A C), if placed
on an object, needs to be met before the owners or authorized users can access the
object. A control-condition (CC), if placed on an object, needs to be met before the
owners or authorized users can change the protection state of the object (e.g. grant an
access right to another user, destroy the object). Each user (process) when making an

• 70.

access or changing the protection state of an object needs to inform the system if a joint
action is intended (see next section "How to validate access to a CJO object" for expla
nations). If so, the system will wait until the required number of participants join and
then verify that the condition is met. Using the access- or control-condition, the joint
owners' conflicts are resolved with their joint presence.

An access condition is useful if the joint-owners of an object want more awareness
of each other's actions on the object. For example, when two users jointly open a bank
safe, they are aware of each other's actions on the safe in addition to the knowledge of
joint presence. An access condition can include presence constraints for read, write or
execute access that require all or a majority of the joint-owners' presence.

Note that not all CJO objects have achievable conditions, i.e. conditions that can
be met by qualified users. For example, if a quorum greater than the number of eligible
users to an object is specified, the condition is not achievable.

A jointly-owned (JO) object is a special case of CJO objects with null control
condition. Each owner of a JO object has full ownership to the object. The access
condition of a JO object may be non-null. Obviously, a singly-owned object is a special
case of a jointly-owned object.

5.3. Creation and Maintenance of Conditionally Jointly-Owned
Objects

In the following, issues for creating a CJO object, committing and withdrawing
joint-ownership, verifying joint access, performing joint operation, changing condi
tions, and deleting a CJO object are elaborated.

How is a CJO object created?

A CJO object may be created by several users jointly, e.g. through a multi-user
process. These users become joint-owners of the CJO object. During the creation of the
CJO object, the users specify the access- and control-condition jointly.

Alternatively, the owner of an object may grant ownership to another user, if that
user accepts. In most protection systems, granting an access right needs no agreement
of the grantee [Graham72]. For granting ownership in this model, it is required that the
grantee agree. This is so because ownership frequently implies obligation. Sometimes a
user does not want such a granted ownership; he may even be charged for disk space
quota if he jointly owns an object. An object can be a contract: granting ownership is
like offering a contract; accepting ownership is like signing the contract. The original
owner of an object makes it jointly owned by specifying the joint-owners. The granting
of ownership to a user is completed when that user accepts it, thereby becoming

-71-

committed. A uncommitted user has no owner right to the object.

Just as an access-condition may specify different presence constraints for each
kind of access (e.g. read, write, or execute), a control-condition may also include dif
ferent presence constraints for changing different parts of the protection state of a CJO
object. For example, two co-authors collaborating on a paper may agree that each
author may grant the read right to other users at will, but both authors need to agree on
adding a third co-author.

There is some difficulty in requiring a user to commit before ownership is granted.
The protection state of a CJO object may not even be changed until all the joint-owners
commit because the control-condition is not met until then. To solve this difficulty, the
effective control-condition (ECC) is defined as the control-condition being evaluated
without considering uncommitted joint-owners. The effective control-condition is used
in place of the real control-condition. Similarly, the effective access-condition (EAC) is
defined as the access-condition evaluated without considering uncommitted joint
owners.

Can a joint-owner withdraw his ownership?

When the effective control-condition is null, a joint-owner may withdraw his own
ership at will. Otherwise, the effective control-condition must be met because for some
CJO objects, e.g. a contract, an owner should not withdraw at will. A withdrawing user
is removed from the committed users list.

How to validate access to a CJO object?

The difficulty of validating access to a CJO object like an authority- or quorum
based object can be seen here. With computer access, users need not even gather
together physically to access an object jointly. With single-user processes, it is difficult
for users to provide evidence to the system that they are "together" to open the object.
If each user issues open in his process, the requests received by the operating system are
still serialized, and the system has no way to verify that users are together. The system
cannot simply wait until all users have issued their requests.

Assume users with different interests collaborating in subgroups on different sec
tions of an object. The system needs to know whether the requests issued from the
users' processes are related. For example, assume a quorum-based object has four users
who have read access rights, and a read-quorum equal to two. Suppose the users form
two groups. The read requests from these two groups of users should not be correlated
by the system because they may work on different parts of a document.

The difficulty can be solved with a multi-user process as described in Sec. 4.1.
The multi-user process can be programmed to ask agreement from its participants and
do the joint action for the users. The multi-user process notifies each participant of the

-72-

result of the joint action by replicating it to each participant's standard output channel.
Alternatively, it can be solved in the following way: before accessing a CJO object
jointly, one user process provides some information (e.g. time_out or the number of
users to be together) to the system and asks the system to provide it a unforgeable
token. It then distributes the token to its cooperating user processes that want to access
this object jointly. These user processes may notify the attaching users, seek their agree
ment, and present the token when making their requests so that the system knows that
they are together to make the access. The system waits until all expected participants
make the access request (or the specified time_out expires). It then checks whether the
effective access- or control-condition is met, e.g. if the number of users at least equals
to the effective access- or control-quomm.

How is a joint-operation performed?

With a multi-user process, a joint-operation is performed in a straightforward
manner. A read or write action is performed once; the result is returned to the multi
user process itself. With several processes issuing a joint-operation through a token, we
have "write once, read many" operation. A write operation, whether into a file, chan
nel, data structure, or memory, is performed only once. Thus for a joint-write operation,
only one process, preferably the one which asks the system to assign a token for the
joint-operation, needs to tell the system all the information needed for the write opera
tion. For a read operation, whether from a file, channel, data structure, or memory, the
result is replicated to all the participating processes. Thus all the participating processes
need to provide the system consistent information regarding how the read operation is
to be done (e.g. how many bytes to be read, where to store the result).

How are conditions of a CJO object changed?

The access- or control-condition of a CJO object can be changed if the issuing
user(s) meet the effective control-condition.

When is a CJO object removed?

This can be done only by the joint-owners issuing a command destroy. The effec
tive control-condition needs to be met. When the condition is null, this can be done by
any joint-owner. Alternatively, it is removed when the last joint-owner withdraws.

5.4. Jointly-Owned Subjects

As subjects are also considered to be objects, it is natural to expect that the con
cept of "jointly-owned" can be applied to subjects. Does there exist a subject jointly
owned in computer systems? The multi-threaded task [Accetta85] is an example: all

-73-

threads within a multi-threaded task execute in parallel and share the same address
space and capabilities. A thread may destroy the whole task. The task can be suspended
or resumed as a whole by any thread within the task. Thus the task is jointly owned by
its threads.

A jointly-owned (JO) subject is defined as a subject that has several owners, each
of whom has full ownership. A subject can be jointly created and owned by several
owners; alternatively, an owner can grant ownership to another subject, who becomes a
joint-owner if he agrees. With this extension, ownership can be granted, and the rela
tion "owner" no longer defines a tree hierarchy. A joint-owner cannot invalidate the
ownership of another joint-owner. Thus an ownership, once granted, cannot be taken
back. A joint-owner (subject) may grant some of his rights to a JO subject; the con
ferred rights or the subject itself may be removed if another joint-owner rei:noves it. An
object that is created by a JO subject is a JO object. The notion of "conditionally
jointly-owned'' can be similarly applied to subjects. The results of the next section thus
apply to CJO subjects also.

The multi-user process is another JO subject, where the process is jointly owned
by all attaching participants. The creator of a process makes it "multi-user" by giving a
list of users who may join. When a participant joins the process, he becomes a joint
owner of the process. An object or a process created during the execution of a multi
user process will generally be owned by the joint-owners. Because the multi-user pro
cess runs under the union of multiple user domains, simultaneous manipulation of
objects across multiple user domains within a single process is possible.

How is it possible that a multi-user process runs with multiple user privileges? It
is assumed that participants in a multi-user process will share with each other the access
rights needed for object access when they join_proc. So, when a multi-user process
accesses an object, the user(s) who have the access right grant it to the others so that
they can make joint access. The grantor(s) need to have the copy flag set with their
rights (i.e. they are permitted to replicate their rights) [Graham72], and the effective
control-condition needs to be met. The right granted will be used only for the life of the
multi-user process. We see an analogy in real-time collaboration, where we allow a par
ticipant to share access to an object. After the collaboration, the participant may no
longer access the object

In the next section, Graham and Denning's model is extended to model these
jointly-owned subjects.

-74-

5.5. The Extended Model

5.5.1. Access

Associated with each CJO object in the access matrix will be two fields: access
condition (AC), and control-condition (CC). The effective access-condition (EAC) is
AC evaluated without uncommitted joint-owners. The following notations are adopted
in the access matrix:

owner& ; uncommitted joint-owner
owner ; owner or committed joint-owner

Generally, an access proceeds as follows:

1. SV initiates access to an object X in manner a. SV can be one or several subjects.
When SV stands for several subjects, it is denoted by a vector of these subjects.

2. The system supplies the tuple (SV, a) to the monitor of X.

3. The monitor of X interrogates the access matrix to determine whether a is in
A[SV, X] and the effective access-condition is satisfied. If so, access is permitted;
otherwise, it is denied.

For authority-based objects, the last rule says that the effective access-authority,
i.e. the access-authority members who have committed, must be present to make access.
For quorum-based objects, ISVI (dimension of SV) may not be less than the effective
access-quorum for users to make access.

An example: shown in the access matrix of Fig. 1 is a CJO object X with three
joint-owners B, C, D and one user E. It is an authority- and quorum-based object with
an access-condition: (read-quorum = 0, write-quorum = 2, execute-quorum = 0), and a
control-condition: (control-authority = B, control-quorum = 2). Since all joint-owners
are committed, the effective access/control-condition is the real access/control
condition. Because read- or execute-quorum is zero, user B, C, D orE can read or exe
cute the object individually. Any two users together are allowed to write the object.
Users C and D together, although they are joint-owners and meet the control-quorum,
may not change the protection state of X because the control-authority (owner B) is not
present. Users B and C, or B and D together are allowed to change its protection state
because the control-authority is present and the control-quorum is met.

Note here that for multiple owners J, K of an object X, their access matrix entries
A[J, X] and A[K, X] may not always be identical, because an owner can delete rights
(see next section) from its own entry. In Fig. 5.1, the access- and control-condition are
stored with an object. An ideal place is to store them with the access control list of the
object if there is one; otherwise they may be stored as part of the features of the object.

-75-

OBJECTS

X
AC: read-quorum = 0 write-quorum = 2

execute-quorum = 0

CC: control-authority = B control-quorum = 2

owner
8 read

write
execute

SUBJECTS
owner

c read
write
execute

D owner
read
write
execute

read
E write

execute

Fig. 5. 1 Extended Access Matrix

- 76 -

