
An Event-Driven Model-View-Controller 
Framework for Smalltalk 

TR89-025 

June, 1989 

Yen-Ping Shan 

The University of North Carolina at Chapel Hill 
Department of Computer Science 
CB#3175, Sitterson Hall 
Chapel Hill, NC 27599-3175 

A TextLab Report 

i 
I 

'·'' . I '' ' 

Portions of this research were supported by the National Science Foundation, Grant 
#llii-85-19517 and the Army Research Institute, Contract #MDA903-86-C-0345. 
UNC is an Equal Opportunity/Affirmative Action Institution. 



An Event-Driven Model-View-Controller 
Framework for Smalltalk 

Yen-Ping Shan 

June 19, 1989 

Abstract 

The Small talk Model-View-Controller (MVC) user interface paradigm 
uses polling for its input control. The polling loops consume CPU 
cycles even when the user is not interacting with the interface. Ap
plications using Smalltalk as their front-end often suffer unnecessary 
performance loss. This paper presents a prototype event-driven MVC 
framework to solve these problems. A solution to the compatibility 
problem is also provided to allow interface objects built under both 
polling and event-driven mechanisms to be used by each other with no 
modification and no performance penalty. 

1 Introduction 

The Model-View-Controller paradigm [Adams 88, Krasner 88] provides the 
framework for most Smalltalk-80 (Goldberg 83] user interfaces. Within this 
framework, the user interface objects interact with the end user by polling 
the states of the input devices and responding to the state changes. 

Polling is a source of unnecessary performance loss. The polling loops 
must always be active in order not to miss any action performed by the 
user. When one is developing systems with multiple processes, this becomes 
a serious problem. For example, an application with a polling user interface 
may fork an agent process to handle the transactions to a remote database 
and to manage the local cache. Since the user interface process must keep 
polling even when the user is not interacting with the system (for example, 

1 



the user is waiting for a transaction to finish), it consumes the CPU cy
cles that should have been spent on the database agent process. Moreover, 
the existence of the database agent process makes the interface less respon
sive. The situation is aggravated when the database is running on the same 
machine as the user interface. 

This deterioration of performance can be avoided if the user interface is 
built on top of an event-driven mechanism that does not poll1 . However, one 
must be cautious in making such a fundamental change. While switching 
to an event-driven mechanism is beneficial, throwing away all of the exist
ing user interfaces and rebuilding them under a new mechanism for better 
performance is too high a cost. Reusability is among the most important 
features of object-oriented programming. If the new event-driven mecha
nism does not allow us to reuse the work done with the polling mechanism, 
it would be much less useful. 

This paper presents a prototype event-driven interface framework that 
not only solves the performance problem but also allows: 

• interfaces built with the polling mechanism to co-exist with ones that 
are built with the event-driven mechanism. (For example, an event
driven directory browser could co-exist with the standard Smalltalk 
system browsers.) 

• interface objects built with both mechanisms to be reused by each 
other. (For example, within a polling environment one could use an 
event-driven spread-sheet which in turn uses a polling menu.) 

Additionally, no modification to existing code is required and there is no 
performance penalty. 

The next section gives a brief overview of both the polling and event
driven mechanisms. In section 3, further motivation for having an event
driven mechanism is provided. Section 4 describes the design and implemen
tation of the prototype event-driven MVC framework. Section 5 discusses 
the solution to the compatibility problem. The last section gives the status 
of the implementation. 

1 An alternative is to implement a Time-Sharing Citizenry [Schiffman 88J mechanism 
within the Smalltalk itself. 

2 



2 Background 

Polling 
A system that supports the polling mechanism often maintains a globally 
accessible table of the states of the devices. In Smalltalk, this table is an 
instance of InputSensor and is accessible through a global variable called 
Sensor. A typical interface object will have loops that poll the relevant 
table entries. When a state change is sensed, the case statement in the loop 
invokes a routine to process the change. This routine can change the state 
of the underlying application, give feedback to the user, or transfer control 
to another loop to detect further state changes. For example, a Smalltalk 
PopUpMenu is often invoked by a loop that senses mouse button presses. 
Control is then passed to the PopUpMenu polling loop which tracks the 
cursor position and highlights the proper portion of the menu when the user 
drags the cursor. 

The control structure of a polling interface is characterized by a tree 
of loops. Each loop in the tree keeps control while certain conditions are 
satisfied (for instance, the cursor stays within a rectangle area), and polls 
the children loops to see whether they want control. A child loop that 
wants control can grab it, and later return control to its parent loop when 
its looping condition is no longer satisfied. 

Event-Driven 
An event-driven mechanism [Newman 79] usually consists of three major 
components: a set of event generators, an event queue that buffers the 
events in sequence, and an event dispatching mechanism that removes the 
events one at a time from the queue and sends them to the corresponding 
event handlers. An event has a name or number that identifies the nature 
of the interaction plus several data values that characterize the interaction. 

A typical event-driven interface has a single event-fetching loop. The 
execution of the loop is suspended when the event-fetching statement in the 
loop tries to fetch from an empty event queue and resumes when new events 
arrive. 

An event-driven interface program registers a number of event handlers 
with the event dispatching mechanism. For each handler, a list of interested 
event types is specified. When an interesting event happens, the dispatching 
mechanism activates the corresponding handler to process it. 

3 



3 Why Event-Driven? 

Besides the benefits in performance mentioned above, the event-driven mech
anism provides a better trace of input devices. With the polling mechanism, 
when a system is heavily loaded, it can miss a state change (for example, 
a button click) because the polling loop is not at the condition statement 
when the change happened. This does not happen with event-driven model 
where all the events are buffered. An application has the freedom to discard 
events when it cannot process them as fast as they come (this is seldom the 
case, though); it can also control when the events should be discarded and 
which one to discard. This is in contrast to the polling mechanism where 
state changes are ignored, depending on the system load and the execution 
timing of the statements in the polling loop. 

The event-driven mechanism also makes possible implementation of cer
tain applications that could not be done within a polling paradigm. For 
instance, with the prototype event-driven mechanism described in the next 
section, the author was able to develop a package that allows users running 
Small talk on different machines to share visual workspaces. The package is 
general in that a user can select any event-driven application and then share 
both control and the visual display with other users. 

4 A Prototype Event-Driven MVC 

This section describes the three major components-the event generator, the 
event queue, and the event dispatching mechanism-for a prototype event
driven framework which preserves the structure and the semantics of the 
MVC paradigm. 

4.1 Event Generator 

An event generator is responsible for generating events and placing them on 
the event queue. Beneath the Smalltalk virtual machine, the input devices 
are handled by an event-driven (more precisely interrupt-driven) mecha
nism; consequently, the problem of creating an event generator is reduced 
to identifying the place where Small talk changes its state table and inserting 
code to generate the events. Smalltalk acqnires the primitive input events 

4 



from the virtual machine through the method "primitiveinputWord" and 
updates its state table in the InputState class. The code inserted in the 
"run" method of the InputState class interprets the primitive input events 
to construct the events used by the framework. Methods are also added to 
the InputState to control event generation. 

4.2 Event Queue 

The implementation of the event queue is straightforward. The Smalltalk 
SharedQueue provides most of the functionality needed by the event queue, 
including suspending processes that try to fetch from an empty queue. The 
EventQueue, a subclass of SharedQueue, implements methods to control the 
queue and to handle queue overflow. 

4.3 Event Dispatching and the MVC 

The event dispatching mechanism is more subtle and the decisions made 
here affect compatibility. The goal is not just to produce a mechanism that 
delivers the events to the right event handlers, but also to ensure that the 
created event-driven interfaces are compatible with polling interfaces. 

The "super View-sub View" relation in the Small talk View class provides 
the base for event dispatching. A View in a structured picture can contain 
other Views as sub-components. These sub-components are called "sub
Views." A View can be a sub View of only one View-its "super View." The 
set of Views in a structured picture forms a hierarchy. In the prototype, 
all screen objects inherit from a subclass of View called Mode. When a 
Mode receives an event, it checks to make sure the event is intended for it 
(usually by comparing the coordinates of the event with its display box) 
and asks all of its "subModes," starting from the topmost one, to process 
the event. (The "subModes" are stored in the instance variable "sub Views" 
inherited from View.) If none of the subModes are interested in the event, 
it then tries to process the event itself. If it is not interested in the event, 
it returns the event as un-processed to its "superMode" (stored in the in
stance variable "super View," also inherited from View). A Mode delegates 
responsibility for processing events to its event handler, which is stored in 
the instance variable "controller," defined by the MVC paradigm. In the 
prototype, the Mode defines a number of new methods to provide better 

5 



clipping and windowing behavior. 

The one Mode in the hierarchy that has no super Mode is called the "root
Mode." It is an instance of RootMode class where the event-fetching loop is 
defined. A typical application would have a single RootMode and a hierar
chy of Modes. To allow multiple active applications, a built-in mechanism 
is provided in RootMode to guarantee that no two RootModes will attempt 
to access the event queue at the same time. 

The above arrangement creates an event-driven framework which pre
serves the structure of the MVC paradigm. It allows the Small talk "MVC 
inspector" to be used without any modification. The event-driven frame
work also preserves the semantics of the MVC paradigm. The View is still 
responsible for visual aspects of the structured picture, and the Controller 
(now an event handler) is still in charge of the user interaction. Since both 
the structure and semantics of the MVC paradigm are preserved by the 
event-driven framework, we term it "event-driven MVC." 

5 Compatibility 

The problem of compatibility comes from having two active mechanisms 
(event-driven and polling) present at the same time. This can be viewed 
as a control switching problem. At any time, one would like to make sure 
that the mechanism in control corresponds to the type of object that the 
user is interacting with, and that there is no interference from the other 
mechanism. Knowing when and how to switch between the two mechanisms 
is the key to achieving compatibility. 

5.1 Definition of the Problem 

Strings of capital letters are used to present the problems concisely. The 
string XY denotes that an object built with mechanism Y is running in 
an environment bnilt with mechanism X. Each letter can either be P, de
noting the polling mechanism, or E, denoting the event-driven mechanism. 
For example, the string PE represents the situation of an event-driven ob
ject running under an environment that is controlled by a polling object. 
The string PEP would describe a polling interface object running under an 

6 



event-driven environment which in turn is running under another polling 
environment. The spread-sheet example used in the Introduction section is 
modeled by this string. A string of PPEPEEPE represents a highly nested 
interface with event-driven and polling objects inter-mixed. 

Although the compatibility problem may look complicated at the first 
glance, it is regular. Notice that ifthe sub-problems PP, EE, PE, and EP can 
be solved, all of the more complicated problems are merely concatenations 
of these four basic cases. Since the first two sub-problems are trivial, only 
the last two need further consideration. 

5.2 When to Switch 

For reasons of performance and preventing interference, one must avoid hav
ing two mechanisms running at the same time whenever possible. This 
precludes the use of a single mechanism as the master mechanism which 
determines when to switch to a slave mechanism. The only choice left is 
to have the X, the environment mechanism, in each XY pair, determine the 
switches. 

5.3 Sandwiching 

A technique, called "Sandwiching," which inserts an invisible layer between 
a pair XY is used to provide solutions to both the EP and PE cases. After 
the invisible layer (named "ham") is included in the representation, the 
structure becomes XHY. Figure 1 shows an EHP sandwich. The purpose of 
the "ham" is to make X feel like Y is bnilt with the same mechanism as it 
is and vice versa. If the "ham" is well designed, no modification to either 
X or Y is necessary in order to have them running together. Therefore, the 
problem of how to switch is addressed by the design of the "ham." 

5.4 How to Switch: Case EHP 

The "ham" for this case is a Mode with a special event handler (controller) 
which suspends event generation and flushes the event queue when certain 
conditions (for example, an "EnterWindow" event is received) indicate that 

7 



A polling application 

An event-driven environment 

Figure 1: An EHP sandwich. 

the polling application P should be in action. The "ham" then brings itself, 
and therefore the P, to the front of the display (so that nobody obscures 
them) and passes the control to the con troller of the top view of P. When 
control is returned, it resumes event generation. 

The choice of making Mode a subclass of View shows another benefit 
besides reusing code. It makes the "ham" easy to use. Since the "ham" 
inherits the behavior of View, P can treat it as an ordinary polling View, 
and E can treat it as an event-driven Mode. To construct the sandwich, one 
simply creates a "ham," attaches to it the polling application as its only sub
View, and attaches the "ham" to the underlying event-driven environment. 
No modification of either P or E is required. 

5.5 How to Switch: Case PHE 

There are two types of E, self-contained event-driven applications with their 
own event-fetching loops (with RootModes) and those that are without an 
event-fetching loop. For both types, the "ham" must provide the event
fetching loop. It may not be obvious why an event-fetching loop is needed 
for the self-contained applications that already have one. The reason comes 
from an important distinction between event-driven and polling applications. 
A polling application returns control to its parent when the condition for 
looping is not satisfied, but an event-driven application does not. The only 
time an event-driven application breaks its event-fetching loop and returns 
is when it terminates. A simple-minded "ham" that activates the event 

8 



generation, passes control to the event-fetching loop of the event-driven 
application, and waits for it to return will not work because there is no 
guarantee that the control will come back. 

Certainly, one can modify the event-driven application so that it re
turns control under certain condition (for example, "LeaveWindow" event 
received), but this breaks the promise of no modification. Another alter
native is to let the "ham" and the application run as two processes and 
have the "ham" suspend and resume the application process. This is also 
not satisfactory because it introduces both the complexity of inter-process 
communication and the performance loss due to the looping nature of the 
"ham" process. 

A technique called "loop merging" is employed. The event-fetching loop 
in the application is merged with the polling loop in the "ham," as shown 
in Figure 2. This is done by copying the code in the event-fetching loop 
and inserting it into the "ham" polling loop. The merged loop, then, serves 
as the event-fetching loop. The real event-fetching loop of the application 
is never executed. The merged loop in the "ham" checks the device state 
changes interesting to the "ham" (for example, see if cursor is still in), 
fetches an event from the event queue, and asks the application to process 
the event (by sending the event to the "topMode" of E). The "ham" enables 
the event generation before it enters the merged loop, and disables the event 
generation after it leaves the loop. 

The merged loop is suspended when there is no event in the queue. This 
improves the performance of other processes since no CPU cycles are wasted 
in the useless polling in the "ham." The merged loop also transfers control 
properly. When the user switches to another application (often by moving 
the cursor onto that application), there are always events generated by the 
user's action to wake up the merged loop for it to return the control to its 
parent (the P). The parent can ,then, assign control to the newly selected 
application. 

One can also insert code into the merged loop to ensure the event-driven 
application conforms to the windowing behavior of the underlying polling 
environment. For example, the Small talk interface (a P) uses the blue button 
(the right mouse button) for windowing control (e.g., resize, move, collapse). 
The inserted statements in the merged loop, as shown in Figure 2, can check 
the status of the blue button and activate the "ScheduledBlueButtonMenu" 
when the button is pressed. The user can, then, manipulate the window of 

9 



E 

other loops 

H 

E 

Figure 2: Loop merging 

10 



the event-driven application just as it were a Small talk StandardSystem View. 

6 Conclusion 

The event-driven MVC framework described above preserves both the struc
ture and the semantics of the MVC paradigm. It not only allows efficient 
user interfaces to be built, but also provides necessary compatibility with 
the polling interfaces. 

A prototype of the event-driven MVC framework has been built. Test 
interfaces built with it show better background process performance and 
cleaner program structure. Although no formal measurment has been done, 
the test interfaces can conserve over 30% of the CPU time for the background 
processes under the worst case (when the user is dragging a Mode clipped 
against the Modes surrounding it). All of them are as responsive, if not more 
so, than those built with the polling mechanism. Some of the test interfaces 
(for instance, the general shared visual workspace) cannot be built with the 
traditional polling mechanism of Smalltalk. The "Sandwiching" technique 
has been successfully applied to create interfaces that mix the Smalltalk user 
interface objects (text editor, debugger, menu, binary choice, etc.) with the 
event-driven interface objects. The author is currently using this prototype 
to develop a user interface management system for Smalltalk that supports 
direct manipulation user interfaces. 

7 Acknowledgement 

A number of organizations and people have contributed to the work reported 
here. The author is grateful to the National Science Foundation (Grant# 
IRI-85-19517) and the Army Research Institute (Contract #MDA903-86-C-
0345) for their support of this research. John B. Smith, Rick Snodgrass, 
Matt Barkley, and Gordon Ferguson provided valuable comments and sug
gestions for this paper. The Textlab Research Group within the Depart
ment of Computer Science at the University of North Carolina at Chapel 
Hill has provided a provocative and supporting intellectual environment for 
this work. Finally, special thanks to Jonathan Eunice who motivated this 
research. Without his vision, this work would not have been done. 

11 



References 

(Adams 88] Adams, S. S. MetaMethods: The MVC Paradigm. HOOPLA! 
Vol. 1, No.4, July 1988. 

(Goldberg 83] Goldberg, A. & Robson, D. Smallta/k-80: the Language and 
Its Implementation. Addison-Wesley, 1983. 

(Krasner 88] Krasner, G. E. & Pops, S. T. A Cookbook for Us
ing the Model- View-Controller User Interface Paradigm in 
Smalltalk-80. Journal of Object-Oriented Programming, Vol. 
1, No. 3, August/September 1988. pp. 26-49. 

(Newman 79] Newman W. M., & Sproull, R. F. Principles of Interactive 
Computer Graphics. McGraw-Hill, Inc., 1979. 

(Schiffman 88] Allan M. Schiffman Time-Sharing Citizenry for Smalltalk-80 
under UNIX. ParcPlace Newsletter, Vol. 1, No.2, ParcPlace 
Systems, 1988. pp. 9-10. 

12 




