
Semantics of Lazy Higher-Order
Functional and Logic Programming

TR89-021
(Revision of TR88-004, April 1988)

May 1989

Frank S.K. Silbermann
Bharat Jayaraman

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/Affirmative Action Institution.

Abstract

Semantics of

Lazy Higher-Order Functional and Logic Programmingt

Statw Report

Frank S.K. Silbermann

Bharat Jayaraman

Department of Computer Science

University of North Carolina at Chapel Hill

Chapel Hill, NC 27514

This paper addresses the semantic and computational issues of set abstraction in

functional and logic programming. The main results are:

(i) Relative set abstraction can combine a lazy higher-order functional programming

with not only first-order Hom logic, but also with a useful subset of higher-order Hom

logic. Sets, as well as functions, can be treated as first-class objects.

(ii) Angelic powerdomains provide the semantic foundation. These are compatible

with lazy evaluation and are well-defined over elements from even non-flat (higher-order)

domains.

(iii) A new computation rule, more efficient than the parallel-outermost rule, is devel

oped and shown to be a correct computation rule. (A simple left-most rule is not adequate

for this language.)

(iv) Optimizations incorporating ideas from narr~wing and resolution greatly improve

the efficiency of the interpreter, while maintaining correctness.

t This research was supported by grant DCR-8609609 from the National Science Foun

dation and contract 00014-86-K-0680 from the Office of Navel Research.

1. INTRODUCTION

Algorithms are described as a combination of program logic and control (K79]. So that

programs may run as efficiently as possible (on conventional sequential machines), users

of conventional imperative programming languages express the program control explicitly,

leave the program logic implicit (as invariant assertions). Imperative languages can thus

be described as machine oriented.

In contrast, declarative programming languages are programmer-oriented. Users of

declarative languages express the program logic explicitly, leaving much of the control

implicit. Based on well-known mathematical theories, declarative languages are often

very simple, with semantic descriptions that are both short and elegant. The use of

declarative languages has been limited by expensive evaluation procedures, but as the

ratio of programmer costs to hardware costs rises, and with programs becoming longer

and more complex, declarative languages are becoming ever more attractive. Furthermore,

by not overspecifying the order of operations, declarative languages show great potential

for implementation on massively parallel hardware. Two of the most popular declarative

paradigms are functional and logic programming. The obvious difference is that functional

programming is based on function definition and application, whereas logic program define

and reason with relations. Each paradigm has its own advantages over the other, which

we will describe.

Functional programming offers powerful abstraction tools difficult to incorporate into

the logic-programming framework. Infinite data objects such as streams, computed through

lazy evaluation, permit one to model input-output within the language proper, as well as

concurrent processes (as when separating producers from consumers of data). Higher-order

objects (such as functions which take other functions as arguments, and return functions

as results), permit the writing of more general-purpose program fragments, increasing

reusability. Static seeping provides program modularization. Through the nesting of func

tion application, functional languages can incorporate more control information within the

declarative framework than can Horn logic languages. Equivalent logic programs some

times require a semantically unclear combination of declarative and metalogical constructs.

The control information given by function nesting permits efficient deterministic implemen

tations (do not require backtracking). Furthermore, for some functional languages powerful

compilation techniqes exist.

1

From the perspective of functional programming, Predicate-logic programming has its

own unique capabilities. Among them are support for constraint reasoning (via unification

over first-order terms) and flexible execution moding (non-directionality).

Some problems can be described more naturally using functions. Others are more

naturally described using relations. Our goal is a language incorporating the advantages

of both functional and logic programming.

We seek a declarative language with simple semantics (including referential trans

parency), reasonable higher-order capabilities, with the potential for efficient execution.

Backtracking should not be used where simple rewriting is sufficient, and the interpreter

should not rely on potentially explosive primitives, such as higher-order unification or

unification relative to an equational theory.

We chose to make functional programming rather than Horn logic the basis for our

unified declarative language so that simple propagation of objects can be managed without

unification or proofs of equality, and so that ordinary functional computations may be

performed in the usual way without backtracking. Pure Horn logic programming is based

on very few language constructs, functional programming languages are, in contrast, much

richer. It should be easier to add the features from a small language into a larger, than

v1ce-versa.

In comparing logic programming with functional programming, logic programming is

often described as relational. Relations can be expressed by predicates, or alternatively,

in terms of set theory. In fact, Horn logic's model-theoretic and fixed-point semantics are

described in terms of set theory. We have chosen to supplement a functional programming

language with set abstraction to express relations. The functional programming paradigm

can be enlarged to accept these sets as just another data type.

We are not the first to propose set abstraction as a possible solution to this problem.

Darlington (083] and Robinson (R86J were early advocates of this approach. Nevertheless,

their work left several important open problems: In what way does this construct inter

act with other traditional functional language features, such as infinite and higher-order

objects? How can the presence of this feature be reflected in the language's denotational

semantics? Will all denotable sets be computable? This paper answers these questions.

To our knowledge, these semantic issues have never been rigorously worked out, though

Darlingtons recent paper on absolute set abstraction informally sketched an operational

2

procedure for computing some sets (DFP86].

We observe that relative set abstraction can also provide the needed logic programming

capability. We prefer relative set abstraction because it has a more tractable higher

order generalization. Generalizing absolute set abstraction to the higher-order case is

thought to require higher-order unification, which is in general undecidable. To achieve

the effects of first-order absolute set abstraction using relative set abstraction, one simply

replaces each "logical variable" of the absolute set abstraction by a enumeration variable

whose generator is the Herbrand universe (i.e. the set of first-order terms). Relative

set abstraction's naive generate-test-compute strategy must be improved for solving such

abstractions efficiently. We show that these set abstractions generated from the Herbrand

universe can be identified, and optimized to provide efficiency comparable to Darlington's

procedure.

In this paper, we describe a lazy, statically-scoped, higher-order functional language

with set abstraction. In proposing any new language, it is customary to specify not only

the syntax and give examples (which we do in Section 3), but also:

a) a standard declarative semantic description (the denotational semantics);

b) a non-standard operational semantics (to show how programs might be executed);

and

c) a proof that the standard and the operational semantics describe the same language,

1.e. that the operational semantics is correct with respect to the standard semantics.

Section 4 provides a through denotational semantics. Only a few new semantic primi

tives are needed- the angelic powerdomain constructors and deconstructor, proven to be

well-defined and continuous. To obtain a correct operational semantics, we depart from the

traditional approach of defining the denotational and an operational semantics separately

(and then proving their equivalence). Rather, we derive a correct operational semantics

from the denotational semantics in two steps. In Section 5 we show how the denotational

equations can be viewed as a program for the interpreter, written in terms of the primitive

operations, leaving unspecified only the question of evaluation order. To obtain a correct

computation rule for this meta-program, we build upon Vuillemin's work on safe compu

tation rules (V74], obtaining an optimized form of parallel-outermost evaluation. That

some degree of parallel evaluation is needed for complete evaluation of sets should not be

surprising; after all, obtaining a complete interpreter for Hom-logic requires breadth-first

3

evaluation. The second step, described in Section 6, is to avoid the default generate-and

test procedure when the Herbrand universe (the set of first-order terms) is recognized as

the generator of a relative set abstraction. For this generating set, we partially instantiate

the enumerated variable only as needed, using program transformation rules inspired by

narrowing in term rewriting systems [R85] and by resolution in logic programming [187].

We present typical 'optimizations' to the computation procedure to obtain the desired

operational semantics.

The next section gives an overview of other attempts to integrate functional and logic

programming, including a description of early work in set abstraction.

2. RELATED WORK

Many attempts have been made to combine features of functional and logic program

ming into a single language (see [BL86] for a recent survey).

2.1 First-order Approaches

One approach is to add features to logic programming, such as unification relative to

an equational theory (the equational theory is used to define functions) [K83] (JLM84].

The complexity of the refutation procedure is a difficulty.

A related but simpler approach is the use of equational languages for functional pro

gramming, with narrowing to solve constraints posed as equations [GM84]. The equational

langage is defined in terms of rewriting (reduction). To solve for logical variables in equa

tions, one reduces the equation via the rewrite rules as much as possible. When the logical

variables prevent futher reduction, they are minimally bound so that reduction may con

tinue. When the equality is satisfied, the accumulated bindings provide a solution. For

completeness, each time a logical variable is narrowed, one must compute (in parallel)

many alternative narrowings.

Narrowing is complete for canonical term rewriting systems. These are equational the

ories (programs) whose rewrite rules are confluent, and for which all reduction sequences

are guarranteed to terminate. The termination requirement rules out functions and re

lations operating on infinite data structures. Constructor-based equational programming

[F84] [JS86] can avoid this problem. The distinction between functions and data construc

tors permits distinction between equations which define functions and equations which can

4

only be viewed a program properties. The former restricts the left side of a rewrite rule

to contain only one functor, placed at the outermost. With such a restriction, narrowing

is complete even if the finite termination property does not hold [F84b].

2.2 Higher-order Approaches

Aside from approaches which support no higher-order programming at all [GM84,

DP85, YS86], existing approaches fall short in that they either:

(a) require computationally difficult primitives higher-order unification [MN86, R86]

(undecidable in worst case), unification relative to an equational theory [GM84],

(b) are not purely declarative [SP85, W83, R82, DFP86], or

(c) no denotational (or other declarative) semantics given [L85, SP85, W83, R82, R85,

DFP86].

One line of research is higher-order logic programming. This requires a higher-order

unification algorithm. However, computationally feasible algorithms do not exist for the

general case, so most approaches restrict the higher-order capability to handle only specific

subclasses of functions. Miller and N adathur propose an higher-order extension of Prolog

based on Church's typed lambda calculus, using a higher-order unification algorithm. This

algorithm may work efficiently when applied to first-order terms, but may be prohibitively

expensive when unifying higher-order objects [MN86]. D. H. D. Warren [W83] described

a way to encode a some higher-order Horn logic programs within first-order Prolog. In

Warren's method, the programmer dedicates special terms to denote the predicates he

wishes to pass as arguments. The "higher-order" predicates accept these terms, and calls

a small interpreter to apply them. While we consider Warren's encoding a useful Prolog

programming technique, as a language extension it violates the referential transparency

principle. Syntactic unification of such encodings is inconsistent with their interpretation

as higher-order objects, yet Warren's technique permits this.

For first-class higher-order objects, the functional programming paradigm seems more

tractable. In traditional functional programming, function arguments replace parameters

via one-way substitution, not unification. A better approach might be to incorporate

relational programming within the functional framework, rather than vice-versa. Three

well-known prototypes are Robinson's LOGLISP [R82], Darlingtons extension of Hope

[D83, DFP86], and Smolka's Fre8h [SP85].

5

Smolka begins with a functional language incorporating pattern-matching and adds

a Prolog-like capability. The resulting language is very expressive, hut it is unclear what

would be a meaningful purely declarative subset. The operational semantics given indicates

that referential transparency is not maintained. No denotational description is offered.

Darlington [D83] and Robinson [R86] were the first advocates of adding logic program

ming capability to functional programming through set abstraction. Robinson suggests

that a functional language should have a construct denoting the complete set of solutions

to a Horn logic program, and that the user be able to build functions accepting such sets as

arguments. Darlington calls this approach absolute set abstraction (to distinguish it from

relative set abstraction, discussed later). Absolute set abstraction permits expressions such

as

{x: p(x)},

to denote define the set of all x satisfying p(x). In this approach, nondeterminism is

replaced by set union, and unification is performed to satisfy equations between non

ground objects.

Robinson's language, LOGLISP, attempts to combine LISP and Hom logic through

this mechanism. He develops many useful implementation ideas, but as with Smolka, he

fails to develop a mathematical justification for his design. Since the base language is LISP,

LOG LISP has some higher-order capability, though its use is restricted when accessing the

relational features. The evaluation order is applicative, not lazy. Darlington's approach is

similar, however his base functional language is lazy, with polymorphic typing. In his recent

paper [DFP86], Darlington sketched only a partial and informal operational semantics. To

our knowledge, the semantics of set abstraction in functional cum logic programming has

(until now) never been rigorously worked out.

The degree with which this construct can exist as a first-class object, and interact freely

with other functional language features has been questioned. Both Darlington and Robin

son claim that a first-class implementation of absolute set abstraction in a higher-order

language would require higher-order unification. Even then, some higher-order programs

would be merely unexecutable program specifications. Robinson has criticized existing

combinations of higher-order functional programming with first-order relational program

ming as inelegant [R86]. The goal is to create a purely declarative functional language

permitting higher-order relational programming, without arbitrary unorthogonal restric-

6

tions on it features. This we do by replacing absolute set abstraction with the semantically

simpler relative 8et ab8traction. A typical relative set abstraction would be an expression

of the form:

{f(x) : x E M and C(x)}.

Here, the generating set 'M' is provided explicitly, and those elements 'x' which satisfy the

condition 'C' are used in computing elements of the new set. Compare this to the form of

a typical absolute set abstraction:

{f(x) : c(x)}.

Here, one "solves" the condition 'C' for suitable values of 'x', each solution used to compute

an element 'f(x)' of the denoted set.

In principle, the absolute construct is more powerful (this is why its higher-order

extension is so problematic). In practice, this is not necessarily true. In the languages of

Darlington and Robinson, a logical variable can represent a value only from a special limited

domain. This domain consists of the first-order terms, analogous to the H erbrand univer8e

in first-order Horn logic. This set of first-order terms, T, can easily be expressed via a

recursively-defined relative set abstraction. Thus, any first-order absolute set abstraction

can easily be expressed as a relative set abstraction. For instance, the example above

would be written as:

{f(x) : x E T and C(x)}.

David Turner pioneered relative set abstraction in KRC [T81]. However, he did not

take care to preserve the semantics of true sets. In his languages, sets are implemented

as lists, and may be accessed as such, thus adding an implicit ordering on the elements.

Turner's evaluation mechanism does not ensure fairness. If computation with the one

element of the generator diverges, the next element is never tried. Because of his im

plementation, Turner's abstractions are now referred to as li8t comprehen8ion8 [P87], not

sets.

We advocate true relative set abstraction. Not only is it as expressive as first-order ab

solute set abstraction (as shown above), but it can mix freely with higher-order constructs,

without requiring arbitrary first-order restrictions. In our system, the set of first-order

terms is provided as a (semantically unnecessary but operationally convenient) primitive.

In computing a relative set abstraction, only if the variable 'x' is recognized as being enu

merated from the set of first-order terms, is it treated as a logical variable. This special

7

treatment is merely an optimization to the default generate and test mechanism.

3. LANGUAGE DEFINITION

3.1 Syntax and Constructs

In this section we describe the set abstraction construct, and show its use in combining

functional and logic programming. As we wish to concentrate of semantic foundations, we

instead restrict our consideration to essential features, without providing all the syntactic

niceties for programming convenience. For simplicity, we consider neither (polymorphic)

typing nor numeric operations.

We refer to this skeleton language as PowerFuL, because it uses angelic Powerdomains

to unite Functional and Logic programming. A PowerFuL program is an expression to be

evaluated. The syntax is:

expr

set-claU&e

qualifier

: :=

.• =

.. =

enumeration : : =

condition : : =

(expr) I atom

cons(expr, expr) car(expr) I cdr(expr)

atomeq?(expr,expr) I null?(expr) I expr = expr

bool?(expr) I atom?(expr) I pair?(expr) I func?(expr) I set?(expr)

if expr then expr else expr fi I not(expr)

identifier

.X identifier . expr

expr(expr, •.. , expr)

letrec identifier be expr, ... , identifier be expr in expr

phi I atoms I terms I set-clause I U(set-claU&e, set-clause)

{ expr : qualifierlist}

enumeration I condition

identifier E expr

expr

Enumerations are the syntactic basis for relative set abstraction . Each identifier

introduced within the set-clause is associated with a set expression to provide possible

values. The scope of the enumerated identifier contains the principal expression (left of

the ': '), and also all qualifiers to the right of its introduction. In case of name conflict,

8

an identifier takes its value from the latest definition (innermost scope). In any case, the

scope of an enumerated identifier never reaches beyond the set-clause of its introduction.

Lists may be written in the [. ..] notation, e.g. ['apple, 'orange, 'grape] as

a syntactic sugar. Similarly, expressions of the form U(set1, ... , setn) are syntactic

sugar for a nesting of binary unions. Furthermore, when the list of qualifiers is empty one

may omit the ': '. As is required for full referential transparency (extensionality), equality

between higher-order objects is not defined. The result of equating higher-order objects,

such as sets or functions, is .L

3.2 Examples

Functional Programming

letrec

in

append be A 11 12. if null?(ll) then 12

else cons(car(ll), append(cdr(l1),12)) fi

map be A f.A l.if null?(l) then []

else cons(f(car(l)), map(f,cdr(l)))fi

infinite be cons('a, infinite)

Higher-order functions and infinite objects can be defined in the usual manner. The map

example shown above is in curried form.

Set Operations

letrec

in

crossprod be A sl s2. {cons(X,Y) : XEsl, YEs2}

filter be A p s. {X : X E s, p(x)}

intersection be A sl s2. {X : XEsl, YEs2, X=Y}

The operations crossprod and filter are similar to those in Miranda [T85]. Note that

one cannot define an operation to compute the size of a set, nor can one test whether a

value is or is not a member. Such operations, analogous to Prolog's meta-logical features,

9

would not be continuous on our domains; furthermore, they are not needed to obtain the

declarative capabilities of logic programming.

Logic Programming

letrec

split be A list. { [XIY] : XEterms, YEterms, append(X,Y)=list}

append be A 11 12. if null?(l1) then 12

else cons(car(l1), append(cdr(l1),12)) fi

in

The enumerations XEterms, YEterms in split are needed because the set-abstraction is

relative, not absolute. For efficiency, an operation such as append might be compiled in

different ways corresponding to whether or not it was used within a set-abstraction.

To demonstrate that any first-order Horn logic program can be mechanically con

verted into PowerFuL, consider the semantics of Horn logic programming. The universe

of discourse is taken to be the Herbrand Universe (this corresponds to our set terms, the

set of terms). A predicate symbol gets its meaning from the set of ground instantiations

in the Herbrand model (those instantiations implied true by the program clauses).

we could write our logic programs in terms of sets, instead of predicates. A predicate

which is true for certain tuples of terms becomes a set which includes just those tuples

of terms as members. Where a conventional Prolog program asserts P(tuple), we could

equivalently assert that tuple E P, P now referring to a set.

Consider the following program and goal, written in Prolog syntax [CM81].

app ([], Y, Y) .

app([HIT], Y, [HIZ]) :- app(T, Y, Z).

rev([], []).

rev([HIT], Z) ·- rev(T, Y), app(Y, [H], Z).

?- rev(L, [a, b, c]).

In the style oriented towards sets, we would write:

[[], Y, Y] E app

[[HIT], Y, [HI Z]] E app ·- [T, Y, Z] E app

[[] , []] E rev

10

[[HIT] , Y] E rev :- [T, Z] E rev, [Z, [H] , Y] E app

?- [X, [a, b, c]] E rev

In one sense, all we have done is create a new Prolog program defining the predicate

'E'. But we prefer to view the clauses as defining sets, with 'E' taken as a mathematical

primitive. With this second viewpoint, translation to PowerFuL is straightforward. Log

ical variables represent enumeration variables implicitly generated from the set of terms,

corresponding to 'terms'. Furthermore, it is easy to see that

term E generating-8et

is equivalent to the conjunction

New-enum-var E generating-8et, New-enum-var = term.

Converting to PowerFuL syntax results in:

letrec

in

app be U({ [[],L,L] : LEterms},

{[[HIT], Y, [HIZ]] : H,T,Y,Z Eterms,

WEapp, W•[T,Y,Z]})

rev be U ({[[], []] } ,

{[[HIT], Z] : H,T,Y,Z Eterms, VErev, WEapp,

V = [T, Y], W = [Y, [H], ZJ})

{ L : L E terms, V E rev, V = [L, ['a, 'b, 'c]] }

We have taken the liberty of writing h, t, y, z E terms instead of four separate enumera

tions.

The PowerFuL program uses sets to express Prolog predicates, which the Prolog pro

gram used to express functions. With so many layers of indirection, it is no wonder this

PowerFuL version is ugly. But this is to be expected from a mechanical translation. A

better PowerFuL style would be to use Lisp-like functions where functions are intended,

and sets only where necessary. Still, this technique of Horn logic to PowerFuL conversion

demonstrates that we have indeed captured the full expressive power of Horn logic.

Higher-order Functional and Horn logic programming

letrec

one be). v. 'a

11

in

two be,\ v. 'b

three be ,\ v. 'c

{F : F E U({one}. {two}. {three}), map(F) (['x, 'y, 'z]) = ['c, 'c, 'c]}

The result of the above set-abstraction is the set {three}. In this example, the generator

set for F, U({ one}, {two}, {three}) is first enumerated to obtain a function which is

then passed on to map. Those functions which satisfy the equality condition are kept in

the resulting set, while the others are screened out.

4. DENOTATIONAL SEMANTICS FOR POWERFUL

Denotational semantics has become an essential tool of programming language de

sign. The denotational description provides a deeper understanding of the computational

theory being accessed. Also, the convention of using denotational semantics leads us to

better language designs, since elegant orthogonal languages with referential transparency

have simpler denotational descriptions. By specifying only what is essential, denotational

semantics are an especially appropriate choice for the language's standard definition.

4.1 Powerdomains

The denotational semantics of set abstraction requires powerdomain theory. Intu

itively, given a domain D, each element of domain D's powerdomain 'P(D) is to be viewed

as a set of elements from D.
'

Powerdomain theory was developed to describe the behavior non-deterministic calcu

lations. The original application was operating system modelling, where results depend on

the random timing of events, as well as on the values of the inputs. Suppose a procedure

accepts an element of domain D, and based on this element produces another element in

D, nondeterministically choosing from a number of possibilities. We say that the set of

possibilities, as subset of D, is a member of 'P(D). Such a procedure is therefore of typeD

,_. 'P(D). Computation approximates this set by non-deterministically returning a mem

ber. Suppose f and g are non-deterministic computations performed in sequence, first f

and then g. For each possible output off, g defines a set of possible results. The union

of these sets contains all possible results of the sequence. We express this sequencing of

non-deterministic functions by .\x. g+(f(x)). The •+• functional is of type

12

(D~-+'P(D)) 1--+ ('P(D)~-+'P(D)),

defined as .>.f.Aset. U {f(x): x E set}.

The larger the set denoted by f (x) is, the larger the set denoted by g+ (f (x)) will be,

and the larger the likelyhood that the complete sequence can terminate with any correct

result. One powerdomain construction ensures that larger sets are considered more defined

than their subsets, the empty set being least-defined.

Rather than letting sets be the implicit result of nondeterminism we make set abstrac

tion an explicit date type. Several well-known powerdomain constructions are available

to choose from: the Egli-Milner (or Plotkin), the demonic (or Smythe), or the angelic (or

general relational) powerdomain. The key to the correct choice lies in the semantics of

Hom-logic programs. According to the model-theoretic and least fixed-point semantics of

Horn-logic programming [187], the programs

p(l).

and
p(l).

p(2) :- p(2).

are equivalent in that their least models are identical (the set {p(1)}). That is, the presence

of non-terminating or failing paths does not prevent one from accepting the results of termi

nating (successful) paths. To model Hom-logic programs via set abstraction, we note that

demonic powerdomains are inapplicable because, for example, { 1, .l} = { .l} in this theory;

thus, the semantics of the second program above would be ¢ by this theory. Egli-Milner

powerdomains make unnecessary distinctions between sets; for example, { 1, .l} ;I; { 1},

and hence the above two programs would not be semantically equivalent (the Egli-Milner

powerdomain might be appropriate if the language had a "set does not contain" predicate,

analogous to Prolog's negation by failure). Angelic powerdomains provide the desired

semantics for Hom-logic programs; in this theory, for example, {1, .l} = {1}. Further

more, angelic power-domains can be constructed for base domains containing higher-order

functions and infinite objects [S86], and provide all needed primitives. The details of

powerdomain construction are summarized below. For more information, see [S86], [B85],

[A82] and [A83].

Building powerdomains from non-flat base domains creates difficult continuity re

quirements. A set becomes more defined in two completely different ways: individual set

13

elements can be made more defined according to the partial order of the base domain, or

the more-defined elements can be added to the set. Thus, the same information can be

combined in different ways to create sets that are distinct, yet computationally equiva

lent. So theoretically one works not with sets, but with equivalence classes of sets. This

should not be too disconcerting. Even in mathematics, a set has not single canonical rep

resentation, and equivalent set expressions can be gotten by permuting the ordering of of

elements.

Definition: The symbol !;;_, pronounced 'less defined than or equivalent to', is a

relation between sets. For A, B ~ D, we say that A !;;_ B iff for every a E A and Scott-open

set U ~ D, if a E U then there exists a b E B such that b E U also.

Definition: We say A Rj B iff both A !;;_ B and B !;;_ A. We denote the equivalence

class containing A as [A]. This class contains all sets B ~ D such that A Rj B. We define the

partial order on equivalence classes as: [A] C [B] iff A !;;_ B. For domain D, the powerdomain

of D, written 'P(D), is the set of equivalence classes, each member of an equivalence class

being a subset of D.

Theorem (Schmidt [S86]): The following operations are well-defined and continuous:

</>: 'P (D) denotes [{}] . This is the least element.

{-}: D 'P(D) maps d E D to [{d}].

u: 'P(D) x'P(D)~-+'P(D) maps [A] U [B] to [AU B].

+: (D~-+'P(D)) ,_. ('P(D)~-+'P(D)) is .Xf . .A[A].[U{f(a): a E A}].

An example will provide intuition about the use of •+•. Suppose we have a set

'S - {1, 2, 3}', and we wish to create a new set, each element of which is of the

form 'f(x)' where 'x' is in'S'. Then

'(.Ax. {f(x)})+({1,2,3}) = {/(1),/(2),/(3)}'.

4.2 Semantic Equations

PowerFuL's domain is the solution to:

D = (B.L8 + A .LA + DxD + Dt-+D + 'P(D)) .Lv,

where 'B' refers to the booleans, and 'A' to a finite set of atoms.

PowerFuL is a functional programming language, so we present its semantics in the

denotationalstyle usual for such languages [S77]. Our convention to differentiate language

14

constructs from semantic primitives is to write the primitives in boldface. Language

constructs are in teletype. Variables in rewrite rules will be italicized.

In the definitions below, the semantic function£ maps general expressions to denotable

values. The equations for most expressions are the conventional ones for a typical lazy

higher-order functional language. The environment, p, maps identifiers to denotable values,

and belongs to the domain [Id>-+D]. The semantic equations for set-abstractions provide

the novelty. For simplicity, the semantic equations ignore simple syntactic sugars.

Many of PowerFuL's denotational equations are similar to those of any typical lazy

functional language. For instance, for each syntactic atom (represented by A;) in a program,

we assume the existance of an atomic object in the semantic domain (represented by A;).

£[A;D p = A;

We can group objects into ordered pairs to create lists and binary trees.

£[cons(expr1, expr2)D p = <(£[expr1D p), (£[expr2] p>)

£[car(expr)] p - left(pair!(£[exprD p))

£[cdr(expr)] p - right(pair!(£[expr] p))

£[bool ?(expr)D p - bool?(£[exprD p)

£[atom?(expr)] p - atom?(£[exprD p)

£[pair?(expr)] p - pair?(£[expr] p)

£[func?(expr)] p - func?(£[exprD p)

£[set?(expr)] p = set?(£[exprD p)

Testing atoms for equality relies on the primitive definition of the atoms.

£[atomeq?(expr1, expr2)] p = atomeq?(atom!(£[expr1] p),atom!(£[expr2D p))

£[(expr1 = expr2)] p = equal?((£[expr1] p),(£[expr2] p))

A conventional sugar tests whether a "list" is empty (whether the object equals the atom

"nil").

£[null?(expr)] p - if(atom?(£[expr] p)then is'nill?([expr] p)else FALSE fi)

We can negate a condition.

£[not(expr)J p = not(bool!(£[expr] p))

We can create conditional expressions:

15

c[if(expr1, exprf, expr9)] p = if(bool!(f[expr1] p), (c[exprf] p), (c[expr9] p))

We can add new identifiers to the environment, and later look up their meaning.

&[identifier] p = p(identifier)

c[letrec defs in expression] p = &[expression] (V[defs] p)

V[id be expr] p = p[(J'"[fix])(.\X. (c[expr] p[X/id]))/id]

V[id be expr,defs] p = (V[defs] p) [(J'"[fix])(.\X. (c[expr] (V[defs] p[X/id])))/id]

Rather than treat the fixpoint operator as a primitive, we define fix in the semantic

equations. For reasons to become apparent later, we wish to have only one source of

potentially unbounded recursion, and we wish that source to be the semantic equations

themselves.

J'"[fix] = .\f. /((J'"[fix])(!))

We can create functions through lambda abstraction, and apply functions to their argu

ments.

£[.\ id. expr] p = ,\ x. (c[expr] p[xfid])

In the above equation, we considered only functions of one argument. A function of

multiple arguments can be considered syntactic sugar either for a curried function, or for

a function whose single argument is an ordered sequence, or list.

C[expr1 expr2] p = func!(c[expr1] p)(c[expr2] p)

Empty sets and singleton sets form the building blocks. We can union smaller sets to

form larger sets, and via a relative set abstraction we can transform elements of one set to

create another. We can denote the empty set explicitly:

&[phi] P = ¢

We can create a singleton set from a base domain:

c[{expr :}] p = {C[expr] p}

We can choose to include only those elements meeting a specified condition:

c([{ expr : condition, qualifierlist}] p)

= set!(if &[condition] p then C[{ expr : qualifierlist}] p else q)ft)

We can combine the smaller sets to form larger sets:

16

We can build a set based on the elements included in some another set. The •+' operator

was defined for this purpose:

£([{ezpr : idE genrtr, qualifierli8t}] p)

=(,\X. £[{ezpr : qualifierli8t}] p[X/id])+(set!(£[genrtr] p))

The sets bools, atoms and terms may be viewed as syntactic sugars, since the user

could program these using the previously given constructs. In that sense, their presence

adds nothing to the expressive power of the language. Nevertheless, providing them in

the syntax permits important optimizations through run-time program transformation

(discussed later). Thus we have:

£[bool.s] p = F[bools]

F[bools] = {TRUE} u {FALSE}

£[atoms] p = F[atoms]

F[atoms] = u({AI}, ... , {An})

£[terms] p = F[terms]

F[terms] = F[bools] U F[atoms]

U (As.((,\t.{ < s, t >})+(.r[terms])))+(.r[terms])

The functions £, V and .rare mutually recursive. Their meaning is the least fixed

point of the recursive definition. This fixed-point exists because we have combined contin

uous primitives with continuous combinators. Most of these primitives are fairly standard,

and will be described in a later section. Note the use of the primitive •+, (for distributing

elements of a powerdomain to a function) in defining the meaning of the set abstraction

construct.

However, a few words must be said about some other novel primitives, here called

coercions. Coercions are related to the type-checking primitives. PowerFuL is basically

an untyped language. For limited run-time type-checking, we rely on these primitive

semantic functions over D ,_. B.L: 'atom?', 'bool?', 'pair?', 'func?' and 'set?'. For

instance, 'func?' returns 'TRUE' if the argument is a lambda expression, 'FALSE' if

the argument is an atom, an ordered pair or a set. The only other possibility is '.lv', so

'func?(.lv)' rewrites to '.LB'· The other type-checking functions are defined analogously.

Most primitives are only defined over portions of the domain D. The boolean operators

are only defined over B.L; the operations 'left' and 'right' assume the arguments to be

17

ordered pairs; function application (,8-reduction) is defined only when the left argument is

in fact a lambda expression; and only sets can contribute to a set union. Since PowerFuL

is an untyped language, we will need a way to coerce inappropriate arguments to an

appropriate object. For this purpose, we define five coercion primitives: 'boo!!', 'atom!',

'pair!', 'func!' and 'set!'.

The function 'boo!!: D ,..... B.L' maps arg to itself if arg is a member of B.L, and to .LB

otherwise.

The function 'atom!: D ,..... A.L' maps arg to itself if arg is a member of A.L, and to

.LA otherwise.

The function 'pair!: D ,..... DxD' maps arg to itself if arg is a member of DxD, and to

.lvxD (that is, < .lv, .lv >)otherwise.

The function 'func!: D ,..... [D~-+D]' maps arg to itself if arg is a member of D~-+D and

to .Lv D (that is, .Xx. .lv) otherwise.

The function 'set!: D ,..... 'P(D)' maps argto itself if argis a member of'P(D) and to

.lP(D) (that is, <P) otherwise.

The coercions ensure that primitives handles inappropriate input reasonably. For

instance, the union constructor is appropriately applied only to sets. If the argument is

something other than as set (perhaps .lv), then this input is treated as the empty set.

This make sense because

A) only sets contain elements- other objects do not;

B) a set is completely defined by the elements it contains; and

C) the empty set is the only set not containing any elements.

Thus, the expression 'U('a, expr)' denotes a set containing "a', regardless of whether

or not 'expr' can be computed. This is analogous the the set of solutions to a Horn

logic program and goal, the elements of which are determined by successful derivations (or

refutations), ignoring derivations which fail or diverge. For uniformity, we define analogous

coercions to handle similar questions about primitives of other types.

One could avoid the need for such a coercion by replacing each occurrence of 'set!(expr)'

with '(if set?(expr) then expr else</>)'. Of course, if 'expr' diverges, then this expression

is also L This would equate <P (i.e . .lP(D)) with .lv, coalescing the powerdomain subdo

main with the other subdomains. Non-coalesced domains seem to be simpler, so we prefer

18

to distinguish between bottoms of various subdomains. For instance, set?(</>) = TRUE,

whereas set?(.lv) = .lB (and with full coalescing, set?(.lv) would equal .lv).

Theorem: These coercions are continuous.

Proof: We will prove the continuity of 'set!'. Consider a sequence of objects from domain

D, t 0, tt. t2, ... , such that fori< j, t;!;;;; t;. If there is no i such that t; is in "P(D), then

for all i, set!(i) = .lop(D) = ¢>. Thus,

.lim set!(t;) = set!(Hm t;) = .l-p(D) = ¢>.
a-+oo a-+oo

If there i8 ani such that t; is in "P(D), then let tk be the first one. That is, for all i, if t; is

in "P(D), then h C t;. Then for all i < k, t; = .lv, and set!(t;) = set!(.lv) = .l"P(D)=.P·

For all i 2:: k, and set!(t;) = t;. Therefore,

.lim set!(t;) = lim set!(t;) - set!(lim t;) - set!(.lim t;).
a-+oo k-+oo k-oo a-+oo

Hence, 'set!' is continuous.

Proof of the continuity of the other coercions is left to the reader.

The sets denoted by 'boola', 'atoms' and 'terms' are semantically superfluous. The

user could create these sets with the other constructs. For instance, each reference to the

primitive set 'terms' could be replaced by:

letrec

in

bools be U({TRUE}. {FALSE})

atoms be U({Al}, ... , {An})

terms be U(atoms, bools, {cons(X,Y)

terms).

X,Y E terms })

PowerFuL provides these sets as primitives, so the interpreter can recognize them and treat

their enumerated variables as logical variables, for greater efficiency. This will be discussed

in greater detail later.

5. FROM DENOTATIONAL TO OPERATIONAL SEMANTICS

A programming language's semantics maps the syntax to the semantic domain. When

19

this mapping is described procedurally, then we call it an operational semantics. When im

plemented, this procedure is called an interpreter. We use the word 'metalanguage' to refer

to the language of the interpreter's implementation. The traditional method of defining a

language is to give both declarative and operational semantics. The declarative semantics

becomes the official definition of the language, as it is simpler and easier to understand.

In it one describes the mapping desired via a well-understood mathematical theory (recur

sive function theory for functional programming, predicate logic for logic programming).

The language of denotational semantics is itself a kind of declarative psuedocode. The

operational semantics is usually written in a language closer to the architecture of the in

tended physical machine, to control execution efficiency. Before using such an operational

semantics however, it is nice to know the extent to which the implemented interpreter is

equivalent to the mapping declaratively described. Constructing a proof of equivalence can

be quite tedious (though less difficult than comparing two different procedural definitions

[S77]), and therefore we seek a different approach.

If one extends the mathematical language of the declarative semantics, so it is not a

pseudocode, but a programming language in its own right, then the declarative semantics

can serve as both a definition and an implementation. Assuming this declarative metalan

guage can be implemented correctly, both views of the denotational semantics (operational

and declarative) are equivalent.

To illustrate our approach, we wish to evaluate the expression:

car(cons(cons('a,'b), 'a))

given the denotational equations for translating syntactic symbols of atoms to real atoms

in the semantic domain (differentiated here by the type font):

e[A;] = A;,

semantic equations for 'cons', 'car' and 'cdr':

e[cons(expr1, expr2)] = <(e[expr1] p), (e[expr2] >)

e[car(expr)] - left(e[expr])

e[cdr(expr)] - right(e[expr])

and rewrite rules to implement the semantic primitves 'left' and 'right':

left(<1st, 2nd>) = 1st

right (<1st, 2nd>) = 2nd

20

The denotational equations map syntactic constructs to semantic constructs, and the

semantic primitives map semantic objects onto other semantic objects. In this case, both

kinds of mappings are defined through rewrite rules. We wish to find the semantic objected

denoted by the syntactic expression above. That is, we wish to simplify:

£[car(cons(cons(' a,' b),' a))] .

Using the semantic equation for 'car' expressions as a rewrite rule produces:

left£[cons(cons(' a,' b),' a)] .

We do not yet have enough information to apply the rewrite rule for 'left', so we must

translate more syntax using the semantic equation for 'cons':

left < t'[cons('a,'b)J, t'['a] >.

We now have enough information to execute the semantic primitive:

t'[cons('a,'b)).

Further rewriting with the semantic equations produces the final value:

<'a, 'b >.

Thus, we see that one can sometimes execute a program directly from the denotational

semantic equations. In the remainder of this section, we develop this technique. Many of

the ideas are based on Vuillemin's pioneering work on correct implementation of recursive

programs [V74].

5.1 Least Fixpoints and Safe Computation Rules

Consider a recursive definition of the form:

F(x) {= r[F](x)

for function 'F', where r[F](x) is a functional over ([01 , ••. , Dn) ,..... D], expressed by

composing a term from:

a) the individual variables x =< x1, x2, ... , Xn >;

b) known monotonic functions, called primitives; and

c) and the function variable, F.

Theorem (Kleene): There exists forT a least fixpoint, and this fixpoint equals

21

If recursive program P consists of such a definition, i.e.:

P : F(x) <= r[FJ(x)

it is generally agreed that the function defined by recursive program P is the least fixpoint

of r. We denote this fixpoint by fp.

For example, suppose that '*' (multiplication), '-' (subtraction), '=' (equality) and

'if' (if/then/else/fi) are primitive functions. Given a program P:

P: fact(x) <= it((x = 0), 1, x x fact(x -1)),

r is the functional

>.f. it((x = 0), 1,x x f(x- 1))

and fact is the name of recursive function, represented by Fin the schema. The fixpoint

of this functional is the factorial function.

Consider applying the function being defined to some input d. Let us define a sequence

ofterms so, s 1 , s2 , ••• , such that the first term s0 is F(d), and each term s;+l is computed

from s; by replacing each instance ofF ins; by r(F). That is, we expand each occurence

ofF in the previous term by the recursive definition. Now, let us define a parallel series of

terms u 0 , u 1 , u2 , ••• , such that each u; is computed from the corresponing t; by replacing

each remaining occurence ofF by n. Clearly, u; is equal to ri(n)(d). By continuity,

lim u; = .lim ri(n)(d) - (.lim r;(n))d _ jp(d)
i-ex> •-oo s-oo

Let us define a new series t; similar to s;, where t 0 = so = F(d), but where each t;+l

is computed from t; by expanding only some of the occurrences ofF in t;, instead of all.

Definition: A computation rule C tells us which occurrences of F(e) should be replaced

by r[FJ(e) in each step.

For each t;, we compute v; in the same way we computed u; from s;.

Theorem (Cadiou [V74]): For any computation rule C,

Proof: For any i, v; C u;, and therefore

lim v; C lim u; - /p(d).
i-oo i-oo

22

Definition: A computation rule is said to be a fixpoint computation rule for program P

if for all d in the relevant domain,

We need to give a condition which, if satisfied, will imply that a computation rule is a

fixpoint rule.

Definition: A 8Ub8titution 8tep is a computation step in which some of the recursive

function calls in a term are expanded.

Definition: For a substitution step, let F 1 , ••• , F; be the occurrences of the recur

sive function expanded in the term, and let Fi+1 , ••• , Fk be the occurrences not ex

panded. Compare the result obtained by replacing replaced F 1 , ••• , F; each by n, and

Fi+I, ... , Fk each by f p, with the result obtained by replacing F 1 , ... , Fi, Fi+I, ... , Fk

each by n. If the results are equal, then we say the substitution step is a 8afe 8Ub8titution

8tep.

Intuitively, a safe substitution is one which performs enough essential work. That is, if this

work were never done, then all other work would be irrelevant. If enough essential work is

performed in each step, then every essential piece of work will eventually be done.

Definition: A computation rule is 8afe if it provides for only safe substitution steps.

Theorem (Vuillemin [V74]): If the computation rule used in producing the series v; is a

safe, then

Using Cadiou's theorem and Vuillemin's theorem, then for any safe computation rule,

and therefore all Mje computation rule8 are fixpoint rule8.

Theorem (Vuillemin [V74]): The parallel outermost rule (replace all outermost occurences

of F simultaneously) is a safe rule.

This leads to a method of applying a function fp to some object d, given a recursive

definition of fp. To approximate fp(d) to any arbitrary closeness, we simply produce

23

u; for some sufficiently large value of i, and then simplify u; by executing the primitive

operations. This assumes that we know how to compute the primitive functions. Unless

the execution of primitive functions terminate, we may be faced with the prospect of

simultaneously approximating the primitives even as we approximate f p in terms of them.

Vuillemin assumes that every primitive is guarranteed to terminate for every value in its

domain. This is stricter than necessary. It is sufficient that every primitive terminate on

every value to which it may be applied within a given term v;, taking into account the

range of possible values for d and the computation rule chosen. This relaxation will prove

important later.

When producing a series of approximations to fp(d) in this way, one tends to repeat

the same executions of primitives (going from t; to v;) over and over. If the primitive

operations are implemented via rewrite rules, one can reduce the overcomputation by

applying these rewrite rules directly on the terms t;. Such an rewrite would then carry

through automatically in all further approximations, whereas, if one waits to apply it upon

v;, then the it must be repeated again when computing Vi+t. etc. Therefore, an extra step

is inserted in the computation procedure. To compute ti+1 from t;, we first perform

a substitution step, expanding occurrences ofF, and then we perform a simplification

step, applying rewrite rules from the primitive definitions until no more can be applied.

Computing v; from t; is as before.

Applying the primitives as their arguments are computed not only is more efficient, it

is necessary for termination of the calculation when the result is fully computed. Simpli

fication of primitives (such as simplifying an occurrence of the if/else primitive when the

condition has been calculated) may prune branches of the term. If all occurrences ofF

have been pruned, then no further substitution steps will be necessary. Again, we must be

wary that for each computation step i, only a finite number of primitive rewrites will be

required. Otherwise, we will never get to compute the next approximation.

5.2 Relaxing the Notation

It is sometimes more convenient to specify a recursive function via equations, rather

than the notation of lambda abstraction. Consider the append function, which can be

written:

P: append(x,y) <= if(null?(x),y,< car(x),append(cdr(x), y) >).

For this program P, r is the functional

24

>..f. if(null?(x),y,< car(x),/(cdr(x), y) >.

Alternatively, we can define append by these equations:

append([], y) = y

append(<h,t>, y) =<h, append(t, y)>

The equations handle mutually exclusive cases. A function defined through lambda

abstraction is applied using ,8-reduction. To apply a function defined by a set of equations,

one finds the equation which matches the format of the argument, replaces the equation

variables in the right-hand side with the parts of the arguments matching them on the left.

In this case, our functional is

>..f.{/([], y) = y; !(< h,t >, y) = < h, f(t, y) >}

Despite the new notation, and its associated mechanics for function application, the same

theorems hold as before.

We can also permit a system of mutually-recursive functions. If the equations define

two functions, g(x) and h(x), they can be viewed as a single function f(w, x), where the

first argument to f tells whether the rules for function g or h are to be used. Vuillemin notes

that the extension of his results to a set of mutually-recursive functions is straightforward.

5.3 Implementing Denotational Semantics

Because we adopted a certain discipline in writing the denotational semantics, listed in

Section 4, we can execute the resulting equations as a recursive program. Instead of a single

recursive function, we have three mutually-recursive functions, 'f', which maps a syntactic

expression and an environment to a semantic object, ':F' which maps a syntactic expression

to a semantic object (without need of the environment), and '1)', which maps a syntactic

expression and an environment to a new environment. Semantic equations, interpreted as

left-to-right rewrite rules, provide both a definition and an execution mechanism.

Note that some semantic equations introduce lambda variables. These may have to

be renamed at times to avoid variable capture. However, this is standard practice in

executing languages based on lambda calculus. Because functions are written as lambda

expressions, ,8-reduction is treated as a semantic primitive of two arguments, strict in the

first. Actually, defining ,8-reduction as a semantic primitive is dangerous, as there exist

lambda-expressions whose simplification will fail to terminate. For the time being, we will

assume that in every computation step, the ,8-reductions will terminate. Later, we will

25

discuss conditions under which this assumption is valid.

A fixpoint operator would never terminate, and therefore we do not treat it as a

primitive, but rather implement it within the denotational equations, themselves. Creating

a denotational description suitable for direct interpretation requires this kind of special

care.

To complete the interpreter, we must provide rewrite rules to define the primitive

functions, Below is a summary of the PowerFuL primitives.

5.3.1 PowerFuL Semantic Primitives

Function Application

In the semantic equations we treat explicitly only functions of one argument. A multi

argument function can be thought of as syntactic sugar for a curried functions, or for a

function taking a sequence as its argument. Application is essentially P-reduction of the

lambda calculus. An application is strict in its first argument, the function to be applied.

Boolean Input Primiti'lle8

In the semantic domain we use the conditional if: B.LXDXD >--+ D. This primitive is

strict in the first argument. The equations defining if are:

if(TRUE, arg2, arg9) = arg2

if(FALSE, arg2, arg9) = arg9

if(.lB, arg2, arg9) = .lv

In both the syntactic and the semantic domains, we shall feel free to express nested con

ditionals using common sugars such as "if/then/elseif/then/else/fi."

Negation, called not: B.L >--+ B.L, is strict in its only argument. Its simplification rules

are:

not(TRUE) = FALSE

not(FALSE) =TRUE

not(.lB) = .LB

Atomic Input Primiti11e8

We assume that (for each program) there is a finite set of atoms (which always includes

'nil). For each such atom A; in the syntax there exists a corresponding semantic primitive

26

A;. These primitives, together with .LA, make up the subdomain A.L. For every atom

A;, there is a primitive function isA;?: A.L >-+ B.L, strict in its only argument. The

simplification rules are:

isA;? (.LA) = .Ls

isA;?(A;) • TRUE

isA;?(A;) = FALSE fori #j

Also provided is atomeq?: A.LXA.L >-+ B.L, to compare atoms for equality. Strict in

both arguments, the simplification rules are:

atomeq? (.LA, arg2) .. .Ls

atomeq?(arg1, .LA) .. .Ls

atomeq? (A;, arg2) • is A;? (arg2)

atomeq?(arg1, A;) = isA;?(arg1).

Note that the third and fourth rules are actually rule schemas, instantiated by each atom

A;.

List Primitives

The primitive functions left and right, of type DxD >-+ D, are strict in the single

arguments. The simplification rules are:

left(<1st, 2nd>) = 1st

right(<1st, 2nd>) = 2nd

Powerdomain Input Primitives

The primitive •+• lets us iterate a function of typeD >-+ 'P(D) over the elements of an

input set, combining the results via union into a single new set. It is strict in the second

argument. We can define •+• recursively via the rules:

F+(¢>) = ¢>

F+({Expr}) = F(Expr)

F+(set1 u Set2) = (F+(set1) u F+(set2))

Theoretically, it is also strict in the first argument, since

27

However, we will ignore this strictness in the operational semantics, as the simplification

rules for<+> require knowledge about the second argument.

Theorem: Though <+> is defined recursively, simplifications during computation must

terminate.

Proof: Each recursion goes deeper into the union-tree, and, at any stage of computation,

such a set will have been computed only to finite depth.

Run-time Type-checking and Coercions

PowerFuL is basically an untyped language. For limited run-time type-checking, we

rely on these primitive semantic functions over D >-+ B.1: atom?, bool?, pair?, func?

and set?.

For instance, func? returns TRUE if the argument is a primitive function or a

lambda expression, FALSE if the argument is an atom, an ordered pair or a set. The only

other possibility is .Lv, so func?(.Lv) rewrites to .LB. The other type-checking functions

are defined analogously.

Most of our primitives are defined over only portions of the domain D. The boolean

operators are defined only over B.L. Only ordered pairs have left and right sides. Function

application is defined only when the left· argument is in fact a function. Only sets can

contribute to a set union. Since PowerFuL is an untyped language, we will need a way to

coerce arguments to the appropriate type. One way is to use the type-checking primitives

in conjuction with typed-if primitives. We find it simpler to define five primitive coercions.

They are: bool!, atom!, pair!, func! and set!.

The function bool!: D >-+ B.L maps arg to itself if arg is a member of B.1, and to .L8
otherwise.

The function atom!: D >-+ A.L maps arg to itself if arg is a member of A.L, and to .LA

otherwise.

The function pair!: D >-+ DxD maps arg to itself if arg is a member of DxD, and to

.LvxD (that is, < .Lv, .Lv >) otherwise.

The function func!: D >-+ [D>-+D] maps arg to itself if arg is a member of D>-+D and

to .Lv v (that is, .Ax. .Lv) otherwise.

The function set!: D >-+ 'P(D). maps arg to itself if arg is a member of 'P(D) and to

.L'P(D) (that is, ¢>) otherwise.

28

Equality

A first-order object is one whose meaning is identified with its syntactic structure.

First-order objects are equal iff they are identical. Equality is the same as identity. They

include atoms, booleans, and nested ordered pairs whose leaves are atoms and booleans.

Given access to the atomeq primitive, the user could write his own equality predicate to

test first-order objects for equality. Nevertheless, defining equality as a primitive strict in

both arguments frees the interpreter to choose which argument to evaluate first. This can

be important when computing certain types of set expressions, as will be seen in a later

section. Simplification rules are explained below:

equal?(..L, arg2) = ..LB

equal? (argt, ..L) = ..LB

If we know anything at all either argument, we know whether it is a member of Bl. (a

boolean), Al. (an atom), DxD (an ordered pair), D>->D (a function) or 'P(D) (a set). As

soon as we know this about one of the arguments, we can apply one of the following

equalities.

If B is known to be a boolean, then

equal?(B, ezpr) =

if bool?(ezp) then if(B, bool!(ezp), not(bool!(ezp))) else FALSE ft

and similarly

equal?(ezpr, B) =

if bool?(ezp) then if(bool!(ezpr),B,not(B)) else FALSE fi

If A is an atom, then

equal?(A, ezpr) -

if atom?(ezp) then atomeq?(A,atom!(ezp)) else FALSE fi

and similarly

equal?(ezpr, A) =

if atom?(ezp) then atomeq?(atom!(ezpr),A) else FALSE fi

If F is a function, then

29

equal?(F, e:z:pr) - if func?(e:z:p) then .LB else FALSE ft

equal?(e:z:pr, F) - if func?(e:z:p) then .LB else FALSE ft

If Sis a set, then

equal?(S, e:z:pr) - if set?(e:z:p) then .LB else FALSE ft

equal?(e:z:pr, S) - if set?(e:z:p) then .LB else FALSE ft

If P is an ordered pair, then

equal?(P, e:z:pr) =

and similarly

if not(pair?(e:z:p)) then FALSE

elseif not(equal?(left(P), left(pair!(e:z:p)))) then FALSE

else equal?(right(P), right(pair!(e:z:p)))ft

equal?(e:z:pr, P) =

if not(pair?(e:z:p)) then FALSE

elseif not(equal?(left(pair!(e:z:p)), left(P))) then FALSE

else equal?(right(pair!(e:z:p)), right(P))ft

Theorem: Though this primitive is defined recursively, its application is bound to termi

nate.

Proof: Each recursion goes deeper into the ordered-pair tree, and at any stage of compu

tation, only a finite portion of any object is available for the primitives to act upon.

Proposition: All our primitives are continuous, and all (except for ;9-reduction) are

guaranteed to terminate on any finite input.

Proposition: If the primitive is strict in one of its arguments, and if the outermost

data constructor of that argument is already computed, then the primitive can simplify

immediately.

5.3.2 Executing a Program

Let us execute (translate into the semantic domain) the object program:

letrec

inf be cons('joe, inf)

30

in

car(inf).

We start with an empty environment, so the initial input is:

£[letrec inf be cons(' joe, inf) in car(inf)] D·
Expanding the outermost call yields:

£[car(inf))(V[inf be cons(' joe, inf)] D).

There are still no simplifications to be performed, so we again expand the outermost

function call, yielding:

left(pair!(£[inf](V[inf be cons(' joe, inf)] 0))).

Expanding the outermost function call yields:

left(pair!((V[inf be cons(' joe, inf)] D)inf)),

and then:

left(pair!([((.:F[fix]).XX. (£[cons('joe, inf)] 0 [X/inf]))/inf]inf)).

Note that when introducing new lambda variables, one must be careful to standardize

variables apart (rename bound variables to as not to confuse them with pre-existing lambda

variables). Simplfiying (applying the environment) yields

left(pair!((.:F[fix])(.XX.(£[cons(' joe, inf)] [X/inf])))).

Expanding the outermost call yields:

left(pair!((.XF. F((.:F[fix])F))(.XX. (£[cons('joe, inf)] [X/inf])))).

Performing ,8-reduction yields:

left(pair!((.XX. (£[cons('joe, inf)] [X/inf]))

((.:F[fix])(.XX. (£[cons('joe, inf)] [X/inf]))))).

Performing another ,8-reduction yields:

left(pair!(£[cons('joe, inf)] p)),

where pis:

[((.:F[fix])(.XY.(£[cons(' joe, inf)] [Y/inf])))/inf].

Expanding the outermost function call yields:

car(pair!(< (£['joe] p), (£[inf] p) >)).

31

This simplifies to:

£['joe] p.

Expanding the remaining function call yields:

'joe.

5.4 More on Computation Rules

5.4.1 Motivation

Vuillemin[V74) proves that for a language with strict primitives and flat domain (ex

cept the if/else, which is strict in its first argument), leftmost reduction is safe. However,

many interesting languages do not meet these criteria. Consider the problem of non-flat

domains. Suppose we have built a hierarchical domain using a sequence constructor, in

our case'<,>' the ordered pair constructor. Suppose we are trying to compute an ordered

pair, of which both elements are infinite lists. If we evaluating this object as a top-most

goal using the left-most rule, no part of the right side would ever be computed.

Nevertheless, one would like to limit computation to a primitive's strict arguments,

rather than to rewrite function occurences in all arguments (even non-strict arguments)

simultaneously. It is not always necessary to expand all outermost function calls in every

step. Consider the if/then/else primitive, which is strict in just one of its arguments.

We would prefer to evaluate the strict argument first, postponing evaluation of non-strict

arguments, which may never be needed. Even if the primitive is strict in all its arguments,

we may prefer to concentrate on just one at a time. If evaluation of the chosen strict

argument fails to terminate (effectively computing the .l of the appropriate domain or

subdomain), then the primitive expression as a whole denotes .l, and the values of the other

arguments do not matter. If evaluation does produce a non-bottom value, the primitive

may be able to simplify immediately.

For a higher-order language this evaluation strategy is not always safe. Consider

the unlikely (but valid) example in which we are computing an unapplied function as a

topmost goal. Assume ezpt denotes an infinite list, and the interpreter is asked to evaluate

the function

>..f.(if/(ezpr 1)thenezp2elseezp3).

The if primitive is strict in the first argument. Though evaluation of /(ezpr1) fails to

terminate, we cannot say that this application denotes bottom; its value depends on the

32

hypothetical value symbolized by the lambda variable. Since the lambda expression is not

being applied to any argument here, the first argument of 'if' will not reduce to an element

of the semantic domain. It remains as a parameterized description of a domain element. If

the computed value is to be equivalent to the fixpoint definition in this circumstance, we

must evaluate all three arguments of the 'if' expression simultaneously. To use leftmost

evaluation with higher-order language, we must be content to evaluate a function only

within the context of its application. It is not sufficient if we wish to compute a function

for its own sake, where we cannot rely on evaluating the first argument and then reducing.

Most functional languages are higher order, and many interesting ones do permit

infinite lists. Yet, these are often implemented with a leftmost computation rule. This

works so long as:

a) all primitives are strict in the first argument (this is ususally true);

b) one is only concerned with computing finite objects (computations for which the

parallel-outermost rule terminates), though parts of infinite objects may be used during

the computation.

If the parallel outermost rule fails to terminate, then so will any other rule, and one might

not care whether two non-terminating calculations are approaching the same limit. This

compromise is inadequate for set abstraction. Sets can be infinite; even finite sets may

contain non-terminating (but empty) branches. In such cases, computation of the set will

never terminate.

Since the elements of a set are not ordered, one cannot isolate a finite subset (analogous

to taking a prefix of an infinite list), nor direct one's reference to the 'first' element of the

set. At least, one cannot do this within the programming language. Yet, even when

computation of the set never terminates, certain elements of the set might be computed

within only a finite amount of computation. The user would certainly like to see those

elements, as they are computed. We must have a reasonable way to compute a non

terminating goal. Prolog provides a precedent for this. A Prolog program with goal

denotes a (possibly infinite) set of correct answer substitutions. Rather than waiting for

the entire set to be computed, the system suspends and turns control over to the user every

time another member of this set is computed. To evaluate a (possibly infinite) set, the

system must provide the user with a series of finite approximations. This could be done

interactively, with the system suspending each time a new element is ready for output,

33

resuming at the option of the user.

Definition: An infinite object is computable if it is the limit of an infinite series of

finite objects.

Definition: Completene88 for such an interpreter means that any finite member of

the denoted set will eventually be computed, even if only by providing an infinite series of

finite approximations.

Sequential Prolog interpreters are not complete in this regard, but, in principle, complete

(breadth first) Prolog interpreters could be built. Perhaps in an interactive implementation

of language with set abstractions, the programmer will be able to direct where in the set

expression the computational effort should be concentrated. Analogous to online-debugger

commands, such features pertain to the meta-linguistic environment, not to the language

itself, so we will not consider these details any further.

5.4.2 Better Computation Rules

Vuillemin describes some computation rules, each based on a uniform type of substi

tution step. Choosing the substitution step depending on the form of the expression can

provide greater efficiency without sacrificing safety. We describe a new computation rule

below. It uses the parallel-outermost substitution step as a last resort, but seeks a more

selective step when circumstances permit. The computation rule is recursively defined,

in that in each substitution step, the recursive function calls chosen for function substi

tuion, depends on those chosen by the computation rule applied to each subexpression

individually.

We consider four separate cases: when the expression is a recursive function call (not

a primitive or constructor); when the expression is headed by either a data constructor;

when the expression is headed by a primitive function occurring within the context of a

lambda expression; and when the expression is headed by a primitive function not within

the context of a lambda expression (where we need not consider the presence of unbound

lambda variables).

Lemma: If the expression is a recursive function call, expanding only the main (single

outermost) function call is a safe substitution.

Proof: This is a parallel outermost substitution step, a substitution already proven to be

safe [V74].

34

Lemma: If the expression is headed by a data constructor, and if the set of function calls

chosen to be expanded is the union of sets computed by applying a safe computation rule

individually to each argument, then this is a safe substitution.

Proof: By induction on the height of the term. If the substitution steps calculated for each

subterm are safe, then the safety-defining equality holds individually for each argument,

and therefore must also hold for the expression as a whole.

Lemma: If the expression is headed by a primitive function occuring within the context

of a lambda expression (so that unbound lambda variables may appear in the arguments),

then choosing to expand all outermost function calls (parallel outermost) is a safe substi

tution.

Proof: This is a parallel outermost substitution step, a substitution already proven to be

safe [V74].

Lemma: Suppose the expression is headed by a primitive function not within the context

of a lambda expression, representing a parallel operation not strict in any of its arguments

individually. In that case, expanding the function calls in the union of sets computed by

applying a safe computation rule individually to each argument is a safe substitution.

Proof: By induction on the height of the term. If the substitution steps calculated for each

subterm are safe, then the safety-defining equality holds individually for each argument,

and therefore must also hold for the expression as a whole. One example of a primitive

not strict in either argument would be the "parallel-AND" primitive, which evaluates to

TRUE if either argument is true, even if the other argument diverges.

Lemma: Suppose the expression is headed by a primitive function not within the context

of a lambda expression, representing an operation strict in at least one of its arguments.

Then let Arg be any of the arguments in which the primitive is strict, and let Set be a set

of function calls chosen by a safe computation rule applied to A rg. Then any substitution

step chosing all the occurrences in Set is a safe computation step for that expression.

Proof: Because Set was chosen by applying a safe computation rule to arg, replacing these

recursive function calls by n (and the remaining calls by the recursive function fixpoint)

will give the save result in arg as if we had replaced all arg's function calls by n. Either

this result is j_, or we already knew the outermost constructor of arg. But, we cannot have

already known the outermost constructor, or the primitive function would already have

simplified. Therefore it is j__ Since the primitive function is strict in that argument, it too

35

evaluates to L Thus, the safety equation holds for the primitive function expression, too.

Note that if the primitive is strict in several arguments, this computation rule gives us a

choice of substitution steps.

These cases are all the possibilities. We must now prove the computation rule is safe.

Theorem: A computation rule which chooses from among the above substitution steps

depending upon the situation is safe.

Proof: A safe computation rule is, by definition, one which uses only save computation

steps. All the substitution steps described above were proven safe.

The main advantage of this approach over simple parallel outermost is that, when

a primitive is strict in an argument, and does not occur within the context of a lambda

expression, we need look only in the strict argument for function calls to expand. This

gives us some of the computational advantages of the leftmost (outermost) rule, without

sacrificing safety.

Irrespective of the need to compute infinite lists (and later sets), some may argue that,

there is never any good reason to compute an unapplied function, nor any list structure

containing such a function as an element. If one wishes to learn about a function, one

can apply it on any number of arguments. Therefore, we only ask that our operational

semantics be correct when computing objects from the domain 'E', where

Though we will use functions as objects in defining objects in domain 'E', these functions

will be either applied or ignored; they will never be included as part of the final answer.

With this limitation, we need never compute an object within the context of a lambda

expression. The body of a lambda expression needs not be evaluated until after application

(,8-reduction). Consider an application of the form:

(£[Ax. body]p1)(£[arg]p2).

Since a ,8-reduction is strict in the first argument, we only expand the first outermost

occurrance of £:

(A y. £[body]p1 (y/x])(£[arg]p2)·

This immediately simplifies to:

36

The expression 'body' no longer occurs within the context of a lambda expression. So

long as the outermost expression being computed denotes an element of e, we need never

compute anything within the context of a lambda expression.

Earlier, we commented that ,8-reduction of lambda expressions does not always ter

minate. This can only happen when a lambda expression is applied to another lambda

expression, so that one ,8-reduction enables more. Consider the evaluation of:

func!(e[..\x.xx) p)(e[Ax.xx] p)

If we simplify both arguments of this ,8-reduction simultaniously, we eventually get:

(,\ y .yy)(,\ y .yy),

a synonym for J., whose ,8-reduction will never terminate. We do not want non-termination

to be expressed this way. This expression may be only a small piece of the main expression,

and we do not want endless simplification to prevent computation of the other parts. When

we use the new computation rule, delaying computation of a function until it is needed,

the evaluation proceeds in a more orderly fashion:

func!(..\y. e[xx] p[ylx])(£[..\x.xx] p)

becomes:

(e[xx) p[(£[..\x.xx]p) I x]),

which becomes:

func!((£[x)p[(£[Ax.xx)p) I x])(£[x)p[(£[Ax.xx]p)lx]).

This, in turn, becomes:

func!(£[..\x.xx]p)(£[x)p[(£[..\x.xx]p)lx]).

To see that this is getting nowhere, let us do an expansion at E[[x]]:

func!(£[Ax.xx]p)(£[..\x.xx)p),

which is exactly what we started with. Therefore, all partial computations will simplify to

J., yet because we never evaluate a function until its application, in no computation step

need we deal with an infinity of simplifications. The key idea is to only evaluate the body

of a function (lambda expression) after the function has been applied (after ,8-reduction

has been performed). Our computation rule does this, so long as the top-level value being

computed does not contain an unapplied function as a part.

37

Theorem: Our operational semantics is sound and complete for any program denoting

(at the top level) a value from the domain 'E':

E = (B.L8 + A .LA + ExE + 'P(E)) .L·

Other elements of domain D, such as functions, lists of functions, sets of functions et cetera,

can be freely used as intermediate values.

Proof: We proved the correctness of our computation rule under the assumption that

within in each computation step, only a finite number of simplifications will be available.

We have also shown that, if the program does not require computing a function for its

own sake, but only in the context of an application, then this assumption is valid. The

subdomain E describes just those objects of D not containing (unapplied) functions as

parts. Computing these objects does not require evaluation of any lambda expression,

except within the context of its application.

Further optimizations are needed to make the implementation efficient. If each opti

mization maintains correctness, then the resulting efficient operational semantics will also

be correct with respect to the normative denotational description. Much research has al

ready been done on techniques to implement lazy functional languages (see [P87]), and

we will not discuss these techniques here. When proposing a language, it is good to show

that it can be correctly implemented, at least theoretically. We have shown that if the

denotational semantics is written carefully, so that all semantic primitives can be viewed

as standard simplifications, and one correct implementation is automatically available.

6. OPTIMIZATIONS

This section improves the basic operational procedure described in the last chapter,

concentrating on the efficiency of set abstraction. More general techniques for improving

the efficiency of (pure) functional languages are available [P87], which we will not discuss

here.

6.1 Intuition Behind Optimizations

In Section 3, we specified a Horn logic program using 'letrec' (the feature for creating

recursive definitions), set abstraction, the conditional and the equality primitive. Execut

ing this program using PowerFUL's denotational equations as the interpreter would be

analogous to using Herbrand's method to solve problems in logic. Herbrand's "generate

and-test" approach is simple but inefficient.

38

The resolution method avoids blind generation of instantiations, preferring to do as

much work as possible on non-ground expressions. In logic programming, a logical vari

able denotes an element from the set of terms (the Herbrand Universe). In resolution, a

logical variable becomes instantiated only to the extent necessary to satisfy the inference

rule's equality test. Partial instantiation narrows the set of candidate bindings, without

necessarily settling on a single choice. When performed to ensure equality of non-ground

terms, partial instantiation is called unification, and the substitution implementing the

partial instantiation is called a unifier.

In PowerFuL, to compute a relative set expression, we normally begin by computing

the generator set. Whenever we isolate an expression denoting an element of the genera

tor, a copy of the relative set abstraction is created, with the generator element expression

replacing the enumeration parameter. All such instantiations are computed independently.

We would like to modify this procedure so that when 'terms' (analogous to the Herbrand

Universe) is the generator set, rather than enumerate its many simple objects we instead

treat the enumeration parameter as a logical variable. An enumeration parameter gener

ated by 'ato1'118', or 'bools' can be viewed as a partially-instantiated, or constrained, logical

variable.

In Horn logic, each correct answer substitution provides ground bindings for the goal's

logical variables. Members of this set can be grouped into families. Within a family, all

answer substitutions share common aspects, with the remaining details varying freely.

The Her brand derivation of one member of the family is almost identical to the Herbrand

derivation for any other member. For each family of correct answer substitutions, Her

brand's method would derive each member individually, with an infinity of essentially

similar derivations. Resolution, however, produces general computed answer substitutions,

one per family. A general computed answer subsititution only partially instantiates a goal's

logical variables, and does so in such a way that for any ground completion of the general

computed answer substitution would result in a correct answer substitution. The deriva

tion of the general answer subsitution resembles a parameterized Herbrand derivation.

Resolution performs modus ponens inferences on the non-ground clauses directly,

rather than first instantiating them. Logical variables become partially instantiated (via

a most general unifier) only to the extent necessary to satisfy the inference rule's equality

requirement. In a sense, program execution is left unfinished, Though it is easy to extend a

most general answer substitution, to produce (ground) correct answer subsititutions, this

39

is not done. Reporting results in the general form is more economical than individually

reporting each of the infinite ways in which each most general answer can be extended.

6.2 Optimization Technique

Logical Variable Ab3traction

To treat an enumeration parameter as a logical variable, we must recognize that it's

generator is the set of first-order terms (or part of this set). An expression of the form:

(>.x.body)+ .:F[[terms]]

is rewritten term(x).body to indicate that 'x' is to be treated as a logical variable, rather

than blindly enumerating its generator. The expressions atom(x).body and bool(x).body

are constructed analogously. Rather than recomputing the 'body' for each trivial instan

tiation, we will evaluate 'body' in its uninstantiated form, leaving it parameterized by the

enumeration variable, computing a parameterized set expression. This parameterized set

expression stands for the union of all possible instantiations. We also hope to express

results in this compact notation.

We can use parameterized set expressions as generators for other set expressions. Note

that:

can be rewritten as:

This is because the first expression is an alternate notation for:

and the second is an alternate notation for

and these are equal, due to the associativity of set union.

When the body is in the form of a singleton set, we compute the expression within

the singleton-constructing brackets. When the body of a general set expression is in the

form of a union, we simplify it to be the union of two generalized set expressions. That is,

term(x).(exp 1 U exp 2)

is simplified to:

40

term(x).exp 1 U term(x).exp 2 •

Of course, if the body is ',P', then the general set expression denotes a union of empty sets,

and so the whole thing can be replaced by a simple empty set. These ideas hold as well

for constrained general set expressions.

We can compute a parameterized body, because expansions of recursive function calls

(translation from syntax to semantics) will not not depend upon these parameters. There

is one complication, however: the simplification of primitives. During a simplification

stage of computation of the body, we may find a subexpression of the form p(x), where

'p' is a semantic primitive, and 'x' is a parameter representing an arbitrary term. Were

an actual term provided, the primitive might simplify immediately. Applicability of a

primitive's rewrite rule will often depend upon what kind of term the logical variable

stands for. Therefore, we must be able to perform simplifications when primitives are

applied to parameters. In each case, one of the following techniques will suffice:

Technique 1: Simple Reduction

Often, implied or stated constraints on the logical variable provide sufficient infor

mation, already. In such cases, parameterization does not hinder simplification of the

primitive. For instance, given:

term(u).(... func?(u) ...),

we can simplify 'func?(u)' to 'FALSE', without knowing the value of 'u', since any value

would certainly not be a function. Below is a comprehensive list of similar situations:

term(u).(... func?(u) ...) -+ term(u).(... FALSE ...)

term(u).(... func!(u) ...) -+ term(u).(... .LD,...D ...)

atom(u).(... func?(u) ...) -+ atom(u).(... FALSE ...)

atom(u).(... func!(u) ...) -+ atom(u).(... .LD,...D ...)

bool(u).(... func?(u) ...) -+ bool(u).(... FALSE ...)

bool(u).(... func!(u) ...) -+ bool(u).(... .LD,...D ...)

term(u).(.. . set?(u) ...) -+ term(u).(... FALSE ...)

term(u).(... set!(u) ...) -+ term(u).(... ,P •.•)

atom(u).(... set?(u) ...) -+ atom(u).(... FALSE ...)

atom(u).(... set!(u) ...) -+ atom(u).(... ,P .. .)

41

bool(u).(... set?(u) ...) -+ bool(u).(... FALSE ...)

bool(u).(... set!(u) ...) -+ bool(u).(... <f> •••)

atom(u).(... bool?(u) ...) -+ atom(u).(... FALSE ...)

atom(u).(... bool!(u) ...) -+ atom(u).(... .LB ...)

bool(u).(... bool?(u) ...) -+ bool(u).(... TRUE ...)

boo/(u).(... bool!(u) ...) -+ boo/(u).(... u .. .)

atom(u).(... atom?(u) ...) -+atom(u).(... TRUE ...)

atom(u).(... atom!(u) ...) -+ atom(u).(... u ...)

bool(u).(... atom?(u) ...) -+ bool(u).(... FALSE ...)

bool(u).(... atom!(u) ...) -+ bool(u).(... .LA ...)

atom(u).(... pair?(u) ...) -+ atom(u).(... FALSE ...)

atom(u).(... pair!(u) ...) -+ atom(u).(... .LvxD .. .)

bool(u).(... pair?(u) ...)-+ bool(u).(... FALSE ...)

bool(u).(... pair!(u) ...) -+ bool(u).(... .LvxD .. .)

bool(u).(... equal?(u, ex) ...) -+ if(bool?(ex), if(u, ex, not(bool!(ex))), FALSE)

boo/(u).(... equal?(ex, u) ...) -+ if(bool?(ex), if(bool!(ex), u, not(u)), FALSE)

atom(u).(... equal?(u, ex) ...) -+ if(atom?(ex),atomeq?(u, atom!(ex)),FALSE)

atom(u).(... equal?(ex, u) ...) -+ if(atom?(ex), atomeq?(atom!(ex), u), FALSE)

term(u).(... equal?(u, u) ...) -+ term(u).(... TRUE ...)

atom(u).(... atomeq?(u, u) ...) -+ atom(u).(... TRUE ...).

PowerFuL semantic primitives always simplify, given the outermost constructor of

any strict argument. If an argument replaces a nonstrict parameter, however, its value is

irrelevant (at least until something about a strict argument is known). Consider

term(u).(.. . if((t'[[exp 1]] p)u, exp 2) •• •).

The primitive 'if' is strict in its first argument, and would not simplify at this time,

regardless of what term might replace 'u'. In such a case, leaving the body parameterized

by 'u' is acceptable.

Technique 2: Splitting by Type

42

Suppose the primitive applied to the parameter is one of these four: 'bool?', 'bool!',

'atom?', 'atom!', 'pair?' or 'pair!'.

Simple reduction suffices when one of these primitives is applied to a logical variable

constrained to be an atom, or a boolean. When the variable is enumerated from 'terms',

the simplification chosen depends upon the kind of term. Luckily, we need not consider

each ground term individually. The set of terms consists of three subsets, the set of

booleans, the set of atoms, and the set of ordered pairs of subterms. For each subset,

simple reduction suffices. Let 'prim' represent one of these four primitives. An expression

of the form

term(u).(... prim(u) ...)

is an alternate notation for

(... prim(u) .. .)+(F[[terms]])

Since •+' is strict in the second argument, it must be correct to rewrite the argument to:

(F[[bools]])

U (F[[atoms]])

U (term(u).term(v). < u,v >).

Distributing (... prim(u) ...) over the union yields:

(... prim(u) ...)+(F[[bools]])

U (.. . prim(u) .. .)+(.r[[atoms]])

U (..• prim(u) ...)+(term(v).term(w). < v,w >).

This is equivalent to:

bool(u).(... prim(u) .. .)

U atom(u).(... prim(u) ...)

U term(v).term(w).(... prim(u) ...)[< v,w > /u].

In the first branch of the union, we have partially instantiated the logical variable by

constraining it to represent a boolean. In the second branch, we have constrained it to

represent an atom. In the third branch, we have constrained it to represent a term which is

an ordered pair of subterms. The primitive function simplifies immediately in each subset.

We must now compute each branch of the union separately.

43

This is analogous to the use of most general unifiers in Horn logic resolution. Uni

fication prepares two clauses for modus ponens by instantiating them no more than is

necessary to satisfy the equality requirement. One difference is that traditional Horn logic

does not use negative information. Horn logic only considers instantiations to make the

equality true. In PowerFuL, we are concerned with all possible outcomes. Some variations

of Horn logic do consider negative information through the use of a dis-equality predicate

and negative unifiers [N85] [K84]. We discuss primitives based on equality next.

Technique 9: Splitting on Equality

Equality is strict in each argument, simplifying, as soon as the type of either argument

is known, to an 'if' expression which must know (before all else) the type (boolean, atom,

pair, set or function) of the remaining argument. If one argument is a lambda variable

enumerated from the set of terms, we first look at the other argument, to avoid splitting

the logical variable into three subcases. This way, the preliminary computation of the other

argument need be done only once, rather than once for each of the three subsets comprising

'terms'. The worst that could happen is that computation of the other argument might

diverge. In that case, we would never be able to compute the equality anyway, no matter

what value the logical variable represented. However, if both arguments of the equality

predicate are logical variables, we cannot delay them both. We may have an expression of

the form:

term(u).(... term(v).(... equal?(v, u) ...))

Theoretically, one could break this into an infinity of special cases, in each case u and v

each being replaced by an element of the set of terms. For some combinations the predicate

'equal?' would simplify to 'TRUE', and 'FALSE' for other combinations. This could

also have been done with the primitives described earlier, but it is better to deal with a few

large subsets, than an infinity of individual cases. Splitting them into atoms, booleans and

ordered pairs does not help. We must recognize that the instantiations fall into two cases:

those for which the twe terms are equal, and those for which they are not. The subset

handling the cases in which the two terms are equal can be summarized by replacing all

occurrences of 'v' with occurrences of 'u':

term(u).(... term(v).(... equal?(v, u) ...) [v/u]).

This then simplies directly to

term(u).(.. .. (... TRUE ...) [vju]).

44

It is easy to see that this is the case. Since there are no more occurances of 'v' in the

body of 'term(v).body2 ', we are taking the union of instantiations by 'v' in which all

possible instantiations of 'body2 ' are identical (since the body no longer depends on 'v').

Clearly, 'term(v). body2 ' can now be replaced by 'body2 '. (In fact, this simplification can be

performed whenever a body does not depend on the enumerating variable. For instance,

the expression 'term(x).</>' can certainly be replaced by'</>'.)

We also need to summarize the cases when u and v are not equal. This could be

summarized by

term(u).(... term(v).if not(equal?(v, u)) then (... FALSE ...) else</>).

This summarizes the elements of the set for which which the two terms 'u' and 'v' are

not equal. Is there a way to compute this further, without trying individually all possible

combinations of unequal terms?

Lee Naish [N85] proposes for Prolog a dis-equality predicate, defined on terms. His

dis-equality predicate would fail when two terms are identical, succeed when two terms

are identical, and delay when two terms are unifiable, but not identical. In the last case,

the other subgoals would be executed first, until the values of logic variables have been

instantiated enough to prove either the terms' equality or their dis-equality. If all other

subgoals succeed, without instantiating the variables enough, Naish's Prolog gives an error

message. This is not ideal behavior, since unequal instantiations can certainly be com

puted. A better altemative would be to make the dis-equality part of the solution, as a

kind of negative unifier. Khabaza describes a way in which this can be done [K84]. In

essence, the dis-equality becomes part of the general solution. Specific ground solutions

can be generated from the general solutions by instantiating logical variables in all possi

ble ways subject to the dis-equality constraint. Constraint logic programming [JL87] sets

another precedent for this approach. We accept general non-ground solutions, because it

yields great efficiency, and because replacing term variables by arbitrary ground terms is

such a trivial operation. Requiring such term enumerations to satisfy a few dis-equalities

adds little to the complexity of the output, and makes it more compact.

To express such a constraint, we could write the above subset as:

term(u).(... term(v)u f. v.(... FALSE ...)).

We have simplified the equality predicate by splitting into two expresions: one expression

representing the cases for which the equality holds, and the other expression representing

45

the cases for which it is false, without the need to consider every case individually.

Solving subsequent dis-equalities result in a constraint which is a conjunction of dis

equalities. If the satisfaction of other predicates cause 'u' and 'v' to become refined into

the ordered pairs,'< ubu2 >'and'< v1 ,v2 >',respectively, then the dis-equality 'u # v'

will become'< ubu2 >#< v~,v2 >',which simplifies to 'or(u1 #VI, t12 # v2)'. In

general, the total constraint will be an andfor tree of simple dis-equalities. As these

simple constraints are satisfied, they can be replaced by 'TRUE'. Those dis-equalities

which become unsatisfiable can be replaced by 'FALSE', leading to further simplifications

of the and/or tree. If the whole tree simplifies to 'FALSE', then we are enumerating an

empty set, and the whole expression within can be replaced by </>. Similar techniques are

used for the predicates 'atomeq?' and 'isA;?'.

We summarize the optimizations relating to equality below. For the dis-equality of

two term variables:

term(u).(... term(v) ... constraint.(... equal?(v, u) .. .))

can be replaced by

term(u).(... con8traint(... equal?(v, u) .. .) [vfu])

U term(u).(... term(v)and(con8traint, (u # v)).(... FALSE ...)).

For the dis-equality of two atom variables, we have:

atom(u).(... atom(v) ... constraint.(... atomeq?(v, u) ...))

replaced by

atom(u).(... constraint(... atomeq?(v, u) .. .) [vfu])

U atom(u).(... atom(v)and(constraint, (u # v)).(... FALSE ...)).

When comparing an atom variable to a specific atom we have:

atom(u).(... constraint.(... isA;?(u) ...))

(where 'A;?' is a particular atom), is replaced by

(... constraint(.. . isA;?(u) ...) [u/A;]).

U atom(u).(... and(constraint, (u #A;)).(... FALSE ...)).

Note that as soon as the substitutions are performed, the predicates in question will be

ready to simplify, using optimizations described earlier. These optimizations are of course

symmetrical in the order of arguments to 'equal?' and 'atomeq?'.

46

Note that we consider the binding of logical variables separate from the definition of

the equality primitive itself. Robinson also split unification into these components [R82].

We have generalized the approach to also consider negative unification.

Technique 4: Splitting by TRUE and FALSE

When faced with an expression of the form

bool(u). body,

and within 'body' is an occurrence of 'not(u)' or 'if(u, exp 1 , exp 2)', then simplification

requires the specific value 'u' represents. Since the set of booleans is very small, the default

evaluation of •+• is good enough. The default evaluation (enumerate 'bools' first) results

in this step:

bool(u).exp -+ (exp)+{TRUE} U (exp)+{FALSE}.

6.3 Results

These optimizations avoid blind enumeration of the sets 'terms', 'atoms' and 'bools'

when used as relative set abstraction generators. Instead, we treat the enumeration pa

rameter as a logical variable, sometimes constrained. An enumeration variable from the

set 'atoms' is treated as a logical variable carrying the constraint that it can be bound

only to an atom. Enumeration variables from the set 'bools' are handled analogously. Dis

equality constraints relating two logical variables are also used. With logical variables, one

evaluates the generating set (the second argument of •+•) only as needed to compute the

body (the first argument of •+•). Computing with logical variables and constraints gives

the set abstraction facility the efficiency of resolution. The logical variable is merely an

operational (not semantic) concept, improving the execution efficiency when using these

special sets. The default procedure (generate, instantiate, and continue) handles more

complicated generators, such as sets of functions, sets of sets, etc.

For an example, suppose we wanted to compute term bindings for 'A', 'B' and 'C' so

that lists [A, B] and [B, [' a, C]] would be equal. That is, we wish to compute a unifier.

The program lnight be:

{ [A,B,C] : A,B ,C E terms, [A,B] = [B, [' a,C]] }.

Without the optimizations, the interpreter would produce a tree-like structure, whose

internal nodes are the set-union operator, and with one leaf for each possible combination

of bindings for terms 'A', 'B' and 'C'. Where the bindings created a unifier, the leaf would

47

be a singleton set containing the list of bindings. Where the the bindings did not form a

unifier, the leaf position would be the empty set. The object would indeed by the set of

unifiers.

With the optimizations, only a finite union tree would be produced, with a few leaves

containing the empty set, and one leaf containing:

term(u).({[[1 a, u], ['a, u], u]})

In a sense, with the optimizations, the program produces only the most general unifier. It

is conceivable execution of a Horn logic program would mimic the operations of breath-first

SLD resolution.

Treating an enumeration parameter as a logical variable is practical because the gen

erating set 'terms' is so simple in structure. Wherever a logical variable is the argument

of a primitive function, and the primitive function needs more information about its ar

gument to execute, the generating set is divided into a few subsets, thereby dividing the

whole expression into subsets. In each subset, the range of the logical variable is narrowed

enough that the primitive has enough information to execute. Generators are not limited

to these special sets, however.

Three techniques narrow the range of the logical variable. The choice depends upon

the primitive being applied, and the constraints already in force. Some primitive simplifi

cations do not require splitting. Some require a two-way split, and others a three-way split.

When performing primitive simplifications, it is efficient to do first those simplifications

which do not split the computation into subcases, then those which split into two sub cases

and save for last those requiring a three-way split.

We have shown that, for the sake of efficiency, it is sometimes possible to compute (con

strained) non-ground set expressions when 'terms' is a set abstraction generator. Showing

that this is always possible requires a systematic look at all the primitives which might

operate upon logical variables, to make sure all possibilities are covered. We have already

considered these primitives applied to logical variables: 'bool?', 'atom?', 'pair?', 'func?',

'set?', 'bool!', 'atom!', 'pair!', 'func!', 'set!', 'if, 'not', 'isA;?' (for each atom 'A;' and

'equal?'.

The remaining primitives are: 'left', 'right', ',8-reduction' and •+•. According to the

denotational equations, 'left' and 'right' are always applied in conjuction with the coercion

'pair!'. Since we have already considered logical variables as arguments to 'pair!', we

48

need no special mechanism for 'left' and 'right'. Similarly, the denotational equation for

function application applies the coercion 'func!' to the function position of the application.

Since we have already considered logical variables as arguments to 'func!', we need no

special mechanism for ,8-reduction, either. Analogously, the coercion 'set!' intercedes

between <+• and its strict (the second) argument.

Since any set can be used as a generator for defining a new set, we must be able to

compute <+• when its argument is a non-ground set expression. Let 'head. body' represent

a non-ground set expression, where 'head' either introduces a logical variable, or perhaps

expresses a constraint on existing logical variables (introduced in a more global context).

The expression:

function +(head.body)

can be rewritten

head.(function +body).

Eventually, all the logical variable introductions and constraints are peeled off the body,

so that the ordinary simplification rules for <+• can be applied. The associativity of union

assures that these forms are equivalent. Of course, this transformation requires that each

logical variable receives a unique name, as in Prolog. Alternatively, where logical variables

are differentiated by scope, one would use renaming techniques from lambda-calculus to

avoid variable capture.

Soundness Theorem: If t; is a partially computed parameterized set expression, and t;'

is an approximation produced by setting all unevaluated function calls ('V, e or :F) to .L,

then for every instantiation u replacing parameters with terms satisfying the constraints,

t;'u approximates a subset of lim;-00t;'.

Proof: The theorem is true because of the meaing of a parameterized expression (in terms

of <+•), and the fact that all steps in a parameterized derivation replace expressions by

equals.

Completeness Theorem: A parameterized derivation computes (at least implicitly) all

members of the set.

Proof: This theorem is true because when dividing a parameterized expression into cases

(for the purpose of simplifying a primitive), every possible instantiation of logical vari

ables (parameters) which satisfies the constraints is a possible instantiation of one of the

subcases. No possible instantiation is ever lost.

49

7. CONCLUSIONS

Proponents of declarative programming languages have long called for the combination

of functional and logic programming styles into a single declarative language. Most difficult

has been the problem of maintaining functions (and other higher-order constructions) as

first-class objects, without losing referential transparency and practical efficiency. We have

achieved all these objectives through a functional language incorporating set abstraction.

Representative sample programs attest to the power and generality of the language.

A set abstraction construct for both functional and logic programming has long been

advocated, but its declarative and operational semantics has not hitherto been fully deter

mined. We showed that first-order absolute set abstraction is easily subsumed by relative

set abstraction, which has a much simpler higher-order extension. Our approach supports

higher-order constructs (functions and sets) as first-class objects.

We presented a short denotational description which maps the syntax onto computable

(continuous) semantic primitives. Of special interest is the novel use of angelic powerdo

mains. Although powerdomain theory was developed to described non-deterministic lan

guages, we use powerdomains to provide the semantics for set abstraction - an explicit

data type in our language.

We derived an operational semantics consistent with the denotational description.

To do this, we extended Vuillemin's theory of correct implementation of recursion, and

applied the resulting technique to the recursive denotational equations themselves. This

methodology requires that denotational equations handle most recursion explicitly (so

that the semantic primitives do not provide additional sources of non-termination). We

developed a computation rule more efficient than the parallel outermost rule, but correct

for this language, as established by a proof of its safety.

Of special interest in logic programming is the set of terms, objects for which identity

is synonymous with equality. We showed that, when the set of terms is used as a generating

set in a relative set abstraction, the enumeration parameter can be computed as a logical

variable, providing the efficiency of absolute set abstraction. In the general case, however,

the enumeration parameters are instantiated by the various generator set elements as these

elements are computed. Thus, generators need not be arbitrarily restricted to contain only

first-order types.

Expensive operational mechanisms (e.g. higher-order unification, general theorem-

50

proving and unrestricted narrowing) are often associated with functional/logic program

ming combinations. Ordinary functional languages avoid these difficulties, propagating

higher-order objects via one-way substitution, and defining equality only over first-order

objects. By retaining these characteristics, our language avoids such computationally diffi

cult primitives. We have shown that logic programming can be combined with higher-order

lazy functional programming in a way that is not only aesthetically pleasing, but also op

erationally feasible.

[A82)

[A83)

[B85)

[BL86)

[CM81)

[DP85)

[D83)

[DFP86)

References

S. Abramsky, "On Semantic Foundations for Applicative Multiprogramming,"

In LNCS 154: Proc. 10th ICALP, Springer, Berlin, 1982, pp. 1-14.

S. Abramsky, "Experiments, Powerdomains, and Fully Abstract Models for

Applicative Multiprogramming," In LNCS 158: Foundations of Computation

Theory, Springer, Berlin, 1983, pp. 1-13.

M. Broy, "Extensional Behavior of Concurrent, Nondeterministic, and Com

municating Systems," In Control-flow and Data-flow Concepts of Distributed

Programming, Springer-Verlag, 1985, pp. 229-276.

M. Bellia and G. Levi, "The Relation between Logic and Functional Lan

guages: A Survey," In J. of Logic Programming, vol. 3, pp.217-236, 1986.

W. F. Clocksin and C. S. Mellish, Programming in Prolog, Springer-Verlag,

New York, 1981.

N. Dershowitz and D. A. Plaisted, "Applicative Programming cum Logic

Programming," In 1985 Symp. on Logic Programming, Boston, MA, July

1985, pp. 54-66.

J. Darlington, "Unification of Functional and Logic Programming," unpub

lished manuscript, 1983.

J. Darlington, A.J. Field, and H. Pull, "Unification of Functional and Logic

Languages," In DeGroot and Lindstrom (eds.), Logic Programming, Rela

tions, Functions and Equations, pp. 37-70, Prentice-Hall, 1986.

[F84) L. Fribourg, "Oriented Equational Clauses as a Programming Language."

J. Logic Prog. 2 (1984) pp. 165-177.

51

[F84b]

[GM84]

[JLM84]

[JL87]

[JS86]

L. Fribourg, "A Narrowing Procedure for Theories with Constructors." In

Proceedings of the 7th International Conference on Automated Deduction,

LNCS 170 (1984) pp. 259-301.

J. A. Goguen and J. Meseguer, "Equality, Types, Modules, and (Why Not?)

Generics for Logic Programming," J. Logic Prog., Vol. 2, pp. 179-210, 1984.

J. Jaffar, J.-L. Lassez, M. J. Maher, "A Theory of Complete Logic Programs

with Equality," In J. Logic Prog., Vol. 1, pp. 211-223, 1984.

J. Jaffar, J.-L. Lassez, "Constraint Logic Programming," In 14th ACM POPL,

pp. 111-119, Munich, 1987.

B. Jayaraman and F.S.K. Silbermann, "Equations, Sets, and Reduction Se

mantics for Functional and Logic Programming," In 1986 ACM Conf. on

LISP and Functional Programming, Boston, MA, Aug. 1986, pp. 320-331.

[K79] R. A. Kowalski, "Algorithm= Logic+ Control," In Communications of the

[K83]

[K84]

[L85]

[M65]

[M74]

ACM, July 1979, pp. 424-435.

W. A. Kornfeld, "Equality for PROLOG," In Proceedings of the 8th IJCAI,

1983, pp. 514-519.

T. Khabaza, "Negation as Failure and Parallelism." In Internatl. Symp. Logic

Programming, IEEE, Atlantic City 1984, pp. 70-75.

G. Lindstrom, "Functional Programming and the Logical Variable," In 12th

ACM Symp. on Prine. of Prog. Langs., New Orleans, LA, Jan. 1985, pp. 266-

280.

J. McCarthy, et al, "LISP 1.5 Programmer's Manual," MIT Press, Cambridge,

Mass., 1965.

Z. Manna, "Mathematical Theory of Computation," McGraw-Hill Inc., New

York, 1974.

[MMW84] Y. Malachi, Z. Manna, and R. Waldinger, "TAB LOG: The Deductive-Tableau

[MN86]

Programming Language," In ACM Symp. on LISP and Functional Program

ming, Austin, TX, Aug. 1984, pp. 323-330.

D. Miller and G. Nadathur, "Higher-Order Logic Programming," In Third

International Conference on Logic Programming, London, July 1986,448-462.

52

[N85] L. Naish, "Negation and Control in Prolog," Doctoral Dissertation, University

of Melbourne, 1985.

[P87] S.L. Peyton Jones, "The Implementation of FUnctional Programming Lan

guages," Prentice-Hall, 1987.

[R82] J. A. Robinson, E. Sibert, "LOG LISP: An Alternative to PROLOG," Machine

Intelligence 10, 1982, pp. 299-314.

[R85] U. S. Reddy, "Narrowing as the Operational Semantics of Functional Lan

guages," In 1985 Symp. on Logic Programming, Boston, MA, July 1985,

pp. 138-151.

[R86] J. A. Robinson, "The Future of Logic Programming," IFIP Proceedings, Ire

land, 1986.

[S77] J. E. Stoy, "Denotational Semantics: The Scott-Strachey Approach to Pro

gramming Language Theory," MIT Press, Cambridge, Mass., 1977.

[S86] D. A. Schmidt, "Denotational Semantics: A Methodology for Language De

velopment," Allyn and Bacon, Inc., Newton, Mass., 1986.

[SP85]

[T81]

G. Smolka and P. Panangaden, "A Higher-order Language with Unification

and Multiple Results," Tech. Report TR 85-685, Cornell University, May

1985.

D. A. Turner, "The semantic elegance of applicative languages," In ACM

Symp. on Func. Prog. and Comp. Arch., New Hampshire, October, 1981,

pp. 85-92.

[V74] J. Vuillemin, "Correct and Optimal Implementations of Recursion in a Simple

Programming Language" Journal of Computer and System Sciences 9, 1974,

332-354.

[W83]

[YS86]

D. H. D. Warren, "Higher-order Extensions of Prolog: Are they needed?"

Machine Intelligence 10, 1982, 441-454.

J-H. You and P. A. Subrahmanyam, "Equational Logic Programming: an

Extension to Equational Programming," In 19th ACM Symp. on Prine. of

Prog. Langs., St. Petersburg, FL, 1986, pp. 209-218.

53

