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This paper addresses the semantic and computational issues of set abstraction in 

functional and logic programming. The main results are: 

(i) Relative set abstraction can combine a lazy higher-order functional programming 

with not only first-order Hom logic, but also with a useful subset of higher-order Hom 

logic. Sets, as well as functions, can be treated as first-class objects. 

(ii) Angelic powerdomains provide the semantic foundation. These are compatible 

with lazy evaluation and are well-defined over elements from even non-flat (higher-order) 

domains. 

(iii) A new computation rule, more efficient than the parallel-outermost rule, is devel

oped and shown to be a correct computation rule. (A simple left-most rule is not adequate 

for this language.) 

(iv) Optimizations incorporating ideas from narr~wing and resolution greatly improve 

the efficiency of the interpreter, while maintaining correctness. 
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1. INTRODUCTION 

Algorithms are described as a combination of program logic and control (K79]. So that 

programs may run as efficiently as possible (on conventional sequential machines), users 

of conventional imperative programming languages express the program control explicitly, 

leave the program logic implicit (as invariant assertions). Imperative languages can thus 

be described as machine oriented. 

In contrast, declarative programming languages are programmer-oriented. Users of 

declarative languages express the program logic explicitly, leaving much of the control 

implicit. Based on well-known mathematical theories, declarative languages are often 

very simple, with semantic descriptions that are both short and elegant. The use of 

declarative languages has been limited by expensive evaluation procedures, but as the 

ratio of programmer costs to hardware costs rises, and with programs becoming longer 

and more complex, declarative languages are becoming ever more attractive. Furthermore, 

by not overspecifying the order of operations, declarative languages show great potential 

for implementation on massively parallel hardware. Two of the most popular declarative 

paradigms are functional and logic programming. The obvious difference is that functional 

programming is based on function definition and application, whereas logic program define 

and reason with relations. Each paradigm has its own advantages over the other, which 

we will describe. 

Functional programming offers powerful abstraction tools difficult to incorporate into 

the logic-programming framework. Infinite data objects such as streams, computed through 

lazy evaluation, permit one to model input-output within the language proper, as well as 

concurrent processes (as when separating producers from consumers of data). Higher-order 

objects (such as functions which take other functions as arguments, and return functions 

as results), permit the writing of more general-purpose program fragments, increasing 

reusability. Static seeping provides program modularization. Through the nesting of func

tion application, functional languages can incorporate more control information within the 

declarative framework than can Horn logic languages. Equivalent logic programs some

times require a semantically unclear combination of declarative and metalogical constructs. 

The control information given by function nesting permits efficient deterministic implemen

tations (do not require backtracking). Furthermore, for some functional languages powerful 

compilation techniqes exist. 
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From the perspective of functional programming, Predicate-logic programming has its 

own unique capabilities. Among them are support for constraint reasoning (via unification 

over first-order terms) and flexible execution moding (non-directionality). 

Some problems can be described more naturally using functions. Others are more 

naturally described using relations. Our goal is a language incorporating the advantages 

of both functional and logic programming. 

We seek a declarative language with simple semantics (including referential trans

parency), reasonable higher-order capabilities, with the potential for efficient execution. 

Backtracking should not be used where simple rewriting is sufficient, and the interpreter 

should not rely on potentially explosive primitives, such as higher-order unification or 

unification relative to an equational theory. 

We chose to make functional programming rather than Horn logic the basis for our 

unified declarative language so that simple propagation of objects can be managed without 

unification or proofs of equality, and so that ordinary functional computations may be 

performed in the usual way without backtracking. Pure Horn logic programming is based 

on very few language constructs, functional programming languages are, in contrast, much 

richer. It should be easier to add the features from a small language into a larger, than 

v1ce-versa. 

In comparing logic programming with functional programming, logic programming is 

often described as relational. Relations can be expressed by predicates, or alternatively, 

in terms of set theory. In fact, Horn logic's model-theoretic and fixed-point semantics are 

described in terms of set theory. We have chosen to supplement a functional programming 

language with set abstraction to express relations. The functional programming paradigm 

can be enlarged to accept these sets as just another data type. 

We are not the first to propose set abstraction as a possible solution to this problem. 

Darlington (083] and Robinson (R86J were early advocates of this approach. Nevertheless, 

their work left several important open problems: In what way does this construct inter

act with other traditional functional language features, such as infinite and higher-order 

objects? How can the presence of this feature be reflected in the language's denotational 

semantics? Will all denotable sets be computable? This paper answers these questions. 

To our knowledge, these semantic issues have never been rigorously worked out, though 

Darlingtons recent paper on absolute set abstraction informally sketched an operational 
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procedure for computing some sets (DFP86]. 

We observe that relative set abstraction can also provide the needed logic programming 

capability. We prefer relative set abstraction because it has a more tractable higher

order generalization. Generalizing absolute set abstraction to the higher-order case is 

thought to require higher-order unification, which is in general undecidable. To achieve 

the effects of first-order absolute set abstraction using relative set abstraction, one simply 

replaces each "logical variable" of the absolute set abstraction by a enumeration variable 

whose generator is the Herbrand universe (i.e. the set of first-order terms). Relative 

set abstraction's naive generate-test-compute strategy must be improved for solving such 

abstractions efficiently. We show that these set abstractions generated from the Herbrand 

universe can be identified, and optimized to provide efficiency comparable to Darlington's 

procedure. 

In this paper, we describe a lazy, statically-scoped, higher-order functional language 

with set abstraction. In proposing any new language, it is customary to specify not only 

the syntax and give examples (which we do in Section 3), but also: 

a) a standard declarative semantic description (the denotational semantics); 

b) a non-standard operational semantics (to show how programs might be executed); 

and 

c) a proof that the standard and the operational semantics describe the same language, 

1.e. that the operational semantics is correct with respect to the standard semantics. 

Section 4 provides a through denotational semantics. Only a few new semantic primi

tives are needed- the angelic powerdomain constructors and deconstructor, proven to be 

well-defined and continuous. To obtain a correct operational semantics, we depart from the 

traditional approach of defining the denotational and an operational semantics separately 

(and then proving their equivalence). Rather, we derive a correct operational semantics 

from the denotational semantics in two steps. In Section 5 we show how the denotational 

equations can be viewed as a program for the interpreter, written in terms of the primitive 

operations, leaving unspecified only the question of evaluation order. To obtain a correct 

computation rule for this meta-program, we build upon Vuillemin's work on safe compu

tation rules (V74], obtaining an optimized form of parallel-outermost evaluation. That 

some degree of parallel evaluation is needed for complete evaluation of sets should not be 

surprising; after all, obtaining a complete interpreter for Hom-logic requires breadth-first 
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evaluation. The second step, described in Section 6, is to avoid the default generate-and

test procedure when the Herbrand universe (the set of first-order terms) is recognized as 

the generator of a relative set abstraction. For this generating set, we partially instantiate 

the enumerated variable only as needed, using program transformation rules inspired by 

narrowing in term rewriting systems [R85] and by resolution in logic programming [187]. 

We present typical 'optimizations' to the computation procedure to obtain the desired 

operational semantics. 

The next section gives an overview of other attempts to integrate functional and logic 

programming, including a description of early work in set abstraction. 

2. RELATED WORK 

Many attempts have been made to combine features of functional and logic program

ming into a single language (see [BL86] for a recent survey). 

2.1 First-order Approaches 

One approach is to add features to logic programming, such as unification relative to 

an equational theory (the equational theory is used to define functions) [K83] (JLM84]. 

The complexity of the refutation procedure is a difficulty. 

A related but simpler approach is the use of equational languages for functional pro

gramming, with narrowing to solve constraints posed as equations [GM84]. The equational 

langage is defined in terms of rewriting (reduction). To solve for logical variables in equa

tions, one reduces the equation via the rewrite rules as much as possible. When the logical 

variables prevent futher reduction, they are minimally bound so that reduction may con

tinue. When the equality is satisfied, the accumulated bindings provide a solution. For 

completeness, each time a logical variable is narrowed, one must compute (in parallel) 

many alternative narrowings. 

Narrowing is complete for canonical term rewriting systems. These are equational the

ories (programs) whose rewrite rules are confluent, and for which all reduction sequences 

are guarranteed to terminate. The termination requirement rules out functions and re

lations operating on infinite data structures. Constructor-based equational programming 

[F84] [JS86] can avoid this problem. The distinction between functions and data construc

tors permits distinction between equations which define functions and equations which can 
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only be viewed a program properties. The former restricts the left side of a rewrite rule 

to contain only one functor, placed at the outermost. With such a restriction, narrowing 

is complete even if the finite termination property does not hold [F84b]. 

2.2 Higher-order Approaches 

Aside from approaches which support no higher-order programming at all [GM84, 

DP85, YS86], existing approaches fall short in that they either: 

(a) require computationally difficult primitives higher-order unification [MN86, R86] 

(undecidable in worst case), unification relative to an equational theory [GM84], 

(b) are not purely declarative [SP85, W83, R82, DFP86], or 

(c) no denotational (or other declarative) semantics given [L85, SP85, W83, R82, R85, 

DFP86]. 

One line of research is higher-order logic programming. This requires a higher-order 

unification algorithm. However, computationally feasible algorithms do not exist for the 

general case, so most approaches restrict the higher-order capability to handle only specific 

subclasses of functions. Miller and N adathur propose an higher-order extension of Prolog 

based on Church's typed lambda calculus, using a higher-order unification algorithm. This 

algorithm may work efficiently when applied to first-order terms, but may be prohibitively 

expensive when unifying higher-order objects [MN86]. D. H. D. Warren [W83] described 

a way to encode a some higher-order Horn logic programs within first-order Prolog. In 

Warren's method, the programmer dedicates special terms to denote the predicates he 

wishes to pass as arguments. The "higher-order" predicates accept these terms, and calls 

a small interpreter to apply them. While we consider Warren's encoding a useful Prolog 

programming technique, as a language extension it violates the referential transparency 

principle. Syntactic unification of such encodings is inconsistent with their interpretation 

as higher-order objects, yet Warren's technique permits this. 

For first-class higher-order objects, the functional programming paradigm seems more 

tractable. In traditional functional programming, function arguments replace parameters 

via one-way substitution, not unification. A better approach might be to incorporate 

relational programming within the functional framework, rather than vice-versa. Three 

well-known prototypes are Robinson's LOGLISP [R82], Darlingtons extension of Hope 

[D83, DFP86], and Smolka's Fre8h [SP85]. 
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Smolka begins with a functional language incorporating pattern-matching and adds 

a Prolog-like capability. The resulting language is very expressive, hut it is unclear what 

would be a meaningful purely declarative subset. The operational semantics given indicates 

that referential transparency is not maintained. No denotational description is offered. 

Darlington [D83] and Robinson [R86] were the first advocates of adding logic program

ming capability to functional programming through set abstraction. Robinson suggests 

that a functional language should have a construct denoting the complete set of solutions 

to a Horn logic program, and that the user be able to build functions accepting such sets as 

arguments. Darlington calls this approach absolute set abstraction (to distinguish it from 

relative set abstraction, discussed later). Absolute set abstraction permits expressions such 

as 

{x: p(x)}, 

to denote define the set of all x satisfying p( x ). In this approach, nondeterminism is 

replaced by set union, and unification is performed to satisfy equations between non

ground objects. 

Robinson's language, LOGLISP, attempts to combine LISP and Hom logic through 

this mechanism. He develops many useful implementation ideas, but as with Smolka, he 

fails to develop a mathematical justification for his design. Since the base language is LISP, 

LOG LISP has some higher-order capability, though its use is restricted when accessing the 

relational features. The evaluation order is applicative, not lazy. Darlington's approach is 

similar, however his base functional language is lazy, with polymorphic typing. In his recent 

paper [DFP86], Darlington sketched only a partial and informal operational semantics. To 

our knowledge, the semantics of set abstraction in functional cum logic programming has 

(until now) never been rigorously worked out. 

The degree with which this construct can exist as a first-class object, and interact freely 

with other functional language features has been questioned. Both Darlington and Robin

son claim that a first-class implementation of absolute set abstraction in a higher-order 

language would require higher-order unification. Even then, some higher-order programs 

would be merely unexecutable program specifications. Robinson has criticized existing 

combinations of higher-order functional programming with first-order relational program

ming as inelegant [R86]. The goal is to create a purely declarative functional language 

permitting higher-order relational programming, without arbitrary unorthogonal restric-
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tions on it features. This we do by replacing absolute set abstraction with the semantically 

simpler relative 8et ab8traction. A typical relative set abstraction would be an expression 

of the form: 

{f(x) : x E M and C(x)}. 

Here, the generating set 'M' is provided explicitly, and those elements 'x' which satisfy the 

condition 'C' are used in computing elements of the new set. Compare this to the form of 

a typical absolute set abstraction: 

{f(x) : c(x)}. 

Here, one "solves" the condition 'C' for suitable values of 'x', each solution used to compute 

an element 'f(x)' of the denoted set. 

In principle, the absolute construct is more powerful (this is why its higher-order 

extension is so problematic). In practice, this is not necessarily true. In the languages of 

Darlington and Robinson, a logical variable can represent a value only from a special limited 

domain. This domain consists of the first-order terms, analogous to the H erbrand univer8e 

in first-order Horn logic. This set of first-order terms, T, can easily be expressed via a 

recursively-defined relative set abstraction. Thus, any first-order absolute set abstraction 

can easily be expressed as a relative set abstraction. For instance, the example above 

would be written as: 

{f(x) : x E T and C(x)}. 

David Turner pioneered relative set abstraction in KRC [T81]. However, he did not 

take care to preserve the semantics of true sets. In his languages, sets are implemented 

as lists, and may be accessed as such, thus adding an implicit ordering on the elements. 

Turner's evaluation mechanism does not ensure fairness. If computation with the one 

element of the generator diverges, the next element is never tried. Because of his im

plementation, Turner's abstractions are now referred to as li8t comprehen8ion8 [P87], not 

sets. 

We advocate true relative set abstraction. Not only is it as expressive as first-order ab

solute set abstraction (as shown above), but it can mix freely with higher-order constructs, 

without requiring arbitrary first-order restrictions. In our system, the set of first-order 

terms is provided as a (semantically unnecessary but operationally convenient) primitive. 

In computing a relative set abstraction, only if the variable 'x' is recognized as being enu

merated from the set of first-order terms, is it treated as a logical variable. This special 
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treatment is merely an optimization to the default generate and test mechanism. 

3. LANGUAGE DEFINITION 

3.1 Syntax and Constructs 

In this section we describe the set abstraction construct, and show its use in combining 

functional and logic programming. As we wish to concentrate of semantic foundations, we 

instead restrict our consideration to essential features, without providing all the syntactic 

niceties for programming convenience. For simplicity, we consider neither (polymorphic) 

typing nor numeric operations. 

We refer to this skeleton language as PowerFuL, because it uses angelic Powerdomains 

to unite Functional and Logic programming. A PowerFuL program is an expression to be 

evaluated. The syntax is: 

expr 

set-claU&e 

qualifier 

: := 

.• = 

.. = 

enumeration : : = 

condition : : = 

(expr) I atom 

cons(expr, expr) car(expr) I cdr(expr) 

atomeq?(expr,expr) I null?(expr) I expr = expr 

bool?(expr) I atom?(expr) I pair?(expr) I func?(expr) I set?(expr) 

if expr then expr else expr fi I not(expr) 

identifier 

.X identifier . expr 

expr( expr, •.. , expr) 

letrec identifier be expr, ... , identifier be expr in expr 

phi I atoms I terms I set-clause I U(set-claU&e, set-clause) 

{ expr : qualifierlist} 

enumeration I condition 

identifier E expr 

expr 

Enumerations are the syntactic basis for relative set abstraction . Each identifier 

introduced within the set-clause is associated with a set expression to provide possible 

values. The scope of the enumerated identifier contains the principal expression (left of 

the ': '), and also all qualifiers to the right of its introduction. In case of name conflict, 
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an identifier takes its value from the latest definition (innermost scope). In any case, the 

scope of an enumerated identifier never reaches beyond the set-clause of its introduction. 

Lists may be written in the [. .. ] notation, e.g. ['apple, 'orange, 'grape] as 

a syntactic sugar. Similarly, expressions of the form U(set1, ... , setn) are syntactic 

sugar for a nesting of binary unions. Furthermore, when the list of qualifiers is empty one 

may omit the ': '. As is required for full referential transparency (extensionality), equality 

between higher-order objects is not defined. The result of equating higher-order objects, 

such as sets or functions, is .L 

3.2 Examples 

Functional Programming 

letrec 

in 

append be A 11 12. if null?(ll) then 12 

else cons(car(ll), append(cdr(l1),12)) fi 

map be A f.A l.if null?(l) then [] 

else cons(f(car(l)), map(f,cdr(l)))fi 

infinite be cons('a, infinite) 

Higher-order functions and infinite objects can be defined in the usual manner. The map 

example shown above is in curried form. 

Set Operations 

letrec 

in 

crossprod be A sl s2. {cons(X,Y) : XEsl, YEs2} 

filter be A p s. {X : X E s, p(x)} 

intersection be A sl s2. {X : XEsl, YEs2, X=Y} 

The operations crossprod and filter are similar to those in Miranda [T85]. Note that 

one cannot define an operation to compute the size of a set, nor can one test whether a 

value is or is not a member. Such operations, analogous to Prolog's meta-logical features, 
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would not be continuous on our domains; furthermore, they are not needed to obtain the 

declarative capabilities of logic programming. 

Logic Programming 

letrec 

split be A list. { [XIY] : XEterms, YEterms, append(X,Y)=list} 

append be A 11 12. if null?(l1) then 12 

else cons(car(l1), append(cdr(l1),12)) fi 

in 

The enumerations XEterms, YEterms in split are needed because the set-abstraction is 

relative, not absolute. For efficiency, an operation such as append might be compiled in 

different ways corresponding to whether or not it was used within a set-abstraction. 

To demonstrate that any first-order Horn logic program can be mechanically con

verted into PowerFuL, consider the semantics of Horn logic programming. The universe 

of discourse is taken to be the Herbrand Universe (this corresponds to our set terms, the 

set of terms). A predicate symbol gets its meaning from the set of ground instantiations 

in the Herbrand model (those instantiations implied true by the program clauses). 

we could write our logic programs in terms of sets, instead of predicates. A predicate 

which is true for certain tuples of terms becomes a set which includes just those tuples 

of terms as members. Where a conventional Prolog program asserts P(tuple), we could 

equivalently assert that tuple E P, P now referring to a set. 

Consider the following program and goal, written in Prolog syntax [CM81]. 

app ( [], Y, Y) . 

app([HIT], Y, [HIZ]) :- app(T, Y, Z). 

rev([], []). 

rev([HIT], Z) ·- rev(T, Y), app(Y, [H], Z). 

?- rev(L, [a, b, c]). 

In the style oriented towards sets, we would write: 

[ [], Y, Y] E app 

[ [HIT], Y, [HI Z] ] E app ·- [T, Y, Z] E app 

[ [] , [] ] E rev 
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[ [HIT] , Y] E rev :- [T, Z] E rev, [Z, [H] , Y] E app 

?- [X, [a, b, c] ] E rev 

In one sense, all we have done is create a new Prolog program defining the predicate 

'E'. But we prefer to view the clauses as defining sets, with 'E' taken as a mathematical 

primitive. With this second viewpoint, translation to PowerFuL is straightforward. Log

ical variables represent enumeration variables implicitly generated from the set of terms, 

corresponding to 'terms'. Furthermore, it is easy to see that 

term E generating-8et 

is equivalent to the conjunction 

New-enum-var E generating-8et, New-enum-var = term. 

Converting to PowerFuL syntax results in: 

letrec 

in 

app be U( { [ [],L,L] : LEterms}, 

{[ [HIT], Y, [HIZ] ] : H,T,Y,Z Eterms, 

WEapp, W•[T,Y,Z]}) 

rev be U ( {[ [], [] ] } , 

{[ [HIT], Z] : H,T,Y,Z Eterms, VErev, WEapp, 

V = [T, Y], W = [Y, [H], ZJ}) 

{ L : L E terms, V E rev, V = [L, ['a, 'b, 'c]] } 

We have taken the liberty of writing h, t, y, z E terms instead of four separate enumera

tions. 

The PowerFuL program uses sets to express Prolog predicates, which the Prolog pro

gram used to express functions. With so many layers of indirection, it is no wonder this 

PowerFuL version is ugly. But this is to be expected from a mechanical translation. A 

better PowerFuL style would be to use Lisp-like functions where functions are intended, 

and sets only where necessary. Still, this technique of Horn logic to PowerFuL conversion 

demonstrates that we have indeed captured the full expressive power of Horn logic. 

Higher-order Functional and Horn logic programming 

letrec 

one be ). v. 'a 
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in 

two be,\ v. 'b 

three be ,\ v. 'c 

{F : F E U({one}. {two}. {three}), map(F) (['x, 'y, 'z]) = ['c, 'c, 'c]} 

The result of the above set-abstraction is the set {three}. In this example, the generator 

set for F, U({ one}, {two}, {three}) is first enumerated to obtain a function which is 

then passed on to map. Those functions which satisfy the equality condition are kept in 

the resulting set, while the others are screened out. 

4. DENOTATIONAL SEMANTICS FOR POWERFUL 

Denotational semantics has become an essential tool of programming language de

sign. The denotational description provides a deeper understanding of the computational 

theory being accessed. Also, the convention of using denotational semantics leads us to 

better language designs, since elegant orthogonal languages with referential transparency 

have simpler denotational descriptions. By specifying only what is essential, denotational 

semantics are an especially appropriate choice for the language's standard definition. 

4.1 Powerdomains 

The denotational semantics of set abstraction requires powerdomain theory. Intu

itively, given a domain D, each element of domain D's powerdomain 'P(D) is to be viewed 

as a set of elements from D. 
' 

Powerdomain theory was developed to describe the behavior non-deterministic calcu

lations. The original application was operating system modelling, where results depend on 

the random timing of events, as well as on the values of the inputs. Suppose a procedure 

accepts an element of domain D, and based on this element produces another element in 

D, nondeterministically choosing from a number of possibilities. We say that the set of 

possibilities, as subset of D, is a member of 'P(D). Such a procedure is therefore of typeD 

,_. 'P(D). Computation approximates this set by non-deterministically returning a mem

ber. Suppose f and g are non-deterministic computations performed in sequence, first f 

and then g. For each possible output off, g defines a set of possible results. The union 

of these sets contains all possible results of the sequence. We express this sequencing of 

non-deterministic functions by .\x. g+(f(x)). The •+• functional is of type 
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(D~-+'P(D)) 1--+ ('P(D)~-+'P(D)), 

defined as .>.f.Aset. U {f(x): x E set}. 

The larger the set denoted by f (x) is, the larger the set denoted by g+ (f (x)) will be, 

and the larger the likelyhood that the complete sequence can terminate with any correct 

result. One powerdomain construction ensures that larger sets are considered more defined 

than their subsets, the empty set being least-defined. 

Rather than letting sets be the implicit result of nondeterminism we make set abstrac

tion an explicit date type. Several well-known powerdomain constructions are available 

to choose from: the Egli-Milner (or Plotkin), the demonic (or Smythe), or the angelic (or 

general relational) powerdomain. The key to the correct choice lies in the semantics of 

Hom-logic programs. According to the model-theoretic and least fixed-point semantics of 

Horn-logic programming [187], the programs 

p(l). 

and 
p(l). 

p(2) :- p(2). 

are equivalent in that their least models are identical (the set {p( 1)}). That is, the presence 

of non-terminating or failing paths does not prevent one from accepting the results of termi

nating (successful) paths. To model Hom-logic programs via set abstraction, we note that 

demonic powerdomains are inapplicable because, for example, { 1, .l} = { .l} in this theory; 

thus, the semantics of the second program above would be ¢ by this theory. Egli-Milner 

powerdomains make unnecessary distinctions between sets; for example, { 1, .l} ;I; { 1}, 

and hence the above two programs would not be semantically equivalent (the Egli-Milner 

powerdomain might be appropriate if the language had a "set does not contain" predicate, 

analogous to Prolog's negation by failure). Angelic powerdomains provide the desired 

semantics for Hom-logic programs; in this theory, for example, {1, .l} = {1}. Further

more, angelic power-domains can be constructed for base domains containing higher-order 

functions and infinite objects [S86], and provide all needed primitives. The details of 

powerdomain construction are summarized below. For more information, see [S86], [B85], 

[A82] and [A83]. 

Building powerdomains from non-flat base domains creates difficult continuity re

quirements. A set becomes more defined in two completely different ways: individual set 
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elements can be made more defined according to the partial order of the base domain, or 

the more-defined elements can be added to the set. Thus, the same information can be 

combined in different ways to create sets that are distinct, yet computationally equiva

lent. So theoretically one works not with sets, but with equivalence classes of sets. This 

should not be too disconcerting. Even in mathematics, a set has not single canonical rep

resentation, and equivalent set expressions can be gotten by permuting the ordering of of 

elements. 

Definition: The symbol !;;_, pronounced 'less defined than or equivalent to', is a 

relation between sets. For A, B ~ D, we say that A !;;_ B iff for every a E A and Scott-open 

set U ~ D, if a E U then there exists a b E B such that b E U also. 

Definition: We say A Rj B iff both A !;;_ B and B !;;_ A. We denote the equivalence 

class containing A as [A]. This class contains all sets B ~ D such that A Rj B. We define the 

partial order on equivalence classes as: [A] C [B] iff A !;;_ B. For domain D, the powerdomain 

of D, written 'P(D), is the set of equivalence classes, each member of an equivalence class 

being a subset of D. 

Theorem (Schmidt [S86]): The following operations are well-defined and continuous: 

</>: 'P (D) denotes [ {}] . This is the least element. 

{-}: D ...... 'P(D) maps d E D to [{d}]. 

_u_: 'P(D) x'P(D)~-+'P(D) maps [A] U [B] to [AU B]. 

+: (D~-+'P(D)) ,_. ('P(D)~-+'P(D)) is .Xf . .A[A].[U{f(a): a E A}]. 

An example will provide intuition about the use of •+•. Suppose we have a set 

'S - {1, 2, 3}', and we wish to create a new set, each element of which is of the 

form 'f(x)' where 'x' is in'S'. Then 

'(.Ax. {f(x)})+({1,2,3}) = {/(1),/(2),/(3)}'. 

4.2 Semantic Equations 

PowerFuL's domain is the solution to: 

D = (B.L8 + A .LA + DxD + Dt-+D + 'P(D)) .Lv, 

where 'B' refers to the booleans, and 'A' to a finite set of atoms. 

PowerFuL is a functional programming language, so we present its semantics in the 

denotationalstyle usual for such languages [S77]. Our convention to differentiate language 
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constructs from semantic primitives is to write the primitives in boldface. Language 

constructs are in teletype. Variables in rewrite rules will be italicized. 

In the definitions below, the semantic function£ maps general expressions to denotable 

values. The equations for most expressions are the conventional ones for a typical lazy 

higher-order functional language. The environment, p, maps identifiers to denotable values, 

and belongs to the domain [Id>-+D]. The semantic equations for set-abstractions provide 

the novelty. For simplicity, the semantic equations ignore simple syntactic sugars. 

Many of PowerFuL's denotational equations are similar to those of any typical lazy 

functional language. For instance, for each syntactic atom (represented by A;) in a program, 

we assume the existance of an atomic object in the semantic domain (represented by A;). 

£[A;D p = A; 

We can group objects into ordered pairs to create lists and binary trees. 

£[cons(expr1, expr2)D p = <(£[expr1D p), (£[expr2] p>) 

£[car(expr)] p - left( pair!(£[exprD p)) 

£[cdr( expr)] p - right(pair!(£[expr] p)) 

£[bool ?( expr )D p - bool?( £[ exprD p) 

£[atom?(expr)] p - atom?(£[exprD p) 

£[pair?(expr)] p - pair?(£[expr] p) 

£[func?(expr)] p - func?(£[exprD p) 

£[set?(expr)] p = set?(£[exprD p) 

Testing atoms for equality relies on the primitive definition of the atoms. 

£[atomeq?(expr1, expr2)] p = atomeq?(atom!(£[expr1] p),atom!(£[expr2D p)) 

£[(expr1 = expr2)] p = equal?((£[expr1] p),(£[expr2] p)) 

A conventional sugar tests whether a "list" is empty (whether the object equals the atom 

"nil"). 

£[null?(expr)] p - if(atom?(£[expr] p)then is'nill?([expr] p)else FALSE fi) 

We can negate a condition. 

£[not(expr)J p = not(bool!(£[expr] p)) 

We can create conditional expressions: 
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c[if(expr1, exprf, expr9 )] p = if(bool!(f[expr1] p), (c[exprf] p), (c[expr9] p)) 

We can add new identifiers to the environment, and later look up their meaning. 

&[identifier] p = p( identifier) 

c[letrec defs in expression] p = &[expression] (V[defs] p) 

V[id be expr] p = p[(J'"[fix] )(.\X. (c[expr] p[X/id]))/id] 

V[id be expr,defs] p = (V[defs] p) [(J'"[fix] )(.\X. (c[expr] (V[defs] p[X/id])))/id] 

Rather than treat the fixpoint operator as a primitive, we define fix in the semantic 

equations. For reasons to become apparent later, we wish to have only one source of 

potentially unbounded recursion, and we wish that source to be the semantic equations 

themselves. 

J'"[fix] = .\f. /((J'"[fix] )(!)) 

We can create functions through lambda abstraction, and apply functions to their argu

ments. 

£[.\ id. expr] p = ,\ x. (c[expr] p[xfid]) 

In the above equation, we considered only functions of one argument. A function of 

multiple arguments can be considered syntactic sugar either for a curried function, or for 

a function whose single argument is an ordered sequence, or list. 

C[expr1 expr2] p = func!(c[expr1] p)(c[expr2] p) 

Empty sets and singleton sets form the building blocks. We can union smaller sets to 

form larger sets, and via a relative set abstraction we can transform elements of one set to 

create another. We can denote the empty set explicitly: 

&[phi] P = ¢ 

We can create a singleton set from a base domain: 

c[{expr :}] p = {C[expr] p} 

We can choose to include only those elements meeting a specified condition: 

c( [ { expr : condition, qualifierlist}] p) 

= set!(if &[condition] p then C[{ expr : qualifierlist}] p else q)ft) 

We can combine the smaller sets to form larger sets: 
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We can build a set based on the elements included in some another set. The •+' operator 

was defined for this purpose: 

£([{ezpr : idE genrtr, qualifierli8t}] p) 

=(,\X. £[{ezpr : qualifierli8t}] p[X/id])+(set!(£[genrtr] p)) 

The sets bools, atoms and terms may be viewed as syntactic sugars, since the user 

could program these using the previously given constructs. In that sense, their presence 

adds nothing to the expressive power of the language. Nevertheless, providing them in 

the syntax permits important optimizations through run-time program transformation 

(discussed later). Thus we have: 

£[bool.s] p = F[bools] 

F[bools] = {TRUE} u {FALSE} 

£[atoms] p = F[atoms] 

F[atoms] = u( {AI}, ... , {An}) 

£[terms] p = F[terms] 

F[terms] = F[bools] U F[atoms] 

U ( As.((,\t.{ < s, t >} )+(.r[terms ])))+(.r[terms]) 

The functions £, V and .rare mutually recursive. Their meaning is the least fixed 

point of the recursive definition. This fixed-point exists because we have combined contin

uous primitives with continuous combinators. Most of these primitives are fairly standard, 

and will be described in a later section. Note the use of the primitive •+, (for distributing 

elements of a powerdomain to a function) in defining the meaning of the set abstraction 

construct. 

However, a few words must be said about some other novel primitives, here called 

coercions. Coercions are related to the type-checking primitives. PowerFuL is basically 

an untyped language. For limited run-time type-checking, we rely on these primitive 

semantic functions over D ,_. B.L: 'atom?', 'bool?', 'pair?', 'func?' and 'set?'. For 

instance, 'func?' returns 'TRUE' if the argument is a lambda expression, 'FALSE' if 

the argument is an atom, an ordered pair or a set. The only other possibility is '.lv', so 

'func?(.lv)' rewrites to '.LB'· The other type-checking functions are defined analogously. 

Most primitives are only defined over portions of the domain D. The boolean operators 

are only defined over B.L; the operations 'left' and 'right' assume the arguments to be 
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ordered pairs; function application (,8-reduction) is defined only when the left argument is 

in fact a lambda expression; and only sets can contribute to a set union. Since PowerFuL 

is an untyped language, we will need a way to coerce inappropriate arguments to an 

appropriate object. For this purpose, we define five coercion primitives: 'boo!!', 'atom!', 

'pair!', 'func!' and 'set!'. 

The function 'boo!!: D ,..... B.L' maps arg to itself if arg is a member of B.L, and to .LB 

otherwise. 

The function 'atom!: D ,..... A.L' maps arg to itself if arg is a member of A.L, and to 

.LA otherwise. 

The function 'pair!: D ,..... DxD' maps arg to itself if arg is a member of DxD, and to 

.lvxD (that is, < .lv, .lv >)otherwise. 

The function 'func!: D ,..... [D~-+D]' maps arg to itself if arg is a member of D~-+D and 

to .Lv ..... D (that is, .Xx. .lv) otherwise. 

The function 'set!: D ,..... 'P(D)' maps argto itself if argis a member of'P(D) and to 

.lP(D) (that is, <P) otherwise. 

The coercions ensure that primitives handles inappropriate input reasonably. For 

instance, the union constructor is appropriately applied only to sets. If the argument is 

something other than as set (perhaps .lv ), then this input is treated as the empty set. 

This make sense because 

A) only sets contain elements- other objects do not; 

B) a set is completely defined by the elements it contains; and 

C) the empty set is the only set not containing any elements. 

Thus, the expression 'U( 'a, expr)' denotes a set containing "a', regardless of whether 

or not 'expr' can be computed. This is analogous the the set of solutions to a Horn 

logic program and goal, the elements of which are determined by successful derivations (or 

refutations), ignoring derivations which fail or diverge. For uniformity, we define analogous 

coercions to handle similar questions about primitives of other types. 

One could avoid the need for such a coercion by replacing each occurrence of 'set!( expr )' 

with '(if set?(expr) then expr else</>)'. Of course, if 'expr' diverges, then this expression 

is also L This would equate <P (i.e . .lP(D)) with .lv, coalescing the powerdomain subdo

main with the other subdomains. Non-coalesced domains seem to be simpler, so we prefer 
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to distinguish between bottoms of various subdomains. For instance, set?(</>) = TRUE, 

whereas set?(.lv) = .lB (and with full coalescing, set?(.lv) would equal .lv). 

Theorem: These coercions are continuous. 

Proof: We will prove the continuity of 'set!'. Consider a sequence of objects from domain 

D, t 0, tt. t2, ... , such that fori< j, t;!;;;; t;. If there is no i such that t; is in "P(D), then 

for all i, set!( i) = .lop( D) = ¢>. Thus, 

.lim set!(t;) = set!(Hm t;) = .l-p(D) = ¢>. 
a-+oo a-+oo 

If there i8 ani such that t; is in "P(D), then let tk be the first one. That is, for all i, if t; is 

in "P(D), then h C t;. Then for all i < k, t; = .lv, and set!(t;) = set!(.lv) = .l"P(D)=.P· 

For all i 2:: k, and set!( t;) = t;. Therefore, 

.lim set!(t;) = lim set!(t;) - set!( lim t;) - set!(.lim t;). 
a-+oo k-+oo k-oo a-+oo 

Hence, 'set!' is continuous. 

Proof of the continuity of the other coercions is left to the reader. 

The sets denoted by 'boola', 'atoms' and 'terms' are semantically superfluous. The 

user could create these sets with the other constructs. For instance, each reference to the 

primitive set 'terms' could be replaced by: 

letrec 

in 

bools be U( {TRUE}. {FALSE}) 

atoms be U({Al}, ... , {An}) 

terms be U(atoms, bools, {cons(X,Y) 

terms). 

X,Y E terms }) 

PowerFuL provides these sets as primitives, so the interpreter can recognize them and treat 

their enumerated variables as logical variables, for greater efficiency. This will be discussed 

in greater detail later. 

5. FROM DENOTATIONAL TO OPERATIONAL SEMANTICS 

A programming language's semantics maps the syntax to the semantic domain. When 
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this mapping is described procedurally, then we call it an operational semantics. When im

plemented, this procedure is called an interpreter. We use the word 'metalanguage' to refer 

to the language of the interpreter's implementation. The traditional method of defining a 

language is to give both declarative and operational semantics. The declarative semantics 

becomes the official definition of the language, as it is simpler and easier to understand. 

In it one describes the mapping desired via a well-understood mathematical theory (recur

sive function theory for functional programming, predicate logic for logic programming). 

The language of denotational semantics is itself a kind of declarative psuedocode. The 

operational semantics is usually written in a language closer to the architecture of the in

tended physical machine, to control execution efficiency. Before using such an operational 

semantics however, it is nice to know the extent to which the implemented interpreter is 

equivalent to the mapping declaratively described. Constructing a proof of equivalence can 

be quite tedious (though less difficult than comparing two different procedural definitions 

[S77]), and therefore we seek a different approach. 

If one extends the mathematical language of the declarative semantics, so it is not a 

pseudocode, but a programming language in its own right, then the declarative semantics 

can serve as both a definition and an implementation. Assuming this declarative metalan

guage can be implemented correctly, both views of the denotational semantics (operational 

and declarative) are equivalent. 

To illustrate our approach, we wish to evaluate the expression: 

car( cons( cons('a,'b), 'a)) 

given the denotational equations for translating syntactic symbols of atoms to real atoms 

in the semantic domain (differentiated here by the type font): 

e[A;] = A;, 

semantic equations for 'cons', 'car' and 'cdr': 

e[cons(expr1, expr2)] = <(e[expr1] p), (e[expr2] >) 

e[car(expr)] - left(e[expr]) 

e[cdr(expr)] - right(e[expr]) 

and rewrite rules to implement the semantic primitves 'left' and 'right': 

left( <1st, 2nd>) = 1st 

right (<1st, 2nd>) = 2nd 
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The denotational equations map syntactic constructs to semantic constructs, and the 

semantic primitives map semantic objects onto other semantic objects. In this case, both 

kinds of mappings are defined through rewrite rules. We wish to find the semantic objected 

denoted by the syntactic expression above. That is, we wish to simplify: 

£[car( cons( cons(' a,' b),' a))] . 

Using the semantic equation for 'car' expressions as a rewrite rule produces: 

left£[ cons( cons(' a,' b),' a)] . 

We do not yet have enough information to apply the rewrite rule for 'left', so we must 

translate more syntax using the semantic equation for 'cons': 

left < t'[cons('a,'b)J, t'['a] >. 

We now have enough information to execute the semantic primitive: 

t'[cons('a,'b)). 

Further rewriting with the semantic equations produces the final value: 

<'a, 'b >. 

Thus, we see that one can sometimes execute a program directly from the denotational 

semantic equations. In the remainder of this section, we develop this technique. Many of 

the ideas are based on Vuillemin's pioneering work on correct implementation of recursive 

programs [V74]. 

5.1 Least Fixpoints and Safe Computation Rules 

Consider a recursive definition of the form: 

F(x) {= r[F](x) 

for function 'F', where r[F](x) is a functional over ( [01 , ••. , Dn) ,..... D], expressed by 

composing a term from: 

a) the individual variables x =< x1, x2, ... , Xn >; 

b) known monotonic functions, called primitives; and 

c) and the function variable, F. 

Theorem (Kleene): There exists forT a least fixpoint, and this fixpoint equals 

21 



If recursive program P consists of such a definition, i.e.: 

P : F(x) <= r[FJ(x) 

it is generally agreed that the function defined by recursive program P is the least fixpoint 

of r. We denote this fixpoint by fp. 

For example, suppose that '*' (multiplication), '-' (subtraction), '=' (equality) and 

'if' (if/then/else/fi) are primitive functions. Given a program P: 

P: fact(x) <= it((x = 0), 1, x x fact(x -1)), 

r is the functional 

>.f. it((x = 0), 1,x x f(x- 1)) 

and fact is the name of recursive function, represented by Fin the schema. The fixpoint 

of this functional is the factorial function. 

Consider applying the function being defined to some input d. Let us define a sequence 

ofterms so, s 1 , s2 , ••• , such that the first term s0 is F(d), and each term s;+l is computed 

from s; by replacing each instance ofF ins; by r(F). That is, we expand each occurence 

ofF in the previous term by the recursive definition. Now, let us define a parallel series of 

terms u 0 , u 1 , u2 , ••• , such that each u; is computed from the corresponing t; by replacing 

each remaining occurence ofF by n. Clearly, u; is equal to ri(n)(d). By continuity, 

lim u; = .lim ri(n)(d) - (.lim r;(n))d _ jp(d) 
i-ex> •-oo s-oo 

Let us define a new series t; similar to s;, where t 0 = so = F(d), but where each t;+l 

is computed from t; by expanding only some of the occurrences ofF in t;, instead of all. 

Definition: A computation rule C tells us which occurrences of F(e) should be replaced 

by r[FJ(e) in each step. 

For each t;, we compute v; in the same way we computed u; from s;. 

Theorem (Cadiou [V74]): For any computation rule C, 

Proof: For any i, v; C u;, and therefore 

lim v; C lim u; - /p(d). 
i-oo i-oo 
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Definition: A computation rule is said to be a fixpoint computation rule for program P 

if for all d in the relevant domain, 

We need to give a condition which, if satisfied, will imply that a computation rule is a 

fixpoint rule. 

Definition: A 8Ub8titution 8tep is a computation step in which some of the recursive 

function calls in a term are expanded. 

Definition: For a substitution step, let F 1 , ••• , F; be the occurrences of the recur

sive function expanded in the term, and let Fi+1 , ••• , Fk be the occurrences not ex

panded. Compare the result obtained by replacing replaced F 1 , ••• , F; each by n, and 

Fi+I, ... , Fk each by f p, with the result obtained by replacing F 1 , ... , Fi, Fi+I, ... , Fk 

each by n. If the results are equal, then we say the substitution step is a 8afe 8Ub8titution 

8tep. 

Intuitively, a safe substitution is one which performs enough essential work. That is, if this 

work were never done, then all other work would be irrelevant. If enough essential work is 

performed in each step, then every essential piece of work will eventually be done. 

Definition: A computation rule is 8afe if it provides for only safe substitution steps. 

Theorem (Vuillemin [V74]): If the computation rule used in producing the series v; is a 

safe, then 

Using Cadiou's theorem and Vuillemin's theorem, then for any safe computation rule, 

and therefore all Mje computation rule8 are fixpoint rule8. 

Theorem (Vuillemin [V74]): The parallel outermost rule (replace all outermost occurences 

of F simultaneously) is a safe rule. 

This leads to a method of applying a function fp to some object d, given a recursive 

definition of fp. To approximate fp(d) to any arbitrary closeness, we simply produce 
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u; for some sufficiently large value of i, and then simplify u; by executing the primitive 

operations. This assumes that we know how to compute the primitive functions. Unless 

the execution of primitive functions terminate, we may be faced with the prospect of 

simultaneously approximating the primitives even as we approximate f p in terms of them. 

Vuillemin assumes that every primitive is guarranteed to terminate for every value in its 

domain. This is stricter than necessary. It is sufficient that every primitive terminate on 

every value to which it may be applied within a given term v;, taking into account the 

range of possible values for d and the computation rule chosen. This relaxation will prove 

important later. 

When producing a series of approximations to fp(d) in this way, one tends to repeat 

the same executions of primitives (going from t; to v;) over and over. If the primitive 

operations are implemented via rewrite rules, one can reduce the overcomputation by 

applying these rewrite rules directly on the terms t;. Such an rewrite would then carry 

through automatically in all further approximations, whereas, if one waits to apply it upon 

v;, then the it must be repeated again when computing Vi+t. etc. Therefore, an extra step 

is inserted in the computation procedure. To compute ti+1 from t;, we first perform 

a substitution step, expanding occurrences ofF, and then we perform a simplification 

step, applying rewrite rules from the primitive definitions until no more can be applied. 

Computing v; from t; is as before. 

Applying the primitives as their arguments are computed not only is more efficient, it 

is necessary for termination of the calculation when the result is fully computed. Simpli

fication of primitives (such as simplifying an occurrence of the if/else primitive when the 

condition has been calculated) may prune branches of the term. If all occurrences ofF 

have been pruned, then no further substitution steps will be necessary. Again, we must be 

wary that for each computation step i, only a finite number of primitive rewrites will be 

required. Otherwise, we will never get to compute the next approximation. 

5.2 Relaxing the Notation 

It is sometimes more convenient to specify a recursive function via equations, rather 

than the notation of lambda abstraction. Consider the append function, which can be 

written: 

P: append(x,y) <= if(null?(x),y,< car(x),append(cdr(x), y) >). 

For this program P, r is the functional 
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>..f. if(null?(x),y,< car(x),/(cdr(x), y) >. 

Alternatively, we can define append by these equations: 

append([], y) = y 

append(<h,t>, y) =<h, append(t, y)> 

The equations handle mutually exclusive cases. A function defined through lambda

abstraction is applied using ,8-reduction. To apply a function defined by a set of equations, 

one finds the equation which matches the format of the argument, replaces the equation 

variables in the right-hand side with the parts of the arguments matching them on the left. 

In this case, our functional is 

>..f.{/([], y) = y; !(< h,t >, y) = < h, f(t, y) >} 

Despite the new notation, and its associated mechanics for function application, the same 

theorems hold as before. 

We can also permit a system of mutually-recursive functions. If the equations define 

two functions, g( x) and h( x ), they can be viewed as a single function f( w, x ), where the 

first argument to f tells whether the rules for function g or h are to be used. Vuillemin notes 

that the extension of his results to a set of mutually-recursive functions is straightforward. 

5.3 Implementing Denotational Semantics 

Because we adopted a certain discipline in writing the denotational semantics, listed in 

Section 4, we can execute the resulting equations as a recursive program. Instead of a single 

recursive function, we have three mutually-recursive functions, 'f', which maps a syntactic 

expression and an environment to a semantic object, ':F' which maps a syntactic expression 

to a semantic object (without need of the environment), and '1)', which maps a syntactic 

expression and an environment to a new environment. Semantic equations, interpreted as 

left-to-right rewrite rules, provide both a definition and an execution mechanism. 

Note that some semantic equations introduce lambda variables. These may have to 

be renamed at times to avoid variable capture. However, this is standard practice in 

executing languages based on lambda calculus. Because functions are written as lambda 

expressions, ,8-reduction is treated as a semantic primitive of two arguments, strict in the 

first. Actually, defining ,8-reduction as a semantic primitive is dangerous, as there exist 

lambda-expressions whose simplification will fail to terminate. For the time being, we will 

assume that in every computation step, the ,8-reductions will terminate. Later, we will 
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discuss conditions under which this assumption is valid. 

A fixpoint operator would never terminate, and therefore we do not treat it as a 

primitive, but rather implement it within the denotational equations, themselves. Creating 

a denotational description suitable for direct interpretation requires this kind of special 

care. 

To complete the interpreter, we must provide rewrite rules to define the primitive 

functions, Below is a summary of the PowerFuL primitives. 

5.3.1 PowerFuL Semantic Primitives 

Function Application 

In the semantic equations we treat explicitly only functions of one argument. A multi

argument function can be thought of as syntactic sugar for a curried functions, or for a 

function taking a sequence as its argument. Application is essentially P-reduction of the 

lambda calculus. An application is strict in its first argument, the function to be applied. 

Boolean Input Primiti'lle8 

In the semantic domain we use the conditional if: B.LXDXD >--+ D. This primitive is 

strict in the first argument. The equations defining if are: 

if(TRUE, arg2, arg9) = arg2 

if( FALSE, arg2, arg9) = arg9 

if(.lB, arg2, arg9) = .lv 

In both the syntactic and the semantic domains, we shall feel free to express nested con

ditionals using common sugars such as "if/then/elseif/then/else/fi." 

Negation, called not: B.L >--+ B.L, is strict in its only argument. Its simplification rules 

are: 

not(TRUE) = FALSE 

not(FALSE) =TRUE 

not(.lB) = .LB 

Atomic Input Primiti11e8 

We assume that (for each program) there is a finite set of atoms (which always includes 

'nil). For each such atom A; in the syntax there exists a corresponding semantic primitive 
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A;. These primitives, together with .LA, make up the subdomain A.L. For every atom 

A;, there is a primitive function isA;?: A.L >-+ B.L, strict in its only argument. The 

simplification rules are: 

isA;? (.LA) = .Ls 

isA;?(A;) • TRUE 

isA;?(A;) = FALSE fori #j 

Also provided is atomeq?: A.LXA.L >-+ B.L, to compare atoms for equality. Strict in 

both arguments, the simplification rules are: 

atomeq? (.LA, arg2) .. .Ls 

atomeq?(arg1, .LA) .. .Ls 

atomeq? (A;, arg2) • is A;? ( arg2) 

atomeq?(arg1, A;) = isA;?(arg1). 

Note that the third and fourth rules are actually rule schemas, instantiated by each atom 

A;. 

List Primitives 

The primitive functions left and right, of type DxD >-+ D, are strict in the single 

arguments. The simplification rules are: 

left(<1st, 2nd>) = 1st 

right( <1st, 2nd>) = 2nd 

Powerdomain Input Primitives 

The primitive •+• lets us iterate a function of typeD >-+ 'P(D) over the elements of an 

input set, combining the results via union into a single new set. It is strict in the second 

argument. We can define •+• recursively via the rules: 

F+(¢>) = ¢> 

F+({Expr}) = F(Expr) 

F+(set1 u Set2) = (F+(set1 ) u F+(set2)) 

Theoretically, it is also strict in the first argument, since 
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However, we will ignore this strictness in the operational semantics, as the simplification 

rules for<+> require knowledge about the second argument. 

Theorem: Though <+> is defined recursively, simplifications during computation must 

terminate. 

Proof: Each recursion goes deeper into the union-tree, and, at any stage of computation, 

such a set will have been computed only to finite depth. 

Run-time Type-checking and Coercions 

PowerFuL is basically an untyped language. For limited run-time type-checking, we 

rely on these primitive semantic functions over D >-+ B.1: atom?, bool?, pair?, func? 

and set?. 

For instance, func? returns TRUE if the argument is a primitive function or a 

lambda expression, FALSE if the argument is an atom, an ordered pair or a set. The only 

other possibility is .Lv, so func?(.Lv) rewrites to .LB. The other type-checking functions 

are defined analogously. 

Most of our primitives are defined over only portions of the domain D. The boolean 

operators are defined only over B.L. Only ordered pairs have left and right sides. Function 

application is defined only when the left· argument is in fact a function. Only sets can 

contribute to a set union. Since PowerFuL is an untyped language, we will need a way to 

coerce arguments to the appropriate type. One way is to use the type-checking primitives 

in conjuction with typed-if primitives. We find it simpler to define five primitive coercions. 

They are: bool!, atom!, pair!, func! and set!. 

The function bool!: D >-+ B.L maps arg to itself if arg is a member of B.1, and to .L8 
otherwise. 

The function atom!: D >-+ A.L maps arg to itself if arg is a member of A.L, and to .LA 

otherwise. 

The function pair!: D >-+ DxD maps arg to itself if arg is a member of DxD, and to 

.LvxD (that is, < .Lv, .Lv >) otherwise. 

The function func!: D >-+ [D>-+D] maps arg to itself if arg is a member of D>-+D and 

to .Lv ..... v (that is, .Ax. .Lv) otherwise. 

The function set!: D >-+ 'P(D). maps arg to itself if arg is a member of 'P(D) and to 

.L'P(D) (that is, ¢>) otherwise. 
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Equality 

A first-order object is one whose meaning is identified with its syntactic structure. 

First-order objects are equal iff they are identical. Equality is the same as identity. They 

include atoms, booleans, and nested ordered pairs whose leaves are atoms and booleans. 

Given access to the atomeq primitive, the user could write his own equality predicate to 

test first-order objects for equality. Nevertheless, defining equality as a primitive strict in 

both arguments frees the interpreter to choose which argument to evaluate first. This can 

be important when computing certain types of set expressions, as will be seen in a later 

section. Simplification rules are explained below: 

equal?(..L, arg2) = ..LB 

equal? (argt, ..L) = ..LB 

If we know anything at all either argument, we know whether it is a member of Bl. (a 

boolean), Al. (an atom), DxD (an ordered pair), D>->D (a function) or 'P(D) (a set). As 

soon as we know this about one of the arguments, we can apply one of the following 

equalities. 

If B is known to be a boolean, then 

equal?(B, ezpr) = 

if bool?( ezp) then if(B, bool!( ezp ), not(bool!( ezp ))) else FALSE ft 

and similarly 

equal?(ezpr, B) = 

if bool?(ezp) then if(bool!(ezpr),B,not(B)) else FALSE fi 

If A is an atom, then 

equal?(A, ezpr) -

if atom?(ezp) then atomeq?(A,atom!(ezp)) else FALSE fi 

and similarly 

equal?(ezpr, A) = 

if atom?(ezp) then atomeq?(atom!(ezpr),A) else FALSE fi 

If F is a function, then 
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equal?(F, e:z:pr) - if func?(e:z:p) then .LB else FALSE ft 

equal?( e:z:pr, F) - if func?( e:z:p) then .LB else FALSE ft 

If Sis a set, then 

equal?(S, e:z:pr) - if set?(e:z:p) then .LB else FALSE ft 

equal?(e:z:pr, S) - if set?(e:z:p) then .LB else FALSE ft 

If P is an ordered pair, then 

equal?(P, e:z:pr) = 

and similarly 

if not( pair?( e:z:p )) then FALSE 

elseif not(equal?(left(P), left(pair!(e:z:p)))) then FALSE 

else equal?( right( P), right(pair!( e:z:p )))ft 

equal?(e:z:pr, P) = 

if not(pair?( e:z:p )) then FALSE 

elseif not(equal?(left(pair!(e:z:p)), left(P))) then FALSE 

else equal?(right(pair!( e:z:p) ), right( P) )ft 

Theorem: Though this primitive is defined recursively, its application is bound to termi

nate. 

Proof: Each recursion goes deeper into the ordered-pair tree, and at any stage of compu

tation, only a finite portion of any object is available for the primitives to act upon. 

Proposition: All our primitives are continuous, and all (except for ;9-reduction) are 

guaranteed to terminate on any finite input. 

Proposition: If the primitive is strict in one of its arguments, and if the outermost 

data constructor of that argument is already computed, then the primitive can simplify 

immediately. 

5.3.2 Executing a Program 

Let us execute (translate into the semantic domain) the object program: 

letrec 

inf be cons('joe, inf) 
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in 

car(inf). 

We start with an empty environment, so the initial input is: 

£[letrec inf be cons(' joe, inf) in car( inf)] D· 
Expanding the outermost call yields: 

£[car(inf))(V[inf be cons(' joe, inf)] D). 

There are still no simplifications to be performed, so we again expand the outermost 

function call, yielding: 

left(pair!(£[inf](V[inf be cons(' joe, inf)] 0))). 

Expanding the outermost function call yields: 

left(pair!( (V[ inf be cons(' joe, inf)] D)inf) ), 

and then: 

left(pair!([((.:F[fix]).XX. (£[cons('joe, inf)] 0 [X/inf]))/inf]inf)). 

Note that when introducing new lambda variables, one must be careful to standardize 

variables apart (rename bound variables to as not to confuse them with pre-existing lambda 

variables). Simplfiying (applying the environment) yields 

left(pair!((.:F[fix])(.XX.(£[cons(' joe, inf)] [X/inf])))). 

Expanding the outermost call yields: 

left(pair!((.XF. F((.:F[fix])F))(.XX. (£[cons('joe, inf)] [X/inf])))). 

Performing ,8-reduction yields: 

left(pair!((.XX. (£[cons('joe, inf)] [X/inf])) 

((.:F[fix])(.XX. (£[cons('joe, inf)] [X/inf]))))). 

Performing another ,8-reduction yields: 

left(pair!(£[cons('joe, inf)] p)), 

where pis: 

[((.:F[fix])(.XY.(£[cons(' joe, inf)] [Y/inf])))/inf]. 

Expanding the outermost function call yields: 

car(pair!(< (£['joe] p), (£[inf] p) >)). 
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This simplifies to: 

£['joe] p. 

Expanding the remaining function call yields: 

'joe. 

5.4 More on Computation Rules 

5.4.1 Motivation 

Vuillemin[V74) proves that for a language with strict primitives and flat domain (ex

cept the if/else, which is strict in its first argument), leftmost reduction is safe. However, 

many interesting languages do not meet these criteria. Consider the problem of non-flat 

domains. Suppose we have built a hierarchical domain using a sequence constructor, in 

our case'<,>' the ordered pair constructor. Suppose we are trying to compute an ordered 

pair, of which both elements are infinite lists. If we evaluating this object as a top-most 

goal using the left-most rule, no part of the right side would ever be computed. 

Nevertheless, one would like to limit computation to a primitive's strict arguments, 

rather than to rewrite function occurences in all arguments (even non-strict arguments) 

simultaneously. It is not always necessary to expand all outermost function calls in every 

step. Consider the if/then/else primitive, which is strict in just one of its arguments. 

We would prefer to evaluate the strict argument first, postponing evaluation of non-strict 

arguments, which may never be needed. Even if the primitive is strict in all its arguments, 

we may prefer to concentrate on just one at a time. If evaluation of the chosen strict 

argument fails to terminate (effectively computing the .l of the appropriate domain or 

subdomain), then the primitive expression as a whole denotes .l, and the values of the other 

arguments do not matter. If evaluation does produce a non-bottom value, the primitive 

may be able to simplify immediately. 

For a higher-order language this evaluation strategy is not always safe. Consider 

the unlikely (but valid) example in which we are computing an unapplied function as a 

topmost goal. Assume ezpt denotes an infinite list, and the interpreter is asked to evaluate 

the function 

>..f.( if/( ezpr 1 )thenezp2elseezp3 ). 

The if primitive is strict in the first argument. Though evaluation of /( ezpr1 ) fails to 

terminate, we cannot say that this application denotes bottom; its value depends on the 
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hypothetical value symbolized by the lambda variable. Since the lambda expression is not 

being applied to any argument here, the first argument of 'if' will not reduce to an element 

of the semantic domain. It remains as a parameterized description of a domain element. If 

the computed value is to be equivalent to the fixpoint definition in this circumstance, we 

must evaluate all three arguments of the 'if' expression simultaneously. To use leftmost 

evaluation with higher-order language, we must be content to evaluate a function only 

within the context of its application. It is not sufficient if we wish to compute a function 

for its own sake, where we cannot rely on evaluating the first argument and then reducing. 

Most functional languages are higher order, and many interesting ones do permit 

infinite lists. Yet, these are often implemented with a leftmost computation rule. This 

works so long as: 

a) all primitives are strict in the first argument (this is ususally true); 

b) one is only concerned with computing finite objects (computations for which the 

parallel-outermost rule terminates), though parts of infinite objects may be used during 

the computation. 

If the parallel outermost rule fails to terminate, then so will any other rule, and one might 

not care whether two non-terminating calculations are approaching the same limit. This 

compromise is inadequate for set abstraction. Sets can be infinite; even finite sets may 

contain non-terminating (but empty) branches. In such cases, computation of the set will 

never terminate. 

Since the elements of a set are not ordered, one cannot isolate a finite subset (analogous 

to taking a prefix of an infinite list), nor direct one's reference to the 'first' element of the 

set. At least, one cannot do this within the programming language. Yet, even when 

computation of the set never terminates, certain elements of the set might be computed 

within only a finite amount of computation. The user would certainly like to see those 

elements, as they are computed. We must have a reasonable way to compute a non

terminating goal. Prolog provides a precedent for this. A Prolog program with goal 

denotes a (possibly infinite) set of correct answer substitutions. Rather than waiting for 

the entire set to be computed, the system suspends and turns control over to the user every 

time another member of this set is computed. To evaluate a (possibly infinite) set, the 

system must provide the user with a series of finite approximations. This could be done 

interactively, with the system suspending each time a new element is ready for output, 
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resuming at the option of the user. 

Definition: An infinite object is computable if it is the limit of an infinite series of 

finite objects. 

Definition: Completene88 for such an interpreter means that any finite member of 

the denoted set will eventually be computed, even if only by providing an infinite series of 

finite approximations. 

Sequential Prolog interpreters are not complete in this regard, but, in principle, complete 

(breadth first) Prolog interpreters could be built. Perhaps in an interactive implementation 

of language with set abstractions, the programmer will be able to direct where in the set 

expression the computational effort should be concentrated. Analogous to online-debugger 

commands, such features pertain to the meta-linguistic environment, not to the language 

itself, so we will not consider these details any further. 

5.4.2 Better Computation Rules 

Vuillemin describes some computation rules, each based on a uniform type of substi

tution step. Choosing the substitution step depending on the form of the expression can 

provide greater efficiency without sacrificing safety. We describe a new computation rule 

below. It uses the parallel-outermost substitution step as a last resort, but seeks a more 

selective step when circumstances permit. The computation rule is recursively defined, 

in that in each substitution step, the recursive function calls chosen for function substi

tuion, depends on those chosen by the computation rule applied to each subexpression 

individually. 

We consider four separate cases: when the expression is a recursive function call (not 

a primitive or constructor); when the expression is headed by either a data constructor; 

when the expression is headed by a primitive function occurring within the context of a 

lambda expression; and when the expression is headed by a primitive function not within 

the context of a lambda expression (where we need not consider the presence of unbound 

lambda variables). 

Lemma: If the expression is a recursive function call, expanding only the main (single 

outermost) function call is a safe substitution. 

Proof: This is a parallel outermost substitution step, a substitution already proven to be 

safe [V74]. 
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Lemma: If the expression is headed by a data constructor, and if the set of function calls 

chosen to be expanded is the union of sets computed by applying a safe computation rule 

individually to each argument, then this is a safe substitution. 

Proof: By induction on the height of the term. If the substitution steps calculated for each 

subterm are safe, then the safety-defining equality holds individually for each argument, 

and therefore must also hold for the expression as a whole. 

Lemma: If the expression is headed by a primitive function occuring within the context 

of a lambda expression (so that unbound lambda variables may appear in the arguments), 

then choosing to expand all outermost function calls (parallel outermost) is a safe substi

tution. 

Proof: This is a parallel outermost substitution step, a substitution already proven to be 

safe [V74]. 

Lemma: Suppose the expression is headed by a primitive function not within the context 

of a lambda expression, representing a parallel operation not strict in any of its arguments 

individually. In that case, expanding the function calls in the union of sets computed by 

applying a safe computation rule individually to each argument is a safe substitution. 

Proof: By induction on the height of the term. If the substitution steps calculated for each 

subterm are safe, then the safety-defining equality holds individually for each argument, 

and therefore must also hold for the expression as a whole. One example of a primitive 

not strict in either argument would be the "parallel-AND" primitive, which evaluates to 

TRUE if either argument is true, even if the other argument diverges. 

Lemma: Suppose the expression is headed by a primitive function not within the context 

of a lambda expression, representing an operation strict in at least one of its arguments. 

Then let Arg be any of the arguments in which the primitive is strict, and let Set be a set 

of function calls chosen by a safe computation rule applied to A rg. Then any substitution 

step chosing all the occurrences in Set is a safe computation step for that expression. 

Proof: Because Set was chosen by applying a safe computation rule to arg, replacing these 

recursive function calls by n (and the remaining calls by the recursive function fixpoint) 

will give the save result in arg as if we had replaced all arg's function calls by n. Either 

this result is j_, or we already knew the outermost constructor of arg. But, we cannot have 

already known the outermost constructor, or the primitive function would already have 

simplified. Therefore it is j__ Since the primitive function is strict in that argument, it too 
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evaluates to L Thus, the safety equation holds for the primitive function expression, too. 

Note that if the primitive is strict in several arguments, this computation rule gives us a 

choice of substitution steps. 

These cases are all the possibilities. We must now prove the computation rule is safe. 

Theorem: A computation rule which chooses from among the above substitution steps 

depending upon the situation is safe. 

Proof: A safe computation rule is, by definition, one which uses only save computation 

steps. All the substitution steps described above were proven safe. 

The main advantage of this approach over simple parallel outermost is that, when 

a primitive is strict in an argument, and does not occur within the context of a lambda 

expression, we need look only in the strict argument for function calls to expand. This 

gives us some of the computational advantages of the leftmost (outermost) rule, without 

sacrificing safety. 

Irrespective of the need to compute infinite lists (and later sets), some may argue that, 

there is never any good reason to compute an unapplied function, nor any list structure 

containing such a function as an element. If one wishes to learn about a function, one 

can apply it on any number of arguments. Therefore, we only ask that our operational 

semantics be correct when computing objects from the domain 'E', where 

Though we will use functions as objects in defining objects in domain 'E', these functions 

will be either applied or ignored; they will never be included as part of the final answer. 

With this limitation, we need never compute an object within the context of a lambda 

expression. The body of a lambda expression needs not be evaluated until after application 

(,8-reduction). Consider an application of the form: 

(£[Ax. body]p1 )(£[arg]p2). 

Since a ,8-reduction is strict in the first argument, we only expand the first outermost 

occurrance of £: 

(A y. £[body]p1 (y/x])(£[arg]p2)· 

This immediately simplifies to: 
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The expression 'body' no longer occurs within the context of a lambda expression. So 

long as the outermost expression being computed denotes an element of e, we need never 

compute anything within the context of a lambda expression. 

Earlier, we commented that ,8-reduction of lambda expressions does not always ter

minate. This can only happen when a lambda expression is applied to another lambda 

expression, so that one ,8-reduction enables more. Consider the evaluation of: 

func!(e[..\x.xx) p)(e[Ax.xx] p) 

If we simplify both arguments of this ,8-reduction simultaniously, we eventually get: 

( ,\ y .yy )( ,\ y .yy ), 

a synonym for J., whose ,8-reduction will never terminate. We do not want non-termination 

to be expressed this way. This expression may be only a small piece of the main expression, 

and we do not want endless simplification to prevent computation of the other parts. When 

we use the new computation rule, delaying computation of a function until it is needed, 

the evaluation proceeds in a more orderly fashion: 

func!(..\y. e[xx] p[ylx])(£[..\x.xx] p) 

becomes: 

(e[xx) p[(£[..\x.xx]p) I x]), 

which becomes: 

func!((£[x)p[(£[Ax.xx)p) I x])( £[x)p[(£[Ax.xx]p )lx]). 

This, in turn, becomes: 

func!( £[..\x.xx]p )( £[x)p[( £[..\x.xx]p )lx]). 

To see that this is getting nowhere, let us do an expansion at E[[x]]: 

func!( £[ Ax.xx]p )( £[..\x.xx)p ), 

which is exactly what we started with. Therefore, all partial computations will simplify to 

J., yet because we never evaluate a function until its application, in no computation step 

need we deal with an infinity of simplifications. The key idea is to only evaluate the body 

of a function (lambda expression) after the function has been applied (after ,8-reduction 

has been performed). Our computation rule does this, so long as the top-level value being 

computed does not contain an unapplied function as a part. 
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Theorem: Our operational semantics is sound and complete for any program denoting 

(at the top level) a value from the domain 'E': 

E = (B.L8 + A .LA + ExE + 'P(E) ) .L· 

Other elements of domain D, such as functions, lists of functions, sets of functions et cetera, 

can be freely used as intermediate values. 

Proof: We proved the correctness of our computation rule under the assumption that 

within in each computation step, only a finite number of simplifications will be available. 

We have also shown that, if the program does not require computing a function for its 

own sake, but only in the context of an application, then this assumption is valid. The 

subdomain E describes just those objects of D not containing (unapplied) functions as 

parts. Computing these objects does not require evaluation of any lambda expression, 

except within the context of its application. 

Further optimizations are needed to make the implementation efficient. If each opti

mization maintains correctness, then the resulting efficient operational semantics will also 

be correct with respect to the normative denotational description. Much research has al

ready been done on techniques to implement lazy functional languages (see [P87]), and 

we will not discuss these techniques here. When proposing a language, it is good to show 

that it can be correctly implemented, at least theoretically. We have shown that if the 

denotational semantics is written carefully, so that all semantic primitives can be viewed 

as standard simplifications, and one correct implementation is automatically available. 

6. OPTIMIZATIONS 

This section improves the basic operational procedure described in the last chapter, 

concentrating on the efficiency of set abstraction. More general techniques for improving 

the efficiency of (pure) functional languages are available [P87], which we will not discuss 

here. 

6.1 Intuition Behind Optimizations 

In Section 3, we specified a Horn logic program using 'letrec' (the feature for creating 

recursive definitions), set abstraction, the conditional and the equality primitive. Execut

ing this program using PowerFUL's denotational equations as the interpreter would be 

analogous to using Herbrand's method to solve problems in logic. Herbrand's "generate

and-test" approach is simple but inefficient. 
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The resolution method avoids blind generation of instantiations, preferring to do as 

much work as possible on non-ground expressions. In logic programming, a logical vari

able denotes an element from the set of terms (the Herbrand Universe). In resolution, a 

logical variable becomes instantiated only to the extent necessary to satisfy the inference 

rule's equality test. Partial instantiation narrows the set of candidate bindings, without 

necessarily settling on a single choice. When performed to ensure equality of non-ground 

terms, partial instantiation is called unification, and the substitution implementing the 

partial instantiation is called a unifier. 

In PowerFuL, to compute a relative set expression, we normally begin by computing 

the generator set. Whenever we isolate an expression denoting an element of the genera

tor, a copy of the relative set abstraction is created, with the generator element expression 

replacing the enumeration parameter. All such instantiations are computed independently. 

We would like to modify this procedure so that when 'terms' (analogous to the Herbrand 

Universe) is the generator set, rather than enumerate its many simple objects we instead 

treat the enumeration parameter as a logical variable. An enumeration parameter gener

ated by 'ato1'118', or 'bools' can be viewed as a partially-instantiated, or constrained, logical 

variable. 

In Horn logic, each correct answer substitution provides ground bindings for the goal's 

logical variables. Members of this set can be grouped into families. Within a family, all 

answer substitutions share common aspects, with the remaining details varying freely. 

The Her brand derivation of one member of the family is almost identical to the Herbrand 

derivation for any other member. For each family of correct answer substitutions, Her

brand's method would derive each member individually, with an infinity of essentially 

similar derivations. Resolution, however, produces general computed answer substitutions, 

one per family. A general computed answer subsititution only partially instantiates a goal's 

logical variables, and does so in such a way that for any ground completion of the general 

computed answer substitution would result in a correct answer substitution. The deriva

tion of the general answer subsitution resembles a parameterized Herbrand derivation. 

Resolution performs modus ponens inferences on the non-ground clauses directly, 

rather than first instantiating them. Logical variables become partially instantiated (via 

a most general unifier) only to the extent necessary to satisfy the inference rule's equality 

requirement. In a sense, program execution is left unfinished, Though it is easy to extend a 

most general answer substitution, to produce (ground) correct answer subsititutions, this 
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is not done. Reporting results in the general form is more economical than individually 

reporting each of the infinite ways in which each most general answer can be extended. 

6.2 Optimization Technique 

Logical Variable Ab3traction 

To treat an enumeration parameter as a logical variable, we must recognize that it's 

generator is the set of first-order terms (or part of this set). An expression of the form: 

(>.x.body)+ .:F[[terms]] 

is rewritten term(x).body to indicate that 'x' is to be treated as a logical variable, rather 

than blindly enumerating its generator. The expressions atom(x).body and bool(x).body 

are constructed analogously. Rather than recomputing the 'body' for each trivial instan

tiation, we will evaluate 'body' in its uninstantiated form, leaving it parameterized by the 

enumeration variable, computing a parameterized set expression. This parameterized set 

expression stands for the union of all possible instantiations. We also hope to express 

results in this compact notation. 

We can use parameterized set expressions as generators for other set expressions. Note 

that: 

can be rewritten as: 

This is because the first expression is an alternate notation for: 

and the second is an alternate notation for 

and these are equal, due to the associativity of set union. 

When the body is in the form of a singleton set, we compute the expression within 

the singleton-constructing brackets. When the body of a general set expression is in the 

form of a union, we simplify it to be the union of two generalized set expressions. That is, 

term(x).(exp 1 U exp 2 ) 

is simplified to: 
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term(x).exp 1 U term(x).exp 2 • 

Of course, if the body is ',P', then the general set expression denotes a union of empty sets, 

and so the whole thing can be replaced by a simple empty set. These ideas hold as well 

for constrained general set expressions. 

We can compute a parameterized body, because expansions of recursive function calls 

(translation from syntax to semantics) will not not depend upon these parameters. There 

is one complication, however: the simplification of primitives. During a simplification 

stage of computation of the body, we may find a subexpression of the form p(x), where 

'p' is a semantic primitive, and 'x' is a parameter representing an arbitrary term. Were 

an actual term provided, the primitive might simplify immediately. Applicability of a 

primitive's rewrite rule will often depend upon what kind of term the logical variable 

stands for. Therefore, we must be able to perform simplifications when primitives are 

applied to parameters. In each case, one of the following techniques will suffice: 

Technique 1: Simple Reduction 

Often, implied or stated constraints on the logical variable provide sufficient infor

mation, already. In such cases, parameterization does not hinder simplification of the 

primitive. For instance, given: 

term( u).( ... func?( u) ... ), 

we can simplify 'func?(u)' to 'FALSE', without knowing the value of 'u', since any value 

would certainly not be a function. Below is a comprehensive list of similar situations: 

term(u).( ... func?(u) ... ) -+ term(u).( ... FALSE ... ) 

term(u).( ... func!(u) ... ) -+ term(u).( ... .LD,...D ... ) 

atom(u).( ... func?(u) ... ) -+ atom(u).( ... FALSE ... ) 

atom(u).( ... func!(u) ... ) -+ atom(u).( ... .LD,...D ... ) 

bool(u).( ... func?(u) ... ) -+ bool(u).( ... FALSE ... ) 

bool(u).( ... func!(u) ... ) -+ bool(u).( ... .LD,...D ... ) 

term(u).( .. . set?(u) ... ) -+ term(u).( ... FALSE ... ) 

term(u).( ... set!(u) ... ) -+ term( u ).( ... ,P •.• ) 

atom(u).( ... set?(u) ... ) -+ atom(u).( ... FALSE ... ) 

atom( u ).( ... set!( u) ... ) -+ atom( u).( ... ,P .. . ) 
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bool(u).( ... set?(u) ... ) -+ bool(u).( ... FALSE ... ) 

bool(u).( ... set!(u) ... ) -+ bool(u).( ... <f> ••• ) 

atom(u).( ... bool?(u) ... ) -+ atom(u).( ... FALSE ... ) 

atom(u).( ... bool!(u) ... ) -+ atom(u).( ... .LB ... ) 

bool(u).( ... bool?(u) ... ) -+ bool(u).( ... TRUE ... ) 

boo/( u).( ... bool!( u) ... ) -+ boo/( u ).( ... u .. . ) 

atom(u).( ... atom?(u) ... ) -+atom( u).( ... TRUE ... ) 

atom( u ).( ... atom!( u) ... ) -+ atom( u ).( ... u ... ) 

bool(u).( ... atom?(u) ... ) -+ bool(u).( ... FALSE ... ) 

bool(u).( ... atom!(u) ... ) -+ bool(u).( ... .LA ... ) 

atom(u).( ... pair?(u) ... ) -+ atom(u).( ... FALSE ... ) 

atom(u).( ... pair!(u) ... ) -+ atom(u).( ... .LvxD .. . ) 

bool(u).( ... pair?(u) ... )-+ bool(u).( ... FALSE ... ) 

bool(u).( ... pair!(u) ... ) -+ bool(u).( ... .LvxD .. . ) 

bool( u).( ... equal?( u, ex) ... ) -+ if( bool?( ex), if( u, ex, not(bool!( ex))), FALSE) 

boo/( u ).( ... equal?( ex, u) ... ) -+ if( bool?( ex), if(bool!( ex), u, not( u)), FALSE) 

atom(u).( ... equal?(u, ex) ... ) -+ if( atom?( ex ),atomeq?(u, atom!( ex )),FALSE) 

atom(u).( ... equal?( ex, u) ... ) -+ if( atom?( ex), atomeq?(atom!( ex), u), FALSE) 

term( u).( ... equal?(u, u) ... ) -+ term(u).( ... TRUE ... ) 

atom(u).( ... atomeq?(u, u) ... ) -+ atom(u).( ... TRUE ... ). 

PowerFuL semantic primitives always simplify, given the outermost constructor of 

any strict argument. If an argument replaces a nonstrict parameter, however, its value is 

irrelevant (at least until something about a strict argument is known). Consider 

term(u).( .. . if((t'[[exp 1]] p)u, exp 2 ) •• • ). 

The primitive 'if' is strict in its first argument, and would not simplify at this time, 

regardless of what term might replace 'u'. In such a case, leaving the body parameterized 

by 'u' is acceptable. 

Technique 2: Splitting by Type 
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Suppose the primitive applied to the parameter is one of these four: 'bool?', 'bool!', 

'atom?', 'atom!', 'pair?' or 'pair!'. 

Simple reduction suffices when one of these primitives is applied to a logical variable 

constrained to be an atom, or a boolean. When the variable is enumerated from 'terms', 

the simplification chosen depends upon the kind of term. Luckily, we need not consider 

each ground term individually. The set of terms consists of three subsets, the set of 

booleans, the set of atoms, and the set of ordered pairs of subterms. For each subset, 

simple reduction suffices. Let 'prim' represent one of these four primitives. An expression 

of the form 

term( u ).( ... prim( u) ... ) 

is an alternate notation for 

( ... prim(u) .. . )+(F[[terms]]) 

Since •+' is strict in the second argument, it must be correct to rewrite the argument to: 

( F[[bools]]) 

U (F[[atoms]]) 

U (term(u).term(v). < u,v >). 

Distributing ( ... prim( u) ... ) over the union yields: 

( ... prim( u) ... )+(F[[bools]]) 

U ( .. . prim(u) .. . )+(.r[[atoms]]) 

U ( ..• prim(u) ... )+(term(v).term(w). < v,w >). 

This is equivalent to: 

bool(u).( ... prim(u) .. . ) 

U atom(u).( ... prim(u) ... ) 

U term(v).term(w).( ... prim(u) ... )[< v,w > /u]. 

In the first branch of the union, we have partially instantiated the logical variable by 

constraining it to represent a boolean. In the second branch, we have constrained it to 

represent an atom. In the third branch, we have constrained it to represent a term which is 

an ordered pair of subterms. The primitive function simplifies immediately in each subset. 

We must now compute each branch of the union separately. 
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This is analogous to the use of most general unifiers in Horn logic resolution. Uni

fication prepares two clauses for modus ponens by instantiating them no more than is 

necessary to satisfy the equality requirement. One difference is that traditional Horn logic 

does not use negative information. Horn logic only considers instantiations to make the 

equality true. In PowerFuL, we are concerned with all possible outcomes. Some variations 

of Horn logic do consider negative information through the use of a dis-equality predicate 

and negative unifiers [N85] [K84]. We discuss primitives based on equality next. 

Technique 9: Splitting on Equality 

Equality is strict in each argument, simplifying, as soon as the type of either argument 

is known, to an 'if' expression which must know (before all else) the type (boolean, atom, 

pair, set or function) of the remaining argument. If one argument is a lambda variable 

enumerated from the set of terms, we first look at the other argument, to avoid splitting 

the logical variable into three subcases. This way, the preliminary computation of the other 

argument need be done only once, rather than once for each of the three subsets comprising 

'terms'. The worst that could happen is that computation of the other argument might 

diverge. In that case, we would never be able to compute the equality anyway, no matter 

what value the logical variable represented. However, if both arguments of the equality 

predicate are logical variables, we cannot delay them both. We may have an expression of 

the form: 

term( u).( ... term( v ).( ... equal?( v, u) ... )) 

Theoretically, one could break this into an infinity of special cases, in each case u and v 

each being replaced by an element of the set of terms. For some combinations the predicate 

'equal?' would simplify to 'TRUE', and 'FALSE' for other combinations. This could 

also have been done with the primitives described earlier, but it is better to deal with a few 

large subsets, than an infinity of individual cases. Splitting them into atoms, booleans and 

ordered pairs does not help. We must recognize that the instantiations fall into two cases: 

those for which the twe terms are equal, and those for which they are not. The subset 

handling the cases in which the two terms are equal can be summarized by replacing all 

occurrences of 'v' with occurrences of 'u': 

term(u).( ... term(v).( ... equal?(v, u) ... ) [v/u]). 

This then simplies directly to 

term(u).( .. .. ( ... TRUE ... ) [vju]). 
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It is easy to see that this is the case. Since there are no more occurances of 'v' in the 

body of 'term(v).body2 ', we are taking the union of instantiations by 'v' in which all 

possible instantiations of 'body2 ' are identical (since the body no longer depends on 'v'). 

Clearly, 'term( v ). body2 ' can now be replaced by 'body2 '. (In fact, this simplification can be 

performed whenever a body does not depend on the enumerating variable. For instance, 

the expression 'term(x).</>' can certainly be replaced by'</>'.) 

We also need to summarize the cases when u and v are not equal. This could be 

summarized by 

term(u).( ... term(v).if not(equal?(v, u)) then ( ... FALSE ... ) else</>). 

This summarizes the elements of the set for which which the two terms 'u' and 'v' are 

not equal. Is there a way to compute this further, without trying individually all possible 

combinations of unequal terms? 

Lee Naish [N85] proposes for Prolog a dis-equality predicate, defined on terms. His 

dis-equality predicate would fail when two terms are identical, succeed when two terms 

are identical, and delay when two terms are unifiable, but not identical. In the last case, 

the other subgoals would be executed first, until the values of logic variables have been 

instantiated enough to prove either the terms' equality or their dis-equality. If all other 

subgoals succeed, without instantiating the variables enough, Naish's Prolog gives an error 

message. This is not ideal behavior, since unequal instantiations can certainly be com

puted. A better altemative would be to make the dis-equality part of the solution, as a 

kind of negative unifier. Khabaza describes a way in which this can be done [K84]. In 

essence, the dis-equality becomes part of the general solution. Specific ground solutions 

can be generated from the general solutions by instantiating logical variables in all possi

ble ways subject to the dis-equality constraint. Constraint logic programming [JL87] sets 

another precedent for this approach. We accept general non-ground solutions, because it 

yields great efficiency, and because replacing term variables by arbitrary ground terms is 

such a trivial operation. Requiring such term enumerations to satisfy a few dis-equalities 

adds little to the complexity of the output, and makes it more compact. 

To express such a constraint, we could write the above subset as: 

term(u).( ... term(v)u f. v.( ... FALSE ... )). 

We have simplified the equality predicate by splitting into two expresions: one expression 

representing the cases for which the equality holds, and the other expression representing 
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the cases for which it is false, without the need to consider every case individually. 

Solving subsequent dis-equalities result in a constraint which is a conjunction of dis

equalities. If the satisfaction of other predicates cause 'u' and 'v' to become refined into 

the ordered pairs,'< ubu2 >'and'< v1 ,v2 >',respectively, then the dis-equality 'u # v' 

will become'< ubu2 >#< v~,v2 >',which simplifies to 'or(u1 #VI, t12 # v2)'. In 

general, the total constraint will be an andfor tree of simple dis-equalities. As these 

simple constraints are satisfied, they can be replaced by 'TRUE'. Those dis-equalities 

which become unsatisfiable can be replaced by 'FALSE', leading to further simplifications 

of the and/or tree. If the whole tree simplifies to 'FALSE', then we are enumerating an 

empty set, and the whole expression within can be replaced by </>. Similar techniques are 

used for the predicates 'atomeq?' and 'isA;?'. 

We summarize the optimizations relating to equality below. For the dis-equality of 

two term variables: 

term( u).( ... term( v) ... constraint.( ... equal?( v, u) .. . )) 

can be replaced by 

term(u).( ... con8traint( ... equal?(v, u) .. . ) [vfu]) 

U term(u).( ... term(v)and(con8traint, (u # v)).( ... FALSE ... )). 

For the dis-equality of two atom variables, we have: 

atom( u ).( ... atom( v) ... constraint.( ... atomeq?(v, u) ... )) 

replaced by 

atom(u).( ... constraint( ... atomeq?(v, u) .. . ) [vfu]) 

U atom(u).( ... atom(v)and(constraint, (u # v)).( ... FALSE ... )). 

When comparing an atom variable to a specific atom we have: 

atom(u).( ... constraint.( ... isA;?(u) ... )) 

(where 'A;?' is a particular atom), is replaced by 

( ... constraint( .. . isA;?(u) ... ) [u/A;]). 

U atom(u).( ... and( constraint, (u #A;)).( ... FALSE ... )). 

Note that as soon as the substitutions are performed, the predicates in question will be 

ready to simplify, using optimizations described earlier. These optimizations are of course 

symmetrical in the order of arguments to 'equal?' and 'atomeq?'. 

46 



Note that we consider the binding of logical variables separate from the definition of 

the equality primitive itself. Robinson also split unification into these components [R82]. 

We have generalized the approach to also consider negative unification. 

Technique 4: Splitting by TRUE and FALSE 

When faced with an expression of the form 

bool(u). body, 

and within 'body' is an occurrence of 'not(u)' or 'if(u, exp 1 , exp 2 )', then simplification 

requires the specific value 'u' represents. Since the set of booleans is very small, the default 

evaluation of •+• is good enough. The default evaluation (enumerate 'bools' first) results 

in this step: 

bool(u).exp -+ (exp)+{TRUE} U (exp)+{FALSE}. 

6.3 Results 

These optimizations avoid blind enumeration of the sets 'terms', 'atoms' and 'bools' 

when used as relative set abstraction generators. Instead, we treat the enumeration pa

rameter as a logical variable, sometimes constrained. An enumeration variable from the 

set 'atoms' is treated as a logical variable carrying the constraint that it can be bound 

only to an atom. Enumeration variables from the set 'bools' are handled analogously. Dis

equality constraints relating two logical variables are also used. With logical variables, one 

evaluates the generating set (the second argument of •+•) only as needed to compute the 

body (the first argument of •+•). Computing with logical variables and constraints gives 

the set abstraction facility the efficiency of resolution. The logical variable is merely an 

operational (not semantic) concept, improving the execution efficiency when using these 

special sets. The default procedure (generate, instantiate, and continue) handles more 

complicated generators, such as sets of functions, sets of sets, etc. 

For an example, suppose we wanted to compute term bindings for 'A', 'B' and 'C' so 

that lists [A, B] and [B, [' a, C] ] would be equal. That is, we wish to compute a unifier. 

The program lnight be: 

{ [A,B,C] : A,B ,C E terms, [A,B] = [B, [' a,C] ] }. 

Without the optimizations, the interpreter would produce a tree-like structure, whose 

internal nodes are the set-union operator, and with one leaf for each possible combination 

of bindings for terms 'A', 'B' and 'C'. Where the bindings created a unifier, the leaf would 
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be a singleton set containing the list of bindings. Where the the bindings did not form a 

unifier, the leaf position would be the empty set. The object would indeed by the set of 

unifiers. 

With the optimizations, only a finite union tree would be produced, with a few leaves 

containing the empty set, and one leaf containing: 

term( u).( {[[1 a, u], ['a, u], u]}) 

In a sense, with the optimizations, the program produces only the most general unifier. It 

is conceivable execution of a Horn logic program would mimic the operations of breath-first 

SLD resolution. 

Treating an enumeration parameter as a logical variable is practical because the gen

erating set 'terms' is so simple in structure. Wherever a logical variable is the argument 

of a primitive function, and the primitive function needs more information about its ar

gument to execute, the generating set is divided into a few subsets, thereby dividing the 

whole expression into subsets. In each subset, the range of the logical variable is narrowed 

enough that the primitive has enough information to execute. Generators are not limited 

to these special sets, however. 

Three techniques narrow the range of the logical variable. The choice depends upon 

the primitive being applied, and the constraints already in force. Some primitive simplifi

cations do not require splitting. Some require a two-way split, and others a three-way split. 

When performing primitive simplifications, it is efficient to do first those simplifications 

which do not split the computation into subcases, then those which split into two sub cases 

and save for last those requiring a three-way split. 

We have shown that, for the sake of efficiency, it is sometimes possible to compute (con

strained) non-ground set expressions when 'terms' is a set abstraction generator. Showing 

that this is always possible requires a systematic look at all the primitives which might 

operate upon logical variables, to make sure all possibilities are covered. We have already 

considered these primitives applied to logical variables: 'bool?', 'atom?', 'pair?', 'func?', 

'set?', 'bool!', 'atom!', 'pair!', 'func!', 'set!', 'if, 'not', 'isA;?' (for each atom 'A;' and 

'equal?'. 

The remaining primitives are: 'left', 'right', ',8-reduction' and •+•. According to the 

denotational equations, 'left' and 'right' are always applied in conjuction with the coercion 

'pair!'. Since we have already considered logical variables as arguments to 'pair!', we 
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need no special mechanism for 'left' and 'right'. Similarly, the denotational equation for 

function application applies the coercion 'func!' to the function position of the application. 

Since we have already considered logical variables as arguments to 'func!', we need no 

special mechanism for ,8-reduction, either. Analogously, the coercion 'set!' intercedes 

between <+• and its strict (the second) argument. 

Since any set can be used as a generator for defining a new set, we must be able to 

compute <+• when its argument is a non-ground set expression. Let 'head. body' represent 

a non-ground set expression, where 'head' either introduces a logical variable, or perhaps 

expresses a constraint on existing logical variables (introduced in a more global context). 

The expression: 

function +(head.body) 

can be rewritten 

head.(function +body). 

Eventually, all the logical variable introductions and constraints are peeled off the body, 

so that the ordinary simplification rules for <+• can be applied. The associativity of union 

assures that these forms are equivalent. Of course, this transformation requires that each 

logical variable receives a unique name, as in Prolog. Alternatively, where logical variables 

are differentiated by scope, one would use renaming techniques from lambda-calculus to 

avoid variable capture. 

Soundness Theorem: If t; is a partially computed parameterized set expression, and t;' 

is an approximation produced by setting all unevaluated function calls ('V, e or :F) to .L, 

then for every instantiation u replacing parameters with terms satisfying the constraints, 

t;'u approximates a subset of lim;-00t;'. 

Proof: The theorem is true because of the meaing of a parameterized expression (in terms 

of <+•), and the fact that all steps in a parameterized derivation replace expressions by 

equals. 

Completeness Theorem: A parameterized derivation computes (at least implicitly) all 

members of the set. 

Proof: This theorem is true because when dividing a parameterized expression into cases 

(for the purpose of simplifying a primitive), every possible instantiation of logical vari

ables (parameters) which satisfies the constraints is a possible instantiation of one of the 

subcases. No possible instantiation is ever lost. 
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7. CONCLUSIONS 

Proponents of declarative programming languages have long called for the combination 

of functional and logic programming styles into a single declarative language. Most difficult 

has been the problem of maintaining functions (and other higher-order constructions) as 

first-class objects, without losing referential transparency and practical efficiency. We have 

achieved all these objectives through a functional language incorporating set abstraction. 

Representative sample programs attest to the power and generality of the language. 

A set abstraction construct for both functional and logic programming has long been 

advocated, but its declarative and operational semantics has not hitherto been fully deter

mined. We showed that first-order absolute set abstraction is easily subsumed by relative 

set abstraction, which has a much simpler higher-order extension. Our approach supports 

higher-order constructs (functions and sets) as first-class objects. 

We presented a short denotational description which maps the syntax onto computable 

(continuous) semantic primitives. Of special interest is the novel use of angelic powerdo

mains. Although powerdomain theory was developed to described non-deterministic lan

guages, we use powerdomains to provide the semantics for set abstraction - an explicit 

data type in our language. 

We derived an operational semantics consistent with the denotational description. 

To do this, we extended Vuillemin's theory of correct implementation of recursion, and 

applied the resulting technique to the recursive denotational equations themselves. This 

methodology requires that denotational equations handle most recursion explicitly (so 

that the semantic primitives do not provide additional sources of non-termination). We 

developed a computation rule more efficient than the parallel outermost rule, but correct 

for this language, as established by a proof of its safety. 

Of special interest in logic programming is the set of terms, objects for which identity 

is synonymous with equality. We showed that, when the set of terms is used as a generating 

set in a relative set abstraction, the enumeration parameter can be computed as a logical 

variable, providing the efficiency of absolute set abstraction. In the general case, however, 

the enumeration parameters are instantiated by the various generator set elements as these 

elements are computed. Thus, generators need not be arbitrarily restricted to contain only 

first-order types. 

Expensive operational mechanisms (e.g. higher-order unification, general theorem-
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proving and unrestricted narrowing) are often associated with functional/logic program

ming combinations. Ordinary functional languages avoid these difficulties, propagating 

higher-order objects via one-way substitution, and defining equality only over first-order 

objects. By retaining these characteristics, our language avoids such computationally diffi

cult primitives. We have shown that logic programming can be combined with higher-order 

lazy functional programming in a way that is not only aesthetically pleasing, but also op

erationally feasible. 
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