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ABSTRACT 

A three-dlmensional scene. such as a proposed 
bU11dmg. an 1maglnaiy landscape, or an organiC molecule, 
is selected, described in abstract terms. and stored in a 
computer's memory. A person wears a special helmet, in a 
laboratory whose inner wall is dotted with "landmark" 
LEOs. The h~ is equipped With a location system and a 
proJection system. As the wearer moves in the laboratory, 
changing the helmet's position (and orientation) in a 
natural manner. the location system allows the computer 
to keep track of.the helmet's position, and the computer 
sends appropriate inf<ll'IIUltlon to the projection system, 
to display the vtew of the selected scene !suitably scaled) 
that would be seen by the wearer d\ll'lng this motion. 

The geometry of an arbitrartly-arranged, three
camera, headmounted location system for identifYing the 
position and orientation of the helmet, relative to 
"landmark" pinpoint-LEDs distributed over the inside 
wall of the laboratory, Is described in mathematical 
terms. A fast Newton-type method for performing the 
required positional computations, ts presented and 
evaluated. 
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1. INTRO:PUCTION 

The emotional appeal and practical usefulness of being able to 
experience what it is like to be somewhere without actually going 
there (the jungles of New Guinea or Ecuador, the top of Everest, the 
bottom of the Mindanao Trench, the craters of the Moon, the rooms 
and hallways of a proposed building, the landscape of a science-fiction 
adventure, the inside of a watch, a protein molecule, . . . ) is evident. 
The entire ffim and television industry attests to the idea's popular 
interest, and the advantages to the trainee-explorer, the anatomist, or 
the molecular biologist are clearly great. But the viewer of a movie is 
entirely passive, compelled to follow the motions of the photographer 
or animator, as the latter chooses the point of view. Some success in 
allowing the viewer to select and move his or her point of view has 
been achieved by projecting three-dimensional holographic images; 
but now the scene to be displayed is very much restricted in space. 

The subject of the present work is an altemative approach, in 
which the viewer walks or rides around a laboratory, as a picture of the 
selected scene is projected for him or her, related to the position and 
orientation of his or her head, as if the laboratory were magically 
transformed into the abstract scene. The scene can easily be scaled, 
so that several meters of movement can represent either many 
thousands of light-years of intergalactic space or a tiny fraction of a 
micrometer along the surface of a virus molecule. To achieve this 
effect, the viewer wears a helmet, on which are mounted a location 
system and a projection system. The inner walls of the laboratory are 
dotted with Mlandmark• infra-red J:,E:Os, whose positions are precisely 
known, and the location system detects the identities, and the 
positions relative to _,the helmet, of at least three of these LEOs, so as to 
determine the wearer's position and orientation in the laboratory (and 
therefore in the selected scene). Practical considerations, connected 
with the Mengtneertng balance" between directional sensitivity and 
breadth of vision, dictate that the location system should consist of 
three cameras, rather than one. The LEOS are Mlit" briefly. one at a 
time, in a cyclic manner; so that the location system identltles them 
by the time at which they are seen. 

We are not concemed, here, with the detailed specifications of 
the equipment, or with the working of the projection system. The 
focus of the present work is to obtain and analyze a method whereby 
the angular readings of direction, relative to the helmet, obtained by 
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the cameras, are combined with the known positions of the LEDS, to 
yield the position and orientation of the head-mounted system in the 
laboratory. This work is similar in spirit to that of E. Church (1945, 
1948); but the latter was limited to the considerably simpler case of a 
single camera, not practically useful here, but appropriate to work in 
aerial photography, for example. 

The general problem considered here leads to quite 
complicated equations, simplified only by their considerable 
symmetries. To make them manageable, vector transformations which 
may be unfamiliar to the reader are needed. These and various other 
mathematical details are collected in the Appendix, for the reader's 
convenience. 

To fix the practical considerations, we note that some 300 
readings per second can be made and recorded by the cameras in the 
computer (this can be increased as much as fivefold). Angular 

1 
deflections of as much as, say 60° in 5 second, are possible; so that, for 
successive readings, the computer will have to cope with angular 
deflections of up to 1 o of arc (translational movement is likely to be 
less abrupt). 

2. THE GENERAL THREE-CAMERA SYSTEM 

We consider the general geometry shown in Figure 1. Let 0 be 
the origin of coordinates. The origin, S, of the headmounted camera 
system is at (column) vector position s from 0. The optical centers of 
the three camera lenses are at U, V, and W, at vector positions u, v, 
and w, respectively, from S. Since the headmounted system is rigidly 
configured, it is clear that. in any position, 

u.v 

v.u (2.1) 

w.u w.v 

where [see (A1) - (AS) in the Appendix to this paper) (i) xT is the 
transposed (row) vector with the same components as the column 
vector x, (ii) x • y denotes the scalar product of vectors x and y (in 
matrix notation, x. y = xTy), (ill) x2 = x. x. The parameters a. b, c, d, 
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e. and f are given by the geometcy of the headmounted system (With 
a, b. and c positive). In other words, in terms of a "world coordinate 
frame" of reference {i, j, k}, say, if 

i.e., 

u = u1 i+~J+%k} 
v = 11,i+l':z}+L3k • 

w = ll1,i+~}+~k 

u = [ ~]. v = [ ~]. w = [ ~} 

Camera 

Fi~ure 1. 
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.P. = u12 + 111J.2 + 111J2 = a 

,;. = v12 + ui + V:32 = b • 

uf2 = w12 + w.;.2 + %2 = c 

v. w = w. v = v1 w1 + ~W;. + V:3Ws = d } 

w • u = u • w = wt u1 + W;_ll~J, + WsliiJ = e . 

u. v = v. u = u1 v1 + liiJ.~ + %L3 = f 

(2.4a) 

(2.4b) 

The Mlandmarks" (LEOs), A. B, and C, are respectively sighted from 
the cameras at U, V, and W, in the directions of vectors p, q, and r. 
However, only the directions of these vectors are significant (the 
magnitudes are arbitrary). We note that p, q, and r will be determined 
relative to their respective cameras' orientations. Thus, by suitably 
transforming the raw experimental observations, we may view these 
(column) vectors as satisfying a relation of the form 

p = k11 u+ f<21 v+ k:31 w} 
q = k12 u + "22 v + k:32 w • 

r = k13 u + f<23 v + k:3s w 

(2.5) 

where the nine components ky of the square matrix K (which will be 
invertible so long as the vectors {u, v, w} form a base) are all known 
even though u, v, and w are not. Equation (2.5) may be written as 

[p q r] = (u v w] K. (2.6) 

Note that, since K is invertible (with reciprocal x-1 = H, say), (2.5) or 
(2.6) implies that 

i.e., 

(u v w] = [p q r] H; 

u = h11 p+ ~1 q+ 1'1:31 r} 
v = h12 P + ~2 q + 1'1:32 r . 

w = h1sP+ ~sq+ 1'1:3sr 
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Now, we are given the actual spatial positions---relative to the 
origin o--of A, B, and C; namely, A, B, and C, respectively. Thus, we 
know that multipliers A., Jl, and v exist, for which 

If 

then (2.9) becomes 

s+u+A.p =A 

S+ V+ J.lll = B 

s+w+vr = C 

~+~+AP..! = ~ 
.sa+~.~s+~ =As 

~+~+Jllh = B.z 
53+%+Jlfl3 = Bs 

~+ ~+vr2 = C2 

53 + lL3 + vr3 = Cs 

(2.9) 

(2.1 0) 

(2.11a) 

(2.llb) 

(2.llc) 

There are thus altogether 15 scalar unknowns; namely, A., Jl. v, and the 
components of the four 3-vectors s, u, v, and w. To determine these, 
we have six independent equations in (2.4) and nine equations in 
(2.11). 

We can now proceed by eliminating, first, A., Jl, and v, and then 
5 1 • 52 , and 53 from the equations in (2.11), to yield three equations; 
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but a purely vectorial approach gtves us the same results more directly. 
First, we vector-multiply the equations in (2.9) by p, q, and r, 
respectively, to eliminate from these equations the unneeded 
parameters A., JJ, and v: 

SAp= (A-u)Ap} 

SAq = (B-v)Aq., 

sA r = (C-w) A r 

(2.12) 

where [see (A9) - (Al4) in the Appendix] x A y denotes the anti
commutative vector product of x and y. Then we scalar-multiply the 
equations in (2.12) by q and r, rand p, and p and q, respectively 
[using (Al5) and (Al6) of the Appendix], to eliminates: 

Is q r I = I CB-v) q r I = I cc-~ q r I 
Is r pI .. Icc-~ r pI = I !A-u) r pI 
Is P q I = I !A-u) P q I = I cs-v) p q I 

Using (Al7)--Fact 4--of the Appendix, and (2.13), we see that 

(2.13) 

I (B- v) q r I I (C- w) r p I I (A-u) p q I 
s = I I P + I I q + I I r. c2 .14l pqr pqr pqr 

which will enable us to recover s when we know u, v, w, p, q, and r. 

Now, by (2.5) with (All), we see that 

q A r = (k12 u + k22 v + Jcs2 w) A (k13 u + k23 v + ks3 w) 

= (k22k33 - k23k32) v A w + (k32kl3 - k33kl2) w A u 

+ (kl2k23 - kl3k22l u A v. (2.15) 

Hence and by analogy, using (A24) and (A26), we see that 
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q " r = I xl (h11 v " w + h12 w " u + h13 u " v) 

r" p = I xl (~1 v" w + ~2 w" u + ~ u" v) 

PI\ q = IKI!hsl VI\ W+ hs2 WI\ U+ hs3 Ul\ v) 

Since, by (A15), I X y z I = X • (y 1\ Z); 

it follows from (2.16) that 

I x q r I = I xl x . (h11 v" w + h12 w" u + h13 u" v) 

(2.16) 

(2.17) 

I y r pI = lxly.(~1 vAw+~wAu+~uAv) . (2.18) 

I z P q I = I xl z • !h:n v " w + hs2 w" u + 11s3 u " v> 

The equations in (2.13) not involving s are 

I (B-C+W-v) 

I (C-A+u-~ 
I (A-B+v-u) 

and, with (2.18), these yield 

q rl 
r pI 
p ql 

= 0 

= 0 

= 0 

I xl (B- c + w- v) • (h11 v" w + h12 w" u + h13 u" v) = o 

(2.19) 

IKI (C-A+U-W}.(~1 VAW+~2 WAU+~UAv) = 0 . (2.20) 

I xl (A- B + v- u) • !hs1 v" w + hs2 w" u + hs3 u" v) = o 

If we write lu v wl =.1, (2.21) 

we see that (since the determinant of a product of matrices equals the 
product of the determinants of the factor matrices, and since 
determinants are not altered by transposition}, by (2.1), .1 will satisfy 
the equation 
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a d 1 
tJ2 = I u II w 12 = d b e · • 

1 e c 

and, further, by (2.6), 

I p q r I = tJ lxl. 

Let us also write 

Dl = I (B-Q II w I. 1l.A = I (B-Q w u I. Da = I (B-Q 

El = I (C-A) II w I. E.l = I (C-A) w u I. ~ = I (C-A) 

Fl = I (A-BJ II w I. F2 = I (A-BJ w u I. F3 = I (A-B) 

Then (2.20) simpl1fles to 

huDl + h12D2 + h13D3 = tJ(h12- h1sJ 

~1E1 + ~2~ + ~~ :: tJ(~3- ~~) 

h:nFl + hs2F2 + hs3F3 = tJ(h:n- f1s2l 

3. NEWTON'S METHOD 

(2.22) 

(2.23) 

u 11l 

u 11l 

u 11l 
(2.24) 

(2.25) 

We see, by (2.24), that equations (2.4) and (2.25) are quadratic in the 
components of u, 11, and w, all the coefficients being known (or, at 
least, easily computed). It is easiest to solve these equations by 
Newton's method. We begin the computation with an initial 
approximation, (ul01, viOl, w!OI), which can, for instance, be the solution 
obtained (by Newton's method) for the most recent set of 
observations, as the wearer of the headmounted system moves about 

-9-



General Headmount Geometry 

the laboratory. (For the very first set of observations, some kind of 
initial guess must be used.) We now suppose that we have an 
approximate solution, (ulml, .,Cml, wlml), after m iterations. We define 
increments {Bulml, s.,Cml, BwlmlJ by 

suf.ml = ui1Tl+1) - ulml 

&J.ml = v(ITl+ 1) - vlml 

&JJ..ml = w(ITl+ 1) - wlml 

(3.la) 

Since the superscripts Mimi" and M(m+1)" will appear very frequently, 
from now on, we shall replace them by primes (' and • respectively). 
Then (3.la) will take the form 

8u' = U:'- u' 

&i=rl'-rl 

fJw' = ui' - ui 

(3.lb) 

Newton's method consists of lineartztng the problem, and solving for 
the increments which will reduce the discrepancies in the equations 
to zero. The linearized difference equations arising from (2.4) are 

U: • U: + 2U: • OU: = a 

rl • rl + 2rl • &i = b 

ui.ui+2ui.fJw' = c 

rl.ui+&i.ui+ri.Oul = d 

uf.U:+liui.u'+ui.OU: = e 

U:.ri+OU:.ri+U:.&i =f 

and, by (2.24) and (2.25), we have 
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hu [I (B- C) v' w'l + I (B- C) 8v' w'l + I (B- C) v' 8w'l] 

+ h12 [I (B- C) w' u'l + I (B- C) 8w' u'l + I (B- C) w' 8u'l] 

+ h13 [I (B- CJ u' ul + i!B- CJ &t' ul + I (B- CJ u' &tl] 

~1 [Icc-A) u wl +Icc-A) &t w·l +Icc-A) u 8w'l] 

+ ~2 [Icc-A) w u·l +Icc-A) 8w' u·l +Icc-A) w· 8u'l] 

+~[Icc-A) u· ul +Icc-A) &t' ul +Icc-A) u· &~I] 

= .1(~3- ~1), 

h:n [I!A-Bl v' wl + ICA-BJ 8v' wl + ICA-BJ v' 8w'l] 

+ %2 [I CA-B) w' u'l +I CA-B) 8w' u'l + ICA-Bl w' &t'l] 

+ hss [ICA-BJ u' ul + I!A-BJ 8u' ul + ICA-BJ u' &tl] 

(3.2c) 

(3.2d) 

(3.2e) 

While these equations are quite long, they nevertheless reduce to nine 
simultaneous linear equations for the nine unknown increments, with 
coefficients which are relatively simple linear combinations of the 
components of the previous iterate. We may further simplify the 
equations as follows. First, consider equations (3.2a) and (3.2b). Let 
us put 

cf' = a-u'.u' ~ = b-v'.v' c!" =c-w'.w 
2.1 • 2.1 • 2.1 

d*=d-v'.w' e-=e-w'.u' "'=f-u'.v'' 
L1 • L1 • J L1 

(3.3) 

where the asterisk (like the primes) denotes a dependence on m; and 
write 
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ou' = 8u v' 1\ w' + 821 w' 1\ u' + 831 u' 1\ v' 

&l = 8 12 v' A w' + 822 w' Au'+ 832 u' A v' 

ow' = 813 u 1\ w' + 823 w' 1\ u' + 833 u' 1\ u 

(3.4) 

Then. by Fact 2 of the Appendix and (2.21). on suitably scalar
multiplying (3.4), we see that 

and 

823+ 832 = d* 

831 + 813 = e* 

812 + 821 = .r 
which reduces (3.4) to 

where 

ou' = a* v' A w' + g w' A u' + (e* - 0 u' A v' 

Ov' = (f'-g}v'AW'+b*W'/\U'+77U'/\v' 

ow' = ( v' A w' + (d* - 77) w' A u' + c* u' A v' 

(3.5a) 

(3.5b) 

(3.6) 

(3.7) 

We are now down to three equations. (3.2c) - (3.2e), in the 
remaining three unknowns, g, 77. and (. From (3.6). we get. by (A19). 
that 

ov' A w' = (f' -g) (v' A w1 A w' + b* (w' A u1 A w' + 77 (u' A v1 A w' 

= (b* (w' 2) - 77 (v' • w1J u' + 177 (w' • u1 - (f' -g) (w' 2)) v' 

+ ((f' - g) (v' • w1 - b* (w' • u1J w', (3.8a) 

v' A ow' = ( v' A (v' A w1 + (d* - 77) v' A (w' A u1 + c* v' A (u' A v1 

= (c* (v' 2) - (d* - 77) (v'. w1J u' + [( (v'. w1 - c* (u'. v1J v' 

+ ((d* - 77) (u' • v1 - ( (v' 2)) w', (3.8b) 
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8w' 1\ u' = ( Cu' 1\ w' " u' + Cd* - 71) Cw' 1\ "' " u' + c* Cu'" .,, 1\ u' 

= [(d* - 71) Cw' • "' - c* Cu' • v') u' + [c* (u' 2) - ( Cw' • u'J u' 

+ [( (u' • v' - Cd* - 71) Cu' 2)] w', (3.8c) 

w·" 8u' = a• w' " (v' " w' + ~ w' " Cw' " "' + (e* - 0 w' " Cu' " v' 

= [Ce* - 0 Cv' • w' - ~ Cw' 2)] u' +[a* Cw' 2) - (e*- 0 Cw'. u') v' 

+ [~ (w'. "' - a• Cv'. w'l w', C3.8d) 

8u' 1\ v' = a• Cv' 1\ w' 1\ v' + ~ Cw' 1\ "' 1\ v' + Ce* - 0 Cu' " v' 1\ v' 

= [~ Cv' • w' - Ce* - 0 (v' 2)J u' + [(e• - 0 Cu'. v' - a• (v' • w'l v' 

+[a* {lr2)- ~ (u'. v'] w', C3.8e) 

u'" 8v' = (f' - ~ u'" Cv' 1\ wl + b* u' " Cw' A "' + 11 u' 1\ Cu' " .,, 

= [71 Cu' • v' - b* Cw' • u1l u' + [(f' - ~ Cw' • u1 - 11 (u' 2)) v' 

+ [b* Cu' 2) - (f' - ~ Cu' • v11 w'. C3 .Sf) 

Let us now write [compare C2.24)) 

D'1 = I CB- C) v' w•l, D'2 = I CB- C) w' u'l. 

D'3 = I CB- C) u' v'l; C3.9a) 

E'l = Icc -Al v' w'l, E'2 = Icc -Al w' u'l, 

E'3 = Icc -Al u ul: C3.9b) 

Fl = I CA-B) v' w'l, F2 = ICA-Bl w' u'l. 

F3 = lcA-Bl u' v·l; C3.9c) 

and, similarly, 

D'4 = CB- C) • u', D's = (B- C) . v', D'6 = CB- C) • w', C3.10a) 

E'4 = CC -A). u', E'5 = CC -A). v', E'6 = CC -A). w', C3.10b) 
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F 4 = (A -B). u', Fs = (A -B). v', Fs = (A -B). w'. (3.10c) 

Then (3.2c) - (3.2e) yteld that 

h11 {[b* w' 2 + c* v' 2 - d* v'. w'] D'4 

+ [77 w'. u'+ 'v'. w' -c* u'. v'-(t -¢) w' 2] D's 

+ [cd* -77) u'. v'+ (t -¢> v'. w'-b*w'. u'- 'v'2] D's} 

+ h 12{lcd* -77) w'. u' + (e* -0 v'. w' -c* u'. v' -~ w' 2] D'4 

+[a* w' 2 + c* u' 2 -e* w'. u'] D's 

+ [~w'. rt + 'u'. u -a*u. w-.(d* -ri) u2] D's} 

+ h13{[~u. w'+ 77 u'. u-b*w'. u'-(e*-0 u2] D'4 

+ [Ce*- 0 u'. v' + (f'- ¢) w'. u'- a* v'. w' -77 u' 2] D's 

+ [a• 11 2 + b* u' 2 -.r u'. u) D's} 

= L1(hl2- hl3)- (huD'l + hl2D'2 + hl3D'3), (3.lla) 

~I{[b* w2 + c* u2 -d* v'. w] E'4 

+ [77 w'. u'+ 'If. w' -c* u'. u-(t -¢> w' 2] E's 

+ [cd* -77) u'. If+ (t- ¢) v'. w'- b* w'. u'- 'u2] E' s} 

+ ~2{[Cd* -77) w'. u' + (e*- 0 v'. w'- c* u'. v'- ~ w' 2] E'4 

+ [a• w•2 + c* u' 2 - e* w'. u') E's 

+ [~ w'. u' + 'u'. v'- a* If. w'- (d* -77) u'2) E'6} 

{CONTINUED ... ) 
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+ ~{ku. w'+ 77 u'. 11'-lf'w'. u'-(e* -011'2] E'4 

+ [!e* - Q u'. v' + (f-.;! w'. u'- a• v'. ul- 71 u'2] E'5 

+ [a* u2 + lf' u'2 -.f' u'. v'] E'a} 

= ..1("23- "2t>- !"2tE'l + "22E'2 + "23E'3). (3.11b) 

hat {lb* w•2 + c* v•2- d* v'. w'] F4 

+ [77 w'. u' + 'v'. w'- c* u'. v'- (f-.;! w' 2] F 5 

+ [!d* -77) u'. v'+ (f -.;I v'. w'-b*w'. u'- '11' 2] Fa} 

+ ha2{[!d• -71) w'. u' + (e*- 0 v'. w'- c* u'. v'- ~ w' 2] F 4 

+ [a• w•2 + c* u' 2 -e* w'. u'] F 5 

+ [~w'. u'+ '"'. v'-a*v'. w'-(d*-77) u•2] Fa} 

+ hs3{[~ v'. w' + 77 u'. v' -lf' w'. u'- (e*- 0 11' 2] F 4 

+ [!e*- 0 u'. v' +(f-.;! w'. u'- a* v'. w' -71 u' 2] F 5 

+ [a* 11' 2 + b* u'2 - .f' u'. v'] Fa} 

= ..1(hat- ha2)- !ha1F1 + ha2F2 + ha3F3). (3.11c) 

These rather lengthy equations are very simply solved. They take the 
form 

M 71 = g, (3.12) 

' 
where 
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M11 = [h13 v'. w'- h12 w2)D'4 + [hu w2- h13 w'. u')D's 

+ [h12 w'. u'- h11 v'. w')D' 6• (3.13a) 

M12 = [h13 u' • v'- h12 w' • u')D'4 + [hu w' • u'- h13 u' 2)D's 

(3.13b) 

M13 = (h13 v' 2 - h12 v' • w')D'4 + [hu v' • w'- h13 u' • v')D's 

+ [h12 u'. v'- h11 v' 2)D'6, (3.13c) 

M21 = [~ v'. w'- ~2 w2]E'4 + [ll<J1 w2-~ w'. u')E's 

+ [~2 w' • u'- h..l1 v' • w')E' 6• (3.13d) 

M22 = [~ u'. v'- ~2 w'. u']E'4 + [~1 w'. u'-~ u'2)E'5 

+[~u'2 -~1 u'.v')E'6, (3.13e) 

M23 = [~3 v' 2 - ~2 v' • w')E'4 + [~1 v' • w' -~3 u' • v')E's 

+ [~2 u'. v'- 11<J1 v2)E' 6• (3.130 

M31 = [~ v'. w'- 1'1:32 w' 2)F4 + [1'1:31 w'2 - ~ w'. u')F5 

+ [1'1:32 w'. u'- 1'1:31 v'. w')F6• (3.13g) 

M32 = [~ u'. v'- 1'1:32 w'. u1F4 + [1'1:31 w'. u'-~ u•2)Fs 

+ [1'1:32 u' 2 - 1'1:31 u'. v')F6, (3.13h) 

M33 = [~ v' 2 - 1'1:32 v'. w')F4 + [1'1:31 v'. w'-~ u'. v')F5 

(3.131) 

and 
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gl = .d(h12 - h13l - (hu D'1 + h12D'2 + h13D'3) 

- hu {(b* w' 2 + c* v•2- d* v'. w'] D'4 

+ [- c* u'. v'-.t w' 2] D's 

+ [d* u'. v' + f v'. ul- b* ul. u'] D's} 

- h12{(d" ul. u' + e* v'. w'- c* u'. v'] D'4 

+ [a• uP+ c* u' 2 - e* w'. u'] D's 

+ [-a* v'. ul- d" u'2] D's} 

- h13{[- b* w'. u'- e* u2) D'4 

+ [ e* u'. v' + .t u1. u'- a* v'. w·] D's 

+ [a• v' 2 + b* u'2 -.t u'. v'] D's}· 

g2 = ..:1(~3 - ~ 1l - (~ 1E'1 + ~2E' 2 + ~3E' 3) 

-~~nb* w•2 + c* v·2- d* v'. w'] E'4 

+ [- c* u'. v'-.t w'2] E's 

+ [d" u'. v' + f v'. ul- b* w'. u'] E' s} 

- ~2ud" ul. u' + e* v'. w'- c* u'. v') E'4 

+ [a• w•2 + c* u' 2 -e* w'. u'] E'5 

+ [-a•v·. ul-d*u' 2] E's} 

- ~3u- b* w' • u'- e* v•2) E'4 

+ [e* u'. v' + .f u1. u'- a* v'. w'] E's 

+[a* u2 + b* u·2-.t u'. v'] E's}. 

-17-
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93 = .d(~~- ~2)- (~1F1 + ~2F2 + ~3F3J 

- ~1{[b* w•2 +co v' 2 - d* v'. w'] F 4 

+ [-CO u' • v' - .r w' 2] F 5 

+ [d* u'. v' + .r v'. w'- b* w'. u'] F 6} 

- ~2{[d* w'. u'+ e*v'. w'-CO u'. v'] F 4 

+ [a* w2 +co u·2- e* w'. u'] F 5 

+ [-a*v'. w'-d*u' 2] F 6} 

- ~3{[- b* w'. u'- e* 11' 2] F 4 

+ [e* u'. v' + .r w'. u'- a* u. w'] F 5 

+ [a• u2 + b* u' 2 - .r u'. u] F 6}. (3.14cl 

It will be noticed that the computation of these coefficients is greatly 
facilitated by the repetition of the same combinations of parameters. 
In particular, if we write 

P 1 = b*w'2+cov·2-d*v'.w' 

P 2 = -cou'.u-.fw' 2 

P 3 = d* u'. v' + .f fl. w'- b* w'. u' 

Q'1 = d* w'. u' + e* fl. w'- CO u'. u 

Q'2 = - a• w'2 +CO u•2- e* w'. u' 

Q'3 =..:a-u. w'-d*u' 2 

R'1 = -b*w'. u'-e*v'2 

R'2 = e- ri. rl+.fw'. rt-a-u. w 

R'3 = a• u2 + b* u•2 -.r u'. u 

-18-
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then (3.14) becomes 

Yt = L1(h12- h1s> - !huD't + h12D'2 + htsD's) 

- hu(Pl D'4 + p2 D's+ Ps D's) 

- h12!Q'1 D'4 + Q'2 D's+ Q's D's) 

- hls(R'l D'4 + R'2 D's+ R's D's), 

Y2 = .d!~s- ~~)- (~1E'1 + ~2E'2 + ~sE'sl 

- ~~(P1 E'4 + P2 E's + Ps E's) 

- ~2(Q'1 E'4 + Q'2 E's + Q's E's) 

- ~s(R't E'4 + R'2 E's + R's E's), 

Ys = .d(hst- hs2l- lhstFl + hs2F2 + hssFs) 

- hst!Pt F4 + P2 Fs + Ps Fe) 

- hs2!Q'1 F4 + Q'2 F5 + Q's Fe) 

- hss!R't F4 + R'2 Fs + R's Fe). 

(3.16a) 

(3.16b) 

(3.16c) 

. Thereafter, the solution of the system of three equations in three 
unknowns is easy to perform. 

Of course, as is well known, Newton's method is asymptotically 
at least quadratically convergent. This is a very fast rate of 
convergence, highly satisfactory for most purposes. [See §A4 of the 
Appendix for more detail; we shall return to this matter in §5.) 

4. OPERATIONS COUNT 

Let us now suppose that the equations (2.4) and (2.25) are 
reduced to linear forms (3.5), then (3.11), and finally (3.12) - (3.16); 
via (2.5), (2.22), (3.1). (3.3), (3.4), (3. 7), (3.9). (3.10), (A24), and 
(A26); and solved for u, v. and w by applying Newtonian iterations as 
explained above. We seek to establish the time required to perform 
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the necessary operations leading up to the process of solution and, 
from that solution, back to the position vector s; as well as the time 
required by each iteration of Newton's method. Since different 
computers have different timing characteristics for floating-point 
operations (FLOPs), and since these usually take considerably longer 
than elementary operations, such as conditional jumps, RAM read and 
store commands, integer count incrementations, sign-changes, shifts, 
etc. (which, anyway, are not excessively numerous in the kind of 
computation considered here); all we need to do is to count, on the 
one hand, all the multiplications and divisions (M/D), and, on the other 
hand, all the additions and subtractions (A/s). required by the 
computations being considered. The details of the required 
derivations are assembled in §A3 of the Appendix. 

Before the readings begin, we need to establish the values of a, b, 
c. d, e, and fin (2.1); and, by (2.22), these yield the value of L1. By 
(A33), the FLOP-count for computing L1 is 'lJ = 9 M/D + 5 A/S. We also 
need 2L1, which takes 1 A/S more. 

Now, each time that we take a set of location-readings, we 
identify three LED landmark position vectors A, B, and C, and a matrix 
K of direction-vectors relative to the headmounted coordinate system 
[see (2.5) - (2.8)). Some computation may be necessary to convert raw 
directional data from the three cameras into the nine components ky , 
but we shall assume that this is done very qUickly. We also require the 
vectors B - C, C -A, and A - B, for our computations; these three 
vector subtractions take a trivial 9 A/S to obtain. 

The process of inverting K to obtain its reciprocal H takes, by 
(A37), at= 27 M/D + 18 A/S; and I xl is derived, by (A38), as a 
by-product of this calculation in only 'Dw1th ~ = 2 M/D more. Then, we 
need the quantities L1(h12 - h23), L1(h12 - h23l. and L1(h12 - h23) in 
applying (3.16) to the iterations; these take an additional 
3 M/D + 3A/S. 

Once we have performed the iterations until a satisfactory error
estimate is obtained, we must use our final iterates u•, v*, and w*, say, 
to obtain s. To do so, we must first compute the vectors p*, q*, and 
r*, using (2.5); by (A41), this takes !M = 27 M/D + 18 A/S. We also 
need the vectors B - v•, C - w•, and A - u•; this takes 9 A/ s in all. 
Then we can proceed in two ways. 

(a) We can compute the approximation s• directly from (2.14). 
The computation of the common denominator I p* q* r* I takes 
only 1 multiplication, because of (2.23). By (A15) and (A33), the scalar 
numerators take 3'1J = 27 M/D + 15 A/S, to form the triple scalar 
products; then 3 divisions yield the scalar coefficients, and 
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3(3 M/D + 2A/S) complete the evaluation. Thus, in all. we need 
40 M/D + 21 A/S. 

(b) We can solve (2.11), taking advantage of the simple structure 
of the equations. Flrst. we respectively eliminate A. and Jl from the 
first pair of equat1o1;1s in (2.lla) and (2.1lb), yielding 

whence 

P2"s1"- P1"s2" = P2"(A1- u1"l- P1"(~- ~"), 

q2"51"- q1"~~ = q2"(B1- V1"l- q1"{B2- v2*l: 

and then we eliminate v from the last two equations in (2.llc), 
yielding 

whence (4.2) 

[The temptation must be resisted, to substitute the second algebraic 
formula in (4.1) into (4.2);,, this leads to more FLOPs!] An operations 
count on (4.1) and (4.2) shows that we need 14 M/D + 9 A/S in all. 
Clearly, the gain in using the second method ts considerable. 

Summing up, we see that the computations required at every 
location-reading reqwtr-e altogether 

Jl = 73 M/D + 66 A/S. (4.3) 

Now we tum to the computations entailed by each iteration. 
The equations to be solved are given by (3.12). with (3.13), (3.15), and 
(3.16). By (A40), it takes (j = 17 M/D + 11 A/S to solve them for ~. 71. 

and '· once the coefficients are known. 
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To get the Mg. we first need to calculate the six scalar products 
u•2, v•2, w•2, v'. w', w'. u', and u'. v'; this takes 6 x (3 M/D + 2 A/S). 
Then, we require the nine coefficients D'4 , D'5, D'6 , E'4 , E'5, E'6, F 4 , 

F 5• and F 6, defined in (3.10); this takes another 9 x (3 M/D + 2 A/S). 

Finally, by (3.13), we require 9 x (9 M /D + 5 A/ S). The total is 
126 M/D + 75 A/S. 

To get the Yt· we must first compute the six parameters a*, b*, 
c*, d*, e*, and .r. by (3.3), taking 6 M/D + 6 A/S. Next, we need to 
compute the three vector products v' A w', w' A u', and u' A v'; this 
takes, by (A31). 3'11 = 18 M/D + 9 A/S. Then we need the eighteen 
coefficients D'1, D'2, D'3, E'1, E'2• E'3, F 1, F 2, and F 3, defined in (3.9), 
and P'1• P'2 , P'3• Q'1• Q'2 , Q'3, R'1, R'2 , and R'3, defined in (3.15). The 
former take 9 x (3 M/D + 2 A/S) = 27 M/D + 18 A/S; the latter take 
another 24 M/D + 15 A/S. Finally, by (3.16), we require 
3 X (15 M/D + 12 A/S). The tot8J. iS 120 M/D + 84 A/S. 

All in all, we need 246 M/D + 159 A/S to obtain ~. TJ, and '· for 
one iteration. Next, we need to apply (3.6), with 27 M/D + 21 A/S, to 
get 8u', 8v', and 8w'; whence we finally get u", v", and w" in 9 A/S. 
Thus, the computations in every iteration of the Newton process 
described above require altogether 

'B = 273 M/D + 189 A/S. (4.4) 

5. THE REsTRICtED SYSIEM 

A considerable simplification is effected by restricting every 
iterate (ulml, vlml, wlml) = {u', v', w1 to conform to the exact relations 
(2.4); so that 

and 

Then, by (3.3), 

u' 2 = a. v' 2 = b, w' 2 = c, 

v'.w'=d. w'.u'=e, u'.v'=f. 

a* = b* = c* = d* = e* = .r = 0; 

-22-
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8u'.,; ~w'II.U'-'U'II.v' 

8fl = 1]U'I\ v'-~v' 1\ w' 

liul = 'v' 11. w' -17 w' 11. u' 

Thus, by (5.1) and (5.2), the equations (3.13) become 

(5.4) 

M11 = (dh13 - ch12JD'4 + (ch11 - eh13JD'5 + (eh12- dh11)D'6, (5.5a) 

M21 = (d~3 - c~2)E'4 + (c~ 1 - e~3JE'5 + (e~2- d~ 1)E'6 , (5.5dl 

M22 = ~-e~2JE'4 + (e~ 1 - a~3lE's + (a~2 - fil21lE'6 , (5.5e) 

M23 = (b~3 - d~2)E'4 + (d~ 1 - fil23JE'5 + (/'1"22 - b~1)E'6, (5.50 

M31 = (dha3- cha2lF4 + !cha1 - eha3lFs + (eha2- dh31lFa, (5.5g) 

M32 = (J'ha3- eha2lF4 + (ehal.:.. aha3lF5 + !aha2-.fha1lFa, (5.5h) 

M33 = (bha3- dha2)F4 + (dhal -.f'ha3lFs + (fh32- bhallFa, (5.5i) 

and (3.14) becomes, by (5.3), 

(5.6a) 

(5.6b) 

(5.6c) 

We can now analyze the reduced operations count, much as we 
did in §4. Before readings begin, we again need a, b, c, d, e. and j. 
from which we compute L1 by 9 M/D + 5 A/S. We do not need 2.£1, 
however, saving 1 A/S. 
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All the non-iterated computations needed to deal With each new 
set of location readings in the general case are stlll needed here; they 
take .1{ = 73 M/D + 66 A/S. However, now we also need to compute the 
twenty-seven coefficients 1n (5.5), unfortunately all different, each of 
which takes 2 M/D + 1 A/S. The total is 

J{.l = 127 M/D + 93 A/S. (5. 7) 

For each iteration, the same form of equations (3.12) must stlll 
be solved, for ~. 1J, and '; once the coefficients are known. this again 
takes 17 M/D + 11 A/S. 

To get the M y• we again first need to calculate the nine 
coefficients D'4 , D'5 , D'6 , E'4 , E'5 , E'6 , F'4 • F'5 , and F'6 , and this takes 
9 X (3 M/D + 2 A/S); then, by (5.5), another 9 X (3 M/D + 2 A/S). The 
total is thus 54 M/D + 36 A/S. 

To get the g 1, we first need the nine coefficients D'1 , D'2 , D'3 , 

E'1• E'2 • E'3 • F'1• F'2 • and F'3 • and this takes 9 x (3 M/D + 2 A/S); then, 
by (5.6), another 3 x (3 M/D + 3 A/S) are needed. Therefore, in all, 
we need 107 M/D + 74 A/S to obtain ~. 1], and '· for one iteration. To 
get 8u', 8v', and 8w' from (5.4) requires only 18 M/D + 9 A/S; whence 
we finally get u", v", and w" 1n 9 A/S. Thus, the computations 1n every 
iteration of the Newton process require 

1!.1 = 125 M/D + 92 A/S. (5.8) 

This is less than half of the count 1n (4.4). 

6. ANTICIPATORY INITIALIZATION 

In §3, we perfunctorily suggested that the initial approximation, 
actually (s!OJ, ulOJ. viOl. w!Olj, should be "the solution obtained (by 
Newton's method) for the most recent set of observations, as the 
wearer of the headmounted system moves about the laboratory." With 
a little further reflection, we can improve on this. As the observer 
wearing the headmounted system moves about, he or she can only do 
so by continuing the previous (translational or rotational) motion or by 
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applying a new force or torque to overcome the (linear and angular) 
inertia of his or her body, head, and helmet. This indicates that, by 
well-lmown, elementary dynamic principles, the values, and first and 
second derivatives with respect to time, of all the components of s, u, 
u. and w will be continuous and differentiable; though the third 
derivatives may be discontinuous. 

Suppose now that we have successive observations. made at 
equal time-intervals, which we shall denote by 

where Al-rl, Bl-rl, and chi are the positional vectors of the landmark 
LEDs, Al-rl, Bl-rl, and cit~, and xf-rl is the matrix of observed directions 
given by (2.5). After the application of the Newtonian process defined 
in §3 or §5 (or by direct solution), we can obtain the corresponding 
state, which we shall denote by 

(6.2) 

Let us suppose that we have obtained the states siT! for -r = 0, 1, and 2, 
by the method selected above. Then we may anticipate, by the 
continuity and differentlabillty of the values and of the first and second 
derivatives with respect to time (and, therefore, with respect to -r, 
treated as a continuous variable), and by Taylor's theorem, that a good 
approximation to the state (and therefore an excellent initial state for 
Newton's method) for any -r ~ 3 will be given by a quadratic fit to the 
three preceding states; that is, .if we ,temporarily write -r0 = -r - 2, then 
there are constants X, Y, and z. such that 

sl-rJ(OJ = X+ Y{-r- -roJ + Z(-r- -roJ2 = X+ 2Y + 4Z, (6.3) 

where 

sl-r-11 = X+ Y[(-r- 1) -1()1 + 2.[(-r- 1) - ToJ2 = X+ Y + z 
s!T-21 = X+ Y[(-r- 2) -1()1 + 2.[(-r- 2) - 11:J)2 = X (6.4) 

sl-r-31 = X+ Y[( -r- 3) -1()1 + 2.[( -r- 3) -1()12 = X- Y + Z 

This stmpltftes, after a little algebra, to yield 
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X= ,siT-2) 

siT-1) _ ,siT-3) 
y = 2 

,siT-1) _ 2 sfT-2) + sfT-3) 
z = 2 

whence (6.3) becomes 

s!fi!OI = 3siT-11 _ 38!'1'-21 + s!T-31. 

The use of this initial state; that is, more precisely, of 

sftl!OI = 3siT-1) - 3slT-2) + sfT-3) 

ultl(O) = 3u(T-1) - 3u(T-2) + uiT-3) 

vltl!OI = 3vlT-1) - 3vlT-2) + .,IT-3) 

wltl(O) = 3wl'l'-l) - 3w!T-2) + w(T-3) 

(6.5) 

(6.6) 

(6. 7) 

will ensure a super-fast convergence by Newton's method to the next 
state sltl, using the formuhe already developed above. 

7. CONCLUSIONS 

We have seen that the equations for the position and orientation 
of the general three-camera headmounted location system--(2 .4). 
(2.14), and (2.25), with (2.5) - (2.8), (2.21), (2.23), and (2.24)--can 
be solved by using a method of Newton's type. It is advantageous to 
restrict the method to require (5.1) and (5.2), when the increments 
in the iterates are given by (5.4); then the (3 x 3) system (3.12) must 
be solved, with coefficients given by (5.5) and (5.6). 

By (5. 7) and (5.8), we see that each set of location readings 
requires, if we perform m* iterations in all to achieve a given accuracy, 

.)Ol.L + m* 'B .L = (127 + 125m*) M/D + (93 + 92m*) A/S; (7 .1) 
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or, let us say, approximately, 

(m* + 1)(127 M/D + 93 A/S). (7.2) 

It is rather difficult to estimate directly the number m• of iterations 
needed. However, by the formulae (A54l and (A55). we do know 
that--asymptotically as the errors tend to zero--if the improvement 
in any error norm (such as the largest absolute error among the 
components of u, v. w, and s), in one iteration, is by a factor qJ; then 
the improvement in the next iteration w1ll be by the factor qi2. (In the 
one-dimensional case, by (A48), we know that there is a constant C, 
such that, as tf.rrd ~ 0, 

tf.m+l) - c tf.rrd2; (7.3) 

tf.m+l) 
- c tf.nd, 

tf.ml 
whence (7.4) 

and therefore 
tf.m+2) _ c tf.m+ll _ & tf.mJ2 
tJ.m+ll 

[tf.m+lT 
- tf.ml . (7.5) 

In the multi-dimensional case, the argument is slmllar.] One way of 
describing this is to say that. in each iteration, one gains twice as 
many sfgnljicant digits as in the previous iteration. Thus. a relatively 
short experiment w1ll indicate the number of iterations needed to 
achieve the required accuracy. We note that the greatest change in 
the orientation of the headmounted system, from reading to reading, 

2lt 
w1ll be of the order of 1° = ~ < 0.02 radian. Thus, the initial iterate 
(uiOl, viOl, wiOlj will differ from the true answer {u, v, w) by a relative 
error not exceeding 2%. If we apply the anticipatory initialization 
outlined in §6 above. we may expect a much better initialization, and 
therefore an even faster convergence to the required accuracy. 

As a final guiding remark, we· may point out that we have 
assumed 300 readings per second. For real-time operation, this gives 

1 
us 300 second = 3,333 11sec. to perform the computations in (7.2). If 
we suppose that we are using a typical 1 MFLOPS (1 million floating
point operations per second] machine, then the (m* + 1)(127 M/D 

+ 93 A/S) operations needed take some 220(m• + 1) 11secs. to 
3333 perform. This means that we have available time for some 220 - 1 

= 14 iterations. This should be ample. 
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&-PENPIX 

Al. THREE-DIMENSIONAL WCT0R ALGEBRA 

We denote (column) vectors by italic boldface characters (e.g., 
A, B, C •...• p, q, r, .... x, y, z). We suppose that there is 
a "world coordinate frame" of reference, given by the origin 0 and 
a right-handed orthonormal triad {i, j, k}. Relative to this, we write, 
for example, 

" = ~1 i + ~j + ~3 k 

y = 111 i + 1121 + 773 k • (All 

z = C1i+C2J+C3k 

or (A2) 

The transpose of any matrix is denoted by appending the superscript 
suffix T • For instance, if x is a column-vector, its row-vector transpose 
is xT ; thus, e.g., 

(A3) 

The scalar product of vectors x and y is defined to be 

(A4) 
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The magnitude (Mlength") of a vector z is denoted by I z I and defined 
to be 

(AS) 

We note that, since, by (AI), 

(A6) 

it follows that 

f2 = .f = Jc2 = 1, i .j = J. k = k. i = 0. (A7) 

It also follows from (A4) that I z I = 0 if and only if ' 1 = ' 2 = ' 3 = 0. By 
(A4), the scalar product is clearly linear in both its factors. 

The angle between vectors x andy is denoted by B:xy and is 
defined by the relation 

(AS) 

If lxl ~ 0, lyl ~ 0, and x. y = 0, we say that the vectors x andy are 
71: 

orthogonal; and, by (AS!. B:xy = 2; i.e., the vectors are mutually 
perpendicular. Note that x • y is the product of the magnitude of y and 
the length of the projection of x onto y (or, of course, vice versa). 

The vector product of vectors x and y is defined to be: 

?.z 713 - ~3712 

XI\ Y = ~3711 -~1713 

~1712 - ~2711 

It follows immediately that 

XI\Y = -yi\X, 
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and that 

Note that we may also write (A9) as a formal determinant 

i ~1 111 

""Y = J Qz 112 

k ~ 113 

Further, by (A6) and (A9), 

Fact 1. 

i 1\ i = J 1\j = k 1\ k = 0 

i 1\} = -}1\ i = k 

J 1\ k = - k 1\j = i 

kAf = -f/\k =} 

(All) 

(Al2) 

(Al3) 

(Al4) 

where kxy denotes a untt vector (i.e., I kxy I = 1) perpendicular to the 
plane of" and y, so directed that (:IC, y, kxyl form a right-handed triad. 

Proof. By (A4) and (A9), 

and, similarly, " • (:IC 1\ y) = 0. Thus " 1\ y is perpendicular to the 
plane of" and y. Also, by (A4), (AS), (AS), and (A9), 

I"" Yl 2 = (~2113- ~3112)2 + (~3111- ~1113)2 + (~1112- ~2111)2 

= ~221132 - 29.z~3112113 + ~321122 + ~321112 -2~1 ~3111 113 

+ ~12 1132 + ~121122 -2~1~2111112 + ~221112 

{CONTINUED ... } 
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= c.;12 + .;22 + .;s2H77'12+ 7722 + 77s2l 

- c.;1771 + ~772 + .;s77s 12 

= lxl2lyl2-lxl 2 lyl2cos2 8xy = lxl2lyl 2 sin2 8xy. 

This proves (Al4) to within a factor of ±1. Finally, consider the case of 
x = i and y = j, when x A y = i A j = k, by (Al3). Since {i, j, k) is a 
right-handed triad, k = ku. The ~lationship (Al4) holds for all x and 
y, by continuity considerations. 

Note that the expression on the right of (Al4) shows that the 
magnitude of x A y equals the area of the parallelogram with the two 
vectors x and y as adjacent sides. 

We now consider two products of three vectors. The triple 
scalar product is defined to be x • (y A z). It follows, from (A4), (A9), 
and (Al2), that 

X.(yAZ) = (XAy).z = = I X y z I. (Al5) 

Fact 2. I x y z I equals the volume of the parallelepiped with x, y, 
and z as adjacent sides (with the usual "right-hand rule" convention 
for its sign). Thus, I x y z I = 0 if any two of the vectors are equal. 

Proof. We have seen above that t = I y A zl = I yll zl sin 81/Z is the area 

of the parallelogram with y and z as adjacent sides; and the vector y A 
z is perpendicular to the plane of this parallelogram. Furthermore, as 
we have also seen earlier, x .. t = I x II t I cos Bxto which is the magnitude 
of t times the projection of x perpendicular to the plane of y and z. 
Therefore, x • (y A z) equals the volume of the parallelepiped defined 
by the three vectors, By (Al5) or the result just proven, if any two of 
the vectors are equal, the parallelepiped collapses to zero volume. 

• A corollary of Fact 2 is: 

FactS. +lx y zl =+IY z xl =+lz x yl 

= -I z y X I = -I y X z I = -I X z y I. (Al6) 
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Fact 4. If I x y z I ;1: 0, then, for any vector t, 

(Al7) 

Proof. Since I x y z I ;1: 0, the vectors x, y, and z form a base: 
so, certainly, there are unique K. L, and M, such that 

Kx+Ly+Mz = t. (Al8) 

Thus, I t y z I = t . (y A z) = K I x y z I. since I y y z I 
= I z y z I = 0, by Fact 2. The rest of (Al7) follows simllarly. 

Using the determinant form of (Al5), we see that (Al7) is 
nothing else than the famous C~r Rule for the equations (Al8). 

We now turn to the triple vector product, x A (y A z). 

Fact5. X A (y A Z) = (z A y) A X = (X, z) y- (X, y) z. (Al9) 

Proof. By (A9), 

[
711(~1,1 + ~2,2 + ~3,3)- ,1(~1711 + ~2712 + ~3713)] 

= 712(~1 '1 + ~2,2 + ~3,3) - ,2(~1711 + ~2712 + ~3713) : 

713(~1 '1 + ~2,2 + ~3,3) - ,3(~1711 + ~712 + ~371~ 

which proves (AI9). [Of course, since y A z is clearly perpendicular to 
the plane of y and z, it follows that x A (y A z) is in the plane of y and z. 
and perpendicular to x. Hence, we get (Al9) at once, to within a 
scalar factor; however, this factor is rather hard to determine.) 

Fact 6. If I x y z I ;1: 0, then, for any vector t, 

(t.~ ~.~ (t.~ 
t = I I (y A z) + I I (z A x) + I I (x A y). (A20) xyz xyz xyz 
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Proof. Again, it is easy to see that the triad of vectors {y A z. z Ax, 
x A y) form a base; so that there are unique P, Q, and R, such that 
t = P (y A z) + Q (z A x) + R (x A y). Thus, t . x = P I x y z I. as 
before; and the rest of (A20) follows similarly. 

hct7. (X A y) • (z A t) = (X. Z) (y. t) -(X. t) (y. Z). (A21) 

Proof. By (A15), with Facts 3 and 4, (x A y) • (z A t) = I (x A y) z t I 
= I t (x A y) z I = t . [(x A y) A z) = (t • y) (x • z) - (t • x) (y • z); hence 
(A21). Similarly, by Fact 5, we get {recovering Fact 4) that 

FactS. (xAy)A(ZAt)= It x ylz-lx y zit 

= I t X z I y- I t y z I x. (A22) 

A2. RECIPROCAL OF A (3 X 3) MATRIX 

The determinant is defined by 

ku k12 k13 

lxl = ~1 1<22 ~ 
ks1 ks2 less 

= kuk:z2kss- kuk:zsks2 + k12~sks1 

- kl2k21ks3 + kl3~lks2- kl3~2ks1· 

If we put 

[ 

~2kss - ~3k32 

G = ~ks1 -~lkss 

~1 ks2 - ~2ksl 

ks2k13 - ksskl2 

kssku - ks1 k13 

kslkl2- ks2kll 

then it is easily verified, by (A23), that 

-:n-

k12~3 - k13~2 

k13~ 1 - ku ~3 

kll ~2 - kl2~1 

(A23) 

J (A24) 
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KG = GK = IKII, (A25) 

where I denotes the unit matrix. Hence, if we define 

H • [ 

hu h12 

~] ~1 ~ = lxl-1a. (A26) 

hsl hs2 

then we get that B= x-1. (A27) 

AS. ALGEBRAIC OPERATION COUNTS 

Turning to the matter of operation counts, we first seek the 
number, qJ, of FLOPs needed to evaluate a (3 x 3) determinant. Two 
methods are available to us. (a) We can use the formula in (A23), 

which evidently needs 6 x 2 M/D (multiplications and/or divisions--in 
this case, multiplications) and 5 A/S (additions and/or subtractions). 
Thus, 

!21al = 12 M/D + 5 A/S. (A28) 

(b) We can perform the Gaussian-elimination kind of transformations 
to reduce the determinant to diagonal form. 

a * * 
[1) 1 * * 

[2) 1 * * [3) 

* * * ~ * * * ~ 0 f3 * 
* * * * * * 0 * * 

1 * * 
[4) 1 * * [5) 

~ 0 1 * ~ 0 1 * (A29) 

0 * * 0 0 r 

NOTES: * denotes an arbitrary entry ln the tableaiL 

[1) By Interchanging a pair of rows, if necessary--noting that any such 
Interchange entails a change of sign ln the detenntnant--try to make 
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the (1, 1) entry, a. non-zero. If this Is Impossible, the first column Is null 
and therefore the detennfnant must be zero: term1Dat1ng the process 
Immediately. 

[2] 2 dlvls1ons by a are required 1n the first row. The value a Is noted. 

[3] 2 x (2 multipllcatlons and 2 A/S) are required to reduce the (2, 1) and (3, 1) 
entries to zero. By interchanging last two rows, lfnecessmy. try to make 
the (2, 2) entry, /J, non-zero. If this Is impossible, the determlnant must 
be zero, and the process termtnates Immediately. 

[4] 1 divfslon by /J Is required 1n the second row. The value /J Is noted. 

[5] 1 multlpllcatlon and 1 A/S are requ1red to reduce the (3, 2) entry to zero. 

The value of the determinant is afjy. Unless r = 0, we need 
2 multiplications to obtain this value. Combining these multiplications 
with the FLOPs listed in the notes above, we get 

!D(b) = 10 M/D + 5 A/S. (A30) 

(c) We can use the triple scalar product [see (A15)]. The generation of 
the vector product of two vectors takes 3 x (2 multiplications and 
1 subtraction), yielding 

'II = 6 M/D + 3 A/S. (A31) 

Then, the computation of the triple scalar product, by way of the 
scalar product, takes another 3 multiplications and 2 additions, 
yielding 

!D(c) = 9 M/D + 5 A/S. (A32) 

Thus, method (c) is slightly preferable and should be adopted, yielding 

!D = 9 M/D + 5 A/S. (A33) 

Next, we f?eek the number, !1{. of FLOPs needed to find the 
reciprocal of a (3 x 3) matrix. Again, there are two likely methods. 
(a) We can use (A24) and (A26), for which we require 
9 x (2 multiplications, 1 subtraction, and 1 diVision): so that 

• 
~a) = !D + 27 M/D + 9 A/S. (A34) 

(b) We can use triple Gaussian elimination. A tableau is set up, with 
the given matrix on the left and a unit matrix on the right. It is then 
transformed as follows. 
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a * 
* * 
* * 

* 
* 
* 

1 * * 
0 /3 * 
0 * * 
1 * * 
0 1 * 
o o r 

1 * 0 
0 1 0 

0 0 1 
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1 0 0 

0 0 1 

Ill * 
* 
* 

* 
* 
* 0 0 1 

•ool3l 1** 

$10 -+ 01$ 

* 0 1 0 * * 
* 0 0 [51. 

* * 0 -+ 

1 * * 
0 1 * 
0 0 1 * * 1 

* * * 

* * * 
* * * 

171 1 0 0 

-+ 0 1 0 

0 0 1 

NO'I'ES: * again denotes an arbitraiy entiy in the tableau. 

* 
0 

0 

0 0] [2) 

1 0 

0 1 

* 0 0 141 

* * 0 
* 0 1 

* 0 0 

* * 0 

* * * 

[6) 

*** [8) 

* * * 

* * * 

(A35) 

Ill By interchanging a pair of equations (i.e., rows), 1f necessary, tiy to 
make the (1, 1) entiy. a, non-zero. lfthls 1s impossible, the first column 
1s null and therefore the given matrix has no reciprocal. 

[2) 3 dtvlsions by a are required in the first rowof the tableau. The '1' in 
position (1, 4) becomes a-1, a case of*· 

[3) 2 x (3 multipllcations and 3 A/S) are required to reduce the (2, 1) and (3, 1) 
entries to zero. By interchanging last two equations, 1f necessazy, tiy to 
make the (2, 2) entiy, p, non-zero. lf this 1s impossible, again the given 
matrix has no reciprocal. 

[4) 3 dlvlsions by P are required in the second rowof the tableau. The '1' in 
position (2, 5) becomes p-1, a case of*· 

[5) 3 multipllcations and 3 A/S are required to reduce the (3, 2) entiy to zero. 
Hopefully, the (3, 3) entiy, y, 1s not zero. lf r = 0, then the given matrix 
bias no reciprocal. 

[6) 3 dMsions by yare required in the third row of the tableau. The '1' in 
position (3, 6) becomes y-1, a case of*· 
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[7] Begln the "back-substitution" process. 2 x (3 mult1pl1cattons and 3 A/S) 
are required to reduce t;he (2, 3) and (1, 3) entries to zero. The right half of 
the tableau ftl1s with $. 

181 3 multtpl1cations and 3 A/S are required to reduce the (1, 2) ently to zero. 

The left half of the tableau is transformed :Into a unit matrix, and the 
right half becomes. the required reciprocal matrix. Combining the 
FLOPs listed :In the notes above, we get 

~} = 27 M/D + 18 A/S. (A36) 

If we require the value of the determinant of the matrix, too, it is no 
extra work to note the coefficients a. /3. and r. as we go along in (A33), 
and the determinant value, af3r, is obtained by only two additional 
multipllcatlons. Clearly, the second method is again preferable, 
yielding 

1(. = 27 M/D + 18 A/S. (A37) 

and !Dwtth ~ = 2 M/D. (A38) 

Very analogous is the problem of the number (j of FLOPs required 
to find a single vector solution of a system of three equations :In three 
unknowns. Again, Gaussian elimination is a prime candidate, and the 
table.au sequence is very similar to (A35) above. 

a * * * ~[: * * T' 
1 * * * 121 

* * * * * * * -+ 0 f3 * * 
* * * * * * * 0 * * * 

1 * * * 
[3] 1 • * * 

[4] 1 * * * 
[5] 

-+ 0 1 * * -+ 0 1 * * -+ 0 1 * * 
0 * * * 0 0 r * 0 0 1 * 
1 * 0 * 

[6] 1 0 0 * 
[7] 

-+ 0 1 0 * -+ 0 1 0 * (A39) 

0 0 1 * 0 0 1 * 
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[2[ 

[3] 

[4] 

[51 

[6] 

[7] 

We get 
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3 divisions by a are required in the first rowof the tableau. 

2 x (3 multipllcatlons and 3 A/S) are required to reduce the (2, 1) and (3, 1) 
entries to zero. 

2 divisions by fJ are required in the second rowof the tableau. 

2 multiplications and 2 A/S are required to reduce the (3, 2) entry to zero. 

1 dMslon by yls required in the third rowofthe tableau. 

Begin the "back-substitution• process. 2 x (1 multiplication and 1 A/S) 
are required to reduce the (2, 3) and (1, 3) entries to zero. 

1 multiplication and 1 A/SIs required to reduce the (1, 2) entry to zero. 

(j = 17 M/D + 11 A/S. (A40) 

It is easlly vertfted that the multiplication of two (3 x 3) matrices 
will reqUire 9 x (3 multiplications and 2 additions). yielding 

!M = 27 M/D + 18 A/S. (A41) 

A4. MuLTI-DIMENSIONAL NEWTON METHOD 

We begin With the one-dimensional Newton method for 
iteratively computing the solution ~ of the equation 

fl.~ = 0. (A42) 

Taylor's expansion is 

a.tr.xl 1 2 a~:{bxl j(x+h) =fl.x)+h""dx+2h a + ... (A43) 

Newton's method (sometimes referred to as the Newton-Raphson 
method) consists of selecting a suitable initial iterate (guess). xiOl. 
approximating ~; and. thereafter, using the itnearized form of (A43) to 
obtain the (m+1)-st Iterate, xlm+1l, from the m-th iterate, xlml: 

.tr.xlm+1l) ~ 0 = .tr.xlml) + cxlm+1) - xlml) a.gj:::/l . (A44) 
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This is usually written in the form 

Jm+l) - ~Jm) - ntmJ1 
X' - X' f( m r (A45) 

If we write efml = xf.ml _ ~ (A46) 

for the error in the m-th iterate, so that 

xJ.ml = ~ + efml and xf.m+ll = ~ + e(m+ll, (A47) 

then (A42) - (A44) yield that 

0 _ ft~ _,mJ oft~) 1 _,m12 o2J(~ 
- .. , + e' 0~ + ~ e' 0~ + ... 

+ relm+ll - efmlJ {a~f + elml ~~~ + ... } 

"' e(m+ll oft~ {1 + O[elmlJ} - ~efml2 a2J{~ {I + O[elmlJ}· 
0~ 0~ • 

oft~ o2ft~ 
so that, if--af" and 0~ are non-zero (which is true in most cases), 

then 

(A48) 

This is referred to as quadratic convergence. 

If we now consider a system of n equations in n Wlknowns, 

Ji_(~l· ...• ~nl = o. i = 1, ...• n; (A49) 

then Taylor's expansion becomes (for i = 1, -.· . , n) 
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ft!x + h) = ft!x1 + h 1, • • . , Xn + hJ 

n aft(x) 1 n n a2ft(x) 
= f~x) + L h.J dx + ~ L L hJ hk ax ax + · · · • (ASO) 

j=1 :1 ./=1 J=1 :1 k 

and Newton's method becomes 

n aj~x(ml) 
0 = ft(x!ml) + L !x}m+ 1) - x}ml) a (m) . (A51) 

./=1 xj 

Writing (A52) 

for the error in the j-th component of the m-th iterate, we can use 
(A49) - (A51), much as before, to yield 

_ ~ cmJ a1~~1· .... ~,.J 1 ~ ~ cmJ cml a21~~1· .... ~,.J 
0 - .(., ~ ax + 2' .(., .(., ej ek ax ax + ... 

J=1 :1 ./=1 k=1 :1 k 

- ~ !m+1l aj~~1 ' • • • • ~,.J {1 + o[ I !ml I]} - .t.. e1 ax max1 e1 
./=1 :1 

(A53) 

a1~~1· · · · · ~nl so that, if at least one ea<;h of the partial first derivatives ax 
:1 

a2f~~1· ...• ~nl 
and of the partial second derivatives ax ax are non-zero (which 

:1 k 
is again true in most cases). then • 
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as D18X; I e}mJ I --. 0. (A54) 

Thus the quadratic convergence is preserved. 

It is relatively simple to verify that the relation (A54) is satisfied 
by the asymptotic form 

(A55) 

where K is a positive constant (depending on the functions J1, ••• , f,J 
and 1C is another, satisfying 0 s 1C < 1. 

A5. THE TWO.DJMENSIONAL PROBLEM 

It is tempting to consider a simplified problem, in which 
everything occurs in the plane (two dimensions), rather than in three
dimensional space. It is intuitively plausible to consider a two-camera 
system, in this case; but let us temporarily retain the three cameras. 
Referring to §2 and adapting to two dimensions, we find that (2.4) 
simplifies to only five equations; namely, 

U2 = ul2 + lii.J.2 = a 

,;. .. vl2 + ~2 = b 

ufl = wl2 + ~2 = c 

V.W = W,V = V1UJ:t + ~U2 = d 

w. u = u. w = wtu1 + U2lii.J. = e 

whose solutions satisfy, for some lfl, 
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_ ecos l(I-...Jac-e2 sin VI 
ul- {C 

esin VI+ ...Jac- e2 cos VI 
~= {C 

= dcos l(I-...Jbc-d2 sin VI 
vl {C 

d sin VI+ ...J be - d?- cos VI 
~= {C 

wt = ..JC cos "" ~ = ..JC sin VI 
(A57) 

The last equation of (2.4) becomes 

(cf- de)2 = (be - d2) (ac - e2J. (ASS) 

which is a relation among a, b, c. d, e, and j---l'edundant, for our 
purposes. The equations(2.11) reduce to 

(A59) 

We can eliminate A., J.l, and v as before, leaving us with three equations 
for the three remaining unknowns, VI• s 1 , and s2 • Thus, a solution is 
likely. 

By contrast. if we follow intuition and limit ourselves to only two 
cameras, then (A56) further shrinks to 

,;. = vl2+~2 = b} 
vf2 = wl2 + ~2 = c ; 

v.w = w.v = vtll1. +~U2 = d 

whose solutions satisfy, for some VI· 
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_ d cosy- ..Jbc- d2 sin 1(1 
vl - ~ ' 

w1 = ..fC cos vr. 

d sin "'+ ..J be - rJ.2 cos "' } 
~= ~ 

1L2 = Vc Sin 'If 

[compare (A57)]; and (A59) d!.minishes to 

sl + wl + vrl = Cl 

~ + lL2 + vr2 = £; 

(A61) 

(A62) 

and, when we eliminate A. and J.l., we are left With two equations for the 
same three unknowns, 'If, s 1, and s2. Thus, a solution generally cannot 

be uniquely determined. Indeed, for any choice of the angle 'If, we can 
get v and w from (A61); whence q and r are determined by the 
reduced form of (2.5). 

q = ~2v+ks2w}· 
r = ~V+ks3W • 

and then s 1 and s2 follow from [compare (4.1)] 

~~~-~-~~~-~-~~~-~+~-~ 
S:l = q1r2- q2r1 . . 

In this case, intuition turns out to be entirely misleading! 
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