
•

!

Towards a Large-Grain FFP Machine

The FFPM Project

Gyula A. Mag6
Raj K. Singh

Vernon L. Chi

in collaboration with the
Microelectronic Systems Laboratory
The University of North Carolina
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

This work was sponsored by NSF/CISE/MIPS under grant number MIP-8702277
and ONR under contmct number N00014-86-K-0680. To be presented at TENCON
'89 session (IEEE region 10 conference) on "Functional Progmmming Languages:
Theory and Applications", November 22-24, 1989, Bombay, India. The authors
gratefully acknowledge the valuable contribution of the entire FFPM project team:
Edoardo Biagioni, Tai-sook Han, William Partain, David Plaisted, Jan Prins, Bruce
Smith and Donald Stanat of UNC, and Ting Feng, Charles Molnar, and Fred Rosen
berger of Washington University.

Reference and title
TR89-0l8
Towards a. Large-Grain FFP Ma.chine

•

Publication history

Version 1.0: 24 May 1989

•

'
TOWARDS A LARGE-GRAIN FFP MACHINE 1

1. Introduction

G.A. Mago, RK. Singh and V.L. Chi
Deparbnent of Computer Science

University of North Carolina
Chapel mn. N.C. 27599-3175

Linear, or almost linear, scaling within wide parameter ranges has been an
important goal of many multiprocessor projects, and it is a goal that is proving
to be hard to reach. A pivotal organizational issue for multiprocessors is
locality of references, but a frequent choice is to ignore the issue and provide a
rich interconnection network to support arbitrary references. Such high-flux
networks [ULL841 will be hard to build on a large scale, as doubling the size of
such networks means far more than doubling the cost. In addition,
performance growth will be far less than linear as a function of the network
size. Amdahl [AMD88) offers a simple, quantitative analysis to support such a
claim for hypercube networks, and his analysis shows that locality of references
is indeed a parameter crucially influencing how well a multiprocessor scales.

This paper is concerned with a multiprocessor whose design centers around
systematically and automatically preserving locality in computations. The FFP
Machine (FFPM) [MAG79) is a small-grain multiprocessor originally designed
for the direct, reduction-style execution of the FFP language [BAC78). It
employs massive parallelism 1n its operation (a) to perform computations
specifled by user programs, and (b) to perform operating system functions,
such as locating reducible applications and managing storage throughout the
system.

lThls work was supported In part by NSF grant MIP-8702277 and by the Ofilce of

Naval Research, Contract N00014-86-K-o680.

1

•

•

•

The operating system functions are always massively parallel in this machine
(e.g., all PEs always work together to find reducible applications), whereas user
programs exploit parallelism to widely differing degrees. Assuming that few
application programs are inheretly massively parallel, it is probable that a large
grain implementation of the FFPM (we shall call it LGFFPM) could perform as
well for most applications. Only in the most massively parallel of applications
programs would the original FFPM be expected to excel. Such a machine
would not enjoy the benefits of massive parallelism in its operating system
functions, and thus it is likely to be substant1ally different from the original
design.

This paper briefly describes an LGFFPM, and offers various comparisons with
the original FFPM design.

The FFPM has been described elsewhere [MAG79,MAG80,MAG84, MAG89],
and this paper builds upon those descriptions. Some of the main ideas of the
FFPM, such as the (permanent) linear representation of the FFP expression,
carry over into the new design. The main difference is that the LGFFPM has a
large-grain leaf processor (we shall refer to it as LP) as opposed to the small
grain leaf cell of the FFPM. All other differences are consequences of this.

2. Description of the I..GFli'PM

Some important characteristics of LGFFPM are the following:
(1) The leaf processor (LP) holds a substring of the FFP expression (typically
hundreds or thousands of FFP symbols), and its behavior is equivalent to that of
a subtree ofT and L cells in the small-grain FFP Machine. In the example of
Figure 1, two RAs (Band C) are fully contained in an LP and two others (A and
D) are spread across more than one LP .

){(A IL-> _ce>_cc_>< _ __.l I o > c

Figure 1

2

(2) The LP contains S cells (5 for symbol), each of which is an FFP symbol
plus related information. All 5 cells are of the same size, and they form a linear

• linked list. This list is the permanent representation [MAG89) of the FFP
expression .

•

•

•

(3) Expressions eligible for being rewritten are the innermost applications, and
are called reducible applications (or RAs for short). An RA fully contained in
an LP is a local RA. otherwise it is a global RA.

(4) Expressions expand by having new 5 cells inserted into the linked list of
existing 5 cells. The process of creating new 5 cells, and removing 5 cells not
needed any more, is called local storage management Uocal because it takes
place within an LP). Global storage management is needed only when at least
one LP runs out of available storage. This is accomplished by moving the
contents of LPs that are full (or about to be overfilled) to other LPs. This is
stm!lar to what is usually called load balancing .

(5) Only global RAs make use of the T cells. The linear representation of the
FFP expression preserves locality, and allows effective use of the binary tree
interconnection network which is dynamically partitioned to allocate parts of it
to disjoint RAs; thus the root of the whole network never becomes a
bottleneck. Partitioning is incremental: as soon as a global RA comes into
existence, its component tree machine gets constructed with little delay (by
setting appropriate switches in the T cells) without having to interrupt any of
the ongoing computations in the machine. By contrast, in the small-grain
FFPM partitioning is not incremental: the tree of T cells is always emptied
before the network is repartitioned.

2.1. Unear Representation and Leaf Processor Capacity

The number of 5 cells within an LP varies during execution. The nominal
number of 5 cells typically put into the LP by global storage management is a
changeable parameter of the system, which could be something between 64
and several thousands. The value of this parameter should be chosen in such
a way that space remains for a certain amount of expansion in the LP. As

3

•

•

•

•

execution proceeds, the LP may find itself holding fewer or more than the
nominal number of S cells. Of course, too many S cells will tend to slow down
execution .

The transient representation is not needed by local RAs. Most such RAs can be
executed in a single pass (possibly using a stack to get through arbitrary
expressions). The transient representation is identical to that in the small
grain FFPM, with possibly some pointers added to speed up access to certain S
cells that are roots of subexpressions.

2.2. Overall Operation ofLGFFPM

This is very different from the small-grain version for several reasons:

(1) Global storage management (STMG for short) should be done rather
infrequently because (a) partitioning just after global storage management is
costly: it requires a full scan of the new contents of the LP to rebuild the
representation (the LP must explore the new expressions it now contains); (b)

all RAs except those needing global STMG should be allowed to complete their
execution before STMG shifting takes place (this avoids many complications
in the reduction routines and the kernel, and results in smaller S cells to be
shifted).

(2) Global storage management gm be done infrequently, because the actual
capacity of an LP is much larger than its nominal capacity. Thus each LP can
manage its own storage for a while.

(3) Partitioning should be done frequently so as not to delay the simple RAs.

! (4) Partitioning ~ be done frequently, if it is done incrementally, i.e.,
without disrupting ongoing computations .

•
So the overall operation can be characterized by saying that partitioning may be
performed an arbitrary number of times between two successive global storage
managements. Thus the notion of machine cycle is eliminated.

4

'

•

•

•

•

Subcomputations (RAs) synchronize with each other much less frequently than
in the FFPM, which makes for a "more distributed," "more asynchronous,"
and, from the performance point of view, more responsive operation.

2.3. PartltloDIDg

Partitioning is global, and w1ll be done frequently, and incre entally, i.e.,
without emptying the tree, or disturbing ongoing computations any way. The
global port of LP (one of the ports that connects to the nearest T cell. briefly
described in Section 2. 7) always contains the current partitio g information
about the contents of LP (this requires only three bits [MAG84]).

I ((A I I) ()) I (a)

I ((A I I ()) I (b)

I (I I ()) I (c)

Figure2

When the controller demands partitioning by sending down a s itable packet,
all global ports respond without delay with their respect! e three bits.
Different LPs do not synchronize with each other while doing is. Thus the
global network does not necessarily "see" a well-formed expressi at all times,
as shown in snapshot (b) of Figure 2. The partitioning switches may be set in
response to an ill-formed expression, but the part of the networ connected to
the ill-formed expression w1ll not be used. This is accomplished as follows: (1)
Component tree machines corresponding to RAs just finishing execution are
emptied. (LPs are synchronized here.) (2) LPs involved in proce ing such RAs
do their final rewriting, and update the partitioning informatio at the global
ports, although not necessarily at the same time. (3) The parti oning packets
pick up this new information (different LPs do not synchronize th each other

5

•

•

•

here). (4) Every LP ascertains that the partitioning packet took the new
information before it begins to send into its component tree machine .

P1: P2:

P3: P4:

Figure 3

Incremental partitioning means that the partitioning switches of a T cell may
be reset whlle parts of that T cell are involved in some computation. Since an
arbitrary T cell has four distinct partitioning configurations (shown in Figure
3), it may, during partitioning, make one of the sixteen possible transitions
among those configurations. Figure 4 shows all the possible state transitions of
the T cell. During transitions Pl to Pl. P2 to P2, P3 to P3, and P4 to P4 the
switch settings do not change. Thus all parts of the T cell making one of these
transitions are able to provide continuous,. uninterrupted connection during
partitioning. In transitions P2 to P4, and P4 to P2, the right side channel may
serve an RA that still computes. Similarly, in transitions P3 to P4, and P4 to
P3, the left side channel may serve an RA that still computes. In the remaining

6

•

•

•

•

' •

•

eight transitions, the FFP expression under the T cell has changed sufficiently
. so that the tree can be assumed to be empty (rule (4), above, gurantees this) .

Figure 4

2.4. Storage Management

When an expression expands, the corresponding RA tries to perform local
STMG first. If there is not enough room in the LP, it switches to requesting
space from global STMG, and then waits till the requested space is provided.

Global STMG is needed when there is not enough space left in the LP to do
local storage management. Once the controller decides that global STMG is
needed, it begins to prepare for it by winding down the computations and
emptying the tree. This is done by not allowing RAs to start whose execution
is expected to take a long time. In particular, every RA estimates its
execution time from its operator and from the number of LPs involved in it, and

7

•

I

•

•

informs the controller. The controller periodically broadcasts a time-limit for
those allowed to start up. An RA execution starts only if estimated execution
time is within the allowed limit. If no global STMG is needed, the controller
broadcasts the largest integer available as the time limit. Otherwise, it
broadcasts the time needed for the longest RA currently in progress to flnish.

2.5. The Reduction Routines

The reduction routines define the effects of FFP functions and functionals.
They differ from the small-grain versions only in details forced by the change in
granularity, but these differences are considerable. Some important details of
execution depend on the following: (a) whether the RA is strictly internal to
an LP1; (b) whether an RA uses transient representation; (c) whether an RA
uses local or global STMG.

2.6. Message Waves

Most communications among LPs are permutations: each item has a unique
destination. In the small-grain version the corresponding port of the L cell is
programmed to look for a unique item. In the large grain version, messages
carry target addresses so that only a range check needs to be done by the LP
port to decide acceptance or rejection.

Sorting is an important operation. The LP must presort its contents before
sending a stream into the tree (since each T cell merges two sorted streams),
thus it is not wtse to interrupt sorting in order to do global storage
management. (If sorting could be interrupted, then the machine would have to
know which of the messages got through, and after global storage management,
re-sort its contents again before resuming the sort operation.) Having to run a
sort till completion, before performing global storage management, is a
disadvantage, but probably not a big one .

8

•

•

2.7. LP hardware and software

The leaf processor (LP) hardware consists of an Instruction set processor, and
ports connected to one T cell and two other LPs. The T cell is the gateway to
the Interconnection network. which is a binary tree In the simplest case. (A
richer Interconnection network, such as a 20 rectangular grid, may require
more ports.) There are three ports that connect LP to the T cell above. Two of
the ports connect to the partitioned part of the Interconnection network
(corresponding to the details shown In Figure 3), whereas the third port,
referred to as the global port, connects to the non-partitioned (also called
global) part of the Interconnection network. The two ports leading to two
other LPs are used for global storage management only.

The software for the LP could be organized as a set of communicating
sequential processes. In a (yet unpublished) solution worked out by Tat-sook
Han. there is a process dedicated to each hardware port and to each of the
four types of tasks shown In Figure 5 .

(a) I (-------1 (c) I (----> I
(b) 1------> I (d) 1----------1

Figure 5

The LP gives top prtortty to processing global RAs. It is Involved With at most
two of them: (with the notation of Figure 5) either (d) alone, or one or both of

.: (a) and (b). In the latter case, there may be many RAs fully contained within
the LP. In which case a process corresponding to (c) in Figure 5 works on
one at a time.

9

'

•

•

•

•

3. Comparison

The chief motivation for a large-grain version of the FFPM is that it requires a
lot less hardware than the small-grain version, and the majority of the
hardware can be off-the-shelf. It might be expected that performance would
suffer greatly. Fortunately, there are many factors mitigating such a
performance loss (some of them are listed below). As a result of these factors,
the large-grain version might in fact be faster on certain computations, and
cost/performance is likely to improve substantially.

3.1. Advantages of Large-Grain FFPM

(1) There is no need to .load function deflnitions dynamically. A basic set of
primitives would be stored in the machine permanently, and others loaded as
needed by the FFP program before execution begins. The facilities for dynamic
loading are in place should the need arise, but would not be used routinely .

(2) Smaller S cells are shifted during global STMG, since there is no need to
move unexecuted reduction routine code as in the small-grain FFPM .

(3) Local STMG is often possible, because the capacity of LP is large. When
local storage management is used, copying a subexpression from one place to
another (e.g., copying the function expression when executing Apply-to-All)
does not require requesting a sufficient amount of space prior to copying the
expression. doing global storage management, and then copying the
expression. The expression is simply distributed to all participating LPs
where instances of it are inserted it into the linked-lists of S cells in the
appropriate places. In this way many FFP primitives can finish without
waiting for global storage management.

(4) Thanks to incremental partitioning, RAs held by several LPs may start
without delay. This means improved "scalar performance." For example, if
application B follows A (A is contained in B). B can start soon after A has
finished. Global operation is now characterized by the fact that there may be
any number of partitionings between two global storage managements. In other
words, global storage management is now divorced from partitioning.

10

' •

•

(5) An RA that is internal to an LP may start executing any time (i.e., not
tied to partitioning), it can work without transient representation, and
executes faster than the same RA held by two or more LPs (not only because of
smaller size, but also because no messages and no transient representation are
used).

(6) Numerical applications present no special problems (e.g., floating point,
elementary functions), because numerical co-processors for LPs are
economically feasible.

3.2. Disadvantages of J:.alie-Gralu J'li'P.M

(1) Since massively parallel processing cannot be relied on, associate
processing suffers (i.e., when every incoming message is to be processed
against every local S cell).

(2) Each reduction routine needs two variants, one for local, the other for
global RAs.

(3) The LP kemel is more complex than the L-cell kemel of the FFPM.

4. Conclusions

While commenting on the FFP Machine in a recent paper, Berkling [BER87)
speculates that string reduction (which is the mode of operation for the FFPM)
presupposes massive parallelism, and that only graph reduction can be
implemented on a collection of von Neumann computers. LGFFPM indicates
that string reduction can be implemented without massive parallelism. The
LGFFPM is also interesting in that it offers a comparison between two parallel
processors that support exactly the same model of computation, yet are of
greatly differing granularities .

11

..

References

(AMD88) AMDAHL, G.M. Umits of expectations. International Journal of
Supercomputer Applications, 2(1):88-97, 1988.

[BAC78) BACKUS, J. Can programming be liberated from the von Neumann
style? A functional style and its algebra of programs. Comm.uni.cations
of the ACM 21, 8 (1978}, 613-641.

[BER87) BERKLING. K. System architectures for functional programming
languages: problems and solutions. CASE Center TR 8724, Syracuse
University, December 1987.

[MAG79) MAGO, G. A. A network of microprocessors to execute reduction
languages. Two parts. Intemattonal Journal qf Computer and
Iriformation Sciences. 8, 5 (1979), 349-385, 8, 6 (1979), 435-471.

[MAG80) MAGO, G. A A cellular computer architecture for functional
programming. Digest of Papers, IEEE Computer Society COMPCON
(Spring 1980), pp. 179-187.

[MAG84) MAGO, G. A and MIDDLETON, D. The FFP Machine---A Progress
Report. International Workslwp on High-Level Computer Architecture
84 (Los Angeles, California, May 23-25, 1984). (Reprinted in
DatajlDw and reduction architecture by S.S. Thakkar, IEEE Computer
Society Press, 1987, and in Computer architecture by D.D. Gajski,
V.M. Mllutinovtc, H.J. Siegel. and B.P. Furht. IEEE Computer Society
Press, 1986, pp. 456-468.)

[MAG85) MAGO, G. A Making parallel computation simple: the FFP machine.
l Digest of Papers, IEEE Computer Society COMPCON (Spring 1985).

pp. 424-428. (Reprinted in Computers for art:ifictal intelligence
applications by Benjamin Wah and G.J. U, IEEE Computer Society
Press, 1986, pp. 324-328.)

12

..

a
'

(MAG89] MAGO, G.A. and STANAT, D,F.: The FFP Machine. Chapter 12 in

High Level Language Computer Architecture (Mllutinovtc, V., ed.).
Computer Science Press, 1989 .

[UIL84] ULLMAN, J.D. Some thoughts about supercomputer organization.
Digest of Papers, IEEE Computer Society COMPCON (Spring
1984), pp. 424-432.

13

