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TOWARDS A LARGE-GRAIN FFP MACHINE 1 

1. Introduction 

G.A. Mago, RK. Singh and V.L. Chi 
Deparbnent of Computer Science 

University of North Carolina 
Chapel mn. N.C. 27599-3175 

Linear, or almost linear, scaling within wide parameter ranges has been an 
important goal of many multiprocessor projects, and it is a goal that is proving 
to be hard to reach. A pivotal organizational issue for multiprocessors is 
locality of references, but a frequent choice is to ignore the issue and provide a 
rich interconnection network to support arbitrary references. Such high-flux 
networks [ULL841 will be hard to build on a large scale, as doubling the size of 
such networks means far more than doubling the cost. In addition, 
performance growth will be far less than linear as a function of the network 
size. Amdahl [AMD88) offers a simple, quantitative analysis to support such a 
claim for hypercube networks, and his analysis shows that locality of references 
is indeed a parameter crucially influencing how well a multiprocessor scales. 

This paper is concerned with a multiprocessor whose design centers around 
systematically and automatically preserving locality in computations. The FFP 
Machine (FFPM) [MAG79) is a small-grain multiprocessor originally designed 
for the direct, reduction-style execution of the FFP language [BAC78). It 
employs massive parallelism 1n its operation (a) to perform computations 
specifled by user programs, and (b) to perform operating system functions, 
such as locating reducible applications and managing storage throughout the 
system. 

lThls work was supported In part by NSF grant MIP-8702277 and by the Ofilce of 

Naval Research, Contract N00014-86-K-o680. 
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The operating system functions are always massively parallel in this machine 
(e.g., all PEs always work together to find reducible applications), whereas user 
programs exploit parallelism to widely differing degrees. Assuming that few 
application programs are inheretly massively parallel, it is probable that a large 
grain implementation of the FFPM (we shall call it LGFFPM) could perform as 
well for most applications. Only in the most massively parallel of applications 
programs would the original FFPM be expected to excel. Such a machine 
would not enjoy the benefits of massive parallelism in its operating system 
functions, and thus it is likely to be substant1ally different from the original 
design. 

This paper briefly describes an LGFFPM, and offers various comparisons with 
the original FFPM design. 

The FFPM has been described elsewhere [MAG79,MAG80,MAG84, MAG89], 
and this paper builds upon those descriptions. Some of the main ideas of the 
FFPM, such as the (permanent) linear representation of the FFP expression, 
carry over into the new design. The main difference is that the LGFFPM has a 
large-grain leaf processor (we shall refer to it as LP) as opposed to the small
grain leaf cell of the FFPM. All other differences are consequences of this. 

2. Description of the I..GFli'PM 

Some important characteristics of LGFFPM are the following: 
(1) The leaf processor (LP) holds a substring of the FFP expression (typically 
hundreds or thousands of FFP symbols), and its behavior is equivalent to that of 
a subtree ofT and L cells in the small-grain FFP Machine. In the example of 
Figure 1, two RAs (Band C) are fully contained in an LP and two others (A and 
D) are spread across more than one LP . 

){(A IL-> _ce>_cc_>< _ __.l I o > c 

Figure 1 
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(2) The LP contains S cells (5 for symbol), each of which is an FFP symbol 
plus related information. All 5 cells are of the same size, and they form a linear 

• linked list. This list is the permanent representation [MAG89) of the FFP 
expression . 

• 

• 
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(3) Expressions eligible for being rewritten are the innermost applications, and 
are called reducible applications (or RAs for short). An RA fully contained in 
an LP is a local RA. otherwise it is a global RA. 

(4) Expressions expand by having new 5 cells inserted into the linked list of 
existing 5 cells. The process of creating new 5 cells, and removing 5 cells not 
needed any more, is called local storage management Uocal because it takes 
place within an LP). Global storage management is needed only when at least 
one LP runs out of available storage. This is accomplished by moving the 
contents of LPs that are full (or about to be overfilled) to other LPs. This is 
stm!lar to what is usually called load balancing . 

(5) Only global RAs make use of the T cells. The linear representation of the 
FFP expression preserves locality, and allows effective use of the binary tree 
interconnection network which is dynamically partitioned to allocate parts of it 
to disjoint RAs; thus the root of the whole network never becomes a 
bottleneck. Partitioning is incremental: as soon as a global RA comes into 
existence, its component tree machine gets constructed with little delay (by 
setting appropriate switches in the T cells) without having to interrupt any of 
the ongoing computations in the machine. By contrast, in the small-grain 
FFPM partitioning is not incremental: the tree of T cells is always emptied 
before the network is repartitioned. 

2.1. Unear Representation and Leaf Processor Capacity 

The number of 5 cells within an LP varies during execution. The nominal 
number of 5 cells typically put into the LP by global storage management is a 
changeable parameter of the system, which could be something between 64 
and several thousands. The value of this parameter should be chosen in such 
a way that space remains for a certain amount of expansion in the LP. As 
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execution proceeds, the LP may find itself holding fewer or more than the 
nominal number of S cells. Of course, too many S cells will tend to slow down 
execution . 

The transient representation is not needed by local RAs. Most such RAs can be 
executed in a single pass (possibly using a stack to get through arbitrary 
expressions). The transient representation is identical to that in the small
grain FFPM, with possibly some pointers added to speed up access to certain S 
cells that are roots of subexpressions. 

2.2. Overall Operation ofLGFFPM 

This is very different from the small-grain version for several reasons: 

(1) Global storage management (STMG for short) should be done rather 
infrequently because (a) partitioning just after global storage management is 
costly: it requires a full scan of the new contents of the LP to rebuild the 
representation (the LP must explore the new expressions it now contains); (b) 

all RAs except those needing global STMG should be allowed to complete their 
execution before STMG shifting takes place (this avoids many complications 
in the reduction routines and the kernel, and results in smaller S cells to be 
shifted). 

(2) Global storage management gm be done infrequently, because the actual 
capacity of an LP is much larger than its nominal capacity. Thus each LP can 
manage its own storage for a while. 

(3) Partitioning should be done frequently so as not to delay the simple RAs. 

! (4) Partitioning ~ be done frequently, if it is done incrementally, i.e., 
without disrupting ongoing computations . 

• 
So the overall operation can be characterized by saying that partitioning may be 
performed an arbitrary number of times between two successive global storage 
managements. Thus the notion of machine cycle is eliminated. 
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Subcomputations (RAs) synchronize with each other much less frequently than 
in the FFPM, which makes for a "more distributed," "more asynchronous," 
and, from the performance point of view, more responsive operation. 

2.3. PartltloDIDg 

Partitioning is global, and w1ll be done frequently, and incre entally, i.e., 
without emptying the tree, or disturbing ongoing computations any way. The 
global port of LP (one of the ports that connects to the nearest T cell. briefly 
described in Section 2. 7) always contains the current partitio g information 
about the contents of LP (this requires only three bits [MAG84]). 

I ( ( A I I ) ( ) ) I (a) 

I ( ( A I I ( ) ) I (b) 

I ( I I ( ) ) I (c) 

Figure2 

When the controller demands partitioning by sending down a s itable packet, 
all global ports respond without delay with their respect! e three bits. 
Different LPs do not synchronize with each other while doing is. Thus the 
global network does not necessarily "see" a well-formed expressi at all times, 
as shown in snapshot (b) of Figure 2. The partitioning switches may be set in 
response to an ill-formed expression, but the part of the networ connected to 
the ill-formed expression w1ll not be used. This is accomplished as follows: (1) 
Component tree machines corresponding to RAs just finishing execution are 
emptied. (LPs are synchronized here.) (2) LPs involved in proce ing such RAs 
do their final rewriting, and update the partitioning informatio at the global 
ports, although not necessarily at the same time. (3) The parti oning packets 
pick up this new information (different LPs do not synchronize th each other 
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here). (4) Every LP ascertains that the partitioning packet took the new 
information before it begins to send into its component tree machine . 

P1: P2: 

P3: P4: 

Figure 3 

Incremental partitioning means that the partitioning switches of a T cell may 
be reset whlle parts of that T cell are involved in some computation. Since an 
arbitrary T cell has four distinct partitioning configurations (shown in Figure 
3), it may, during partitioning, make one of the sixteen possible transitions 
among those configurations. Figure 4 shows all the possible state transitions of 
the T cell. During transitions Pl to Pl. P2 to P2, P3 to P3, and P4 to P4 the 
switch settings do not change. Thus all parts of the T cell making one of these 
transitions are able to provide continuous,. uninterrupted connection during 
partitioning. In transitions P2 to P4, and P4 to P2, the right side channel may 
serve an RA that still computes. Similarly, in transitions P3 to P4, and P4 to 
P3, the left side channel may serve an RA that still computes. In the remaining 
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eight transitions, the FFP expression under the T cell has changed sufficiently 
. so that the tree can be assumed to be empty (rule (4), above, gurantees this) . 

Figure 4 

2.4. Storage Management 

When an expression expands, the corresponding RA tries to perform local 
STMG first. If there is not enough room in the LP, it switches to requesting 
space from global STMG, and then waits till the requested space is provided. 

Global STMG is needed when there is not enough space left in the LP to do 
local storage management. Once the controller decides that global STMG is 
needed, it begins to prepare for it by winding down the computations and 
emptying the tree. This is done by not allowing RAs to start whose execution 
is expected to take a long time. In particular, every RA estimates its 
execution time from its operator and from the number of LPs involved in it, and 
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informs the controller. The controller periodically broadcasts a time-limit for 
those allowed to start up. An RA execution starts only if estimated execution 
time is within the allowed limit. If no global STMG is needed, the controller 
broadcasts the largest integer available as the time limit. Otherwise, it 
broadcasts the time needed for the longest RA currently in progress to flnish. 

2.5. The Reduction Routines 

The reduction routines define the effects of FFP functions and functionals. 
They differ from the small-grain versions only in details forced by the change in 
granularity, but these differences are considerable. Some important details of 
execution depend on the following: (a) whether the RA is strictly internal to 
an LP1; (b) whether an RA uses transient representation; (c) whether an RA 
uses local or global STMG. 

2.6. Message Waves 

Most communications among LPs are permutations: each item has a unique 
destination. In the small-grain version the corresponding port of the L cell is 
programmed to look for a unique item. In the large grain version, messages 
carry target addresses so that only a range check needs to be done by the LP 
port to decide acceptance or rejection. 

Sorting is an important operation. The LP must presort its contents before 
sending a stream into the tree (since each T cell merges two sorted streams), 
thus it is not wtse to interrupt sorting in order to do global storage 
management. (If sorting could be interrupted, then the machine would have to 
know which of the messages got through, and after global storage management, 
re-sort its contents again before resuming the sort operation.) Having to run a 
sort till completion, before performing global storage management, is a 
disadvantage, but probably not a big one . 
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2.7. LP hardware and software 

The leaf processor (LP) hardware consists of an Instruction set processor, and 
ports connected to one T cell and two other LPs. The T cell is the gateway to 
the Interconnection network. which is a binary tree In the simplest case. (A 
richer Interconnection network, such as a 20 rectangular grid, may require 
more ports.) There are three ports that connect LP to the T cell above. Two of 
the ports connect to the partitioned part of the Interconnection network 
(corresponding to the details shown In Figure 3), whereas the third port, 
referred to as the global port, connects to the non-partitioned (also called 
global) part of the Interconnection network. The two ports leading to two 
other LPs are used for global storage management only. 

The software for the LP could be organized as a set of communicating 
sequential processes. In a (yet unpublished) solution worked out by Tat-sook 
Han. there is a process dedicated to each hardware port and to each of the 
four types of tasks shown In Figure 5 . 

(a) I ( -------1 (c) I ( ----> I 
(b) 1------> I (d) 1----------1 

Figure 5 

The LP gives top prtortty to processing global RAs. It is Involved With at most 
two of them: (with the notation of Figure 5) either (d) alone, or one or both of 

.: (a) and (b). In the latter case, there may be many RAs fully contained within 
the LP. In which case a process corresponding to (c) in Figure 5 works on 
one at a time. 
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3. Comparison 

The chief motivation for a large-grain version of the FFPM is that it requires a 
lot less hardware than the small-grain version, and the majority of the 
hardware can be off-the-shelf. It might be expected that performance would 
suffer greatly. Fortunately, there are many factors mitigating such a 
performance loss (some of them are listed below). As a result of these factors, 
the large-grain version might in fact be faster on certain computations, and 
cost/performance is likely to improve substantially. 

3.1. Advantages of Large-Grain FFPM 

(1) There is no need to .load function deflnitions dynamically. A basic set of 
primitives would be stored in the machine permanently, and others loaded as 
needed by the FFP program before execution begins. The facilities for dynamic 
loading are in place should the need arise, but would not be used routinely . 

(2) Smaller S cells are shifted during global STMG, since there is no need to 
move unexecuted reduction routine code as in the small-grain FFPM . 

(3) Local STMG is often possible, because the capacity of LP is large. When 
local storage management is used, copying a subexpression from one place to 
another (e.g., copying the function expression when executing Apply-to-All) 
does not require requesting a sufficient amount of space prior to copying the 
expression. doing global storage management, and then copying the 
expression. The expression is simply distributed to all participating LPs 
where instances of it are inserted it into the linked-lists of S cells in the 
appropriate places. In this way many FFP primitives can finish without 
waiting for global storage management. 

(4) Thanks to incremental partitioning, RAs held by several LPs may start 
without delay. This means improved "scalar performance." For example, if 
application B follows A (A is contained in B). B can start soon after A has 
finished. Global operation is now characterized by the fact that there may be 
any number of partitionings between two global storage managements. In other 
words, global storage management is now divorced from partitioning. 
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(5) An RA that is internal to an LP may start executing any time (i.e., not 
tied to partitioning), it can work without transient representation, and 
executes faster than the same RA held by two or more LPs (not only because of 
smaller size, but also because no messages and no transient representation are 
used). 

(6) Numerical applications present no special problems (e.g., floating point, 
elementary functions), because numerical co-processors for LPs are 
economically feasible. 

3.2. Disadvantages of J:.alie-Gralu J'li'P.M 

(1) Since massively parallel processing cannot be relied on, associate 
processing suffers (i.e., when every incoming message is to be processed 
against every local S cell). 

(2) Each reduction routine needs two variants, one for local, the other for 
global RAs. 

(3) The LP kemel is more complex than the L-cell kemel of the FFPM. 

4. Conclusions 

While commenting on the FFP Machine in a recent paper, Berkling [BER87) 
speculates that string reduction (which is the mode of operation for the FFPM) 
presupposes massive parallelism, and that only graph reduction can be 
implemented on a collection of von Neumann computers. LGFFPM indicates 
that string reduction can be implemented without massive parallelism. The 
LGFFPM is also interesting in that it offers a comparison between two parallel 
processors that support exactly the same model of computation, yet are of 
greatly differing granularities . 
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