
.

•

The Design of a
Memory Management Subsystem

for the FFP Machine

Raj K. Singh
Vernon L. Chi

The FFPM Project and the
Microelectronic Systems Laboratory
The University of North Carolina
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

This work was sponsored by NSF/CISE/MIPS under grant number MIP-8702277
and ONR under contract number N00014-86-K-0680. The authors gratefully ac
knowledge the valuable contributions of the entire FFPM project team: Edoardo
Biagioni, Tai-sook Han, Gyula Mag6, William Partain, David Plaisted, Jan Prins,
Bruce Smith, and Donald Stanat of UNC, and Ting Feng, Charles Molnar, and Fred
Rosenberger of Washington University.

Reference and title

Publication history

•

•

•

TR-89017
The Design of a Memory Management Subsystem for the FFP Ma
chine

Version 1.0: 1 May 1989

•

1
2
3
4
4.1
4.2
5

~ 6
6.1
6.2
7
7.1
7.2
7.3
8
9
10
11

12
13

•

•

Design of a Memory Management Subsystem
for the FFP Machine

Introduction

Raj K. Singh and Vernon L. Chi

vl.O: 1 May 1989

System Components and Nomenclature
Parameter binding strategies
Data storage strategies
S-cell size
Buffer design
Data movement strategies
Cloning strategies
Cloning time
Cloning direction
The transfer protocol
Pure shifting protocol
Cloning protocol
Algorithmic description of the protocol
Hardware design
Summary
Future directions
Appendix A: Lazy data movement storage preparation algorithm
Appendix B: Modified flow numbers
References

1
2
3
4
5

6
9

10
10
11

11

12
12
12
17
18
18
19
20
21

•

•

•

Design of a Memory Management Subsystem
for the FFP Machine

1 Introduction

Raj K. Singh and Vernon L. Chi

vl.O: 1 May 1989

The organization and management of data storage in a computer system are important
factors in the design of both the machine and its operating system. Computer memory
systems have historically evolved from simple on-line storage devices to complex hierarchies
of media having a wide price/performance range. These hierarchies invariably attempt to
exploit the property of data locality in program execution to enable the performance of
the entire memory system to approach that of its fastest (and most expensive) part.

In the case of uniprocessors, we see very expensive, fast caches backed up by slower
main memory. This in turn is backed up by disk files which are backed in turn by tapes.
Storage organization is balanced under various policies which typically address issues such
as partitioning (rigid or dynamic), multiprogramming, and mapping of the user program
onto the memory. Various intricate storage management mechanisms have been developed
to implement storage organization strategies by efficiently moving data within and between
levels of the hierarchy with the objective of providing the highest possible performance at
the lowest possible cost. Examples are virtual memory and paging mechanisms.

The same economic forces motivate development of memory systems for multiproces
sors. But the problem is exacerbated by the coupled concern of moving data between
equivalent data stores at the same hierarchical level to achieve the needed processor to
memory bandwidth

This report describes the design of a high performance memory management 1/0
subsystem for a non-shared memory MIMD architecture called the FFP-Machine (FFPM)
[1). It is optimized for inter processor communications, but also may provide 1/0 for an
ensemble of processing elements.

The FFPM is a fine-grained MIMD machine organization which may be implemented
using fine-grained hardware cells, or more economically emulated by coarser grained phys
ical resources [2). We address herein the issues of inter-cell communication for the fine
grained case. The discussion of additional complexities imposed by a coarse-grained im
plementation is outside the scope of this document.

The FFPM cycle consists of storage management, partitioning, and execution. This
report focuses on the storage management phase. Storage management in the FFPM is
composed of two sub-phases, storage preparation and data movement. During the prepa
ration phase, computations are performed to set parameters used to control the data move
ment. A thorough treatment of storage preparation and a discussion of the algorithm used
can be found in [3) and will not be treated here. In this report, we assume the availability
of these pre-computed parameters, and concentrate on issues of data movement.

Page 1

Design of a Memory Management Subsystem for the FFP Machine

In Section 2 we give a brief structural overview of a processing element of the FFPM
called the L-cell and introduce some basic nomenclature. Section 3 discusses how the
data movement parameters computed during storage preparation are packaged for use
during data movement. Design strategies for data storage, movement, and space acqui
sition are treated in Sections 4, 5, and 6, respectively. Section 7 describes a protocol for

, communication between L-cells. Finally, Section 8 presents an abstract hardware design
for implementing the protocol.

•

•

•

•

2 System Components and Nomenclature

A high-level architectural block diagram of a fine-grained L-cell is shown in Fig. 1.
The internal data bus is 8-bits wide, as are the lateral connections to neighboring L-cells.
The CPU is an ordinary instruction set processor such as a ZSO. The memory and the
system bus are time shared between the cell's CPU and its 1/0 devices on a priority basis.

Left
L-cell +--+

Neighbor

I

Global
up

i

GU

T

I

SL

Global
down

1

GO

l

Partitioned
up

i i

PU

T
SYSTEM BUS

I I

CPU MEM

Partitioned
down

1 l

PO

l

I
I

SR

Figure 1: L-cell functional block diagram

~
Right
L-cell

Neighbor

The GU, GD, PU, and PD blocks represent communications interfaces used in the
computation phases of the FFPM operation. They are not used during data movement
and thus are of no concern to this discussion.

The Left-shifter (SL) and Right-shifter (SR) blocks represent bidirectional L-cell I/0
ports, with dedicated controller devices for inter-cell communications. The SR port of each
L-cell is connected to the SL port of its right hand neighbor such that the L-cells form a
linearly connected array called the L-array.

These connections are low level synchronous, i.e., data transfers occur synchronously
on a specific phase of the global system clock; but they are also high-level asynchronous,
i.e., every transfer is locally controlled using full hand-shaking with a send-acknowledge
protocol across each inter-cell connection.

Although the SL and SR ports in an L-cell communicate independently of each other,
their operation is controlled by a finite-state machine to avoid memory over- and/or under
runs. The operation of this control is critical to the data movement performance of the
L-array during storage management.

Page 2

•

•

•

•

Design of a Memory Management Subsystem for the FFP Machine

The shifter devices (SL and SR) serve to shift Symbol-cells (S-cells) from one L-cell
to another. An S-cell (sometimes called an S-image) is a data structure which represents
the state of an FFP primitive symbol as stored in the L-array. During the execution phase,
each L-cell contains exactly one S-cell in its S-buft'er which is part of MEM in Fig. 1.

During data movement, there are five possible non-trivial combinations of operations
for the two shifters of an L-cell:

1) shift current S-cell out while shifting new S-cell in
2) shift currentS-cell out (without shifting anything in)
3) shift newS-cell in (without shifting anything out)
4) shift S-cell directly from input to output (without using S-buffer known as shunt

through)
5) concurrently shift copies of current S-cell out both sides

Since the shifting devices are bidirectional, this allows nine distinct functional shifting
modes: four each to the right and to the left, and one bidirectional. In any case, a device
shifting out is called a sender and a device shifting in is called a receiver.

Some data may move to the right while other data may move to the left in the L
array during storage management. These data may be considered as being composed of
strings of S-cells constituted such that each string moves, if at all, either entirely to the
right or entirely to the left. These are called right-shift-strings, and left-shift-strings,
respectively.

New instances of S-cells may be cloned during data movement. Each instance receives
a unique clone number such that after data movement the strings of clones are sequentially
numbered from left to right, with the leftmost being numbered zero.

During the data movement phase, a well defined number of S-cells will be shifted
across any given inter-cell connection. This number is called the flow number for that
connection (and for.its associated SL and SR ports). A negative flow number represents
left shifts, while a positive number represents right shifts. If the flow number is zero, no
S-cells shift across the connection during data movement.

Blockage is a condition where local congestion temporarily prevents data transfers
between L-cells during data movement. It is a major detractor from performance during
storage management, and is the object of much of the discussion in this report.

The phenomenon of blockage can be compared with automotive traffic flow. Once
the traffic is blocked, unblocking at the front does not enable all the traffic to begin
simultaneously moving again; rather the resumed movement must bubble back through
the queue of cars. This obviously has an adverse effect on performance, so we attempt to
avoid blockage as much as possible.

In general blockage cannot be avoided altogether. Nevertheless, its effect on the cost
of data movement can be minimized by a careful choice of protocol, shifting hardware, and
buffering strategy .

3 Parameter binding strategies

During storage preparation, the full power of the FFPM is used to compute what the
final destinations of the existing and new S-cells should be, given the demands of existing
expressions under evaluation and expressions awaiting input to the machine. It is also used

Page 3

•

•

•

•

Design of a Memory Management Subsystem for the FFP Machine

to translate this destination information into parameters for controlling the movement of
S-cells during the data movement phase.

It is desirable to maximize the speed of data movement due to the linear time nature
of L-array communications (in contrast to the primarily logarithmic communication time
consumed by computational cycles). Therefore, the data movement phase is implemented
in special purpose shifter hardware without CPU intervention. An efficient design requires
a simple algorithm to interpret these parameters, else the shifter cost rapidly gets out of
hand .

A major decision is whether the parameters should be bound to S-cells or to L
cells (some hybrid of these bindings is also possible). This radically affects the shifter
design. If they are bound to S-cells, the shifters must be adept at extracting, interpreting,
manipulating, and m!Unt!Uning them on the fly as S-cells flow into and out of the L-cells.
If they are bound to the L-cells, registers cont!Uning them provide immediate and simple
access to all of them at any time, even in parallel, if necessary. This is a compelling
advantage in the design of simple, efficient hardware shifters.

Examples of S-cell-bound parameters are S-image data fields representing absolute
destination addresses, relative displacement addresses, etc. Examples of L-cell-bound pa
rameters are the flow numbers. Under some design strategies, a hybrid might require flow
numbers and an S-image field representing a clone count, or at least a clone flag.

Since the complexity of hardware that can deal with S-cell-bound parameters tends
to far exceed that of hardware to deal with L-cell-bound parameters, we are strongly
influenced us in favor of the latter.

In this report, we take flow numbers to be the only parameters other than S-cell
word-counts controlling data movement. They are set directly into registers in the L-cell
by the L-cell's CPU during storage preparation, and m!Unt!Uned on the fly by the shifter
hardware during data movement such that they have all become zero at the completion
of data movement. Word-counts are invariant during dat movement, and are stored as
the first field of each S-cell for easy and timely extraction by the shifters during data
movement.

Figure 2 shows the flow numbers computed during storage preparation for an L-array
of size 16. Here, the sub-string in cells 1 through 3 is an example of a left-shift-string,
while the sub-strings in cells 9 through 12 and 13 through 16 are examples of right-shift
strings. The sub-string in cells 4 through 8 is a special case, consisting of both left- and
right-shift-strings. Such a situation may only occur where cloning is in progress.

4 Data storage strategies

The purpose of data movement is to re-allocate L-cell resources to expressions that
will require additional space during the next execution phase. This is accomplished by
cloning enough copies of S-cells in expressions needing space, and moving them away from
their original S-cells (which may themselves move). In the process, space occupied by
empty S-cells is reci!Umed .

Optimization of the data movement can be characterized as a 1-D minimax flow
problem. The optimal solution is one that minimizes the time required for data movement.

Page4

•

•

•

•

Design of a Memory Management Subsystem for the FFP Machine

Before data movement

L-cell number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L-cell contents D D 0 D D 0 @] 0 @] D 0 D @J 0 @J 0
Flow numbers 0 -1 -2 0 -1 -2 -3 1 0 3 2 1 0 2 1 1 0

After data movement

L-cell number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L-cell contents ~ ~ ~ ~ ~ ~ ~ @ ~ ~ ~ §] ~ ~ ~ @]
Flow numbers 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 2: Example of flow numbers

For equal sized S-images, this means minimizing the maximum distance traveled by any
S-image.

A straightforward approach would conceptually place the S-image in each L-cell in a
bidirectional shift register which is connected to the SR and SL ports. Thus, data could
be conditionally shifted, one character per clock cycle, until all S-cells in the L-array were
Jlroperly relocated .

But S-cell data must be randomly accessible during the computation phases, and must
therefore be stored in RAM. Hence, it is more economical to implement the shift register
function in RAM. This incurs the usual overhead of bus contention and synchronization.
Thus the shifting of each character of data from cell to cell may require several clock cycles.

Because of the relatively small size of the memory per L-cell and a design of the
kernel software having a single-thread of control, the memory was segmented with a fixed
mapping. Thus, the S-buffers have the same buffer location and size in all L-cells.

4.1 S-cell size

The actual amount of data needed to completely represent an S-cell varies with the
nature of the symbol and execution progress of the microcode. During data movement, it is
possible to move only the relevant data; however the necessary hardware is more complex
than for moving the contents of entire (fixed sized) S-buffers. We briefly describe both
approaches.

4.1.1 Fixed sized S-cells

One approach is to use fixed sized S-cell images, and allocate enough S-buffer space
to accommodate them. Data movement is simplified, because every S-cell is transferred in
exactly the same number of shifts .

In cases where data must be moved through a sequence of one or more empty L-cells,
an apparent speedup could be obtained by using the shunt-through mode, i.e., passing

Page 5

•

•

'

•

'

•

Design of a Memory Management Subsystem for the FFP Machine

data directly from the receivers to the senders of the empty L-cells rather than buffering
them in memory.

This reduces the data transfer latency through the empty cells by M x N shifts,
where M is the size of an S-image and N is the number of empty L-cells. But blockage
propagation latency is also reduced, as the buffer space of L-cells in shunt-through mode
is unavailable to absorb the propagation of blockage. Therefore, it is unclear how much
improvement is made to the global data movement cost by using shunt-through mode.

The motivation for using shunt-through mode arises because of the inherently long
latency imposed by large fixed sized S-images. Alternatively, the latency could be reduced
by using smaller S-images, but the fixed length strategy requires that all S-images be as
large as the largest allowable S-cell. This motivates the notion of variable sized S-cells. The
additional hardware complexity for handling them is commensurate with that of providing
shunt-through as a mode.

4.1.2 Variable sized S-cells

In this approach, the S-buffer sizes are still fixed but the S-images are of varying
length, depending on factors such as the states of computation of the various L-cells when
storage management commences. It is clearly wasteful to transfer the entire contents of
S-buffers from cell to cell. But a design which transfers only the S-images must deal with
substantially more complexity.

A simple implementation of variable sized S-cells uses an S-image containing a header
of 2-bytes which indicates the size of the image body. The image body is made up of
microcode, the values of various registers, and a program counter indicating the state of
microcode execution. An empty L-cell cont!Uns a nullS-cell, i.e., the S-image consists only
of a header indicating a zero length body (a word count of two) .

4.2 Buffer design

Both the size and usage policy of the S-buffer will strongly affect the blockage prop
agation properties of an L-cell. Cloning-induced blockage (to be discussed subsequently)
motivates larger S-buffers capable of holding multiple S-images. Two usage policies are
explored, the more sophisticated one naturally having better performance at greater com
plexity.

4.2.1 Linear buffering

One advantage of this scheme is that it naturally leaves the S-image located at the
beginning of the S-buffer which is convenient for the subsequent computational phases. An
other advantage is the simplicity of the hardware implementing it. A major disadvantage
of this scheme is that it is prone to excessive propagation of blockage.

Let us describe a simple scenario where blockage occurs. Assume that an L-cell accepts
each new S-image by filling its S-buffer from the beginning of the buffer. It is possible to
shift an incoming S-image into the buffer which still cont!Uns part of an outgoing S-image,
provided that the incoming image does not overrun the outgoing one. The transfer protocol
must ensure this by suspending shifting-in until there is buffer space available.

Page 6

Design of a Memory Management Subsystem for the FFP Machine

Consider the case where a shift-string contains a large S-image followed by a small
S-image followed by the rest of the string. The L-cell containing the large image shifts the
small image in while shifting the large one out. The transfer of the smallS-cell finishes long
before transfer of the large one is complete. At this point, no further input is acceptable
until the large image is completely shifted out of the buffer. Therefore, the following shift-

• string is blocked, even though unused buffer space is being created as the large image
continues to be shifted out.

•

•

4.2.2 Circular buffering

If we allow an S-image to be loaded at an arbitrary location in the buffer, we can
improve the blockage characteristics considerably. In particular, if we treat the S-buffer as
a. circular buffer, we can accommodate any number of S-images in the buffer provided we
don't overwrite any used space.

This strategy is not without cost, however. When storage management is complete
and the computational phases begin, the S-image addresses must correspond to what the
microcode expects. This is not a. problem as long as the S-cell is loaded at a fixed address.
But in this case, additional storage management overhead is involved to relocate the S
image in its destination L-cell buffer; or additional address translation hardware is needed
for the CPU.

We can implement the circular buffer using two address counters (Figure 3), one for
receiving and one for sending. These counters increment modulo the buffer size, and roll
over to the buffer start address .

Let the values in these counters be write_address and read_address for the receiver
and sender, respectively. A write to the buffer is an atomic operation that stores received
data at write_address, then increments write_address. A read from the buffer is an atomic
operation that latches data. fetched from read_address into the sender, then increments
read_ address.

Let last_op be set to READ if the last buffer access was a read, or to WRITE if the
last access was a write. Then the status of the buffer is evaluated in hardware as:

(read_address == write_address && last_op == READ) -+ buffer empty
(read_address == write_address && last_op == WRITE)-+ buffer full

These conditions are used by the shifter protocol to prevent buffer over-/under-runs.

4.2.2.1 S-cell relocation

Consider the case of relocating the S-cell to the beginning of the S-buffer after data
movement is complete. An algorithm is described (see Figure 4) to relocate characters in
a. circular buffer so that the character at data_address is placed at last_address, and the
characters (circularly) preceding it are moved to their appropriate relocated positions.
The following C code fragment implements this algorithm in place. The algorithm takes
time proportional to the size of the S-buffer. A more desirable algorithm would be one that
takes time proportional to the size of the S-image, while still doing it in place. BUFADDR
and BUSIZE are the base address and the size of the S-buffer, respectively, while data_addr
is the address of the S-cell header before relocation.

Page 7

•

•

Design of a Memory Management Subsystem for the FFP Machine

1023 (last_address)

+- write_address
1---:"V""""ali;-:-. d.-~

(buffer _length = 512) · · ·
data +- read_address

512__ ___ __, (buffer _address)

Figure 3: Circular buffer

1023 ... (last_address)
. . .

data +- data_address

Valid
512 ... (buffer _address)

Figure 4: Relocating an S-cell

1 delta • (BUFADDR - data-addr + BUFSIZE) Y. BUFSIZE;
2 curr-addr = old-addr • BUFADDR;
3 val • s-buffer[curr_addr];
4 for (count = 0; count < BUFSIZE; ++count) {
5 curr-addr += delta;
6 if (curr-addr > LASTADDR)
7 curr-addr -• BUFSIZE;
8 if (curr-addr •• old-addr) {
9 s_buffer[curr-addr] = val;
10 curr-addr • ++old_addr;
11 if (curr-addr > LASTADDR)
12 curr-addr "' old-addr -= BUFSIZE;
13 val .. s_buffer[curr-addr];
14 }
15
16
17
18

else {
old • s-buffer[curr_addr];
s_buffer[curr-addr] • val;
val = old;

19 }
20 }

Page 8

•

•

•

'

•

Design of a Memory Management Subsystem for the FFP Machine

4.2.2.2 Address translation in hardware

This section digresses into the computation phases because of the tight coupling of
concerns between memory access during computation and circular buffering during memory
management.

We may avoid the overhead of relocation by using memory address translation hard
ware during the computation phases. This hardware should be simple and fast - simple
because it must be contained in each 1-cell, and fast because it is used for every memory
access during computations .

We describe the mod-sum implementation of this function. This implementation is
constrained to buffers having buffer _address = 2m and buffer _size = 2n, where n ~ m.

Consider a paged memory having a page size of 29 = 512. Thus, we need a 9-bit
address counter to address within a page. The CPU address bus is split into two parts:
the lower 9 bits form the intra-page address while the upper significant bits form the page
selection address. For all pages except the circular buffer, addressing is straightforward.

H the circular buffer is addressed, however, the 9-bit CPU address is added to a base
register containing the negative of the offset of the S-image relative to buffer_address.
The most significant bit of the sum is discarded, and the remaining 9-bits used to physically
address the circular buffer, thus performing the mod-sum operation.

An example is shown in Figure 5. The last word of the S-image is in location 100 of
the S-buffer page, and the word count is 313 (acquired from the S-image header during the
shifting in process). Thus, the first word of the S-image is at location (write_address
word_count) mod buffer _size= (101-313) mod 512 = 300. Therefore, any CPU address
in the S-buffer page is translated according to (cpu_address + 300) mod 512.

511

(130 + 300) mod 512 = 430

(0 + 300) mod 512 = 300

101
100

(275 + 300) mod 512 = 63

0

...

. . .
S13o
...
So

8312
...

8275
...
...

(buffer _length = 512)

((101- 313) mod 512 = 300)

+- write_address = 101
(word_count = 313)

(buffer _origin = 0)

Figure 5: Memory translation

5 Data movement strategies

Various strategies are possible for movement of the S-cells in the 1-array during storage
management. These will clearly affect the overall performance of the data movement

Page 9

•

'

•

Design of a Memory Management Subsystem for the FFP Machine

phase. We have considered several strategies across a spectrum between two philosophical
extremes.

A lazy movement strategy is never to move data any farther than necessary in any
given storage management cycle. This will tend to keep expressions somewhat clumped
together, and may occasion cycles where contention for space among adjacent expressions
causes very long data movements with correspondingly large performance cost.

A densely packed strategy always moves the data such that it ends up densely
packed in an arbitrarily located segment of the L-array. While this is rather obviously
non-optimal, its main virtue lies in the elegance and simplicity of generating the data
movement parameters during storage preparation using Plaisted's algorithm [4].

A speculative movement strategy is to spread the FFP symbols out across the entire
L-array more or less evenly during each storage management cycle (also implement able
using Plaisted's algorithm). This leaves substantial empty space always locally available
so that contention between adjacent expressions rarely occurs. But this clearly entails more
average data movement, and may therefore exact an unnecessary cost on most cycles.

The performance of any given strategy will depend strongly on the behavior of the
expressions under evaluation in the FFPM. Since these are a priori unknown, and them
selves dependent on the program mix, it is exceedingly difficult to analyze these strategies
for performance in any real application. Running the necessary number of test cases is in
feasible under simulation. Therefore, a working hardware prototype is necessary to pursue
investigation of this issue.

For the purpose of this report, we assume lazy data movement. An important con
sequence of this decision is that we never shift an S-cell out of an L-cell that will not
eventually be filled by another S-cell during the current data movement phase. This has
far reaching effects on how the shifting hardware detects when cloning should occur under
the MIRVing strategy, discussed in the next section .

6 Cloning strategies

Under lazy data movement policy, the space allocation mechanism used by the FFPM
is exclusively cloning, as follows. During execution, an expression may need more than its
currently allocated space to contain its re-written form, and must be suspended until the
next memory management cycle. At that time, one of the S-cells of the expression (usually
the leftmost one) acquires the additional required space by cloning an appropriate number
of copies of itself which are shifted out of the containing L-cell during data movement.

There are a number of ways this can be done. The design choices have profound
effects on the creation of blockages and on the complexity of the shifters in the L-cells.
The following sections discuss these choices and their ramifications.

6.1 Cloning time

Cloning of a given S-cell could occur at any time during data movement. A uniform
strategy must be selected, however, in order to design the hardware which implements
cloning. We have considered the following .

The massed assault, or pre-cloning strategy launches all the clones from the initial
location of a clonable S-cell.

Page 10

•

•

•

•

Design of a Memory Management Subsystem for the FFP Machine

The MIRVing (Multiple Independently-targetable Re-entry Vehicle), or post-cloning
strategy moves each MIRV (clonable S-cell) to its final destination before cloning it.

The pregnant S-cell strategy leaves cloned copies behind as the clonable S-cell is
shifted successively to its final destination.

The massed assault strategy, being most obvious, was the first one investigated. But
various problems with cloning-induced blockage led us to consider other alternatives. The
MIRVing strategy is conceptually as simple as massed assault, and an informal proof has
been developed that MIRVing altogether avoids blockage under a lazy movement policy
if bidirectional cloning is allowed (5]. The notion of opportunistic cloning of a clonable
S-cell at one or more steps en route to its final destination appeared to offer performance
advantages, but in general is complex to implement and to understand; the special pregnant
S-cell sub-case is functionally equivalent to MIRVing.

6.2 Cloning direction

We assume here that we have adopted a MIRVing policy for cloning. Once the MIRV
reaches its final destination and begins cloning, the question arises of which direction its
clones should be shifted, which clearly affects what the definition of a final de.stination is
for a MIRV. Possible strategies are: left cloning where all clones are shifted out the left
port of any L-cell containing a cloning S-cell; right cloning where all clones shift out the
right; unidirectional cloning where all clones shift out either the left or the right but
not both; and bidirectional cloning where clones are shifted out both ports.

Unidirectional cloning complicates the data movement control algorithm if flow num
bers are used as discussed above. An example illustrates this. Assume a MIRV (clonable
S-cell) whose location before data movement is in the middle of a string of L-cells which will
be occupied by clones of this S-cell after data movement. Under unidirectional cloning, the
MIRV must first be shifted to one end of the string, then clones are shifted in retrograde.
Thus, during any given shift cycle, it is not possible for an L-cell to determine from the
flow numbers which direction to shift an S-cell. It would be necessary to include a clone
count field in each S-image, and the L-cell would have to consider data from this field in
all of its currently buffered S-cells along with flow numbers. Since this must all be done in
hardware, the cost is prohibitive.

Under bidirectional cloning, the above example is easily handled if we define any such
MIRV to be in its final destination before data movement commences. Thus, it begins
cloning immediately, shifting clones out both sides in accordance with its left and right
flow numbers until they vanish, whereupon the correct number of clones have been shifted
out each side to just fill the L-cell string.

7 The transfer protocol

An integral part of the design of the data movement hardware is the design of the
packet and transmission protocol. In general, packet transmission protocols are responsible

• for routing, error control, fragmentation control, etc. In this case, we are concerned only
with the efficient and correct transfer of packets from S-buffer to S-buffer, and the detection
of the end· of the transfer process in each L-cell. Error control is not addressed, and

Page 11

•

•

•

•

Design of a Memory Management Subsystem for the FFP Machine

fragmentation does not occur. Moreover, the network topology guarantees that packets
cannot get out of sequence in the transmission process.

Whereas the protocol operates between the sender of one L-cell and the receiver of
the next L-cell, we view the process from the point of view of a single L-cell. That is,
we describe the protocol as two separate halves communicating with two external entities,
and focus on the interaction between these two halves within an L-cell .

7.1 Pure shifting protocol

Consider the case of pure shifting. In this case, there will be at most one receiver
and at most one sender active in the L-cell. Both must access the S-buffer. Thus, there
are three concurrent processes active in the L-cell during data movement, which must be
properly synchronized among themselves as well as between L-cells.

If the left and right shifters each implement sender and receiver functions, the three
processes are advantageously modeled as the two shifters and the S-buft'er.

7.2 Cloning protocol

In the case of cloning, there are either one or two senders active in the L-cell, along with
the S-buft'er. Again there are three active concurrent processes. Suitable synchronization
is still necessary.

A means for detecting when a MIRV has reached its final destination is necessary to
enable the L-cell to switch from a pure shifting protocol to a cloning protocol.

7.3 Algorithmic description of the protocol

A model of these three concurrent (hardware) processes can be written inC-like code
if we disregard the details of actual timing. Thus, for example, we do not concern ourselves
at this level with whether the S-buft'er is implemented as a single- or dual-ported RAM
although this clearly will make a significant difference in performance. Also, using C as a
medium of expression makes accurate hardware modeling difficult without obscuring the
salient features by the details of technically correct code. Discussion and explanation using
plain text is interleaved with the C code.

Inter-cell and inter-process signals are modeled as global variables in this code.

1 int left-flow, I• Inter-process communications in L-cell. •I
2 right-flow,
3
4

s_counter;

5 struct connection { I• Inter-L-cell communications connections. •I
6
7
8

FLAG ack, ready;
WORD data;} left, right;

It is necessary to provide some functions to cater to the concurrent nature of the various
hardware processes. The following function stubs are intended to fulfill these needs.

Page 12

Design of a Memory Management Subsystem for the FFP Machine

9 wait(expression) { I• Blocks until expression becomes true. •I }
10
11 int que(function)
12 int function(); {
13 I• Queues calls to function() on a first-come-first-served basis,

• 14 thus implementing a mutual exclusion mechanism for function();

•

•

•

•

15 que() returns the return value of function() for each call. •I
16 }
17
18 void concurrent(f1, f2, ...)
19 void f1(), f20, ... ; {
20 I• Concurrently executes two or more functions specified by
21 its arguments. Return values of the arguments are ignored.
22 Concurrent() returns when all of its arguments have returned. •I
23 }
24

When storage management is activated, the current state of the S-cell is contained in the
S-buffer. Explicit pointers to the first word of the S-cell, and to one location beyond the
last word, are passed as parameters.

The storage management phase begins by invoking storage preparation to calculate the
left and right flow numbers for the L-cell .

We presume the S-buffer to be larger than the maximumS-cell size, so equality between
image_start and image_end indicates an empty S-buffer; else there will be exactly one
S-cell in the S-buffer; s_counter is set accordingly .

The left and right shifters are then concurrently activated. When both shifters have
concluded their activities, control is passed to the next FFPM phase.

25 void storage-management(image_start, image-end)
26 int image-start, image-end; {
27 storage_preparation(tleft-flow, tright-flow);
28 s_counter • (image-start •• image-end) ? 0 : 1;
29 concurrent(left-shifter(image_start, image-end),
30 right-shifter(image-start, image_end));
31 exec(next-phase());
32 }
33

The buffer process is modeled as reactive, so it is reactivated each time it is accessed .
Thus, its state is necessarily modeled as static variables.

• During data movement, all calls to buffer() are made through que() to implement a
mutual exclusion mechanism which strictly enforces a first-come-first-served discipline.
Thus, at most one instantiation of buffer() is active at any time.

Page 13

•

•

•

•

!

Design of a Memory Management Subsystem for the FFP Machine

Successful calls to buffer() will perform reads and writes on the S-buffer; however a read
attempted on an empty buffer or a write on a full one will be unsuccessful. Success or
failure is indicated by the return value of buffer() being 1 or 0, respectively.

A special peek operation is used to read a word count without actually removing it from
the buffer. Otherwise, a read removes a word from the head of the buffer data, and a write
appends one to the tail.

34 int
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

buffer(buf_op, address, data) /• The S-buffer itself. •/
int buf_op, *address, •data; {
static int write_addr, last-op • READ, s_buffer[BUFSIZE];
int buf_stat;
if (*address !• vrite_addr)

buf-stat • OK;
else if (last-op •• READ)

buf-&tat • EMPTY;
else

buf-stat • FULL;
switch (buf_op) {

case PEEK:
if (buf-stat •• EMPTY)

return(O);
else {

•data • s_buffer[•address];
return(l);
}

break;
case READ:

if (buf-stat •• EMPTY)
return(O);

else {
•data • s_buffer[•address];
*address • (*address + 1) X BUFSIZE;
last_op = READ;
return(l);
}

break;
case WRITE:

if (buf_stat •• FULL)
return(O);

else {
s-buffer[•address] = •data;
vrite-addr = (*address + 1) Y. BUFSIZE;
•address • vrite-addr;
last-op = WRITE;

Page 14

Design of a Memory Management Subsystem for the FFP Machine

71 return(1):
72 }

73 break;
74 }

75 }

• 76

The left and right shifters behave identically except for the interpretation of the polarity
• of their respective flow numbers. Their function is controlled entirely by the flow numbers

and the s-counter, which are shared variables. While not explicit in the code, we require
that these shared variables are accessed in a mutually exclusive manner (explicit code to
enforce this is cumbersome and hinders clarity of presentation). Similarly, we require that
the data operations on lines 82 and 83 (similarly, on lines 118 and 119) form an atomic
execution unit.

•

•

77 void left_shifter(data_addr)
78 int data_addr: {
79 int clone_addr • data_addr;
80
81
82
83
84
85
86
87
88
89
90
91
92

int word-count :
left.ack • left.ready • 0;
while(left-flow-- > 0) { I• acting as a receiver •I

s_counter++; I• atomic execution with loop test •I
wait(left.ready);
word_count • left.data; I• receive image size •I
while (word-count-- > 0) {

wait(left.ready);
while(que(buffer(WRITE, tdata_addr, tleft.data)));
left.ack • 1;
wait(!left.ready);
left.ack = 0;
}

93 }
94 while(left-flow++ < 0) { I• acting as a sender •I
95 while(que(buffer(PEEK, tdata_addr, tword_count)));
96 while (word-count-- > 0) {
97 while(que(buffer(READ, tdata_addr, tleft.data)));
98 wait (!left. ack) :
99 left .ready = 1:
100 wait(left.ack):
101 left.ready • 0;
102 }
103
104
105
106

if (right-flow< 0 II s_counter > 1) { I• pure shifting •I
clone-addr = data_addr;
s-counter--:
}

Page 15

•

•

•

•

Design of a Memory Management Subsystem for the FFP Machine

107 else { I• cloning •I
108 data_addr • clone_addr;
109 }
110 }
111 }

112
113 void right_shifter(data_addr)
114 int data..addr; {
115 int clone-addr • data_addr;
116 int word_count;

117 right.ack • right.ready • 0;
118 while(right-flow++ < 0) { I• acting as a receiver •I
119 s_counter++; I• atomic execution with loop test •I
120 wait(right.ready);

121 word-count • right.data; I• receive iaage size •I
122 while (word-count-- > 0) {
123
124
125
126
127
128

129

wait(right.ready);
while(que(buffer(WRITE, tdata-addr, tright.data)));

right . ack • 1 ;
wait(!right.ready);
right . ack • 0;
}

}

130 while(right-flow-- > 0) { I• acting as a sender •I
131 while(que(buffer (PEEK, tdata-addr, tvorcLcount)));
132 while (word-count-- > 0) {
133 while(que(buffer(READ, tdata-addr, tright.data)));
134 wait (! right . ack) ;
135 right .ready • 1;
136 wait (right. ack) ;
137 right. ready = 0;
138 }
139 if (left-flow > 0 II s_counter > 1) { I• pure shifting •I
140 clone-addr '" data..addr;
141 s_counter--;
142 }

143 else { I• cloning •I
144 data..addr = clone-addr;
145
146
147 }

}

}

Page 16

•

•

Design of a Memory Management Subsystem for the FFP Machine

8 Hardware design

The algorithm for data movement drives the hardware design. As noted above, the
data movement phase requires DMA hardware to shift data at the highest speed achievable
within the implementation technology .. While the algorithm is capable of correctly handling
blockage, it also should run at this maximum speed as long as blockage does not occur.
That is, non-blocked shifting should be accomplished in a fully pipelined manner, thus
maximizing the utilization of connection bandwidth.

Within a given implementation technology, the maximum shifting rate will be limited
by the inter-cell data transfer time, including the accumulated latency of the handshaking,
or by buffer access time, including the latency incurred by the buffer contention logic,
whichever is longer. An optimal design would balance these two speeds, economic factors
being otherwise equal.

The S-buffer can be implemented by a conventional high speed RAM with auxiliary
logic to manage access contention, or alternatively with a dual-ported RAM which could
double the throughput (assuming the same access time as the conventional RAM), and
would incorporate some of the access contention logic internally. In either case, some
additional state and logic is required to detect potential buffer over- and under-runs, and
to communicate these conditions to the shifter processes.

Each shifter must keep track of its flow number, image word count, current buffer
address, and in the case of cloning its clone image start address. It must also respond
sensibly to its external interface data and control signals and to the state of the S-buffer.

Whereas our preferred design style is to use Finite State Machine (FSM) methods,
it is infeasible to implement all of the required control state in a pure state machine.
In particular, counters and registers are implemented as separate entities with necessary
auxiliary logic to detect certain significant states, e.g., (s_counter > 1) (lines 103 and
139 of the algorithm description). These significant states are treated as inputs to the
control FSM(s), while the counters themselves are manipulated by the control FSM(s).

It is possible to implement the communications control structure as three FSMs which
directly execute the three processes of the protocol, or alternatively as a single FSM which
merges the three conceptual processes into a single physical one. From the design stand
point, a one-to-one correspondence between processes and FSMs is more easily compre
hended and therefore desirable. It also generally requires fewer aggregate states to accom
plish the required function. Thus, we describe a three FSM implementation of the protocol
control structure, i.e., using a buffer controller FSM and two shifter controller FSMs.

Figure 6 presents an abstract block diagram of the hardware. The internal structure
of each of the three processes is suppressed, while the explicit state variables are shown.
Notice that the three global variables used in the algorithmic description have been em
bedded into the processes, rather than being openly accessible. Instead, flags representing
the significant states of these variables are passed as signals between the processes.

The controllers shown in the functional blocks are FSMs which are responsible for
managing all data flow within their respective blocks, as well as synchronization and data
transfers between blocks and with the I/0 ports .

Figure 6, along with the algorithmic protocol description, is intended to constitute
adequate behavioral and high level structural specifications for the design of circuits to

Page 17

•

•

Design of a Memory Management Subsystem for the FFP Machine

r11adv r11adv ..
data ria ht IIOW<O data

.... ack left fiOW>O ack

• t ' I • ' t
LEFT SHIFTER BUFFER RIGHT SHIFTER

left flow s counter riaht flow

word count
address wrlte_addr ...address

word count

clone addr .. data .. last op ... data .. clone addr
data addr

buf op buf op
data addr

data s_buffer data

ready s count++,. RAM ..1. count++ ready
ack

s count--.. ..;. count--
ack

shifter
.,.buf stat

buffer
bul stat ...

shifter
controller ... s count>1 controller s count>l controller

sys bus interface sys bus Interface sys bus Interface

.... ; ; ; r-
system bus

-

Figure 6: 1-cell memory management I/0 system block diagram

realize the I/0 system. In addition, electrical and timing specifications would be needed,
but those are outside the scope of this document.

9 Summary

This report has described the nature of the problem of storage management in the
FFPM, and has addressed the major high level design issues. The effects of various strate
gies were discussed and where possible, comparisons made. The design space is large, with
many interdependent decisions. It was possible to explore in depth only a small portion
of this space during our study, but a sizable part of it was addressed, at least superficially.
Decisions were of necessity often intuitive, with deeper analysis only expended on the most
promising alternatives. Consequently, this report follows a more or less single thread of
development, noting alternatives without a particularly deep analysis of them.

10 Future directions

• The results we report herein were from research directed towards the classical fine
grained FFPM. In the course of this research, it was recognized that a coarse-grained
implementation of the FFPM architecture offered substantial cost/performance benefits.

Page 18

•

..

Design of a Memory Management Subsystem for the FFP Machine

Thus, development of the I/ 0 system design should be retargeted accordingly. While many
of the results reported here are directly applicable to the coarse grained implementation, a
number of additional problems arise. Future research should be devoted primarily to ad
dressing these other problems until such time as a hardware prototype can be constructed.
At that time, many questions left open throughout this line of research can and should be
resolved.

11 Appendix A: Lazy data movement storage preparation algorithm

Plaisted's algorithm without permuted indices densely packs the data in the L-array.
This is neither speculative nor lazy: it clearly moves things around unnecessarily with
out any speculative benefits. Its main attractiveness is its simplicity and computational
elegance.

We borrow the key concept of Plaisted's algorithm, i.e. the conservation of S-cell
count, and apply it to a method based on the concept of decompression on demand.

Define:

C=F-P

=the compression for an L-segment (segment of the L-array), where
r

F = L s_count;
i=l

= the number of cells needed to hold the (Future) expanded expression,

P=r-1+1

= the available space or number of cells in the (Present) L-segment,

S_count; =the number of S-cells (original+ clones) in L-cell i,

I = the index of the leftmost L-cell in the L-segment, and

r = the index of the rightmost L-cell in the L-segment.

Let L;, (0 ::; i < LSIZE) represent L-cell i of the L-array. Let N; be the left
flow number of L;, and by construction, the right flow number of L;-1 . Let C; be the
compression of an L-segment containing only a singe cell, L;.

Initialization at the beginning of storage preparation is performed such that N; =
0, (0 :$ i < LSIZE + 1) and C; = S_count;- 1, (0 :$ i < LSIZE). Thus, if L; is empty
(C; == -1); if it contains a non-clonable S-cell (C; == 0); if it contains a clonable S-cell
(C; > 0).

All necessary movement is motivated by regions of (C > 0) (1/0 is not explicitly
treated here, but input can be faked by (C_1 > 0) of a virtual L-cell just off the end of the
physical L-array). Thus we treat each L; having a (C; > 0) as the kernel of a compressed
segment, and attempt to allow decompression according to minimum data movement.

The method is as follows: Eacll L-cell L; having a compression (C; > 0) sends a signal
left; = (C; -1)/2 to the left and right;= (C; -1)/2 to the right. These must be integers,
so if C; is odd, a tie breaker is used to send the extra count to the left or to the right with
equal probability, e.g., {left;= (odd(i)) ?(C;-1)/2+1 : (C;-1)/2; right;= C;-left;}.
The value of C; is set to 0 when the left; and right; are emitted from L;.

Page 19

Design of a Memory Management Subsystem for the FFP Machine

As each signal; (left; or right;) propagates away from its L;, it conditionally interacts
with each L; it passes through, according to if (C; < 0) {--signal;; ++C;}; and with
each N; it passes by according to (N; += right; II N; -= left;). Each signal; continues
to propagate until its value becomes zero or it collides with another signal;•.

If even(i - i') the signals collide within an L-cell, say Lk; if odd(i- i') they collide
between L-cells, say Lk and Lk+b in which case Lk is arbitrarily selected as being the
collision location. In each such Lk, Ck = (Ck +signal;+ signal;•).

The process described in the last three paragraphs is iterated (note that the Lk of the
previous iteration become the current L;) until there are no Lk. The worst-case number
of iterations is linear in the number of L;, but the average number is expected to be closer
to logarithmic. The lower bound is a single iteration.

12 Appendix B: Modified flow numbers

The flow numbers generated by Plaisted's algorithm conceptually treats each MIRV
as (1 + Clone_count} S-cells being, moved as a group. A direct implementation in shifter
hardware would require extraction of a Clone_count field from each S-cell to be added or
subtracted from the L-cell flow numbers during data movement.

An alternative is to treat each MIRV as a single S-cell under pure shifting. This sim
plifies the shifter's task to performing a unit increment or decrement of the flow numbers,
resulting in much simpler hardware. To achieve this, however, it is necessary to modify
the numbers generated by Plaisted's algorithm.

Notice that the modified numbers for any MIRV differ only during pure shifting; once
the MIRV is in its final destination and cloning, the flow numbers involved reflect the
passage of all the clones, and thus are identical with Plaisted flows.

Starting with Plaisted flows, all L-cells containing MIRVs can be found by iden
tifying those having (Right_flow - Left_flow > 1). There are three possible cases:
(Right_flow > 0 && Left_flow > 0), (Right_flow < 0 && Left_flow < 0), and
(Right_flow > 0 && Left_flow < 0).

In the first case, under a lazy data movement policy the MIRV must shift to the right
by exactly its Left_flow to reach its final destination, whence it proceeds to clone. This
pre-cloning movement is called pure shifting, and the flow numbers need to be modified
exactly over this interval. The second case is similar, but pure shifting will be to the left,
by an amount determined by the Right_flow. The last case represents one of immediate
bi-directional cloning, i.e., the MIRV is in its final destination at the outset, and no mod
ifications to the Plaisted flows are required. In the first two cases, the Plaisted flows are
decremented (incremented) by exactly (Right_flow- Left_flow) over the range of pure
shifting. A description of this algorithm is shown in C code:
1 int modify(flovs)
2 int flovs[L_SIZE];
3 {

4 int temp [L_SIZE] ;
5 int i, j , clone-count; ;
6
7 for (i • 0; i < L-SIZE+l; ++i)

Page 20

•

8
9
10
11
12
13
14
15
16
17
18
19
20
21

Design of a Memory Management Subsystem for the FFP Machine

temp[i] • flovs[i];
for (i • 0; i < L-BIZE+1; ++i) {

if ((clone_count • temp[i+1] - temp[i]) > 0)
if (temp[i] > 0 tt temp[i+1] > 0)

for (j • i+1; j < i+1+temp[i]; ++j)
flows[j] -• clone-count;

else if (temp[i] < 0 tt temp[i+1] < 0)
for (j • i; j > i+temp[i+1]; --j)

flows[j] += clone-count;
else if (temp[i] < 0 tt temp[i+1] > 0);
else return(-1);

}

return(O);
}

I• right shifting •/

I* left shifting *I

I• bi-directional •I
I• illegal •/

13 References

[1] G.A. Mag6 and D.F. Stanat, The FFP Machine, In V. Milutinovic {Ed.), High-Level
Language Computer Architecture, Computer Science Press, 1989.

[2] G.A. Mag6 and R.K. Singh, The Large Grained FFP Machine Architecture, Technical
Report, TR89-018, Department of Computer Science, University of North Carolina at
Chapel Hill, 1989.

[3] G.A. Mag6, Storage Management in an FFP Machine, Technical Report, Department
of Computer Science, University of North Carolina at Chapel Hill, 1989 (in prepara
tion).

[4] D. A. Plaisted, A storage preparation algorithm, private communication, Department
of Computer Science, University of North Carolina at Chapel Hill, 1989.

[5] V.L. Chi, An Informal Proof of Non-blocking, private communication, Department of
Computer Science, University of North Carolina at Chapel Hill, 1989.

Page 21

