
Application of EA"J)lanation-Based
Generalization in Theorem Proving*

TR89-015

March 1989

Xumin Nie
David A. Plaisted

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

Th1s work was supported rn part by rhe National Science Foundation under Grant
#DCR-8516243 and by the 08ice of Naval Research under gran! #NOOOI~-86-1\-
0680
UNC is an Equal Opporlunity/Aflirmative Action I~slilution.

Application of Explanation-Based Generalizl!tion in Theorem Proving •

Xumin Nie and David A. Plaisted
Department of Computer Science
Unive~ity of North Carolina
Otapel Hill, NC 27599-3175

Internet: {nie, plaisted}@cs.unc.edu
Telephone: (Nie: (919)-962-1734. Plaisted: (919)-962- 1751 J

Abstract

This paper presentS a special case of Explanation-Based Generalization (EBG), Goal
Generalization. Goal generalization. which cries to find a proof for the most general
solvable ve~ion of a specific goal while solving the specific goal, is an application of
EBG methods in automatic theorem proving and is a general technique applicable to
many goal-oriented theorem proving systems. We will describe Goal Generalization as
an augmentation for a sequent-style, goal-oriented theorem proving system for arbitrary
quantifier-free clauses. Some implementation results a.rc also given.

Key Words and Phrases: Explanation-Based Generalization, extension of Prolog to first
order logic, automatic theorem proving.

Length in words. 4000.

1. Introduction and Motivation

Many theorem proving systems have a goal-oriented strucrure. They use backward chaining
a~ their maio inference mechanism. An ex.ample of such system is the SLD-resolution for Hom
Oausc Logic [Lloyd 84]. Other examples are !Loveland 88. Stickel 86. Plaisted 88]. Basically, a
goal-oriented system starts to attempt a top-level G. A goal L will be declared as attempted if it is
already solved based on the database of assertions the system maintains: otherwise, L will be
decomposed into several goals L1, ~ , L. (there may be more than one ways to decompose L).
wh.ich are called subgoals, and each of the subgoals wiU be auempted in the same manner.

A situation may arise that, for a goal-oriented system, a goal to be solved is very specific
and a proof for a more general version of the goal exists and the proof for the more general goal
has the same strUcture as the proof for the specific goal. Consider an example in Hom Oausc
Logic:

r(X) :- p(X). q(X).
p(X).
q(X).

The top-level goal is r(a). Obviously a proof existS for a more general goal r(X). hiS beneficial to
lind the proof for the most general solvable ve~ion of a goal while the goal is being solved, espe
cially when caching is performed. that is, the solu tions to the goals are recorded and later used as
asscnion.~ tO solve other goals. For the example above. a goal r(b) will be declared as solved if

• 1lu.s •"'rk was supponed 1n pan by lhe Nauona.l Sacnoc Foundauon under vant OCR·SS16l43 md by the Offlec of :'\av&l
Rc.seareh under &~• :\000l4·86·K.Q68.0.

r(X) instead of r(a} is solved and cached. Repeated work is avoided.

To accomplish the t.ask of find ing proofs for the most general solvable version of a goal
while solving the goal, we need some generalization capability in the theorem proving system. In
this paper, we will discuss our research tO add one such generalization capability to a particular
theorem proving system based on the modified problem reduction fonnat [Plaisted 88]. We wlU
cal l our approach goal generalization. The basic idea is to augment the theorem proving system
to keep twO versions of the goals being anempted. one of which is the specific goal to be solved
and the other is a possibly more general version of the specific goal. The proof constructed will
be for the more general version and can be inst.antiated to become a proof for the specific goal.

Some related works will be di scussed in section 2. In particular, we will formalize goal gen
eralization as a special case of Explanation-Based Generalization. We will briefly describe the
modified problem reduction format in section 3. In section 4, we will show how goal generaliza
tion is incorporated in the modified problem reduction fonnat by augmenting the theorem prov
ing system. We conclude the paper with some implementation results.

2. Related Works

Explanation-Based Generalization is a technique recently developed in the field of machine
learning [Mitchell&al 86]. This technique deals with the problem of formulating gcner.U concepts
on the basis of specific training examples. This technique has been shown to be the same as the
technique in functional programming, Parti al Evaluation. in [Harmelcn&Bundy 88J. Goal gen
eralization can be regarded as a special case of the E xplanation-Based Generalization problem. In
an Explanation-Based GeneraU1.ation problem. we are given

Goal concept - describing the concept tO be learned:

Training example - an example of the goal concept:

Domain theory- a set of rules and facts about the domain;

Operationality criterion - criterion for the form of the learned concept definition:

and are Lo determine a generalization of the Lnuning example that is a sufficient concept definition
for the goal concept and that satisfies the operationality criterion.

We can reformulate goal generallialion in terms of ExplanatiOn· Based Generalization as foUows:

Goal concept - the most general solvable version of the goal to be solved:

Tr.llning example - the specific goal to be solved:

Domain theory - all the inference rules:

Operationality Criterion - rhe goal concept (a goal) must be a logical con~cquence of
the domain theory (according to the inference rules).

Generally speaking. our work is one example of the research issues miscd in (Mitchell&al 86]:

... how such methods for generalization will be used as subcomponentS of larger systems that im
prove their performance at some given l.aSk •••. One key issue 10 consider in this regard is how
generaliZation tasks are initially ronnulau:d. In other words, where do the inputS to the EBG
method (the goal concept, the domain theory. the opcrationality criterion) come from? ...

In our approach. the attempt to solve each goal is formulated as a generalization task and thi~ for·
muJation bears a taSk·subtask structure similar to the goal-subgoal structure of Lhc theorem

2

proving system: The input clause set serves as the domain theory: And the concept of logical
consequence serves as the ope rationality criterion.

The idea of augmenting an existing theorem proving system to construct two proofs in
parallel to actlieve Explanation-Based Generalization is at so used in [Kedar-Cabelli&McCany
87], where Explanation-Based Generalization is presented as an augmentation of the SLD
resolution theorem proving system for Hom Qause Logic. Our approach extends this idea to full
first-order logic by augmenting a theorem proving system for full first-order logic. We point out
that our approach can be used for many other goat-oriented systems 10 accomplish a similar task.

3. Modified Problem Reduction Format

The modilied problem reduction format is :an extension of Prolog to full first-order logic
(non-Hom clauses). The modified problem reduction format accepts a set of Horn-like clause as
input A Horn-like clause is of the form L :- ~. L.:• · · · , L 0, which represents the clause L v -,1.1

V ~~ · • · -,L., where Lis called the head literal and L1, • • • • L. constitute the clause body. A
general clause C is converted into a Hom-like clause HC as follows. One of the positive literal in
C is chosen as the head literal of HC and all other literals in Care negated and pu1 in the clause
body of HC. If C contains only negative literals, we use the special literal FALSE as the head
literal of HC.

The inference rules for the modified problem reduction format consist of the clause rules,
which are obtained from the input clauses. the assumption axioms and the case analysis rule. For
each Hom-like clause L :- L1• ~ •••• , L. in S, we have a clause rule. We call the lists of literals
r's on the left of the arrow~ assumprion list.

Clause Rules

rro~L, • > r,~L,), rr,~~ => 12-+Lil ' ... ' IT ~·~L. => r.-.L.J
10~L~> r.-.L

The assumption axioms and the case analysis rule illre

Assumption Axioms

r ~L => r -+L if L e r L is a literaL

r -+---.1. ~> r , -,L~ Lis positive.

Case Analysis Rule

IT rL=> r,. -,M-?L). rr,. M-+L.o r,, M~LJ 1r01s:lr,1

r0~L => r,~L

The implementation of the modified problem reduction format in (Plaisted 88] uses de pOl ·
first iterative deepening search (Korf 851 with caching and true unification (unification with
occur-check). In this implementation. each inference rule is represented as a Protog clause and a
goal r-+ L is represented as L :- r. The main procedure is mprf(((L :- Bo), (L :- B1)) where L :-
80 is the goal to be solved and L :- B, is the goal solved: 8 1 is 80 probably with extra negative

3

literals added to it at !he froOL The to~level call is mprf({(false :- [)).(false:- B)) and !he solved
goal being false:- [] indicates a successful proof. For an input clause L :- L,. !...,. --- . t.,.. the fol
lowing Prolog clause represents the correspOnding clause rule:

mprf((L0 :- 80). (Lo :-B.)) :
unify(Lo. L).
mprf((L1 :- Bo), (L1 :- 8 1)),

mprf((L; :- 8;_1), (1.; :- B;)),

mprf((t.,. :- a_,). (L, :- B.}),

where Lo is logical variable in Prolog. For a unit clause L, the correspOnding clause rule is
represented as

mprf((L0 :-B), <Lo :- B)) :- unify{Lo, L).

where Lo is logical variable in Prolog. The representations for the assumption axioms and !he case
analysis rule are

mprf((l.. :- B). (1. :- B)) :- member(L. B).
mprf((not(L) :- B). (not(L) :- [not(L)IB])).

mprf((L :- 80). (1. :- B,)) :-
mprf((L :- Bo). (1. :- [not(M)IB1])).

mprf({L :-IMIB1)), (l. :- [MIB,])),
length(B0) s length(B 1).

The procedure unify performs true unification. The procedure member is defined as follows

member(L. [XIY]) :- unify(L. X).
member(L, (XIY]) :- member(L. Y).

We have on I y provided a simplified description on the aspects of !he modified problem
reduction format and its implementation necessary for !he subsequent discussion. Many details
and subtleties about !he inference system and the implementation are omined for brevity. See
[Plaisted 88) for a complete discussion.

4. Goal Generalization

If a call mprf((L :- B0), (L :- 8 1)) succeeds. th.e goal L :- 8 1 has a proof. It is pOSSible that a
more general goal LG :- BG1 has a proof wilh the same structure as that for L :- 8 1• The more
general goal L G :- BG1 is a generalization in the sense !hat all goals that can be obtained from LG
:- BG1 by a substitution have proofs of the same structure. Goal generalization tries to find !he
most general solvable version LO :- BO or a l;lOal L :- B while solving L :- B. We achieve !his
by augmenting the Prolog representation for the inference rules with extra arguments. Those extra
arguments represent !he more general versions of !heir counterpart.~. To be specific, the procedure
mprf((L :- Bo). (L :- 8 1}) will be replaced by mprf_GG((L :- Bo), (l. :- S 1), (LG :-SO.,), (LG :-
801)). where L :- Bo and L :- 8 1 are !he goal 10 be solved and !he goal solved. respectively. as the
two arguments in !he procedure mprf are, and LG :- BG0 and LG :- BG1 are the more general ver
sions of L :- 80 and L :- B1 respectively. The result is that a proof for LG :- BG1 will be con
structed which can be instantiated to be a proof for L :- 8 1• The resulting representation for a
clause rule for !he Hom-like clause L :- L1• ~. • - • • L. will be

mprf_GG((Lo :- Bo). <Lo :- BJ,(LG0 :- Go), (LG0 :- G.)):-

4

unify(I...o. L),
variable_list(G0, Vl...o), make_vai{LG1, V 1),

mprf_GG((L1 :- Bo), (L1 :- B.),(V1 :- Vl...o), (V1 :- G1)),

unify(V 1, LG1) . uniJ)'(VLo, Go),

variable_List(G1_1, VL,-1) , make_var(LG1, V;),
mprf_GG((L; :- 8,_1), (L; :- B;) ,(V, :- VL;...1). (V1 :- G;)),
unify(V1, LG.), uniJ)'(VL.-1, G1_1) ,

variable_list(G_,. VL_1), make_vai{LG •• V.),
mprf_GG((L, :- B,_1), (L, :- B.),(V • :- VL,..1), (V • :-G.)),
unify(V •• LG.), unify(VL,..1, G,_1),

unify(LG0, LG).

where Lo and LG0 are logie3l variables and make_var(L1, V1) (i = !, 2, n) is such that V1 will be
a distinct logical variable if 1.; is a positive literal. a term not(W.) with W1 being a variable if L, is
a negative Literal. :- LG1, LG2, • · · , LG. is a copy of L :- L1, 4, · · · , L. (with new variables)
made during l.hc preprocessing, that is. when l.he Prolog clause is generated. The procedure
variable_lisr assemblies a list of distinct variables from a list of literals. For example. a list rx,,
X1, X:J wilJ be returned by variable_lisr. given a list of three literals [L1, 4, L:J. A unit clause L
will be tranSformed into

mprf_GG({Lo :-B), (Lo :-B), (LG0 :- BG), (L00 :- BG)) :- unify(I...o. L). unify(LG0• LG).

where Lo and LG0 are logical variables and LG is a copy of L made during the preprocessing.
Similarly, we also have the corresponding Prolog clause representations for the assumption
axioms and the case analysis rule:

mprf_GG((L :-B). (L :-B). (LG :- BG), (LG :- BG)) :- member(L. B. LG, BG).
mprf_GG((not{L) :-B). (not(L) :-(not(L)IB]) , (not(LG) :- BG). (not(LG) :- [not(LG)IBG])).

mprf_GG((L :- Bo). (L :- B1).(LG :- BGo), (LG :- BG1)) :-

mprf_GG((L :- Bo), (L :- [not(M)IB.J), (LG :- BGo). (LG :- [not(MG)IBGJI)),
variable_list([MGIBG1], VL), makc_vaJR, V),
mprf_GG((L :- (MIB.J), (L :- [MIB.J), (V :- VL). (V :- VL)),
unify(VL, [MGIBG1]), unify(V, LG),lengtb(B0) s length(B 1).

The procedure member is defined as follows

member(L, [XIY], LG. [XGIYG]) :- unify(L. X), unify(LG. XG).
member(L, [XIY]. LG, [XGIYG)) :- mcmbeJR, Y), member(LG. YG).

The following theorem formali7..es what goal generalization accomplishes:

Theorem: Given a set of input clauses S. if the call mprf_GG((L :- Bo). (L :- 9 1) , 01 :- VL), 01
:- BG1)) succeeds, where V is a variable or a term not(W} with W being a vari able depending on
whcl.her L is a positive or negative literal and VL is a list of variables COnstrUcted from 80 by
replacing each literal in B0 with a distinct variable, then the following are true:

(1) There existS a substitution 9 such l.hat (V :- 801)0 = (L :- 8 1):

(2) BG1 ::> V is a logical consequence of S, where BG1 is interpreted as a conjunction of the
literals in it: and

(3) If there is a substitution 1t. a goal (G :- M) which has l.he same proof as (V :- BG1) does,1

5

and (0 :- M)1t = (II :- BG1), then 1t only renames variables; in another words, V :- B01 is
the most general goal with the same proof.

Proof. By induction on the size of the proof for V :- BG, . where the size of a proof i.s the number
of inference rules used to obtain the proof. 0

5. [mplementation and Experimental Re$u.lts

We bave modi fied a theorem prover based oo the modified problem reduction format to
incorporate the augmentation discussed above. There are several refinements in the implementa
tion that deserve more elaboration. The first refinement concerns using the Prolog built-in
unification in place of some calls to the procedure unify. The second refinement concerns how to
eliminate unnecessary use of the splitting rule. The third refinement concerns how to handle
repeated solutions.

Using Prolog built-in unification. We can replace the calls to unify(R, L) that involve the
more general versions of the goals by R = L. whic.h invokes Prolog built-in unification. It is wcU
known that Prolog omits the occur-check in its unification for efficiency, and unification without
occur-check is unsound [Plaisted 84). Tn our case. however. we usc true unification for the
specific goals and the unification operations involving the more gener.tl versions of the goals are
always performed after the unification operations on the specific goals succeed, lbus arc
guaranteed to succeed. Therefore it is sufficient to use Prolog built-in unification on the more
general goals. This rcfmemcnL is impcnant for the efficiency of the augmented prover.

Unnecessary case analysis. It is made pcssible by the augmentation to detect when some
splitting liter.tls are not used during the proof and thus redundant. ln the more general version of a
goal. LG :- BG, the assumption list BG starts to be a list of logical variables. The only place
where lhese variables can bound to a literal is in the assumption axiom where the procedure
member is called. If a call mprf_GG((L :- Bo). (L :- D1). (LG :- BOo). (LG :- BGt)) succeed~ and
there are still unbound variables in BG1• we know that lbere arc redundant literals in the assump
tion list. Two alternatives arc available to handle tllis. We can either delete those variables from
the assumption lists or simply fail on the call to mprf_GG. This is a pctcntially pcwerful deletion
strategy and is made possible by the augmentation. This strategy seems to be similar to the
requirement in Ncar-Hom Prolog that there be cancellation within each restart block in a legal
deduction [Loveland 88]. In our implementarion, we elect the option of failing on redundant
literals in assumption lists.

Repeated solutions. We treat a solution R as a repeated solution if there is already a solu·
tion S in the database such that R is subsumed by S and the proof length of S is no greater than
that of R (This is not quite correct theoretically, but seems to wort<: well in practice). Since we arc
deriving and caching the most general solvable goals, it is nulrc likely that repeated solutions are
generated. In our implementation, we elect to fail when a repeated solution is generated based on
the consideration that the search would be repeated i f we succeed.

We have tested the augmented prover. wilb the three refinements discussed above, on the
problem set from [Stickel 86]. We have made the original prover fail on repeated solutions too, in
order to make a fair comparison. The table at the end shows our teSt result. We note that, in 72

' We say two goals (L1 :- B 1) tnd (Lz:- Bz)havc l.he •arne proofiftheyuse lhe same inference rules in the: same order,

6

out of 82 problems, the augmented prover generates fewer or equal number of solutions for most
problems and, for the 35 problems on which the augmented prover generates fewer solutions, the
number of solutions is reduced by 38.6 percent on the average. This is one benefit we have
expected by adding the generali7..ation capability. This is probably one of the reasons why the
augmented prover is faster on wosl5. However, the inference rate of the augmented prover is
much less than that of the original prover (3.63 inferences per second as opposed to 5.00 infer
ences per second), due to the extra argumentS. This is why the augmented prover is much slower
on problems like wos4, Js65 and schubert, where the numbers of solutions generated and the
numbers of inferences performed by the original prover and by the augmented prover differ very
little. We want to poiru out that, without the three refinements discussed above. the augmented
prover performs poorly. and even fails to obtain proofs for some problems (wos31 and Is 108).

References

[Harmclen&Bundy 881 Harmelen, F. and A. Bundy, "Explanation-Based Generalization= Partial
Evaluation", Arlijicial Intelligence 36. pp. 401-412, 1988.

[Kedar-Cabelli&McCany 87] Kcdar-CabeW. S.T. and L.T. McCany. "Explanation-Based Gcn·
eralization as Resolution Theorem Proving", In P. Lanley, editor, Proceedings of the 4th
lnternaJiOfUI.I Machine Learning Workshop, pp. 383-389, Morgan Kaufrnartn, 1987.

[Korf 85) Korf, R.E., "Depth-first Iterative Deepening: an Optimal Admissible Tree Search",
Artiftcial/ncelligence, Vol. 27. 97-Hl9. 1985.

[l..loyd 84] Lloyd, J.W .. Foundations of Logic Programming, New York, NY. Springer-Verlag.

[l..oveland 88] Loveland. D .. "Near-Hom Prolog and Beyond", Technical Report #CS-1988-25.
Computer Science Department, Duke Unlv·ersity, Durham, 1988.

[Mitchell&al 86) Mitchell. T.M .. R.M. Keller and S.T. Kcdar-Cabelli, "Explanation-Based Gen
erali7.ation: A Unlfying View•. Maching Learning. Vol. 1. No. 1. pp. 47-80. 1986.

[Plaisted 84] Plaisted. D.A., "The Occur-Check Problem in Prolog" , Journal of New Generation
Computing 2. pp. 309-322. !984.

[Plaisted 88] Plaisted, D.A., "Non-Hom Clause Logic Programming Without Contrapositives",
JourlUJl of Automated Reasoning. Vol4, No.3. September !988.

(Stickel 86] Stickel. M.E., "A PROLOG Technotogy Theorem Prover: lmplementarion by an
Extended PROLOG Compiler'', Proc. of IJCAJ. pp. 573-587. Oltford, England, July
1986.

7

Test Result for Goal Generalization IGG\>
ori · nal orover auRmented prover

theorem proof running number of number of proof running number of number of
deol.h time inference solution deol.h Lime inference solution

ancesl !8 2.98 22 7 18 4.20 22 8
barslall 11 4.97 103 15 11 7.98 103 2
dbabhp 11 8.60 163 51 II 13.47 163 51
dm 9 0.73 II 2 7 0.58 8 2
ewl 9 0.70 7 5 9 0.83 7 5
ew2 7 0.38 4 4 7 0.40 4 4
ew3 11 1.25 11 6 11 !.50 I I 6
ext 9 0.95 14 2 7 0.77 9 2
ex2 11 5.87 308 7 11 8.27 309 2
ex3 9 1.13 33 4 7 1.02 27 4
ex4 9 1.23 35 4 7 1.12 28 4
ex5 7 0.33 6 2 7 0.42 6 2
ex6 9 2.68 134 9 9 3.53 134 9
ex7 9 0.87 !3 6 9 1.07 13 6
ex8 ll 2.30 54 8 I I 2.90 55 8
ex9 11 3.02 37 8 11 3.77 37 8
example 18 20.97 613 10 18 22.00 417 4
fex4tl 18 242.22 1033 196 18 383.58 1038 173
fex412 18 159.60 853 !50 18 222.97 833 118
fex5 11 309.72 2967 297 II 1461.28 3710 318
fex6tl 24 26.93 935 27 18 35.72 881 36
fex6a 24 25.20 895 24 18 37.88 887 31
group! 9 1.12 18 2 7 0.80 10 2
group2 I I 5.90 308 7 11 7.80 309 2
haspansl ll 1.45 24 6 11 2.05 25 6
ha~rts2 24 4.30 81 II 24 5.90 80 lO
ls100 7 0.40 6 3 7 0.50 7 3
lsl03 18 6.67 115 9 18 10.18 116 5
1s 105 7 0.70 11 4 7 0.75 II 4
Isl06 7 0.67 11 4 7 0.75 l1 4
1s108 24 375.07 3403 67 24 1358.47 3572 129
lslll 7 0.55 9 4 7 0.77 II 4
lsll5 11 10.78 164 13 II 19.93 150 13
1sll6 9 10.40 126 39 9 19.70 122 38
lsl2l 11 52.85 884 57 II 83.82 748 48
ls17 9 3.50 69 9 9 4.90 64 9
ls23 II 11.73 318 24 9 15.70 300 24
1~26 9 1.68 63 6 9 2.15 63 6
ls28 11 60.45 610 131 9 61.00 579 133
ls29 11 58.83 602 130 <) 55 .95 575 132
ls35 14 8.48 358 6 11 9.93 350 6
IS41 7 2.12 45 8 7 2.92 46 5
ls5 7 0.43 5 5 7 0.57 5 5
ls55 7 2.45 37 4 s 2.82 31 5

8

T""! R"<ult fnr Goal tinn rcr.lfr;;;;t)
nno no! orover ! mover

theorem 1~:0~ running of ft' vo IE[ru~uung • .. !s65 ll 2944 281 11
ls68 7 5.12 121 16 5 6.48 114 14
ls75 9 28.17 561 51 9 50.75 545 13
ls76tl 7 5.88 140 17 7 9.62 140 17
mqw 7 0.60 5 5 7 0.68 6 4
numl 9 0.80 14 6 9 1.10 14 6
prim 11 2.03 53 8 II 2.78 53 8
qw 9 0.77 10 4 9 0.85 10 4
rob! 7 0.35 2 2 7 0.35 2 2
rob2 II 5.88 299 4 II 7.90 298 2
schuben 32 65.30 1124 67 32 178.43 1124 68
shonbwst 9 1.48 26 5 9 2.15 26 2
wosl 11 78.40 1154 90 9 201.72 1152 145
wosiO 11 258.58 3981 233 ! I 1091.10 4143 liS
wosll II 281.20 4248 288 11 791.20 4336 130
wosl2 7 0.73 27 3 7 0.97 27 3
wosl3 7 8.43 301 51 7 11.17 301 51
wosl4 9 10.87 313 49 9 13.57 313 48
wos!S 14 8966.92 20553 2302 11 179.25 1594 102
wosl7 9 47.52 1124 120 9 108.45 1124 12
"'OSI9 9 89.05 1301 203 9 204.98 1291 194
wos2 9 5.00 166 8 7 7.00 159 8
wos23 7 1.85 48 2 7 2.77 48 2
wos24 9 19.45 443 60 9 29.23 419 56
wos25 9 57.22 828 167 9 75.77 793 129
wos27 9 28.22 542 94 7 51.97 522 92
wos29 9 106.13 1135 248 9 172.00 1135 235
wos3 7 0.63 14 3 7 0.85 14 2
wos30 7 1.62 40 4 5 1.08 19 3
wos31 18 5111.42 21510 552 18 6832.45 12120 25()
wos32 5 1.73 21 7 7 8.13 67 6
wos33 9 7.85 90 7 9 12.53 86 6
wos4 II 653.38 7235 4 ll 1988.20 7236 4
wos5 9 5.22 153 20 7 5.50 140 20
wos6 9 18.35 459 73 9 22.52 458 16
wos7 9 10.38 389 22 9 16.35 389 3 :: ~ 111:~& 325 49 7 11.35 314 i! 14. 527 33 9 27.42 528

Z<Jh.e data an: obt.lined on a SU~3/00 workstalion with 12Mb memory. The l,rolog system i.sthe ALS Prolog Compilct (Vc:nlon
0.60) from Applied i.o&iC SyStems, Inc.

9

