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Abstract 

This paper presentS a special case of Explanation-Based Generalization (EBG), Goal 
Generalization. Goal generalization. which cries to find a proof for the most general 
solvable ve~ion of a specific goal while solving the specific goal, is an application of 
EBG methods in automatic theorem proving and is a general technique applicable to 
many goal-oriented theorem proving systems. We will describe Goal Generalization as 
an augmentation for a sequent-style, goal-oriented theorem proving system for arbitrary 
quantifier-free clauses. Some implementation results a.rc also given. 
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1. Introduction and Motivation 

Many theorem proving systems have a goal-oriented strucrure. They use backward chaining 
a~ their maio inference mechanism. An ex.ample of such system is the SLD-resolution for Hom 
Oausc Logic [Lloyd 84]. Other examples are !Loveland 88. Stickel 86. Plaisted 88]. Basically, a 
goal-oriented system starts to attempt a top-level G. A goal L will be declared as attempted if it is 
already solved based on the database of assertions the system maintains: otherwise, L will be 
decomposed into several goals L1, ~ .... , L. (there may be more than one ways to decompose L). 
wh.ich are called subgoals, and each of the subgoals wiU be auempted in the same manner. 

A situation may arise that, for a goal-oriented system, a goal to be solved is very specific 
and a proof for a more general version of the goal exists and the proof for the more general goal 
has the same strUcture as the proof for the specific goal. Consider an example in Hom Oausc 
Logic: 

r(X) :- p(X). q(X). 
p(X). 
q(X). 

The top-level goal is r(a). Obviously a proof existS for a more general goal r(X). hiS beneficial to 
lind the proof for the most general solvable ve~ion of a goal while the goal is being solved, espe
cially when caching is performed. that is, the solu tions to the goals are recorded and later used as 
asscnion.~ tO solve other goals. For the example above. a goal r(b) will be declared as solved if 

• 1lu.s •"'rk was supponed 1n pan by lhe Nauona.l Sacnoc Foundauon under vant OCR·SS16l43 md by the Offlec of :'\av&l 
Rc.seareh under &~• :\000l4·86·K.Q68.0. 



r(X) instead of r(a} is solved and cached. Repeated work is avoided. 

To accomplish the t.ask of find ing proofs for the most general solvable version of a goal 
while solving the goal, we need some generalization capability in the theorem proving system. In 
this paper, we will discuss our research tO add one such generalization capability to a particular 
theorem proving system based on the modified problem reduction fonnat [Plaisted 88]. We wlU 
cal l our approach goal generalization. The basic idea is to augment the theorem proving system 
to keep twO versions of the goals being anempted. one of which is the specific goal to be solved 
and the other is a possibly more general version of the specific goal. The proof constructed will 
be for the more general version and can be inst.antiated to become a proof for the specific goal. 

Some related works will be di scussed in section 2. In particular, we will formalize goal gen
eralization as a special case of Explanation-Based Generalization. We will briefly describe the 
modified problem reduction format in section 3. In section 4, we will show how goal generaliza
tion is incorporated in the modified problem reduction fonnat by augmenting the theorem prov
ing system. We conclude the paper with some implementation results. 

2. Related Works 

Explanation-Based Generalization is a technique recently developed in the field of machine 
learning [Mitchell&al 86]. This technique deals with the problem of formulating gcner.U concepts 
on the basis of specific training examples. This technique has been shown to be the same as the 
technique in functional programming, Parti al Evaluation. in [Harmelcn&Bundy 88J. Goal gen
eralization can be regarded as a special case of the E xplanation-Based Generalization problem. In 
an Explanation-Based GeneraU1.ation problem. we are given 

Goal concept - describing the concept tO be learned: 

Training example - an example of the goal concept: 

Domain theory- a set of rules and facts about the domain; 

Operationality criterion - criterion for the form of the learned concept definition: 

and are Lo determine a generalization of the Lnuning example that is a sufficient concept definition 
for the goal concept and that satisfies the operationality criterion. 

We can reformulate goal generallialion in terms of ExplanatiOn· Based Generalization as foUows: 

Goal concept - the most general solvable version of the goal to be solved: 

Tr.llning example - the specific goal to be solved: 

Domain theory - all the inference rules: 

Operationality Criterion - rhe goal concept (a goal) must be a logical con~cquence of 
the domain theory (according to the inference rules). 

Generally speaking. our work is one example of the research issues miscd in (Mitchell&al 86]: 

... how such methods for generalization will be used as subcomponentS of larger systems that im
prove their performance at some given l.aSk •••. One key issue 10 consider in this regard is how 
generaliZation tasks are initially ronnulau:d. In other words, where do the inputS to the EBG 
method (the goal concept, the domain theory. the opcrationality criterion) come from? ... 

In our approach. the attempt to solve each goal is formulated as a generalization task and thi~ for· 
muJation bears a taSk·subtask structure similar to the goal-subgoal structure of Lhc theorem 
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proving system: The input clause set serves as the domain theory: And the concept of logical 
consequence serves as the ope rationality criterion. 

The idea of augmenting an existing theorem proving system to construct two proofs in 
parallel to actlieve Explanation-Based Generalization is at so used in [Kedar-Cabelli&McCany 
87], where Explanation-Based Generalization is presented as an augmentation of the SLD
resolution theorem proving system for Hom Qause Logic. Our approach extends this idea to full 
first-order logic by augmenting a theorem proving system for full first-order logic. We point out 
that our approach can be used for many other goat-oriented systems 10 accomplish a similar task. 

3. Modified Problem Reduction Format 

The modilied problem reduction format is :an extension of Prolog to full first-order logic 
(non-Hom clauses). The modified problem reduction format accepts a set of Horn-like clause as 
input A Horn-like clause is of the form L :- ~. L.:• · · · , L 0, which represents the clause L v -,1.1 

V ~~ · • · -,L., where Lis called the head literal and L1, • • • • L. constitute the clause body. A 
general clause C is converted into a Hom-like clause HC as follows. One of the positive literal in 
C is chosen as the head literal of HC and all other literals in Care negated and pu1 in the clause 
body of HC. If C contains only negative literals, we use the special literal FALSE as the head 
literal of HC. 

The inference rules for the modified problem reduction format consist of the clause rules, 
which are obtained from the input clauses. the assumption axioms and the case analysis rule. For 
each Hom-like clause L :- L1• ~ •••• , L. in S, we have a clause rule. We call the lists of literals 
r's on the left of the arrow~ assumprion list. 

Clause Rules 

rro~L, • > r,~L,), rr,~~ => 12-+Lil ' ... ' IT ~·~L. => r.-.L.J 
10~L~> r.-.L 

The assumption axioms and the case analysis rule illre 

Assumption Axioms 

r ~L => r -+L if L e r L is a literaL 

r -+---.1. ~> r , -,L~ Lis positive. 

Case Analysis Rule 

IT rL=> r,. -,M-?L). rr,. M-+L.o r,, M~LJ 1r01s:lr,1 

r0~L => r,~L 

The implementation of the modified problem reduction format in (Plaisted 88] uses de pOl · 
first iterative deepening search (Korf 851 with caching and true unification (unification with 
occur-check). In this implementation. each inference rule is represented as a Protog clause and a 
goal r-+ L is represented as L :- r. The main procedure is mprf(((L :- Bo), (L :- B1)) where L :-
80 is the goal to be solved and L :- B, is the goal solved: 8 1 is 80 probably with extra negative 

3 



literals added to it at !he froOL The to~level call is mprf({(false :- [)).(false:- B)) and !he solved 
goal being false:- [ ] indicates a successful proof. For an input clause L :- L,. !...,. --- . t.,.. the fol
lowing Prolog clause represents the correspOnding clause rule: 

mprf((L0 :- 80). (Lo :-B.)) :
unify(Lo. L). 
mprf((L1 :- Bo), (L1 :- 8 1)), 

mprf((L; :- 8;_1), (1.; :- B;)), 

mprf((t.,. :- a_,). (L, :- B.}), 

where Lo is logical variable in Prolog. For a unit clause L, the correspOnding clause rule is 
represented as 

mprf((L0 :-B), <Lo :- B)) :- unify{Lo, L). 

where Lo is logical variable in Prolog. The representations for the assumption axioms and !he case 
analysis rule are 

mprf((l.. :- B). (1. :- B)) :- member(L. B). 
mprf((not(L) :- B). (not(L) :- [not(L)IB])). 

mprf((L :- 80). (1. :- B,)) :-
mprf((L :- Bo). (1. :- [not(M)IB1])). 

mprf({L :-IMIB1)), (l. :- [MIB,])), 
length(B0) s length(B 1). 

The procedure unify performs true unification. The procedure member is defined as follows 

member(L. [XIY]) :- unify(L. X). 
member(L, (XIY]) :- member(L. Y). 

We have on I y provided a simplified description on the aspects of !he modified problem 
reduction format and its implementation necessary for !he subsequent discussion. Many details 
and subtleties about !he inference system and the implementation are omined for brevity. See 
[Plaisted 88) for a complete discussion. 

4. Goal Generalization 

If a call mprf((L :- B0), (L :- 8 1)) succeeds. th.e goal L :- 8 1 has a proof. It is pOSSible that a 
more general goal LG :- BG1 has a proof wilh the same structure as that for L :- 8 1• The more 
general goal L G :- BG1 is a generalization in the sense !hat all goals that can be obtained from LG 
:- BG1 by a substitution have proofs of the same structure. Goal generalization tries to find !he 
most general solvable version LO :- BO or a l;lOal L :- B while solving L :- B. We achieve !his 
by augmenting the Prolog representation for the inference rules with extra arguments. Those extra 
arguments represent !he more general versions of !heir counterpart.~. To be specific, the procedure 
mprf((L :- Bo). (L :- 8 1}) will be replaced by mprf_GG((L :- Bo), (l. :- S 1), (LG :-SO.,), (LG :-
801)). where L :- Bo and L :- 8 1 are !he goal 10 be solved and !he goal solved. respectively. as the 
two arguments in !he procedure mprf are, and LG :- BG0 and LG :- BG1 are the more general ver
sions of L :- 80 and L :- B1 respectively. The result is that a proof for LG :- BG1 will be con
structed which can be instantiated to be a proof for L :- 8 1• The resulting representation for a 
clause rule for !he Hom-like clause L :- L1• ~. • - • • L. will be 

mprf_GG((Lo :- Bo). <Lo :- BJ,(LG0 :- Go), (LG0 :- G.)):-
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unify(I...o. L), 
variable_list(G0, Vl...o), make_vai{LG1, V 1), 

mprf_GG((L1 :- Bo), (L1 :- B.),(V1 :- Vl...o), (V1 :- G1)), 

unify(V 1, LG1) . uniJ)'(VLo, Go), 

variable_List(G1_1, VL,-1) , make_var(LG1, V;), 
mprf_GG((L; :- 8,_1), (L; :- B;) ,(V, :- VL;...1). (V1 :- G;)), 
unify(V1, LG.), uniJ)'(VL.-1, G1_1) , 

variable_list(G_,. VL_1), make_vai{LG •• V.), 
mprf_GG((L, :- B,_1), (L, :- B.),(V • :- VL,..1), (V • :-G.)), 
unify(V •• LG.), unify(VL,..1, G,_1), 

unify(LG0, LG). 

where Lo and LG0 are logie3l variables and make_var(L1, V1) (i = !, 2, .... n) is such that V1 will be 
a distinct logical variable if 1.; is a positive literal. a term not(W.) with W1 being a variable if L, is 
a negative Literal. :- LG1, LG2, • · · , LG. is a copy of L :- L1, 4, · · · , L. (with new variables) 
made during l.hc preprocessing, that is. when l.he Prolog clause is generated. The procedure 
variable_lisr assemblies a list of distinct variables from a list of literals. For example. a list rx,, 
X1, X:J wilJ be returned by variable_lisr. given a list of three literals [L1, 4, L:J. A unit clause L 
will be tranSformed into 

mprf_GG({Lo :-B), (Lo :-B), (LG0 :- BG), (L00 :- BG)) :- unify(I...o. L). unify(LG0• LG). 

where Lo and LG0 are logical variables and LG is a copy of L made during the preprocessing. 
Similarly, we also have the corresponding Prolog clause representations for the assumption 
axioms and the case analysis rule: 

mprf_GG((L :-B). (L :-B). (LG :- BG), (LG :- BG)) :- member(L. B. LG, BG). 
mprf_GG((not{L) :-B). (not(L) :-(not(L)IB ]) , (not(LG) :- BG). (not(LG) :- [not(LG)IBG])). 

mprf_GG((L :- Bo). (L :- B1).(LG :- BGo), (LG :- BG1)) :-

mprf_GG((L :- Bo), (L :- [not(M)IB.J), (LG :- BGo). (LG :- [not(MG)IBGJI)), 
variable_list([MGIBG1], VL), makc_vaJR, V), 
mprf_GG((L :- (MIB.J), (L :- [MIB.J), (V :- VL). (V :- VL)), 
unify(VL, [MGIBG1]), unify(V, LG),lengtb(B0) s length(B 1). 

The procedure member is defined as follows 

member(L, [XIY], LG. [XGIYG]) :- unify(L. X), unify(LG. XG). 
member(L, [XIY]. LG, [XGIYG)) :- mcmbeJR, Y), member(LG. YG). 

The following theorem formali7..es what goal generalization accomplishes: 

Theorem: Given a set of input clauses S. if the call mprf_GG((L :- Bo). (L :- 9 1) , 01 :- VL), 01 
:- BG1)) succeeds, where V is a variable or a term not(W} with W being a vari able depending on 
whcl.her L is a positive or negative literal and VL is a list of variables COnstrUcted from 80 by 
replacing each literal in B0 with a distinct variable, then the following are true: 

(1) There existS a substitution 9 such l.hat (V :- 801)0 = (L :- 8 1): 

(2) BG1 ::> V is a logical consequence of S, where BG1 is interpreted as a conjunction of the 
literals in it: and 

(3) If there is a substitution 1t. a goal (G :- M) which has l.he same proof as (V :- BG1) does,1 
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and (0 :- M)1t = (II :- BG1), then 1t only renames variables; in another words, V :- B01 is 
the most general goal with the same proof. 

Proof. By induction on the size of the proof for V :- BG, . where the size of a proof i.s the number 
of inference rules used to obtain the proof. 0 

5. [mplementation and Experimental Re$u.lts 

We bave modi fied a theorem prover based oo the modified problem reduction format to 
incorporate the augmentation discussed above. There are several refinements in the implementa
tion that deserve more elaboration. The first refinement concerns using the Prolog built-in 
unification in place of some calls to the procedure unify. The second refinement concerns how to 
eliminate unnecessary use of the splitting rule. The third refinement concerns how to handle 
repeated solutions. 

Using Prolog built-in unification. We can replace the calls to unify(R, L) that involve the 
more general versions of the goals by R = L. whic.h invokes Prolog built-in unification. It is wcU 
known that Prolog omits the occur-check in its unification for efficiency, and unification without 
occur-check is unsound [Plaisted 84). Tn our case. however. we usc true unification for the 
specific goals and the unification operations involving the more gener.tl versions of the goals are 
always performed after the unification operations on the specific goals succeed, lbus arc 
guaranteed to succeed. Therefore it is sufficient to use Prolog built-in unification on the more 
general goals. This rcfmemcnL is impcnant for the efficiency of the augmented prover. 

Unnecessary case analysis. It is made pcssible by the augmentation to detect when some 
splitting liter.tls are not used during the proof and thus redundant. ln the more general version of a 
goal. LG :- BG, the assumption list BG starts to be a list of logical variables. The only place 
where lhese variables can bound to a literal is in the assumption axiom where the procedure 
member is called. If a call mprf_GG((L :- Bo). (L :- D1). (LG :- BOo). (LG :- BGt)) succeed~ and 
there are still unbound variables in BG1• we know that lbere arc redundant literals in the assump
tion list. Two alternatives arc available to handle tllis. We can either delete those variables from 
the assumption lists or simply fail on the call to mprf_GG. This is a pctcntially pcwerful deletion 
strategy and is made possible by the augmentation. This strategy seems to be similar to the 
requirement in Ncar-Hom Prolog that there be cancellation within each restart block in a legal 
deduction [Loveland 88]. In our implementarion, we elect the option of failing on redundant 
literals in assumption lists. 

Repeated solutions. We treat a solution R as a repeated solution if there is already a solu· 
tion S in the database such that R is subsumed by S and the proof length of S is no greater than 
that of R (This is not quite correct theoretically, but seems to wort<: well in practice). Since we arc 
deriving and caching the most general solvable goals, it is nulrc likely that repeated solutions are 
generated. In our implementation, we elect to fail when a repeated solution is generated based on 
the consideration that the search would be repeated i f we succeed. 

We have tested the augmented prover. wilb the three refinements discussed above, on the 
problem set from [Stickel 86]. We have made the original prover fail on repeated solutions too, in 
order to make a fair comparison. The table at the end shows our teSt result. We note that, in 72 

' We say two goals (L1 :- B 1) tnd (Lz:- Bz)havc l.he •arne proofiftheyuse lhe same inference rules in the: same order, 
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out of 82 problems, the augmented prover generates fewer or equal number of solutions for most 
problems and, for the 35 problems on which the augmented prover generates fewer solutions, the 
number of solutions is reduced by 38.6 percent on the average. This is one benefit we have 
expected by adding the generali7..ation capability. This is probably one of the reasons why the 
augmented prover is faster on wosl5. However, the inference rate of the augmented prover is 
much less than that of the original prover (3.63 inferences per second as opposed to 5.00 infer
ences per second), due to the extra argumentS. This is why the augmented prover is much slower 
on problems like wos4, Js65 and schubert, where the numbers of solutions generated and the 
numbers of inferences performed by the original prover and by the augmented prover differ very 
little. We want to poiru out that, without the three refinements discussed above. the augmented 
prover performs poorly. and even fails to obtain proofs for some problems (wos31 and Is 108). 
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Test Result for Goal Generalization IGG\> 
ori · nal orover auRmented prover 

theorem proof running number of number of proof running number of number of 
deol.h time inference solution deol.h Lime inference solution 

ancesl !8 2.98 22 7 18 4.20 22 8 
barslall 11 4.97 103 15 11 7.98 103 2 
dbabhp 11 8.60 163 51 II 13.47 163 51 
dm 9 0.73 II 2 7 0.58 8 2 
ewl 9 0.70 7 5 9 0.83 7 5 
ew2 7 0.38 4 4 7 0.40 4 4 
ew3 11 1.25 11 6 11 !.50 I I 6 
ext 9 0.95 14 2 7 0.77 9 2 
ex2 11 5.87 308 7 11 8.27 309 2 
ex3 9 1.13 33 4 7 1.02 27 4 
ex4 9 1.23 35 4 7 1.12 28 4 
ex5 7 0.33 6 2 7 0.42 6 2 
ex6 9 2.68 134 9 9 3.53 134 9 
ex7 9 0.87 !3 6 9 1.07 13 6 
ex8 ll 2.30 54 8 I I 2.90 55 8 
ex9 11 3.02 37 8 11 3.77 37 8 
example 18 20.97 613 10 18 22.00 417 4 
fex4tl 18 242.22 1033 196 18 383.58 1038 173 
fex412 18 159.60 853 !50 18 222.97 833 118 
fex5 11 309.72 2967 297 II 1461.28 3710 318 
fex6tl 24 26.93 935 27 18 35.72 881 36 
fex6a 24 25.20 895 24 18 37.88 887 31 
group! 9 1.12 18 2 7 0.80 10 2 
group2 I I 5.90 308 7 11 7.80 309 2 
haspansl ll 1.45 24 6 11 2.05 25 6 
ha~rts2 24 4.30 81 II 24 5.90 80 lO 
ls100 7 0.40 6 3 7 0.50 7 3 
lsl03 18 6.67 115 9 18 10.18 116 5 
1s 105 7 0.70 11 4 7 0.75 II 4 
Isl06 7 0.67 11 4 7 0.75 l1 4 
1s108 24 375.07 3403 67 24 1358.47 3572 129 
lslll 7 0.55 9 4 7 0.77 II 4 
lsll5 11 10.78 164 13 II 19.93 150 13 
1sll6 9 10.40 126 39 9 19.70 122 38 
lsl2l 11 52.85 884 57 II 83.82 748 48 
ls17 9 3.50 69 9 9 4.90 64 9 
ls23 II 11.73 318 24 9 15.70 300 24 
1~26 9 1.68 63 6 9 2.15 63 6 
ls28 11 60.45 610 131 9 61.00 579 133 
ls29 11 58.83 602 130 <) 55 .95 575 132 
ls35 14 8.48 358 6 11 9.93 350 6 
IS41 7 2.12 45 8 7 2.92 46 5 
ls5 7 0.43 5 5 7 0.57 5 5 
ls55 7 2.45 37 4 s 2.82 31 5 
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T""! R"<ult fnr Goal tinn rcr.lfr;;;;t) 
nno no! orover ! mover 

theorem 1~:0~ running of ft' vo IE[ ru~uung • .. !s65 ll 2944 281 11 
ls68 7 5.12 121 16 5 6.48 114 14 
ls75 9 28.17 561 51 9 50.75 545 13 
ls76tl 7 5.88 140 17 7 9.62 140 17 
mqw 7 0.60 5 5 7 0.68 6 4 
numl 9 0.80 14 6 9 1.10 14 6 
prim 11 2.03 53 8 II 2.78 53 8 
qw 9 0.77 10 4 9 0.85 10 4 
rob! 7 0.35 2 2 7 0.35 2 2 
rob2 II 5.88 299 4 II 7.90 298 2 
schuben 32 65.30 1124 67 32 178.43 1124 68 
shonbwst 9 1.48 26 5 9 2.15 26 2 
wosl 11 78.40 1154 90 9 201.72 1152 145 
wosiO 11 258.58 3981 233 ! I 1091.10 4143 liS 
wosll II 281.20 4248 288 11 791.20 4336 130 
wosl2 7 0.73 27 3 7 0.97 27 3 
wosl3 7 8.43 301 51 7 11.17 301 51 
wosl4 9 10.87 313 49 9 13.57 313 48 
wos!S 14 8966.92 20553 2302 11 179.25 1594 102 
wosl7 9 47.52 1124 120 9 108.45 1124 12 
"'OSI9 9 89.05 1301 203 9 204.98 1291 194 
wos2 9 5.00 166 8 7 7.00 159 8 
wos23 7 1.85 48 2 7 2.77 48 2 
wos24 9 19.45 443 60 9 29.23 419 56 
wos25 9 57.22 828 167 9 75.77 793 129 
wos27 9 28.22 542 94 7 51.97 522 92 
wos29 9 106.13 1135 248 9 172.00 1135 235 
wos3 7 0.63 14 3 7 0.85 14 2 
wos30 7 1.62 40 4 5 1.08 19 3 
wos31 18 5111.42 21510 552 18 6832.45 12120 25() 
wos32 5 1.73 21 7 7 8.13 67 6 
wos33 9 7.85 90 7 9 12.53 86 6 
wos4 II 653.38 7235 4 ll 1988.20 7236 4 
wos5 9 5.22 153 20 7 5.50 140 20 
wos6 9 18.35 459 73 9 22.52 458 16 
wos7 9 10.38 389 22 9 16.35 389 3 :: ~ 111:~& 325 49 7 11.35 314 i! 14. 527 33 9 27.42 528 

Z<Jh.e data an: obt.lined on a SU~3/00 workstalion with 12Mb memory. The l,rolog system i.sthe ALS Prolog Compilct (Vc:nlon 
0.60) from Applied i.o&iC SyStems, Inc. 
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