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Abstract. We present a sequent style proof system related to the MESON procedure, which is itself based 
on the model elimination strategy for mechanical theorem proving. The MESON procedure is attractive 
because it is a problem reduction format, that is, it has a goal-subgoal structure. The sequent style system 
based on it shares this advantage, and also has a simple declarative semantics and soundness proof. A 
refinement of the sequent style system tends to produce shorter sequents and may facilitate the use of the 
MESON procedure with caching of solutions to subgoals to avoid repeated work on the same subgoal. 
In the MESON procedure, a goal is marked 'contradicted' and considered to be solved, if an ancestor 
goal is complementary to it. In the positive refinement, only the positive goals need to be checked for 
contradiction in this way. This means that if a list of ancestor goals is kept with each goal, it is only 
necessary to store the negative ancestor goals, since these are the only ones that need to be examined in 
testing if a positive goal is contradicted. Similar restrictions on the reduction operation of model 
elimination are possible. 

Key words. Theorem proving, model elimination, MESON procedure. 

1. Introduction 

The model elimination strategy of Loveland [ 4] has become important in mechani
cal theorem proving for a least two reasons: ( I) It can be viewed as a predecessor 
of Prolog's depth-first search strategy (Clocksin and Mellish [2]), and (2) a recent 
implementation by Stickel [ 10] is extremely fast. However, the soundness of ME 
(model elimination) is not as obvious as one would like. Also, the length of the 
chains (sequences of literals) of ME grows rapidly, leading to possible inefficiencies 
in implementation especially when caching is used. The MESON procedure of 
Loveland [ 5] is a derivation of model elimination that has a problem reduction 
format, that is, it has a goal-subgoal structure similar to Prolog. Instead of the 
chains of ME, the MESON procedure has lists of literals called 'ancestor lists'. We 
present a sequent style proof system equivalent to the MESON precedure. The 
soundness of this system is apparent. We also present a refinement of the sequent 
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style MESON procedure in which the ancestor list grows more slowly, and prove its 
completeness. This refinement is also of interest because it may make caching of 
solutions to subgoals (as in Plaisted [88]) feasible. Despite its speed, Stickel's 
implementation of ME (actually, of the MESON procedure) is sometimes inefficient 
because its does not remember solutions to subgoals encountered previously, and so 
it may repeat the same work many times. Don Loveland [6] has recently developed 
an extension of Prolog to full first order logic which is similar to the MESON 
procedure in some ways, but treats positive and negative literals differently, unlike 
the standard MESON procedure. For another such strategy in a sequent style see 
Plaisted [9]. Both of these strategies do not need to use contrapositives of clauses, 
as the MESON procedure does. Another difference from the MESON procedure is 
that the 'modified problem reduction format' of [9] is not always a set of support 
strategy, although in practice it often behaves as one. On the other hand, the 
strategy of Plaisted permits subgoal deletion based on semantics, as does the 
'simplified problem reduction format' of Plaisted [8], but the MESON procedure 
does not, since the negation of the theorem may appear anywhere in the proof. 
Although subgoals cannot be deleted using semantics in the MESON procedure, we 
do present a semantic version of the MESON procedure below. In this semantic 
MESON procedure, a model is used but not for the purpose of deleting false 
subgoals. 

We first present the sequent style MESON system and some examples. Then we 
present the positive refinement, and prove soundness and completeness. We assume 
that the reader is familiar with standard first-order logic terminology; for an 
introduction see Chang and Lee [1], Gallier [3], and Loveland [5]. The latter 
reference also has a description of the MESON procedure. Also, we present 
propositional versions of all strategies for simplicity, but they all lift to first-order 
logic (quantifier-free clause form) as usual. However, factoring (merging) is not 
needed in the first-order versions of these systems, in contrast to resolution. 

2. Logical Preliminaries 

DEFINITION. A proposition (atom) is a predicate constant. 

DEFINITION. A literal is a proposition or its negation. A positive literal is a 
proposition and a negative literal is the negation of a proposition. The literals P and 
not(P) are called complementary. If L is not(P) then -,L refers to P. 

DEFINITION. A clause is a disjunction of literals. A Horn clause is a clause with 
at most one positive literal. A Horn set is a set of Horn clauses. We write a clause 
as a set of literals, denoting the disjunction of the literals in the set. Thus 
{P, not(Q), R} denotes P v not(Q) v R. Clauses may be written in Prolog style as 
L :- L1 , ••• , L. where L and the L 1 are literals. This represents the clause 
L 1 "· • • "L. ::::> L, that is, { 1L1 v · · · v •L. v L). Note that the same clause may 
be represented in Prolog style in more than one way. Thus P v Q may be represented 
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as P :- not(Q) or as Q :- not(P). These different representations of a clause are called 
contrapositives of each other. In Prolog it is customary to use small letters for 
predicates, while in first order logic it is often customary to use upper case letters 
for predicates. Thus our notation will vary. 

DEFINITION. A set S of clauses is unsatisfiable if it has no model, that is, no 
interpretation making all the clauses in S true. 

Typically we prove a formula A is valid (true) by negating it, converting -,A to 
clause form S, and testing if Sis unsatisfiable, since Sis unsatisfiable iff A is valid. 

DEFINITION. A sequent (for our purposes) is a formula of the form r-+ L where 
r is a list (set) of literals and L is a literal. Such a sequent is interpreted to mean 
that the conjunction of the literals in r implies L. If r is empty then we may 
write-+ L or L instead of r-+ L. A sequent-style proof system is a proof system in 
which all rules are of the form 

r I -+ L., ... , r. -+ L. 
r-+L 

signifying that if the r 1 -+ ~ have been shown then one can infer r-+ L. In terms of 
search strategy, we may consider the r 1 -+ L1 as subgoals of r-+ L. For a discussion 
of such systems, see for example [3]. 

3. The MESON Procedure in Sequent Style 

For each set S of clauses we have a sequent-style proof system for S. Suppose Sis 
a set of clauses and L :- L1, ... , L. is a Pro log representation of a clause C in S. 
(Note that there will also be n other Prolog style representations of C.) For this 
representation we have the following rule in the sequent-style proof system for S, 
where brackets [ ... ] are used to group sequents: 

[r, -,LI-+LI], ... , [r, -,L.-+L.] 
r-+L 

Thus there are n + I rules for a clause that has n + I literals. For a single literal 
clause L there is the axiom r -+ L, corresponding to the above rule without 
hypotheses. One of the clauses in Sis chosen as the support clause. For this clause 
{ -,L., ... , -,L.}, we choose the additional Prolog representation as false:
L1, .•. , L., yielding in addition to rules as above the rule. 

[r, -,LI-+LJl, ... , [r, -,L.-+L.] 
r -+false 

Thus, for a support clause having n literals, there are n + I rules in all. Also, there 
is the assumption axiom 
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We denote by f-s the logical system consisting of all such rules for all clauses in S, 
together with the assumption axiom. To show S is unsatisfiable, we prove false 
using the rules in f-s. 

For example, corresponding to the clause p :- not q, r (equivalently, {p, q, not(r)}) 
we have the rules 

[r, q-+ not( q)], [r, not( r) -+ r] 

r-+p 

[r, p-+not(p)], [r, not(r) -+r] 

r-+q 

[r, q -+not(q)], [r, p -+not(p)] 

r-+not(r] 

The first of these correspond to the following Prolog clause, using arrow (r, L) for 
r -+ L, and representing lists of literals by Pro log lists: 

arrow(r, p) :-
arrow((q I r), not(q)), 
arrow((not(r) I r), r). 

Unit clauses (clauses with only one literal) correspond to axioms, or to Prolog 
clauses with no literals to the right of :-. 

We now discuss the connection of this system with the MESON procedure. The 
description of the MESON procedure in [10] is particularly simple, and we follow 
it here. The MESON procedure is essentially Prolog, with contrapositives of 
clauses used. Also, if a subgoal is complementary to one of its ancestors, the 
subgoal succeeds; if the subgoal is identical to an ancestor, it fails (the 'failure rule'). 
In this system, a proof of false demonstrates the unsatisfiability of S. Suppose S is 
{p, q}, {p, not(q)}, {not(p), q}, {not(p), not(q)}, and {not(p), not(q)} is chosen as 
the support clause. Then the set of Prolog representations of the clauses in S is 
as follows: 

p :- notq 
q :-not p 
p :-q 
not q :-not p 
not p :- notq 
q :-p 
not p :- q 
not q :- p 
false:- p, q 

The last clause false :- p, q is added because { not(p), not(q)} is chosen as the 
support clause. Here is an example of a proof of unsatisfiability for S in the 
MESON procedure, with subgoals being written below their parent goals: 
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false 

/ "' p q 
I I 
q 

I 
not(p) 

not(p) 

I 
not(q) 

393 

The support clause is regarded as the query :-p, q or false :- p, q. Thus from the top 
subgoal false we generate p and q as subgoals. From p, the literal q is generated as 
a subgoal using the clause p :- q. From q, the literal not(p) is generated as a subgoal 
using q :- not(p). The ancestors of not(p) are false, p, and q. Since not(p) is 
complementary top, the subgoal not(p) succeeds (it is 'contradicted', in MESON 
terminology). The other half of the proof is similar, except that the contrapositive 
not(p) :- not(q) of the clause q :- p is used. 

The same proof may be done in the sequent style MESON procedure as follows, 
with subgoals written above goals: 

not(p ), not( q), p -+ not(p) not(q), p, q -+ not( q) 
not(p ), not( q) -+ q not(q), p -+ not(p) 

not(p) -+ p not(q) -+ q 
false 

Notice that the left part of the sequents contains the ancestor list of the subgoals 
with the signs of the subgoals reversed. Therefore the success condition for the 
MESON procedure, namely, that a subgoal is complementary to an ancestor, is 
translated to the condition that the right part of the sequent occurs in the left part 
of the sequent. Also, the failure rule corresponds to repeated literals in the left part 
of a sequent, it turns out. 

3.1. LIFTING TO FIRST ORDER LOGIC 

We briefly comment on how the sequent style MESON procedure may be 
implemented in first order logic. The implementation is as suggested by the Prolog 
clause 

arrow(r, p):-
arrow((q I r), not(q)), 
arrow((not(r) I r), r). 

given above as a representation of an inference rule in the sequent style MESON 
procedure. Thus unification is used to match subgoals with inference rules. Also, the 
assumption axiom permits a sequent r-+ L to succeed if L unifies with a literal in 
r. If Lis identical to a literal in r, then the sequent succeeds. and other possibilities 
for achieving it need not be explored. 
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4. A Positive Refinement of the MESON Procedure 

We now present another sequent style proof system for sets of clauses which we call 
the positive refinement of the MESON strategy in sequent form. The idea is that it 
is only necessary to check negative subgoals against (positive) ancestors. The same 
idea applies also to model elimination; the reduction operation only needs to be done 
on chains whose rightmost element is a positive B-literal (for those familiar with 
model elimination terminology), since a negative subgoal corresponds to a positive 
literal in a chain. The positive refinement of the MESON strategy may be framed 
in a sequent style notation, as the standard MESON strategy was; the difference from 
the sequent style system in Section 3 above is that the negative literals in the 
antecedents need not be retained. These negative literals correspond to positive 
ancestor subgoals, which are not needed in the positive refinement of the MESON 
strategy. This new sequent-style system is as above except that corresponding to the 
Prolog representation L :- L1, ... , L. of a clause C in S we have the rules 

(r 1-+ L.l, ... '(r D-+ L.l 
r-L 

where r 1 is r if L1 is positive and r, L1 otherwise. Also, as before we have an extra 
rule 

(r1-+L1), ... , )r.-L.I 
r -+false 

for the support clause { -,L., ... , -,L.}, corresponding to the extra Prolog represen
tation false:- L., ..• , L. for this clause. Finally, we have the assumption axiom 

r-L ifLer. 

For example, corresponding to the clause p :- not q, r we would have the rules 

1r, q-+ not( q)), (r-+ r) 
r-p 

1r, p-+ not(p)), (r-+ r) 
r-q 

(r, q -+ not( q)), (r, p -> not( p )) 
r -+not(r) 

SupposeS is {p, q }, {p, not(q) }, {not(p), q }, {not(p), not(q)}, as above, and {not(p), 
not(q)} is chosen as the support clause. The Prolog representations of these clauses 
are as given earlier. In the positive MESON system for S, we can prove false (that 
is, r -+false for empty r) by the following proof: 

q, p-+p 
q, p -+ not( q) 

p-+not(p) 

~ 
p q 

false 
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Since we have proved false, S is unsatisfiable. In the above proof, there are two 
occurrences of q but the proof is shown for only one of them. This system 
corresponds to the MESON procedure with only negative literals being put in the 
ancestor lists. Note that the sequents in this proof are shorter than in the previous 
one. 

Sometimes proofs in the positive refinement are longer than those in the usual 
MESON system. This is true of the above example; see Section 3 for a shorter 
proof. For another example, supposeS consists of the following clauses: 

:-P 
P:-A 
A:-B 
B :-not( A) 

We then obtain the proof 

A, P---. not(P) 
A-.not(A) 

B 
A 
p 

false 

Note that since :-P is an input clause, this clause may also be written as not(P) and 
thus the sequent A, P---. not(P) is proved. The proof in the usual MESON system is 

not(P), not( A), not(B), A---. not( A) 
not(P), not( A), not(B)---. B 

not(P), not( A)---. A 
not(P) -.P 

false 

For Hom sets, most of the literals in clauses will typically be negative. This means 
that most of the literals in the Prolog representations of the clauses will be positive. 
Therefore few literals will typically be added tor for Hom sets or near-Hom sets. 
In fact, for Hom sets r will always be empty if an all-negative clause is chosen as 
the support clause, and so this proof system is very much like pure Prolog. Many 
mathematical theorems are near Hom sets, for which the positive refinement 
significantly reduces the size of r. This makes the implementation of the MESON 
procedure more efficient since the sets r are smaller and take less time to search. 

5. Soundness and Completeness 

DEFINITION. We say a logical system is sound if it preserves truth. That is, if one 
can prove A from assumptions S then A is a logical consequence of S. For 
the sequent style systems, we say they are sound if f-sA implies (A is a logical 
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consequence of S), where a sequent r -+ L is interpreted as r ~ L and r is 
interpreted as a conjunction of literals. 

DEFINITION. We say a sequent style system is complete if for any unsatisfiable set 
S of clauses, 1- s false. 

THEOREM 1. The sequent style MESON procedure is sound and complete. 
Proof Soundness is fairly straightforward. For a rule of the form 

r 1 ...... L., ... , r ....... L. 
r-+L 

1t ts necessary to show that [(r 1 ~ L1) " • • • " (r. ~ LJ) ~ (r ~ L), where r is 
interpreted as a conjunction of literals. Now, r, is either r or ru {-, (Lt)}, 
depending on the sign of L1 and which system we are using. In either case, r,:::) Lt 
is equivalent to r ~ L1 by the rules of Boolean logic, so it suffices to show that 
[(r ::::~ L1) "· • • "(r ::::~ L.)J ~ (r ::::~ L). This is in tum a logical consequence of 
[L1 " • • • " L.l ::::~ L. But this is equivalent to a clause of S, by the way the rules are 
constructed. Also, the assumption axiom is a tautology, when -+ is interpreted as 
logical implication. Hence the systems are sound. By completeness, we mean that if 
the correct clause is chosen as the support clause, it is possible to derive r-+ false 
for empty r. For this, it suffices to choose a clause C such that S - { C} is satisfiable 
if such exists. If not, then S is not minimal unsatisfiable, but even then if S is 
unsatisfiable some clause in S will work as a support clause. We will show 
completeness by a fairly involved argument in Section 8. The ideas for this proof are 
taken from the Ph.D. thesis of Plaisted [7]. 

THEOREM 2. The positive refinement of the sequent style MESON procedure is 
sound and complete. 

Proof As above, soundness is easy. We will show completeness in Section 8. 

6. Applications 

The positive refinement of the sequent style MESON procedure is suitable for 
caching. The idea of caching is to avoid attempting to solve the same subgoal 
repeatedly. Instead, solutions are remembered and reused. The reason that this 
refinement is suitable for caching is that the lists r are typically small, so it is more 
likely that a given sequent will be generated as a subgoal more than once. If all 
ancestors are included in r, then the sequents will be longer and it is less likely that 
the same one will be generated more than once. Caching avoids repeated work on 
the same subgoal, at a cost in speed. If a subgoal is rarely generated more than 
once, then caching does not significantly reduce repeated work, but does incur a 
penalty in execution speed. Therefore caching is most useful for systems such as the 
positive refinement of the sequent style MESON procedure in which the same 
subgoal is likely to be generated repeatedly. For a discussion of a prover using back 
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chaining together with caching, see [9]. The sequent style systems given here are 
suitable for back chaining implementations. 

As mentioned earlier, Stickel has a very efficient implementation of the MESON 
procedure which does not cache solutions to subgoals. Sometimes this causes his 
prover to perform much worse than one would expect (though it is fair!y fast). 
Therefore the positive refinement of the sequent style MESON procedure might 
provide a way for Stickel's implementation to incorporate caching and improve 
performance on some problems. 

Note that the MESON procedure is a set of support strategy, unlike the modified 
problem reduction format of [9]. This is an advantage, because the set of support 
restriction focuses attention on deductions that are relevant to the theorem. In 
practice, the modified problem reduction format is a set of support strategy unless 
there is an axiom that is a clause containing only negative literals. For many simple 
problems, only clauses from the negation of the theorem are all-negative, and on 
these problems the modified problem reduction format behaves as a set of support 
strategy. However, we do not know of any strategy which is strictly a set of support 
strategy but does not require contrapositives of clauses, as do the sequent style 
MESON procedures. Contrapositives may be undesirable because they effectively 
increase the number of input clauses used in back chaining, and because they lead 
to a loss of control over the search. However, these disadvantages are often 
outweighed by the advantages of the set of support property. 

7. A Semantic Refinement 

Instead of specifying positive and negative literals, we can specify literals that are 
true or false in a particular interpretation /. Thus for example we can restrict 
sequents so that only literals true in I are kept in f. This generalizes the positive 
refinement and may be useful in some contexts. Lifted to first order logic, this 
'semantic refinement' would restrict f to be satisfiable in /. 

8. Completeness of the Proof Systems 

The proof of completeness makes use of semantic trees. 

DEFINITION. Given a set S of first-order clauses, a semantic tree overS is a finite 
binary tree T in which each interior node has two sons, a left son and a right son. 
We view edges as directed from nodes to their sons, and write the edge from M to 
N as (M, N). In addition, each edge e of Tis labeled with a literal lit( e). If Nl and 
N2 are sons of M then the labels of (M, Nl) and (M, N2) must be complementary 
literals. A path in Tis a sequence (Ml, M2), (M2, M3), ... of edges ofT. A max
imal path in Tis a path in T that is not a subsequence of any longer path in T. Thus 
a maximal path will connect the root of T with a leaf, and there is a one to one 
correspondence between maximal paths and leaves of T. For each maximal path 



398 D. A. PLAISTED 

P in T, there is a clause C(P) which is an instance of a clause in S, and a mapping 
fp from the literals of C(P) into edges of P such that lit(fp(L)) = L. We may view 
fp as assigning literals in C(P) to edges of T. The condition that lit(fp(L)) = L 
means that a literal L must be assigned to an edge labeled L. Furthermore, we 
require that for every edge e in T there is a maximal path P containing e and a 
literal L in C(P) such that fp(L) = e. (Note that there may be several such paths P 
containing e; not every associated C(P) need have a literal L such that fp(L) =e.) 
Thus, every edge must be assigned a literal L from some clause which is an instance 
of a clause in S. 

For example, if Sis {{p,q}{p not(q)}{not(p)q}{not(p)not(q)}} then a possible 
tree Tis 

not(q)" 

{not(p), not(q)} 

not(p)/ 

In this tree, the mappings for only two maximal paths are shown. Note that a clause 
may appear as C(P) for more than one maximal path P. 

THEOREM 3. If S is unsatis.fiable then there is a (finite) semantic tree T over S. 
Proof By Herbrand's theorem. As in Chang and Lee [1], there is a finite semantic 

tree T over S. If T has edges that are not assigned any literals then these edges can 
be deleted from T to obtain a smaller tree, and this process can be repeated until 
all edges of T have literals assigned to them. 

DEFINITION. Edges (M, N) and (M, Q) (where Nand Q are the sons of M) are 
called mates. If e is an edge then e denotes the mate of e. Thus (M, N) is (M, Q) 
and (M, Q) is (M, N). 

DEFINITION. An alternating sequence in a semantic tree T overS is a sequence 
( e1 e1 )( e1 e1 )( e3 e3) • • • of pairs of edges of T such that for all i, i ~ 1, ~ and e1 + 1 are 
in a common maximal path P1 and there are literals L. and M. in C(P1) such that 
fp(J..) = ~ and fp(M.) = e.+ 1 . 

For example, we may have a tree like this: 

~: .y .. 
•, : 

N-3 ...... 

:v~: 
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In this illustration, the alternating sequence is (eu e1), (e:z, e:z), (e3 , e3), (e4 , eJ. We 
are assuming that for some maximal path P containing e1 and e:z, the mapping fp 
assigns literals to both edges e1 and e:z. Similarly, for some other path, a mapping 
assigns literals to both edges e:z and e3 , etc. 

DEFINITION. Suppose Tis a semantic tree and n is a vertex of T. Then the 
subtree of N in T is the set of vertices M including N and all vertices contained in 
paths starting at N. Thus the subtree of N in T includes N and the sons of N and 
their sons, etc. 

THEOREM 4. Suppose S is an unsatisfiable set of ground clauses and T is a finite 
semantic tree over S. Suppose A is an infinite alternating sequence in T. Then there is 
an edge e in T such that lit( e) is a positive literal and such that the pairs ( e, e), (e, e) 
occur in this order in A. 

Proof Some of the ideas of this proof are due to Floyd (see [7]). We first make 
a general comment about alternating sequences. An alternating sequence can only 
exit a subtree by going below it, that is, by including an edge between the root of 
the whole tree and the root of the subtree. Let d and a be the edges of T nearest to 
the root ofT, such that d and a occur infinitely often in A. It is not difficult to show 
that this set of edges is unique. Supposed is (M, N) and a is (M, Q). Let E1 be 
d together with all edges in the subtree of N, and let E:z be a together with all edges 
in the subtree of Q. After some finite initial portion, the alternating sequence A 
consists entirely of edges in E1UE:z. Let E~ be E1 - {d}, and let~ be E:z- {a}. Then 
E~ is also a subtree, and if the alternating sequence exits E;, it must go below E~. 
After a finite initial portion, the sequence will not go below E1 UE:z. Thus, in order 
to exit from E;, the sequence must include the edge d. Similarly, to exit from~. the 
sequence must include the edge a. Such exits must occur infinitely often, since d and 
a occur infinitely often in this sequence. Thus A must alternate between E1 and E:z 
infinitely often. However, A remains within E1 until d occurs, and A remains within 
E:z until d occurs. Thus the occurrences of (d, a) and (a, d) alternate in A, and both 
( d, a) and (a, d) occur infinitely often in A. If lit( d) is positive, we can choose e to 
bed, else we can choose e to be a and obtain pairs (e, e) and (e, e) as in the theorem. 

DEFINITION. In a sequent style proof, if a rule 

r I -+ Ln .•.• r D -+ LD 
r-+L 

is applied, we say that r 1 -+ L1 is a subgoal of r-+ L. 

DEFINITION. Suppose e is an edge and P is a path containing e. We call the path 
P a mate of e. Note that there may be more than one such path P. 

THEOREM 5. Suppose S is an unsatisfiable set of propositional clauses. Then 
~s -+false where ~s is the positive refinement of the sequent style system for the 
MESON procedure. This means that the MESON system with the positive refinement 
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is complete. Note that this result also implies the completeness of the MESON system 
without the positive refinement since it is less restrictive. 

Proof We will construct a proof of -+false in 1-. working backwards from the 
goal -+false, that is, from r -+false with r empty. Since S is unsatisfiable, there is 
a (finite) semantic tree T overS, by Theorem 3. With each occurrence of a sequent 
r-+ L in the proof so constructed, we will have associated on edge e of T such that 
lit( e) is -, L. The idea is, that if a sequent r-+ L appears, then L is a subgoal, so 
that some clause in S has a Prolog representation of the form L' :- •.. L •.. , and 
-, L appears in the disjunctive representation of this clause as a set of literals. Thus 
we associate an edge e such that lit(e) is -,L, with this sequent. 

We now define the proof inductively. Let C be one of the clauses in S. This clause 
C may be chosen arbitrarily, subject to the condition that S has an unsatisfiable 
subset S1 such that S1 - { C} is satisfiable. Thus C is an essential clause for some 
proof of unsatisfiability of S. Representing C as a Pro log clause false :- L1 , ••• , L8 , 

we give as the initial step a rule of the form 

r. - L., ••. , r D- LD 
r -+false, 

where r 1 is -, L. if L. is negative, empty otherwise. Also, let P be some path in T 
such that C(P) = C. With the occurrence of the sequent r 1 -+ L. we associate the 
edge fp(IL1) of P. For the inductive step, suppose r-L appears in the proof. If 
L is in r then we stop since r -+ L is an axiom. Otherwise, suppose e is the edge 
associated with this occurrence of the sequent, so lit(e) is 1L. Let P' be a maximal 
path which is a mate of e such that some literal of C(P') is assigned to e. Note that 
such a path P' must exist by the definition of a semantic tree. Suppose C(P') has a 
Prolog style representation L :- M., .•. , M,.,. We then apply the rule 

r. - M1, ••• , r D- MD 
r-L 

where r1 is ru {-, M.} if M1 is negative, r otherwise. With the occurrence of the 
sequent r 1-+ M1 we associate the edge fp,(-, M.). 

Now, if the proof so constructed is infinite, then by Konig's lemma it contains an 
infinite path, that is, an infinite sequence r 1 -+ L1 , r 1 -+ L1 ••• , of occurrences of 
sequents such that for all i, the occurrence of r 1 + 1 -+ L1 +I is a subgoal of the 
occurrence of r 1 -+ L.. Let e1 be the edge associated with r 1-+ L.. Then (e., e1 ), 

(e1 , ~), ••• is an infinite alternating sequence. The reason for this is that some 
inference rule was used to obtain r 1+ 1 -+L1+ 1 from r 1-+L1• This implies that some 
clause of S has a Pro log style representation of L1 :- ••• L. + 1 ••• , by the way the 
inference rules are designed. The literals L1 and -, L. + 1 correspond to edges e1 and 
e1 + 1 of the semantic tree, which are both assigned literals from the clause 
L1 :- ••• L. + 1 • • • of S. Thus we have an alternating sequence ( e1 , e1 ), ( e1 , e1 ), •••• 

Hence eventually by Theorem 4 we have e1 and e1 such that lit( e1) is the complement 
of L1 and is positive. (Thus L. is negative.) Also, e1 is e1• Since L. is negative, 1L. 
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is in r 1• Since r 1 c r 1+ 1 for all i, -,~is in r 1• But~ is the complement of~, hence 
L1 is in r 1 (because -, ~ is in r 1). Hence this path would stop at the sequence r 1-+ L1 
or earlier, since r 1-+ L1 is an axiom. 

8.1. A REFINEMENT AND ITS COMPLETENESS 

We now show that a rule analogous to the 'failure rule' of the MESON procedure 
may be included without loss of completeness. The failure rule is to disallow 
sequents r-+ L in which r contains repeated literals. For this to be meaningful, we 
consider r as a list rather than as a set of literals. Then a repeated literal in r implies 
that there is a sequent A -+ L which is a descendent of some sequent of the form 
A'-+ L, that is, the subgoal L appears twice on the same proof path. This corresponds 
to L being identical to one of its ancestors in the MESON procedure, which causes 
a failure. Then the literal -,Lis added to A twice and so A has two occurrences of 
-,L. For the positive refinement, this can only happen if -,L is positive, that is, 
if L is negative. In lifting the sequent style systems to first order logic, a sequent 
r-+ L fails only if r contains identical (as opposed to unifiable) literals. 

THEOREM 6. The sequent style MESON procedure with the failure rule added is 
complete, and this is also true of the positive refinement. 

Proof Suppose a sequent r-+ M with L in r is generated. We can then 
essentially view L as a clause added to S, for the part of the proof tree descending 
from this sequent. This is because a subgoal r-+ L will be solved by the assumption 
axiom, which has the same effect as L being in S for all descendents of the subgoal 
r -+ M. Also, any descendent of the sequent r -+ M will be of the form r'-+ M' for 
r c r', so Lis in r' also. Let S' be a minimal unsatisfiable subset of SU{L}, and 
suppose that S' contains the cause {L}. Note that some such minimal unsatisfiable 
subset S' must exist, since L appears in some clause of S. Also, such a set S' must 
contain at least one clause containing -, L. There is then a finite semantic tree T' 
over S', as before. Note that T' is smaller than T and the only clause in T' 
containing L is the unit clause {L}. We can then construct an alternating sequence 
in T' instead of in T. In this way a proof may be constructed as before. Uses of the 
unit clause L in the proof for S' correspond to applications of the assumption 
axiom. However, a proof constructed in this way will not contain any sequents 
r'-+ M' in which r' contains repeated literals. The literal L for example can never 
be added to r again, since that could only happen if some clause C containing L 
were in S', But S' contains L as a unit clause and is minimal unsatisfiable, so no 
other clause of S' contains L. 

The same argument works for the positive refinement, except that r contains only 
positive literals so the failure rule corresponds to a negative subgoal L being 
repeated on some proof path. For the positive refinement, we cannot apply the 
failure rule if there is some sequent of the form r-+ L and some other sequent of 
the form A-+ L in the same proof path, for positive L. 
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