
Journal of Automated Reasoning 6: 389-402, 1990.
© 1990 Kluwer Academic Publishers. Printed in the Netherlands.

A Sequent-Style Model Elimination Strategy
and a Positive Refinement*

DAVID A. PLAISTED
Department of Computer Science, CB # 3175, 352 Sitterson Hall, University of North Carolina
at Chapel Hill, Chapel Hill, NC 27599-3175, U.S.A.

(Received: 27 May 1988; revised: 3 January 1989)

389

Abstract. We present a sequent style proof system related to the MESON procedure, which is itself based
on the model elimination strategy for mechanical theorem proving. The MESON procedure is attractive
because it is a problem reduction format, that is, it has a goal-subgoal structure. The sequent style system
based on it shares this advantage, and also has a simple declarative semantics and soundness proof. A
refinement of the sequent style system tends to produce shorter sequents and may facilitate the use of the
MESON procedure with caching of solutions to subgoals to avoid repeated work on the same subgoal.
In the MESON procedure, a goal is marked 'contradicted' and considered to be solved, if an ancestor
goal is complementary to it. In the positive refinement, only the positive goals need to be checked for
contradiction in this way. This means that if a list of ancestor goals is kept with each goal, it is only
necessary to store the negative ancestor goals, since these are the only ones that need to be examined in
testing if a positive goal is contradicted. Similar restrictions on the reduction operation of model
elimination are possible.

Key words. Theorem proving, model elimination, MESON procedure.

1. Introduction

The model elimination strategy of Loveland [4] has become important in mechani
cal theorem proving for a least two reasons: (I) It can be viewed as a predecessor
of Prolog's depth-first search strategy (Clocksin and Mellish [2]), and (2) a recent
implementation by Stickel [10] is extremely fast. However, the soundness of ME
(model elimination) is not as obvious as one would like. Also, the length of the
chains (sequences of literals) of ME grows rapidly, leading to possible inefficiencies
in implementation especially when caching is used. The MESON procedure of
Loveland [5] is a derivation of model elimination that has a problem reduction
format, that is, it has a goal-subgoal structure similar to Prolog. Instead of the
chains of ME, the MESON procedure has lists of literals called 'ancestor lists'. We
present a sequent style proof system equivalent to the MESON precedure. The
soundness of this system is apparent. We also present a refinement of the sequent

*This research was supported in part by the National Science Foundation under grant DCR-8516243.

390 D. A. PLAISTED

style MESON procedure in which the ancestor list grows more slowly, and prove its
completeness. This refinement is also of interest because it may make caching of
solutions to subgoals (as in Plaisted [88]) feasible. Despite its speed, Stickel's
implementation of ME (actually, of the MESON procedure) is sometimes inefficient
because its does not remember solutions to subgoals encountered previously, and so
it may repeat the same work many times. Don Loveland [6] has recently developed
an extension of Prolog to full first order logic which is similar to the MESON
procedure in some ways, but treats positive and negative literals differently, unlike
the standard MESON procedure. For another such strategy in a sequent style see
Plaisted [9]. Both of these strategies do not need to use contrapositives of clauses,
as the MESON procedure does. Another difference from the MESON procedure is
that the 'modified problem reduction format' of [9] is not always a set of support
strategy, although in practice it often behaves as one. On the other hand, the
strategy of Plaisted permits subgoal deletion based on semantics, as does the
'simplified problem reduction format' of Plaisted [8], but the MESON procedure
does not, since the negation of the theorem may appear anywhere in the proof.
Although subgoals cannot be deleted using semantics in the MESON procedure, we
do present a semantic version of the MESON procedure below. In this semantic
MESON procedure, a model is used but not for the purpose of deleting false
subgoals.

We first present the sequent style MESON system and some examples. Then we
present the positive refinement, and prove soundness and completeness. We assume
that the reader is familiar with standard first-order logic terminology; for an
introduction see Chang and Lee [1], Gallier [3], and Loveland [5]. The latter
reference also has a description of the MESON procedure. Also, we present
propositional versions of all strategies for simplicity, but they all lift to first-order
logic (quantifier-free clause form) as usual. However, factoring (merging) is not
needed in the first-order versions of these systems, in contrast to resolution.

2. Logical Preliminaries

DEFINITION. A proposition (atom) is a predicate constant.

DEFINITION. A literal is a proposition or its negation. A positive literal is a
proposition and a negative literal is the negation of a proposition. The literals P and
not(P) are called complementary. If L is not(P) then -,L refers to P.

DEFINITION. A clause is a disjunction of literals. A Horn clause is a clause with
at most one positive literal. A Horn set is a set of Horn clauses. We write a clause
as a set of literals, denoting the disjunction of the literals in the set. Thus
{P, not(Q), R} denotes P v not(Q) v R. Clauses may be written in Prolog style as
L :- L1 , ••• , L. where L and the L 1 are literals. This represents the clause
L 1 "· • • "L. ::::> L, that is, { 1L1 v · · · v •L. v L). Note that the same clause may
be represented in Prolog style in more than one way. Thus P v Q may be represented

SEQUENT-STYLE MODEL ELIMINATION STRATEGY 391

as P :- not(Q) or as Q :- not(P). These different representations of a clause are called
contrapositives of each other. In Prolog it is customary to use small letters for
predicates, while in first order logic it is often customary to use upper case letters
for predicates. Thus our notation will vary.

DEFINITION. A set S of clauses is unsatisfiable if it has no model, that is, no
interpretation making all the clauses in S true.

Typically we prove a formula A is valid (true) by negating it, converting -,A to
clause form S, and testing if Sis unsatisfiable, since Sis unsatisfiable iff A is valid.

DEFINITION. A sequent (for our purposes) is a formula of the form r-+ L where
r is a list (set) of literals and L is a literal. Such a sequent is interpreted to mean
that the conjunction of the literals in r implies L. If r is empty then we may
write-+ L or L instead of r-+ L. A sequent-style proof system is a proof system in
which all rules are of the form

r I -+ L., ... , r. -+ L.
r-+L

signifying that if the r 1 -+ ~ have been shown then one can infer r-+ L. In terms of
search strategy, we may consider the r 1 -+ L1 as subgoals of r-+ L. For a discussion
of such systems, see for example [3].

3. The MESON Procedure in Sequent Style

For each set S of clauses we have a sequent-style proof system for S. Suppose Sis
a set of clauses and L :- L1, ... , L. is a Pro log representation of a clause C in S.
(Note that there will also be n other Prolog style representations of C.) For this
representation we have the following rule in the sequent-style proof system for S,
where brackets [...] are used to group sequents:

[r, -,LI-+LI], ... , [r, -,L.-+L.]
r-+L

Thus there are n + I rules for a clause that has n + I literals. For a single literal
clause L there is the axiom r -+ L, corresponding to the above rule without
hypotheses. One of the clauses in Sis chosen as the support clause. For this clause
{ -,L., ... , -,L.}, we choose the additional Prolog representation as false:
L1, .•. , L., yielding in addition to rules as above the rule.

[r, -,LI-+LJl, ... , [r, -,L.-+L.]
r -+false

Thus, for a support clause having n literals, there are n + I rules in all. Also, there
is the assumption axiom

392 D. A. PLAISTED

We denote by f-s the logical system consisting of all such rules for all clauses in S,
together with the assumption axiom. To show S is unsatisfiable, we prove false
using the rules in f-s.

For example, corresponding to the clause p :- not q, r (equivalently, {p, q, not(r)})
we have the rules

[r, q-+ not(q)], [r, not(r) -+ r]

r-+p

[r, p-+not(p)], [r, not(r) -+r]

r-+q

[r, q -+not(q)], [r, p -+not(p)]

r-+not(r]

The first of these correspond to the following Prolog clause, using arrow (r, L) for
r -+ L, and representing lists of literals by Pro log lists:

arrow(r, p) :-
arrow((q I r), not(q)),
arrow((not(r) I r), r).

Unit clauses (clauses with only one literal) correspond to axioms, or to Prolog
clauses with no literals to the right of :-.

We now discuss the connection of this system with the MESON procedure. The
description of the MESON procedure in [10] is particularly simple, and we follow
it here. The MESON procedure is essentially Prolog, with contrapositives of
clauses used. Also, if a subgoal is complementary to one of its ancestors, the
subgoal succeeds; if the subgoal is identical to an ancestor, it fails (the 'failure rule').
In this system, a proof of false demonstrates the unsatisfiability of S. Suppose S is
{p, q}, {p, not(q)}, {not(p), q}, {not(p), not(q)}, and {not(p), not(q)} is chosen as
the support clause. Then the set of Prolog representations of the clauses in S is
as follows:

p :- notq
q :-not p
p :-q
not q :-not p
not p :- notq
q :-p
not p :- q
not q :- p
false:- p, q

The last clause false :- p, q is added because { not(p), not(q)} is chosen as the
support clause. Here is an example of a proof of unsatisfiability for S in the
MESON procedure, with subgoals being written below their parent goals:

SEQUENT-STYLE MODEL ELIMINATION STRATEGY

false

/ "' p q
I I
q

I
not(p)

not(p)

I
not(q)

393

The support clause is regarded as the query :-p, q or false :- p, q. Thus from the top
subgoal false we generate p and q as subgoals. From p, the literal q is generated as
a subgoal using the clause p :- q. From q, the literal not(p) is generated as a subgoal
using q :- not(p). The ancestors of not(p) are false, p, and q. Since not(p) is
complementary top, the subgoal not(p) succeeds (it is 'contradicted', in MESON
terminology). The other half of the proof is similar, except that the contrapositive
not(p) :- not(q) of the clause q :- p is used.

The same proof may be done in the sequent style MESON procedure as follows,
with subgoals written above goals:

not(p), not(q), p -+ not(p) not(q), p, q -+ not(q)
not(p), not(q) -+ q not(q), p -+ not(p)

not(p) -+ p not(q) -+ q
false

Notice that the left part of the sequents contains the ancestor list of the subgoals
with the signs of the subgoals reversed. Therefore the success condition for the
MESON procedure, namely, that a subgoal is complementary to an ancestor, is
translated to the condition that the right part of the sequent occurs in the left part
of the sequent. Also, the failure rule corresponds to repeated literals in the left part
of a sequent, it turns out.

3.1. LIFTING TO FIRST ORDER LOGIC

We briefly comment on how the sequent style MESON procedure may be
implemented in first order logic. The implementation is as suggested by the Prolog
clause

arrow(r, p):-
arrow((q I r), not(q)),
arrow((not(r) I r), r).

given above as a representation of an inference rule in the sequent style MESON
procedure. Thus unification is used to match subgoals with inference rules. Also, the
assumption axiom permits a sequent r-+ L to succeed if L unifies with a literal in
r. If Lis identical to a literal in r, then the sequent succeeds. and other possibilities
for achieving it need not be explored.

394 D. A. PLAISTED

4. A Positive Refinement of the MESON Procedure

We now present another sequent style proof system for sets of clauses which we call
the positive refinement of the MESON strategy in sequent form. The idea is that it
is only necessary to check negative subgoals against (positive) ancestors. The same
idea applies also to model elimination; the reduction operation only needs to be done
on chains whose rightmost element is a positive B-literal (for those familiar with
model elimination terminology), since a negative subgoal corresponds to a positive
literal in a chain. The positive refinement of the MESON strategy may be framed
in a sequent style notation, as the standard MESON strategy was; the difference from
the sequent style system in Section 3 above is that the negative literals in the
antecedents need not be retained. These negative literals correspond to positive
ancestor subgoals, which are not needed in the positive refinement of the MESON
strategy. This new sequent-style system is as above except that corresponding to the
Prolog representation L :- L1, ... , L. of a clause C in S we have the rules

(r 1-+ L.l, ... '(r D-+ L.l
r-L

where r 1 is r if L1 is positive and r, L1 otherwise. Also, as before we have an extra
rule

(r1-+L1), ... ,)r.-L.I
r -+false

for the support clause { -,L., ... , -,L.}, corresponding to the extra Prolog represen
tation false:- L., ..• , L. for this clause. Finally, we have the assumption axiom

r-L ifLer.

For example, corresponding to the clause p :- not q, r we would have the rules

1r, q-+ not(q)), (r-+ r)
r-p

1r, p-+ not(p)), (r-+ r)
r-q

(r, q -+ not(q)), (r, p -> not(p))
r -+not(r)

SupposeS is {p, q }, {p, not(q) }, {not(p), q }, {not(p), not(q)}, as above, and {not(p),
not(q)} is chosen as the support clause. The Prolog representations of these clauses
are as given earlier. In the positive MESON system for S, we can prove false (that
is, r -+false for empty r) by the following proof:

q, p-+p
q, p -+ not(q)

p-+not(p)

~
p q

false

SEQUENT-STYLE MODEL ELIMINATION STRATEGY 395

Since we have proved false, S is unsatisfiable. In the above proof, there are two
occurrences of q but the proof is shown for only one of them. This system
corresponds to the MESON procedure with only negative literals being put in the
ancestor lists. Note that the sequents in this proof are shorter than in the previous
one.

Sometimes proofs in the positive refinement are longer than those in the usual
MESON system. This is true of the above example; see Section 3 for a shorter
proof. For another example, supposeS consists of the following clauses:

:-P
P:-A
A:-B
B :-not(A)

We then obtain the proof

A, P---. not(P)
A-.not(A)

B
A
p

false

Note that since :-P is an input clause, this clause may also be written as not(P) and
thus the sequent A, P---. not(P) is proved. The proof in the usual MESON system is

not(P), not(A), not(B), A---. not(A)
not(P), not(A), not(B)---. B

not(P), not(A)---. A
not(P) -.P

false

For Hom sets, most of the literals in clauses will typically be negative. This means
that most of the literals in the Prolog representations of the clauses will be positive.
Therefore few literals will typically be added tor for Hom sets or near-Hom sets.
In fact, for Hom sets r will always be empty if an all-negative clause is chosen as
the support clause, and so this proof system is very much like pure Prolog. Many
mathematical theorems are near Hom sets, for which the positive refinement
significantly reduces the size of r. This makes the implementation of the MESON
procedure more efficient since the sets r are smaller and take less time to search.

5. Soundness and Completeness

DEFINITION. We say a logical system is sound if it preserves truth. That is, if one
can prove A from assumptions S then A is a logical consequence of S. For
the sequent style systems, we say they are sound if f-sA implies (A is a logical

396 D. A. PLAISTED

consequence of S), where a sequent r -+ L is interpreted as r ~ L and r is
interpreted as a conjunction of literals.

DEFINITION. We say a sequent style system is complete if for any unsatisfiable set
S of clauses, 1- s false.

THEOREM 1. The sequent style MESON procedure is sound and complete.
Proof Soundness is fairly straightforward. For a rule of the form

r 1 L., ... , r L.
r-+L

1t ts necessary to show that [(r 1 ~ L1) " • • • " (r. ~ LJ) ~ (r ~ L), where r is
interpreted as a conjunction of literals. Now, r, is either r or ru {-, (Lt)},
depending on the sign of L1 and which system we are using. In either case, r,:::) Lt
is equivalent to r ~ L1 by the rules of Boolean logic, so it suffices to show that
[(r ::::~ L1) "· • • "(r ::::~ L.)J ~ (r ::::~ L). This is in tum a logical consequence of
[L1 " • • • " L.l ::::~ L. But this is equivalent to a clause of S, by the way the rules are
constructed. Also, the assumption axiom is a tautology, when -+ is interpreted as
logical implication. Hence the systems are sound. By completeness, we mean that if
the correct clause is chosen as the support clause, it is possible to derive r-+ false
for empty r. For this, it suffices to choose a clause C such that S - { C} is satisfiable
if such exists. If not, then S is not minimal unsatisfiable, but even then if S is
unsatisfiable some clause in S will work as a support clause. We will show
completeness by a fairly involved argument in Section 8. The ideas for this proof are
taken from the Ph.D. thesis of Plaisted [7].

THEOREM 2. The positive refinement of the sequent style MESON procedure is
sound and complete.

Proof As above, soundness is easy. We will show completeness in Section 8.

6. Applications

The positive refinement of the sequent style MESON procedure is suitable for
caching. The idea of caching is to avoid attempting to solve the same subgoal
repeatedly. Instead, solutions are remembered and reused. The reason that this
refinement is suitable for caching is that the lists r are typically small, so it is more
likely that a given sequent will be generated as a subgoal more than once. If all
ancestors are included in r, then the sequents will be longer and it is less likely that
the same one will be generated more than once. Caching avoids repeated work on
the same subgoal, at a cost in speed. If a subgoal is rarely generated more than
once, then caching does not significantly reduce repeated work, but does incur a
penalty in execution speed. Therefore caching is most useful for systems such as the
positive refinement of the sequent style MESON procedure in which the same
subgoal is likely to be generated repeatedly. For a discussion of a prover using back

SEQUENT-STYLE MODEL ELIMINATION STRATEGY 397

chaining together with caching, see [9]. The sequent style systems given here are
suitable for back chaining implementations.

As mentioned earlier, Stickel has a very efficient implementation of the MESON
procedure which does not cache solutions to subgoals. Sometimes this causes his
prover to perform much worse than one would expect (though it is fair!y fast).
Therefore the positive refinement of the sequent style MESON procedure might
provide a way for Stickel's implementation to incorporate caching and improve
performance on some problems.

Note that the MESON procedure is a set of support strategy, unlike the modified
problem reduction format of [9]. This is an advantage, because the set of support
restriction focuses attention on deductions that are relevant to the theorem. In
practice, the modified problem reduction format is a set of support strategy unless
there is an axiom that is a clause containing only negative literals. For many simple
problems, only clauses from the negation of the theorem are all-negative, and on
these problems the modified problem reduction format behaves as a set of support
strategy. However, we do not know of any strategy which is strictly a set of support
strategy but does not require contrapositives of clauses, as do the sequent style
MESON procedures. Contrapositives may be undesirable because they effectively
increase the number of input clauses used in back chaining, and because they lead
to a loss of control over the search. However, these disadvantages are often
outweighed by the advantages of the set of support property.

7. A Semantic Refinement

Instead of specifying positive and negative literals, we can specify literals that are
true or false in a particular interpretation /. Thus for example we can restrict
sequents so that only literals true in I are kept in f. This generalizes the positive
refinement and may be useful in some contexts. Lifted to first order logic, this
'semantic refinement' would restrict f to be satisfiable in /.

8. Completeness of the Proof Systems

The proof of completeness makes use of semantic trees.

DEFINITION. Given a set S of first-order clauses, a semantic tree overS is a finite
binary tree T in which each interior node has two sons, a left son and a right son.
We view edges as directed from nodes to their sons, and write the edge from M to
N as (M, N). In addition, each edge e of Tis labeled with a literal lit(e). If Nl and
N2 are sons of M then the labels of (M, Nl) and (M, N2) must be complementary
literals. A path in Tis a sequence (Ml, M2), (M2, M3), ... of edges ofT. A max
imal path in Tis a path in T that is not a subsequence of any longer path in T. Thus
a maximal path will connect the root of T with a leaf, and there is a one to one
correspondence between maximal paths and leaves of T. For each maximal path

398 D. A. PLAISTED

P in T, there is a clause C(P) which is an instance of a clause in S, and a mapping
fp from the literals of C(P) into edges of P such that lit(fp(L)) = L. We may view
fp as assigning literals in C(P) to edges of T. The condition that lit(fp(L)) = L
means that a literal L must be assigned to an edge labeled L. Furthermore, we
require that for every edge e in T there is a maximal path P containing e and a
literal L in C(P) such that fp(L) = e. (Note that there may be several such paths P
containing e; not every associated C(P) need have a literal L such that fp(L) =e.)
Thus, every edge must be assigned a literal L from some clause which is an instance
of a clause in S.

For example, if Sis {{p,q}{p not(q)}{not(p)q}{not(p)not(q)}} then a possible
tree Tis

not(q)"

{not(p), not(q)}

not(p)/

In this tree, the mappings for only two maximal paths are shown. Note that a clause
may appear as C(P) for more than one maximal path P.

THEOREM 3. If S is unsatis.fiable then there is a (finite) semantic tree T over S.
Proof By Herbrand's theorem. As in Chang and Lee [1], there is a finite semantic

tree T over S. If T has edges that are not assigned any literals then these edges can
be deleted from T to obtain a smaller tree, and this process can be repeated until
all edges of T have literals assigned to them.

DEFINITION. Edges (M, N) and (M, Q) (where Nand Q are the sons of M) are
called mates. If e is an edge then e denotes the mate of e. Thus (M, N) is (M, Q)
and (M, Q) is (M, N).

DEFINITION. An alternating sequence in a semantic tree T overS is a sequence
(e1 e1)(e1 e1)(e3 e3) • • • of pairs of edges of T such that for all i, i ~ 1, ~ and e1 + 1 are
in a common maximal path P1 and there are literals L. and M. in C(P1) such that
fp(J..) = ~ and fp(M.) = e.+ 1 .

For example, we may have a tree like this:

~: .y ..
•, :

N-3

:v~:

SEQUENT-STYLE MODEL ELIMINATION STRATEGY 399

In this illustration, the alternating sequence is (eu e1), (e:z, e:z), (e3 , e3), (e4 , eJ. We
are assuming that for some maximal path P containing e1 and e:z, the mapping fp
assigns literals to both edges e1 and e:z. Similarly, for some other path, a mapping
assigns literals to both edges e:z and e3 , etc.

DEFINITION. Suppose Tis a semantic tree and n is a vertex of T. Then the
subtree of N in T is the set of vertices M including N and all vertices contained in
paths starting at N. Thus the subtree of N in T includes N and the sons of N and
their sons, etc.

THEOREM 4. Suppose S is an unsatisfiable set of ground clauses and T is a finite
semantic tree over S. Suppose A is an infinite alternating sequence in T. Then there is
an edge e in T such that lit(e) is a positive literal and such that the pairs (e, e), (e, e)
occur in this order in A.

Proof Some of the ideas of this proof are due to Floyd (see [7]). We first make
a general comment about alternating sequences. An alternating sequence can only
exit a subtree by going below it, that is, by including an edge between the root of
the whole tree and the root of the subtree. Let d and a be the edges of T nearest to
the root ofT, such that d and a occur infinitely often in A. It is not difficult to show
that this set of edges is unique. Supposed is (M, N) and a is (M, Q). Let E1 be
d together with all edges in the subtree of N, and let E:z be a together with all edges
in the subtree of Q. After some finite initial portion, the alternating sequence A
consists entirely of edges in E1UE:z. Let E~ be E1 - {d}, and let~ be E:z- {a}. Then
E~ is also a subtree, and if the alternating sequence exits E;, it must go below E~.
After a finite initial portion, the sequence will not go below E1 UE:z. Thus, in order
to exit from E;, the sequence must include the edge d. Similarly, to exit from~. the
sequence must include the edge a. Such exits must occur infinitely often, since d and
a occur infinitely often in this sequence. Thus A must alternate between E1 and E:z
infinitely often. However, A remains within E1 until d occurs, and A remains within
E:z until d occurs. Thus the occurrences of (d, a) and (a, d) alternate in A, and both
(d, a) and (a, d) occur infinitely often in A. If lit(d) is positive, we can choose e to
bed, else we can choose e to be a and obtain pairs (e, e) and (e, e) as in the theorem.

DEFINITION. In a sequent style proof, if a rule

r I -+ Ln .•.• r D -+ LD
r-+L

is applied, we say that r 1 -+ L1 is a subgoal of r-+ L.

DEFINITION. Suppose e is an edge and P is a path containing e. We call the path
P a mate of e. Note that there may be more than one such path P.

THEOREM 5. Suppose S is an unsatisfiable set of propositional clauses. Then
~s -+false where ~s is the positive refinement of the sequent style system for the
MESON procedure. This means that the MESON system with the positive refinement

400 D. A. PLAISTED

is complete. Note that this result also implies the completeness of the MESON system
without the positive refinement since it is less restrictive.

Proof We will construct a proof of -+false in 1-. working backwards from the
goal -+false, that is, from r -+false with r empty. Since S is unsatisfiable, there is
a (finite) semantic tree T overS, by Theorem 3. With each occurrence of a sequent
r-+ L in the proof so constructed, we will have associated on edge e of T such that
lit(e) is -, L. The idea is, that if a sequent r-+ L appears, then L is a subgoal, so
that some clause in S has a Prolog representation of the form L' :- •.. L •.. , and
-, L appears in the disjunctive representation of this clause as a set of literals. Thus
we associate an edge e such that lit(e) is -,L, with this sequent.

We now define the proof inductively. Let C be one of the clauses in S. This clause
C may be chosen arbitrarily, subject to the condition that S has an unsatisfiable
subset S1 such that S1 - { C} is satisfiable. Thus C is an essential clause for some
proof of unsatisfiability of S. Representing C as a Pro log clause false :- L1 , ••• , L8 ,

we give as the initial step a rule of the form

r. - L., ••. , r D- LD
r -+false,

where r 1 is -, L. if L. is negative, empty otherwise. Also, let P be some path in T
such that C(P) = C. With the occurrence of the sequent r 1 -+ L. we associate the
edge fp(IL1) of P. For the inductive step, suppose r-L appears in the proof. If
L is in r then we stop since r -+ L is an axiom. Otherwise, suppose e is the edge
associated with this occurrence of the sequent, so lit(e) is 1L. Let P' be a maximal
path which is a mate of e such that some literal of C(P') is assigned to e. Note that
such a path P' must exist by the definition of a semantic tree. Suppose C(P') has a
Prolog style representation L :- M., .•. , M,.,. We then apply the rule

r. - M1, ••• , r D- MD
r-L

where r1 is ru {-, M.} if M1 is negative, r otherwise. With the occurrence of the
sequent r 1-+ M1 we associate the edge fp,(-, M.).

Now, if the proof so constructed is infinite, then by Konig's lemma it contains an
infinite path, that is, an infinite sequence r 1 -+ L1 , r 1 -+ L1 ••• , of occurrences of
sequents such that for all i, the occurrence of r 1 + 1 -+ L1 +I is a subgoal of the
occurrence of r 1 -+ L.. Let e1 be the edge associated with r 1-+ L.. Then (e., e1),

(e1 , ~), ••• is an infinite alternating sequence. The reason for this is that some
inference rule was used to obtain r 1+ 1 -+L1+ 1 from r 1-+L1• This implies that some
clause of S has a Pro log style representation of L1 :- ••• L. + 1 ••• , by the way the
inference rules are designed. The literals L1 and -, L. + 1 correspond to edges e1 and
e1 + 1 of the semantic tree, which are both assigned literals from the clause
L1 :- ••• L. + 1 • • • of S. Thus we have an alternating sequence (e1 , e1), (e1 , e1), ••••

Hence eventually by Theorem 4 we have e1 and e1 such that lit(e1) is the complement
of L1 and is positive. (Thus L. is negative.) Also, e1 is e1• Since L. is negative, 1L.

SEQUENT-STYLE MODEL ELIMINATION STRATEGY 401

is in r 1• Since r 1 c r 1+ 1 for all i, -,~is in r 1• But~ is the complement of~, hence
L1 is in r 1 (because -, ~ is in r 1). Hence this path would stop at the sequence r 1-+ L1
or earlier, since r 1-+ L1 is an axiom.

8.1. A REFINEMENT AND ITS COMPLETENESS

We now show that a rule analogous to the 'failure rule' of the MESON procedure
may be included without loss of completeness. The failure rule is to disallow
sequents r-+ L in which r contains repeated literals. For this to be meaningful, we
consider r as a list rather than as a set of literals. Then a repeated literal in r implies
that there is a sequent A -+ L which is a descendent of some sequent of the form
A'-+ L, that is, the subgoal L appears twice on the same proof path. This corresponds
to L being identical to one of its ancestors in the MESON procedure, which causes
a failure. Then the literal -,Lis added to A twice and so A has two occurrences of
-,L. For the positive refinement, this can only happen if -,L is positive, that is,
if L is negative. In lifting the sequent style systems to first order logic, a sequent
r-+ L fails only if r contains identical (as opposed to unifiable) literals.

THEOREM 6. The sequent style MESON procedure with the failure rule added is
complete, and this is also true of the positive refinement.

Proof Suppose a sequent r-+ M with L in r is generated. We can then
essentially view L as a clause added to S, for the part of the proof tree descending
from this sequent. This is because a subgoal r-+ L will be solved by the assumption
axiom, which has the same effect as L being in S for all descendents of the subgoal
r -+ M. Also, any descendent of the sequent r -+ M will be of the form r'-+ M' for
r c r', so Lis in r' also. Let S' be a minimal unsatisfiable subset of SU{L}, and
suppose that S' contains the cause {L}. Note that some such minimal unsatisfiable
subset S' must exist, since L appears in some clause of S. Also, such a set S' must
contain at least one clause containing -, L. There is then a finite semantic tree T'
over S', as before. Note that T' is smaller than T and the only clause in T'
containing L is the unit clause {L}. We can then construct an alternating sequence
in T' instead of in T. In this way a proof may be constructed as before. Uses of the
unit clause L in the proof for S' correspond to applications of the assumption
axiom. However, a proof constructed in this way will not contain any sequents
r'-+ M' in which r' contains repeated literals. The literal L for example can never
be added to r again, since that could only happen if some clause C containing L
were in S', But S' contains L as a unit clause and is minimal unsatisfiable, so no
other clause of S' contains L.

The same argument works for the positive refinement, except that r contains only
positive literals so the failure rule corresponds to a negative subgoal L being
repeated on some proof path. For the positive refinement, we cannot apply the
failure rule if there is some sequent of the form r-+ L and some other sequent of
the form A-+ L in the same proof path, for positive L.

402 D. A. PLAISTED

References
l. Chang, C. and Lee, R., Symbolic Logic and Mechanical Theorem Proving, Academic Press, New

York, 1973.
2. Clocksin, W. F. and Mellish, C. S., Programming in Prolog, Springer-Verlag, New York, 1981.
3. Gallier, J., Logic for Computer Science: Foundations of Automatic Theorem Proving, Harper and

Row, Philadelphia, 1986.
4. Loveland, D. W., 'A simplified format for the model elimination procedure', JACM 16 (1969)

349-363.
5. Loveland, D., Automated Theorem Proving: A Logical Basis, North-Holland, New York, 1978.
6. Loveland, D. W., 'Near-Hom prolog', Proceedings of the Fourth International Conference on Logic

Programming, Melbourne, Australia, 1987, pp. 456-469.
7. Plaisted, D., Theorem Proving and Semantic Trees, Ph.D. thesis, Stanford University, 1976.
8. Plaisted, D., 'A simplified problem reduction format', Artificial Intelligence 18 (1982) 227-261.
9. Plaisted D., 'Non-Hom clause logic programming without contrapositives', J. Automated Reasoning

4 (1988) 287-325.
10. Stickel, M. E., 'A PROLOG technology theorem prover: implementation by an extended PROLOG

compiler', J. Automated Reasoning 4 (1988) 353-380.

