A Cognitive Grammar for Writing: Version 1.0

TR89-011
April, 1989

John B. Smith
Mark C. Rooks

Gordon J. Ferguson

The University of North Carolina at Chapel Hill
Department of Computer Science

CB#3175, Sitterson Hall

Chapel Hill, NC 27599-3175

§19-962-1792

jbs@cs.unc.edu c

A TextLab Report

Portions of this research were supported by the National Science Foundation, Grant
#IR1-8519517 and the Army Research Institue Contract £MDAI03-86-C-345.
UNC is an Equal Opportunity /A firmative Action Institution.

Table of Conlents

OBV =2 s 5 s s o 55 s o P 6 S e B msae 3
T BOCROININT .+ o v oo iaain o s o b bon e e S e sieo e ab S a0 W 4
1.1 Theoretical Basis-..cvsss N R G R R AR b 5
L2 TR WE SURIBIN & o o ons iivmisiviauinn s e e i S aaa o § e B v 7
1.3 Methodology « . vvvvvvvnivaninniarnnn e e e R R 7
1A CONGUTTEN PIOIODOIE o o, o v b dia araimranu oo i wearas v i wsaru i o 10
ACNOWISUDEINEIIE < v vivva sl oo aimin W e iy A Ve ST 15
BBIREERONE 5 c 0o s o o o s ae e A e R A R e e 15
S0 Tachnlcol DEseriplion ccidan i ba s W amaves peiinm sl eV eims 17
1 TADIUEIEN. -5 it e T mn e v sign e o iy e T Bem i B e B8 18
22Protocol Language Overviewcceuencnnenccrannnnanas 21
S REHOTLIBNON 4 o v oo msmnso s 18 a0 8 A e TR 23
2.3.1 Action Level Transcript Languagecooevunrns 23
2.3.2 Sample Transcript: Action Levelcocvvvverrnners 29
S LR BBV oo caainiicnoiinininioaionns aiigaiere o) mi am s nm et 5 61006 6 9, 516 8604 35
2.4.1 Operational Level Transcript Language 35
2.4.2 Operational Level Grammarcovuevnvesnnvironas 39
2.4.3 Sample Transcript: Operation Lavel 45
25 K-PIOSOCELRVE o o vivs v s wie v i S A A T R 47
2.5.1 A-Product Transcript Languageccoeviuanins 47
252 A-Product Gramanar eeiaieie s as o e e seies s 50
2.5.3 Sample Transcript: A-Product Level e B0
20 COaNIIVE ProcoBE LaVaY « . - ou cvuv b dobovsshideess < bliiamsosonied 82
2.6.1 Cognitive Process Transcripl Language00un B2
2.6.2 Cognitive Process Grammaricoeevnearvasnons 84
2.6.3 Sample Transcript: Cognitive Process Level 87
27 Cognitive Mode Levelccivvieunrrnnensnanresnnnasens 89
2.7.1 Cognitive Mode Transcript Languageccv0eene 89
2.72Cognitive Mode Grammiar ccocviiuncnneannsns 91
2.7.3 Sample Transcript: Cognitive Mode Level 93
»

Overview

A cognitive grammar, for purposes of this discussion, is a computer program that
interprets the actions of a user working with an interactive application system in
order to infer the cognitive activities taking place in the mind of that user. The
“language” that is parsed is the set of concurrent protocols automatically recorded by
the computer system for sessions in which users work with that system. The resulting
parse tree is a representation of a users' strategy for a session or lask. The terminal
symbols of the grammar are basic user actions, such as selecting a particular menu
option or designating a position in a window with the mouse. The nonterminals are
symbols that designate the researcher's interprelation of the user's cognitive acts as
indicated by the system actions selected. Thus, a cognitive grammar can be considered
a formal descriptive model of users’ cognitive interaction with a particular computer
system in accord with a particular analylic perspective.

When used in conjunction with an application system that produces machine-
recorded prolocols, a cognilive grammar can provide a form of aulomalic protocaol
analysis. Thus, the researcher can study statistically significant samples of user
sessions. Thus, the researcher can sludy the effects of long-term experience with a
system, the differences in sirategies among various groups of usars, patterns ol
individual differences, and olher actual-use issues. Such sludies are impractical for
think-aloud and other priolocol methods that require human encoding. Shifting
protocol studies from, literally, a hand craft to an automated procedure could be an
important step toward basic principles that can guide development of more natural and
more useful interactive systems and toward fundamental insights into complex
mediated cognitive behavior.

The grammar described here is part of a larger project in which we are building an
advanced hypertext writing environment and then using that environment to study
writers' cognitive strategies. It is the principal tool we use to analyze machine
recorded protocols for writers working with our system.

The discussion of the grammar is divided into two parts. In Part 1, we discuss ils
background. We first describe its theoretical basis with respect o compostion theory
and cognitive psychology. Second, since the grammar characterizes the cognitive
behavior of wrilers using a particular system, we briefly describe that system.
Finally, we discuss the grammar as it fits within a sel of analytic tools and as it relates
to several methodological issues — especially protocol analysis technigues. In Part 2,
we describe the grammar, itself, and lllusirate its use with a sample protocol.

We denote the grammar as version 1.0 to indicate that it describes our views at a
particular time. This is a tough nut 1o crack, and we do not believe that our current
understanding is complete. Conseguently, we anticipate producing other versions in
the future. In the meantime, we issue this report to document the current form of the
grammar and to encourage discussion that can help us refine it.

Part 1: Background

Background

1.0 Theoretical Basis

As noted above, a cognitive grammar implictly includes in its definition a
particular analytic perspective, regardless of whether its developers are aware of that
perspective or not. Here, we wish to make explicit the theoratical basis for the
grammar described in this report.

Synthesizing concepts from cognitive psychology, reading comprehension, and
composition theory, we suggest that writing (and other open-ended intellectual
activities) draws on a number of ditferant cognitive modes [Smith & Lansman, 1987].
We view a cognitive mode as a particular way of thinking that is engaged in for a
specific purpose, is more or less constrained relative to other modes, emphasizes
cerain cognitive processes, which are used to creale certain forms of (intermadiate)
cognitive products. Thus, a cognitive mode is an interdependent combination of
goal(s), constraints, processes, and producls.

Figure 1 shows seven modes that we believe are imporiant for expository writing.
As an illustration of the concepl, consider the differences between exploratory and
organizational thinking .

Many writers engage in an early exploratory mode of thinking in which the goal is
to externalize ideas, consider various possibilities, and to gain a general sense
of the material available to be included in the document. In this mode, constraints are
loosened, relative 1o other modes, 1o encourage creativity and alternative perspectives.
The cognitive processes thal are favored are memory recall, associative thinking,
categorizing, and noling basic subordinale and superordinate relations. Consequently,
the intellectual products produced tend 1o be concrete representations of ideas,
clusters of related ideas, and small conceplual structures, often represented
graphically.

Organizational mode is a very different way of thinking. Here, the goal is 1o work
out the overall plan for the document to be written. Conseguently, organizational
thinking is much more constrained than exploratory thinking. Thinking tends to be
logical and conlrolled, emphasizing analysis, synthesis, and abstract construction. The
produclt that is buill is a single large, often hierarchical, structure.

While different modes represent different ways of thinking, they are not
independen! from one another. The cognitive products created in one mode often become
the raw material that is worked on in another. For example, a small hierarchical
relation created during exploration might be incorporated into the larger hierarchical
structure being built during organization. Thus, intermediate products tend to flow
between modes in an overall process of conceptual refinement.

The cognitive grammar described in Parl 2 incorporates this theory of cognitive
modes by including nonterminal symbols that represent the cognitive products
developed by writers, the cognitive processes used in their creation or
transformation, and the cognitive modes engaged by writers duringsa session.

Background

Exploration

Situational
Analysis

Organization

Wriling

Editing:
Clobal
Organization

Editing:
Coherence
Relations

Editing:
Expression

Figure 1:

Cognitive Modes for Writing

Processes Producs Goals Constraints
shecalling sl Acepts +To externalize ideas «Flexible
* Representing ,E:m“:: ::"'-"?F“ *To cluster related +Informal
«Clustering sNetworks ol related ideas = Free expression
* Assaclating concepls * To gain general sense
*Noting subordinate of available concepts
superordinate *To consider various
relations possible relations
* Analyzing objectives sHigh-level «To clarify *Flexible
sSclecting SUITUTATY Statement rhetorical intentions =Extrinsic
#Prioritzing *Prioritized list of *To identify & rank prespective
» Analyzing audicnces readersitypes) potential readers
+List of (major] actions | = To identify major actio
desired *Consolidate realization
*To set high-level
strategv for document
sAnalyzing sHierarchy of concepls | «To trangform network *Rigorous
*Synithesizing *Cralied labels of concepls *Consistent
*Building abstract into coherent *Hierarchical
structure hierarchy *Not sustained
*Refining structure prose
s Linguistic encoding *Coherent prose *To tranform abstract m‘::
representation of «Not
concepts & relations (necessarily)
nNm prose refined
-hunr}g large scale +Refined text structure | » To verify o Faasson
{Fh e ; *Consistent structural & revise large-scale
’*_. n?:::ﬁ:;;:smnﬂ cues large-scale features and
*Manipulating large ml iy
scale structural 2
L omeonents
sNoting coherence sRefined paragraphs | =To verify & revise ~Focuson
relations between and sentencos coherence relations structurl
sentences & +Coherent logical within intermediate | TSNons among
paragraphs relations between sized components sentences &
Sarcig maal | el oo byl
relations coherent paragraphs . gl
thinking
*Reading *Refined prose *To venfy & revise *Focus on
* Linguistic analysis » text of docurment expression
* Linguistic trasformation «Close attention
*Linguistic encoding to linguistic
e detail

Background

1.1 The WE System

While the theory of modes is quile general, strictly speaking the grammar
incorporating that theory characlerizes writers' cognitive interaction with one
particular computer Writing Environment - WE 1.0 [Smith, et.al, 1986; Smith,
et.al, 1987). Consequently, one should have a general sense of that system in order to
understand the grammar.

The architecture of WE 1.0 closely matches the cognitive architecture implicit in
the theory of modes. The system is multimodal. It includes different system modes
that correspond with the major cognitive modes for wriling. A network mode, shown
in the upper left quadrant of Figure 2, is provided for exploration. In it, the user can
represent ideas as nodes (small boxes with a label inside), move them around to form
clusters, link them to one another to denote more explicit relationships and to form
conceplual structures. The underlying rules for network mode are those for a directed
graph, thus providing the user considerable flexibility with respect to the relations
and structures that can be formed.

A tree mode, shown in the lower left quadrant of Figure 2, supports both the
organization and the global editing modes. Herae the user can build and edit the
conceplual structure for the document as a whole, expressed graphically as a tree or
organization chart, by creating parent and child relations among nodes or by moving
structures created earlier in network mode into the tree. Since the underlying rules
are those of a hierarchy, the user gives up flexibility in using tree mode but gains
assurance 1hat the structure produced will be a well-defined hierarchy.

An editor mode, shown in the lower right quadrant of Figure 2, is provided for
writing and for editing sentences and paragraphs. By selecting a node in either tree or
network mode, the user gains access to a text edilor with which to write or edit a block
of text that will be associated with that particular node.

Finally, a linear text mode, shown in the upper right quadrant of Figure 2, is
provided for coherence editing. The system produces a continuous linear perspective
of the tex! by stepping through the tree. In text mods, users can verify and revise, as
needed, the transitions between text contained in separate nodes. They can also move
segments of text from one node to ancther.

Thus, six of the seven cognitive modes shown in Figure 1 are supported by the four
system modes of WE 1.0, shown in Figure 2. The one cognitive mode not covered is
reader analysis mode, which is left to extrinsic heuristics, such as those described in
[Smith & Smith, 1887]. Thus, system architecture matches underlying cognitive
architecture implicit in the concept of cognitive modes and the flow of cognitive
products among them.

1.2 Methodology

Cognitive grammars can provide allernative methods for studying human-
computer interaction and other issues of mediated cognitive behavior. Consequently, in
order to understand the grammar, one needs o understand how it relates to other
methods. As mentioned above, our project is ultimately concerned with substantive
issues dealing with writing and other open-ended design tasks. To help us with

7

Background

mopag [mevmnmen

L 2]

Figure 2:

WE System Modes
(Network, Tree, Editor, & Text)

NETWOAR MO0E. Nat &

Frites

Ivl--.- Camtrm

T8 Raptamber TREY

el et e pphi i P

TRIL MO0 Trea &

=

Htaphas ¢ weins

o F Pl o

o Frmeriasl o Peem B0 elediieees dedusant
ool dala (8 iTered Bos RATwar 6 Pada i odsned el By B,

NSl CAR DELAR GA0, JaurTa Bdd, graphal, auke, wide, o Al
Fprmy

of data.

FYPerIENT ESumanil are Sarmally maanl 18 b = IleR, TR,
e tis L 8

Coprutien San for Wi

- mgmd g

S T, wl BAILEE TR e BODEEVINN meteead
B ownteg W SN 1RSI RSl AT B0 TRey arw wied R

CRrvaalBas Faper INCmenT) Gfa San Mo el ErRevE B R ppetTanl
e

Saltriptien &f wl

I hpeciar fantorm
1

EONT 8008 Catae Mdas qu- Saeteni Ej:w.q.-.-aﬁn'\:

Th gt ®ell [SACARITRTA, &1 0EW posnl, an pratentng sech gf sa
Saa3 n pred, W engaging e roden Dalt Made, inown m Ihe iwer
menl guasrant of Fgur ¥, growdel ACoall 19 & tandacd tevt editer
L whEE TE SRCodd Tha CEnSegl raprelenied By & hode inte text, In
e Ruters sctenaleng of WL, tha ayitem wll jupport sditars for Sthar
ety of data, Eh &0 graphEl daund and videa AL (hal tima the

sl golualy mraisd will Be Layed 10 1he dypa of tha particular
Sfae

P tha cwrreat spites W wiel 1Ra Vlefrdard BmaFtal test edliod™ To
Pepn writing e L3 PSRl 18 The RadE 0 SlTAer IYRe oF naTwark
Sodn and et e el SPTISA 08 Ihe bt Tent may Ba kayed in,
Snincted for movemant or Selaiion, &fd 10 oA The swihar Mavs Eoit
Mogy pegiy Ty Soeng The Cored FFEE TRAT AFRA INDO Lha area of e
FETHET Senisreg T mode WRa elthal f0 altivate

Background

experiments that address these issues, we have developed several other tools that we
use in conjunction with the grammar. These include a protocol recording function
embeddded in WE, a session replay function, the cogntive grammar that is the primary
topic of this report, and several display tools that assist interpretation of the parses
produced by the grammar. In this section, we discuss these tools briefly, relating each
to one another and to other methods used in studying human-computer interaction.

Background

1.3 Concurrent Protocols

To help us gather protocols of users of the system uncbtrusively and in a form
ready for analysis, we installed a tracking function in the WE system that records
each user action, its time, and other information of interest, such as the location in
network mode where a node is created. These action-level data are written by the
system to a lile ready for analysis.

This approach contrasts with conventional methods for studying human-computer
interaction. The most common form of data used for this purpose as well as to evaluate
cognitive models, in general, has been think-aloud protoceols. More recently, some
researchers have begun lo use keystroke records of user sessions. Both approches
present problems that are overcome by action-level protocols.

Think-aloud protocol methods were developed by Newell, Simon, and others at
Carneige-Mellon University to study complex, problem-solving behavior. Using this
technique, the rasearcher asks subjects to narrate their thinking continuously while
performing a given task. By doing so, the researcher is no longer forced lo observe
only the external behavior of subjects but is given a window into their minds and can
observe, at one-step remove, subjects’ thinking. While this lechnique has provided a
rich source of information, it has also generated considerable controversy as 1o the
validity of the data and the possible interference verbalization may have with the task
being performed [Nisbett & Wilson, 1977]. Ericsson and Simon [1980] have
answered their crilics by arguing that concurrent verbal protocols do constitute valid
data for what |hey term Level 1 verbalization -- verbalization of concepts that are
stored in short lerm memory in verbal form. They found in their studies no evidence
that concurrent think-aloud protocols affect this type of cognitive processing or that
such data are incomplete or distorted. However, for Level 2 and Level 3 conditions --
respectively, verbalization of data that would not be heeded as part of the cognitive
process and verbalization of data that Is not part of the cognitive process and, hence,
must be generated -- think-aloud protocols did significantly change the cognitive
process, especially recognizing complex patterns and relationships presented visually
[Ericsson & Simon, 1980; Claparede, 1933; Henry, 1934]. Computer systems that
run on workstations with high-resolution graphic displays normally use
representations that are highly spatial and provide control by direct manipulation of
spatially located icons. Consequently, using think-aloud protocols 1o evaluate cognitive
models for users of this type of system should be expected, from a theoretical
perspective, 1o result in significant distortions.

Think aloud protocols also present problems of reliability. Typically, they are not
used in their raw form but, rather, are coded according to some set of categories in
which the model under examination is defined [Swarts, Flower & Hayes, 1884]. While
training and practice increase reliability and consistency, encoding remains a highly
subjective process that is subject to error on the order of 25% [Hayes & Flower,
1980].

A third issue Is practicality. An hour of think-aloud data often requires fifteen
pages for transcription [Hayes & Flower, 1980]. This is an enormous explosion of
information that places significant limits on the number of subjects that one can study
and the range of questions that can be examined.

10

Background

Keystroke protocols record every keystroke performed by the user of a system.
While they solve the problems of validity and reliability raised by think-aloud
protocols, they still present practical problems. They produce substantially more dala
than action protocols. They also increase the complexity of any grammar that would be
used to parse them since the grammar would have to include the full interpretitve
capability of the user interface as the first stage in a parse.

Thus, we believe that automatically generated action-level protocols are an
attractive alternative to both think-aloud and keystroke prolocols.

A second teol we buill is a replay program that takes the session transcript
created by the tracker and recreates the session. Thus, we can visually inspect
subjects' use of the system by watching the session as if it were a video recording of
the screen, except we can speed it up, slow it down, or step through it manually, action
by action. We have found this tool far more useful than we had anticipated. Using the
“fast" replay option, we can view a two-hour session in B-10 minutes. This time
compression produces a very clear, albeit intuitive, sense of a writer's strategy. To
test and refine these impressions, we use more precise analytic lechniques, described
below.

Qur third tool is the cognitive grammar that is the subject of this report. We
describe il in detail in Part 2, below; we give a brief, general description of il here to
indicate its relation to the three other tools being discussed.

The grammar |s defined in 1erms of five levels of abstraction, as shown in Figure 3.
It takes as input a sequence of symbaols, each of which represents a single user action.
It then maps short sequences of actions - for example, click with the mouse
somewhere in the space for network mode, select the “create node” option from the
menu, type a label lor the node, and then type “relurn® -- into a system operation--
creale-node. Operations are then mapped into changes 1o the set of cognitive products;
we call this the delta product level. This interpretation is highly context sensitive;
for example, creating a node can be interpreted as adding to the set of individual
concepls or as adding to an existing clusler of relaled ideas, depending on its spatial
proximity to other nodes/concepts. Note the different interpretation for the five
nodes that form a cluster, indicated by the shaded circle in Figure 3, and the two,
presumably unrelated nodes created in other parts of the space. From sequences of
delta product symbols, the grammar infars the cognitive process used to produce
changes in the concepiual products being constructed. Finally, sequences of process
symbols are mapped into cognitive mode symbols.

The parse trees produced by the grammar as cutput provide concrete
representations of users' cognitive strategies for the sessions being analyzed. In those
structures, we can see users shift from one cognitive mode to another, the sequences of
processes being used in each mode, and the particular cognitive products being created
or medified by those processes.

These data provide rich material for analysis and interpretation. We are just
beginning the fourth methodological slep of developing tools to help us analyze and
understand this information. As an illustration of both the kind of insights the
grammar can provide and of one particular interpretive tool we have developed,
consider Figures 4 and 5. They show horizontal slices of the parse trees from
sessions by two different subjects. The particular slice is the delta-product level,
showing the intermediate products created by the subjects during the session. Down
the left side of the diagram are symbols that designate the varicus types of products

11

Background

Figure 3:
Cognitive Grammar Parse Tree

e
process
Produet [Expand Clustor M) Ccmatasmmsas)

Creale Noda Abarl Create Node Crente Nooe Creae MNode
Operation | Node #n Tllrm_:_ No-:.‘-a #n+l Noda #ne2 Nade #n«3

Fosition Pasgition Position Position Position
Paosition
j H 1 Creale Moda
_ Tool Manu Open ighiigh Creata String
Actinn BN Pasition Paositian ‘1nfru_—:;'m:l:icn
Time Time Position
Time Mode En Time

n+3

Ciuster M n+d

12

Background

Figure 4:

Protocol Display Example

Network
C1

Cc2

L1

TL1

TL3

Tree

STCH

TC4

T™1

riting

EncN

-

Network
Tree
]Wriling

13

Background

Figure 5:

Protocol Display Example

Metwork
C1
ce

M3
M8
M1
D3
L1
TLY
TL3

TLS
M9
M7
M5
DLCA
M10

- - - - i W= -

] I

b T NN] I i

(] | I 1

]]]]

f=8= 11118 [| i P bl

Tree
TCH
STCH
TC4
TD4
TD3
T™M1

(1]

Writing
EncN

M1

e §] bd JTH M e [= I —— HH— 1=

AL = O ITH H I 1 l—— HH— I

Metwork
Tree
Writing

14

Background

created, such as isolated nodes, clusters of nodes, additions to the tree being built, etc.
Each instance of a product is represented by one of the short vertical lines. The
horizontal axis represents time. Thus, we can see each user's stralegy as it is
reflected in the kinds of products created and when they were proGuced. In Figure 4,
the user follows a nearly perfect “waterfall® or "stages” strategy. doing all of his
exploratory thinking first, followed by organizational thinking used to build the top of
his tree, followed by writing. He then goes back to the tree, fills out the more detailed
levels, and completes his writing. This strategy is markedly different from that of the
second subject who constantly moves back and forth between structure operations and
writing.

Thus, the grammar is an integral part of a set of tools for recording protocols,
replaying them, analyzing the data, and displaying results in a form in which they can
be comprehended, interpreted, and compared.

In the preceding discussion, we first described the theoretical basis for the
grammar in terms of cognitive modes. Since the grammar characterizes the cognitive
sirategies of users working with a particular system, we next described the WE 1.0
system to which it applies. Finally, we placed the grammar within a methodological
context by discussing how it fits both within a set of tools we have developed and within
a set of issues periaining to the study of human-computer inleraction. In Part 2, we
give a detailed technical description of the grammar.

Acknowledgments

A number of organizations and individuals have contributed to the work described in
this report. We are grateful to the National Science Foundation (Grant # IRI-
8519517) and the Army Research Institute (Contract # MDAS03-86-C-0345) for
their support of various parts of this research. We wish to acknowledge our faculty
colleagues, Marcy Lansman, Stephen F. Weiss, and Jay D. Bolter, for contributing
ideas and perspectives. We are especially grateful to Oliver Steele for his early work
on parts of the grammar and the tracking and replay functions and to John Q. Walker
Il for his work in developing an alternative grammar for another writing system.
Finally, we wish to thank the graduate students who have worked with us on WE 1.0
and on our cognitive experiments using the grammar: Paulette Bush, Yin-Ping Shan,
Irene Jenkins, Matt Barkley, and Barry Elledge.

References

Claparede, E. (1933). “La genese de I'hypothese,” Archives de Psychlogie, 24, 1-
155.

Ericsson, K. A. & Simon, A. S. (1880). “Verbal reports as data,” Psychological
Review, B7, 215-251.

Hayes, J. R. & Flower, L. S. (1980). “ldentifying the organization of the writing

process,” In L. W. Gregg & E. R. Steinberg (Eds.), Cognitive Processes in Writing.
Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 3-30.

15

Background

Henry, L. K. (1934). "The role of insight in the analytic thinking of adolescents,”
Studies In Education 9, 65-102.

Nisbett, R. E. & Wilson, T. D. (1877). "Telling more than we can know: Verbal
reports on menial processes,” Psychological Review, 84, 231-259.

Smith, J. B. & Lansman, M. (1887). A cognitive basis for a computer writing
environment. Chapel Hill, NC: UNC Department of Computer Science Technical Report
TRB7-D32.

Smith, J. B. & Smith, C. F. (1987). A strategic method for writing. Chapel Hill, NC:
UNC Department of Computer Science Technical Report # TR87-024.

Smith, J. B., Weiss, S. F., Ferguson, G. J., Bolter, J. D., Lansman, M., Beard, D. V.,
(1986). WE: A writing environment for professionals. Chapel Hill, NC: Department
of Computer Science Technical Report # TR86-025.

Smith, J. B., Weiss, 5. F., & Ferguson, G, J., (1987). A hypertext writing
environment and jts cognitive basis. Chapel Hill, NC: Department of Compuler Science
Technical Report # TR86-033.

Swarts, H. Flower, L. S,, & Hayes, J.R. (1984). "“Designing protocol studles of the
writing process: An introduction,” in R. Beach & |. Bridwell (Eds.), New Directions
in Composition Research. New York: Guilford Press, pp. 53-71.

16

Part 2: Technical Description

17

Technical Description: Introduction

2.1 Introduction

In Part 2 we describe in detail our Cognitive Grammar for Writing, Version 1.0.
We first provide an overview of the architecture of the grammar. Then, in subsequent
sections, we discuss in detail each major component.

The grammar can be considered as five separale grammars thal work in conjunction
with one another or as a single grammar that produces five separate, but logically
connecled, levels of analysis. Three differenl levels are shown in Figure 3, abova.

The terminal symbols recognized by the grammar are encoded representations of
actions performed by the user of the WE 1.0 system. Each symbol denotes a single
primilive act, such as selecting a specific menu oplion or typing a label. These
symbols also carry additional information in the form of attributes specific to the
particular act, such as the string entered as a label or the location in the background of
a window selected by the user by pointing with the mouse. All symbols carry the time
at which the action was enacted. The sequence of such symbols for a session constitutes
a transcript of that particular session adequate 1o recreate it. The set of all such
sequences is, thus, the “langauge® thal is parsed by the grammar; and instances of it
are designaled the Action Level Transcript in the discussion that follows..

The Action Level Transcript is first parsed to produce what we term the Operation
Level Transcript. Each operation respresents a pattern or sequence of several action
symbols. Each is the kind of operation one would normally designate in the
specilications of a user interface - such as create_node -- that, in turn, would
require several user actions -- such as, select position with mouse, select menu
option, type label, type camiage return. This slage of the grammar also deletes
errors, cancelled command sequences, etc. Thus, the transcript consists of a sequence
of symbols analogous to those for actions. It may be treated as a “language”; however,
each symbol on the Operation Level is linked by a symbolic pointer to the sequence of
Action Level symbols it characterizes. Consequently, it may also be considered to be a
broad hierarchical bush that will eventually be linked by higher levels to form the
parse tree for the session as a whole.

The Action and Operation levels of the grammar are closely tied conceptually to the
computer system. The third level, which we call the Deita Product Level, shifts the
analytic perspective from the system 1o the mind of the user. In this level, we begin 1o
characterize the user's cognitive behavior based on our interpretation of his or her
interaction with the system. This level of the grammar actually contains two steps. In
the first, each operation symbol is mapped 10 a corresponding symbol that interprets
the effects of the system operation on the set of intellectual products the user is
constructing. These products are well-defined, consisting of structural forms that are
imponant for writing, such as an isolated concept, a cluster of ideas, a relation
between two ideas, a primitive subordinate/superordinate relationship, a block of
text, etc. The effects of individual changes in the set of cognitive products ae then
aggregated. Thus, each Delta Product symbol represents the changes produced by one
operation or a sequence of operations on one of these conceptual forms. The sequence of
these symbols can be considered a language in which each symbol is linked 1o one or
more Operation Level symbols; thus, these links extend the hierarchical bush another
level upward.

18

Technical Description: Introduction

The fourth level of the grammar is the Cognitive Process Level. Here, each symbol
represents the cogntive process inferred to be active in preducing one or more changes
to the sel of cognitive products, Identified in the Delta Product Level. Thus, for
example, a sequence of additions 1o a group of nodes in close spatial proximity to one
another is interpreted as an instance of sustained "Focused Recall” whereas, if the
nodes are “far apart”, the process is assumed to be unfocused or free recall. Again,
the grammar produces a transcript that can be treated as a language or as a sequence of
symbols, each of which can be linked to one or more symbols in a lower level. Thus,
the bush grows by one more level of abstraction.

A Cognitive Mode level is inferred from sequences of Cognitive Process symbols.
Shifts in Cognitive Mode are strongly suggested when the user shifts from one system
mode to another. But the two are not always the same. For example, when a user
working in network mode shifts from building small conceptual structures to linking
them into a larger hierarchical structure, this may indicate a shift in Cognitive Mode.
On the other hand, when the user is building a large hierarchical structure in tree
mode and returns to network mode to copy a structural component into the treae, that
shift in system mode may not indicale a shift in Cognitive Mode. At present, this
portion of the grammar is incomplete. We currently infer shifts in cognitive mode
largely from shifls in system mode operations, but we will add rules to infer shifls
from context sensitive sequences of cognitive process symbols. Again, the resulting
transcripl can be viewed as a language, but, again, the symbols at this level are linked
to sequences of lower level symbols. Thus, the Mode Level extends the bush one more
level.

The Cognitive Mode Level symbols can be linked, finally, to a symbol representing
the sassion as a whole. Thus, the separate branches can be joined lo form a tree. It
depicts the session as a hierarchy of cognitive and system aclivities in which the user's
siralegy is manilest as a series of mode shifts, each of which includes a series of shifts
in cognilive processes, used lo produce changes in the set of intellectual products being
constructed, as indicated by short sequences of operations, each of which consists of
several system actions,

The grammar is implemented as an OPS-83 program. Figure 6 provides a
schematic view of its datafiow. OPS is an expert system shell tha! provides a
programming language based on production rules. Thus, from another perspective, the
grammar can be considered as an expert system that simulates the actions of an expert
interpreter of the Action Level transcript. At present, the program is run as a “batch”
pregram on the complete transcript after the session has been concluded. A topic for
future research is running the grammar concurrently with the session and thereby
building a real-time parse structure that represents the user’s strategy as his or her
strategy evolves. This capability could serve as the basis for an intelligent tutor,
more powerful intelligent functions within WE, and functions that might search an
external database for material relevant to the structure of ideas being built. But these
possibilities must await future versions of the grammar.

In the remainder of Part 2, we first describe, briefly, the general form of the
transcription language used at all five levels of the grammar. Following that are
descriptions of the grammar for each level. Each discussion includes an introduction, a
description of the transcription language symbals for that level, the grammar that maps
symbol sequencies from lower levels to symbols at that level, and a sample annotated
transcripl. The one exception is the Action Level section: it does not include a grammar
since it constitutes the level of primitive or terminal symbols.

9

Technical Description: Introduction

Figure 6:

Cognitive Grammar Data Flow

Cognitive Mode Determination =1 Cognitive Mode Transcipt

|

|

Cognitive Product Determinatien | g Cognitive Product Transcript

Operation Determination —— Operation Transcript

System Action Transcript

User Session in Writing Environment

20

Protocol Language Overview

2.2 Protocol Language Overview

At each of the five levels of abstraction, our system of analysis provides a description
- by way of a transcript - of what occurred during a given session of the writing
environmenlt. At each level, the transcript of a session consists of an eight-line header
followed by a blank line, followed by a series of one-line event records. Since these
transcripts share a common format, this format Is outlined below.

Header

The header lists the following items, in the following order:

1) The version of the Writing Environment (WE) which was being
used when the transcripl was recorded.

2) The date of the transcript.

3) The time at which the session began.

4) The name of the user.

5) The clock at the beginning of the session.

6) The name of the database being used.

7) A boolean indicating whether the database began with an empty
workspace.

Event Records

Each line of a transcript following the blank line which lollows the header is an gvenl

record. At each of the five posited levels, each event record contains two mandatory
fields, followed by zero or more additional fields (depending on the level and event-
type). Every event record of every lranscript conforms lo the following template:

Time Event-token {Event parameters}

The first field - Time - indicates the amount of time (in milliseconds) elapsed since
the beginning of the session until the beginning of the event being recorded. The second
field - Event-loken - indicates what event the analysis has posited as having occurred.
Finally, certain event-types are always followed by additional fields which are
required to complete records which contain event-tokens of the type in question. These
"event parameters” are fully documented at each level with their associated “event-
lypes.”

21

Action Level Transcript Language

2.3 Action Level

Introduction

The Action Level consists of symbols produced by the tracking function in WE 1.0.
Each action represents an act performed by the user, such as designating a location in
the system mode window, selecting a menu item, typing a label, etc. These symbols
also carry additional information in the form of altributes specific to tha particular
act, such as the string entered as a label or the location in the background of a window
selected with the mouse. All symbols carry the time at which the action was enacted.
Thus, the sequence of symbols conslitutes a machine-recorded protocol for a user
during a particular session. Since actions are the primitive or lerminal symbols for
the grammar, this section does not include a grammar component. It does, however,
include a complete description of all menu items included in the WE 1.0 interface as
well as every action that causes a line to be recorded in the Action Level Transcript.

2.3.1 Action Level Transcript Language

An action level transcript file consists of a header, followed by a blark line,
followed by a sequence of event records. The transcript is a essentially a record of all
the actions performed by a user of the Writing Environment (WE) during a session.
Each action of the user is represented by a line (or event record) in the transeripl.
Additional lines may appear in the transcript, which do not correspond to user actions,
but which are necessary for replaying the program from the transcript. The possible
actions are listed below, with whatever coliateral information is collected with the
action (i.e. the action's parameters).

Header

The header lists the following items, in the following order:

1) The version of the Writing Envircnment (WE) which was being
used when the transcript was recordad.

2) The date of the transcript.

3) The time at which the session began,

4) The name of the usar.

5) The clock at the beginning of the session.

6) The name of the database being used.

7) A boolean indicating whether the database began with an empty
workspace.

22

Action Level Transcript Language

Action Records

Each line of the transcript is an gyent record. The event records are grouped into
"actions ." We distinguish two types of actions: actions which the user initiates and
actions the user lakes in response to prompts. Each action begins with an gction record
possibly followed by one or more support records. The support records either supply
additional parameters (Parameter records) or provide information for the benefil of
the replay mechanism (Replay Records).

The format for the action records is consistently followed through the five levels of
abstraction currently recognized by our method of analysis. That format Is simply:

Time Symbol Attributes
where:

Time = The time (in milliseconds) from the beginning of the user session until the
beginning of the action (operation, etc.) which that particular line of the
transcript purports to record.

Symbol = The symbol which represents the type of action (operation, etc.) which is
recorded on the transcripl.

Altributes « A list of zero or more attributes which may include 1) the object of the
particular action (operation, etc.), 2) the logical relationship of the object of
the action to other objects, and/or 3) additional spatio-temporal information
aboul the object.

The various kinds of actions are detailed below. Each action record Is presented with all
its fields; any additional Parameter or Replay records for this kind of action are also
identified if possible. In some cases the support records needed depend on the context;
these cases are indicated.

Of prime import to subsequent analysis is the menu action. Mos! user-initiated actions
are begun by highlighting a menu item. In a menu action record, we record whatever
menu item was highlighted, along with whatever object is the current agent and
whatever mode is current. The possible menu items which may be highlighted are
detailed following the discussion of action record types.

A sample annotated transcript concludes the section (terminals are in quotes).

Actions the user initiates include:

-Moving into a new mode; the mode action

time "mode™ globalX globalY localX localY mode
-Moving the cursor over an agent; the ggent action
time "agent” globalX globalY localX localY object

-Using a menu to get help for an option - the helpMeny action
time "helpMenu® globalX globalY localX localY menultem

-Raising a menu, whether an option is chosen or not - the meny action

23

Action Level Transcript Language

time menultem globalX globalY localX localY mode:object

-Adding text to a node - the gncode action
time "encode” time globalX globalY localX localY object

-Initiating a roam operation - the rgamStart action
time "roamStart® globalX globalY

Actlions the user lakes in response lo prompls:

-Entering a string into a prompt box - the siring action
time “string" globalX globalY string

-Answering a yes/no prompt - the hboolean action
time “boolean® globalX globalY boolean

-Selecting a point when requested (e.g. when moving a node) - the point action
time "point® globalX globalY localX localY

-Selecting the terminal node for a link; the link action
time “link® globalX globalY noda

-Selecting the position below the selected sibling, to which to paste a node or
subtree in tree mode - the pelow action

time "below" globalX globalY localX local¥Y node

-Selecting the position above the selected sibling, to which to paste a node or
subtree in tree mode - the gbove action

time "above" globalX globalY localX localY node

-Selecting the position as a child of the selected parent, to which to paste a node or
subtree in tree mode - the ghild action

time “child® globalX globalY localX localY node
-Changing the viewing space by resizing or moving the roaming box - the
viewing action

time “view" globalX globalY feft top right bottom

In addition to these actions, there are support records which supply additional
information to the parser:

-Indicates that a new node or link is created:;
lime “create” giobalX globalY localX localY object

-Indicates that a roam operation was completed
time "roam” globalX globalY

-Indicates that an action failed (for whatever reacn)
time “cancel® globalX globalY localX localY [object]

24

Action Level Transcrip! Language

Explanation of the parameters:
1) time: The amount of time in milliseconds since the beginning of the
session.
2) globalX, globalY:
The x and y coordinates of the event on the screen.

3) localX, localY:
The x and y coordinates of the event within the particular mode
screen in which the event transpired.

4) mode: One of several of the possible system modas. The modes are
abbreviated as loliows:

Edit Mode: ParaMode1
Control Panel Mode:

CPiModa
MNetwork Mode: NetModa
Tree Mode: TreeMode1
Text Mode: ReviseMode1

5) object: Either a node, or an arc (identified by a unique number), or one
of the modes listed above.

6) menultem: A menullem may be any one of the possible menu items which
may be highlighted from any of the several modes. A complete
list of these items appears at the end of this section.

7) boolean: Either true or false.

B) string: Used lo indicate the first few letters of text used for node names,
link names, etc.

9) left, top, right, bottom:
The upper left and lower right coordinates of the current mode.

10) node: A unique node identifier.

Replay Event Records

There are some events which are only present for the benefit of the Replay Manager.
Event records which begin with the following words can be ignored:
openSession

firstmode
closeSession
notify

whbase
menuStart
helpMenuStart
menuEnd

25

Action Level Transcript Language

Menultems

Menu
System Control Panel Menus:

Writing Environment menu:
Redraw All:
Default Layout:
Quit:

Workspace menu:
Save WS:
Change WS:
Rename WS:
Reset WS:
Garbage Collect:

Delete WS:
Holding Areas menu;

Show Nodas:

Show Trees:
Holding Areas submenu:

Move to Top:

Delete:
System menu:

Screendump:

Snapshot:

In Transcript

redrawOpt
defaultOpt
finished

saveWs
changeWs

renameWs
reselWs

collectGarbage
deleleWS

showhlodes
showTrees

moveToTop
throwOut

screendump
snapshot

Prompt before saving text:

editPromptToggle

Change WS Directory:

Printing Options:
Create WS Directory

To Smalltalk:

Metwork Mode Menus:

Control Panel Menus:

View menu:
Fedraw:
Resize:
Swilch size:
Roam:

Display/print menu:
Show in text window:
Send to line printer:
Write as a TeX file:

26

changeWSdir
printMenu

"
"

createWSdir
toSmalltalk

redrawOpt
resizeCpt
switchSize
roam

toTexiMode
toLinePtr

asTeX

Action Level Transcript Languags

Menu

Background menu:

MNode menu:

Link menu:

Tree moda menus:

Creale Node:
Pasle Nede:

Paste Tree:
Show/Hide Links:

In Transcript

createMNode

pasteiNode
pasteStructure

togglelinks

Show/Hide Link Names;

Subtract Trae:

Move:

Link:
EditName:
Edit Text:
Copy Node:
Copy Tres:
Delete Node:

Edit Link Name:
Delete Link:

Cantrol Panel menus:
Background menu:

MNode menu:

Subtree menu:

Paste Node:
Paste Tres;
Create Tres!
Copy Node:
Copy Tree:
View Context:
Sel Node Size:

Add Node: above:
Add Node: below:
Add Mode: child:
Add Node: Parent:
Edit Name:

Edit Text:

Copy Node:

Delete Node:

Move Subiree:

toggleLinkNames
deletePastedStructure

moveiode
addLink
editNodeNameS
editNodeText
copyNode
copyTree
deleteNode

raname
delate

same as for Network mode

pasteNode
pasteTree
createTrae
copyhoda
copyTree
viewContext
selDepth

addAbove
addBelow
addChild
addParent
rename
textEdit

copyNode
deleteNode

moveSubiree

Show Text for Subtrea:

Display Subtree:
Copy Subtree:
Delete Subtree:

23

printCulSubtree
newCurrRoot
copyQutSubtree
deleteSubtres

Action Level Transcript Language

Prinling Options Menu:

Laser Writer:

Line Printer
file name:
auto send

28

specLaserWriter
specLaserWriter
outfile

autoPrint

Sample Annotated Transcript - Action Level

2.3.2 Sample Annotated Transcript

In the following transcript, lines which are comments rather than actual lines of the
transcript are preceded by two aslerisks.

‘Writing Environmen! Transcript version 2.0'

version: 20
date: 23 Seplember 1988
time: 1:23:26 pm
user: jenkins
clock: 27947
database: emptyWS
empty: true
40 openSession 492 240 0 ©
80 mode 0 0-701 -561 ParaMode1
205420 mode 10 153 9 82 MNethModel
** The subject moves the cursor 1o network mode
205480 agenl 10 153 § 82 NetMode1
206180 menuStart 105 184 ToolHelpedMenu
206860 createNode 108 187 104 123 NetModel Nel
206880 create 108 187 104 123 Nodes 23482710
210480 string 108 187 bird

** Node # 2348270 is created in network mode and given the label “bird.”
** The node crealon began 206180 milliseconds after the beginning of
** the session.

211160 agent 122 191 121 130 MNodes 23482710
211340 agent 250 153 289 @2 NetMode1
211660 menuStart 302 147 ToolHelpedMenu
212120 createNode 305 150 301 86 NetMode1 Net
212140 create 305 150 301 B8 MNodes 24006711
21406 string 305 150 cat

** A second node with the label "cat” is created.
215000 menuStart 208 273 ToolHelpedMenu
215420 createNode 215 274 207 212 NeiModa1 Net
215440 creale 215 274 207 212 Modes 24336712
217920 string 216 275 fish
219300 menuStart 250 211 ToolHeipedMenu
219740 createNode 253 214 249 150 NetMode1 Net
219780 create 253 214 249 150 Nodes 24770713
223740 slring 253 214 g
224780 agent 305 169 304 108 Nodes 24006711
225000 agenl 393 161 398 100 NetModet

29

Sample Annotated Transcript - Aclion Level

225260 menuStart 417 151 ToolHelpedMenu
225820 crealeNode 420 154 416 90 NetMode1 Net
225860 create 420 154 416 90 Modes 25378714
227740 siring 420 154 mouse

228720 agent 379 151 378 90 Nodes 24008711
229480 agent 408 161 407 100 NetMode1

223580 agemt 418 163 417 102 Nodes 25378714
230100 agent 397 156 396 85 MetMode1

230140 agent 377 152 376 N MNedes 24006711
231300 agent 295 197 294 136 NetMode

231480 agent 283 213 282 152 Nodes 24770713
231800 menuStant 277 221 ToolHelpedMenu
232580 addLink 281 240 282 152 MNodes 24770713 Net
233840 link 322 170 Nodes 24006711
234780 create 322 170 282 152 Arcs 26264715

** Node # 24770713 is linked o Node # 2400611 In network mode. The arc
** is given the # 26284715 by the system.

235460 agent 323 162 322 1M1 MNodes 24006711
236120 menuStart 331 162 ToolHelpedMenu
236940 addLink 334 181 322 11 Nodes 24008711 Net
238260 link 438 170 Nodes 25378714
238340 creale 438 170 322 101 Arcs 266227186
235360 agent 417 246 416 185 NetMode1

240400 agent 435 185 434 124 Nodes 25378714
241200 agent 438 191 437 130 NetModea

242320 menuStat 438 192 ToolHelpedMenu

242520 createNode 441 195 437 131 NetModel Net

242540 create 441 195 437 131 MNodes 27048717
245260 string 441 185 elephant

245420 agent 428 182 427 121 Nodes 25378714
246280 agent 452 202 451 141 Nodes 27048717
246460 agent 478 228 477 167 NetMode1

246520 agenl 478 228 477 165 MNodes 27048717
246920 menuStart 472 212 ToolHelpedMenu

248900 moveNcde 485 213 477 165 Nodes 27048717 Net
250060 point 453 159 452 98

* Node # 27048717 is moved in natwork mode to coordinates 453,155,452,88

251100 agent 388 195 387 134 NetMode1
251560 agent 314 183 313 132 Arcs 26264715
251980 agent 410 171 40% 110 NetMode1
252080 agent 424 169 423 108 Nodes 25378714
252780 agent 501 162 500 101 Modes 27048717
253560 agent 380 232 38% 171 MethMode
254020 agent 324 223 323 162 Nodes 24770713
254300 agent 316 199 315 138 Arcs 26264715
254740 agent 326 205 325 144 NetMode1
255600 agent 401 168 400 107 Arcs 26622718
256260 agent 373 152 372 9 MNodes 24006711
256440 agent 369 214 368 153 NetMode1
256620 agent 321 230 320 168 Nocdes 24770713

30

Sample Annotated Transcript - Action Level

256820
257020
257760

agent
agent
agent

287 256 286 195
271 278 270 217
95 249 94 188

MetModa1
MNodes 24336712
NetMode1

** The subject moves the cursor around louching on arcs, nodes, and
** network mode itself in the preceding 16 “agent® records.

258360
258940
258980
260840
261780
262180
263300
264220
264300
265140
265260
265820
265840
267940
268880
269340
270020
270960
271040
272160
272480
273800
277700
279180
279860
280060
280340
280520
281540
281980
282000
284820
285760
286440
287520
288820
288880
280240
291060
292440
292520
294080
295820
301720
302170
303560
303740

menuSian
createNode
create
string
agent
menuStar
addLink
link
creale
agent
menuStan
createNode
create
siring
agent
menuStan
addLink
link

create
agent
menuStart
maoveNode
point
agent
agent
agent
agent

agent
menuStart

createNode
create
siring
agemt
menuStan
addLink
link
creale
menuStart
addLink
link
create
menuStan
addLink
link
creale
agent
agent

55 277

58 280 54 216
58 280 54 218
58 280

180 212 179 151
158 200

163 225 179 151
75 291

75 291 179 151
180 274 179 213
180 274

183 277 179 213
183 277 179 213
183 277

149 205 148 144
145 193

148 212 148 144
222 298

222 298 148 144
221 298 220 237
221 297

228 310 220 237
196 384 195 323
170 419 169 358
96 291 95 230
100 253 99 1982
142 211 141 150
156 173 155 118
125 85

128 88 124 24
128 88 124 24
128 88

134 82 133
158 64

177 119 133 31
133 183

133 1938 133 31
169 87

172 116 133 31
226 286

226 286 133 31
154 105

189 126 133 31
277 235

277 238 145 123
233 167 232 106
232 167 231 106

31

ToclHelpadMenu
NetMode1 Net
Nodes 28688718

eagle

Nodes 23482710
ToolHelpedMenu

MNodes 23482710 Net
Nedes 286BB718
Arcs 29218719
NetMode1
TooiHelpedMenu
NetMode1 Nat

Nodes 29376720
ostrich

Nodes 23482710
ToolHelpedMenu

Nodes 23482710 Net
Nodes 29376720
Arcs 29892721
Nodes 239376720
ToolHelpedMenu

Nodes 29376720 Nel

NetMode1

Nodes 28688718
NetMode1

MNodes 23482710
NetMode1
ToclHelpedMenu
NetMode1 Net

MNodes 30982722
Animals

Nodes 30992722
ToolHeipedMenu

Nodes 30992722 Net
Nodes 23482710
Arcs 31678723
ToclHeipedMenu

Nodes 30892722 Net
Nodes 24336712
Arcs 32040724
ToolHelpedMenu

Nodes 308392722 Net
Nodes 30857223 Net
Arcs 32968725
NetMode1

Arcs 32968725

Sample Annotated Transcript - Action Level

304140 menuStart 232 167
304860 rename 245 177
306620 string 245 177

231 106

** A link is renamed to the null string

306940 agent 245 133
307720 agent 228 164
308180 menuStart 228 164
309080 delele 232 183

** Arc # 32968725 is deleled

310340 agent 229 185
310620 agent 169 115
310980 menuStart 181 101
312460 copyTree 184 188

244 132
227 103

227 103

228 124
168 54

168 54

ToolHelpedMenu

Arcs 32568725 Net

none

NetMode
Arcs 32968725

ToolHelpedMenu

Arcs 32968725 Net

Nethiode1
Nodes 30092722
ToolHelpedMenu

Nodes 30892722 Net

** The tree with rool at node # 30982722 is copied into the holding area

312740 agent 183 188
312920 agent 161 368
313260 mode 137 574

** The subject moves to tree mode

313300 agent 137 574
314100 menuStat 137 574
315440 pasteNode 158 589
317120 notify 158 589

182 127
160 307
136 73

136 73

136 73

Modes 234B2710
MNetMode1
TreeMode1

TreaMode1
ToolHelpedMenu
TreeModet Tree

** An attempt is made to paste a node from the holding to tree mode,
** but the copy fails (probably because no node is in the holding

** area).

318320 pasteTree 170 608

157 88

** A tree is successlully pasted inlo tree mode

328420 menuStan 169 607

329760 agent 324 T16 323 215
330020 agent 174 612 173 111
330220 menuStart 174 612

334420 agent 263 659 262 158
334600 agent 179 715 178 214
335260 agent 100 727 99 226
335720 agent 43 703 42 202
336700 agent 174 677 173 176
337760 agent 110 711 109 210
337940 agent 4 707 3 208
338120 agent 16 703 15 202
338400 agent 38 713 37 212
338940 agent 74 685 73 1B4
338360 agenl 78 686 77 185

32

TreeModel Tree

ToolHelpedMenu
Subtree 23482710
TreeModeal
ToolHelpedMenu
Nodes 28688718
Modes 24336712
TreeModel

Nodes 30992722
Nodes 23482710
Nodes 30992722
TreeMode1

Nodes 30992722
Nodes 30952722
TreeMode1

Nodes 30992722

Sample Annotated Transcript - Action Level

340180 menuStart 71 700 ToolMenu
342800 textEdit 87 780 77 185 Modes 30992722 Tree
345480 hrmda 926 548 225 -13 ParaMode1

** The subject enters into Edit mode with the conlents of Node # 30982722
** in the Edit mode buffer.

353880 encode 725 542 210 12 Nodes 30992722
421220 encode 577 581 81 3B Nodes 30992722

** The subject enters text into the Edit mode buffer.

421260 mode 425 5865 424 64 TreeModel

421300 agent 425 565 424 64 TreeMode1

421700 agent 351 658 350 157 MNodes 28688718
422120 menuStart 291 656 ToolMenu

424920 addBelow 327 682 350 157 Nodes 28688718 Tree
424960 create 327 682 350 157 Nodes 46668738
427900 string 327 682 eaglet

** A sibling node to node # 28688718 is created and placed below node #
** 28688718 on the screen (in lree mode).

428560 agenlt 305 683 304 182 Modes 46668738
429400 menuStart 300 683 ToolMenu

430220 addBelow 303 702 304 182 Nodes 46668738 Tree
430240 create 303 702 304 182 Nodes 47198740
436240 string 305 701 parrot

436960 agent 305 699 304 198 Modes 47198740
437500 agent 281 669 280 168 Nodes 46668738
437920 menuStart 279 667 TeolMenu

439500 moveNode 322 792 280 168 Nodes 46668738 Tree
441540 child 330 627 280 168 Nodes 28688718

** Node # 46668738 is moved to become a child of node # 28688718 in tree
** mode.

443020 agent 343 683 342 182 Modes 47158740
443180 agent 243 715 242 214 Subtree 23482710
443520 agent 235 751 234 250 TreeMode1

443840 agemt 177 723 176 222 Nodes 24336712
444140 agent 167 679 166 178 Nodes 23482710
444320 menuStart 167 677 ToolMenu

445880 cancel 66 807 166 178 Nodes 23482710 Tree
445980 agenl 82 795 91 2%4 TreeModel

446340 agent 134 727 133 228 Nodes 23449280
447830 addAbove 203 721 133 225 MNodes 24338712 Tree
449300 create 203 721 133 2328 Nodes 49104743
453780 string 203 721 Reptile

454860 agent 184 699 183 198 Nodes 49104743
455960 agent 70 708 69 207 Nodes 30982722
456800 menuStart 52 702 ToolMenu

458280 addChild 84 739 69 207 MNodes 309392722 Tree
458320 creale 84 733 69 207 Nodes 50004745

33

Sample Annotated Transcript - Action Lavel

462120
463640
464080
464560
468220
469900
472220
474560

string
agent

agent
menuStarl

moveMNode
abovae
menuStart
copyNode

84 739

1186
170
173
202
166
182
194

751
747
745
872
673
877
781

115 250
169 246

169 246
169 246

183 182

Mammal

Subtree 30992722
MNodes 50004745
ToolMenu

Nodes 50004745 Tree
MNodes 49104743
ToolMeanu

Modes 50004745 Tree

** Node # 50004745 is copied from tree mode onto the holding stack.

474640
474960
477000
477060
477080
478980
479460
480500
481760
481820
482160
482500
482680
484340

agent
agent
mode
agent
menuStart
pasteNode
agenl
agenl
moda
agenl
agenl
agent
menuStar
deleteMode

154
199
463
463
463
497
497
468
100
100
127
165
169

196 810 164 169

781
742
239
239
239
259

674
670
676

193 280
198 241

462 178
462 178

462 178
486 198
467 275
99 185
99 185
126 173
164 169

34

TresMode1

MNodes 24336712
NetMede1
NetMode
ToolHelpedMeanu
NetMode1 Net
MNodes 50004745
MNetMode
TreeModel

MNodes 30992722
Sublree 309982722

Nodes 50004745
ToolMenu
Modes 50004745 Treae

Operation Level Transcript Language

2.4 Operation Level

Introduction

The Operation Level represents the kinds of operations one would normally
designate in specifying a user inlerface -- such as creale_node. Each such operation
would then be implemented by several user actions — such as, select position with
mouse, select menu option, type label, type carriage return. The grammar for this
level maps sequences of Action Level symbols -- normally, three or four -- into
individual Operation Level symbols. In the sections that follow, we first discuss the
transcription language for this level, then the grammar, and, finally, a sample
annotated transcripl.

2.4.1 Operation Level Transcript Language

An operation laevel transcript consists of a header lollowed by a series of one or more
gperation records. Any operation a user wishes 10 perform in WE must be initiated by
highlighting a menu item (with one exception). An operation is a grouping of the
sequence of actions initiated by the user in highlighting a menu item. Each operation
consists of two or more actions. For example the "create node” operation entails opening
a menu, highlighting the appropriate menu item, and giving the new node a name. A user
may perform a system mode shift operation by simply moving the cursor from one
system mode o another (and this is the exception). Each operation record occupies one
line of the transcript file.

Header
The header lists the following items, in the following order:

1) The version of the Writing Environment (WE) which was being
used when the transcript was recorded.

2} The date of the transcript.

3) The time at which the session began.

4) The name of the user.

5) The clock at the beginning of the session.

6) The name of the database being used.

7) A boolean indicating whether the database began with an empty
workspace.

Operation Record

The format for the action records is consistently followed through the five levels of
abstraction currently recognized by our method of analysis. That format is simply:

Time Symbol Attributes

where:

35

Operation Level Transcript Language

Time = The time (in milliseconds) from the beginning of the user session until the
beginning of the action (operation, etc.) which that particular line of the transcript
purports lo record.

Symbel = The symbol which represents the type of action (operation, etc.) which is
recorded on the transcriptl.

Attributes = A list of zero or more attributes which may include 1) the object of the
particular action (operation, etc.), 2) the legical relationship of the object of the action
to other objects, and/or 3) additional spatio-temporal information about the object.

Thus, preceding the operation identifier of each record, is the time elapsed since the
beginning of the session until the time at the end of the action event which triggered the
creation of the operation record (labeled "Time®). The operation identifier loliows
*Time" in the operation record., For certain operations, a list of attribules follows the
operation identifier in the transcript.

Below is a list of all possible operation types in operation level transcripts. A short
description of the type precedes the tempiate (for the transcript) of that operation. A
sample annotated transcript concludes the section.

-Aborting an operation (e.g. when a user attempls 1o paste a node when the holding
area is empty) - the abort operation
Time abort

-Changing the viewing space of a mode by using a roaming operation or ¢hanging
the viewing space o view the entire tree or a subiree - the conilext operation
Time contexi view [tree | view rectangle]

-Copying a node or Iree (in tree mode) into the holding area - the copy operation
Time copy object

-Copying a tree into the holding area from network mede - the gpliree operation
Time cplree root node

-Deleting an object from the workspace - the delele cperation
Time delete obiject

-Associating text with a node in edit mode - the gncode operation (Note: There is
no comparable gperation for revise mode. This is a design flaw.)
Time encode node

-Hiding the link names - the hidelinknames operation
Time hidelinknames

-Hiding the links- the hidelinks operation
Time hidelinks

-Changing the viewing space of a mode by resizing or swilching the size of the
mode - the |avout operalion

36

Operation Level Transcript Language

Time layout screen rectangle

-Changing modes - the mode operation
Time mode mode

-Moving a node to a new position - the move operation
Time move node position

-Creating a new link - the pewlink operation
Time newlink link From node To node

-Creating a new node - the pewNoda operation
Time newhioda noda posilion string

-Pasting a node from lhe holding area inlo a mode - the paste operation
Time pasta object position

-Renaming a node or link - the ranama operation
Time [ename object string

-Reading a saved file into the workspace - the gession operation
Time session

-Displaying the link names - the showlinknames operation
Time showlinknames

-Displaying the links - the showlinks operation
Time showlinks

-Performing one of several possible system operations (e.g. showing Tex output,
saving the workspace, elc.) - the gysiem operation
Time syslem

-Viewing the lext associated with a node in edit mode, or associated with a tree or

subtree in text mode - the yiew operation
Time yiew object mode

The atiributes of the various operations are:

mode Either CP (control panel), Tree (tree), Net (network),
Para (edil), or Revise (lext) modes.

node A node followed by a number (in parenthesis) which
identifies. it.

link A link followed by a number (in parenthesis) which
identifies it,

object Either a node, arc, or tree. If the object is a node or link,

it is identified by a number in parenthesis. If the object is
a tree, it is identified by the number of the node which is

37

Operation Level Transcript Language

tree

position

screen rectangle

view rectangle

From node, To node

siring

its root.
A tree identified by ils root node.

Either x, y coordinates (a point) if in network mode, or
tree positon if in tree mode. If tree position, then either
*parent®, “above®, “below", or “"child" will be given,
followed by a node and its identifying number. Thus if node
8 of a tree Is moved, a possible line of the transcript might
be:

"1020399 756 move node(8) (above, node(6))."
"Above" and "below" indicate the node becomes the sibling
(above or below it on the screen) of the given node, “child”
that it becomes the child, and "parent” that it becomes the
parent.

The mode coordinates of the new view porl after a roam
operation.

The screen coordinates of the new mode location alter a
resize or shift size operation.

The nodas which a link links. The To node is the node 1o
which the link points.

A string.

38

Operation Level Grammar

2.4.2 Operation Level Grammar

The following attribute grammar clarifies the origin in the action level transcript of
every item of information output in the operation level transcript. Following each
operation record type is a parenthesized list of atiributes which will appear with
that operation type in the operation level transcript. Within the parenthesized list
may appear literals (which are enclosed in quotes) of the operation level record.
Following this parenthesized list (i.e. after the "::=" symbol), is a list of the action
level record type(s) (with their associated attributes) which cause the operation
record type in question to be generated.

Operation Transcript = Operation Record*

Operation Record ::= Abort Record
Context Record
Copy Record
Copy Tree Record
Delete Record
Encode Record
Hide LinksRecord
Hide Link Names Record
Layout Record
Mode Record
Move Record
Newlink Record
MNewNode Record
Pasle Record
Rename Record
Session Record
Show Links Record
Show Link Mames Record
System Record
View Record

Abort Record (lime) =
addLink(time) [cancel | link] |
addAbove(time)} [cancel | g] |
addBelow(time) [cancel | &] |
addChild(time) [cancel | 8 | |
addParent(time} notify |
cancel (time) |

changeWs (time) [boolean (false) | string] |

39

Operation Level Grammar

copyTree (time) |

createTree (lime) |
crealeWSdir (time) string |
deletePastedStructure (time) |
finished (time)boolean (false) |
moveNode (time) cancel |
moveSubtree (lime) cancel |
pasteNode (time) [cancel | o] |
pasteTree (lime) [cancel | o] |
printiMenu (time) cancel

Context Record (time, “tree(", subtree.”)") =
newCurrRoot (lime, subtree)

Context Record (lime, “tree (0)") :i=
viewContext (time)

Context Record (time, rectangle) :i=
roam (lime) view (rectangle)

Copy Record (time, “node(", node,”)") :=
copyNode (time, ncde)

Copy Record (time, “tree(", node,”)") :=
copyQut3ubtree (time, node)

Copy Tree Record (time, node) ::=
copyTree (time, node)

Delete Record (time, node) ::=
deletePastedStructure (lime, node) |
deleteNode (time, node)

Delete Record (time, arc) ::=

delete (lime, arc)

40

Operation Level Grammar

Delete Record (time, subtree) =
deleteSubtree (lime, subtree)
Encode Record (time, node) :i=
encode (time, node)
HideLinks Record (time) ::=
hideLinks (time)
HideLinkNames Record (time) ==
hideLinkNames (time)
Layout Record (time, rectangle) ::=
resizeOpt (lime) view (rectangle) |
swilchSize (lime) view (rectangle)
Mode Record (time, modetype) :i=
mode (time, modetype)
Move Record (lime, node, localx, localy) ::=
moveNode (lime, node) point (localx, localy) |
Move Record (time, nodeq, "(above”, node2,")") =
moveNade (lime, nodeq) above (nodeg)
Move Record (time, node1, “(below”, node2,")") =
movehode (lime, nodet) below (node?)
Move Record (time, nodeq, "(parent”, node2,”)") ii=
moveNode (time, nodeq) child (nodez)
Move Record (time, “lree(",nodeq, *)", "(above”, nodez,")") u=
moveSubtree (time, node{) above (nodep)
Move Record (time, “tree(", nodet,)", "(below", node2,”)") ==
moveSubtree (time, nodey) below (nodep)
Newlink Record (time, arc, nodeq, nodes) =

addLink (time, nodet) link (nodeg) create (arc)
41

Operation Level Grammar

NewMode Record (time, node2, “(above®, nodeq,”)* , string) =

addAbove (time, nodet) create (nodeg) string (string-token)
NewNode Record (time, nodegz, "(below”, node,”)" , string) =

addBelow (time, node1) create (node2) string (string-token)
NewMode HRecord (lime, nodeg, “(child®, nodeq,”)" . string) =

addChild (time, nodeq) create (nodeg) string (string-token)
NewNode Record (lime, nodeg, *(parent”, nodet,”)" , string) &=

addParent (time, nodeq) create (nodeg) string (string-token)
MewNode Record (time, node, *(root)°, string) =

createtree (lime) creale (node) string (string-loken)
NewNode RHecord (lime, nede, localx, localy, siring) :i=

createNode (time, localx, localy) create (node) string (string-token)
Paste Record (time, node, localx, localy) ::=

pasteNode (time, localx, localy, node)
Paste Record (time, "node(0)", “(above ",node,”)") :=

pasteMNode (time) above (node)
Paste Record (time, "node(0)", “(below ",node,”)") =

pasteMode (fime) below (node)
Paste Record (time, "node(0)", “(parent *,node,”)”) u=

pasteMode (time) child (node)
Paste Record (time, “"node{0), root”) =

pasteNode (time)
Paste Record (time, “tree{0)*, “(above *,node,”)") u=

pasteTree (lime) above (node)
Paste Record (time, "tree{0)", “(below ",node,”)") ==

pasteTree (lime) below (node)

42

Operation Level Grammar

Paste Record (time, "node(0)", "(parent ",node,”)") :=
pasteTree (lime) child (nods)
Paste Record (time, "tree(0), root”) =
pastelree (time)
Rename Record (lime, node, string) =
editNodeName (lime, node) string (string-token)
Rename Record (time, node, string) =
rename (time, node} string (string-token)
Rename Record (time, arc, string) =
rename (lime, arc) string (string-token)

Sesslon Record (time) ;=
finished (time) boolean (true) |

changeWsS (time) |

changeWs (lime) boolean (true) string |
changeWsSdir (time) boclean (trus) |
resetWS (time) boolean (true) |

toSmalltalk (time) boolean (true)

Show Links Record (time) =
showLinks (time)

Show Link NamesRecord (time) ::=
showlinkNames (tima)}

System Record (time)::=
asTeX (time) |
suspend (time) |
collectGarbage (time) |
deleteWS {time) |

printMenu (time) specLaserWriter |

43

Operation Level Grammar

printMenu (time) speclinePrinter |
printMenu (lime} outFile string |
printMenu (time) toggleAutoPrint |
redrawOpt (time) |
renameWS (time) string |
saveWS (time) string |
screenDump (lime) |
throwQut (tima)

View Record (time, node, mode) =
editNodetex! (time, node, mode) |
printOutSubtree (time, node, mode) |
printOutLine (time, node, mode) |
textEdit (lime, node, mode) |

toTextMode (lime, node, mode)

44

Sample Transcript - Operation Level

2.4.3 Sample Annotated Transcript - Operation Level

The following is an annotated operation level transcript. Annotations follow lines (or
groups of lines) which they annotate, and are preceded by two asterisks.

'Writing Environment Transcript version 2.0
version: 20

date: 23 September 1988

lime: 1:23:26 pm

user: jenkins

clock: 27947

database: emptyWS

empty: true

B0 40 mode Para
205420 205340 moda Net

** The subject moves o net mode.
206860 680 newhNode node(1) (104,123) "bird"
** A first node is created and given the label "bird." The

** creation began 206860 milliseconds after the beginning of the session,
** and occured at x.y coordinates 104, 123.

212120 460 newlNode node(2) (301,86) “cat”
215420 420 newNode node(3) (207,212) “fish*
219740 440 newNode noda(4) (249.150) "dog”
225820 560 newhNode node(5) (416.90) “mouse”
232580 780 newlink link(1) node(4) node(2)

** A new link (link #1) is created linking nodes # 4 and 2.

236940 820 newlLink link{2) node(2) node(5s)
242520 200 newhNode node(6) (437,131) “elephant”
248300 1980 move node(B) {452,98)

** Node 6 is moved 1o new x,y coordinates 452, 98.
258940 580 newNode node(7) (54,218) “eagle”

263300 1120 newLink link(3) node(1) node(7)
265820 s60 newNode node(8) (179,213) “ostrich®
270020 680 newlink link(d) node(1) node(8)
273800 1320 move node(8) (195,323)

281980 440 newNode node(2) (124,24) “Animals®
287520 1080 newlink link(5) node(9) node(1)
291060 820 newLink link(6) node(8) node(3)
285820 1740 newlLink flink{7) node(3) node(4)
304860 720 rename link(7) “none"

309080 900 delete link(7)

45

Sample Transcript - Operation Level

** Link # 7 is deleted.
312460 1480 cpiree node(9)

** The tree with root # 9 is copied from network node into the
** holding area.

313260 340 mode Tree

** The subject shifts to tree mode.

315440 1340 abort

** Some action is aborted.

318480 1200 paste tree(0) (root)

** The tree on top of the holding stack area is pasted into tree mode.

3429860 2620 view node(9) Tree
345640 2680 mode Para

** The subject moves into Edit mode with the contents of node # 9 in the
buffer.

354040 8400 encoda node(9)
421380 67340 encode node(9)

** Text Is associated with node # 9.

421420 40 mode Tree
425080 2800 newNode node(10) (below,node(7)) “eaglet”

** A new node (node # 10) is created as a sibling node to node # 7,
** and placed below node # 7 on the screen.

430380 820 newNode node(11) (below,node(16)) “parrot®
439660 1580 move node(10) (parent,node(7))

446040 1560 abor!

449440 2480 newNode node(12) (above,node(3)) "Reptile”
458440 1480 newNode node(13) (childnode(3)) “Mammal®

468380 3660 move node(13) (above,node(12))
474720 2340 copy node(13)

** Node # 13 is copied into the holding area from tree mode.
477160 2040 mode Net
479140 1200 pasle node(0) (462,178)

481920 1260 mode Tree
484500 1660 delete node(13)

46

A-Product Level Transcripl Language

2.5 A-Product Level

Introduction

The A-Product Level shifts the perspective to the mind of the user. In this level,
we begin to infer the user's cognitive behavior based on his or her interaction with the
system, This level of the grammar actually contains two steps. In the first, each
operation symbol is mapped 1o a correspondiong symbol that interprets the effects of
the system operation on the set of intellectual products the user is constructing. These
products are wall-defined, consisting of structural forms that are important for
writing, such as an isolated concept, a cluster of ideas, a relation between two ideas, a
primitive subordinate/superordinate relationship, a block of text, etc. The effects of
individual changes in the set of cognitive products are then aggregated. Thus, each A-
Product symbol represents the changes produced by one operation or a sequence of
operations on one of these conceplual forms. In the sections that follow, we first
discuss the transcription language for this level, then the grammar, and, finally, a
sample annotated transcript.

2.5.1 A-Product Level Transcript Language

A A-product level transcript is a record of transformations in the population of the
abstract enlities recognized as cognitively significant. These abstract entities are of five
types: 1) nodes 2) links 3) trees (defined as any noncyclic linked structure with at least
two links and a root in network mode or any structure in tree mode) 4) networks
(defined as any linked structure with at least two links and not a tree) and 5) clusters
(defined as any group of al least two nodes within some constant distance of one another).
A A-product level transcript is preceded by a header giving information identical to that
al earlier levels.

Not every cognilively significant action (or operation) results In the creation of a A-
product record; only those actions (or operations) which affect the population of
abstract entities cause a A-product record o be created, Thus, although we may (and do)
regard mode shifts as cognitively significant, the cognitive significance of the shift will
be registered at some other level.

Header
The header lists the following items, in the following order:

1) The version of the Writing Environment (WE) which was being
used when the transcript was recorded.

2) The date of the transcript.

3) The time al which the session began.

4) The name of the user.

5) The clock at the beginning of the session.

&) The name of the database being used.

7) A boolean indicating whether the database began with an empty
workspace.

47

A-Product Level Transcript Language

A-Product Record

The format for the A-product records is consistent with that followed at other levels.
That format is simply:

Time Symbol Attributes

where:

Time = The time (in milliseconds) from the beginning of the user session until the
beginning of the action (operation, elc.) which that particular line of the transcript
purports to record.

Symbol = The symbol which represents the type of action (operation, etc.) which is
recorded on the transcript,

Attributes = A parenthesized list headed by the mode of the transformation and followed
by the entities alfected by the transformation.

Thus, preceding the A-product identifier of each record, is the time elapsed since the
beginning of the session until the time at the end of the action event which triggered the
creation of the operation record (labeled "Time"). The A-producl identifier lollows
*Time" in the operation record. For cenain operations, a list of attributes follows the
operation idenlifier in the transcript.

The attribute list following the A-product symbol is parenthesized. Every A-product
record has as an attribute the mode in which the transformation occurred. Following the
mode in the attribute list, is a list of products altered in the transformation, both before
and afler the transformation. The list of allered products before the transformation is
separated from the list of altered products after the transformation by the symbol >, If
the list of products before or after the transformation is nil, then 'nil' is written on the
transcripl. Thus a sample line from a A-product transcript might be:

1233211 M3 (Net: N3 -> C4)

indicating that 1233211 milliseconds after the beginning of the session, the A-product
transformation 'M3' began in network mede altering nodes 3 and cluster 4. The record

4325433 C1 (Net: nil -= N:4)

indicates that 4325433 milliseconds after the beginning of the session, the A-product
transformation 'C1' (a singleton node creation) began in network mode with no products
involved prior 1o the transformation and with Node 4 involved after the transformation.

Frequently a product might appear both before and after a transformation. For example
if a node is moved within a cluster, the cluster undergoes a transformation in the
position of its elements. In such a case, the cluster will only be cited in the after
ransformation list. On the other hand, moved and deleted nodes always appear on the list
before transformation, while created nodes always appear after transformation. The A-
product transcript should be read with the A-product rule documentation at hand.

48

A-Product Level Transcript Language

Listed below are the A-product symbols with a short description of each.
AProduct-Type Description

M1 Move singleton node lo empty space

M2 Move node within cluster

M3 Move node from cluster to emply space

M4 Move node empty space 1o cluster

M5 Move node cutside of cluster creating new cluster
M6 Move node destroying cluster into existing cluster
M7 Move node from existing cluster 1o existing cluster
M8 Move node from cluster destroying cluster

M9 Move node from empty space creating cluster

M10 Move node destroying cluster crealing another

C1 Node creation in empty space

D1 Node deletion in empty space

c2 Node creation creating cluster

D2 Node deletion destroying cluster

3 Node crealion within existing cluster

D3 Node deletion with existing cluster

Ca MNode creation destroying a cluster but creating another
D4 Node deletion destroying a clusler but creating others
L1 Link node to another node

UL1 Unlink node

DL1 Delete linked node

DL2 Delete linked node within cluster

DLC1 Delete linked node destroying cluster

TCH Node creation tree mode crealing tree

TD1 MNode deletion destroying tree

TC2 Node creation tree mode new tree root

TD2 Node deletion net mode destroying tree root (but not Iree)
TC3 Node creation tree mode new subtree

TD3 Node deletion tree mode shrinking subtree

TC4 Node creation tree mode new leaf

TD4 Node deletion tree mode of leaf

STCH Subtree deletion in tree mode

STD1 Subtree addition in tree mode

TPC1 Tree creation by pasting in tree mode

™1 Node movement in tree mode

TL1 Link node (net mode) creating tree

TL2 Unlink node (net mode) destroying tree

TL3 Link node (net mode) two trees become cne

TL4 Unlink node destroying one ree creating two others
TLE Link node (net mode) new root to tree

TLE Unlink node net mode shrinking tree by deleting old root
TL? New Link which destroys a tree (by (e.g.) crealing a cycle)
EnciN Associating text with a node in edit mode

49

A-Product Grammar

2.5.2 A-Product Level Grammar

The grammar of the A-product level differs markedly from the operation level grammar.
The operation level grammar was a string grammar which formally described the context-
free parse of action level strings. In the A-product grammar, we lake into account certain
"cognitive enlities” or "cognilive producls® as well operation level event records in
determining whether a certain A-product rule type applies.

Hence the domain of a A-product level parse is the operation level transcript as well as a
well-defined conceptual space kept resident in the computer's memory, which purports 10
represent the conceptual space (lo some degree) of a usar of WE at a particular point in
time.

Currently five types of entities are recognized as cognitively significant. The creation,
modification, and deletion of these entities serves as the basis for grammatical
analysis at the cognitive product level, which in tumn serves as input for the analysis
at the cognilive process and cognitive mode levels. The five types of entilies and their
informal definition are as follows:

1) singleton node: An atomic rectangular entity of network and tree modes which is
the building block ol the system, Text may be associated with nodes In either Edit or
Revise mode.

2) relation: A directed arc linking two nodes. Relations are linked structures not
considered networks or rees.

3) cluster: Any group of two or more nodes in network mode in which the top left
comer of each node of the group is separated by no more than some constant distance
from the top lelt corner of seme other node within the group. Currently this constant
distance is set at 145 pixels. Thus (e.g.) in the current implementation, two nodes
separated by 145 pixels (or less) form a cluster, as will twenly nodes side-by-side
in which every node is within 145 pixels of some other node of the group. Clusters
may only be created in network mode.

4) tree: Any linked structure of two or more links in network mode which contains a
unique rool node (a node with no parent), and in which every other node of the
structure has one and only one parent. In tree mode, every structure (including a
structure with only one node) is defined as a tree of one or more nodes.

5) network: Any linked structure of two or more links in network mode which is not
a tree. Networks exist only in network mode.

leﬁore formally we define the cognitive products in the following manner:
luster:

1) Partition the node set, N, with the transitive closure of the dist £ minimum-
cluster-distance relation,
2) Any such partition, ¢, such that jc] = minimum_cluster_distance is a cluster.

50

A-Product Grammar

Singleton Node:
Any node not in a cluster is referred to as a singleton node.

Tree, Network, Relation:

1) Partition the node set using the transitive closure of the is_linked_to relation L
(n1Ln2 <-> there is a link L from n{ to n2).

2) Define a path of length K as some node sequence ni, n2, ..., Nk such that niLna+1
1 <n<kand acycle as a path of length > 1 such that n1 = nk.

3) Any partition s such that i) |s| =2 minimum_tree_size and ii) S contains no cycles
is a lree.

4) Any partition s such that i) |s] 2 minimum_network_size and il) S is nol a tree is
a network.

5) All other partitions are elations.

6) Nodes with no links are not classified.

With the current state of these cognitive products (their number and composition) In
memory, after each oparation the parser attempits lo determine whether a
transformation of a well-defined type has occurred in the “conceptual space® of the
system.

For each rule of the A-product grammar, 4 items are given:
1) A description of what the rule is supposed o caplure;
2) A description of the change(s) in the cognitive product population effected by
the transformation in question;
3) A horn-clause like formal rule describing the transformation, and
4) a graphic image of the transormation.

For 2) (the population description), a number of abbreviations are used. They are:
C: cluster
N: singleton node
L: link
W: network
S: structure
-->: the transformation in guestion

Every population description is prefixed with either a "C" (for cluster) or *S" (for
siructure), depending on whether the transformation affects the cluster population or the
siructure population. Of course certain transformation may affect both the structure and
cluster population; for these transformations, the population description will have 2
entries: one enlry for the transformation in cluster population and cne for transformation
in structure population.

A sample population description is: *(C: <C> --> <C,N>)." From this description we can tell
that as regards the cluster population, the transformation is from a cluster to a cluster
and a singleton node. Or we might see: "(S: <N,T> > <T>)." From this description we can
deduce that the struclure population has been modified in the following manner: Prior to
the transformation we had a singleton node and a tree; following the transformation we
only had a tree. This example indicates the limitation of this sort of description various
operations could lead to this transformation in the cognitive product population.

The horn-clause like (“like® since (e.g.) skolem functions have not been used) grammar
description has the following form:

31

A-Product Grammar

operation-type(variable)(Predicates 1 .. N -> Predicates 1..M)

where the “operation-type” refers to one of the operaticn event-types at the operation
level (e.g. "newNode", or "move”), the variable ranges over the node, link, or tree which
the operation acted on, the "->" is the transformation symbeol, and the "Predicates” are one
or more of the following:

Node(x) : X is a Node

Link(x) :x is a Link

Relation(x) : x is a Relation

Tree(x) txisaTree

Cluster(x) : x is a Cluster
Network(x) : % is a Network
Isin(x,y) iXisiny

InCluster(x) :x is in a Cluster
Root(x,y) :x is the root of y
Interior(x,y) : X Is In the Interior of vy
Leaf(x,y) :xisaleafoly
Source(x.y) :xis the sourca of y
Destination(x,y) : x is the destination of y
Create(x) : x is created

Deiete(x) : x is deleted

For example the rule for M1 is: move(x)(Node(x), ~{InCluster(x)) -»

~{InCluster(x))
From this rule we learn that If the operation was a “move” operation, and a node was
moved, and prior to the operation the node was not in a cluster, and after the operation the
node was still not in a cluster, then we have an M1, Or il we see the rule for TD4:

delete(x)(Node(x), Tree(y). Isin(x,y), Leal(x,y) -> Delete(x))
we know that if we have a "delete” of some node x, and x is the leal of some tree y prior

to the transformation, and the transformation entails the deletion of node x, then we have
an instance of rule TD4,

52

A-Product Grammar

Rule M1

Description: A move of a node in empty space, affecting neither clusters nor networks.
Population: (C: <N> --> <N>)

M1 - move(x){Node(x),~(InCluster(x])) -> =(InCluster(x)))

M1 P

53

A-Product Grammar

Rule M2
Description: A move of a node within a clusler.
Population: (C: <Cs--> <Cs>)

M2 :- move(x){Node(x),Cluster(y).Isin(x,y) -> Cluster(z), Isin(x,z), (z=y))

54

A-Product Grammar

Rules M3 & M4

Rule M3

Description: A move of a node from within a cluster to empty space.
Population: (C: <C> --» <C,N>}

M3 :- move(x)(Node(x), Clusterly), Isin{x,y) -> =(Isin{x.y)))

rule M4
Description: A move of a node from emply space to a cluster
Population: {C: <C,N> —-> <C>)

M4 - move(x)(Node(x), Cluster(y). =(InCluster(x)) -> Isin(x.y})

(&) &)

M4 -

A-Product Grammar

Rules M5 & M6

Rule M5

Description: A move of a node from a cluster creating a new cluster
Population: (C: <C1,N> --> <C1,C2>)

M5 :- mowve(x)(Cluster(y), Node(x), Isin(x,y) -> Cluster(z), =(z=y),
Isin(x,z), Create(z))

rule M6

Description: A move of a node from a cluster 1o another cluster
destroying the first clusier

Population: (<C1,C2> --> <C1/N>)

M6 :- move(x)(Cluster(y), MNode(x), Isin(x,y) -> Cluster(z), Isin(x,z),

~(z=y), Delete(y))
/"
M5 & > ?
®

M6
o S

56

A-Product Grammar

Rule M7

Description: A move from one cluster to anothar cluster; cluster
status unchanged

Population: (C: <C1,C2> --» <C1,C25)

M7 :- move(x)(Cluster{y), Node(x), Isin(x,y) -> Cluster(z), Isln(x,z),
~(y=2))

w—"l

57

A-Product Grammar
Rules M8 &M3

Rule M8

Description: A move of a node from empty space to another singleton
creating a cluster

Population: (C: <C> --> <N1,N25)

M8 :- move(x)(Cluster(y), Node(x), Isin{x,y) -> ~(InCluster(x), Delete(y))

Rule M9

Description: A move of a node from a cluster dastroying the cluster
leaving nodes in empty space

Population: (C: <N1,N2> -> <C»)

M9 :- move(x)(Node(x), =(InCluster(x)) -> Cluster(y), Isin(x.y),
Creately))

MB I
M9 FR—

58

A-Product Grammar

Rule M10

Description: Move of a node from one cluster (destroying it) to a
singlelon creating a cluster

Population: (C: <C1 N1> --> <C2,N2>)

M10 :- move(x)(Node(x), Cluster(y), Isin(x,y) -> Cluster(z), Isin(x,z),
Create(z), Delete(y). ~(z=y))

0
M1D o [e—>

o

A-Product Grammar

Rule C1 & D1

Rule C1

Description: Creation of a singlelon node
Population: (C: <> —> <N>)

C1 :- newNode(x)(Node(x) -> Create(x),~(InCluster(x))) |
C1 :- pasteMNode(x){Node(x) -> Create(x), =(InCluster(x)))

Rule D1
Description: Deletion of a singleton node
Population: (C: <N> --> <)

D1 :- deleta(x)(Node(x), =(InCluster(x)) -> Delete(x))

C1 N ®
D1 =7 —

60

A-Product Grammar

Rules C2 & D2

Rule C2

Description: Creation of a node causing creation of a cluster
Population: (C: <N> > <C3)

C2 :- newNode(x)(Node(x) -> Creata(x), Cluster(y), Create(y), Isin{x,y)) |
C2 :- pasteMode(x)(Nede(x) -> Create(x), Cluster(y), Create(y), Isin(x.y))

Rule D2

Description: Deletion of a node causing deletion of a cluster

Population: (C: <C> —-> <N»)

D2 :- delete(x)(Node(x),Cluster{y), Isin(x,y) -> Delete(x), Delete(y)))

A
D2 P —

61

A-Product Grammar

Rules C3 & D3

Rule C3

Description: Creation of a node within a cluster

Population: (C: <Cs> -> <C>)

C3 :- newNode(x)(Node(x), Cluster(y) -> Create(x),Cluster(z), Isin(x,z),
C3 :- pasteNode(x)(Node(x), Gtuster{y}:-:]EIJstar{z}. Isin(x,z), (x=y))
Rule D3

Description: Deletion of a node within a cluster

Population: (C: <C> -> <C»)

D3 :- delete(x)(Node(x), Cluster(y), Isin{x,y) -> Delete(x),Cluster(y),
(x=y))

. =@
D3 .

62

A-Product Grammar

Rules C4 & D4
Rule C4

Description: Creation of a node crealing a new cluster, and destroying other
clusters.

Population: (C: <C1,C2> > <C3>)
C4 :- newNode(x)(Node(x), Cluster(y), Cluster(z) -> Create(x),Cluster(w),
Isin{x,w), Create(w), Dealetely), Delate(z))

C4 :- pasteNode(x)(Node(x), Cluster(y), Cluster(z) -> Create(x),Cluster(w),
Isin(x,w), Create(w), Delete(y), Delete(z))

Rule D4

Description: Deletion of a node destroying one cluster but creating other
clusters,

Population: (C: <C1> -> <C2,C33)

D4 :- delete(x)(Node(x), Cluster(y)lsin(x,y) -> Delete(x).Delete(y),
Cluster(z), Cluster(w), Create(z), Create(w))

e 29 L—%°
©o N\ oo

63

A-Product Grammar

Rules L1 & UL1

Rule L1

Description: Creation of an isolated link

Population: (S: <N1 N2> — <L)

L1 :- newlink(x}(Link(x) -> Relation(y), Isin(x,y), Create(x), Creately))
Rule UL1

Description: Deletion of an isolated link

Population: (S: <L> --> <N1,N25)

UL1 :- delete(x)(Link(x), Relation{y), Isin{x,y)-> Delete(x).Delete(y))

L1 V"
uUL1 —

64

A-Product Grammar

Rule DL1%
Description: Deletion of an isolated node which is linked
Population: (S: <L> — <N>)

DL1 :- delete(x)(Node(x), Relation(y), Isin(x,y), ={InCluster{x)) ->

Delete(x),Delate(y))
_—
DL1 .\

65

A-Product Grammar

Rule DL2

Description: Deletion of a noede which is within a cluster;
cluster status unchanged

Populalion: {S: <ls> --= <N3)
Population: (C: <C> --> <C>)

DL2 :- delete(x)(Node(x), Relation(y), Cluster(z), Isin(xy), Isin(x.z) ->
Delete(x), Delete(y))

DL2

66

A-Product Grammar

Rule DLC1

Description: Delation of a linked node destroying a cluster
Population: (S: <L> —> <N>) (C: <C> -> <N1 .. NN>)

DLC1 :- delete(x)(Node(x), Link(w),Relation(y), Cluster{z}), Isin(x,y), Isin(x,z) ->
Delete(w),Delete(x),Delete(y), Delete(z))

DLC1 @ " O

67

A-Product Grammar

Rules TC1 & TD1

Rule TC1

Description: Creation of a tree in tree mode
Population: (S: <T> —-> <T3)

TC1 :- newNode(x)(Node{x) -> Tree(y), Isin(x,y), Creale(x), Create(y),
Root(x.y))

Rule TD1
Description: Deletion of a node deslroying a tree

Population: (S: Net: <T> > <L>)
(Possibly) (C: <C1..Cn> --><C1..Cm,N1..Nj>)

TD1 ;- delete(x)(Node(x), Tree(y), Isin(x,y), leaf(x,y) -> Delete(x), Deleta{y))

TC1 f i f\.

1 | O

68

A-Product Grammar

Rules TC2 & TD2

Rule TC2

Description: New root creation in tree mode
Population: (S: <T> --> <T>)

TC2 :- newNode(x){Node(x), Treely) -> Tree(z), Create(x), Isin(x,z),
Rool(x.z}, (y=2))

Rule TD2

Description: Deletion of a linked node which is the roct of a
tree in net mode

Population: (S: <T> —> <T3)
(Possibly){C: <C1..Cn> --> <C1..Cm,N1.Nj>)

TD2 :- delete(x)(Node(x), Tree(y)., Isin{xy), Rool(x,y) -> Delete(x))

TC2 ca. I

TD2 f\ Y

69

A-Product Grammar

Rules TC3 & TD3

Rule TC3

Description: Addition of an Interior node in tree mode
Population: (S: <T> --> <T>)

TC3 :- newNode(x)(Node(x), Tree(y) -> Create(x), Tree(z), Isin(x.z), (z=y),
Interior(x,z))

Rule TD3
Description: Deletion of an interior node in tree moda.
Population: (S: <T> --> <T>)

TD3 :- delete(x)(Node(x), Tree(y), Isin(x,y), Interior(x,y) -> Delate(x))

s | P Lol A

70

A-Product Grammar

Rules TC4 & TD4

Rule TC4

Description: Addition of a leaf node in tree mode
Population: (S: <T> --» <T>)

TC4 :- newNode(x)(Node(x), Tree(y) -> Create(x), Tree(z), Isin(x,z), (y=z),
Leaf(x,z))

Rule TD4
Description: Deletion of a leaf node in tree mode
Population: (S: <T> --> <T>)

TD4 :- delete(x)(Node(x), Tree(y). Isin(xy), Leaf(x.y) -> Delete(x))

e [AL L] A

D4 | O O l|ex '®) §

$:1

A-Product Grammar

Rules STC1 & STD1

Rule STC1

Description: Addition of a subtree in tree mode

Population: (S: <T1,T2> --> <T13)

STC1 :- pasteTree(x)(Tree(x), Tree(y) -> Tree(z). Isin(x,z), (y=z))
Rule STD1

Description; Deletion of a sublree in tree mode

Population: (S: <T> --> <T3)

STD1 :- deleteSublree(x)(Tree, Trea(x), Treely), Isin{xy) -> Delete(x))

o ;

STD1P ‘.\ S SN

72

A-Product Grammar

Rule TPC1

Description: Creation of a tree in tree mode by pasting.

Population: (S: Nil —-> <T>)

TPC1 :- pasteTree(x)(Tree,Tree(x) -> Create(x))

1.

A-Product Grammar

Rule TM1

Description: Movement of a node in a tree in tree mode

Population: (S: <T> -> <T>)

TM1 :- move({x)(Node(x), Tree(y), Isin(x,y) -> Tree(z), Isin(x,z), (y=2z))

M1 'P\ "‘T_"!ﬁl

74

A-Product Grammar

Rules TL1 & TL2

Rule TL1

Description: Link creation causing creation of a tree in net mode
Population: (<L N> --> <T>)

TL1 :- newLink(x)(Link(x), Relation{y} -> Tree(z), Isin{(x.z),
Isin(y.z), Create(z), Create(x))

Rule TL2

Description: Deletion of a link causing a tree 1o be destroyed
Population: (S: <T> —-> <L, N>)

TL2 :- delete(x)(Link(x), Tree(y), Rool{y,Source(x)),

(Leaf(y,Destination(x)) V _ (Interior(y,Destination(x)), Isin(x.y) ->
Delete(x), Delete(y))

B2 A
TL2

15

A-Product Grammar

Rules TL3 & TL4

Rule TL3

Description: Addition of a link giving a tree a new root
Population: (<L, T> > <T>)

TL4 :- newLink(x)(Link(x), Tree(y) -> Create(x), Isin(x.y))
Rule TL4

Description: Deletion of a link leaving a tree and a relation
Population: (S: <T> -> <L.T>)

TL4 - delete(x)(Link{x), Treely), Isin(x,y) -> Delate(y))

/ /N
u oﬂo e oﬂo

76

A-Product Grammar
Rules TLS & TLE

Rule TLS

Description: Addition of a link (from a singleton node) giving
a lree a new rool

Population: (S: <N, T> > <T>)

TL5 :- newLink(x)(Link(x), Treely) -> Create(x), Tree(z), Isin(x.z}),
Root(z,Source(x)), Interior(z,Destination(x}}, (z=y))

Rule TL6
Description: Deletion of a link leaving a tree and a singlelon node
Population: (5: <T> --> <T N>}

TL6 :- delete(x}(Link(x), Tree(y), Isln{x,y), Rootly, Source(x)),
Interior{y Destination(x)) -» Delete(x), Tree(z), (z=y))

@
TL5 | N

TLE A PIRY

7T

A-Product Grammar

Rule TL7

Description: Creation of a link destroying a tree and creating a network.

Population:(S: <T> —> <W,L>)

TL7 :- newlink(x)(Link(x}, Tree{y), Network(z), Isin{x,y) ->
Create(x), Create{z), Isin(x,z})

o | AN L A

o O OCe—0O

78

A-Product Grammar

rule EncN
Description: Associating text with a node in edit mode

EncM :- encode(x)(Node(x) -> Encoded(x))

70

Sample Annotated Transcript - A-Product Level

2.5.3 Sample Annotated Transcript - A-Product Level

The following is an annctaled A-product level transcript. Annolations follow lines (or
groups of lines) which they annotate, and are preceded by two asterisks.

‘Writing Environment Transcript version 2.0°

version: 2.0
date: 23 Seplember 1988
time: 1:23:26 pm
user: jankins
clock: 27947
database: amplyWs
empty: true
206860 5260 C1 (Net: nil -> N:1)

** Node # 1 is created in network mode; the node is crealed oulside
** of any existing cluster.

212120 3300 C1 (Met: nil -> N2)
215420 10400 c2 {(Net: nil -> N:3 C:1)

** Node # 3 is created in network mode; the node creation causes a
** ¢luster 1o be created. The C2 Indicales thal a node is created
** creating a cluster.

225820 6760 Cc3 (Net: nil -> N5 C:3)
232580 4360 L1 (Net: nil -> L:1)

** A link is created creating a relation between nodes.

236940 5580 TL1 (Met: nil - T:1 L2)
** A second link is created crealing a Iree.

242520 6380 C3 (Net: nil -> N6 C:3)
** A node is created within cluster 3.

248900 10040 M2 (Met: N:& -> C3)
** A node is moved within cluster 3.

258940 4360 C3 (Net: nil -> N:7 C:3)
263300 2520 L1 {(Net: nil > L3)

265820 4200 c3 (Net: nil -> N:8 C:3)
270020 3780 TL1 (Net: nil -> T:2 L4)

** A link is crealing creating a second ftree,

80

Sample Annotated Transcript - A-Product Level

273800 8180 M2 (Net: N:8 -> C:3)
281980 5540 C3 (Net: nil -> N:9 C:3)
287520 3540 TL5 (Net: T2 > T3 L5)

** A link is created linking two trees (two trees become one).

291060 62980 TL3 (Net: nil -> L6)
354040 67340 EncN (Edit: N:9 -> nil)
421380 3700 EncN (Edit: N:9 -> nil)

** Text is associaled with node # 9.

425080 5300 TC4 (Tree: N:10 -> nil)
430380 9280 TC4 (Tree: N:11 -> nil)
439660 9780 ™1 (Tree: N:10 -> nil)
449440 9000 TC4 (Tree: N:12 -> nil)
458440 9940 TC4 (Tree: N:13 -> nil)
468380 10760 T™M1 (Tree: N:13 -> nil)
479140 5380 C3 (Net: nil -> N:14 C3)
484500 37640 TD4 (Tree: N:13 -> nil)

81

Cognitive Process Transcript Language

2.6 Cognitive Process Level

Introduction

The Cognitive Process Level represaents the cogntive process inferred to be active In
the mind of the user in producing one or more changes lo the sel of cognilive producls.
Thus, for example, a sequence of additions 1o a group of nodes in close spatial
proximity to one another is interpreted as an instance of sustained "Focused Recall®
whereas, if the nodes are “far apan®, the process is assumed o be unfocused or free
recall. Currently, the grammar also inserts system mode shift operations into the
Cognitive Process Transcript to facilitate the Cognitive Mode portion of the grammar,
described below, However, we anticipate removing these symbols in the near future
when that portion of the grammar is completed. In the sections that follow, we first
discuss the transcription language for the Cognitive Process Level, then the grammar,
and, finally, a sample annotated transcript.

2.6.1 Cognitive Process Transcript Language

A cognitive process transcripl is a record of the cognitive processes posiled as having
occurred in the mind of a user of the Writing Environment during the course of a session.
cognitive process transcripl is preceded by a header and followed by a list of cognitive
process records (one per ling).

Header
The header lists the following items, in the following order:

1) The version of the Writing Environment (WE) which was being
used when the transcript was recorded.

2) The date of the transcript.

3) The time at which the session began.

4) The name of the user.

5) The clock at the beginning of the session.

6) The name of the database being used.

7} A boolean indicating whether the database began with an empty
workspace.

Cognitive Process Record

The format for the 'cognitive process records is consistent with that followed at other
levels. That format is simply:

Time Symbel Attribules

82

Cognitive Process Transcript Language

where;

Time = The time (in milliseconds) from the beginning of the user session until the
beginning of the action (operation, efc.) which that particular line of the
transcript purports to record.

Symbol = The symbol which represents the type of cognitive process which Is
recorded on the transcripl.

Altributes = The object of the cognitive process where object=the entity which is the
focus of the current cognitive process. Certain processes (e.g. “Shift Parspective
Network™ (ShiN)) have no object.

A cognitive process symbol is output only if either: a) the cognitive process is different
from the previous cognitive product, or b) if the cognitive process Is the same as the
previous process, the entity which is the focus of the two processes is diferant. Thus if a
“Loose Recall® is followed by a "Focused Recall®, two records will always be created. Il a
*Focused Recall” is followed by a "Focused Recall®, two records will be created only if
two differant clusters ware the subject of the disparate *Focused Recalls”.

Cognitive Process Svmbol Modes Description

Loose Recall Lo N MNode Creations in Empty Space
Focused Recall R N Mode Creations in Clusters
Cluster CLU N Nede Movements into Clusters
Decluster DeEC N Node Deletions/Movements out of Cluslers
Refine Cluster REC N Node Movement within Clusters
Relale REL NT Linking One Node to Another/Mo Tree
Derelate DER N,T Unlinking an UnTree
Hierarchize HIE N.T Creation of a Tree
Dehierarchize DEH N,T Destruction of a Tree
Develop Hierarchy Dev N, T Adding to a Tree
Shrink Hierarchy SHK N, T Shrinking a Tree
Synthesize Hier. SYN N, T Joining Two Trees
Desynth. Hier. DES N Breaking one tree into two lrees
Refine Hier. REF NT Rearranging the Nodes in a Tree

Shift Perspective Net ShiN Shift Perspective To Network Mode
Shift Perspective Tree ShiT Shift Perspective To Tree Mode
Shift Perspective Edit ShiE Shift Perspective To Edit Mode

N
T
E
Shift Perspective Revise ShiR B Shift Perspective To Revise Mode
N
-
E

Shift View ShiV .T.E,R Shift the viewing space of a mode
Shift Context ShiC Shift the portion of a tree being viewed
Encode BN Associaling Text with a Node

83

Cognitive Process Grammar

2.6.2 Cognitive Process Grammar

The grammar for the cognitive process level is very simple. Every cognitive process rule
is mapped 1o either one or more A-products, or one or more operations. These mappings
are summarized here in two ways. Firsl, two tables are given. Table 1 lists those cognitive
processes which rewrite one or more A-product symbols. Table 2 lists those cognitive
processes which rewrite one or more operation symbols.

Secondly, a string parsing grammar similar o the grammars found at the aclion and
operation level is given formally describing the rewrite rules used in obtaining a mapping
from previous levels to the cognitive process level.

Table 1:

Loose Recall
Focused Recall
Cluster
Decluster
Refine Cluster
Relate
Derelate
Hierarchize
Dehierarchize

Develop Hierarchy

Shrink Hierarchy
Synthesize Hier.
Desyn. Hier.
Refine Hier.

Table 2:

~ErBBEEB

LERL

C1

C2,C3,C4

M4 M5 M6 M7 M9 .M10
M3,M8,D2,DLC1
M2,D3

L1
UL1,DL1,DL2
TC1,TL1
TD1,TL2,TL?
TC3,7C4
TD3,TD4,STD1
TC2,TL3,TLS
TD2,TL4,TLE
™1

Cognitive Process Symbol Operation(s)

Shift to Network
Shift to Tree
Shift to Edit
Shift to Revise
Shift View

Shilt Context
Encode

The Grammar:

Loose Recall Record (Time)

Focused Recall Record (Time)

mode "Net®
mode "Tree"
mode “Para”
mode "Revise”
layout | view
context

encode

= C1(Time):

n= C2 (Time) |
C3 (Time) |
C4 (Time);

84

Cognitive Process Grammar

Cluster Record (Time) w= M4 (Time) |
M5 (Time) |
M6 (Time) |
M7 (Time) |
M3 (Time) |
M10 (Time);

Decluster Record (Time) v= M3 (Time) |
M8 (Time) |
D2 (Time) |
DLC1 (Time);

Refine Cluster Record (Time) m M2 (Time) |
D3 (Time);

Relate Record (Time) = L1 (Time);

Derelate Record (Time) = UL (Time) |
DL1 (Time) |
DL2 (Time);

Hierarchize Record (Time) u= TC1 (Time) |
TL1 (Time);

Dehierarchize Record (Time) = TD1 (Time) |
TL2 (Time) |
TL7 (Time);

Develop Hierarchy Record (Time) = TC3 (Time) |
TC4 (Time):

Shrink Hierarchy Record (Time) = TD3 (Time) |
TD4 (Time) |
STD1 (Time);

Synthesize Hierarchy Record (Time)

TC2 (Time) |
TL3 (Time} |
TLS (Time);
Desynthesize Hierarchy Record (Time) = TD2 (Time) |
TL4 (Time) |
TLE (Time);

Refine Hierarchy Record (Time) = TM1 {Time);

** The right-hand sides of the following ruies refer to records found at the operation
" level.

Encode Record Encode (Time);

Shift Tree Mode Record (Time)

Mode ("Tree", Time);

n

Shift Network Mode Record (Time) Mode ("Nel”, Time);

85

Cognitive Process Grammar

Shift Edit Mode Record (Time)
Shift Revise Mode Record (Time)

Shift View Record (Time)

Shift Context Record (Time)

86

Mode ("Para®, Time);
Mode ("Revise”, Time);

Layout (Time) |
View (Time);

Context (Time).

Sample Transcript - Cognitive Process Level

2.6.3 Sample Annotated Transcript - Cognitive Process Level

The following Is an annotated cognitive process level transcript, Annotations follow
lines (or groups of lines) which they annotate, and are preceded by two asterisks.

'Writing Environment Transcripl version 2.0°

varsion: 2.0
date: 23 September 1988
time: 1:23:26 pm
user: jenkins
clock: 27947
database: emptyWsS
empty: true
80 205340 ShiE

** The subject shifts {o edit mode.
205420 1440 ShiN
** The subject shifts 1o network mode.

206860 5260 Loo
212120 3300 Loo

** Two instances of loose recall occur.

215420 10400 Foc
225820 6760 Foc

** Two instances of focused recall occur,

232580 4360 Rel
236940 5580 Hie

** The subject "hierarchizes.”

242520 6380 Foc
248300 10040 Rel

** The subject refines a cluster.

258940 4360 Foc
263300 2520 Rel
265820 4200 Foc
270020 3780 Hie
273800 8180 Rcl
281980 5540 Foc
287520 3540 Hig

87

Sample Transcript - Cognitive Process Level

291080 22200 Syn
** The subject synthesized a hierarchy.
313260 29700 ShiT
** The subject shifts to tree mode.
342960 2680 Shiv
** The subject shifts view (by for example viewing a subtree).

345640 8400 ShiE
354040 67340 Enc

** The subject writes for a period of 67340 milliseconds in edit mode.

421380 40 Enc
421420 3660 ShiT
425080 5300 Dev
430380 9280 Dev

** The subject develops a hierarchy.
439660 9780 Reh

** The subject refines a hierarchy.

449440 9000 Dev
458440 9840 Dev
468380 8780 Reh
477160 1980 ShiN
479140 2780 Foc
481920 2580 ShiT
484500 7300 Shk

The subject shrinks a hierarchy.

88

Cognitive Mode Transcript Language

2.7 Cognitive Mode Level

Introduction

The Cognitive Mode level represents the largest shifts in cognitive behavior
modeled by the grammar, Shifts in Cognitive Mode are strongly suggested when the
user shifts from one system mode 1o another. But the two are not always the same. For
example, when a user working in network mode shifts from building small conceptual
structures to linking them into a larger hierarchical structure, this may indicate a
shift in Cognitive Moda. On the other hand, when the user is bullding a large
hierarchical structure in tree mode and returns 1o network mode to copy a structural
component into the tree, that shilt in system mode may not indicate a shift in Cognitive
Mode. Al present, this portion of the grammar is incomplete. We currently infer
shifts in cognitive mode largely from shifis in system mode operations inserted into
the Cognitive Process Transcript, but we will add rules in the near future to Infer
shifts from conlext sensitive sequences of cognitive process symbols. In the seclions
that follows, we first discuss the transcription language for this level, then the
grammar, and, finally, a sample annotaled transcript.

2.7.1 Cognitive Mode Transcript Language

A cognitive mode level transcript consists of a header followed by a series of one or
more cognitive mode records. Currently we posit four cognitive modes in which a user
of WE may function: an exploration mode, an organization mode, a writing moda, and a
revision mode. By design these four cognitive modes correspond closely to the four
syslem modes (in order - network mode, tree mode, edit mode, and text mode),
although the mapping is not one-to-one. The user may shift system modes without
shifting cognitive mode or shift cognitive modes without shifting system mode. (See
grammar.) Each cognitive mode record occupies one line of the transcripl.

Header
The header lists the following items, in the following order:

1) The version of the Writing Environment (WE) which was being
used when the transcript was recorded.

2) The date of the transcripl.

3) The time at which the session began.

4) The name of the user.

5) The clock at the beginning of the session.

€) The name of the database being used.

7) A boolean indicating whether the database began with an empty
workspace.

89

Cognitive Mode Transcript Language

Cognitive Mode Record

Each line of the cognitive mode transcript contains three columns. The first column
contains the absolute time since the beginning of the transcript at which the cognitive
mode began. This value is obtained directly from the first column of the operation level
transcript.

The second column contains the duration of the cognitive mode, and is obtained simply
by subltracting the absolute time of the next cognitive mode from the absolute time of
the current cognitive mode. The duration of the last cognitive mode of the transcript is
obtained by subtracting the last absolute time listed on the operation transcript from
the absolute time of the current cognitive mode.

The third column of the cognitive mode transcript lists a symbol which represents the
system's posit as 1o what cognitive mode was underway during the period represented
by columns one and two. Currently four such symbols appear in the transcript:

1. Explore: The symbol for exploration mode.

2. Organize: The symbol for organization mode.

3. Edit: The symbol for write mode.

4. Revise: The symbol for revise mode.

Thus the template for a line of the cognitive mode transcript is:
Time Duration Symbol

where "Symbal® is either "Explore,” "Organize,” "Edit," or "Revise.”

90

Cognitive Mode Grammar

2.7.2 Cognitive Mode Grammar

The cognitive mode grammar tries to capture from the operation level transcript along
with certain additional information the curren! cognilive mode of a user of WE. The
cognitive mode ascription is based primarily on the current system mode. However
shifts in system mode do not necessarily signal shifts in cognitive mode. For example
the operation record will record a shilt in system mode in response to the cursor
passing momentarily over (e.g.) the lext mode area of the screen. The user may move
the cursor from tree to network mode, but do nothing before returning to tree mode.
We filter the operation record transcript to avoid positing cognitive mode shifts in
such circumstances.

On the other hand, we posit that the user may shift cognitive modes while remaining in
the same system mode. For example the user may be in network mode, with

Exploration mode being posited as the current cognitive mode. The user may begin
systematically building a large tree, during which we might be warranted in positing a
shift in cognitive mode from Exploration mode to Organization mode. In the current
implementation we do nol capture this sort of cognitive shift, In later implementations
the cognitive mode posits will be based upon the cognitive process transcript; we then
will be able to capture this type of cognitive mode shift.

The operation level transcript lists all system mode changes which occur during a user
session. Every mode change is one of five possible types:

1: Network mode: the network system mode;

2: Tree mode: the tree system mode;

3: Edit mode: the edit system mode;

4: Revise mode: the text system mode,

5: Control Panel mode: the mode in which a user has access to the system-wide
menus. These menus are accessed through the bar at the top of the writing
environment.

Every such mode change will result in the creation of an cognitive mode evan! record
with three exceplions:

i: The mode "cp" does not result in the creation of an event record;

ii: If the duration of the mode change was less than one second, an event record is not
created. The duration of the mode is relative to the next mode change; thus duration s
calculated by subtracting the time at the beginning of the next mode from the time at
the beginning of the current mode;

iii: If the mode change was either to network or tree mode, and the user does nothing in
the mode before changing 1o a different mode, an event record is not created. Nothing is
done in the mode if the operation (in the operation level transcript) following the mode
change to tree or network mode is another mode change.

From points ii. and iii. it follows that an event record is created for the current mode
change only after the next mode change. The last event record of the cognitive made
transcript is created (or not created) by using the last time given on the operation
level transcript.

91

Cognitive Mode Grammar

Thus (informally) the rules are:

Exploration Mode (Timel, (Time2-Time1l)) :-
(Operation Record = Timei *mode” "Net™) &
(Time Until Next Mode Change > 1 second) &
(Next Operation Record = Time *mode”) &
((Next Record of a Mode Change = Time2 *mode”) V
(Next Record = Time2 “closeSession”)

Organization Mode (Time1, (Time2-Time1)) :-
(Operaticn Record = Time1 "mode” "Tree") &
(Time Until Next Mode Change > 1 second) &
(Next Operation Record # Time "mode”) &
((Next Record of a Mode Change = Time2 "mode") V
(Next Record = Time2 "closeSession®)

Write Mode (Time1, (Time2-Timet)) :-
(Operation Record = Time1 "mode” “Edit") &
(Time Until Next Mode Change > 1 second)
({(Next Record of a Mode Change = Time2 "mode”) V
(Next Record = Time2 “closeSession®)

Revise Mode (Time1, (Time2-Time1)) :-
(Operation Record = Time1 "mode” "Net") &
(Time Until Next Mode Change > 1 second) &
((Next Record of a Mode Change = Time2 "mode™) V
(Next Record = Time2 "closeSession”)

92

Sample Annotated Transcript - Cognitive Mode Level

2.7.3 Sample Annotated Transcript - Cognitive Mode Level

The following Is an annotated cognilive mode level transcript. Annotations follow lines
{or groups of lines) which they annotate, and are preceded by two asterisks.

"Writing Environment Transcripl version 2.0"

varsion: 2.0
date: 23 September 1988
time: 1:23:26 pm
user: jenkins
clock: 27947
database: emptyWs
empty: lrue
80 205340 Edit

** The subject begins in edit mode.
205420 107840 Explore

** The subject moves into exploratory mode.
313260 32380 Organize

** The subject shifts to organizational mode.

345640 75780 Edit
421420 55740 Organize
477160 4760 Explore
481920 9880 Organize
491800 4920 Explore

93

