
A Cogniti\'e Grammar for Writing: Version 1.0

TRS9-0ll

A pril. 1989

J olu1 D Srrurh

.\lark C Rooks
Gordon J Ferguson

The University of North Carol ina at Chapel Hill
Department of Computer Sc ience
CB#3175, S itterson Hall
Chapel Hrll. NC 27599-3175
919·962-1792
jbs~cs .uncedu

A TextLab R eport
Port oons of this "'seMch were supporttd by th" Sauona/ Scion« foundatron, GrAnt
#/R/.SS/95/7 and tht Army Research /nsl ilut C<'nlroct #.ICDA903·86-C-3~S.
UNC os an £qua/ OpportunilyjA ffl rm>lwt Acloon lnsl olulw n.

Table of Contents

Overview •.•....................................•.•....•......•... 3

1 .0: Background • • . . • • • • . . . • • 4

1.1 Theorellcal Basis • . . . • • . . . • • 5
1.2 The WE System • . . . • . . . • . . • • 7
1 .3 Methodology • • • • • • . 7
1.4 Concurrent Protocols . . . • • • . . • • • . I 0
Acknowledgements . . • . . • . . • • • • • • . • . . • • • 1 5
References • . • . . • . • • • . 1 5

2.0: Technical DescriptiOn • . . • • 1 7

•

2.1 Introduction • • • . . • • 1 8
2.2 Protocol Language Overview • • . • • 2 I
2.3 Action Level • . • • . 2 3

2.3.1 Action Level Transcript Language • . • . . • . . 2 3
2.3.2 Sample Transcript: Action Level • • . . • • . . . 2 9

2.4 Operation Level • • • . . . • • • 3 5
2.4.1 Operational Level Transcript L..aJ\guage • • . . • . . . • . 3 5
2.4 .2 Operational Level Grammar • . . . • • 3 9
2.4.3 Sample Transcript: OperatiOn Level 4 5

2.5 ti·Product Level • . 4 7
2.5.1 t>·ProdUC1 Transcript Language • • 4 7
2.5.2 t>·Product Grammar • • . • • • 50
2.5.3 Sample Transcript: t>·Product Level • 8 o

2.6 Cognitive Process Level • . . . • • 8 2
2.6.1 Cognitive Process Transcript Language • 8 2
2.6.2 Cognitive Process Grammar . 8 4
2.6.3 Sample Transcript: Cognitive Process Level 8 7

2.7 Cognitive Mode Level • • . • 8 9
2.7.1 Cognitive Mode Transcript Language 8 9
2.7.2 Cognitive Mode Grammar . 9 1
2. 7.3 Sample Transcript: Cognitive Mode Level . . . • 9 3

2

Overview

A cognitive grammar, for purposes of this discussion. is a computer program that
Interprets the actions of a user working with an interactive application system In
order to infer the cognitive activities taking place In the mind of that user. The
"language· that Is parsed is the set of concurrent protocols automatically recorded by
the computer system for sessions in which users wort< with that system. The resulting
parse tree is a representation of a users' strategy lor a session or task. The terminal
symbols of the grammar are basic user actions. such as selecting a particular menu
option or designating a position In a window with the mouse. The nonterminals are
symbols that designate the researcher's Interpretation of the user's cognitive acts as
indicated by the system aclions selected. Thus, a cognitive grammar can be considered
a formal descriptive model of users· cognitive interaction with a particular computer
systom in accord with a particular analytic perspective.

When used In conjunClion wath an application system that produces machine·
recorded protocols, a cognitive grammar can provide a form of automatic protocol
analysis. Thus, the researcher can study statistically significant samples of user
sessions. Thus. the researcher can study the effects of long-term experience with a
system, the d ifferences in strategies among various groups of users. patterns of
individual differences. and other actual·use issues. Such studaes are impractical for
think-aloud and other prtotocol methods that require human encoding. Shifting
protocol studies from, literally, a hand craft to an automated procedure could be an
important step toward basic principles that can guide development of more natural and
more useful lnteraClive systems and toward fundamental Insights Into complex
mediated cognitive behavior.

The grammar described here Is part of a la.rger project in which we are building an
advanced hypertext writing environment and then using that environment to study
writers' cognitive strategies. It is the principal tool we use to analyze machine
recorded protocols for writers worl<ing with our system.

The discussion of the grammar is divided into two parts. In Part 1, we discuss its
background. We first describe Its theoretical basis with respect to compostion theory
and cognitive psychology. Second, since the grammar charaClerizes the cognitive
behavior of writers using a particular system. we brieHy desc.ribe that system.
Finally. we discuss the grammar as it fits within a set of analytic tools and as It relates
to several methodological Issues -- especially protocol analysis techniques. In Part 2,
we describe the grammar, Itself, and Illustrate its use with a sample protocol.

We denote the grammar as version 1.0 to indicate that it describes our views at a
particular time. This is a tough nut to c.rack, and we do not believe that our current
understanding is complete. Consequently, we anticipate producing other versions in
the future. In the meantime. we Issue !his report to document the current form of the
grammar and to encourage discussion that can !help us refine it.

3

Part 1: Background

4

Background

1.0 Theoreti cal Basis

As noted above, a cognitive grammar lmplictly Includes in Its definition a
particular analytic perspective, regardless of whether its developers are aware of that
perspective or not. Here. we wish to make elCplicit the theoretical basis for the
grammar described in this report.

Synthesizing concepts from cognitive psych<llogy, reading comprehension, and
composition theory. we suggest that writing (and other open-ended Intellectual
activities) draws on a number of different cognitive modes [Smith & Lansman. 1987).
We view a cogniwe mode as a particular way of thinking that is engaged in for a
specific purpose. Is more or less constrained relative to other modes. emphasizes
certain cognitive processes, which are used to create certain forms of (intermediate)
cognitive products. Thus, a cognitive mode is an Interdependent combination of
goal(s). constraints. processes. and products.

Figure t shows seven modes that we believe are Important for expository wrillng.
As an Illustration of the concept. consider the differences between e)(ploratory end
organizational thinking .

Many writers engage in an early exploratory mode of thinking in which the goal is
to externalize ideas, consider various possibilities. and to gain a general sense
of the material available to be Included In the document. In this mode, constraints are
loosened, relative to other modes. to encourage creativity and alternative perspectives.
The cognitive processes that are favored are memory recall, associative thinking,
categorizing, and noting basic subordinate and superordinate relations. Consequently.
the intellectual products produced tend to be concrete representations of Ideas.
clusters of related Ideas. and small conceptual structures, often represented
graphically.

Organizational mode Is a very different way <>f thinking. Here, the goal is to work
out the overall plan for the document to be written. Consequently, organizational
thinking is much more constrained than exploratory thinking. Thinking tends to be
logical and controlled, emphasizing analysis, synthesis, and abstract construction. The
product that is built is a single large, often hierarchical, structure.

While different modes represent different ways of thinking, they are not
independent from one another. The cognitive products created in one mode olten become
the raw material that is worked on in another. For example, a small hierarchical
relation created during exploration might be incorporated into the larger hierarchical
structure being built during organization. Thus, intermediate products tend to flow
between modes in an overall process of conceptual refineiJlenL

The cognitive grammar described in Pan 2 incorporates this theory of cognitive
modes by Including nontermlnal symbols that represent the cognitive prodvcts
developed by writers, the cognitive processes used in their creation or
transformation. and the cognitive modes engaged by writers during.e session.

5

Background

Exploution

Si tuational
Analysh

Orgllliullon

\Yritlng

Editing:
Clobal
O rgOJniutlon

Ed iting:
CoM rmce
Rtl.ttions

Editing:
Expn:ulon

Figure 1:

Cognitive Modes for Writing

Coals
• Recalling • llldovldu&l concq>ts • To t Jttnwhzt 1dr.u
· ~p<Henbng • Ous..."C'''Sofco~ • To clUile< ~lotod
•Ousotnng •Networks of relaood idtu
• AuocUung CO"""''''> • Tog>ln&"'Mral«nM
• Noting subordlnott of ••••ub!c concq>ts
superotdonatt •Toconsidor varicna
rrladonA pooslblc rclaolons

• Anoly:;ng ob!t'<tiVM • Hogh·lcvtl •To clarity
•Stlecnng SWNNry St.lti!"JMn! rhctencal intcnUoN
• r noritzing • l'riorlti.l.od lost of •To ldtnoify 1< ronk
• An>Jy:tn& audotn<'tO , .. dtn(typ<'S) potrnttal l'fadtn

• Ltst ol (maJOr) acnons • To ldtntily ma~r arnoru
des~ rod •Consolidu o rcalluo lon

•To t<!t high·ltvtl
stnt<r lordotUrntnt

• Analyzong • Hitr&rchy of cone~~~ • To tn.Nic.rm network
•Synoh.slzong • U.ftod labols ol conttpl>
• Bu.ildang abstrut lnto~t

·~ lueruchy
• Ref'-intng stru('tUrt

•Lmsuosac CO<'Od~rtg •Cohcrrnopr- • To tunform Jbstnct
r<'J'f~t.ltion ol
concrptS & rdotoons
m10 prote'

' "Otong IUgt S<>IO • Rc-rtn.t<! text strucru~ • Townfy
rc:lauons • ConSistent SlNCtun,J " te¥\t<! • ?'\oung & COTT('(tlng (\1($ Ia rgc·scale
lnamsiSLen('IC$ org>niutlonal

• Mm•pul•tin~t Larse mucpotterJS
salt StnlCNr>l -

• Nohn& cohcrt-nce · ~fined par•gr• phs •To V<'nfy & rt¥15<'
re~oons bct'\llt"t'Cn ltldsen~ colwr..., "'Labons
sen ~~!netS & • Cohe<tnt Ia gial within lnttrmtdlatt
parogr• phs rela ~ns ~tween si2td "'"''f'Oi ••nt:o

• Restructtng IX> moJce sentences aNI
rei1U0ns roMrtont parognphs

•had1ng •Rehned~ •To vonfy 1< rt\115<'

• Lingu1stic i.Niysis • texto/~t
• Ungulsuc truJotTNtiO"
• ungut>ll< eroco<hng

6

• Ar'ICJblc
• lnforrNI
• F~ t"''ro .. lon

• Fltxlble-
• Extr1nsic

prtspc.:tlve

• Rigorous
•CONIStent
• Hitruchlcal
• Not sustau,c-J
p.-

• Substatned
~rcssion

• Not
(n«e<sarilyl
refined

• Focus on
large-scale
foal\l~ alld
c:omponcntS

•Focus on
s:n><Nral
rcll.ttons among
-~&
parognphs

• Rigorou.s logicol
And structunl
th1nktn2.

•Focus on
eorpr..,;on

•Oot<! attmdon
to hn8'JiStic
d<t>ol

Background

1.1 The WE System

While the theory of modes is quite general. strictly speaking the grammar
incorporating that theory characterizes writers' cognitive interaction with one
particular computer Writing Environment -- WE 1.0 [Smith, et.al. 1986; Smith,
et.al, 1987]. Consequently, one should have a general sense of that system In order to
understand the grammar.

The architecture of WE 1.0 closely matches the cognitive architecture impflclt In
the theory of modes. The system Is multimodal. It Includes different system modes
that correspond with the major cognitive modes for writing. A network mode, shown
In the upper left quadrant of Figure 2, Is provided for exploration. In it, the user can
represent ideas as nodes (small boxes with a label Inside), move them around to form
clusters, link them to one another to denote more explicit relationsh ips and to form
conceptual structures. The underlying rules for network mode are those for a directed
graph, thus providing the user considerable flexibility with respect to the relations
and structures that can be formed.

A tree mode. shown In the lower left quadrant of Figure 2. supports both the
organization and the global editing modes. Here the user can build and edit the
conceptual structure for the document as a whole. expressed graphically as a tree or
organization chart, by creating parent and child relations among nodes or by moving
structures created earlier In network mode Into the tree. Since the underlying rules
are those of a hierarchy, the user gives up Oexibitity In using tree mode but gains
assurance that the structure produced will be a well-defined hierarchy.

An editor mode, shown In the lower right quadrant of Figure 2. is provided for
writing and for editing sentences and paragraphs. By selecting a node in either tree or
network mode, the user galns access to a text editor with which to write or edit a block
of text that will be associated with that particular node.

Flnally, a linear text mode, shown in the upper right quadrant of Figure 2, is
provided for coherence editing. The system produces a continuous linear perspective
of the text by stepping through the tree. In text mode. users can verify and revise, as
needed, the transitions between text contained in separate nodes. They can also move
segments of text from one node to another.

Thus, six of the seven cognitive modes shown in Figure 1 are supported by the four
system modes of WE 1.0, shown in F~gure 2. The one cognitive mode not covered is
reader analysis mode, which is left to extrinsic heuristics, such as those described in
[Smith & Smith, 1987). Thus, system architecture matches underlying cognitive
architecture implicit in the concept of cognitive modes and the llow of cognitive
products among them.

1.2 Methodology

Cogni tive grammars can provide alternative methods for studying human·
computer interaction and other issues of mediated cognitive behavior. Consequently, in
order to understand the grammar, one needs to understand how It relates to other
methods. As mentioned above, our project is ultimately concerned with substantive
issues dealing with writing and other open-ended design tasks. To help us with

7

Background

Figure 2:

WE System Modes
(Network, Tree, Editor, & Text)

'
..... , I

. ' U"' .
I"'

\ J

l'"' J

I.'"':' "'' I

,-. .. ,_.Ill
•

,~,

f,. .. , (t • ,.... II •1 .. !1"""' tM11•e~t

A ••t• h II .. M W. t floi i•IW\. e l N4t t 1-lhf I)'~.

UMu I .IA hlll&irl. 1111. MII.I'U &141, f''""'-'• I I.IN, t)CJU, If ltl\41
,, uu..
~1t ~u ,,.. ,.,_.., •• ~• 11 " ' • "llt !\o n.,,.,

1•

, .. pq ...c-.. - ~II 0.. ~....-.. ,.

• ~ loC,.. u . ""'' .. , ... ,. , .. ""
-~_" t""-_ ~

~~~~~------------~~~=-----~~~~----~~ r"ut ""'"Ot ,, .. , ~'- c-r. p..,,.,.....,. 

rl""' twen. ...... 
H,, .. ,.... 

rlc,,.::c,.::c,.:-----,~ 

1rl-...... .. , ... I 
.•n•~ ttc' •Qr . 

8 

I 
I 

TN - - 11 CM<;*I\C:nU, U f ... ,......,, 11'1 11.-.J .... t""t • • C.II II hot 

4!-t U "" ,.U, WI ~, !I'W 1'04• ) (~I Mt ... ~W" lro Ul• IOWV 

t'f;t\1 ......-•at t r ........... •• ,.. ........ • CUll II & lt~tllf'O H•C •tho• 
It b.., .. It '"""" ... U\.ot C....C:.,I ,_.,, t 4'f'l l 14 I)' • ~· lo\Co U •t In 
" "' 1'\11\lf"e Utll\~1 tr \lrilf, IN f }'fiU! w ll w,_...-. • 11110..-, for t(IW~ 
~~ tl oi.•U, Jo.o(l!lo U V t fl"'<t, ,..,... t.M ,jOe .. AI 11\.at t~• tilt 

-w u-~ kuu.4 .. 111 • • lot)'• • u uw 'Y'I'' 11 tM ptrclc: ~o~••r -
~ ~ ~ l)'lt• • 'wf \otl fl Vloot Jt t N161"1f SIU.tt .a tU.1 • oltM."' Io 

~ writrtg v- liM" J141o!u t• ,,... ,.... "' ..'Uiv tn• er Nt-~ 
- ll1'4 .-.cu """ .... ~ .. PM.,_""' .....,.,... Tn t ••Y M U y H ln, 
~, ... -~ _ ,., .. ,......._, . ..... - ,.~ . .. \!tow ... .. ., to.: 
....... ~ ~ ...--. . ... ~,....IJ\61 ., • • !Itt•'""" U.f. .,\... ... 

- ~~........., , ..,. _..,.. _..,_, t• u tlu t• 



Background 

experiments that address these issues, we have developed several other tools that we 
use in conjunction with the grammar. These include a protocol recording Junction 
embeddded in WE, a session replay function, the cogntive grammar that is the primary 
topic of this report, and several display tools that assist interpretation of the parses 
produced by the grammar. In this section, we discuss these tools briefly, relating each 
to one another and to other methods used In studying human·computer interaction . 

.. 

9 



Background 

1.3 Concurrent Protocols 

To help us gather protocols of users of the system unobtrusively and in a form 
ready tor analysis, we installed a tracking function In the WE system that records 
each user action, its time. and other Information of interest, such as the location in 
netwo!X mode where a node is created. These action-level data are written by the 
system to a file ready for analysis. 

This approach contrasts with conventional methods lor studying human-computer 
Interaction. The most common form of data used for this purpose as well as to evaluate 
cognitive models, in general, has been think-aloud protocols. More recenlly. some 
researchers have begun to use keystroke records of user sessions. Both approches 
present problems that are overcome by action-level protocols. 

Think-aloud protocol methods were developed by Newell, Simon, and others at 
Carnelga-Mollon University to study complex, problem·solving behavior. Using this 
technique, the researcher asks subjects to narrate their thinking continuously while 
performing a given task. By doing so. the researcher Is no longer forced to observe 
only the external behavior of subjects but is given a window into their minds and can 
observe, at one-step remove, subjects' thinking. While this technique has provided a 
rich source of Information, it has also generated considerable controversy as to the 
validity of the data and the possible Interference verbalization may have with the task 
being performed !Nisbelt & Wilson. t 977]. Ericsson and Simon It 980) have 
answered their critics by arguing that concurrent verbal protocols do constitute valid 
data for what they term Level 1 verbalization ·- verbalization of concepts that are 
stored in shon term memory In verbal form. They found in their studies no evidence 
that concurrent think-aloud protocols affect this type of cognitive processing or that 
such data are Incomplete or distoned. However, lor Level 2 and Level 3 conditions .. 
respectively, verbalization of data that would not be heeded as pan of the cognitive 
process and verbalization of data that Is not par1 of the cognitive process and, hence, 
must be generated .. think-aloud protocols did slgnlflcantly change the cognitive 
process, especially recognizing complex patterns and relationships presented visually 
!Ericsson & Simon. 1980; Claparede, 1933; Henry, 1934). Computer systems that 
run on workstations with high-resolution graphic displays normally use 
representations that are highly spatial and provide control by direct manipulation of 
spatially located Icons. Consequently, using think·aloud protocols to evaluate cognitive 
models for users of this type of system should be expected, from a theoretical 
perspective, to result in significant distortions. 

Think aloud protocols also present problems of reliability. Typically, they are not 
used in their raw form but, rather. are coded according to some set of categories in 
which the model under examination is defined (Swans. Flower & Hayes. 1984). While 
training and practice increase reliability and consistency, encoding remains a highly 
subjective process that is subject to error on the order of 25% [Hayes & Flower, 
1 980 J. 

• A th ird issue Is practicality. An hour of think -aloud data often requires fifteen 
pages for transcription [Hayes & Flower. 1980). This is an enormous explosion of 
Information that places significant limits on the number of subjects that one can study 
and the range of questions that can be examined. 

1 0 



Background 

Keystroke protocols record every keystroke performed by the user of a system. 
While they solve the problems of validity and reliability raised by think-aloud 
protocols, they still present practical problems. They produce substantially more data 
than action protocols. They also increase the comple)(ity of any grammar that would be 
used to parse them since the grammar would have to include the full lnterpretitve 
capability of the user interface as the first stage In a parse. 

Thus, we believe that automatically generated action-level protocols are an 
attractive alternative to both think-aloud and keystroke protocols. 

A second tool we built is a replay program that takes the session transcript 
created by the tracker and recreates the session. Thus, we can visually inspect 
subjects' use of the system by watching the session as if it were a video recording of 
the screen, except we can speed It up, slow it down, or step through It manually, action 
by action. We have found this tool far more useful than we had anticipated. Using the 
"fast" replay option, we can view a two-hour session in 8-10 minutes. This time 
compression produces a very clear. albeit Intuitive. sense of a writer's strategy. To 
test and reline these Impressions, we use more precise analytic techniques, described 
below. 

Our third tool Is the cognitive grammar that is the subject of this report. We 
describe it in detail In Part 2, below; we give a brie f, general description of it here to 
indicate Its relalion to the three other tools being discussed. 

The grammar Is defined In terms of five levels of abstraction, as shown In Figure 3. 
It takes as input a sequence of symbols. each of which represents a single user action. 
It then maps short sequences of actions - lor Q)(ample, click with the mouse 
somewhere in the space for network mode, setec1 the ·create node" option from the 
menu, type a label lor the node, and then type ·return• - into a system operation-­
create-node. Operations are then mapped into changes to the set of cognitive products; 
we call this the delta product level. This Interpretation is highly context sensitive; 
lor example, creating a node can be Interpreted as adding io the set of Individual 
concepts or as adding to an existing cluster of related Ideas. depending on its spatial 
proximity to other nodes/concepts. Note the different interpretation for the five 
nodes that form a cluster, Indicated by the shaded circle in Figure 3, and the two, 
presumably unrelated nodes created in other parts of the space. From sequences of 
delta product symbols, the grammar infers the cognitive process used to produce 
changes in the conceptual products being constructed. Finally, sequences of process 
symbols are mapped into cognitive mode symbols. 

The parse trees produced by the grammar as output provide concrete 
representations of users' cognitive strategies for the sessions being analyzed. In those 
structures, we can see users shift from one cognitive mode to another, the sequences of 
processes being used in each mode, and the particular cognitive products being created 
or modified by those processes. 

These data provide rich material for analysis and interpretation. We are just 
beginning the fourth methodological step of developing tools to help us analyze and 
understand this Information. As an illustration of both the kind of insights the 
grammar can provide and of one particular interpretive tool we have developed, 
consider Figures 4 and 5. They show horizontal slices or the parse trees lrom 
sessions by two different subjects. The particular slice is the delta-product level, 
showing the intermediate products created by the subjects during the session. Down 
the left side of the diagram are symbols that designate the various types of products 

I I 



Background 

Figure 3 : 

Cognitive Grammar Parse Tree 

Procoss 

Producl 

Operation 

Poslloon 

Action 
Tool Menu Open 

Poslllon 

nme 

At>oi• 
Time 
Posiuon 

HIQhloghl Creare Node 

Poslllon 

Time 
Node 11n 

Cluster M 

I 2 

Crea10 

Create NoOO 
Node •n~3 
Posillon 

Strong 

Creale Node 
Node #11..; 
Posllaon 

Posilion ·Introduction 
Time Posllion 

Time 

' 



Background 

C1 

C2 

C3 

L1 

TL1 

TLJ 

STC1 

TC4 

TM1 

En eN 

Network 

Tree 

Figure 4: 

Protocol Display Example 

IH 

I 
l 

II 

'll 

J 
II 1111111111 

1 3 



Background 

Figure 5: 

Protocol Display Example 

- -- .......... .. ·~ ....... 
C1 
C2 
C3 ~·~ H•ll I I •• 

M3 " o I 

MS 
M1 I I 

03 I 
L1 ... ... It , ,. I >- I .._ .......... 
TL1 
TL3 I I • 
M2 • ..... • II- .. 

TLS II 

M9 
M7 
M5 
DLC1 
M10 

<-I>- .. 
TC1 
STC1 » 

TC4 I • 

TD4 .. ,____. .... 
TD3 ... -
TM1 -- .... . I H II H H I H+ ............... - IH 

EncN - H< l I H It W N I 1-++ 111---+4 - I I-< 

Networl< 

Tree 

Writing 

1 4 



Background 

created, such as isolated nodes. clusters of noQes, additions to the tree being built, etc. 
Each instance of a product Is represented by one of the short vertical lines. The 
horizontal axis represents tlme. Thus. we can see each user's strategy as it is 
reflected In the kinds of products created and when they were prcX!uced. In Figure 4, 
the user follows a nearly perfec1 ·waterfall" or "stages· strategy, doing all of his 
exploratory thinking first. tollowed by organizational thinking used to build the top of 
his tree, followed by writing. He then goes back to the tree, fills out the more detailed 
levels. and completes his writing. This strate<JY is markedly different from that of the 
second subject who constantly moves back and forth between structure operations and 
writing. 

Thus. the grammar is an integral part of a set of tools for recording protocols, 
replaying them, analyzing the data, and displaying results in a form in which they can 
be comprehended. Interpreted, and compared. 

In the preceding discussion, we first described the theoretical basis lor the 
grammar In terms of cognitive modes. Since the grammar characterizes the cognitive 
strategies of users working with a panicutar system. we next described the WE 1.0 
system to which It applies. Finally, we placed the grammar within a methodological 
context by discussing how It fits both within a set of tools we hava developed and within 
a set of Issues penaining to the study of human-computer Interaction. In Pan 2. we 
give a detailed technical description of the grammar. 

Ac kn ow ledgments 

A number of organizations and Individuals have contributed to the work described in 
this report. We are grateful to the National Science Foundation (Grant # IRI· 
8519517) and the Army Research Institute (Contract it MOA903·86·C·0345) for 
their suppon of various pans of this research. We wish to acknowledge our faculty 
colleagues. Marcy Lansman, Siephen F. Weiss. and Jay 0. Bolter, for contributing 
Ideas and perspectives. We are especially gratelul to Oliver Steele for his early work 
on parts of the grammar and the tracking and replay functions and to John 0 . Walker 
Ill for his work in developing an alternative grammar for another writing system. 
Finally, we wish to thank the graduate students who have worked with us on WE 1.0 
and on our cognitive experiments using the grammar: Paulette Bush, Yin-Ping Shan, 
Irene Jenkins, Matt Barkley, and Barry Elledge. 

Refer ences 

Ctaparede, E. (1933). "La genese de !'hypothese," Archives de Psych/ogle, 24, 1-
155. 

Ericsson, K. A. & Simon. A. S. (1980). "Verbal reports as data." Psychological 
Review, 87. 215-251. 

Hayes, J. R. & Flower, L S. (1980). "Identifying the organization of the writing 
process," In L W. Gregg & E. R. Steinberg (Eds.), Coanitjye Processes In Writing. 
Hillsdale. NJ: Lawrence Erlbaum Associates, pp. 3·30. 

I 5 



Background 

Henry, L. K. (1934). "The role of insight in the analytic thinking of adolescents," 
Studies In Education 9, 65-102. 

Nisbett, R. E. & Wilson, T. D. (1977). "Telling more than we can know: Verbal 
reports on mental processes," Psychological Review, 84, 231-259. 

Smith, J. B. & Lansman, M. (1987). A cognitive basis for a computer writing 
environment. Chapel Hill. NC: UNC Department of Computer Science Technical Report 
# TR87-032. 

Smith, J . B. & Smith, C. F. (1987). A strategic method for writing. Chapel Hill. NC: 
UNC Department of Computer Science Technical Report # TR87-024. 

Smith, J. B., Weiss, S. F .. Ferguson, G. J., Bolter, J. D., Lansman, M .• Beard, D. V., 
(1986). WE: A writing environment for professionals. Chapel Hill, NC: Department 
of Computer Science Technical Report # TR86-025. 

Smith, J. B., Weiss, S. F .. & Ferguson, G. J., (1987). A hypertext writing 
environment and its cognitive basis. Chapel Hill, NC: Department of Computer Science 
Technical Report # TR86-033. 

Swarts. H. Flower, L S.. & Hayes. J.R. (1984). "Designing protocol studies of the 
writing process: An introduction," In R. Beach & I. Bridwell (Eds.). New Directions 
jo Composition Research. New York: Guilford Press. pp. 53-71. 

l 6 



Part 2: Technical Description 

• 

I 7 



Technical Description: Introduction 

2.1 Introduct ion 

In Pan 2 we describe in detail our Cognitive Grammar for Writing, Version 1.0. 
We first provide an overview of the architecture of the grammar. Then, In subsequent 
sections, we discuss In detail each major component. 

The grammar can be considered as five separate grammars that worl\ In conjunction 
with one another or as a single grammar that produces frve separate, but logically 
connected. levels of analysis. Three different levels are shown in Figure 3, above. 

The terminal symbols recognized by the grammar are encoded representations of 
actions pertormed by the user of the WE 1.0 system. Each symbol denotes a single 
primitive act, such as selecting a specific menu option or typing a label. These 
symbols also carry additional Information in the form of auributes specific to the 
particular act, such as the string entered as a label or ihe location In the background of 
a window selected by the user by pointing with the mouse. All symbols carry the time 
at which the action was enacted. The sequence of such symbols for a session constitutes 
a transcript of that partiCular session adequate to recreate it. The set of all such 
sequences is, thus, the 'langauge· that is parsed by the grammar; and Instances of It 
are designaled the Action Level Transcript In the discussion that follows .. 

The Action Level Transcript Is first parsed to produce what we lerm the Operation 
Level Transcript. Each operation respresents a pauern or sequence of several action 
symbols. Each is the kind of operation one would normally designate In lhe 
specifications of a user Interlace - such as create_node .. that, In turn, would 
require several user actions ·• such as, select position with mouse, select menu 
option, type label, type carriage return. This stage of the grammar also deletes 
errors, cancelled command sequences, etc. Thus. the transcript consists of a sequence 
of symbols analogous to those for actions. 11 may be treated as a 'language·: however, 
each symbol on the Operation Level is linked by a symbolic pointer to the sequence of 
Action Level symbols it characterizes. Consequently. 11 may also be considered to be a 
broad hierarchical bush that will eventually be linked by higher levels to form the 
parse tree for the session as a whole. 

The Action and Operation levels of the grammar are closely tied conceptually to the 
computer system. The third level, which we call the Della Product Level, shifts the 
analy1ic perspective from the system to the mind of the user. tn this level, we begin to 
characterize the user's cognitive behavior based on our interpretation of his or her 
interaction with the system. This level of the grammar actually contains two steps. tn 
the first, each operation symbol is mapped to a corresponding symbol that interprets 
the effects of the system operation on the set of Intellectual products the user is 
constructing. These products are well-defined, consisting of structural forms that are 
important for wriling, such as an isolated concept, a cluster of ideas, a relation 
between two Ideas, a primitive subordinate/superordinate relationship, a block of 
te)(t, etc. The effects of individual changes in the set of cognitive products l/lfe then 
aggregated. Thus, each Della Product symbol represents the changes produced by one 
operation or a sequence of operations on one or these conceptual lorms. The sequence of 
these symbols can be considered a language in which each symbol is linked to one or 
more Operation Level symbols; thus, these links e)(tend the hierarchical bush another 
level upward. 

1 8 



Technical Description: Introduction 

The fourth level of the grammar Is the Cognitive Process Level. Here. each symbol 
represents the cogntive process inferred to be active in producing one or more changes 
to the set of cognitive products, Identified in the Delta Product Level. Thus, for 
example, a sequence of additions to a group of nodes in close spatial proximity to one 
another is interpreted as an instance of sustained "Focused Recall" whereas. if the 
nodes are •tar apan· , the process is assumed 10 be unfocused or free recaa. Again, 
the grammar produces a transcript that can be treated as a language or as a sequence of 
symbols, each of which can be linked to one or more symbols in a lower level. Thus. 
the bush grows by one more level of abstraction. 

A Cognitive Mode level Is inferred from sequences of Cognitive Process symbols. 
Shifts In Cognitive Mode are strongly suggested when the user shifts from one system 
mode to another. But the two are not always the same. For example. when a user 
working in network mode shifts from building small conceptual structures to linking 
them into a larger hierarchical structure. this may Indicate a shift In Cognitive Mode. 
On the other hand, when the user Is building a large hierarchical structure In tree 
mode and returns to network mode to copy a structural component Into the tree, that 
shift In system mode may not Indicate a shift In Cognitive Mode. At present, this 
portion of the grammar Is Incomplete. We currently Infer shifts in cognitive mode 
largely from shifts In system mode operations, but we will add rules to Infer shifts 
from context sensitive sequences of cognitive process symbols. Again, the resulting 
transcript can be viewed as a language. but, again, the symbols at this level are linked 
to sequences of lower level symbolS. Thus, the Mode Level extends the bush one more 
level. 

The Cognitive Mode Level symbols can be linked, finally, to a symbol representing 
the session as a whole. Thus. the separate branches can be joined to form a tree. It 
depicts the session as a hierarchy of cognitive and system activoties In which the user's 
strategy is manifest as a series of mode shofts, each of which includes a series of shifts 
in cognitive processes, used to produce changes In the set of intellectual products being 
constructed, as Indicated by short sequences of operations, each of which consists of 
several system actions. 

The grammar Is implemented as an OPS-83 program. Figure 6 provides a 
schematic view of Its dataflow. OPS is an expen system shelf that provides a 
programming language based on production rules. Thus, from another perspective, the 
grammar can be considered as an expen system that simulates the actions of an expert 
interpreter of the Action Level transcript. At present, the program is run as a ·batch· 
program on the complete transcript after the session has been concluded. A topic for 
future research is running the grammar concurrently with the session and thereby 
building a real· time parse structure that represents the user's strategy as his or her 
strategy evolves. This capability could serve as the basis for an intelligent tutor, 
more powerful intelligent functions within WE, and functions that might search an 
external database for material relevant to the structure of ideas being built. But these 
possibilities must await future versions of the grammar. 

In the remainder of Part 2. we first describe, briefly, the general form of the 
transcription language used at all five levels of the grammar. Following that are 
descriptions of the grammar for each level. Each discussion includes an introduction, a 
description of the transcription language symbols for that level, the grammar that maps 
symbol sequencies from lower levels to symbols at that level, and a sample annotated 
transcript. The one exception is the Actaon Level section: it does not Include a grammar 
since it constitutes the level of primitive or terminal symbols. 

I 9 



Technical Description: Introduction 

Figure 6: 

Cognitive Grammar Data Flow 

Cognillve Mode Determination Cogmwe Mode T ransclpt 

Cognitive Process Determination Cognitive Process Transclpt 

Cognitive Product Determmation CognitiVe Product Transcript 

I' 

Operation Determination Operation Transcript 

' 
System Action Transcript 

< 

User Session In Writing Environment 

20 



Protocol Language Overview 

2.2 Protocol Language Overview 

At each of the fiVe levels of abstraction. our system of analysis provides a description 
• by way of a transcript • of what occurred during a given session ol the writing 
environment. At each level, the transcript of a session consists of an eight-line header 
followed by a blank line, followed by a series of one-line event records. Since these 
transcripts share a common format, this format Is outlined below. 

Header 

The header lists the following Items, In the following order: 
1) The version of the Writing Enwonment (WE) which was being 

used when the transcript was recorded. 
2) The data of the transcript. 
3) The time at which the session began. 
4) The name of the user. 
5) The clock at the beginning of the session. 
6) The name of the database being used. 
7) A boolean Indicating whether the database began wilh an empty 

workspace. 

Event Records 

Each line of a transcript following the blank line which follows the header Is an trLe!l1 
record. At each of the fiVe posiled levels, each event record contaons two mandatory 
fields, followed by zero or more additiOnal fields (depending on the level and event· 
type). Every evenl record of every transcript conforms to the followong template: 

Time Event·token (Event parameters} 

The first field • Time • indicates the amount of time (in milliseconds) elapsed since 
the beginning of the session until the beginning of the event being recorded. The second 
field • Event·token · indicates what event the analysis has posited as having occurred. 
Finally, certain event·types are always followed by additional fields which are 
required to complete records which contain event·tokens of the type In question. These 
·event parameters· are fully documented at each level with their associated ·event­
types: 

, 

2 l 



Action Level Transcript Language 

2.3 Action Level 

Introduction 

The Action Level consists of symbols produced by the tracking function In WE 1.0. 
Each action represents an act performed by the user, such as deslgnatlng a location In 
the system mode window, selecting a menu item, typing a label. etc. These symbols 
also carry additional information In the form of attributes specific to the particular 
act. such as the string entered as a label or the location In the background of a window 
selected with the mouse. All symbols carry the time at which the action was enacted. 
Thus, the sequence of symbols constitutes a machine-recorded protocol for a user 
during a particular session. Since actions are the primitive or terminal symbols for 
the grammar, this section does not include a grammar component. It does, however, 
Include a complete description of all menu Items Included In the WE 1.0 In terface as 
well as every action that causes a line to be recorded In the Action Level Transcript. 

2.3.1 Acti on Level Tran script Lan guage 

An action level transcript file consists of a header, followed by a blank line, 
followed by a sequence of event records. The transcript Is a essentially a record of all 
the actions performed by a user of the Writing Environment (WE) during a session. 
Each action of the user is represented by a line (or event record) In the transetipt. 
Additional lines may appear in the transcript, which do not correspond to user actions, 
but which are necessary tor replaying the program from the transcnpt. The possible 
actions are listed below, with whatever collateral Information is collected with the 
action (i.e. the action's parameters). 

Header 

The header lists the following items, in the following order: 
1) The version of the Writing Environment (WE) which was being 

used when the transcript was recorded. 
2) The dale of the transcript. 
3) The time at which the session began. 
4) The name of the user. 
5) The clock at the beginning of the session. 
6) The name of the database being used. 
7) A boolean indicating whether the database began with an empty 

v.'Orl<space . 

• 

22 



Action Level T ransetipt Language 

Action Records 

Each line of the transcript Is an event record. The event records are grouped Into 
"actions : We distinguish two types of actions: actions which the user initiates and 
actions the user takes in response to prompts. Each action begins with an actjon record 
possibly followed by one or more support records. The support records either supply 
additional parameters (Parameter records) or provide Information for the benefit of 
the replay mechanism (Replay Records). 

The format for the action records Is consistently followed through the five levels of 
abstraction currently recognized by our method of analysis. That format Is simply: 

Time Symbol Atlributes 

where: 

Time • The time (In milliseconds) from the beginning of the user session until the 
beginning of the action (operation, etc.) which that particular line of the 
transcript purports to record. 

Symbol • The symbol which represents the type of action (operation. etc.) which Is 
recorded on the transcript. 

Anrlbutes • A list of zero or more allributes which may include 1) the object of the 
particular action (operation, etc.). 2) the logical relationship of the object of 
the action to other objects, and/or 3} additional spatio-temporal Information 
about the object. 

The various kinds of actions are detailed below. Each action record Is presented with all 
its fields; any additional Parameter or Replay records for this klnd of action are also 
identified If possible. In some cases the support records needed depend on the context; 
lhese cases are Indicated. 

Of prime Import to subsequent analysis Is the menu action. Most user-Initiated actions 
are begun by highlighting a menu item. In a menu action record, we record whatever 
menu item was highlighted, along with whatever object is the current agent and 
whatever mode is current The possible menu items which may be highlighted are 
detailed following the discussion of action record types. 

A sample annotated transcript concludes the section (terminals are In quotes). 

Actions the user initiates include: 

-Moving into a new mode: the ll:lQ!ia.action 
time "mode" globalX globaiY 

-Moving the cursor over an agent; the aqeoJ action 
time "agent" globaJX globaiY 

localX locafY mode 

locaiX locaiY object 

-Using a menu to get help for an option - the heloMenu action 
time "helpMenu· globalX globafY locaJX locaiY menuttem 

-Raising a menu. whether an option is chosen or not - the lllfllll action 

23 



Action Level Transcript Language 

time menultem globaiX globaiY localX localY mode:objecl 

·Adding text to a node · the encode action 
time "encode" time globaiX globaiY locaiX locaiY object 

-Initiating a roam operation · the roamStarJ action 
time "roamStart " globaiX globaiY 

Actions the user takes in response to prompts: 

-Entering a string into a prompt box • the s..t.cJ.ru1 action 
time "s t ring• globalX globaiY string 

·Answering a yes/no prompt · the boolean action 
time "boolean· globaiX globa!Y boolean 

-Selecting a point when requested (e.g. when moving a node) • the PSiliU action 
time "p oint• globalX globaiY locaiX locaiY 

-Selecting the terminal node for a link; the li!lK acllon 
lime "link" globaiX globaiY rode 

-Selecting the position below the selected sibling, to which to paste a node or 
subtree In tree mode • the ~ action 

time "below· globaiX globatY locaiX locarY rode 

·SelecUng the position above the selected Sibling. to which to paste a node or 
subtree in tree mode . the abll.liJl actiOn 

time "above· globa!X globalY locatX locaiY rode 

-Selecting the position as a child of the selected parent. to which to paste a node or 
subtree In tree mode · the .cb.lli1 action 

time "child" globalX globaiY locaiX locaiY node 

·Changing the viewing space by resiZing or moving the roaming box - the 
ylewjng action 

time "view· globaiX globaiY left top right bottom 

In addition to these actions. there are support records which supply additional 
information to the parser: 

-Indicates that a new node or link is created: 
time ·create• globaiX globaiY 

-Indicates !hat a roam operation was completed 
time ·roam· globaiX globaiY 

-Indicates that an action failed (lor whatever reaon) 

localX locarY object 

time ·cancel" globaiX globaiY locaiX locaiY [object) 

24 



Action Level Transcript Language 

Explanation of the parameters: 

I) time: The amount of lime in mflliseconds since the beginning of the 
session. 

2) globaiX. globaiY: 
The x and y coordinates of the event on the screen. 

3) locaiX. locaiY: 

4) mode: 

The x and y coordinates of the event within the par1icular mode 
screen in which the event transpired. 

One of several of the possible system modes. Tho modes are 
abbreviated as follows: 

Edit Mode: 
Control Panel Mode: 

Network Mode: 
Tree Mode: 
Text Mode: 

ParaModet 

CPtMode 
NetModet 
TreeModet 
ReviSeModet 

5) object: Either a node, or an arc (identified by a unique number), or one 
of the modes listed above. 

6) menultem: A menultem may be any one of the possible menu Items which 
may be highlighted !rom any or the several modes. A complete 
list of these Items appears at the end of this section. 

7) boolean: Either true or false. 

8) string: Used to indicate the Rrst few letters of text used for node names. 
link names, etc. 

9) left, top, right, boltom: 
The upper left and lower right coordinates of the current mode. 

10) node: A unique node identifier. 

Replay Event Records 

There are some events which are only present for the benefit of the Replay Manager. 
Event records which begin with the following words can be ignored: 

open Session 
first mode 
closeSession 
notify 
wbase 
menuS tart 
helpMenuStart 
menu End 

25 



Action Level Transcript Language 

Menu Items 

Menu 
System Control Panel Menus: 

In Transcript 

Writing Environment menu: 
Redraw All: 
Default Layoul: 
Qui I: 

Workspace menu: 
SaveWS: 
ChangeWS: 
RenameWS: 
ResetWS: 
Garbage Collect: 

redrawOpt 
defaultOpt 
finished 

saveWS 
changeWS 
renameWS 
resetWS 

Delete WS: 
collectGarbage 
deieteWS 

Holding Areas menu: 
Show Nodes: 
Show Trees: 

sho~es 
show Trees 

Holding Areas submenu: 

System menu: 

Move to Top: 
Delete: 

moveToTop 
throwOut 

Screendump: screendump 
Snapshot: snapshot 
Prompt before saving text: 

edltPromptToggle 
Change ws Directory: 

Network Mode Menus: 

changeWSdir 
Printing Options: priniMenu 
Create WS Directory: 

createWSdir 
To Smalltalk: toSmalltalk 

Control Panel Menus: 
View menu: 

Redraw: 
Resize: 
Switch size: 
Roam: 

Display/print menu: 
Show in Lext window: 
Send to line printer: 

redrawOpt 
resizeOpt 
switchSize 
roam 

Write as a TeX file: asTeX 

26 

toTex1Mode 
toLinePtr 



Action Level T ranscnpt Language 

Menu In Transcript 

Background menu: 

Node menu: 

Link menu: 

Tree mode menus: 

Create Node: 
Paste Node: 
Paste Tree: 
Show/Hide Links: 

createNode 
paste Node 
pasteStructure 

toggle links 
Show/Hide Link Names: 

togglelinkNames 
Subtract Tree: deletePastedStructure 

Move: 
Link: 
EditName: 
Edit Text: 
Copy Node: 
Copy Tree: 
Delete Node: 

Edit Unk. Name: 
Delete Link: 

moveNode 
addUnk 
editNodeNameS 
editNodeText 
copyNode 
copy Tree 
deleteNode 

rename 
delete 

Cantrol Panel menus: same as for Network mode 
Background menu: 

Node menu: 

Subtree menu: 

Paste Node: 
Paste Tree: 
Create Tree: 
Copy Node: 
Copy Tree: 
VIew Context: 
Set Node Size: 

Add Node: above: 
Add Node: below: 
Add Node: chOd: 
Add Node: Parent: 
Edit Name: 
Edit TeX't : 
Copy Node: 
Delete Node: 

paste Node 
paste Tree 
create Tree 
ccpyNode 
copy Tree 
viewContext 
setDepth 

a6dAbove 
addBelow 
addChild 
addParent 
rename 
textEdit 
copyNode 
deleteNode 

Move Subtree: moveSubtree 
Show Text for Subtree: 

Display Subtree: 
Copy Subtree: 
Delete Subtree: 

27 

printOutSubtree 
newCurrRoot 
copyOutSubtree 
deleteSubtree 



Action Level Transcript Language 

Printing Options Menu: 
Laser Writer: 
Une Printer 
file name: 
auto send 

28 

specLaserWriter 
specLaserWrlter 
outflle 
autoPrint 



Sample Annotated Transcript - Action Level 

2.3.2 Sample Annotated Transcript 

In the following transcript, lines which are comments rather than actual lines of the 
transcript are preceded by two asterisks. 

'Writing Environment Transcript version 2.0' 
version: 2.0 
date: 23 September 1988 
time: 1 :23:26 pm 
user: jenkins 
clock: 2794 7 
database: emptyWS 
empty: true 

40 openSessiOn 
80 mode 

205420 mode 

492 240 0 0 
0 0 -701 -561 
10 153 9 92 

.. The subject moves the cursor to network mode 

205480 agent 
2061 80 menuStart 
206860 createNode 
206880 create 
21 0480 string 

10 153 9 92 
105 184 
108 187 104 123 
108 187 104 123 
108 187 

ParaMode1 
NetModet 

NeiModet 
TooiHelpedMenu 
NetMQ(je1 Net 
Nodes 23482710 
bird 

.. Node # 2348270 is created in network mode and given the label "bird: 
" The node creaton began 206180 milliseconds aher the beginning of 
•• the session. 

211 160 agent 122 191 121 130 
21 1340 agent 290 153 289 92 
21 1660 menu Start 302 147 
212120 createNode 305 150 301 86 
212140 create 305 150 301 86 
21406 string 305 150 

.. A second node with the label ·car· is created. 

215000 menuStart 208 273 
215420 create Node 215 274 207 212 
215440 create 215 274 207 212 
217920 string 216 275 
219300 menuSiart 250 211 
219740 create Node 253 214 249 150 
219780 create 253 214 249 150 
223740 string 253 214 
224780 agent 305 169 304 108 
225000 agent 399 161 398 100 

29 

Nodes 234827 10 
NetMode1 
T ooiHelpedMenu 
NetMode 1 Net 
Nodes 24006711 
cat 

T ooiHelpedMenu 
NetMode1 Net 
Nodes 24336712 
fish 
T ooiHelpedMenu 
NetMode1 Net 
Nodes 24770713 
d::g 
Nodes 24006711 
NetMode1 



Sample Annotated Transcript • Action Level 

225260 menuStart 417 151 T ooiHelpedMenu 
225820 createNode 420 154 416 90 NetMode1 Net 
225860 create 420 154 416 90 Nodes 25378714 
227740 string 420 154 mouse 
228720 agent 379 151 378 90 Nodes 24006711 
229480 agent 408 161 407 100 NelMode1 
229580 agent 418 163 417 102 Nodes 25378714 
230100 agent 397 156 396 95 NetMode1 
230140 agent 377 152 376 91 Nodes 24006711 
231300 agent 295 197 294 136 NetMode1 
231480 agent 283 213 282 152 Nodes 24770713 
231800 menuStart 277 221 T ooiHelpedMenu 
232580 add link 281 240 282 152 Nodes 24770713 Net 
233840 link 322 170 Nodes 24006711 
234780 create 322 170 282 152 Arcs 26264715 

•• Node # 24770713 is linked to Node # 2400611 In network mode. The arc 
•• is given the It 26264715 by the system. 

235460 agent 323 162 322 101 Nodes 24006711 
236120 menuStari 331 162 T ooiHelpedMenu 
236940 add link 334 181 322 101 Nodes 24006711 Net 
238260 link 438 170 Nodes 25378714 
238340 create 438 170 322 101 Arcs 26622716 
239360 agent 417 246 416 185 NetMode1 
240400 agent 435 185 434 124 Nodes 253787t4 
241200 agent 438 191 437 130 NetMode1 
242320 manu Start 436 192 TooiHelpedMenu 
242520 createNode 441 195 437 131 NetMode1 Net 
242540 create 441 195 437 131 Nodes 27048717 
245260 string 441 195 elephant 
245420 agent 428 182 427 121 Nodes 25378714 
246280 agent 452 202 451 141 Nodes 27048717 
246460 agent 478 228 477 167 NetMode1 
246520 agent 478 226 477 165 Nodes 27048717 
246920 menuStart 472 212 T ooiHelpedMenu 
248900 move Node 485 213 477 165 Nodes 27048717 Net 
250060 point 453 159 452 98 

.. Node# 27048717 is moved in network mode to coordinates 453,159,452,98 

251100 agent 388 195 387 134 NetMode1 
251560 agent 314 193 313 132 Arcs 26264715 
251980 agent 410 171 409 110 NetMode1 
252080 agent 424 169 423 108 Nodes 25378714 
252780 agent 501 162 500 101 Nodes 27048717 
253560 agent 390 232 389 171 NetMode1 
254020 agent 324 223 323 162 Nodes 24770713 
254300 agent 316 199 315 138 Arcs 26264715 
254740 agent 326 205 325 144 NetMode1 
255600 agent 401 168 400 107 Arcs 26622716 
256260 agent 373 152 372 91 Nodes 24006711 
256440 agent 369 214 368 153 NetMode1 
256620 agent 321 230 320 169 Nodes 24770713 

30 



Sample Annotated Transcript - Action Level 

256820 agent 287 256 286 195 NetMode1 
257020 agent 271 278 270 217 Nodes 24336712 
257760 agent 95 249 94 188 NetMode1 

• • The subject moves the cursor around touching on arcs, nodes, and 
•• networll mode itself in the preceding 16 ·agenr records. 

258360 menuStan 55 277 T ooiHelpe<IMenu 
258940 createNode 58 280 54 216 NetMode1 Net 
258980 create 58 280 54 216 Nodes 28688718 
260840 string 58 280 eagle 
261780 agent 180 212 179 151 Nodes 23482710 
262180 menuStan 158 200 T ooiHelpe<IMenu 
263300 addUnk 163 225 179 151 Nodes 23482710 Net 
264220 link 75 291 Nodes 28688718 
264300 create 75 291 179 151 Arcs 29218719 
265140 agent 180 274 179 213 NetModet 
265260 menu Start 180 274 TooiHelpe<IMenu 
265820 createNode 183 277 179 213 NetMode1 Net 
265840 create 183 277 179 213 Nodes 29376720 
267940 string 183 277 ostrich 
268880 agent 149 205 148 144 Nodes 23482710 
269340 menuStan 145 193 TooiHelpe<IMenu 
270020 add Link 148 212 148 144 Nodes 23482710 Net 
270960 link 222 298 Nodes 29376720 
271040 create 222 298 148 144 Arcs 29892721 
272160 agent 221 298 220 237 Nodes 29376720 
272480 menuStart 221 297 T ooiHetpe<IMenu 
273800 move Node 228 310 220 237 Nodes 29376720 Net 
277700 point 196 384 195 323 
279180 agent 170 419 169 358 Ne!Mode1 
279860 agent 96 291 95 2.30 Nodes 28688718 
280060 agent 100 253 99 192 NetMode1 
280340 agent 142 211 141 150 Nodes 234827t0 
280520 agent 156 179 155 118 Ne!Mode1 
281540 menu Stan 125 85 T ooiHelpe<IMenu 
281980 create Node 128 88 124 24 NetMode1 Net 
282000 create 128 88 124 24 Nodes 30992722 
284620 string 128 88 Animals 
285760 agent 134 92 133 31 Nodes 30992722 
286440 menu Start 158 94 T ooiHelpe<IMenu 
287520 add Link 177 119 133 31 Nodes 30992722 Net 
288820 link 133 193 Nodes 23482710 
288880 create 133 193 133 31 Arcs 31678723 
290240 menuStart 169 97 TootHelpe<IMenu 
291060 add link 172 116 133 31 Nodes 30992722 Net 
292440 link 226 286 Nodes 24336712 
292520 create 226 286 133 31 Arcs 32040724 
294080 menuStan 154 105 T oolHelpedMenu 
295820 add link 159 126 133 31 Nodes 30992722 Net 
301720 link 277 235 Nodes 30857223 Net 
302170 create 277 238 145 123 Aics 32968725 
303560 agent 233 167 232 106 NetModet 
303740 agent 232 167 231 106 AICS 32968725 

31 



Sample Annotated Transcript • Action Level 

304140 menuStan 232 167 TooiHelpedMenu 
304860 rename 245 1n 231 106 Arcs 32968725 
306620 string 245 1n none 

•• A link is renamed to the null string 

306940 agent 245 193 244 132 Net/VIode1 
3on2o agent 228 164 227 103 Arcs 32968725 
308180 menuStan 228 164 TooiHetpedMenu 
309080 delete 232 183 227 103 Arcs 32968725 

•• Arc # 32968725 is deleted 

310340 agent 229 185 228 124 NetModet 
310620 agent 169 115 168 54 Nodes 30992722 
310980 menuS tart 161 101 TooiHelpedMenu 
312460 copy Tree 184 186 168 54 Nodes 30992722 

•• The tree with root at node It 30992722 Is copied Into the holding area 

312740 agent 183 188 182 
312920 agent 161 368 160 
313260 mode 137 574 136 

•• The subject moves to tree mode 

313300 agent 137 574 136 
314100 menu Start 137 574 
315440 pasteNode 158 589 136 
317120 notify 158 589 

127 
307 
73 

73 

73 

Nodes 23482710 
NetMode1 
TreeMode1 

TreeMode1 
TooiHetpedMenu 
TreeModet Tree 

•• An attempt is made to paste a node from the holding to tree mode, 
•• but the copy fails (probably because no node is in the holding 
•• area). 

318320 pasteTree 170 608 157 88 TreeMode1 Tree 

•• A tree is successfully pasted into tree mode 

328420 menuStan 169 607 T ooiHelpedMenu 
329760 agent 324 716 323 215 Subtree 23482710 
330020 agent 174 612 173 111 TreeMode1 
330220 menuStan 174 612 T ooiHelpedMenu 
334420 agent 263 659 262 158 Nodes 28688718 
334600 agent 179 715 178 214 Nodes 24336712 
335260 agent 100 727 99 226 TreeMode1 
335720 agent 43 703 42 202 Nodes 30992722 
336700 agent 174 6n 173 176 Nodes 23482710 
33nso agent 110 711 109 210 Nodes 30992722 
337940 agent 4 707 3 206 TreeMode1 
338120 agent 16 703 15 202 Nodes 30992722 
338400 agent 38 713 37 212 Nodes 30992722 
338940 agent 74 685 73 184 TreeMode1 
339360 agent 78 686 n 185 Nodes 30992722 

32 

Net 

Net 

Net 



Sample Annotated Transcript - Action Level 

71 700 ToolMenu 340180 menuStart 
342800 tex:tEdit 
345480 mode 

87 780 n 185 
926 548 225 -13 

Nodes 30992722 Tree 
ParaMode1 

' 

•• The subject enters into Edit mode with the contents of Node # 30992722 
•• In the Edit mode buffer. 

353880 encxxle 
4 21 220 encxxle 

725 542 210 12 
5n 581 81 38 

•• The subject enters text into the Edit mode buffer. 

425 565 424 64 
425 565 424 64 
35t 658 350 157 
291 656 

Nodes 30992722 
Nodes 30992722 

TreeMode1 
TreeMode1 
Nodes 28688718 
TooiMenu 

421260 mode 
421300 agent 
421700 agent 
422120 menuStart 
424920 addBelow 
424960 create 
427900 string 

327 682 350 157 
327 682 350 157 
327 682 

Nodes 28688718 Tree 
Nodes 46668738 
eaglet 

•• A sibling node to node # 28688718 is created and placed below node II 
•• 28688718 on the screen (in tree mode). 

428560 agent 305 683 304 182 Nodes 46668738 
429400 menu Start 300 683 TooiMenu 
430220 addBelow 303 702 304 182 Nodes 46668738 
430240 create 303 702 304 182 Nodes 47198740 
436240 siring 305 701 parrot 
436960 agent 305 699 304 198 Nodes 47198740 
437500 agent 281 669 280 168 Nodes 46668738 
437920 menuSian 279 667 TooiMenu 
439500 move Node 322 792 280 168 Nodes 46668738 
441540 child 330 627 280 168 Nodes 28688718 

• • Node # 46668738 Is moved to become a child of node :: 28688718 in tree 
•• mode. 

443020 agent 343 683 342 182 Nodes 47198740 
443180 agent 243 715 242 214 Subtree 23482710 
443520 agent 235 751 234 250 TreeMode1 
443840 agent 1n 723 176 222 Nodes 24336712 
444140 agent 167 679 166 178 Nodes 23482710 
444320 menu Stan 167 6n TooiMenu 
445880 cancel 66 807 1 66 1 78 Nodes 23482710 
445980 agent 92 795 91 294 TreeMode1 
446340 agent 134 727 133 226 Nodes 23449280 
447830 addAbove 203 721 133 226 Nodes 24336712 
449300 create 203 721 133 226 Nodes 49104743 
453780 string 203 721 Reptile 
454860 agent 184 699 183 198 Nodes 49104743 
455960 agent 70 708 69 207 Nodes 30992722 
456800 menuStart 52 702 TooiMenu 
458280 addChild 84 739 69 207 Nodes 30992722 
458320 create 84 739 69 207 Nodes 50004745 

33 

Tree 

Tree 

Tree 

Tree 

Tree 



Sample Annotated Transcript - Action Level 

462120 string 84 739 Mammal 
463640 agent 116 751 115 250 Subtree 30992722 
464080 agent 170 747 169 246 Nodes 50004745 
464560 menu Start 173 745 TooiMenu 
468220 move Node 202 872 169 246 Nodes 50004745 Tree 
469900 above 166 673 169 246 Nodes 49104743 
472220 menu Start 182 677 ToolMenu 
474560 copyNode 194 781 183 182 Nodes 50004745 Tree 

•• Node It 50004745 Is copied from tree mode onto the holding stack. 

474640 agent 194 781 193 280 TreeMode1 
474960 agent 199 742 198 241 Nodes 24336712 
477000 mode 463 239 462 178 NetMode1 
477060 agent 463 239 462 178 NetMode1 
477080 menu Start 463 239 T ooiHelpedMenu 
478980 paste Node 497 259 4S2 178 NetMode1 Net 
479460 agent 497 259 496 198 Nodes 50004745 
480500 agent 468 336 467 275 Ne!Mode1 
481760 mode 100 686 99 185 TreeMode1 
481820 agent 100 68S 99 185 Nodes 30992722 
482160 agent 127 674 126 173 Subtree 30992722 
482500 agent 165 670 164 169 Nodes 50004745 
482680 menuStart 169 676 TooiMenu 
484340 deleteNode 196 810 164 169 Nodes 50004745 Tree 

34 



Operation level Transcript Language 

2.4 Operation Level 

Introduct i on 

The Operation Level represents the kinds of operations one would normally 
designate in specifying a user interface -- such as create_node. Each such operation 
would then be Implemented by several user actions - such as. select position with 
mouse. select menu option, type label, type carriage return. The grammar for this 
level maps sequences of Action Level symbols ·• normally, three or four ·• Into 
Individual Operation Level symbols. In the sections that follow, we first discuss the 
transcription language for this level, then the grammar, and, finally, a sample 
annotated transcript. 

2.4.1 Operation Level Transcrip t Language 

An operation level transcnpt consists of a header followed by a series of one or more 
operalion records. Any operation a user wishes to perform in WE must be Initiated by 
highlighting a menu Item (with one exception). An operation is a grouping of the 
sequence of actions Initiated by the user In highlighting a menu Item. Each operation 
consists of two or more actions. For example the 'create node· operation entails opening 
a menu, highlighting the appropriate menu Item. and giving the new node a name. A user 
may perform a system mode shill operatiOn by simply moving lhe cursor from one 
system mode to another (and this Is the exception). Each operation record occupies one 
line of the transcript file. 

Header 

The header lists the following Items. in the following order: 

1) The version of the Writing Environment (WE) which was being 
used when the transcript was recorded. 
2) The date of the transcript. 
3) The time at which the session began. 
4) The name of the user. 
5) The clock at the beginning of the session. 
6) The name of the database being used. 
7) A boolean indicating whether the database began with an empty 
workspace. 

Operation Record 

The format for the action records is consistently followed through the five levels of 
abstraction currently recognized by our method of analysis. That format is simply: 

Time Symbol Attributes 

where: 

35 



Operation Level Transcript Language 

Time e The time (In milliseconds) from the beginning or the user session until the 
beginning of the action (operation, etc.) which that particular line of the transcript 
purports to record. 

Symbol • The symbol which represents the type of actiOn (operation, etc.) which is 
recorded on the transcript. 

Allributes • A list of zero or more atlributes which may Include 1) the objecl of the 
particular action (operation, etc.), 2) the logical relationship of the object of the action 
to other objects, and/or 3) additional spatlo-temporal information about the object. 

Thus, preceding the operation Identifier of each record. is the time elapsed since the 
beginning ol the session until the t1me at the end of the act10n event which triggered the 
creation of the operation record (labeled "Time·). The operation Identifier follows 
·nme· In the operation record. For certain ope rations. a list of altributes follows the 
operation Identifier In the transcript. 

Below is a list of all possible operation types in operation level transcripts. A short 
description of the type precedes the template (lor the transcript) of that operation. A 
sample annotated transcript concludes the section. 

-Aborting an operation (e.g. when a user attempts to paste a node when the holding 
area Is empty) · the .all.Q.C1 operation 

Time ab.o.rl 

-Changing lhe viewing space ol a mode by using a roaming operation or changing 
the viewing space to view the entire ltee or a subtree - the context operation 

nme context view [tree 1 view rectangle) 

-Copying a node or tree (in tree mode) in to the holding area - the QS1.Q:i operation 
Time CQllY object 

-Copying a tree Into the holding area from network mode • the cotree operation 
nme cpt ree roo: node 

-Deleting an object from the workspace • the ~ operation 
Time de!a1a object 

-Associating text with a node in edit mode • the encode operation (Note: There Is 
no comparable operation for revise mode. This Is a design naw.) 

Time errode node 

-Hiding the link names • the hjdelinknames operation 
Time hideljnknames 

-Hiding the links- lhe hjdelinks operation 
Time hjdeljnks 

-Changing the viewing space of a mode by resizing or switching the size of the 
mode - the W2!J..1 operation 

36 



Operation Level Transcript Language 

Time screen rectangle 

-Chang1ng modes - the Ol.Qd.a operation 
Time mldl1 mode 

-Moving a node to a new position - the ~ operation 
Time IIISW1 node position 

-Creating a new link - the newllnk operation 
Time new Link II nk From node To node 

-Creating a new node - the newNode operation 
Time newNode noda position string 

-Pasting a node from the holding area Into a mode • the 12JW.!1 operation 
Time DliSla object position 

-Renaming a node or link • the rename operation 
Time rename object string 

-Reading a saved file Into the workspace • the session operation 
Time session 

-Displaying the link names - the showllnknames operation 
Time showlinknamPs 

·Displaying the links - the showlinks operation 
Time showllnks 

-Performing one of several possible system operations (e.g. showing Tex output, 
saving the workspace. etc.) - the svstem operation 

Time system 

-Viewing the text associated with a node In edit mode, or associated with a tree or 
subtree In text mode • the ~ operation 

nme riJrtt object mode 

The attributes of the various operations are: 

mode 

node 

lin k 

object 

Either CP (control panel), Tree (tree). Net (network), 
Para (edit). or Revise (text) modes. 

A node followed by a number (in parenthesis) which 
Identifies it. 

A link followed by a number (in parenthesis) wh1ch 
identifies it. 

Either a node, arc. or tree. If the object Is a node or link. 
It is identified by a number in parenthesis. H the object is 
a tree. 11 is identified by the number of the node which is 

37 



Operation Level Transcript Language 

tree 

position 

its root. 

A tree identified by its root node. 

Either x. y coordinates (a point) if in network mode, or 
tree positon if in tree mode. If tree position, then either 
·parent", "above", "below·. or "child" will be given, 
followed by a node and Its identifying number. Thus If node 
8 of a tree Is moved, a possible line of the transcript might 
be: 

"1020399 756 move node(B) (above. node(6))." 

· Above· and "below" Indicate the node becomes the sibling 
(above or below It on the screen} of the given node. "child" 
that it becomes the child, and ·parenr that It becomes the 
parent. 

screen rectangle The mode coord.nates of the new view port after a roam 
operation. 

view rectangle The screen coordinates olthe new mode location after a 
resize or shltt size operation. 

From node, To node 

string 

The nodes which a link links. The To node Is the node to 
which the link points. 

A string. 

38 



Operation Level Grammar 

2.4.2 Operation Level Grammar 

The following al! ribute grammar clarifies the origin in the action level transcript of 
every Item of information output In the operation level transcript. Following each 
operation record type is a parenthesized list of attributes which will appear with 
that operation type in the operaUon level transcript. Wlthin the parenthesized list 
may appear literals (which are enclosed in quotes) of the operation level record. 
Following this parenthesized list (i.e. af1er the '::•' symbol) , is a list of the action 
level record type(s) (with their associated attributes) which cause the operation 
record type in question to be generated. 

Operation Transcript ... Operation Record+ 

Operation Record ::. Abort Record 
Context Record 
Copy Record 
Copy Tree Record 
Delete Record 
Encode Record 
Hide UnksRecord 

Abort Record (time) ::a 

Hide Link Names Record 
Layout Record 
Mode Record 
Move Record 
Newlink Record 
NewNode Record 
Paste Record 
Rename Record 
Session Record 
Show Links Record 
Show Unk Names Record 
System Record 
View Record 

addlink(time) (cancel 1 link] 

addAbove(time) [cancel I 0 ) 

addBelow(time) (cancel I 0 I I 

addChild(time) [cancel I 0 I 1 

addParenl(time) notify I 

cancel (time) 1 

changeWS (time) (boolean (false) I string) 1 

39 



Operation Level Grammar 

copyTree (lime) 

createTree (time) 1 

createWSdir (lime) string 

deletePastedStructure (time) I 

finished (tlme)boolean (false) 

moveNode (time) cancel I 

moveSubtree (time) cancel 

pasteNode (time) !cancel 1 o) 

pasteTree (time) (cancel 1 o) 

printMenu (time) cancel 

Context Record (time, •tree(". subtree:)" ) .. • 

newCurrRoot (time, subtree) 

Context Record (time, •tree (0)" ) ::­

vlewContext (Ume) 

Context Record (time, reelangle) ::• 

roam (time) view (rectangle) 

Copy Record (time, ·node(". node:n ::­

copyNode (time, node) 

Copy Record (lime, •tree(", node:n ::­

copyOutSubtree (lime, node) 

Copy Tree Record (lime, node) ::= 

copyTree (lime, node) 

Delete Record (lime, node) ::= 

deletePastedStructure (time, node) 

deleteNode (time, node) 

Delete Record (time, arc) ::= 

delete (time. arc) 

40 



Operation level Grammar 

Delete Record (time. subtree) ::= 

deleteSubtree (time. subtree) 

Encode Record (time, node) ::-

encode (tlme, node) 

HideUnks Record (time) ::-

hideUnks (lime) 

HldellnkNames Record (time) ::• 

hidelinkNames (lime) 

Layout Record (time. rectangle) ::-

reslzeOpl (time) view (rectangle) 

switchSize (time) view (rectangle) 

Mode Record (time, modetype) ::. 

mode (time, modetype) 

Move Record (time. node. locaix, localy) ::-

moveNode (time. node) point (localx, localy) I 

Move Record (time, node,, "(above·. node2."}") ::-

moveNode (lime. node 1) above (node2) 

Move Record (time. nodet. "(below". node2 .")") ::-

move Node (time, nodet) below (node2) 

Move Record (time. nodet. "(parent", node2.")") ::• 

moveNode (time, nodet) child (node2) 

Move Record (time, "tree(",nodet. ")". "(above". node2.")") ::a 

moveSubtree (time. nodet) above (node2) 

Move Record (lime, "tree(", nodet. ")". "(below", node2."l"l ::= 

move Subtree (time, nodet) below (node2) 

Newlink Record (time, arc. nodet. node2l ::• 

addlink (time, nodet) link (node2) create (arc) 

4 I 



Operation Level Grammar 

NewNode Record (time, node2. "(above· . node1 ."l" , string) ::= 

addAbove (time, node1) create (node2) string (string-token) 

NewNode Record (lime, node2. "(below", no<le1 ."}" . string) ::-

addBelow (time. node1) create (node2) string (s tring-token) 

NewNode Record (lime, node2. "(child". node1 .")" . string) ::-

addChlld (time, node1) create (node2) string (string-token) 

NewNode Record (time, node2. "(parent", node1 .")" , string) ::. 

addParent (lime, no<le1) create (node2) string (string -token) 

NewNode Record (time. node, "(root )" , string) ::. 

createtree (tlme) create (node) string (s tring-token) 

NewNode Record (time, node, localx, localy, string) ::-

createNode (time. localx. localy) create (node) string (string-token) 

Paste Record (time, node. localx. localy) ::• 

pasteNode (time. localx, localy, node) 

Paste Record (time, ·node(O)", "(above ·,node.")") ... 

pasteNode (time) above (node) 

Paste Record (time, "node(O)", "(below " ,node.")") ::e 

pasteNode (lime) below (node) 

Paste Record (time, ·node(O)", "(parent ·,node.")") ::= 

pasteNode (time) child (node) 

Paste Record (time. •node(O), root") ---

pasteNode (time) 

Paste Record (time, "tree(O)", "(above · ,node.")") ::= 

pasteTree (time) above (node) 

Paste Record (time, "tree(O)", "(below ·.nod.e,")") ::= 

pasteTree (lime) below (node) 

42 



Operation Level Grammar 

Paste Record (time. ·node(O)", "(parent · .node,")") .. = 

pasteTree (time) child (node) 

Paste Record (time, "tree(O), root") .. = 

pastetree (time) 

Rename Record (time, node, string) ::= 

editNodeName (lime, node) string (string·token) 

Rename Record (time. node, string) ::. 

rename (time, node) string (string·token) 

Rename Record (time, arc, string) ::. 

rename (time, arc) string (string·token) 

Session Record (time) ::. 
fin ished (time) boolean (true) I 

changeWS (time) 

changeWS (time) boolean (true) string 

changeWSdir (time) boolean (true) 1 

resetWS (time) boolean (true) 1 

toSmalltalk (time) boolean (true) 

Show links Record (time) ::= 

showlinks (time) 

Show Link NamesRecord (time) ::= 

showLinkNames (time) 

System Record (time)::= 

asTeX (time) 1 

suspend (time) 1 

collectGarbage (time) 

deleteWS (time) 1 

prlntMenu (time) speclaserWrlter 

43 



Operation Level Grammar 

printMenu (time) specUnePrinter 1 

priniMenu (time) outFile string 1 

printMenu (time) toggleAutoPrint I 

redrawOpl (time) I 

renameWS (time) string I 

saveWS (time) string I 

screenOump (time) I 

lh rowOu 1 (lime) 

View Record (time, node, mode) ::-

edltNodetext (lime, node, mode) I 

prlntOutSubtree (time, node, mode) I 

prlmOutUne (time, node, mode) 

textEdlt (lime, node, mode) 1 

toTextMode (time. node, mode) 

44 



Sample Transcript - Operalion Level 

2.4.3 Sample Annotated Transcript • Operation Level 

The following is an annotated operation level uanscripl. Annotations follow lines (or 
groups of lines) wh ich they annotate. and are preceded by two asterisks. 

'Writing Environment Transcript version 2.0' 
version: 2.0 
date: 23 September 1988 
time: 1 :23:26 pm 
user: jenkins 
clock: 27947 
database: emptyWS 
amply: true 

80 
205420 

40 l'llOde 
205340 l'llOde 

•• The subject moves to net mode. 

Para 
Net 

206860 680 newNode node{1) (104,123) · bird· 

•• A first node is created and given the label ·bird: The 
•• creation began 206860 milliseconds afler the beginning of the session, 
•• and occured at x,y coordinates 104, 123. 

212120 460 newNode node(2) (301.86) ·cat· 
215420 420 newNode node(3) (207,212) ·tish• 
219740 440 newNode node(4) (249,150) .dog. 
225820 560 newNode node(5) (416.90) ·mouse· 
232580 780 newUnk link(1) node(4) node(2) 

•• A new link (link #1) is created linking nodes # 4 and 2. 

236940 820 newllnk llnk(2) node(2) node(5) 
242520 200 newNode node(6) {437,131) "elephant• 
248900 1980 move node(6) {452,98) 

•• Node 6 is moved to new x,y coordinates 452, 98. 

258940 580 newNode node(7) (54,216) ·eagle· 
263300 1120 newUnk link(3) node( I) node(7) 
265820 560 newNode node(8) (179,213} ·ostrich" 
270020 680 newllnk link(4) node(t) node(8) 
273800 1320 move node(B) ( 195,323) 
28 1980 440 newNode node(9) (124,24) "Ani mats· 
287520 1080 newlink link(5) node(9) node{!) 
291060 820 newlink link(6) node(9) node(3) 
295820 1740 newUnk link(7) node(9) node(4) 
304860 720 rename link(7) ·none· 
309080 900 delete link( 7) 

45 



Sample Transcript - Operation Level 

•• Unk 11 7 is deleted. 

312460 1480 cptree node(9) 

•• The tree with root # 9 Is copied from network node into the 
•• holding area. 

313260 340 mode Tree 

•• The subject shifts to tree mode. 

315440 1340 abort 

•• Some action is aborted. 

318480 1200 paste tree(O) (root) 

•• The tree on top ol the holding stack area is pasted into tree mode. 

342960 
345640 

2620 
2680 

view 
mode 

node(9) T rea 
Para 

•• The subject moves Into Edit mode with the contents of node # 9 in the 
buffer. 

354040 
421380 

8400 encode 
67340 encode 

node(9) 
node(9) 

" Text Is associated with node II 9. 

mode Tree 421420 
425080 

40 
2800 newNode node(10) (befow,node(7)) · eagle!" 

" A new node (node# 10) is created as a sibling node to node # 7. 
" and placed below node II 7 on the screen. 

430380 820 newNode node(11) (below,node(1 0)) 
439660 1580 move node(1 0) (parenl.node(7)) 
446040 1560 a bon 
449440 2480 newNode node(12) (above,node(3)) 
458440 1480 newNode node(13) (child,node(9)) 
468380 3660 move node(13) (above,node(t 2)) 
474720 2340 copy node(t3) 

" Node # 13 is copied into the holding area from tree mode. 

477160 
479140 
481920 
484500 

2040 
1900 
1260 
1660 

mode 
paste 
mode 
delete 

Net 
node(O) (462, 178) 
Tree 
node(13) 

46 

·parrot• 

'Reptile' 
' Mammat· 



6-Producl Level Transcripl Language 

2.5 ll-Product Level 

Introduction 

The b.·Producl Level shills lhe perspeclive lo the mind of the user. In lhis level, 
we begin 10 infer lhe use(s cognilive behavior based on his or her lnteraclion wllh lhe 
syslem. This level of the grammar aclually conlains two steps. In lhe firsl, each 
operalfon symbol Is mapped 10 a correspondlong symbol thai lnlerprels the sHeets of 
lhe system operallon on the sel of inleflectuat products the user Is constructing. These 
products are well-defined. consisting of structural forms that are Important for 
wrillng. such as an isofaled concepl, a clusler of Ideas. a relation belween two Ideas. a 
prlmlllve subordlnate/superordlnale relalionship, a block of text, etc. The effecls of 
individual changes In the se t of cognitive producls are lhen aggregaled. Thus. each 6· 
Producl symbol represents the changes prod~ by one operation or a sequence of 
operalions on one of these conceptual forms. In the sechons that follow, we first 
discuss the transcription language for lhis level, then lhe grammar, and, finally, a 
sample annolaled transcript . 

2.5.1 A-Product level Transcript language 

A 6-producl level lranscrlpt Is a record of transformations In the populallon of the 
abstract antilles recognized as cognitlvely significant. These abslract entitles are of five 
types: 1) nodes 2) links 3) trees (defined as any noncyclic linked structure with at leasl 
two links and a root in networll mode or any struc1Ure in tree mode) 4) networlls 
(defined as any linked slructure with al leas! two links and not a tree) and 5) cluslers 
(defined as any group of at least two nodes wlthrn some constant dfs1ance of one another). 
A A-producl level transcripl is preceded by a header giving inlormalfon identical 10 thai 
al earlier levels. 

Nol every cognlllvety slgnlficanl aclion (or operallon) resulls In 1he creation of a A· 
product record; only those aclions (or operalions) which affecl lhe population of 
abslract entities cause a b.-product record 10 be crealed. Thus, although we may (and do) 
regard mode shills as cognillvely significant, the cognitive significance of the shifl will 
be registered al some other level. 

Header 

The header lists the following ilems, in the following order: 

1) The version of lhe Writing Environmem (WE) which was being 
used when the transcript was recorded. 
2) The date of lhe lranscripl. 
3) The lime at which the session began. 
4) The name of lhe user. 
5) The clock al lhe beginning of lhe session. 
6) The name of lhe dalabase being used. 
7) A boolean indicating whelher lhe database began wilh an emply 
workspace. 

47 



to-Product Level Transcript Language 

to-Product Record 

The format for the to-product records is consistent with that followed at other levels. 
That format Is simply: 

Time Symbol Allrlbutes 

where: 

Time - The time (In milliseconds) from the beginning of the user session until the 
beginning of the action (operation. etc.) which that particular line of the transcript 
purports to record. 

Symbol - The symbol which represents the type of action (operation, etc.) which is 
recorded on the transcript. 

Attributes • A parenthesized list headed by the mode of the transformation and followed 
by the entities affected by the transformation. 

Thus. preceding the to-product Identifier of each record, Is the time elapsed since the 
beginning of the session until the ume at the end of the actiOn event which tnggered the 
creation of the operation record (labeled "Time"). The to-product Identifier follows 
"Time· in the operation record. For cenaln ope rations. a list of atlributes follows the 
operation ldentlfler in the transcript. 

The attribute list following the A-product symbol is parenthesized. Every to-product 
record has as an attribute the mode in which the transformation occurred. Following the 
mode In the atlribute list. Is a list of products altered In the transformation, both before 
and after the transformation. The list of altered products before the transformation is 
separated from the list of altered products after the transformation by the symbol '·>'. II 
the list of products before or after the transformation is nil. then 'nil' is written on the 
transcripl. Thus a sample line from a to-product transcript might be: 

1233211 M3 (Net: N :3 ·> C4) 

Indicating that 123321 1 milliseconds after the beginning of the session, the to-product 
transformation 'M3' began in network mode altering nodes 3 and cluster 4. The record 

4325433 C1 (Net: nil -> N:4) 

Indicates that 4325433 milliseconds after the beginning of the session. the 6-product 
transformation 'C1' (a singleton node creation) began In network mode with no products 
involved prior to the transformation and w1th Node 4 involved after the transformation. 

Frequently a product might appear both before and after a transformation. For example 
If a node Is moved within a cluster. the cluster undergoes a transformation In the 
position of Its elements. In such a case, the cluster will only be cited in the after 
transformation list. On the other hand, moved and deleted nodes always appear on the list 
before transformation, while created nodes always appear after transformation. The t.· 
product transcript should be read with the a-product rule documentation at hand. 

48 



ll.·Product Level Transcript Language 

Usted below are the ll.·product symbols with a short description of each. 

A Product· Type 

M1 
M2 
M3 
M4 
MS 
M6 
M7 
MB 
M9 
M 1 0 
Ct 
01 
C2 
02 
C3 
03 
C4 
0 4 
L1 
UL1 
OLI 
OL2 
OLC1 
TCI 
TOt 
TC2 
T02 
TC3 
T03 
TC4 
TD4 
STC1 
STD1 
TPC1 
TM1 
TL1 
TL2 
TL3 
TL4 
TLS 
TL6 
TL7 
EncN 

Description 

Move singleton node to empty space 
Move node within cluster 
Move node from cluster to empty space 
Move node empty space to cluster 
Move node outside of cluster creating new cluster 
Move node desuoying cluster Into existing cluster 
Move node from existing cluster to existing cluster 
Move node from cluster destroying cluster 
Move node from empty space creating cluster 
Move node destroying cluster creating another 
Node creation in empty space 
Node deletion In empty spac& 
Node creallon creating cluster 
Node deletion destroying cluster 
Node creation within exlstlll9 cluster 
Node deletion with existing cluster 
Node creation destroying a cluster but creating another 
Node deletion destroying a cluster but creating others 
Unk node to another node 
Unlink node 
Delete linked node 
Delete linked node wi thin cluster 
Delete linked node desuoying cluster 
Node creation tree mode creating tree 
Node deletion destroying tree 
Node creation tree mode new tree root 
Node deletion net mode destroying tree root {but not tree) 
Node creation tree mode new subtree 
Node deletion tree mode shrinking subtree 
Node creation tree mode new leaf 
Node deletion tree mode of leaf 
Subtree deletion in tree mode 
Subtree addition in tree mode 
Tree creation by pasting in tree mode 
Node movement in tree mode 
Unk node (net mode) creallng tree 
Unlink node (net mode) destroying tree 
Unk node (net mode) two trees become one 
Unlink node destJoying one tree creating two others 
Unk node (net mode) new root to tree 
Unlink node net mode shrinking tree by deleting old root 
New Link which destroys a tree ( by (e.g.) creating a cycle) 
Associating text with a node in edit mode 

49 



A-Product Grammar 

2.5.2 to-Product Level Grammar 

The grammar of the A-product level differs mari<edly from the operation level grammar. 
The operation level grammar was a string grammar which formally described the context­
free parse of action level strings. In the A-product grammar, we take Into account cer1ain 
·cognitive entitles· or "cognitive products• as well operation level event records In 
determining whether a certain A-product rule type applies. 

Hence the domain of a A-product level parse is the operation level transcript as well as a 
well-deflned conceptual space kept resident In the computefs memory. which purpor1s to 
represent the conceptual space (to some degree) of a user of WE al a particular point In 
lime. 

Currently five types of entities are recognized as cognitively significant. The creation, 
modification, and deletion of these entitles serves as the basis for grammatical 
analysis at the cognitive product level, which in turn serves as input for the analysis 
at the cognitive process and cognitive mode levels. The five rypes of antilles and their 
informal definition are as follows: 

1) singleton node: An atomic rectangular entity of networi< and tree modes which is 
the building block of the system. Text may be associated with nodes In either Edit or 
Revise mode. 

2) relation : A directed arc linking two nodes. Relations are linked structures not 
considered networks or trees. 

3) cluster: Any group of two or more nodes in network mode In which the top left 
corner of each node of the group Is separated by no more than some constant distance 
from the top left corner of some other node within the group. Currently this constant 
distance is se t at 145 pixels. Thus (e.g.) in the current Implementation, two nodes 
separated by 145 pixels (or less) form a cluster, as will twenty nodes side-by-side 
in which every node Is within 145 pixels of some other node of the group. Clusters 
may only be created in network mode. 

4) tree: Any linked structure of two or more Jinks In networi< mode which contains a 
unique root node (a node with no parent), and in which every other node of the 
structure has one and only one parent. In tree mode, every structure (Including a 
structure with only one ncde) is defined as a tree of one or more nodes. 

5) network: Any linked structure of two or more links in networi< mode which is not 
a tree. Networks exist only in network mode. 

More formally we define the cognitive products in the following manner: 
Cluster: 
1) Partition the node set. N. with the transitive closure of the dist s minimum­

cluster-distance relation. 
2) Any such partition. c, such that lei 2: minimum_cluster_distance is a cluster. 

50 



.:.-Product Grammar 

Singleton Node: 
Any node not in a cluster is referred 10 as a singleton node. 

Tree, Network, Rei a tlo n: 
1) Parlition the node set using the transitive closure of the ls_llnked_to relation L 
(n1 Ln2 <·> there Is a link L from n1 to n2). 
2) Deline a path of length K as some node sequence nt. n2 •..•• nk such that niLnn+1 
1 s n s k and a cycle as a path of length > 1 such that n 1 • nk. 
3) Any partition s such that I) lsi ~ mlnimum_tree_size and ii) S contains no cycles 
Is a J..t~Ut. 
4) Any partition s such that l) lsi ~ minimum_network_size and ll) S IS not a tree Is 
a oetworJs. 
5) All other partitions are relalions. 
6) Nodes with no links are not classified. 

With the current state of these cognitive products (their number and composition) In 
memory, after each operation the parser attempts to determine whether a 
transformation of a well-defined type has occurred In the ·conceptual space· of the 
system. 

For each rule of the .:.-product grammar, 4 items are given: 
1) A description of what the rule is supposed to capture: 
2) A description of the change(s) In the cognitive product population effected by 
the transformation In question; 
3) A horn-clause like formal rule describing the transformation. end 
4) a graphic Image of the transormatlon. 

For 2) (the population description). a number or abbreviations are used. They are: 
C: cluster 
N: singleton node 
L: link 
W: network 
S: structure 
->: the transformation In question 

Every population description is prefixed with eIther a ·c· (lor cluster) or ·s· (for 
structure), depending on whether lhe transformation affects the cluster population or the 
structure population. Of course certain transformation may affect both the structure and 
cluster population; for these transformations, the population description will have 2 
entries: one entry for the transformation in cluster population and one for transformation 
in structure population. 

A sample population description is: "(C: <C> --> <C,N>)." From this description we can tell 
that as regards the cluster population. the transformation is from a cluster to a cluster 
and a singleton node. Or we might see: "(S: <N,T> --><h)." From this description we can 
deduce that the structure population has been modified in the following manner: Prior to 
the transformation we had a singleton node and a tree; following the transformation we 
only had a tree. Th is example indicates the limitation of this sort of description various 
operations could lead to this transformation in the cognitive product population. 

The horn-clause like ("like" since (e.g.) skotem functions have not been used) grammar 
description has the following lorm: 

5 I 



A-Product Grammar 

operation-type(variable)(Predicates 1 •. N -> Predicates 1 .. M) 

where the "operation-type• refers to one of the operation event-types at the operation 
level (e.g. ·newNode", or "move"), the variable ranges over the node, link, or tree which 
the operation acted on, the "·>" is the transformation symbol, and the "Predicates" are one 
or more of the following: 

Node(x) 
Link(x) 
Relation(x) 
Tree(x) 
Cluster(x) 
Network(x) 
lsln(x,y) 
lnCiuster(x) 
Root(x,y) 
lnterior(x,y) 
Leaf(x,y) 
Source(x,y) 
Destlnatlon(x ,y) 
Create(x) 
Delete(x) 

: xisaNode 
:xisaUnk 
: x ls a Relation 
: x is a Tree 
: x is a Cluster 
: x is a Network 
:xis In y 
: x is In a Cluster 
: x Is the root of y 
: x Is In the Interior ol y 
: x is a leaf of y 
: x Is the source of y 
: x is the destination ol y 
: x is created 
: x is deleted 

For example the rule lor Mt Is: move(x)(Node(x). -(lnCiuster(x)) -> 
-(lnC iuster(x)) 

From this rule we learn that II the operalion was a ·move· operalion, and a node was 
moved. and prior to tho operation the node was not In a cluster, and alter the operation the 
node was still not in a cluster. then we have an M1. Or if we see the rule lor TD4: 

delete(x)(Node(x), Tree(y). lstn(x,y). Leal(x .y) -> Delete(x)) 

we know that II we have a "delete" of some node x, and x Is the leaf of some tree y prior 
to the transformation, and the transformation entails the deletion of node x, then we have 
an instance of rule TD4. 

52 



A-Product Grammar 

Rule M1 

Description: A move of a node in empty space, affecting neither clusters nor networks. 

Population: (C: <N> --> <N>) 

M 1 :- move(x)(Node(x). -(lnCiuster(x)) -> -(lnCiuster(x))) 

• 
M1 -

• 

53 



A-Product Grammar 

Rule M2 

Description: A move of a node within a cluster. 

Population: (C: <C>··> <C>) 

M2 :· move(x)(Node(x),Ciuster(y),lsln(x,y) ·> Cluster(z). lsln(x.z). (z•y)) 

M2 

' 

54 



6-Product Grammar 

Rules M3 & M4 

Rule M3 

Description: A move of a node from within a duster to empty space. 

Population: (C: <C> ·-> <C,N>) 

M3 :- move(x)(Node(x), Cluster(y). lsln(x,y) -> -(lsln(x,y))) 

rule M4 

Description: A move of a node from empty space lo a cluster 

Population: (C: <C,N> -> <C>) 

M4 :- move(x)(Node(x), Cluster(y), -(lnCiustor(x)) -> lsln(x,y)) 

M3 
M4 • 

55 



.6.-Product Grammar 

Rules M5 & M6 

Rule MS 

Description: A move of a node from a cluster creating a new cluster 

Population: (C: <Cl,N> -> <C1,C2>) 

MS :- move(x)(Ciuster(y), Node(x), lsln(x.y) -> Cluster(z), -(z-y). 
lsln(x,z), Create(z)) 

rule M6 

Description: A move of a node from a cluster to another cluster 
destroying the first cluster 

Population: (<C1,C2> --> <Cl,N>) 

M6 :- move(x)(Ciuster(y), Node(x), lsln(x,y) -> Cluster(z), lsln(x,z). 
-(z-y). Delete(y)) 

MS 
M6 

0 

56 



6-Product Grammar 

Rule M7 

Description: A move !rom one cluster to another cluster: cluster 
status unchanged 

Population: (C: <C1 ,C2> --> <C1 ,C2>) 

M7 :- move(x)(Ciuster(y), Node(x), lsln(x,y) -> Cluster(z). lsln(x.z). 
-(y-z)) 

M7 ® a a ® 

57 



c.-Product Grammar 

Rules MB &M9 

Rule MB 

Description: A move of a node from empty space to another singleton 
creating a cluster 

Population: (C: <C> ··> <N1,N2>) 

M8 :· move(x)(Ciuster(y), Node(x). lsln(x, y) ·> -(lnCiuster(x). Oelete(y)) 

Rule M9 

Description: A move of a node from a cluster destroying the cluster 
leaving nodes In empty space 

Population: (C: <Nl,N2> ·> <C>) 

M9 :· move(x)(Node(x). -(lnCiuster{x)) ·> Cluster{y). lsln(x.y). 

MS 
M9 

.. 

Create(y)) 

0 

• 

58 



6·Product Grammar 

Rule M10 

Description: Move of a node from one cluster (destroying it) to a 
singleton creating a cluster 

Population: (C: <C1 .N1> ·-> <C2.N2>} 

M 1 0 :- move(x)(Node(x), Cluster(y), lsln(x ,y} ·> Cluster(z). lsln(x,z), 
Create(z). Delete(y). -(z.y}) 

M10 ~ - ~ 

0 

~ 0 

59 



6-Product Grammar 

Rule C1 & D1 

Rule C1 

Description: Creation of a singleton node 

Population: (C: <> -> <N>) 

Cl :- newNode(x)(Node(x) -> Create(x),-(lnCiuster(x))) I 
C1 :- pasteNode(x)(Node(x) -> Create(x), ~(lnCiuster(x))) 

Rule D1 

Description: Deletion of a singleton node 

Population: (C: <N> --> <>) 

D1 :- delete(x)(Node(x). ~(tnCiuster(x)) -> Delete(x)) 

C1 
01 - • 

60 



c.-Product Grammar 

Rules C2 & 02 

Rule C2 

Description: Creation of a node causing creation of a cluster 

Population: (C: <N> --> <C>) 

C2 :- newNode(x)(Node(x) -> Creete(x), Cluster(y), Create(y), tsln(x,y)) I 
C2 :- pasteNode(x)(Node(x) ·> Create(x), Cluster(y), Create(y}, lsln(x,y)) 

Rule 02 

Oescriplion: Deletion of a node causing deletion of a cluster 

Population: (C: <C> -> <N>) 

02 :- delete(x)(Node(x),Ciuster(y), lsln(x,y) ·> Oelete(x), Oele te(y))) 

C2 0 
D2 

6 1 



A-Product Grammar 

Rules C3 & 03 

Rule CJ 

Description: Creation or a node wflhin a cluster 

Population: (C: <C> ··> <C>) 

C3 newNode(x)(Node(x), Cluster(y) ·> Create(x),Ciuster(z), lsln(x,z), 
(x-y)) I 

C3 :- pasteNode(x)(Node(x). Cluster(y) ·> Cluster(z). lsln(x.z). (x-y)) 

Rule 03 

Description: Deletion or a node within a cluster 

Population: (C: <C> ·> <C>) 

03 :· delete(x)(Node(x), Cluster(y), lsln(x,y) ·> Oelete(x),Ciuster(y), 
(x-y)) 

C3 
03 

62 



t.-Product Grammar 

Rules C4 & 04 

Rule C4 

Description: Creation of a node creating a new cluster. and destroying other 
clusters. 

Population: (C: <C1 ,C2> -> <C3>) 

C4 :- newNode(x)(Node(x). Cluster(y), Cluster(z) ·> Create(x),Ciuster(w). 
lsln(x,w). Create(w), Delete(y), Delete(z)) 

C4 :- pasteNode(x)(Node(x). Cluster(y), Cluster(z) ·> Create(x),Ciuster(w), 
lsln(x.w). Create(w). Delete(y), Delete(z)) 

Rulo D4 

Description: Deletion ot a node destroying one cluster but creating other 
clusters. 

Population: (C: <C1> ·> <C2,C3>) 

04 :- delete(x)(Node(x), Cluster(y),lsln(x.y) ·> Delete(x).Delete(y). 

C4 
D4 

Cluster(z), Cluster(w). Create(z). Create(w)) 

63 



<~.-Product Grammar 

Rules L 1 & UL1 

Rule L 1 

Description: Creation of an isolated link 

Population: (S: <N1 ,N2> - > <l>) 

L1 :- newlink(x)(Link(x) -> Relation(y), lsln(x,y). Create(x), Create(y)) 

Rule UL 1 

Description: Deletion ol an Isolated link 

Population: (S: <l> --> <N1.N2>) 

UL 1 :- delete(x)(Link(x), Relation(y). lsln(x ,y)-> Delete(x) ,Dele te(y)) 

L1 
UL 1 

• 
• 

·~ 
• 

64 



A-Product Grammar 

Rule DL1 

Description: Deletion of an isolated node which is linked 

Population: (S: <L> -> <N>) 

DL 1 :- delete(x)(Node(x), Relation(y), lsln(x,y), -(lnCiuster(x)) -> 
Delete(x) ,Delete(y)) 

DL1 
.\ .. 

0 0 

65 



6-Product Grammar 

Rule DL2 

Description: Deletion of a node which is within a cluster; 
cluster status unchanged 

Population: (S: <l> - > <N>) 
Population: (C: <C> -> <C>) 

DL2 :- delete(x)(Node(x), Relatlon(y), Cluster(z). lsln(x.y), lsln(x,z) ·> 
Delete(x). Delete(y)) 

DL2 

66 



A-Product Grammar 

Rule OLC1 

Description: Deletion of a linked node destroying a cluster 
Population: (S: <l> -> <N>) (C: <C> -> <NI .. NN>) 

DLC1 :· delete(x)(Node(x), Unk(w),Relation(y), Ciuster(z), lsln(x,y), lsln(x,z) ·> 
Delele(w), Delete(x), Delete(y), Delete(z)) 

DLC1 0 

67 



6.-Product Grammar 

Rules TC1 & TD1 

Rule TC1 

Description: Creation of a tree in tree mode 

Population: (S: <T> -> <T>) 

TC1 :- newNode(x)(Node(x) -> Tree(y), lsln(x,y), Create(x). Create(y). 
Root(x.y)) 

Rule TD1 

Description: Deletion of a node destroying a tree 

Population: (S: Net: <T> --> <l>) 
(Possibly) (C: <Ct .. Cn> -><CL.Cm.Nt..Nj>) 

TD1 :- deleto(x)(Node(x), Tree(y), lsln(x,y). leaf(x.y) -> Delete(x), Delete(y)) 

TC1 
TD1 I T 

"" r~ 
0 • 

68 



c.-Product Grammar 

Rules TC2 & TD2 

Rule TC2 

Description: New root creation in tree mode 

Population: (S: <T> -> <T>) 

TC2 :· newNode(x)(Node(x). Tree(y) ·> Tree(z), Creale(x), lsln(x,z). 
Root(x,z), (Y•Z)) 

Rule TD2 

Description: Deletion of a linked node which Is the root of a 
tree In net mode 

Population: (S: <T> -> <T>) 
(Possibly)(C: <C1..Cn> ··> <C1..Cm,N1 .. Nj>) 

TD2 :· delete(x)(Node(x). Tree(y), lsln(x,y), Root(x,y) ·> Delete(x)) 

TC2 
TD2 ()/\() 

T 

"' ~ 
()J \ 

69 



A-Product Grammar 

Rules TC3 & TD3 

Rule TC3 

Description: Addilion of an interior node in tree mode 

Population: (S: <T> ··> <l>) 

TC3 :- newNode(x)(Node(x). Tree(y) ·> Create(x). Tree(z), lsln(x.z). (z.y). 
lnterlor( x.z)) 

Rule TD3 

Description: Deletion of en interior node In tree mode. 

Population: (S: <T> ··> <h) 

TD3 :- delete(x)(Node(x). Tree(y), lsln(x.y), lnterior(x,y) -> Oelete(x)) 

TC3 
TD3 ol\ ~ 

~ T 
A 

0 l 

70 



A-Product Grammar 

Rules TC4 & TD4 

Rule TC4 

Description: Addition of a leal node in tree mode 

Popula1ion: (S: <T> -> <T>) 

TC4 :- newNode(x)(Node(x), Tree(y) -> Create(x), Tree(z), lsln(x,z), (y•z), 
Leal(x ,z)) 

Rule TD4 

Descrlpllon: Deleilon ol a leal node in tree mode 

Popula1ion: (S: <T> --> <T>) 

TD4 :- delete(x)(Node(x), Tree(y), lsln(x,y), Leal(x.y) -> Delete(x)) 

TC4 
TD4 o'\ T 

T of\o 
r .. 

7 I 



6-Product Grammar 

Rules STC1 & STD1 

Rule STC1 

Description: Addition of a subtree in tree mode 

Population: (S: <T1 ,T2> ··> <T1>) 

STCl :· pasteTree(x)(Tree(x), Tree(y) ·> Tree(z). lsln(x,z), (y-z)) 

Rule ST01 

Description: Deletion of a subtree in tree mode 

Population: (S: <T> ··> <T>) 

STD1 :- deteteSubtree(x)(Tree, Tree(x), Tree(y). tsln(x.y) ·> Oelete(x)) 

STD1 

72 



ti.·Product Grammar 

Rule TPC1 

Description: Creation of a tree in tree mode by pasting. 

Population: (S: Nil .. > <T >) 

TPC1 :· pasteTree(x)(Tree,Tree(x) ·> Create(x)) 

73 



A-Product Grammar 

Rule TM1 

Description: Movement of a node in a tree in tree mode 

Population: ($: <T> ·> <T>) 

TM1 :- move(x)(Node(x), Tree(y). lsln(x,y) · > Tree(z), lsln(x,z). (y-z)) 

TM1 .t\ T f\ 
0 • 

74 



6-Product Grammar 

Rules TL I & Tl2 

Rule TL1 

Description: Unk creation causing creation of a tree in net mode 

Population: (<L,N> - > <T>) 

Tl1 :- newl ink(x)(Link(x), Relatlon(y) -> Tree(z). lsln(x,z). 
lsln(y,z). Create(z). Create(x)) 

Rule TL2 

Descriplion: Deletion of a link causing a tree to be destroyed 

Population: (S: <T> -> <L,N>) 

Tl2 :- detete(x)(Link(x), Tree(y), Root(y,Source(x)). 

TL1 
Tl2 

(Leaf(y.Destlnation{x)) V (lnterlor(y.Destlnatlon(x)). lsfn(x.y) -> 
Delete(x), Delete(y)) 

f "' 1\ " 0 0 0 0 

75 



A-Product Grammar 

Rules TL3 & TL4 

Rule TL3 

Description: Addition of a link giving a tree a new root 

Population: (<L,T> ··> <T>} 

TL4 :- newUnk(x)(Unk(x), Tree(y) ·> Create(x), lsln(x,y)) 

Rule TL4 

Description: Deletion of a link leaving a tree and a relation 

Population: (S: <T> ·> <L,T>) 

TL4 :· delete(x)(Link(x). Tree(y), lsln(x,y) ·> Delete(y)) 

TL3 
TL4 

76 



a-Product Grammar 

Rules TL5 & TLS 

Rule TL5 

Descriplion: Addition of a link (from a singleton node) giving 
a tree a new root 

Populallon: (S: <N,T> - > <T>) 

TLS :- newllnk(x)(Unk(x), Tree(y) -> Creale(x). Tree(z). lsln(x,z), 
Rool(z,Source(x)). In lerior(z, Desllnalion(x)), (z•y)) 

Rule TLS 

Descriplion: Deletion of a link leaving a tree and a singleton node 

Population: (S: <T> --> <T,N>l 

TLS :- delele(x)(Link(x), Tree(y), lsln(x,y), Root(y, Source(x)). 
lnterior(y,Deslination(x)) ·> Delete(x)., Tree(z). (Z•Yll 

TLS 
TL6 

0 

/\ 
"' ).n .. 1'1 

77 



~-Product Grammar 

Rule TL7 

Description: Creation of a link destroying a tree and creating a nerwor1<. 

Population:(S: <l> -> <W.l>) 

TL7 :· newllnk(x)(link(x). Tree(y). Networ1<(z}. lsln(x.y) ·> 
Create(x). Create(z}, lsln(x.z)) 

TL7 01\0 N l\ o. 0 

78 



6-Product Grammar 

rule EncN 

Description: Associating 1ex1 wilh a node in edit mode 

EncN :- encode(x)(Node(x) ·> Encoded(x)) 

79 



Sample Annotated Transcript - ft.-Product Level 

2.5.3 Sample Annotated Transcript • to-Product Level 

The lollowing Is an annotated A-product level transcript. Annotations follow lines (or 
groups of lines) which they annotate. and are preceded by two asterisks. 

Environment Transcript version 
2.0 

·writing 
version: 
date: 
time: 
user: 
clock: 
database: 
empty: 

2.o· 

23 September 1988 
1:23:26 pm 
jenkins 
27947 
omptyWS 
true 

206860 5260 C1 (Net: nil -> N:1 ) 

•• Node # 1 is created in networll mode; the node Is created outside 
•• of any existing cluster. 

212120 3300 
215420 1 0400 

C1 
C2 

(Net: nn -> N:2 ) 
(Net: nil -> N:3 C:t 

•• Node # 3 is created in network mode: the noda creation causes a 
•• cluster to be created. The C2 Indicates that a oode is created 
•• creating a cluster. 

225820 6760 
232580 4360 

C3 
L1 

(Net: nil -> N:5 C:3 ) 
(Net: nil ·> L:t ) 

·• A link Is created creating a relation between nodes. 

236940 5580 TL1 

•• A second link is created creating a tree. 

242520 6380 C3 

•• A node Is created within cluster 3. 

248900 10040 M2 

•• A node is moved within cluster 3. 

258940 
263300 
265820 
270020 

4360 
2520 
4200 
3780 

C3 
L1 
C3 
Tlt 

•• A link Is creating creating a second tree. 

80 

(Net: nil -> T:t L:2 ) 

(Net: nil ·> N:6 C:3 ) 

(Net: N:6 -> C:3 ) 

(Net: nil -> N:7 C:3 ) 
(Net: nil -> L:3 ) 
(Net: nil ·> N:8 C:3 ) 
(Net: nil -> T:2 L:4 ) 



Sample Annotated Transcript • o-Product Level 

273800 
281980 
287520 

8180 
5540 
3540 

M2 
C3 
TL5 

(Net: N:8 ·> C:3 ) 
(Net: nil ·> N:9 C:3 ) 
(Net: T:2 ·> T:3 L:S ) 

•• A link Is created linking two trees (two trees become one). 

291060 
354040 
421380 

62980 
67340 
3700 

TL3 
EncN 
EncN 

• • Text is associated with node # 9. 

425080 
430380 
439660 
449440 
458440 
468380 
479140 
484500 

5300 
9280 
9780 
9000 
9940 
10760 
5360 
37640 

TC4 
TC4 
TM1 
TC4 
TC4 
TMI 
C3 
TD4 

8 I 

(Net: nil ·> L:6 ) 
(Edit: N:9 ·> nil) 
(Edit: N:9 ·> nil) 

(Tree: N:10 ·> nil) 
(Tree: N:ll ·> nil) 
(Tree: N:1 0 ·> nil) 
(Tree: N:12 ·> nil) 
(Tree: N:13 · > nil) 
(Tree: N:l3 ·> nil) 
(Net: nil ·> N:14 C:3 ) 
(Tree: N:13 ·> nil) 



Cognitive Process Transcript Language 

2.6 Cognitive Process Leve l 

Introduction 

The Cognitive Process Level represents the cognlive process Inferred to be aclive In 
the mind of the user In producing one or more changes to the set of cognitive products. 
Thus. for example, a sequence of addllions to a group of nodes in close spatial 
proximity to one another is interpreted as an Instance of sustained "Focused Recall" 
whereas. if the nodes are "far span·, the process Is assumed to be unfocused or free 
recall. Currently. the grammar also inserts system mode shill operations In to the 
Cognitive Process Transcript to facilitate the Cognitive lv'.ode portion of the grammar, 
described below. However. we anticipate removing these symbols in the near future 
when that portion of the grammar Is completed. In the sections that follow. we first 
discuss the transcription language for the Cognitive Process Level. then the grammar, 
and, finally. a sample annotated transcript. 

2.6.1 Cognitive Process Transcr ipt Language 

A cognitive process transcript Is a record of the cognitive processes posited as having 
occurred In the mind of a user of the Wntiog Environment during the course of a session. A 
cognitive process transcript is preceded by a header and followed by a list of cognitive 
process records (one per line). 

Header 

The header lists the following Items, in the following order: 

1) The vers10n of the Writing Environment (WE) which was being 
used when the transcript was recorded. 

2) The date of the transcript. 
3) The time at which the session began. 
4) The name of the user. 
5) The clock at the beginning of the session. 
6) The name of the database being used. 
7) A boolean indicating whether the database began with an empty 

workspace. 

Cognitive Process Record 

The format for the 'cognitive process records is consistent with that followed at other 
levels. That format is simply: 

Time Symbol Altr ibutes 

82 



Cognitive Process Transcript Language 

where: 

Time - The time (In milliseconds} from the beginning of the user session until the 
beginning of the action (operation. etc.} which that particular line of the 
transcript purpons to record. 

Symbol - The symbol which represents the type of cognitive process which Is 
recorded on the transcript. 

Attributes - The object of the COQnitive process where object-the entity which Is the 
focus of the current COQnltive process. Certain processes (e.g. "Shift Perspective 
Network" (ShiN}} have no object. 

A cognitive process symbol is outpu t only II e1ther: a} the COQOIIive process Is different 
from the previous cognitive product. or b) If the cognitive process Is the same as the 
previous process, the entliy which Is the focus of the two processes Is differen t. Thus II a 
"Loose Recall" Is followed by a "Focused Recall". tv.'O records wiff always be created. ff a 
"Focused Recall" Is lollowed by a "Focused Recall", two records will be created only II 
two different clusters were the subject ol the disparate "Focused Recalls". 

Cogn!J!ye process Svmbol Modes 

Loose Recall tro 
Focused Recall R:C 
Cluster CLU 

Decluster a:c 
Refine Cluster FE 

Relate REL 
Derelate OER 

Hierarchize HIE 
Dehierarchlze DEH 
Develop Hierarchy DEV 
Shrink Hierarchy SHK 
Synthesize Hier. SYN 
Desynth. Hier. DES 
Refine Hier. REF 

Shift Perspective Net ShiN 
Shift Perspective Tree ShiT 
Shift Perspective Edit ShiE 
Shift Perspective Revise ShiR 
Shift View ShiV 
Shift Context ShiC 
Erccde 8\C 

N 
N 
N 
N 
N 
N,T 
N.T 
N.T 
N,T 
N,T 
N,T 
N.T 
N 
N,T 
N 
T 
E 
R 
N.T.E,R 
T 
E 

8 3 

Qescr!pJ!on 

Node Creations In Empty Space 
Node Creations In Clus ters 
Node Movements into Clusters 
Node Deletions/Movements out ol Clusters 
Node Movement with1n Clusters 
Unking One Node to Another/No Tree 
Unlinking an UnTree 
Creation ol a Tree 
Destruction of a Tree 
Adding to a Tree 
Shrinking a Tree 
Joining Two Trees 
Breaking one tree into two trees 
Rearranging the Nodes in a Tree 
Shift Perspective To Network Mode 
Shift Perspective To Tree Mode 
Shift Perspective To Edit Mode 
Shift Perspective To Revise Mode 
Shift the viewing space of a mode 
Shift the portion of a tree being viewed 
Associating Text with a Node 



Cognitive Process Grammar 

2.6.2 Cognitive Process Grammar 

The grammar for the cognitive process level is very simple. Every cognitive process rule 
is mapped to either one or more t.·products, or one or more operations. These mappings 
are summarized here in two ways. First. two tables are given. Table 1 lists those cognitive 
processes which rewrite one or more t.·product symbols. Table 2 lists those cognitive 
processes which rewrite one or more operation symbols 

Secondly, a string parsing grammar similar lo the grammars found at the action and 
operation level Is given formally describing the rewrite rules used In obtaining a mapping 
from previOus levels to the cognitive process level. 

Table 1 : 

Coonitlye Process 

Loose Recall 
Focused Recall 
Cluster 

Oecluster 
Refine Cluster 

Relate 
Derelate 

Hierarchlze 
Oehierarchize 
Develop Hierarchy 
Shrink Hierarchy 
Synthesize Hler. 
Desyn. Hier. 
Refine Hier. 

Table 2 : 

Coonltiye Process 

Shift to Network 
Shift to Tree 
Shift to Edit 
Shih to Revise 
Shih View 
Shift Context 
Encode 

The Grammar: 

Symbol A· Productls\ 

1.00 Cl 
FCC C2,C3,C4 
CUJ M4,MS,M6,M7,M9.M10 
oo; M3,M8,02.DLC1 
REC M2.03 
REL L 1 
DER Ult,DL1.DL2 
HIE TC1,Tl1 
OEH T01 ,Tl2,TL7 
DEV TC3,TC4 
SHK TD3,TD4.STD1 
SYN TC2,TL3.TL5 
DES TD2.TL4,TL6 
REF TM1 

Symbol 

ShiN 
ShiT 
ShiE 
ShiR 
ShiV 
ShiC 
Enc 

Operatiools\ 

mode "Ner 
mode "Tree· 
mode "Para• 
mode "Revise• 
layout I view 
context 
eooxle 

Loose Recall Record (Time) 

Focused Recall Record (Time) 

: :~ C 1 (Time): 

::~ C2 (Time) 1 
C3 (Time) I 
C4 (Time); 

84 



Cognitive Process Grammar 

Cluster Record (Time) ::= M4 (Time) 
M5 (Time) 
M6 (Time) 
M7 (Time) 
M9 (Time) I 
M10 (Time); 

Decluster Record (Time) .. - M3 (Time) I 
MS (Time) I 
02 {Time) I 
OLC1 (Time); 

Refine Cluster Record (Time) ::- M2 (Time) I 
03 (Time); 

Relate Record (Time) .. - L1 (Time); 

Derelate Record {Time) ::· UL1 (Time) I 
DL1 (Time) I 
DL2 (Time); 

Hlerarchize Record (Time) ..• TC1 (Time) I 
TL1 (Time); 

Dehlerarchize Record (Time) .. - TD1 (Time) I 
TL2 (Time) I 
TL7 (Time); 

Develop Hierarchy Record (Time) ..• TC3 (Time) I 
TC4 (Time); 

Shrink Hierarchy Record (Time) •. = TD3 (Time) I 
TD4 (Time) I 
STD1 (Time); 

Synthesize Hierarchy Record (Time) ::= TC2 (Time) I 
TL3 (Time) I 
TLS (Time); 

Desynthesize Hierarchy Record (Time) ::=- TD2 (Time) I 
TL4 (Time) I 
TL6 (Time): 

Refine Hierarchy Record (Time) ::.::: TM1 (Time); 

•• The right·hand sides of the following rules refer to records found at the operation 
•• level. 

Encode Record 

Shift Tree Mode Record (Time) 

Shift Network Mode Record (Time) 

::. Encode (Time); 

.. = Mode ("Tree·, Time); 

::= Mode ("Net", Time); 

85 



Cogn llive Process Gram mar 

Shill Edit Mode Record (Time) ..• Mode ("Para·, Time}: 

Shlfl Revise Mode Record (Time) ..• Mode ("Revise·. Time): 

Shift View Record (Time) ..• Layout (Time) I 
View (Time); 

Shift Context Record (Time) ..• Context (Time). 

86 



Sample Transcript · Cognitive Process Level 

2.6.3 Sample Annotated Transcript - Cogn it ive Process Level 

The following is an annotated cognitive process level transcript. Annotations follow 
lines (or groups of lines) which they annotate. and are preceded by two asterisks. 

Envlronmenl Transcript version 
2.0 

'Writing 
version: 
date: 
time: 
user: 
clock: 
database: 
empty: 

80 

23 September 1988 
1:23:26 pm 
jenkins 
2794 7 
emplyWS 
lrue 

205340 ShlE 

.. The subjecl shifts to edrt mode. 

205420 1440 ShiN 

.. The subject shifts Jo network mode. 

206860 
2 12120 

5260 
3300 

Loo 
Loo 

.. Two instances of loose recall occur. 

215420 
225820 

10400 
6760 

Rx; 
Rx; 

.. Two instances of focused recall occur. 

232580 
236940 

4360 
5580 

Rei 
Hie 

•• The subjecr "hierarchizes. • 

242520 
248900 

6380 
10040 

Rx; 
Rei 

•• The subject refines a cluster. 

258940 
263300 
265820 
270020 
273800 
281980 
287520 

4360 
2520 
4200 
3780 
8180 
5540 
3540 

Rx; 

Rei 
Rx; 
Hie 
Rei 
Rx; 
Hie 

2.0' 

87 



Sample Transcript - Cognitive Process Level 

291060 22200 Syn 

•• The subject synthesized a hierarchy. 

313260 29700 ShiT 

•• The subject shlhs to tree mode. 

342960 2680 ShiV 

•• The subject shifts view (by for example viewing a subtree). 

345640 
354040 

8400 
67340 

ShiE 
Enc 

•• The subject writes lor a period of 67340 milliseconds In edit mode. 

421380 
421420 
425080 
430380 

40 
3660 
5300 
9280 

Enc 
ShiT 
Oev 
Dev 

•• The subject develops a hierarchy. 

439660 9780 Reh 

•• The subject relines a hierarchy. 

449440 
458440 
468380 
4nt6o 
479140 
481920 
484500 

9000 
9940 
8780 
1980 
2780 
2580 
7300 

Oev 
Dev 
Reh 
ShoN 
Foe 
ShiT 
Shk 

The subject shrinks a hierarchy. 

8 8 



Cognitive Mode Transcript Language 

2.7 Cognitive Mode Level 

Introduction 

The Cognitive Mode level represents the largest shifts In cognitive behavior 
modeled by the grammar. Shifts In Cognitive Mode are strongly suggested when the 
user shifts from one system mode to another. But the two are not always the same. For 
example, when a user working in network mode shifts lrom building small conceptual 
s1ructures to linking them Into a larger hierarchical structure. this may Indicate a 
shift in Cognitive Mode. On the other hand, when the user is building a large 
hierarchical structure in tree mode and returns to network mode to copy a structural 
component into the tree, that shift In system mode may not Indicate a shill In Cognitive 
Mode. At present, this portion of the grammar Is Incomplete. We currently Infer 
shifts in cognitive mode largely from shifts in system mode operations inserted Into 
the Cognitive Process Transcript. but we will add rules In the near future to Infer 
shifts from context sensitive sequences of cognitive process symbols. In the sections 
that follows. we forst discuss the transcription language lor this level, then the 
grammar, and, finally, a sample annotated transcript. 

2.7.1 Cognitive Mode Transcript Language 

A cognitive mode level transcript consists of a header followed by a series of one or 
more cognitive mode records. Currently we posit four cognotove modes in which a user 
of WE may function: an exploration mode, an organization mode, a writing mode, and a 
revision mode. By design these four cognitive modes correspond closely to the four 
system modes (in order • network mode, tree mode. edot mode, and text mode), 
although the mapping is not one-to-one. The user may shift system modes wlthoul 
shifting cognitive mode or shift cognitive modes without shifting system mode. (See 
grammar.) Each cognitive mode record occupies one line of the transcript. 

Header 

The header lists the following Items, In the following order: 

1) The version of the Writing Environment (WE) which was being 
used when the transcript was recorded. 

2) The dale of the transcript. 
3) The time at which the session began. 
4) The name of the user. 
5) The clock at the beginning of the session. 
6) The name of the database being used. 
7) A boolean indicating whether the database began with an empty 

workspace. 

89 



Cognitive Mode Transcript Language 

Cognitive Mode Record 

Each line or the cognitive mode transcript contains three columns. The first column 
contains the absolute time since the beginning or the transcript at which lhe cognitive 
mode began. This value is obtained directly from the first column of the operation level 
transcript. 

The second column contains the duration of the cognitive mode. and is obtained simply 
by subtracting the absolute time of the next cognitive mode from the absolute time of 
the current cognitive mode The durat.ion of the last cognitive mode of the transcript is 
obtained by subtracling the last absolute time listed on the operation transcript from 
the absolute time or the current cognitive mode. 

The third column or the cognitive mode transcript lists a symbol which represents the 
system's posit as lo what cognitive mode was underway during the period represented 
by columns one and two. Currently four such symbols appear In the transcript: 

1. Explore: The symbol lor exploration mode. 
2. Organize: The symbol for organizatiOn mode. 
3. Edit: The symbol for write mode. 
4. Revise: The symbol for revise mode. 

Thus the template for a line of the cognitive mode transcript Is: 

Time Duration Symbol 

where ·symbol" Is either "Explore; ·organize: "Edit." or "Revise: 

90 



Cognitive Mode Grammar 

2.7.2 Cognitive Mode Grammar 

The cognitive mode grammar tries to capture from the operation level transcript along 
with certain additional information the current cognitive mode ol a user of WE. The 
cognitive mode ascription Is based pnmarily on the current system mode. However 
shil1s In system mode do not necessarily signal shifts In cognitive mode. For example 
the operation record will record a shill In system mode in response to the cursor 
passing momentarily over (e.g.) the text mode area of the screen. The user may move 
the cursor from tree to network mode, but do nothing before returning to tree mode. 
We filler the operation record transcript to avoid positing cognitive mode shifts in 
such circumstances. 

On the other hand. we posit that the user may shift cogmtive modes while remaining in 
the same system mode. For example the user may be In network mode, with 
Exploration mode being posited as the current cognitive mode. The user may begin 
systematically building a large tree. during which we might be warranted In positing a 
shift In cognitive mode from ExploratiOn mode to Organization mode. In the current 
Implementation we do not capture this sort of cognitive shirt. In later Implementations 
the cognllive mode posits will be based upon the cognitive process transcript : we then 
will be able to capture lhts type of cognitive mode shift. 

The operation level transcript fists all system mode changes which occur during a user 
session. Every mode change Is one of five possible types: 

1 : Network mode: the network system mode; 
2: Tree mode: the tree system mode; 
3: Edit mode: the edit system mode; 
4: Revise mode: the text system mode; 
5: Control Panel mode: the mode In which a user has access to the system-wide 
menus. These menus are accessed through the bar at the top of the writing 
environment. 

Every such mode change will result In the creation of an cognitive mode event record 
wllh three exceptions: 
i: The mode •cp· does not result in the creatiOn of an eve01 record: 
ii: If the duration of the mode change was less than one second, an event record is not 
created. The duration of the mode is relative to the next mode change; thus duration Is 
calcu lated by subtracting the lime at the beginning of the next mode from the time at 
the beginning of the current mode; 
iii: If the mode change was either to netNork or tree mode, and the user does nothing in 
the mode before changing to a diHerent mode. an event record is not created. Nothing is 
done in the mode If the operation (in the operation level transcript) following the mode 
change to tree or network mode is another mode change. 

From points ii. and iii. It follows that an event record is created for the current mode 
change only after the next mode change. The last event record of the cognitive m<ide 
transcript is created (or not created) by using the last time given on the operation 
level transcript. 

9 I 



Cognitive Mode Grammar 

Thus (in formally) the rules are: 

Exploration Mode (Time1, (Time2-Time 1}) 
{Operation Record • Time1 'mode" 'Net") & 
{Tlme Until Next Mode Change > 1 second) & 
(Next Operation Record " Time 'mode' } & 
{{Next Record of a Mode Change • Tlme2 ·mode"} V 
(Next Record • Time2 ' closeSession' } 

Organization Mode (Time 1, (Time2-T1me1 )) :-
(Operation Record • Time1 ' mode' "Tree') & 
(Time Until Next Mode Change > 1 second) & 
(Next Operation Record " Time ·mode' ) & 
((Next Record of a Mode Change • Time2 "mode') V 
(Next Record • Tlme2 "closeSession') 

Write Mode (Time1, (Time2-Tlme1}) :-
(Operation Record • Time1 ' mode' "Edit") & 
(Tlme Until Next Mode Change > 1 second) 
((Next Record of a Mode Change • T1me2 ' mode1 V 
(Next Record • Time2 ' closeSession' ) 

Revise Mode (Time1, {Tfme2-Time1)) :-
(Operation Record - Time 1 'mode" 'Net') & 
(Time Until Next Mode Change > 1 second) & 
((NeX1 Record ol a Mode Change • T1me2 'mode") V 
(Next Record • Tlme2 'closeSession') 

• 

92 



Sample Annotated Transcript • Cognitive Mode Level 

2.7.3 Sample Annotated Transcript - Cognitive Mode Level 

The lollowing is an annotated cognilive modo level 1ranscript. Annotations follow lines 
(or groups of lines) which they annotate. an<! are preceded by two asterisks. 

'Writing 
version: 
date: 
time: 
user: 
clod<: 
database: 
empty: 

Environment Transcript version 
2.0 
23 September 1988 
1:23:26 pm 
jenkins 
27947 
emptyWS 
true 

80 20534 0 Edit 

•• The subject begins In edit mode. 

205420 107840 Explore 

2.0' 

.. The subject moves into exploratory mode. 

313260 32380 Organize 

.. The subject shifts to organizational mode. 

345640 
421420 
4n1so 
481920 
491800 

75780 
55740 
4760 
9880 
4920 

Edit 
Organize 
Explore 
Organize 
Explore 

93 


