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ABSTRACT 

A design is presented for a workstation capable of render
ing arbitrary mixtures of analytically defined geometry and 
sampled scalar fields of three spatial dimensions in real
time or near real-time. The design is based on volumetric 
compositing, a relatively new approach to visualizing 
scalar fields by computing 2D projections of a colored 
semi-transparent volume. Geometric primitives are added 
by filtering and 3D scan-converting them into the dataset 
prior to rendering. Speedups totaling four orders of mag
nitude over published volumetric compositing techniques 
are obtained through a combination of algorithmic 
improvements and hardware implementation on Pixel
planes 5, a massively parallel raster display engine incor
porating custom logic-enhanced memory chips. A prelim
inary design is also presented for a two-handed volume
of-interest data exploration tool. 

KEYWORDS: Visualization, voxel graphics, volume 
rendering, volumetric compositing, parallel architecture, 
3D scan-conversion, adaptive refinement, ray tracing. 

INTRODUCTION 

Voxel-based techniques for displaying sampled scalar 
fields of three spatial dimensions, also known as volume 
rendering techniques, have been in use for about 10 years 
and have been applied in a variety of scientific, medical, 
and engineering disciplines. Kaufman has written an 
excellent survey of architectures designed for rendering 
voxel data [Kaufman 86a], including his own CUBE 
(CUbic frame Buffer) system currently under development 
[Kaufman 88a]. 

Most of the machines he surveys start by thresholding the 
incoming data to yield a set of 0-voxels and a set of 1-
voxels. While reducing memory requirements and image 
generation time, this binary classification procedure invari
ably leads to false positives (spurious objects) or false 
negatives (erroneous holes in objects), particularly in the 
presence of small or weakly defined features. 

To avoid these problems, researchers have begun explor
ing volumetric compositing, a variant of volume rendering 
in which a color and an opacity is assigned to each voxel, 
and a 2D projection of the resulting colored semi
transparent volume is computed [Levoy 88a, Drebin 88, 
Sabella 88, Upson 88]. The key improvement offered by 
volumetric compositing is that it eliminates the necessity 
of making a binary classification of the data, thus provid
ing a mechanism for display of poorly defined features. 
This improved image quality comes, however, at a sub
stantial cost in image generation time. The fastest 
volumetric compositing system at this writing is probably 
the Pixar Image Computer. Using a four channel SIMD 
processor [Levinthal 84] and Pixar's ChapVolumes 
software package. the Image Computer can generate 
high-quality images in tens of seconds or minutes. depend
ing on the size of the dataset 

I propose a volume rendering workstation based on the 
image-order (i.e. ray tracing) volumetric compositing algo
rithm described in [Levoy 88a]. Since that paper was writ
ten, I have obtained speedups of two orders of magnitude 
for many datasets by taking advantage of various forms of 
coherence. Three such optimizations are summarized here 
and described in detail elsewhere [Levoy 88b, Levoy 89]. 

The first optimization is based on the observation that 
many datasets contain coherent regions of empty voxels. 
A voxel is defined as empty if its opacity is zero. In 
[Levoy 88b], I encode this coherence using a hierarchical 
spatial enumeration represented by a pyramid of binary 
volumes. The pyramid is used to efficiently compute inter
sections between viewing rays and regions of interest in 
the data. 

The second optimization is based on the observation that 
once a ray has struck an opaque object or has progressed a 
sufficient distance through a semi-transparent object, opa
city accumulates to a level where the color of the ray 
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stabilizes. In [Levoy 88b], I stop tracing each ray when its 
opacity reaches a user-selected threshold level. This 
allows me to ignore much of the data, particularly for 
scenes composed mainly of opaque surfaces. 

If there is coherence present in a dataset, there may also be 
coherence present in its projections. This is particularly 
true for data acquired from sensing devices, where the 
acquisition process often introduces considerable blurring. 
The third optimization, reported in [Levoy 89], takes 
advantage of this coherence by casting a sparse grid of 
rays, less than one per pixel, and adaptively increasing the 
number of rays in regions of high image complexity. 
Images are formed from the resulting non-uniform array of 
sample colors by interpolation and resampling at the 
display resolution. Alternatively, successively more 
refined images can be generated at evenly spaced intervals 
of time by casting more rays, adding the resulting colors to 
the sample array, and repeating the interpolation and 
resampling steps. 

In the present paper, I describe techniques for obtaining 
speedups of another two orders of magnitude by optimiz
ing the algorithm for several common types of animation 
sequences and implementing it on Pixel-planes 5 [Fuchs 
89], a raster display engine under development at the 
University of North Carolina and scheduled for completion 
during the summer of 1989. Ray tracing rendering algo
rithms have been developed for a number of parallel 
machine architectures including the Connection Machine 
[Delaney 88] and the MPP [Dorband 87], but none of these 
implementations support the display of volume data. 
Although Pixel-planes 5 was not explicitly designed for 
volume rendering, its flexibility makes it surprising well 
suited to the task. Such a workstation would provide 
update rates of between I and 20 frames per second for 
datasets of useful size and complexity. 

Many scientific problems require sampled functions and 
analytically defined objects to appear together in a single 
visualization. Kaufman (with others) has described algo
rithms for 3D scan-conversion of polygons [Kaufman 
87b], polyhedra [Kaufman 86b], and cubic parametric 
curves, surfaces, and volumes [Kaufman 87a], and pro
poses to implement these techniques on his CUBE archi
tecture. His use of a binary voxel representation should 
give rise to artifacts in the generated images, although he 
has apparently worked out a solution to this problem 
[Kaufman 88b]. A number of other SIMD and MIMD 
architectures are suitable platforms for implementing 
parallel 3D scan-conversion, but no implementations have 
yet appeared in the literature. 

I have developed and described elsewhere two methods for 
rendering mixtures of 3D scalar fields and polygonally 
defined objects [Levoy88c]. The first method employs a 
hybrid ray tracer. Rays are cast through the ensemble of 
volumetric and geometric data, and samples of each are 
drawn and composited in depth-sorted order. To avoid 
errors in visibility, volumetric samples lying immediately 
in front of and behind polygons require special treatmenL 
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To avoid aliasing of polygonal edges, adaptive supersam
pling is employed. The second method involves 3D scan
conversion, but geometric primitives are filtered prior to 
sampling. and the resulting ensemble is rendered using 
volumetric compositing. No particular care need be taken 
in the vicinity of sampled geometry, and no supersampling 
is required. If polygons are sufficiently bandlimited prior 
to sampling, this approach produces images free from 
aliasing artifacts. 

The proposed workstation would utilize my 3D scan
conversion method. In the present paper, I describe an 
implementation on Pixel-planes 5 that promises a speedup 
of more than three orders of magnitude over the sequential 
algorithm, yielding scan-conversion rates of about 1000 
arbitrary-sized polygons per second. 

User interfaces for existing volume rendering systems are 
constrained by the inability to generate images in real
time. Feedback during selection of rendering parameters 
is usually provided by meta-visualizations such as 2D plots 
of color and opacity versus input value, wire-frame 
representations of viewing frustrums and motion paths, 
etc. These ancillary displays complicate the user interface 
and alienate prospective users. Teaming a computer tech
nician with each user is not a satisfactory alternative, par
ticularly in the medical field. Such intermediaries inhibit 
the frequent and informal experimentation that leads to 
insight. 

Since my proposed workstation would perform volume 
rendering in real-time or near-real-time, these meta
visualizations could be omitted or relegated to a supporting 
role. Sequences of volume rendered images would serve 
as feedback to the user of changes made in rendering 
parameters. A two-handed volume-of-interest data 
exploration tool exemplifying this approach is presented in 
the present paper. 

OPTIMIZATION FOR ANIMATION SEQUENCES 

Figure 1 summarizes the volume rendering algorithm that 
would run on the proposed workstation. It begins with a 
3D array of scalar-valued voxels. We first classify and 
shade the array to yield a color and an opacity for each 
voxel as described in [Levoy 88a]. Parallel viewing rays 
are then traced into the array from an observer position. 
Each ray is divided into equal-size sample intervals, and a 
color and opacity is computed at the center of each interval 
by tri-linearly interpolating from the colors and opacities 
of the nearest eight voxels. The resampled colors and opa
cities are then composited from front to back to yield a 
color for the ray. 

This algorithm consists of several steps: shading, 
classification, ray tracing, resampling, and compositing. 
Each step is controlled by user-selectable parameters and 
produces as output a sampled scalar or vector-valued 
volume. For animation sequences in which only a subset 
of the controlling parameters change from frame to frame, 



these intermediate results can be stored in arrays, and only 
those calculations whose parameters change need be 
repeated on each frame. 

A common type of sequence is one in which the object and 
light sources are fixed and the observer moves. In this 
case, the color and opacity of each voxel can be held 
invariant, substantially reducing image generation time. 
This simple optimization is discussed in [Levoy 88a] and 
is implicit in the approach of [Drebin 88]. The method 
produces incorrect specular highlights, but users seldom 
notice the error. This method also hampers users' ability 
to distinguish changes in surface orientation from changes 
in surface albedo, a more serious drawback. If the light 
sources move relative to the object, voxel colors must be 
recomputed on each frame, but voxel opacities are still 
invariant. 

Another common type of sequence is one in which voxel 
colors are held invariant and voxel opacities change. For 
example, users frequently ask for some means of 
highlighting and interactively moving a 3-D region of 
interest. The notion of treating the voxels lying inside a 
defined region differently from the rest of a dataset has 
been explored extensively in [Hoehne88b]. In the context 
of volume rendering, one way to highlight such a region is 
to increase the opacity of voxels lying inside in the region 
and to decrease the opacity of voxels lying outside the 
region. In some cases (such as figure 6) it is preferable to 
perform the inverse transformation, decreasing the opaci
ties of voxels lying inside the region of interest. 

For certain special types of sequences, additional optimi
zations may be possible. For example, if the light sources 
move relative to the object but the observer stays motion
less, the depth along each viewing ray at which the first 
non-empty voxel is encountered does not change. This 
depth can be recorded in an array during generation of the 
first frame in a sequence and used to speed generation of 
subsequent frames. Hoehne reports success using a similar 
depth buffer in his own work [Hoehne88a]. If the shading 
model includes multiple light sources only one of which is 
moving, the contribution made by the stationary sources 
can be pre-computed and added on each frame to the con
tribution computed for the moving source (assuming that 
multiple scattering effects are ignored). 

As a final note, the local gradient vector at each voxel is is 
a function only of the input data and does not depend on 
any of the controlling parameters. If this vector is pre
computed for all voxels, calculation of new opacities fol
lowing a change in classification parameters entails only 
generation of a new lookup table followed by one table 
reference per voxel. 

IMPLEMENTATION ON PIXEL-PLANES 5 

Pixel-planes is a raster graphics engine incorporating cus
tom logic-enhanced memory chips and designed for high
speed rendering of 3D objects and scenes. Versions of this 

machine have been running in our laboratory for over five 
years and have been the subject of numerous published 
papers [Fuchs 81, Fuchs 82, Fuchs 85]. Pixel-planes 5 is a 
new design that promises to have unprecedented power 
and flexibility [Fuchs 89]. Briefly, it will consist of 32 
independently programmable 20-MFLOP graphics proces
sors (GP's), 1/4 million pixel processors (PP's) organized 
into 16 independently programmable renderers, a 512 x 
512 pixel color frame buffer, and a 640Mb/sec ring net
work. The machine is expected to become operational 
sometime during the summer of 1989. 

Figure 2 summarizes the proposed implementation of my 
volumetric compositing algorithm on Pixel-planes 5. The 
shading and classification calculations for all voxels would 
be performed in the pixel processors (PP's). The current 
hardware plans call for 4K bits of backing store on each 
processor. Using this configuration, a processor can hold 8 
bytes of information for each of 64 voxels, enabling us to 
render a 256 x 256 x 256 voxel dataset. Initially, each 
voxel's scalar value and gradient, which are invariants of 
the volume rendering process, are loaded into the proces
sors. Shading and calculations are then performed in 
parallel using the l-bit arithmetic units of the processors to 
yield a color and an opacity for each voxel. The time 
required to apply a color Phong shading model at a single 
voxel is estimated to be about 1 msec. Since each proces
sor is assigned 64 voxels, the time required to classify and 
shade the entire dataset would be about 64 msec. 

The ray tracing required to generate an image from a set of 
colors and opacities would be performed in the graphics 
processors (GP's). Each is assigned a set of rays, which it 
traces through object space. The GP's request sets of vox
els from the PP's as necessary, perform tri-linear interpo
lation and compositing, and transmit the resulting pixel 
colors to the frame buffer for display. Since each GP is 
assigned several rays, it can context switch as necessary to 
keep busy while waiting for requested voxels to be 
transferred across the network. 

The success of this approach depends on reducing the 
number of voxels that must be processed along each ray 
and by implication the number of voxels that must be 
moved across the network. Three strategies are planned. 
First, a hierarchical spatial enumeration of the volumetric 
dataset [Levoy 88b] would be installed in each GP. This 
data structure tells the GP which voxels are non-empty 
(non-transparent) and hence worth requesting from the 
PP's. Second, adaptive sampling [Levoy 89] would be 
used to reduce the number of rays required to generate an 
initial image. Last, all voxels received by a GP would be 
retained in a 16Mb local cache. If the observer does not 
move during generation of the initial image, the cached 
voxels would be used to drive successive refinement of the 
image. If the observer moves, many of the voxels required 
to generate the next frame might already reside in the 
cache, depending on how far the observer moves between 
frames. 
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The frame rate that could be expected from this system 
depends on what parameters change from frame to frame. 
Preliminary estimates suggest that for changes in observer 
position alone, sequences of slightly crude images (of the 
quality of figure 3) could be generated at 10 frames per 
second, and fully refined images (similar to figure 4) could 
be generated in about 1 second. For changes in shading or 
changes in classification that do not invalidate the 
hierarchical enumeration, the system should produce 20 
crude or 2 refined images per second. This includes 
highlighting and interactively moving a region of interest 
by scaling voxel opacities as already described. If the user 
changes the classification mapping in such a way as to 
alter the set of non-empty voxels, the hierarchical 
enumeration must be recomputed. This operation would 
take several seconds. 

PARALLEL 3D SCAN-CONVERSION 

The technique I propose for fast 3D scan-conversion of 
polygons is an extension to three dimensions of the pro
gressive refinement method currently used to display anti
aliased polygons on Pixel-planes 4 [Fuchs 85]. A group of 
voxels is assigned to each pixel processor (PP) as 
described in the previous section, the geometry of each 
polygon is broadcast across the ring network, and each PP 
is directed to determine whether the polygon falls within 
the voxels assigned to it (treating voxels as abutting 
cubes). To eliminate aliasing artifacts, the spatial location 
of the polygon is moved through a set of subvoxel-sized 
translations and re-rendered. When this process is com
plete, the number of times the polygon fell into each voxel 
is divided by the number of times the polygon was ren
dered to yield a fractional volumetric coverage for the 
voxel. 

To compute a Gouraud-shaded color and opacity for each 
voxel covered by a polygon, linear expressions represent
ing the polygon's red, green, blue, and opacity components 
are broadcast across the network and evaluated in the PP's 
on behalf of each of their assigned voxels (now treating 
voxels as points in space as described in [Fuchs 85]. The 
opacities are then scaled by the volumetric coverage frac
tions, and the resulting colors and scaled opacities are 
combined with the colors and opacities already present in 
each voxel using volume matting operators [Levoy 88c]. 

Using a fully configured Pixel-planes 5 system, 3D scan
conversion rates of about 1000 arbitrary-sized polygons 
per second should be possible. Pixel-planes 5 also 
includes novel circuitry for fast evaluation of quadratic 
expressions [Fuchs 89]. This hardware would allow 
efficient scan-conversion of spheres and other curved sur
faces as well as polygons. 

TWo-HANDED VOLUME-OF-INTEREST TOOL 

One of the user interface paradigms I am considering for 
my proposed volume rendering workstation consists of 
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providing the user with two six-degree-of-freedom input 
devices (such as the Polhemus Navigation Sciences's 
3SPACE tracker), assigning one of these bats (3D plural 
of mouse, term suggested in [Ware 88]) to control the 
position and orientation of a volume-of-interest, or 3D 
region of interest, and assigning the second bat to control 
the position and direction of a point light source. Using 
the proposed worlcstation, voxels inside (or outside) the 
volume-of-interest would be highlighted by scaling voxel 
opacities as described earlier, and user feedback would be 
provided by computing 20 crude volume rendered images 
per second on the proposed workstation. 

One obvious addition to the above paradigm is interactive 
control over observer position. Both hands are already in 
use, but head position and orientation are still available as 
inputs to the system. As it happens, a head-mounted raster 
display system is already being developed in our labora
tory and plans are in place for routing the output of Pixel
planes 5 into two liquid crystal video displays mounted on 
a helmet and visible to the user through half-silvered mir
rors. The position and orientation information returned by 
a third Polhemus tracker affixed to the helmet would allow 
a user to move around and through a 3D scene as if it were 
actually in the room with them. Since Pixel-planes 5 is not 
expected to be capable of rendering a moving 256 x 256 x 
256 voxel dataset at 30 frames per second as required for a 
head-mounted display system, either the size of the dataset 
must be reduced, or a speedup of another factor of 3 must 
be obtained through hardware or software speedups. 

SAMPLE IMAGES 

Figures 3 and 4 illustrate the trade-off between image 
quality and image generation time that could be expected 
from my proposed workstation. These two 512 x 512 
images represent two frames from a progressively refined 
volume rendering of a 256 x 256 x 123 voxel magnetic 
resonance (MR.) study of a human head. Tissues overlying 
the cortical surface were removed by editing the dataset 
manually. The apparent mottling of the facial surface is 
due to noise in the acquired data. Assuming that only the 
observer position and orientation change from frame to 
frame, figure 5 can be generated in 6 seconds on a Sun 
4(280, and figure 6 requires an additional 57 seconds. 
Estimated timings for the proposed workstation are 1/10 
second to generate figure 3 and an additional 9/10 second 
to generate figure 4. If the observer were stationary and 
only the light source or a 3D region of interest were 
changing, these timings would instead be 1(20 second and 
9/20 second. 

Figure 5 is a fully refined volume rendering of a 256 x 256 
x 113 voxel computerized tomography (CT) study of a 
human head to which three mutually perpendicular 
polygons have been added using 3D scan-conversion with 
anti-aliasing. The cost of scan-converting a polygon on a 
sequential machine is proportional to its surface area. The 
large polygons shown here were scan-converted in about 1 
second each on a Sun 4/280. Estimated timings for the 



proposed workstation are 1 msec per polygon. 

Figure 6 illustrates one possible use of a 3D region of 
interest. In this example, the dataset used in figure 5 has 
been rendered in color to show both bone and soft tissue, 
and a polygonally defined tumor (in purple) and radiation 
treatment beam (in blue) have been added. The polygons 
were rendered using a hybrid ray tracer capable of han
dling both geometric and volumetric data [Levoy 88c], not 
the 3D scan-conversion technique discussed in this paper. 
To highlight the 3D relationships between the various 
objects, the opacities of all voxels inside a cube-shaped 
region above the right eye have been scaled down to 
nearly zero. To avoid aliasing artifacts, the transition from 
scaled to unsealed opacities is spread over a distance of 
several voxels. To further improve the visualization, the 
colors of all voxels in this transition zone have been 
recomputed as if the region of interest contained air rather 
than tissue. The effect of this extra step is to cap off ana
tomical structures where they enter the region of interest. 
The rescaling of opacities and recomputation of colors 
along region boundaries do not significantly slow down 
image generation since they are performed in parallel on 
the proposed workstation. Image generation times are 
therefore expected to be comparable to those given for 
figures 3 and 4. 

CONCLUSIONS 

One of the principal lessons to be learned from the graph
ics literature is the importance of real-time motion to the 
comprehension of complex 3D scenes. This is particularly 
true for volume data, whose features lack the regularity of 
geometrically defined objects. The computer graphics 
literature also tells us that people are sensitive to and criti
cal of aliasing artifacts in computer-generated images. In 
addition to their aesthetic impact, these artifacts often 
materially impair the ability of users to understand their 
data. This paper proposes a workstation for rendering 
volume data that addresses both of these issues. By com
bining volumetric compositing, fast image generation, and 
a simple user interface, it is hoped that routine use of 
volume rendering in the scientific and medical communi
ties will become both feasible and fruitful. 
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Figure 3 - Adaptively refined volume rendering of human head, 
estimated image generation time on Pixel-planes = 1/1 0 second 

Figure 4 - Adaptively refined volume rendering of human head, 
estimated image generation time on Pixel-planes = 1 second 
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Levoy. Figure 5- Volume rendering of human head with embedded 
polygons, estimated image generation time on Pixel-planes = 1 msec 
per polygon. 

Levoy. Figure 6- Volume rendering of human head with 3D region of 
interest, estimated image generation time on Pixel-planes = 1 second. 


