Porta-SIMD User’s Manual

TRE3-006

January 1989 (revised March 1989)

ﬁ. LSS Trh’k

The University of North Carolina at Chapel Hill
Department of Computer Science

CB#3175, Sitterson Hall

Chapel Hill, NC 27599-3175

UNC 15 an Equal Opportunity/Affirmative Action Institution

Porta-SIMD User’s Manual

Russ Tuck
Computer Science Department, Duke University, and
Computer Science Department, University of North Carolina at Chapel Hill*
March 6, 1989

1 Introduction

Porta-SIMD (pronounced PORTA.simm’d) 5 a portable
high-level language for programming massively parallel
SIMD (Single-Instruction Multiple-Data) computers [t
is the first such language actually implemented m Lhe
same form on more than one SIMD computer arche
tecture. Porta-SIMD has been implemented on UNC's
Pixel-Planes 4 [FuchsG*85 EvlesA*87] and on a Think-
ing Machines Connection Machine [Hillis85 Thinkin&7],
there 15 also a sequential implementation that runs on
ordinary computers

The Porta-SIMD langusge 15 & natural extension of
C++ to SIMD architectures, and is relatively easy to
learn for programmers familiar with C or C++ This
manual 1s intended for such programmers. Other readers
are encouraged to consult [Stroust86 Kernigh78] for an
inttoduction to C++ or C, respectively, While familine-
ity with one or more SIMD architectures is helpful, it is
nol Necessary

An introduction to SIMD architectures is presented in
the next section. It provides the background necessary
to understand the rest of this manual. Section 3 provides
an overview of Porta-SIMD and a summary of its exten-
sions to C4++. The Porta-SIMD language as currently
implemented is described in detail in section 4. Section 5
presents example Porta-SIMD programs, and is followed
by a section containing instructions for compiling Potta-
SIMD programs. The final sections. 7 and 8. discuss the
strategy used to implement Porta-SIMD. and additional
features planned for Porta-SIMD's future

2 SIMD Computers

An understanding of Porta-SIMD's extensions to C++
must begin with some knowledge of SIMD computers
as they appear to a programmer. A SIMD computer

*Author’s electronic address and phone: tuckfics uncedu or
milics.duke.edu; (919) SEZ-1755, (919) 962-1932. or (910] CS4-
B11O:

consists of two parts: an ordinary sequential computer,
enlled the “host™, and a large number of identical PEs
(Processing Elements). Besides evaluating scalar expres.
sions and executing How-control statements, the host
sonds commands to the PEs. All the PEs, in simulis-
neous lock-step fashion, execute each command sent by
the host. In response to host commands, each PE can
evaluate basic arithmetic and logical exprossions, stor-
ing data in us local memory as needed. In addition, the
host can command each PE to use the result of a logical
expression to decide whether to ignore commands until
further notice. Those PEs executing host commands are
said to be “enabled”, while those eurrently ignoring host
commands are “disabled”. Finally, the PEs are num-
bered consecutively from © and each s able to compute
its awn PE number

Thi= organization allows an entire collection of data
values to be stored one per PE and operated on at ence,
For example. the following statement adds one set of data
to another

a += b;

This s much faster than doung the same operation on the
host, one value at a time.

for (i=0: i < num wvalues; 1++) {
afi] += b[i):
}

However; taking full advantage of this capability gener-
ally requires different algorithms than these commonly
us=d on =equential computers.

The above description is true of essentially all SIMD
computers. However, some feature additional capahil-
ities. The most important of these is inter-PE com-
munication. While some SIMD computers, including
Pixel-Planes, provide no means of communication be.
tween PEs, most do. The most common form s a 2D
grid interconnection network: the PEs are arranged in a
2D array and adjacent PEs can exchange data. The most
general form of communication, supported by the Con-
nection Machine, is characterized by a complete graph,

It allows each PE to compute the number of another PE
and send data to or retrieve data from that PE. All PEs
may do this in parallel

Another optional feature of SIMD computers 15 the
ability of each PE to individually compute a local ad-
dress into its own memory. In architectures without ths
feature, PE memery can be accessed only by a single
global address computed by the host

These and other optional architectural features of
SIMD computers have significant implications for alge
rithm and program portability. Taking advantage of the
optional features provided by a particular architecture
may allow a problem to be solved more rapidly than
would be possible without those features. But, 1t also
prevents the algorithm (and program) from heing used
on architectures lacking one or more of those features
The programmer must evaluate this tradeofl and decide
which features to use. This in turn dictates the potentl
portability of the resulting program

Most SIMD programming languages do not allow pro-
grammers Lo decide which architectural leatures to use
They simply assume that a particular set of optional fea-
tures will be nvailable and will be used Therefore, thess
langunges are useful only on architectures providing those
[eutures, and Lhere s no way to take advantage of any
additional features provided by an architecture. Porta-
SIMD does nol have this limitation, It s “optimally
portable™ which means it lets the programmer decide
exactly which architectural features to use The pro-
grammer thereby determines the potential portability of
the program. See [Tucks8] for a full discussion of optirnal
partability,

3 Language Overview

Porta-SIMD extends C4++ by adding SIMD parallel data
types. Most C++ operators, and a few additional opera-
tions, are defined for these new types. T4+, in turn. ex-
tends C by adding object-oriented features. Famuharity
with C is sufficient to begin using Porta-SIMD produc-
tively, though knowledge of C++ allows the programmer
to take fuller advantage of the features C4++ lends to
Porta-SIMD.

Porta-SIMD’s current and future extensions to C++
can be summarized as follows.

Paraftef data types— For each integer and floating. point
data type in C, there is a corresponding SIMD par-
alle! type consisting of a data element of that type in
each PE. Thic type is named by prepending simd_
to the name of the original type. For instance,
simd_int is the parallel version of the type int

Flezible data type sizes — Each of the simd_ integer data
types may be declared to contain any number of bits

Porta-SIMD User's Manual 2

from 2 to some implementation-defined maximum
In addition, a boolean simd_bool type is provided
which requires only a single bit in each PE, These
extensions allow better use of the limited local PE
memory

Extended type conversion rules— The C and C4+ rules
governing type conversions within an expression con-
taiming multiple data types have been extended to
encompass the new types.

Multsple SIMD architeciures— The simd_ types each
have a vanety of forms corresponding to the van-
ety of possible SIMD architectures. These types are
named by inserting the name of the architeeture af-
ter simd Variables in statements using optional ar-
chitectural features must be declared with a type
supporting those features.

Flow control— A parallel il-then-else conditional execu-
tion mechanism is provided. For architectures which
support them, there are functions which allow loops
to execule as long as any processor satisfies some
logical expression

The extended features which have already been im-
plemented are described in detail in section 4, and il-
lustrated there with program fragments, Those features
remaining to be added are covered in section 8. Of the
parallel data types the mteger and boolean types are
implemented, but the foating point and character types
are not. Only a single optional architectural feature is
currently provided: a 2D arrangement of PEs, without
inter-PE communication. The most important paralle|
flow control structure has heen implemented, a parallel
analog of the 1f statement. However, functions to de-
termine whether any or all PEs satisfy some expression
must wait until additional architectural features are sup-
ported.

4 Language Definition

Porta-SIMD's extensions to C++ are described belpw in
detail. These extensions have been made as much in the
spirit of C++ (and C) as possible, and in most cases
existing language rules apply to the extensions as well.
These rases will generally not be mentioned, in order to
focus on the extensions themselves and on the few excep-
tions. All the language features described in this section
are currently implemented, Future additional extensions
are described in section 8. For authoritative references
on C++ and C, see [Stroust88] and [HarbisS84], respec-
tively.

March 6, 1988

4.1 Reserved Words

The identifier mind and all identifiers beginnng with the
prefix simd_ are reserved by Porta-SIMD and may not
be used as program identifiers

4.2 Architecture ldentifiers

Architecture identifiers are short strings that wlenufy
a particular set of optional architectural features and
thereby define a SIMD architecture. The null archites
ture identifier, an empty string, identifies the base SIMD
architecture with no oplional features,

Porta-SIMD currently unplements only one optional
feature, named 2d. It specifies that the PEs are arranged
in & 2D array and assigned contiguous non-negative in-
teger (£, ¢) coordinates; it does not provide communica-
tion between PEs. (This feature is useful, for example,
in Pixel-Planes, which uses Lhese coordinates heavily in
its graphies computations.) The architecture identifier
2d specifies the use of feature 24

One architecture identifier s said to be & subset of
another if it specifies a subset of the features by the sec-
ond architecture identifier. A program may, through its
data declarations, use any number of architecture identi-
fiers, provided they are all subsets of a single arehitecture
identifier. This unique identifier is ealled the program’s
architecture wdentifier.

4.3 Types

Porta-SIMD provides parallel signed and unsigned inte-
ger data types, and a parallel boolean data 1ype A par-
allel object consists of a set of identical elements. one per
PE in the SIMD computer. All parallel data type narnes
consist of the string simd_, followed by an architecture
identifier, followed by a basic type name. If the architee-
ture identifier is non-null, an underscore (_) is appended
to its name to separate it from the basic type name. Be-
cause their names begin with simd_, parallel types are
also called simd_ types

simd_ types containing the null architecture identifier
are called “base” simd_ types, and are available oo all
SIMD computers. Therefore, operations are provided
for base simd_ types only if they are efficiently imple-
mentable on all SIMD computers. The remaming sisd
types are called “derived” simd_ twvpes. Each derived
simd_ type provides all the operations of its earrespond-
ing base type, plus additional oparations which take ad.
vantage of the optional architectural features specified by
its architecture identifier.

The type of elements in a simd_ object 1= determined
by the basic type name contained in the simd_ type
name. The basic types implemented are int {(signed inte.
geT). unsigned (unsigned integer). and beel (boolean)

Porta-SIMD User's Manual 3

4.3.1 Declaration

simd_unsigned is an unsigned inleger simd_ hase type;
simd_int is a signed integer simd_ base type Ohjects
of both integer sind_ base types. ax well as the corre.
sponding derived types, may be declared to contain any
number of bits from 2 to some implementation-defined
maximum (which is at least 32). The “length” of an m-
teger simd_ type is the number of bits it is declared to
contain in each element. The length of an integer simd
type can be specified as an argument to its constructor,
and defaults to at least 16 Here are some example dec-
larations.

sind_unsigned a, b(8);
simd_int c(2), d4(3z2);
simd_2d_unsigned e(24), f;
aimd_32d_int g;

simd_bool is an unsigned boolean simd_ base type.
Its length of simd_bool and its derived types is always
I

siasd _bool a, b;
simd_2d_bool ¢;

4.3.2 Alloeation

A simd_ value is not a single value stored in the host
computer, but a set of values stored one per PE. For this
reason, simd_ objects may not be stored in malloe()'d
memory. [nstead, dynamic allocation is performed using
the C4++ new operator, and such allocation is freed with
the C4++ delete operator,

simd_int ssipa, *siph;
siad_2d bool #s2bp;
sipa = new simd_int;
sipb = new simd_int{17);
delete sipa;

s2bp = nev simd_2d_bool;
delete s52bp;

delete siph;

4.4 Storage

The exact amount of storage per PE used for data el
emments of a simd_ object 15 implementation-dependent,
subject to the following constraints, The individual val-
ues of any particular sisd_ object must be stored iden-
tically in each PE. At least as many bits of PE memory
must be used to store every simd_ object as specified in
the declaration of that object, though more may be used.
All simd_ objects declared with a particular length must
be stored in the same amount of PE memory.

March 6, 1988

The C operator sizeof does not give information
abioul the amount of PE storage used to store sisd_ ob-
jects. Rather, it reports the size of the implementation-
dependent hest chject used to store information about
the simd_ object. The bits method may be used to find
the declared length of any samd_ object. The following
fragment prints 16,

simd_int a(i16);
printf{“%d", a.bits(});

There is no provision for finding the number of bits ac-
tually used to store o simd_ object.

4.5 Caonversions

The type conversion tules governing ordinary © types
are extended in Porta-SIMD to incorporate the simd_
types as naturally as possible. This section’s subsections
deseribe each new or extended conversion rule in Porta-
SIMD. The first treats the actual representation changes
invalved in ¢ach type conversion. The rest define which
conversions are performed under which circumstances

4.5.1 Representation Changes

The basic rules governing representation changes for
scalar integer types apply to conversions among simd_
integer types as well.

The most basic conversion is between objects of the
same type butl different lengths. An unsigned sizmd_ ob-
ject is converted to a shorter unsigned simd_ object by
discarding the excess high-order bits |t is converted to
a longer unsigred simd_ object by filling the additional
high-order bits with zeros. If signed integer simd_ ob-
jecis are represented in two's-complement form (as i all
current implementations}), the rules are very sunitlar. On
conversion to a shorter object, excess high-order bits are
discarded. When converting to & longer objeet, the ad-
ditional high-order bits are filled with copies of the sign
hit.

Conversion between a base simé_ type and one of its
derived Lypes, or between twa dezived types of the same
base types, requires no change of representation

Conversion between signed and unsigned integer simd_
types always begins by converting it, still in its own type,
to the same length as the destination object. If two's
complement form e iszed for signed integers. no further
conversion is peeded beétween integer simd_ types

An inleger simd_ type is converted to a boolean simd_
type very simply, Every non-zero element takes the
boolean value one (true), and every zero elenent takes
the value zero (false). A boolean simd_ type is converted
to an inleger simd_ type by treating it as a very short
unsigned object; it is simply zero-extended to the desired

Porta-SIMD User's Manual 4

length. These rules are consistent with C's treatment of
boolean values (e g, the test expressions of if, for. and
while statements, and the value of relational operators
such as €},

A scalar integer value can be converted to a simd_
value of the same type by replication; every element of
the resulting simd_ object has the scalar's value. Con-
version of a scalar integer value to a simd_ value of a
different basic type proceeds in bwo steps: conversion Lo
a sind_ value of the same type, followed by conversion
to the desired simd_ type: A scalar floating-point value
eannit be converted directly to a simd_ type. (Of course,
it can be converted to an integer scalar type first, then
converted in a separate step to a simd_ type.) A simd_
type cannot be converted to asealar.

4.5.2 Casting

C allows all legal conversions to be invoked explicitly
using a type cast. Unfortunately, Porta-SIMD does not
currently pravide quite this flexibility. However, nny con-
version not possible with a cast can be performed with a
simple assignment statement (section 4.5.3).

Porta-SIMD allows casts of simd_ types from boolean
and signed integer to unsigned integer. It does not al
low the opposite casts, from unsigned integer Lo signed
integer or boolean. It also does not allow casts between
signed integer and boolean. These casts must be between
simd_ types with the same architecture identifier, or from
a derived te a base simd_ type.

A simd_ type may always be cast to 1ts base type or
any derived type of its base type.

A scalar value cannot be cast toa simd_ type:

The casts below are acceptable. Legal casts that
change only the architecture identifier are not shown

simd unsigned 80}
simd_2d _unsigned s2u;

simd. int 81;
simd_32d_int 821;
sipd_bhool sb;
gimd_2d bool sZb;

(5imd_unsigned) si;
(simd_unsigned) £2i;
{simd unsigned) sb;
(gimd_umsigned) s52b;

{simd_2d unsigned) s2i;
{simd_2d_unsigned) s2b;
Hewever, the casts below are nol allowed.

(simd_2d_unsigned) si;
(simd_2d_unsigned) sb;

March 6, 1589

(simd_int) su;
{simd_int) 82u;
(simd_int) =b;
(simd_int) s2b;
(simd_2d_int)
(gimd_2d_int) s2u;
(eimd_24_int) sb;
{simd_2d_int) s2b;

gu;

(simd_bool) au;
{(simd_bool) 82u;
(simd_bool) Bi:
(aimd_bool) 82i;

(simd_2d_boeol) =su;
(aimd_2d_bool) s2u;
{simd_2d_bool) si;
(simd_2d bool) m21:

(simd_unsigned) i
{simd_2d_unsigned) 1
(simd_int) 1
(simd_2d_int) 1;
(8imd_bool) i
(simd_2d_bool) 1

4.5.3 Assignment

All legal conversions can be accomplished through the
simple assignment statement. (The simple assigment
statement uses the = operator.) Simply write an ohject
of the desired type on the left side of the = and the value
Lo be converted on the right side.

4.5.4 Usual Unary Conversions

C and C++ define certain “usual conversions™ that are
performed implicitly during expression evaluation, Their
purpose is to.convert all the operands of an operator o a
cemmon type before performing the operation. Porta-
SIMD also converts the operands to a common base
simd_ type and comunon length before performing an op-
eration. However, the usual conversions also ensure that
the commaon type will be one of a very small set of types.
Porta-51MD extends this set of types to include all the
gimd_ Lypes. As & result, there is no implicit conversion
of simd_ types during evaluation of unary operators

4.5.5 Usual Binary Conversions

The lollowing rules are added to the set of usval binary
conversions, and are apphed, in order, whenever an op-

Porta-SIME User's Manual 5

1. If one operand is scalar and the other is parallel, con-
vert the scalar operand to its corresponding simd_
type [(Note that only integer scalar types may be
mixed with simd_types as operands of a single op-
erator. since other scalar types cannot be converted
directly to a simd_ type.)

2. I[the operands have different lengths, lengthen the
shorter to the length of the longer. I one of the
operands s boolean, this implicitly converts it toan
unsigned integer

3 If one operand is signed and the other is unsigned,
convert Lthe signed operand o its unsigned equiva-
lent, (This 1s what C does with scalars.)

4. Il the operand types have different architecture iden-
tifiers, convert both to the same type. This may
be their commaon base type, or any derived simd_
type which has an architecture identifier specilying
only architectural features present in both operand
types. The exact type selected is implementation
dependent

These ensure that the operands have the same base Lype,
length, and architecture identifier.

Of course, while a Porta-SIMD implementation is re-
quired to evaluate expressions as if these rules had been
used. it 1s not required to literally perform the specified
conversions tf the same result can be achieved by a more
efficient method,

4.5.6 Function Arguments and Return Values

If an expression appedring as an argument in a funetion
call does not match the type of that argument as declared
in the function declaration, it i cast to the declared type
of the argument. Similarly, if the expression appearing
in a return statement does not match the return type in
the function declaration, it is cast to the declared return
value type. In both cases it is an error if the resulting
cast 15 oot allowed by Porta-SIMD.

4.6 Expressions

sind_ values may be accessed only by mechanisms ex-
phicitly provided by Porta-SIMD. With a few exceptions
discussed in this section, all € operators may he applied
to simd_ ohjects. The use of each operator with simd_
types 15 dscussed 1 detaill below, including the precise
operand types allowed, whether to apply the usual binary
conversions. and the type of the result

All the C operators implemented by Porta-SIMD per-
{form the same computation as in 'C and 44, but do

March 6, 1989

They have the same precedence and associativity as in C
and C44-

Unlike © values, all sind_ values as currently imple-
mented are “Ivalues™. meaning that they may appear on
the left side of an assignment operator This s an 1m-
plementation flaw, not a language feature. Do not use
ns an |value any simd_ expression which would not be a
legal Ivalue under C's rules. Programs that ignore this
rule may not work under future versions of Porta-SIMD

4.6.1 Enabled and Disabled PEs

Operations and methods that modify sisd_ objects (in-
tluding temporary objects created implicitly during ex-
pression evaluation) are performed only in enabled PEs
Operations without side effects are performed in all PEs.
enabled and disabled. Section 4.8 defines when PEs are
etiabled.

4.6.2 Primary and Postfix Operators

simd_ objects are not arrays, and cannot be subscripted
with the [J (subscript) operator 1o gain acecess to indi-
vidual data elements, (This restriction may be relaxed
in future versions of Porta-SIMD.) However, an array of
simd_ objects may be declared and subscripted like any
other basic type.

Similarly, there are no parallel function calls, so the
() (function call) operator cannot be apphed to simd_
objects. O course, sealar functions can return simd_
alijects.

There are also no parallel structures or pointers, so the
« (direct selection) and =» (indirect selection) operators
cannot be applied to sind_ values. Scalar struciures may
contain sisd_ objects, though. The entire sa=md_ ob ject,
represented by iis hest-resident “handle™ or ~descripror™,
is contained in the structure.

The paostfix operators ++ (post-increment) and --
{post-decrement) may be applied to integer simd_ ob-
jects only. Unfortunately, Porta-SIMD is limited by its
implementation within C44 here, and 1= unable to pro-
vide the proper access-then-operate semantics There-
fore, these postfix operators are curreatly exactly equiv-
alent to their prefix forms. A future implementation of
Porta-SIMD may correctly implement the posifix forms
of these operators. Until then, programs should avoid
these postfix operators and use only their prefix forms

4.6.3 Unary Operators

The prefix ++ (pre-increment) and —— {pre-decrement)
operators and unary = (negate) operator may be applied
1o integer simd_ types, and produce a value of the same
type. They may not be applied to boolean sisd_ 1ypes.

Porta-SIMD User's Manual 6

The = (bitwise not) operator may be applied Lo any
sind_ type, producing a value of the same type

The ! (logical not) operator may be applied to any
sisd_ tvpe. and produces a boolean simd_ value with
the same architecture identifier as the operand Lype.

The sizeof and cast operatars were discussed in sec-
tions 4.4 and 4.5.2, respectively.

The k (address of) operator may be applied 1o & simd_
abject, and produces a scalar pointer to the object. (The
potnter paints to the object's host “handle”) The unary
* (indirection) operator may be applied to o pointer to a
sind_ object (initinlized with the koperator); it produces
s simd_ object which may be used like any other simd_
object. There are no pointers to individual elements of
sind_ cbjects.

4.6.4 Arithmetic Operators

The bunary arithmetie operators include * (multiplica-
tion), / (division), % (remander), + (addition), and -
(subtraction). These operators may be applied to any
combination of scalar and parallel integer operands, The
usual binary conversions apply to the operands, and the
result is the type to which the operands were converted
The corresponding binary arithmetic assignment opera-
tars are #=, /= %= += and -=. These may be applied to
any combination of scalar and parallel integer aperands,
provided the left operand is parallel. The usual binary
conversions apply to the operands, and the result is con-
verted to the type of the left operand.

Boolean simd_ types may appear as operands to these
operators under the following conditions. Only one
operand may be boolean, and the other operand must
have a parallel integer type. A boolean object may not
be the left operand of an arithmetic assignment operator.
The conversion rules are not affected by the presence of
a boolean operand.

4.6.53 Shiflt Operators

The shift operators include << (left shift) and »> (right
shift). These operators may be applied to any combina-
tion of scalar and parallel integer operands. The usual
unary conversions apply to each operand, but the usual
binary conversions do not apply. However, if one operand
is scalar and the other is parallel, the scalar operand is
converted to a simd_ operand of its own basic type and
the same architecture identifier as the parallel operand.
The operands are also converted to a comman architee-
ture identifier, using the same rule used by the usual
binary conversions. The result has the type, after all
conversions, of the left operand. The corresponding shift
assignment operators are <<= and >>=. These operators
may be applied 1o any combination of scalar and par-
allel integer operands. provided the left operand is par-

March 6, 1989

allel. The same canversion rules apply as for the non-
assignment forms

Boolean simd_ types may appear as operands to these
operators under the following conditions. Only one
operand may be boolean, -and the other aperand must
have a parallel integer type. A boolean ohject may not be
the left operand of a-shift assignment operator, The con-
version rules are the same as m the absence of a boolean
operand, ‘except that a boolean Jeft operand is converted
to an unsigned simd_ type the same length as the right
operand.

4.6.6 DBitwise Operators

The bitwise operators include & (and), = (¥or), and |
{or), These operators may be applied to any combina-
tion of scalar and parallel integer operands. The uswal
binary conversions apply to the operands, and the re-
sult is the same tvpe that the operands are converted to
The corresponding bitwise assignment operators are k=,
“= and |=. These may be applied to any combination
of scalar and parallel integer operands, provided the left
operand 15 parallel. The usual binary conversions apply
to the operands, and the result i1s converted to the type
of the |eft aperand.

Boolean simd_ types may appear as aperands to these
operators under the following conditions. Only one
operand may be boolean, and the other operand must
have a parallel integer type. A boolean object may not
be the left operand of a bitwise assignment operator. The
conversion rules are not affected by the presence of a
boolean operand,

4.6.7 Relational Operators

The relational operators include < (less than), > (greater
than), <= (less than or equal), >= (greater than or equal),
== (equal), and !'= (not equal). These operators may
be applied to any combination of scalar integer. parallel
integer, and parallel boolean operands. The usual binary
conversions apply to the operands. The result is boalean,
with the same architecture identifier as the type to which
the operands were converted.

4.6.8 Logical Operators

The logical operators include &k (logical and). and ||
(logical or). These operators may be applied to any
combination of scalar and parallel integer operands and
parallel boolean operands. The conversion rules which
apply are the same as for the shift operators. The usual
unary canversions apply, but not the vsual binary ronver-
sions, If one operand is scalar and the other is parallel,
the scalar operand is converted to a simd_ operand of its
own hasic Lype and the same architecture identifier as the

Forta-SIMD User's Manual 7

parallel operand. The operands are also converted to a
eomman architecture identifier, using the same rule used
by the usual binary conversions The result & boalean.
with the same architecture identifier as the tonverted
operands.

4.6.9 Other C Operators

The ternary ?: (conditional) operator may oot have a
simd_ first operand. The second and third operands may
be simd_ expressions, provided the expressions evaluate
to exactly the same type. (Note that this identical-type
requirement implies that either both or neither of the
secand and third operands have a simd_ Lype))

The comma operator is the same in Porta-SIMD as in
C and C+4+. It may separate any pair of expressions.

4.7 Special Operations

Forta-SIMD provides a variety of operations related (o
its unique capabilities. One is the method pe_number,
which may be applied to any integer simd_ tvpe object.
The result is to place in each element the unique number

of the PE holding 1t.

simd_unsigned a;
a.pe_number(};

Several more methods may be applied to simd_2d_
ohjects. HRecall that the 2d feature allows each PE to
compute 15 (2, i) coordinate. Methods coord_x and
coord_y place the r and y coordinates; respectively, into
the object to which they are applied. They may be ap-
plied only to integer abjects (not boalean), The following
example computes a multiplication table

simd 24 unsigned x, y, mult_table;
x.coord_x();

y.coord_yl);

mult_table = x * y;

The vilinear method computes and stores az +by+¢
in each element of the object to which it is applied. The
coefficients a, b, and ¢ may be floating-point scalars, and
the floating-point result is truncated before being stored
{This is the only floating-point computation currently
implemented in Porta-SIMD.) bilinear may be applied
only to integer objects. This code fragment computes
r+.5y—3.

simd_2d_int a:

a.bilinear(1l, .5, -3);

A display function is also provided for simd_24_ ob-
jects. It displays its arguments, one value per pixel, on
a frame buffer if an appropriate one 1s available. If given
one argument, the display is monochrome. If given thres,

March 6. 1983

they are treated as the red, green, and blue components
ol a color image.

simd_2d_int gray, r, g. b;
simd_2d_bool black_and _white;
{* initialize variables. e/
display(gray);

display(r, g, b);
display(black_and_white);

4.8 Flow Control

Porta-SIMD provides a parallel conditional IF staternent
similar to the scalar if statement. The syntax is

IF (<simd expr>)
“statemants>
ELSE
<atatements>
ENDIF

<simd expr> represents any expression which evaluates
w a value of o simd_ type. <statements> represents
any statements, including nested IF statements properly
padred with their nearest following E¥DIFs. The ELSE and
its following <statements> may be left out

The <simd expr> is evaluated once, and effectively as.
signed into a sind_bool temporary variable During ex-
ecution of the statements between IF and ELSE (or ENDIF
if there 1s no ELSE), only PEs where the temporary vari-
able is true are enabled. During execution of the state
ments between the ELSE and ENDIF, the only enabled PFa
are those where the temporary variable is false When
a nested IF statement is executed, PEs already disabled
befare the nested IF statement was encountered remain
disabled throughout its execution, Comments in the fol-
lowing example show which PEs are enabled, by giving
the expression which must be true in every enabled PE.

simd_bool a, b;
/% Initialize a and b. #/
IF (a)
fe a nf
IF (b)
/* a kk b o/
ELSE
f* a kb ‘b =/
EKDIF
/o a s/
ELSE
i ta wf
IF (®)
/o la B b o#/
ENDIF
fe la &/
ENDIF

Purta-SIMD User's Manual 8

It is important to recognize that every statement be-
tween IF and ENDIF s always executed, though only in
the appropriate PEs This includes scalar expressions,
which are executed i the host as usual The follow-
ing code fragment illustrates the potentially surprising
results.

simd_bool a;
/* Initialize a. */
int x = Q;
IF (a)
Xhe,
ELSE
L8 i
EXDIF
printt(“z=¥d", 1);

/* bad style =/

/* bad style e/

It prints 222, It is wsually wise not to modify scalar
variables within a paralle] IF statement. An exception is
a scalar variable local 1o only one part of the IF state.
ment (the statements following either IF or ELSE, but not
both},

4.9 Architecture Parameters

Porta-SIMD programs are executed on a SIMD computer
with an architecture specified by the program’s architec-
ture identifier. By defining UNIX environment variables
before executing the program, the user may request spe-
cific values for certain architecture parameters. The pro-
gram will execute on the available machine most closely
matching the requested parameters. In some cases the
SIMD hardware will constrain the possible parameter
values, causing the environment variables to be partially
or completely ignored, Default values are used for any
parameters not specified by environment variables.

The environment variable SIMD_WORDS specifies the
number of words of PE memory. Word size is imple-
mentation dependent.

The environment variable SIMD_PES specifies the num-
ber of PEs. Thus variable is ignored in architectures
where 1t is computed from other parameters.

The number of PEs in the z and y dimensions of a
2d architecture may be specified by the SIND_PES_X and
SIMD_PES_Y environment variables. respectively. The to-
tal number of PEs is the product of these values. For
example, to request 1K PEs in a 32 by 32 square array,
use these csh (UNIX C-shell) commands before execut-
ing the Porta-S5IMD program.

seteny SIMD_PES_X 32
setanvy SIMND_PES_Y 22

Some of these architecture parameters are available
within Porta-SIMD programs. The pes method, pro-
vided by all simd_ types, returpns Lhe number of PEs

March £, 15989

Porta-SIMD User's Manual 49

f* Perform very simple Sieve of Eratosthenes computation to find all

* prime-numbered PEs.
s/
#include <simd_2d.h>
simd_bool primes()
{
simd_unsigned number(24);
simd_bool 1§_prime; [
number .pe_number()
is_prime = 1;
IF (number < 1) /o
is_prime = 0]
ENDIF

/* Check against 2,.1000.

Return 1 in prime-numbered PEs, 0 in others,

/e Use 2d in order to get display(). ¢/

/* Kumber to test for prime-ness. #*/
Flag 1s true 1f numbar is prime +/
/* Place PE number in each element. =/
/e Initialize all numbers to true. */
Zero iz not prime. &/

This is fine for <= 1,000,000 PEs,

& though not wonderfully efficient, */

for {int i=2; 1 <= 1000: 1++) {

IF (((number % 1) == @) &k {number > 1)) {

is_prime = 0;
} ENDIF
}
return(is_prime);

¥

/* Set false: number divides evenly. #/

{/+ Display prime numbsrs as bright pixels and non-primes as dark. +/

main()
{ display(primas()); }

Figure 1. Example program sievec. Despite its over-simplifications, this routine will test up to a million numbers
for primality in 1000 operations. A simular sequential algorithm would take mullions of operations {up te a billion)

to perform the same task:

in the SIMD computer. All types with an architecture
identifier specifying the 2d feature provide the pes_x and
pes_y methods, which return the number of PEs in the
z and y dimensions, respectively. This fragment prints
the size of the SIMD computer’s PE array.

simd_2d bool a;
printf("PE array is HYu by Yu",
a.pas_x{), a.pes_y(}):

5 Example Programs

Itis difficult to find real programs short and clear enough
to make good examples. Although the problems solved
by the example programs in this seclion may seem over-
simplified, they are still useful to illustrate the use of
Porta-SIMD. The example programs ate described In
their comments. The first example, sieve.e, is con-
tained in figure 1. The second, square.c, is shown in
figure 2.

6 Using Porta-SIMD

The mechanics of writing, compiling, and linking a Porta-
SIMD program invelve only a minor addition in each of
these steps, compared to an ordinary C++ program.

Every Porta-SIMD program source file must begin by
#include’ing a Porta-SIMD definition file. 1f the file uses
no optional architectural features, the file to include is
<simd . h>; otherwise 1t is <simd_archid.h>, where archid
1= an architecture identifier specifying the optional fea-
tures required. (Architecture identifiers are discussed in
section 4.2.) This was shown in the previcus section's
example programs,

When compiling and linking a Porta-SIMD program
by hand, as opposed to using make, begin by defining the
shell variable PORTA_SIMD. At UNC, it should have the
value fhome/commen/tuck/simd Using the esh, this is
done with the following command.

seteny PORTA_SIND \
/home/comnon/tuck/simd

March 6, 1989

finclude <simd_2d.h>

Forta-SIMD User’s Manual 10

/* square accepts the upper left and lower right corners of a square aligned

& with the coordinate azes.
gpach PE outside. #/

Returnms 1 in sach PE inside the square, 0 in

simd_2d_bool sguare(int x_ul, int y_ul, int x_lr, int y_lr)

{
simd_2d_bool inmide;
aimd_2d_unsigned x, ¥,
inside = };
x.coord_x();
y.coord_y();
inside &= (x > x_ul};
inside k= (y > y_ul);
inside &= (x < x_1r);
inside &= (y < y_1r);
return(inside);

}

/* main displays a white square on a black background. ¢/

main()
{ display(square(2,6,24,57)); }

Figure 2- Example program square.c

(To improve legibility, this and other commands are
shown broken into multiple lines with a \ (backslash)
They may be typed as shown, but it is more satural to
type them as a single line without the \.}

The commaund which compiles ench program source file
into an object file must predefine two symbols using the
=D compiler option. The first symbol identifies the type
of SIMD hardware on which the program will run. This
may be seq (lo simulate parallel hardware using a s=
quential computer), pxpl4 (1o use Pixel-Planes 4), or cn
(to use the Connection Machine) The second symbal
identifics the host computer type. This may be sun2,
sun3, sund, vax, or pxplégp (for the Pixel-Planes 4
Graphies Processor front-end). Also, include this com-
piler option: -I${PORTA_SIMD}/ineclude For example,
the following command compiles the file square.c. an
example program in the previous section. for sequential
execution on a Sun-4 host

CC +80 -g -IS{PORTA_SIND} \
-Dseq -Dsund -c square.c

When linking the object files to generate an executable,
specify linkage with a Porta-SIMD library using the -1
option, If the program uses no optional architectural
features, use the simd library. Otherwise use library

L # | SRR — Py, [—— TR "y vf | . S

-L${PORTA_SIMD}/1ib/aimd_hw/host. Hers, simd_hu
and host are the symbols defined with =D in the compile
command discussed above. The command below links
square.o, compiled above, creating an executable pro-
gram sgquare.

CC +e1 -g -L${PORTA_SIMD}/lib/seq/sund
-0 sguare Square.o -lsimd 2d

Figure 3 15 a Makefile to compile and link the ex-
ample programs presented in section 5. The directory
${PORTA_SIMD}/ex contains copies of the example pro-
gram= and Makefile:

7 Implementation

Porta-SIMD is currently implemented strictly within the
C++ language. Its extensions to C++ are provided by
include files and libraries, and Porta-SIMD programs are
compiled by €C (the C++ compiler) rather than by a
Porta-SIMD compiler. This has both advantages and
disadvantages.

One advantage is that it was pot necessary to write a
compiler. This has sped the implementation process, and
will continue to do so. Another is the guarantee it pro-
vides that the scalar portion of Porta-SIMD is exactly

L 8 et el siss e kmln= s o o, Sl SRR o SR R e i o

March 6, 1859

Porta-SIMD User’s Manual 11

SIMD_HW is name of a real SIMD hardware machine which will sxecute the

4 parallel part of Porta-SIKD proegrams.

] pxpléd -— Pixel Planss 4
cm == Connection Machine
seq

SIND_HW = seq

Choices are:

-- ordinary segquential machine (simulates parallel computer)

TARGET_CPU is the name of a real sequential computer which will execute

the sequential part of Porta-SIMD programs.

sun[234] -- Sun-[234)
¥ VAT == DEC VaAX
pxpl4gp -— PxPl4 GF

TARGET_CPU = sund

Choices are:

(SIMD_EW supported: seq)
(SIMD_HW supported: seq, pzpl4, cm}
{(SIMD_EV supperted: pxpld)

Define home of Forta-SIMD, and its include and library directories.

PORTA_SIND = /home/common/tuck/simd
INC_DIR = ${PORTA_SIMD} /include

LIB_DIR = ${PDRTA_SIMD}/11b/8{SIMD_HW}/S{TARGET CPU}
DEF = -DS{SIMD_HW} -D${TARGET_CPU} #Porta-SIMD include files need thess aymbola

CC = CC
OPT = -g

Use ATRT cfront C++ compiler
—g to include debugging infe in compiled program

Use +e0 to compile, and +el to link, to reduce size of object files.

CFLAGS

PROGRAMS = sieve square
all: ${PROGRAMS)

gieve: CHECK sieve.o

= +80 ${OPT} -IS{INC_DIR} ${DEF}
CFLAGS_LINK = +e1 ${OPT} -L${LIB_DIR}

Use -Batatic w/Sun0S5 4.0 only

${cCy ${CFLAGS_LINK} -o $0 sisve.o -lsimd 2d

square: CHECK square.o

${cc} S{CFLAGS_LINK} -o %@ square.c -lsimd_2d

Figure 3: Makefile to compile and link the example programs presented in section 5 for sequential execution on a

Sun-4.

immediately be available in Porta-SIMD. Another advan.
tage is enhanced 1mplementation portability—the C++
compiler has been widely ported.

There are two primary disadvantages to oot writing
a separate Porta-SIMD compiler. First, it places strict
limits on lexical and semantic extensions. For example,
the keyword simd would ideally be added as a storage
class modifier, instead of adding simd_ ac a prefix to
the type name. The architecture identifier used to name
vanant simd_ classes would also be separate from Lhe
type name if there were a dedicated compiler. Sirmilarly.
parallel conditional flow would be provided by extending
the semantics of the if statement instead of adding the
IF statement. The second disadvantage is in execution
performance, Porta-SIMD currently must implement its
simd_ types as U4+ classes. As a result, expression
evaluation generally requires more operations and more

memory than if Porta-SIMD were implemented by its
own compilsr.

8 Planned Features

The Porta-SIMD implementation is just reaching suffi-
cient maturity to support real users. However, many im-
portant features are not yet implemented, Some of these
are described below

8.1

Some fixed-length base types may be implemented, for
example simd_int8, simd_intl16, and simd_int32 IL
would he possible to evaluate expressions involving only
one of these types Taster than expreasions of the currenl
Ly pes.

Integer and Character Types

March 6, 1983

The simd_char base Lype is not currently imple-
mented. However, a simd_unsigned or simd_int object
declared with a length of B bits i= an acceptable substi.
tute. simd_char may be implemented as a typedef to
sind_unsigneds, if the latter s implemented

8.2 Floating-point Types

The design of Porta-SIMD includes SIMD extensions of
the C floating-point types, analogous to the extensions
implemented for integer types. However, they are not
scheduled for implementation in the near future

R.3 Architecture ldentifiers

Porta-SIMD will eventually support all the SIMD arch.
tectures in the taxonomy presented in [Tuckss] The or-
der in which the optional architectural features are added
will depend on user needs. When C4++ 2.0 15 available
with multiple inheritance, it will be possible to select any
combination of optional features.

8.4 Expressions

A mechanism will be provided very soon to access indi-
vidual data elements of a simd_ object on architectures
which support this. This will be followed by & mechanism
for specifving inter-PE communication

8.5 Flow Control

In some architectures, it is possible to determine whether
all PEs are enabled, or whether all are disabled. These
scalar logical values can be useful in scalar flow con-
trol structures. Functions providing them will be bmn-
plemented soom.

9 Acknowledgements

User input has been and will continue to be critical to
the successful evolution of Porta-SIMD. Greg Turk has
been an especially valuable user in this regard

The development and documentation of Porta-SIMD
were supported by the Pixel-Planes Project. Henry Fuchs
and John Poulton, P.Is, and its grants: National Science
Foundation grant #MIP-8601552, Defense Advanced Re-
search Projects Agency order £6090, Office of Naval Re-
search contract #N0014-86-K-0680; and by the GRIP
Project, Frederick Brooks, P.1., under National Institutes
of Health grant #RR 02170, Access to a Connection
Machine was provided by the Advanced Computing He-
search Facility at Argonne National Laboratories, under
grants NSF-ASC-5808327 and DOE-W-31-100-ENG-38.

Forta-SIMD User's Manual 12

References

[EylesA*87] John Eyles, John Austin, Henry Fuchs,
Trey Greer, and John Poulton. Pixel
Planes 4. asummary. In Proceedings of Eu.
rographics ‘87 Second Workshop on Graph-
1cs Hardware, 1987,

[FuchsG*85] Henry Fuchs, Jack Goldfeather, Jeff P
Hultquist, Susan Spach, Jehn D, Austin,
Frederick P, Brooks, Jr., John G, Eyles, and
John Poulton. Fast spheres, shadows, tex
tures, transparencies, and image enhance.
ments in Pixel-Planes. Computer Graphics,
19(3):111-120, July 1985. (Proceedings of
SIGGRAPH '85).

[HarbieS84] Samuel P Harbison and Guy L. Steele Jr
C: A Reference Manual Prentice-Hall,

Ine., Englewood Chiffs, NJ, 1984,

W Dagel Hillis, The Connection Machine
MIT Press Sertes i Artsficial Inlelligence,
The MIT Press, Cambridge, MA, 1985,

[Hilliss5]

[KernigR78] Brian W Kernighan and Dennis M
Ritchie. The € Progremmang Language.
Prentice-Hall, Inc., Englewood Cliffs, NJ,

1978.

[Stroust86] Bjarne Stroustrup. The C++ Program-
ming Language. Addison-Wesley Publish-

ing Company, Reading, MA, 1886,

Connection Machme Model CM-2 Techm-
cal Summary. Technical Report HART.
4. Thinking Machines Corporation, April
1987,

Russ Tuck. An optimally portable SIMD
programming language. In Frontiers '88:
Second Sympostum on the Frontiers of Mas-
sively Parallel Computation, October 1988
Also available as University of North Car-
olina at Chapel Hill, Department of Com-
puter Science, Technical Report TRES-048.

[ThinkinBT]

[Tuckss]

