
'-

•

•

. .

Refinements to Depth-first
Iterative Deepening Search

TR89-004

January 1989

Xumin Nie
David A. Plaisted

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

UNC is &II Equal Opportunity/ Affirmative Action Institution.

•

•

. .

Refinements to Depth-first Iterative Deepening Search*

Xumin Nie and David A. Plaisted
Department of Computer Science

University of North Carolina
Chapel Hill, NC 27599-3175

Internet: { nie, plaisted)@cs.unc.edu

Abstract
This Jl8PC(will discuss two refiaemeiiiS to the depch-first ileralive deepeniDg search slrlllegy. The
first refinement. the priority syswn, is an attempt to simulale belt-tint ..-ch using dq:Jih-first
itcJative deepening sealdL A - dala strur:IUie. the priority list, il inlloduc:ed into dqMh-first
iterative deepening searc:ll by die refiaement. Some c:omplexjty l'ellllts allout the priority system

. are also giVCII. The ICCOIId relaement is based on a syntaCtic vln)lllinl d proof deYelopment,
which views the prcceu of iadinc poofs as an increm1 7 1 proceu of~ insu!N"'s
with a cenain property. We ~ this process to COIIII'OIIhc 4eplla-6nt illlndive deepening
search. Both refinements have been implemcnled in a J!XlUCIIl-ssyle bll:k d!aining theorem
prover and tested on a large number of problems and have been sllown to be effective.

Key Word!' and Phrases: search strategy, depth-first iterative deepening search, automatic deduc­
tion.

Length in word!'. 4500.

1. Introduction

The depth-first iterative deepc'ning search strategy (J)FID) bas been the subject of some
study [5, .11], DFID involves repeatedly performing exhaustive depdl-ftllt search with increasing
depth bounds. DF1D and its variam, iterative-deepening-A • (IDA*), have some distinclive advan- -
tages. Tiley require minimal memory to operate, as opposed to tnadth..first search or A* search;
they are complete strategies as opposed to pure depth-first search; they always find optimal solu­
tions; and they are usually just asdlicient as bludth-ftrstor A* seardlln ipite of the effort spent
on repeated search.

DFID has been used recently by several researcbers in theoiem proving [1, 12]. In particu-
. lar, it is used. to im. p. lement Plaisted's modified problem ~ fonnat [10]. In this !:per, we

will discuss two refinements to the DFID strategy based on Plaisted's implementation. 'The first
refinement is an attempt to simulate best-fiiSt search using DF1D in onler to make the se con­

. centrale on more important goalii. A new data structtJre, a priority lilt, is introduced. Tile second
refinement is based on the observation that the process of finding a proof is a process I of incre~
mentally constructing some ground instances of the input clauses. This incmnental process can
be quantified and used to control DFID.

• This wodr. was supporw!U. pan by lhe Nllliooal Science F<>us.daUan under - DCR-85!6243 and by lhe Office of Navol
Research under arant NOOOI4-86-K-0680.

•

•

•

..

2. First Refinement: Priority System

One of the essential features in any automatic theorem proving system is for its search stra­
tegy to have an estim.rion of the importance or relevance of its goals and always to WOlle on the
best available goal baed on the estimation [9]. The best-first search strategy is the most com­
monly used search stnteJY. to adlieve this. In best-first search, a priority jiuaction is defined
which assigns priority values to die aoaJs. A goal queue, sometimes called the opettlist, is also
maintained in best-lint sean:b, wlllda con&ains all the unfinislted coals tosclher wifb fbeir priority
values. The search always selects the goal from the goal queue with the "best" priority value to
attempt nexL Jt bas been delllonstrafed lbat it adds substantial power to a theorem prover to use
the best-first search C1reJY {2, 7) if the priority function is suitably chosen. The brute-force
DFID seardl as imp'PIP: nd in [10) does not bave a aoo<1 method offavorina and concentraling
on the im~. coaJI. 1lle problem we by to me Is to inco&porate the use of priority into
DFID. In the followlnc diSCUSSion. we assume that a smaller priority vllue indicales a more
important Joal.

Suppose we have a priGdty fuDction and we would like to use 1t in lllch a way that the lina1
solutions, only im'Qlva the.,... with the smallest priority valves possible. If we mow that a
SQlution exists ll!d .know the •allelt bound B which allows the solllllon to be found, we can just
set the priority \lo,Und to B and petfonD the depth-first iterative search until the solution is found,
deleting the goals whose priority values arebigaer than B. The problem is that we usually do not
know the value of B unless we have found a solution. What we would like to do is to find the
solution under some bound lUSOillbly small compared to the smallest bound B. We call the
resultinJ strategies the priority 'YitCIIU •

Let's consider the L smallest cperations1• We do not know these operations in advance.
However, at any .moment of lhe IICIIdl, we know the L smallest operations pert'ormed so far.
Assume C1, ~. : • • G. are the priority values of the L smallest operations performed so far. If an
operation has a priority value P not smlller than the largest of C~o ~ · • · CL• we know that this
operation will not. be one of the L smallest operations. If an operation has a priority value P
smaller than one of C1, ~ • • • CL, this operation may be amonc the L smallest operations and we
should replace the liiQiesl value In C~o ~. • • • CL wilh C. This is the basic idea behind the priority
systems.

We propose .. the followiaa searoh procedure. The search procedure will operate as the
depth-firstjterative deepenlna seardl does. We call the depth-first iterative deepening search the
underlying str(J(egy. The se.d1 ptOC:edure records the L smaHes~ priority values among the

. operations perfonDCd 10 far in the priority list of lCllllh L. A priority list storeS a sequence of
priority values C1.~ •••• , CL in non-increasing order. The first L operations are performed and
their priority valu.es are put In the list. For each successive operation, we compute its priority
value P. If P is less than C1, the operation is petformed and the priority list is updated by deleting
C1 and inserting P at the approprillle place. If P is ,reater or equal to q, the operation is rejected.
Let's consider liil example. S1lppose that a priority list oflength Sis [10, 7, 6, 6, 3). An operation
with priority value 10 will be rejected. An operatioo with priority value S will be accepted and
the priority list is updated to [7, 6, 6, S, 3). Note that each operation is eilher rejected or updates
the priority list to a strictly SJBaller vllue. When no operation is possible. the priority values C~o
~. · · · CL in the priority list are the L smallest operations performed so far. But this fact is not

'We uoe the wont opeP'OiiM to refer an unil of"""" pcrfonnedby them proceu. k con mean a aoa1 boinsaenemed, for
cx.ample.

important. What is important is that the search procedure favors small operations more and more
as the search proceeds.

We would like to point out that, if a solution is found by the priority system with the largest
• value in the priority list being B, B may not be the smallest possible bound. However, the search

. procedure has an interesting property. Given a problem P, suppose N opentions arc performed by
the undedying strategy to find a tolulion S for P. Let Bo be the smallesl: bound for the priority

• values wbicl:l pennits the solutionS to be found. Let Lobe the number of operadoaa ~ the N
operations whose priority values are less than B0• We have

•

•

•

_1beorem A: 'lbe above seii'Ch procedure will find the I10lulion S wben the priority list is of
length greater than or equal to Lo

when the procedure sadsfies the ntoflOfOiticily cOIIIlition, which states

for any bound B, if some or all of the operations with priority values "' B are delescd. the
number of pouib1e opeJalions with priority value less Ibm B will not increase.

Proof: At any given time after Lo operations have been performed, the largest element in the
priority _list will_be a-fer Ibm or equal to Bo. Thus the number of operations willa priority less
than 80 will be less than or equal to Lo by the monotonicity condition. Since the priority list is of
length ~ I..o. all these operations will be perfonned and the proof will be found.

We will analyze this pro<:el1ule. The question we ask is: Given that the lenath of tile priority
list is L, what is the lllllllber of operations possible. Suppose die lint L operations hive cor.plex­
ity C,,~ ..• ,CLip non-incJI=ulns Older and let~= C1• Note that each ~mdon is either
rejected o~ changes the seqqa~ce to a strictly smaller value. WUh a priority list of~ L, we
can have. a minilll_um of L opeRitions {the first L opemtions to fill up the list) and a ouxitnum of
~x(L-1) operations after the ftJst L operalions, assuming a priority v.alue is a II&IUfal number .
We invoke successive trials of the procedure with the priority list being of length LXC' (i =
0,1 , · · · and C > 1} respectively, until a solution is found. Letting w(i) denote the amount of
wo!lc when tbe priority list is of length LXC', we easily have · ·

CxL s w(i) SL><C'xMct.
where Mct. (i=O,l, ... ,) is the largest priority of the first c'xL operations\. We can derive

p (")= w(i+l) s"'-u--
1 I w(i) ""-'C'""L•

Let I be the smallest I such that w(I) Is enough to find a solution. We try to estimate the ratio
I

_tw(k)

Pz(l) = .::looO:::..w(l)=-

Note that Pz(l) bounds the unnecessary wo!lc performed by this procedure .
I I I Cl+l_l · (;'+1

~w(k)= ~~SMcL><L~CrMcr.xLx C-1 SMct_xLx C-1

Thus we have

3

•

•

•

• •

The analysis above is a worst-case analysis and Ike result is admittedly weak. Note that the
complexity .depends on the. bound Mct_, l!ld we do not know what is lheir expected value.
Theoretically it can be adlitnrily lalJe. The fact that the complexity depends on Mct. also
presents a practical problem: At the beginning of the sean:b. we do not llave any control over the
complexity of the operations. k sholdd be intmsting to give some probabilistic analysis. In prac­
tice, though, we believe that the values for P1(i) l!ld P,(I) • alnlost CORitant with respect to C.
Our experiments on Stlckel'a problems confinn this. Table 1 shows the avcraae values for p1(i)
l!ld P:l(l).

C•2 C•3 C•4
P~(i) 2.10 3.13 4.24

a<C-1) 2.00 uo 1.33
P~l) 288 1.98 1.93

We propPSC. a modification of the prcviOUJ acaldl proccdu~ In this procedure, we define
the priority of an operation to C)O!!Sl« of possibly mukiplc units of WOik. The number of units of

· an operation is. called the lMc*t of die opcmion. As~ we llliUIIlC the priority listis of
some ,Icngth L 11)(1 is Jq~~UI?tc I by a sequence of priority values C1.~ •••• G. in non-illctcasing
order· An operation with priority Vlkae C and weight W will be rejected if one of the .first W
values in lhc priority lilt is ._!baa w equal to C. If the operation is nouejcctcd, the priority list
will be updated by insertin& w copies of c into the priority list.

· Let's determine bow many opcDilons can be perfonned wheothepriority lilt is of length L.
This is, again, a worst-eaac analysil. Tile analysis is atraiJbt fotwud if we realize that it takes
UN operations of priority N to fill Ill empty priority list with value N. To perfonn the maximal
IUIIUber of operations, we **ld Jill !he list with the 11r1est priority vahle possible first. So the
. first . candidate is .the operation with ~~ L. the seccad candidate is the operation with weight
1;-1, the thin! with weiJbt L-2. etc. Tbe last opcralionl II'C those with weight 1. Therefon:, the
maximal number of operations is

We invoke successive trials of the procedure with the priority list being of length Lxd (i =
, .· 0,1, · · · and C > 1) respectively, undl a solution is found. Letting v(i) denote the 1111ount of work

when the priority list is of 1engttl LxC, we can show

Q (i)=~= <:i+'xln(<:i+'xL) =Cx ixln(Q+-Jn<C)+In(L) =0<(1+ la(g }SCx(l+.!.)S2C (i>O)
1 v(i) Cxln{CxL) bcfn(C)+ln(L) ixln(C)+ln(L) i

That is, the amounts of work for successive trials of the procedure increase only by a constant
factor. And if a solution is found when the priority list is of length Cxl., we have

4

•

•

•

• •

•

I

:t~C'xl.) I I

<M)= w -:t-1-xln(C'xl..)s:t-1 s....£_
&Lxla(dxL) wc'"l' ln(CxL) _c C-1

That is, the amount of wolk is donlinated by the last trial, if the last trial perfonns the maximal
munber of <;>perations before the solvlion is found. Table 2 shows the average values of Q1 (i) and
Qil) obtaiDecl fiom our experiment on Slickd 's problem set.

Table 2. AlVe!'IF Values for Q1(i) and Qil)

C=2 C=3 C•4
Q,(l) 2.09 3.12 4.11

CNC-lf 2.00 1.50 1.33
Q..(l) 2.90 2.19 1.90

To ensure completenas, lbe impiC'lll 'Jtim of tbe priority sy.r.em OOIISists of sroges. Each
stage consias .of several lOIIDII of ' 1 • I R ICan:ll with iJw.:re11in1 bounds. To be spccilic, given
two naturall1lllllbels Rt and fiJ, 1i'e Clift~ I &eqUeiiCle of infeael's, dCieenltilled by Rt and ~. RJ =
m~o m1, .. • •II\ ~ n2o and II\< 11\i+t (I• 1, .. · ,lt-.1). A Bimple~UIDI!le WOIII.dbe n1 • m1, m1 + 1,
m1 + 2, m1 + k • n,. Let's usc {111, ~~ lD daJote the <:ollleCUiivc IUIIllds of depth-first search
with cut-off bound~ m1, ~ ···,II\· 1be controliiCIUC:fllre oflhe priority system can be seen
as

stage 1 lliF 3 stage 4

{S,.Ii)J {S,, B4}

Figure 1

where usually St ':" s1 and~< E1 (i < j) an41be priority list for stage i is & 1L where C (> I) and L
are constants. We note that the IIIOriOIOnicky condition may be invalid in our implementations.
We also note that the bounds P1 (~) •U':t (QV may not wo* unleas ~ • .. and S; • 1 for aU i.
Nevertheless they ~eem to WOJk well in pnetice.

We have Implemented 111tny venionl of the priority aystem. ~differ in some technical
details which will mt be disc:nlled ~ O.experience wilbthese ~ are positive .

. We only show one~ IDd oompare lis perfonuace wllb m.otthe uncledying lttl­
.. tegy on Stickel's probleQl set [12). n. fldority lUnc:lion useclme.lslila ttJe lllllllber of symbols in
.. a goal. The effect is tD favor smaller gOals. We summarize tbe results in Tallie 3.

Table 3. Sllllllllal')' Data for a Priority System

underlvins! stralCRV
Avef8BC Time

224.30 178.86 Per'I'morem
A veraae lnt'elent::es 124S 4038 Per'lbeomn

We note that the priority s)'Slem is fasler and more reliable. It not only gives a 20 percent
improvement on the avera,e, it also IOives 3 more problems. 1be mw:b luFr average munber of

s

•

• .

inferences for tbe priority system is due to the fact that inferences performed by tbe priority sys­
tems usually involve smaller solvtions and subgoals and can be performed more quickly. We also
memon. that the priority system has been used to solve several problems from [13] which cannot
be solved using the underlying stmegy.

Many appllcarioas Ia deduelive d•lbne, logic progi'MDIIIiaJ and tbeorelll proving ftlquire
to find.some. inlllnlles wbic:ll Ulbty a eenainpropeny. Forenmplc, a query p(X) to a dcabasc
system directs the d a hue .,... to lad -lnstpri!!l!c!p lt for X p(X) a Jo&ic conse­
qUence of the.~ Ia die "Ill tase tn ~ dttmttm 1111U¥1a& ~)'Stem~. poving a

. theorem. js equh' .. to w-. a adlc:luiy -of JI'OIIDd dllliU wllk:ll• '"•""* of the

. aenera1 q;m~ ~~p die .,.d. ofMibeomrt. Our second ~a t•ls baadon 1be oblerva­
tion that a search for proof& can be •• 11111 inmmerllal pm Ill a ofW!ft'l uptlte JeqUin:d

.. instances.'Ibil viewpoint Is "'pp!Ciz!ly IIMUnll for a'** clllinkll dueau pfDYiDc system and
can be used to coRuollhe l!eaJdl piDCCII.

Let's consider the pro1::iem ~format inks puRISt fora Oneil liven a conclusionG
II) be. establishe4,anc! a set of assenions of die form L :- L~o ~ •.. , L,. (itrlplicalions) or L (prem­
ises). An implication L :- L1, ~ •...• L,. Is understood to mean Lt " · · · "L. :::> L. 1be ~ 's are
antecedent. ~· I, is the ctmUqiWII. The top-level pi will be die CORCluslon G. To confirm a
goal L,. one begins willlaiCII\:h of die premises to Jee if IllY PM ' c • I tes L. lf tbere Is such
a premise, L Is conl~~a~. Ocbcrwite. the lOt of lqllk •k•ll il •rrdd and ooe implicatim
whole co~.•• 'bei wid! L will be 1111 cted.lfca ellls1l. -n. a 1 ~~deNS in tllc implica­
tion will be considered ll·tlleW jJOIII4D be cmfirmed. Mllclllll ille aDe IUIIIIer IS L has been.
Note that if L ~ some lojicll vailbles. a matdl wtdl a iJ1 '• or the oonsequent of an
imptication will bind .these nriables wll.b odler lltNCIU11il •t!IJb W'ltcllion. 1ft die context of
seareh cont,rQl, dle$e bindiDp will inc:Riale 1he complexilf of the Fl1 L if • vadable is bound to
a non-variable tenn. considering a structu1e Is more c:om,Jexlbln a variable. We can quantify the
increase 1n complexity from unilieallol1is lllld use it to CXllltrol the ...a

The modified problem n:ductloo format [10] embodiellilllilar~. Letting aolve(G, S,
, f. E) be the. procedure to solve JOil 0 Will\ 1be effort bound E, .._,llound S and F-S being

the. cost of solving G in depdl-inrt fasbl(ln. the followlllc .,..., Clldc for 1be Input clause
L:-L1.L:! •... , L,. il1uslnltes ourimplrm callalion

solve(Lo, S, f, E) :-
mate~~(~. L, [L1, ~ , ... , L,.), V, [V 1, V 2 o ... , V J),
Eo isS+ elause_c:ost(L :- L1, ~ •••• , L,) + matdl_oost(~ V),
EoSE,
F1 is Eo + match,_cost(L" V 1), solve(L" F~o E1 ,E),
F2 is Eo+ match_~ vv. 1Cllve(4f\, E1 .E},

F; is Eo+ match_cost(L;, VJ, solve(L;, F;. E; ,E),

F. is Eo+ lllatch_cost(L,., V ,J, sOlve(L., F., E, ,E).
F is max {lit, Ez , ... , E,).

The procedure .matcii(Lu. L. [L,, ~ , L,.], V, [V1, V2 , ... , VJ), coBects die variables in Lo
into the list V, perfoams a unification openlfion betweeft I.e lllld L • collects the variables in L;
Into the list V; (ISiSn) after the unificalioa ~.The pnx~e~ cltllue_cost determines the

'

•

:
. ~

cost of using an input clause. The procedure match_cost detennines the cost of matching vari­
ables in the unilk:alion operations. The top-level call is solve(false :- [], 0. F, E) where E is the
input and F is the ·OidpUt.

We first deliDe the function complexity for a fe11ll t: (1) complexity(!) = 0 if t is a variable;
•

(2) complexity(t} • n + ,tcomplexity(f;) if t = f(lt, ~ , ... , t,} and ~. For a positive literal L =
iol

p(t1, ~ , ••• , t,), we deAne oomplexity(L},. max{complexity(lt) , .•• , complexity(t,}}. Fora
negative literal N • L, we define complexity(N) = compleldty(L).

We willpve lWQ defillitionl for clawle_cost. Let C dalofc-tllc inplt clauaeL :- L1, La, ... ,
L,.. We Ay the ciiUe C 11~ lhe lldlltilble COIIdldoll, dctd!d by 'WM'iol:tle_cONIUiolf(C), if
there is a variable '!I tn C llldllhll v OCC1Ill more 1ft one of Lt. La , .•.• 1., dlln It does in L. Let B
= max(c:omplellitJ(LJ, ~ , ..• , ~) llld H • OlliRpkxity(L), we give
. nw definitions for daH_co.tt, wbicll wUl be called CCI MCI CCl ~CIJ*Iiftly.

and

CCI: dause_cost(C) =

if B>H
if B=H
if varilble_llORdilioii(C) 1\B<H
otherwise

B-H if B>H
l+I.Joc,nj if B=H

CC2: elaue_COIII(C) - l if YWlltlle_CGIIdillon(C)" B<H
OlherwiJc

These two definitions obviously favor the il\)llt claulea wbicb ~educe the tomplexity of the
subgoals. The vaMbJe oonclition is inCRntuccd to take Into contidention the fact that more
OCCIIRa1t'el of a variable in a lieer'al of the dautc body ..til ••• tbe COIJIIl'cxity of the
subSoil• 4urin8 the proof tn4 till& increue of eompleldty dllrinJ the proof aeeds to penalized .

. Tbe loprithmic .telft) in CC2 ·Is introduced to penalbJe lonJ ellules .Iince they reiUit in bigger
branclliiW factors •

. The procedure lfiiJtdl_ cost can also be defined in 4iftieiPR& ways. IJII purpo1e is to detenlline
. the cost of the uni~ operaliQn. We deine ~-co« only tD ciiiiJC for die bindina of the

variables. In the Cllll IIIMdl_cost(L, V), L is the IUb&Oal and Vis th¢ list of terms bound to the
vari~ in L. Let. V • [lt, ~, .•. , t,J Uld S = [SJ, 1z , ••• , s,.] wbcre S is the act of non-variable
sublcnnsoft1, ~, ••• , r,, we allo give two definitions fornuwcll Cfllt, 'Aflidl will be called MCt
and MC2 respec:lively. - .

•
MCI: malclt:_COSI(L,V)= l;complcxity((;)
MC2: llllllclt_COSl(L,V)=Eoonaplexity(s.)

That is, MC2 does not charge for repeated sublenns. Thc idea illblt we qan repnt a subterm as a
piece of infonnllion about the proof. The multiple oocum:nces of the a subtenn should be

7

..

..

encouraged since this may indicate better concentration of the sean:h process.

Consider an ex.ample ~ the subgoal is p(~a),X)) and the clause is
p(f(X,Y)):-q(f(X,Y}). The match..'COSt between p(f(g(a).X)) and p(n.Y>> is o since no variable
in the subgoal is bound to a ccmplex term. If the subgoal is p(X) and the clause is
p(f(g(a,X))):-q(X), the match_COit between p(X) and p(f(g(a,X))) is W~nplexity(f(a(a,X))). In
general, it is the variable bindings 19 compex terms in the sub(loals lbat count for mlliCILcost

We have experimented wilh diftbrellt definitions of mMch_cost IDd cltMue_cost using the
deplh prover. We '*(CCI, MCl) to dcaole lhe prover usia& CCI tw cfGiju _ewe Mil MCI for
tMtCII cost. The raults are IUIIliUrilect m Table 4. AU four <l0mbillalio111 pert'cNm well. The
OOIIIbiiiation (CCl,NC2} appears to be lhe best in Fftetal. No I()ICial attallion is pven to any
individual problem In lhcse experlman~a.

Table 4. s~ Dlta for Proof Olmpledty MeasuR:s I II undc!tyiqasu • I i CCCUICI) l (CCllP> I CC£UfCl) I ccg,MCl) I :...~ . 224.30 IS4.9S ISSSI 191.95 110.26

We. have customized the de1lnHions for lfltlfch_cost and clawe_cost to solve 1Weral prob·
lem.s froni [13], including amB. IJCd, k:m. exql and exq2. The buk: idea is to favor oeruin func­
tion symbols, ce.rtaln clauses or eenaln tem11 by dlarJinglels for litem. The undcdylnJ strategy
can not solve them as eftlciently or CID IIOUolve them It Ill.

4. Related Works

. . The priority. system is buii,t Oil me l.FID search ~·. The uwtivaliud is to simulate
best-first se'arch. i,ISing DFID; the~ of the ~ ·~ is baed on an imple­
mentation of DFJ:i>. Let's consider lhe went-case of the priority ~)'~lea. Tile WOflt.aJe behavior
of the priority system occurs WbeD lhe priority lilt 1111 to readt Its JNllilnp! le~Jtdlia ~ A

. to find a solution. Consider the llalda lpiCC formaliaed as a aee. As.,..-: mat the IJiinimll solu-
tion 1engt11 is N, the branching faclllris B. We also assume lbat S; fs 1 end E; ~ bcSin ftJure 1. At
stage i, the priority list is of leJrcdt c'-1xL. Suppose a solulion is found at 11ta,e ~. Tbe total
lllllllber of operations performed bJ lhe ptodty system will be • 11101t ·

I I I 81 Bl .
PS(I) = l;DFlD(i.xS) = ~ • Exl:IJ'xs .. -1-~., s-DMtl(w)

;.) ;..t i-1 B -1 B -1

Where E = (:._
1

l'.and I= max{~, (N+l)XIo&cB'-Jorc(L(B-1))+1}. This analysis is limilarto that

in [11] and uses one result DFID(d) = ExB4 from it. We can seelhat the priority S)'Slem is gen-. ' s
erally a constant factor-{--- times as expensive as DFID. But the priOrity sysu:m can be less

8-1
efficient. because the deplh IxS caa be tlllldt larger dan the dqldt required for DAD. We point
out that this comparison is based on wont-case analysis IPd does ROt £ONider the heuriak: offeel
of the priority sysiem. From our experien&lc,the priority systell\ aaucaal performs ~$Ill p~~re
DflD.. Furthermore, the priority list an be implemented lllil!l much less space llhlll the goal
queue in the breadth-first [8] seardlot A*~ [3, 4), since only die priority values 1IICed to be
stored, which seems to be a significant advantage.

8

.
•

~

..

• .
'

..

An elaborate scheme is described in f7] for calculating the complexity of the clauses in a
resolution theolem. prover. That Kbeme could probably be used to deftne our priority function in
dtepriority system,orto define the procedure matclt_cDSt. Ourpioofcomplexity method probably
has a more intuitive meaning, plltially because the term comp1exil)' bas a more dim:t impact on
the sem:h process. Thus our melhod eould be more easily undmlood and Ulled by the user. The
;>roof complexity. does not cllarge Jnything for the matdtes ~ cons&ant symbols (fimctio::
symbols or predk:ale syabols) IIIII usually does not cbatJe lft}'fMIIc lOr a IIIIlCh between a vari­
able .and unary funcllon symbols. As a reault, the proof JMIIIu wllida CDnlaln IE variables are
favored. This makes our melhDd 1imi1ar to lite idea of twbt symbol~ In {I 3). One ru•Jor 11ifferencc
is that we use DFID IIIII (7, 13J -~..fintaearch.

5. COMi r'-

WebavediiCIIUedtwom••• cull aprioritysyllauAda...,-n ij11clit1meawn-
10 the drfllb-llnl itellllvCI dcrp = 11st1 ~ lttldeCY andlllve.lbowla-tlletwurllltmc::upro­
vide siplfic:• ~1ft a di 1D tER pn:wer. Tbe pdoltly JJJ$ II~~- .-:11 trrl·
leJY tha pMe~Ves,dte ... or., ilia& Gall lll:alliiiiJ to llf , uherwbe
bnlte-foR:e DFIJ) se.an:h 10 vae ...-. bcllrislic inlomeeeima IJID'rl ted t.y tile priority ftiAction.
Tile proof COIQPlexily lllCUIEle • be Ulled for the bldt &sf iiiJ IJ. 111 . • willoctl are common in
intdli&Cftl ·~ We have ••• IOlve some prcl!kaas ·wlllc:lt an 110t be solved wktlout it.
lnJCIICfll, we feel that it can be. a powerful tool to help us 1101\'C 4illaak~.

References

1.:·

2.

Bole. S., IUol Oalte. D.B. L1111J 11'111 S. Micbaylov, "h:lll lAIR:. A ParaUd 1'lteorem
Prvver for N,on-Horn Omsrur". Ttdlllieal Repott No. emil c.U137, Comp1111r Science
Deplnment. Clmqie l&rUIIII tJRhtenity, 1988 •

3. . Hart, P .E., NJ. Nilllon-' B.ltaphael, "A Formal Blais foUtiC Hellrildc Detennilla&ion of
Mlnimwn Cost Paths" ,IEEB TI'CIIW. m1 Sys. Sci. 11M C)flerusta,luly 1961.

4. Huyn, .N., R. ~ llld I. Pearl, "PiobabiliBiic Anal)'llia of dole eo.npexity of A•",
Al1ijiciallllleUipttee; Vt IS,pp. 241•254, 1980.

s.

6 .

7.

Korf, R.E., "Pepth-fint keralive Deepening: an Optimal A41nhsible 'flee Search", Artificial
lntelUgencr:, \'ol. T/, 91·109, 19&5. .

. Kowalski, R., "Sea4'Ch Strat:&ks for Theorem-Provina", Macltine llllf!lligence, Vol. S, w.
·181-201, 1970 .

Overbeek, R. J. MeOwen and L. Wos, "Complexity IIIII Related Enhancements for
Au10mated Tbcorem..J>rovin& Plop'ams", Comp. & Mtlfh . .- Appls, Vol. 2, pp. l-16,
1976. . .

9

• •

•

8. Pearl, J., and R.E. Korf, "Search Techniques", Ann. Rev. C~t.Sci., pp. 451467, VQ12,
1987.

9. Plaisted, D.A. and S. Greenbaum, "Problem Represenlalions for Back Chaining and Equal­
ity in Resolution 1llelmm Proving", First A111111al AI Applications Conference, Denver,
Colorado, Decelaber 1984. ·

10. Plaisted, D.A., "Non-Horn Oause LoPe Programming Without Contraposidves", JOIU'IIQJ
of AutonMJted RessOttillg, Vol"· No. 3, September 1988.

11. Stickel, M.E.IIId M.W. Tyson. "An Analysis ofConsecudYdy Bounded Depdl-lirst Search
with Applic8don Automated Deduction", Proc. of/JCAI, pp. 1073-W7S, 1985.

12. Stickel.. M.E., "A I'ROLOG Tec~Da~GsY Theorem Prover: ~on by an Extended
PROLOGOimpilet",l'roc. 0/UCAI,pp. 573-587, Oxfont,f!ttaland, July 1986.

13. .Wang, T.C. llld W.W. Bledsoe, "Hierarchical Deduc1ion", lOfU7ftll of Automated Rt!ll.SOII·
ing, Vol. 3, No. I, 1987.

10

