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Abstract 
This Jl8PC( will discuss two refiaemeiiiS to the depch-first ileralive deepeniDg search slrlllegy. The 
first refinement. the priority syswn, is an attempt to simulale belt-tint ..-ch using dq:Jih-first 
itcJative deepening sealdL A - dala strur:IUie. the priority list, il inlloduc:ed into dqMh-first 
iterative deepening searc:ll by die refiaement. Some c:omplexjty l'ellllts allout the priority system 

. are also giVCII. The ICCOIId relaement is based on a syntaCtic vln)lllinl d proof deYelopment, 
which views the prcceu of iadinc poofs as an increm1 7 1 proceu of~ insu!N"'s 
with a cenain property. We ~ this process to COIIII'OIIhc 4eplla-6nt illlndive deepening 
search. Both refinements have been implemcnled in a J!XlUCIIl-ssyle bll:k d!aining theorem 
prover and tested on a large number of problems and have been sllown to be effective. 

Key Word!' and Phrases: search strategy, depth-first iterative deepening search, automatic deduc­
tion. 

Length in word!'. 4500. 

1. Introduction 

The depth-first iterative deepc'ning search strategy (J)FID) bas been the subject of some 
study [5, .11], DFID involves repeatedly performing exhaustive depdl-ftllt search with increasing 
depth bounds. DF1D and its variam, iterative-deepening-A • (IDA*), have some distinclive advan- -
tages. Tiley require minimal memory to operate, as opposed to tnadth..first search or A* search; 
they are complete strategies as opposed to pure depth-first search; they always find optimal solu­
tions; and they are usually just asdlicient as bludth-ftrstor A* seardlln ipite of the effort spent 
on repeated search. 

DFID has been used recently by several researcbers in theoiem proving [1, 12]. In particu-
. lar, it is used. to im. p. lement Plaisted's modified problem ~ fonnat [10]. In this !:per, we 

will discuss two refinements to the DFID strategy based on Plaisted's implementation. 'The first 
refinement is an attempt to simulate best-fiiSt search using DF1D in onler to make the se con­

. centrale on more important goalii. A new data structtJre, a priority lilt, is introduced. Tile second 
refinement is based on the observation that the process of finding a proof is a process I of incre~ 
mentally constructing some ground instances of the input clauses. This incmnental process can 
be quantified and used to control DFID. 

• This wodr. was supporw!U. pan by lhe Nllliooal Science F<>us.daUan under - DCR-85!6243 and by lhe Office of Navol 
Research under arant NOOOI4-86-K-0680. 
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2. First Refinement: Priority System 

One of the essential features in any automatic theorem proving system is for its search stra­
tegy to have an estim.rion of the importance or relevance of its goals and always to WOlle on the 
best available goal baed on the estimation [9]. The best-first search strategy is the most com­
monly used search stnteJY. to adlieve this. In best-first search, a priority jiuaction is defined 
which assigns priority values to die aoaJs. A goal queue, sometimes called the opettlist, is also 
maintained in best-lint sean:b, wlllda con&ains all the unfinislted coals tosclher wifb fbeir priority 
values. The search always selects the goal from the goal queue with the "best" priority value to 
attempt nexL Jt bas been delllonstrafed lbat it adds substantial power to a theorem prover to use 
the best-first search C1reJY {2, 7) if the priority function is suitably chosen. The brute-force 
DFID seardl as imp'PIP: nd in [10) does not bave a aoo<1 method offavorina and concentraling 
on the im~. coaJI. 1lle problem we by to me Is to inco&porate the use of priority into 
DFID. In the followlnc diSCUSSion. we assume that a smaller priority vllue indicales a more 
important Joal. 

Suppose we have a priGdty fuDction and we would like to use 1t in lllch a way that the lina1 
solutions, only im'Qlva the.,... with the smallest priority valves possible. If we mow that a 
SQlution exists ll!d .know the •allelt bound B which allows the solllllon to be found, we can just 
set the priority \lo,Und to B and petfonD the depth-first iterative search until the solution is found, 
deleting the goals whose priority values arebigaer than B. The problem is that we usually do not 
know the value of B unless we have found a solution. What we would like to do is to find the 
solution under some bound lUSOillbly small compared to the smallest bound B. We call the 
resultinJ strategies the priority 'YitCIIU • 

Let's consider the L smallest cperations1• We do not know these operations in advance. 
However, at any .moment of lhe IICIIdl, we know the L smallest operations pert'ormed so far. 
Assume C1, ~. : • • G. are the priority values of the L smallest operations performed so far. If an 
operation has a priority value P not smlller than the largest of C~o ~ · • · CL• we know that this 
operation will not. be one of the L smallest operations. If an operation has a priority value P 
smaller than one of C1, ~ • • • CL, this operation may be amonc the L smallest operations and we 
should replace the liiQiesl value In C~o ~. • • • CL wilh C. This is the basic idea behind the priority 
systems. 

We propose .. the followiaa searoh procedure. The search procedure will operate as the 
depth-firstjterative deepenlna seardl does. We call the depth-first iterative deepening search the 
underlying str(J(egy. The se.d1 ptOC:edure records the L smaHes~ priority values among the 

. operations perfonDCd 10 far in the priority list of lCllllh L. A priority list storeS a sequence of 
priority values C1.~ •••• , CL in non-increasing order. The first L operations are performed and 
their priority valu.es are put In the list. For each successive operation, we compute its priority 
value P. If P is less than C1, the operation is petformed and the priority list is updated by deleting 
C1 and inserting P at the approprillle place. If P is ,reater or equal to q, the operation is rejected. 
Let's consider liil example. S1lppose that a priority list oflength Sis [10, 7, 6, 6, 3). An operation 
with priority value 10 will be rejected. An operatioo with priority value S will be accepted and 
the priority list is updated to [7, 6, 6, S, 3). Note that each operation is eilher rejected or updates 
the priority list to a strictly SJBaller vllue. When no operation is possible. the priority values C~o 
~. · · · CL in the priority list are the L smallest operations performed so far. But this fact is not 

'We uoe the wont opeP'OiiM to refer an unil of"""" pcrfonnedby the ......m proceu. k con mean a aoa1 boinsaenemed, for 
cx.ample. 



important. What is important is that the search procedure favors small operations more and more 
as the search proceeds. 

We would like to point out that, if a solution is found by the priority system with the largest 
• value in the priority list being B, B may not be the smallest possible bound. However, the search 

. procedure has an interesting property. Given a problem P, suppose N opentions arc performed by 
the undedying strategy to find a tolulion S for P. Let Bo be the smallesl: bound for the priority 

• values wbicl:l pennits the solutionS to be found. Let Lobe the number of operadoaa ~ the N 
operations whose priority values are less than B0• We have 

• 

• 

• 

_1beorem A: 'lbe above seii'Ch procedure will find the I10lulion S wben the priority list is of 
length greater than or equal to Lo 

when the procedure sadsfies the ntoflOfOiticily cOIIIlition, which states 

for any bound B, if some or all of the operations with priority values "' B are delescd. the 
number of pouib1e opeJalions with priority value less Ibm B will not increase. 

Proof: At any given time after Lo operations have been performed, the largest element in the 
priority _list will_be a-fer Ibm or equal to Bo. Thus the number of operations willa priority less 
than 80 will be less than or equal to Lo by the monotonicity condition. Since the priority list is of 
length ~ I..o. all these operations will be perfonned and the proof will be found. 

We will analyze this pro<:el1ule. The question we ask is: Given that the lenath of tile priority 
list is L, what is the lllllllber of operations possible. Suppose die lint L operations hive cor.plex­
ity C,,~ ..• ,CLip non-incJI=ulns Older and let~= C1• Note that each ~mdon is either 
rejected o~ changes the seqqa~ce to a strictly smaller value. WUh a priority list of~ L, we 
can have. a minilll_um of L opeRitions {the first L opemtions to fill up the list) and a ouxitnum of 
~x(L-1) operations after the ftJst L operalions, assuming a priority v.alue is a II&IUfal number . 
We invoke successive trials of the procedure with the priority list being of length LXC' (i = 
0,1 , · · · and C > 1} respectively, until a solution is found. Letting w(i) denote the amount of 
wo!lc when tbe priority list is of length LXC', we easily have · · 

CxL s w(i) SL><C'xMct. 
where Mct. (i=O,l, ... ,) is the largest priority of the first c'xL operations\. We can derive 

p (")= w(i+l) s"'-u--
1 I w(i) ""-'C'""L• 

Let I be the smallest I such that w(I) Is enough to find a solution. We try to estimate the ratio 
I 

_tw(k) 

Pz(l) = .::looO:::..w(l)=-

Note that Pz(l) bounds the unnecessary wo!lc performed by this procedure . 
I I I Cl+l_l · (;'+1 

~w(k)= ~~SMcL><L~CrMcr.xLx C-1 SMct_xLx C-1 

Thus we have 

3 
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The analysis above is a worst-case analysis and Ike result is admittedly weak. Note that the 
complexity .depends on the. bound Mct_, l!ld we do not know what is lheir expected value. 
Theoretically it can be adlitnrily lalJe. The fact that the complexity depends on Mct. also 
presents a practical problem: At the beginning of the sean:b. we do not llave any control over the 
complexity of the operations. k sholdd be intmsting to give some probabilistic analysis. In prac­
tice, though, we believe that the values for P1(i) l!ld P,(I) • alnlost CORitant with respect to C. 
Our experiments on Stlckel'a problems confinn this. Table 1 shows the avcraae values for p1(i) 
l!ld P:l(l). 

C•2 C•3 C•4 
P~(i) 2.10 3.13 4.24 

a<C-1) 2.00 uo 1.33 
P~l) 288 1.98 1.93 

We propPSC. a modification of the prcviOUJ acaldl proccdu~ In this procedure, we define 
the priority of an operation to C)O!!Sl« of possibly mukiplc units of WOik. The number of units of 

· an operation is. called the lMc*t of die opcmion. As~ we llliUIIlC the priority listis of 
some ,Icngth L 11)(1 is Jq~~UI?tc I by a sequence of priority values C1.~ •••• G. in non-illctcasing 
order· An operation with priority Vlkae C and weight W will be rejected if one of the .first W 
values in lhc priority lilt is ._!baa w equal to C. If the operation is nouejcctcd, the priority list 
will be updated by insertin& w copies of c into the priority list. 

· Let's determine bow many opcDilons can be perfonned wheothepriority lilt is of length L. 
This is, again, a worst-eaac analysil. Tile analysis is atraiJbt fotwud if we realize that it takes 
UN operations of priority N to fill Ill empty priority list with value N. To perfonn the maximal 
IUIIUber of operations, we **ld Jill !he list with the 11r1est priority vahle possible first. So the 
. first . candidate is .the operation with ~~ L. the seccad candidate is the operation with weight 
1;-1, the thin! with weiJbt L-2. etc. Tbe last opcralionl II'C those with weight 1. Therefon:, the 
maximal number of operations is 

We invoke successive trials of the procedure with the priority list being of length Lxd (i = 
, .· 0,1, · · · and C > 1) respectively, undl a solution is found. Letting v(i) denote the 1111ount of work 

when the priority list is of 1engttl LxC, we can show 

Q (i)=~= <:i+'xln(<:i+'xL) =Cx ixln(Q+-Jn<C)+In(L) =0<(1+ la(g }SCx(l+.!.)S2C (i>O) 
1 v(i) Cxln{CxL) bcfn(C)+ln(L) ixln(C)+ln(L) i 

That is, the amounts of work for successive trials of the procedure increase only by a constant 
factor. And if a solution is found when the priority list is of length Cxl., we have 

4 
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:t~C'xl.) I I 

<M)= w -:t-1-xln(C'xl..)s:t-1 s....£_ 
&Lxla(dxL) wc'"l' ln(CxL) _c C-1 

That is, the amount of wolk is donlinated by the last trial, if the last trial perfonns the maximal 
munber of <;>perations before the solvlion is found. Table 2 shows the average values of Q1 (i) and 
Qil) obtaiDecl fiom our experiment on Slickd 's problem set. 

Table 2. AlVe!'IF Values for Q1(i) and Qil) 

C=2 C=3 C•4 
Q,(l) 2.09 3.12 4.11 

CNC-lf 2.00 1.50 1.33 
Q..(l) 2.90 2.19 1.90 

To ensure completenas, lbe impiC'lll 'Jtim of tbe priority sy.r.em OOIISists of sroges. Each 
stage consias .of several lOIIDII of ' 1 • I R ICan:ll with iJw.:re11in1 bounds. To be spccilic, given 
two naturall1lllllbels Rt and fiJ, 1i'e Clift~ I &eqUeiiCle of infeael's, dCieenltilled by Rt and ~. RJ = 
m~o m1, .. • •II\ ~ n2o and II\< 11\i+t (I• 1, .. · ,lt-.1). A Bimple~UIDI!le WOIII.dbe n1 • m1, m1 + 1, 
m1 + 2, .... m1 + k • n,. Let's usc {111, ~~ lD daJote the <:ollleCUiivc IUIIllds of depth-first search 
with cut-off bound~ m1, ~ ···,II\· 1be controliiCIUC:fllre oflhe priority system can be seen 
as 

stage 1 lliF 3 stage 4 

{S,.Ii)J {S,, B4} 

Figure 1 

where usually St ':" s1 and~< E1 (i < j) an41be priority list for stage i is & 1L where C (> I) and L 
are constants. We note that the IIIOriOIOnicky condition may be invalid in our implementations. 
We also note that the bounds P1 (~) •U':t (QV may not wo* unleas ~ • .. and S; • 1 for aU i. 
Nevertheless they ~eem to WOJk well in pnetice. 

We have Implemented 111tny venionl of the priority aystem. ~differ in some technical 
details which will mt be disc:nlled ~ O.experience wilbthese ~ are positive . 

. We only show one~ IDd oompare lis perfonuace wllb m.otthe uncledying lttl­
.. tegy on Stickel's probleQl set [ 12). n. fldority lUnc:lion useclme.lslila ttJe lllllllber of symbols in 
.. a goal. The effect is tD favor smaller gOals. We summarize tbe results in Tallie 3. 

Table 3. Sllllllllal')' Data for a Priority System 

underlvins! stralCRV 
Avef8BC Time 

224.30 178.86 Per'I'morem 
A veraae lnt'elent::es 124S 4038 Per'lbeomn 

We note that the priority s)'Slem is fasler and more reliable. It not only gives a 20 percent 
improvement on the avera,e, it also IOives 3 more problems. 1be mw:b luFr average munber of 

s 
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inferences for tbe priority system is due to the fact that inferences performed by tbe priority sys­
tems usually involve smaller solvtions and subgoals and can be performed more quickly. We also 
memon. that the priority system has been used to solve several problems from [13] which cannot 
be solved using the underlying stmegy. 

Many appllcarioas Ia deduelive d•lbne, logic progi'MDIIIiaJ and tbeorelll proving ftlquire 
to find.some. inlllnlles wbic:ll Ulbty a eenainpropeny. Forenmplc, a query p(X) to a dcabasc 
system directs the d a hue .,... to lad -lnstpri!!l!c!p lt for X ........ p(X) a Jo&ic conse­
qUence of the.~ Ia die "Ill tase tn ~ dttmttm 1111U¥1a& ~)'Stem~. poving a 

. theorem. js equh' .. to w-. a .... adlc:luiy -of JI'OIIDd dllliU wllk:ll• '"•""* of the 

. aenera1 q;m~ ~~p die .,.d. ofMibeomrt. Our second ~a t•ls baadon 1be oblerva­
tion that a search for proof& can be •• 11111 inmmerllal pm Ill a ofW!ft'l uptlte JeqUin:d 

.. instances.'Ibil viewpoint Is "'pp!Ciz!ly IIMUnll for a'** clllinkll dueau pfDYiDc system and 
can be used to coRuollhe l!eaJdl piDCCII. 

Let's consider the pro1::iem ~format inks puRISt fora Oneil liven a conclusionG 
II) be. establishe4,anc! a set of assenions of die form L :- L~o ~ •.. , L,. (itrlplicalions) or L (prem­
ises). An implication L :- L1, ~ •...• L,. Is understood to mean Lt " · · · "L. :::> L. 1be ~ 's are 
antecedent. ~· I, is the ctmUqiWII. The top-level pi will be die CORCluslon G. To confirm a 
goal L,. one begins willlaiCII\:h of die premises to Jee if IllY PM ' c • I tes L. lf tbere Is such 
a premise, L Is conl~~a~. Ocbcrwite. the lOt of lqllk •k•ll il •rrdd and ooe implicatim 
whole co~.•• 'bei wid! L will be 1111 cted.lfca ellls1l. -n. a 1 ~~deNS in tllc implica­
tion will be considered ll·tlleW jJOIII4D be cmfirmed. Mllclllll ille aDe IUIIIIer IS L has been. 
Note that if L ~ some lojicll vailbles. a matdl wtdl a iJ1 '• or the oonsequent of an 
imptication will bind .these nriables wll.b odler lltNCIU11il •t!IJb W'ltcllion. 1ft die context of 
seareh cont,rQl, dle$e bindiDp will inc:Riale 1he complexilf of the Fl1 L if • vadable is bound to 
a non-variable tenn. considering a structu1e Is more c:om,Jexlbln a variable. We can quantify the 
increase 1n complexity from unilieallol1is lllld use it to CXllltrol the ...a 

The modified problem n:ductloo format [10] embodiellilllilar~. Letting aolve(G, S, 
, f. E) be the. procedure to solve JOil 0 Will\ 1be effort bound E, .._,llound S and F-S being 

the. cost of solving G in depdl-inrt fasbl(ln. the followlllc .,..., Clldc for 1be Input clause 
L:-L1.L:! •... , L,. il1uslnltes ourimplrm callalion 

solve(Lo, S, f, E) :-
mate~~(~. L, [L1, ~ , ... , L,.), V, [V 1, V 2 o ... , V J), 
Eo isS+ elause_c:ost(L :- L1, ~ •••• , L,) + matdl_oost(~ V), 
EoSE, 
F1 is Eo + match,_cost(L" V 1), solve(L" F~o E1 ,E), 
F2 is Eo+ match_~ vv. 1Cllve(4f\, E1 .E}, 

F; is Eo+ match_cost(L;, VJ, solve(L;, F;. E; ,E), 

F. is Eo+ lllatch_cost(L,., V ,J, sOlve(L., F., E, ,E). 
F is max {lit, Ez , ... , E,). 

The procedure .matcii(Lu. L. [L,, ~ .... , L,.], V, [V1, V2 , ... , VJ), coBects die variables in Lo 
into the list V, perfoams a unification openlfion betweeft I.e lllld L • collects the variables in L; 
Into the list V; (ISiSn) after the unificalioa ~.The pnx~e~ cltllue_cost determines the 

' 
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cost of using an input clause. The procedure match_cost detennines the cost of matching vari­
ables in the unilk:alion operations. The top-level call is solve(false :- [ ], 0. F, E) where E is the 
input and F is the ·OidpUt. 

We first deliDe the function complexity for a fe11ll t: (1) complexity(!) = 0 if t is a variable; 
• 

(2) complexity(t} • n + ,tcomplexity(f;) if t = f(lt, ~ , ... , t,} and ~. For a positive literal L = 
iol 

p(t1, ~ , ••• , t,), we deAne oomplexity(L},. max{complexity(lt) , .•• , complexity(t,}}. Fora 
negative literal N • .... L, we define complexity(N) = compleldty(L). 

We willpve lWQ defillitionl for clawle_cost. Let C dalofc-tllc inplt clauaeL :- L1, La, ... , 
L,.. We Ay the ciiUe C 11~ lhe lldlltilble COIIdldoll, dctd!d by 'WM'iol:tle_cONIUiolf(C), if 
there is a variable '!I tn C llldllhll v OCC1Ill more 1ft one of Lt. La , .•.• 1., dlln It does in L. Let B 
= max(c:omplellitJ(LJ, ~ , ..• , ~) llld H • OlliRpkxity(L), we give 
. nw definitions for daH_co.tt, wbicll wUl be called CCI MCI CCl ~CIJ*Iiftly. 

and 

CCI: dause_cost(C) = 

if B>H 
if B=H 
if varilble_llORdilioii(C) 1\B<H 
otherwise 

B-H if B>H 
l+I.Joc,nj if B=H 

CC2: elaue_COIII(C) - l if YWlltlle_CGIIdillon(C)" B<H 
OlherwiJc 

These two definitions obviously favor the il\)llt claulea wbicb ~educe the tomplexity of the 
subgoals. The vaMbJe oonclition is inCRntuccd to take Into contidention the fact that more 
OCCIIRa1t'el of a variable in a lieer'al of the dautc body ..til ••• tbe COIJIIl'cxity of the 
subSoil• 4urin8 the proof tn4 till& increue of eompleldty dllrinJ the proof aeeds to penalized . 

. Tbe loprithmic .telft) in CC2 ·Is introduced to penalbJe lonJ ellules .Iince they reiUit in bigger 
branclliiW factors • 

. The procedure lfiiJtdl_ cost can also be defined in 4iftieiPR& ways. IJII purpo1e is to detenlline 
. the cost of the uni~ operaliQn. We deine ~-co« only tD ciiiiJC for die bindina of the 

variables. In the Cllll IIIMdl_cost(L, V), L is the IUb&Oal and Vis th¢ list of terms bound to the 
vari~ in L. Let. V • [lt, ~, .•. , t,J Uld S = [SJ, 1z , ••• , s,.] wbcre S is the act of non-variable 
sublcnnsoft1, ~, ••• , r,, we allo give two definitions fornuwcll Cfllt, 'Aflidl will be called MCt 
and MC2 respec:lively. - . 

• 
MCI: malclt:_COSI(L,V)= l;complcxity((;) .... .. 
MC2: llllllclt_COSl(L,V)=Eoonaplexity(s.) .... 

That is, MC2 does not charge for repeated sublenns. Thc idea illblt we qan repnt a subterm as a 
piece of infonnllion about the proof. The multiple oocum:nces of the a subtenn should be 
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encouraged since this may indicate better concentration of the sean:h process. 

Consider an ex.ample ~ the subgoal is p(~a),X)) and the clause is 
p(f(X,Y)):-q(f(X,Y}). The match..'COSt between p(f(g(a).X)) and p(n.Y>> is o since no variable 
in the subgoal is bound to a ccmplex term. If the subgoal is p(X) and the clause is 
p(f(g(a,X))):-q(X), the match_COit between p(X) and p(f(g(a,X))) is W~nplexity(f(a(a,X))). In 
general, it is the variable bindings 19 compex terms in the sub(loals lbat count for mlliCILcost 

We have experimented wilh diftbrellt definitions of mMch_cost IDd cltMue_cost using the 
deplh prover. We '*(CCI, MCl) to dcaole lhe prover usia& CCI tw cfGiju _ewe Mil MCI for 
tMtCII cost. The raults are IUIIliUrilect m Table 4. AU four <l0mbillalio111 pert'cNm well. The 
OOIIIbiiiation (CCl,NC2} appears to be lhe best in Fftetal. No I()ICial attallion is pven to any 
individual problem In lhcse experlman~a. 

Table 4. s~ Dlta for Proof Olmpledty MeasuR:s I II undc!tyiqasu • I i CCCUICI) l (CCllP> I CC£UfCl) I ccg,MCl) I :...~ . 224.30 IS4.9S ISSSI 191.95 110.26 

We. have customized the de1lnHions for lfltlfch_cost and clawe_cost to solve 1Weral prob· 
lem.s froni [13], including amB. IJCd, k:m. exql and exq2. The buk: idea is to favor oeruin func­
tion symbols, ce.rtaln clauses or eenaln tem11 by dlarJinglels for litem. The undcdylnJ strategy 
can not solve them as eftlciently or CID IIOUolve them It Ill. 

4. Related Works 

. . The priority. system is buii,t Oil me l.FID search ~·. The uwtivaliud is to simulate 
best-first se'arch. i,ISing DFID; the~ of the ~ ·~ is baed on an imple­
mentation of DFJ:i>. Let's consider lhe went-case of the priority ~)'~lea. Tile WOflt.aJe behavior 
of the priority system occurs WbeD lhe priority lilt 1111 to readt Its JNllilnp! le~Jtdlia ~ A 

. to find a solution. Consider the llalda lpiCC formaliaed as a aee. As.,..-: mat the IJiinimll solu-
tion 1engt11 is N, the branching faclllris B. We also assume lbat S; fs 1 end E; ~ bcSin ftJure 1. At 
stage i, the priority list is of leJrcdt c'-1xL. Suppose a solulion is found at 11ta,e ~. Tbe total 
lllllllber of operations performed bJ lhe ptodty system will be • 11101t · 

I I I 81 Bl . 
PS(I) = l;DFlD(i.xS) = ~ • Exl:IJ'xs .. -1-~., s-DMtl(w) 

;.) ;..t i-1 B -1 B -1 

Where E = ( :._
1 

l'.and I= max{~, (N+l)XIo&cB'-Jorc(L(B-1))+1}. This analysis is limilarto that 

in [11] and uses one result DFID(d) = ExB4 from it. We can seelhat the priority S)'Slem is gen-. ' s 
erally a constant factor-{--- times as expensive as DFID. But the priOrity sysu:m can be less 

8-1 
efficient. because the deplh IxS caa be tlllldt larger dan the dqldt required for DAD. We point 
out that this comparison is based on wont-case analysis IPd does ROt £ONider the heuriak: offeel 
of the priority sysiem. From our experien&lc,the priority systell\ aaucaal performs ~$Ill p~~re 
DflD.. Furthermore, the priority list an be implemented lllil!l much less space llhlll the goal 
queue in the breadth-first [8] seardlot A*~ [3, 4), since only die priority values 1IICed to be 
stored, which seems to be a significant advantage. 
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An elaborate scheme is described in f7] for calculating the complexity of the clauses in a 
resolution theolem. prover. That Kbeme could probably be used to deftne our priority function in 
dtepriority system,orto define the procedure matclt_cDSt. Ourpioofcomplexity method probably 
has a more intuitive meaning, plltially because the term comp1exil)' bas a more dim:t impact on 
the sem:h process. Thus our melhod eould be more easily undmlood and Ulled by the user. The 
;>roof complexity. does not cllarge Jnything for the matdtes ~ cons&ant symbols (fimctio:: 
symbols or predk:ale syabols) IIIII usually does not cbatJe lft}'fMIIc lOr a IIIIlCh between a vari­
able .and unary funcllon symbols. As a reault, the proof JMIIIu wllida CDnlaln IE variables are 
favored. This makes our melhDd 1imi1ar to lite idea of twbt symbol~ In {I 3). One ru•Jor 11ifferencc 
is that we use DFID IIIII (7, 13J -~..fintaearch. 

5. COMi r'-

WebavediiCIIUedtwom••• cull aprioritysyllauAda...,-n ij11clit1meawn-
10 the drfllb-llnl itellllvCI dcrp = 11st1 ~ lttldeCY andlllve.lbowla-tlletwurllltmc::upro­
vide siplfic:• ~1ft a di 1D tER pn:wer. Tbe pdoltly JJJ$ II~~- .-:11 trrl· 
leJY tha pMe~Ves,dte ... or., ilia& Gall lll:alliiiiJ to llf , ......... uherwbe 
bnlte-foR:e DFIJ) se.an:h 10 vae ...-. bcllrislic inlomeeeima IJID'rl ted t.y tile priority ftiAction. 
Tile proof COIQPlexily lllCUIEle • be Ulled for the bldt &sf iiiJ IJ. 111 . • willoctl are common in 
intdli&Cftl ·~ We have ••• IOlve some prcl!kaas ·wlllc:lt an 110t be solved wktlout it. 
lnJCIICfll, we feel that it can be. a powerful tool to help us 1101\'C 4illaak~. 
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