s

<

Refinements to Depth-first
Iterative Deepening Search

TR89-004
January 1989

Xumin Nie
David A. Plaisted

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall

Chapel Hili, NC 27599-3175

UNC is an Equal Opportunity/Aflirmative Action Institution.

Refinemernts to Depth-first Iterative Deepening Search *

Xumin Nie and David A. Plaisted
Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175
Internet: (nie, plaisted }J@cs.unc.edu

Abstract
This paper will discuss two refinements (o the depth-first iterative deepening search strategy. The
first refinement, the priority system, is an atiempt t0 simulste besi-first search using depth-first
iterative deepening scarch. A new data structure, the priority list, is introduced into depth-first
iterative deepening search by the refinement. Some complexity resits about the priority system

. are also given. The stcond refinement is based on a syniactic viewpoint of proof development,
which views the process of finding peoofs as an incremental process of comstructing instances

with a certain property. We quantify this process to control the depeh-first iterative deepening
search. Both refinements have been implemented in a sequemt-style back chaining theorem
pmverandmstedmalugenumbuofprobmmmvehemshommbeeﬁmw

Key Words and Phrases: search stratcgy, depth-first iterative deepemng gearch, automatic deduc-
tion.

Length in words. 4500.

1. Introduction

‘The depth-first iterative deepening search strategy (DFID) has been the subject of some
study [S, 11], DFID involves repeatedly performing exhaustive depth-first search with increasing
depth bounds. DFID and its variamt, iterative-deepening-A* (IDA*), have some distinctive advan- -
tages. They require minimal memory to operate, as opposed to breadth-first search or A* gearch;

‘they are complete strategies as opposed to pure depth-first search; they always find optimal solu-

tions; and they are usually just as-efficient as breadth-first or A* search in spite of the effort spent
on repeated search. '

DFID has been used recently by several researchers in theorem proving [1, 12]. In particu-

~lar, it is used to implement Plaisted’s modified problem reduction format {10). In this paper, we

will discuss two refinements to the DFID strategy based on Plaisted’s implementation | The first
refinement is an attempt to simulate best-first search using DFID in order to make the se con-

., .centrate on more important goals. A new data structure, a priority list, is introduced, second

refinement is based on the observation that the process of finding & proof is a process/of incre-

~ mentally constructing some ground instances of the input clauses. This incmnental process can

be quantified and used to control DFID.

* This wock was wupponed in pant by the National Science Foundation under grant DCR-8516243 and by the Office of Naval
Research under grant N0OOG14-86-K -0680.

)

2. First Reﬁnement:'Priority System

One of the essential features in any automatic theorem proving system is for its search stra-
tegy to have an estimation of the importance or relevance of its goals and always to work on the
best available goal based on the estimation [9]. The best-first search strategy is the most com-
monly used. search strategy to achieve this. In best-first search, a priority function is defined

- which assigns priority valucs to the goals. A goal queue, sometimes called the open list, is also
- maintained in best-first search, which contains all the unfinished goals together with their priority

values. The search always selects the goal from the goal queue with the "best" priority value 10
attempt next. It has been demonstrated that it adds substantial power to a theorem prover 1o use

.the best-first search strategy {2, 7] if the priority function is suitably chosen. The brute-force
. DFID search as-implesented in [10] does not have a good method of favoring and concentrating
_ on the important goals. The problem we try to solve is to incorporate the use of priority into

DFID.. lnﬂnfo!lowﬁ:gdismzsmmwemumﬂmamﬂicrpdontyvduemdscmamme
important goal.

Suppose we have a priority function and we would like to use it in such a way that the final

"-‘..solulmns only involves the goals with the smallest priority values possible. If we know that a

solution exists and know the smaliest bound B which allows the solution to be found, we can just
set the priority bound to B and petform the depth-first iterative search until the solution is found,

deleting the goals whose priority values are bigger than B. The problem is that we usually do not
know the value of B unless we have found a solution. What we would like to do is to find the

solution undermmeboundltasomblyanaucompmdtotlwsmauestboundl} Wecallthe
resulting stra:egies the pnoriw Systems,

_Let’s consider the L smallest operations’. We do not know these operations in advance.

~ However, at any moment of the scarch, we know the L smallest operations performed so far.

Assume C;, C,, :++ Cp are the priority values of the L smallest operations performed so far. If an
operation has a priority value P not smaller than the largest of C;, C,, -+ - Cy, we know that this

- operation will not be one of the L smailest operations. If an operation has a priority value P
- smaller than one of C;, C,, *++ Cy, this operation may be among the L. smallest operations and we

should replace the largest value in C,, C,, - - - €y, with C. This is the basic idea behind the priority
systems. _ _

We propose the following search procedure. The search procedure will operate as the
depth-first jterative deepening search docs. We call the depth-first iterative deepening search the

. underlying strategy. The search procedure records the L smallest priority values among the
.operations perfomed so far in the priority list of length L. A priority list stores a sequence of
.. priority values C,, .,Cp. in non-increasing order. The first L operations are performed and

their priority values are put in the list, For each successive operation, we compute its priority
value P. If P is less than C;, the operation is performed and the priority list is updated by deleting
C; and insening P at the appropriate place. If P is greater or equal to C,, the operation is rejected.
Let's consider an example. Suppose that a priority list of length 5 is [10, 7, 6, 6, 3]. An operation
with priority value 10 will be rejected. An operation with priority value 5 will be accepted and
the priority list is updated to {7, 6, 6, 5, 3]. Noie that each operation is either rejected or updates
the priority list to a strictly smaller value. When no operation is possible, the priority values C,,
C,, -+ € in the priority list are the L smallest operations performed so far. But this fact is not

'Weuseﬂnewadopemunmrdummofwmkpufamedbyﬂwmdlpmoeu It can mean & goal baing generuied, for
example.

3

o

important. What is imporant is that the search procedure favors small operations more and more
as the search proceeds. :

We would like to point out that, if a solution is found by the priority system with the largest
value in the priority list being B, B may not be the smallest possible bound. However, the search

.. procedure has an interesting propesty. Given a problem P, suppose N operations arc performed by
. the underlying strategy to find a sohution S for P. Let By be the smaliest bound for the priority

values which permits the solution § to be found. Let L, be the number of operations among the N
operations whose priority values are less than B,. We have

Theorem A: The above search procedure will find the solution $ when the priority list is of
length greater than or equal o Ly

when the procedure satisfies the monotonicily condition, which states

for any bound B, if some or all of the operations with priority values > B are deleted, the
- number of possible operations with priority valuc less than B will not increase.

~ Proof: At any given time after L, operations have been performed, the largest eloment in the

priority list will be greater than or equal to B,. Thus the number of operations with priority less

_mnomﬂbelusmanorequaltol.obyﬂwmmwmmty condition. Since the priority list is of

length 2 L, all these operations will be performed and the proof will be found.

- . We will analyze this procedure, Thequemonweask:s Gwentlntthelengﬂ\ofmemonty
list is L, what is the number of operations possible. Suppose the first L. operations have complex-
ity €;.Cy,...,Cy, in non-increasing order and let M = C;. Note that each operation is either
rejected or changes the sequence 0 a strictly smaller value. With a priority list of length L, we
canhaveammunumofLOpcmons(meﬁmLupemionsloﬁHupﬂwﬁst)mdammumof
M;X(L-1) operations after the first L operations, assuming a priority value is a natural number.
We invoke successive trials of the procedure with the priority list being of length LxC (i =

01, andC>1)respecuvely.unnlasolutwntsfound Mngw(l)dmcﬂsemnoumof

woik when the priority list is of length LxC', we easily have

O < w(i) SLXCxMey
where Mgy (i=0,1, . . .,) is the largest priority of the first CXL operations. We can derive

Plu)=—i—lsCme
wlbcmesmallmisudlmatw(l)isemughtoﬁndasolum Wcuymesumateltnrauo

ZW(k)
P =
z(I) W(I)
Note that P,(I) bounds the unnecessary work perfcrmed by this procedune

):w(k)uzc*ﬂxmmmcl.xtzcﬁuam .sMc-ngf :

Thus we have

i}

I
v
c C
Tt ShD= wm w0 S M

__The analysis above is a worst-case analysis and the result is admittedly weak. Note that the

‘complexity depends on the bound Mgy, and we do not know what is their expected value.
~ Theoretically it can be arbitrarily large. The fact that the complexity depends on Mgy, also

presents a practical problem: At the beginning of the search, we do not have any control over the
complexity of the operations. It should be interesting to give some probebilistic analysis. In prac-

. tice, though, we belicve that the values for P,(i) and P)(T) are almost constant with respect to C.

Our experiments on Stickel’s probhms confirm this. Table 1 shows the average values for p,(i)
and p,(D).

“Table 1. Average Values for P,(i) and P(D)

C=2 | C=3 | C=4
P, () 210 | 3.3 | 4.24
CHC-1) | 200 150 { 133
PD) 288 | 198 | 193

We propose a modification of the previous search procedure, In this procedure, we define

the priority of an operation to consist of possibly multiple units of work. The namber of units of

an operation is called the weight of the operaton. As before, we assume the priority lst is of
meWLMnsmpmmbyanumofpﬁoﬁtyvmq&. ..C in non-increasing
order. AnoneratxonwiﬂnpﬂoﬂtymcmweigluWwﬂlberepcwdnfomofﬂxeﬁmW

~ values in the. -priority list is Jess than or equal to C. If the operation is not rejected, the priority list

will be updated by inserting W copies of C into the priority list.

" Let’s determine how many operations can be performed when the priority list is of length L.
This is, again, a worst-case analysis. The analysis is straight forward if we realize that it takes
L/N operations of priority N to fill an empty priority list with value N. To perform the maximal
number of operations, we should fill the list with the largest priority value possible first. So the

first candidate is the operation with weight L, the second candidate is the operation with weight
. L~1, the third wnhweiﬂltb-z.etc The last operations are those with weight 1. Therefore, the

maximal number of operations is
L L
L LXE o)

i 1

We mvoke successive trials of the procedure with the priority list being of length LxC! (i =

o 0,1, andC>1)respectwely until a solution is found. Letting v(i) denote the amount of work

when the priority list is of length LxC', we can show

vit1) GO o e eimCId) 1 WO 1o
Q= = GG T mnOHL) O ROy S ISIC (>0)

That is, the amounts of work for successive trials of the procedure increase only by a constant
factor. And if a solution is found when the priority list is: of length Cd., we have

L1

rw

1
Q= =2 2 Z[‘. 1 ln(C“xL),z _C
Chddn(ClxL) .,.f,c“ IngCh) c* C-1

That is, the amount of work is dominated by the last trial, if the last trial performs the maximal
rumber of operations before the solution is found. Table 2 shows the average values of Q,(i) and

Q,(1) obtained from our experiment on Sticke!'s problem set.

Table 2. Avenge Values for Q,(i) and Q.(I)
C=2 | C=3 C=4
QM 2.09 3.12 4.18

CACD | 200 | 150 | 133
QM | 29 | 219 | 1%

To ensure compieteness, the implementation of the priority system oonsists of suages. Each

| 'stégeoomstsofmm round of depth-flest scarch with increasing bounds. To be specific, given

twomtumlnumbetsn,mda,.mmMeammeome determined by n, and ny, 0, =

Cmpmy, c mym<ny, and <y, (=1, o, k=1). A simple example would be n; = m;, m; + 1,
. myp+ 2, ..m + k= n, Let's use (n,, n,) mdumﬂncmmﬁvcmuﬂsofdepm-ﬁmsem

with cut-off bound being m,, m;, - -, m,. The control structure of the priority system can be seen
as . ' - L

stagel smage2 sage3 staged L. gagei ...

(SuE) (SpEy) (SyB) (SyEJ . (SuE) o
' Figure 1 -

where usually §; =.S; and E; < E; (i < j) and the priority list for stage i is C~'L where C (> 1) and L
are constanis. We note that the monotonicity condition may be invalid in our implementations.
We also note that the bounds P, (Q,) and P, (Qy) may not work unless E; = oo stad S; = 1 for all i.
Nevertheless they seem towoka&in-pnctice.

Wehaveimphnmtedmmymofu\epw:yﬁan They differ in some technical

.., . details which will not be discussed here. Our experience with these implementations are positive.
.. We only show one implementation end compare its performance with that of the underlying stra-

- .. . tegy on Stickel's problem set {12). WMMWWmmberofsymbokm
1 agoai The effect is to favor smaller goals. We summarize the results in Table 3.

Table 3. Summary Data for a Priority System

underlying sirategy | priority system
Average Time ,
Per Theorem 22430 178.86
Average Inferences |
Pes Theorem 1245 4038

We note that the priority system is faster and more reliable. It not only gives a 20 percent
improvement on the average, it also solves 3 more problems. The much larger average number of

N)

inferences for the priority system is due to the fact that inferences performed by the priority sys-

tems usually involve smaller solutions and subgoals and can be performed more quickly. We also
mention that the priority system has been used to solve several problems from [13) which cannot
be solved using the underlying strategy.

3. Second Refinement: Proof Complexity Measure

-Many. applications in deductive database, logic programming and theorem proving require

~ 10 find some instances which satisfy & ccntain property. For exampie, & query p(X) 10 a database
.. system directs the database system to. find an instantistion x for X that makes p(x) a logic conse-
_quence of the facts in the datsbase. In resolution-based theorem proving sysiems, proving a
. theorem js equivalent to finding a comtradictory set of ground ciauses which sre instances of the
o mdmmmmamm Our second refinement is based on the cbeerva-
uon&atauamhfummﬁmbevhwdumkwmﬁmﬂhﬂl&upﬂummd
.. instances. This viewpoint is especially natural for a back chaining theorem proving system and
- can be used to contro] the scarch process.

. Let’s consider the problem reduction format in its purest form. One is given a conclusion G

-lobeestahlxshcdmdasewfassamofﬂufom!. — L1 Lay . . .o Ly (implications) or L (prem-
" ises). An implication L: -Ly, Ly, . L.:sunderﬂoodwmmL,A AL, DL The L’s are

wuecedemandLisﬂnconsaqumThemp-levdpalwﬂlbe&mionG To confirm a
goal L, one begins with a search of the premises to see if any premise matches L. If there is such

- a premise, L is confirmed. Otherwise, the set of implications is seatched and one implication

. ... whose consequent matches with L will be selected, if one exists. The smetedents in the implice-
. tion will be considered as aew goals & be confirmed, much in the same manner as L has been.
- Note that if L contains some logical varishles, a match with a premise or the consequent of an

implication will bind these varisbles with ether structures shrough unification, In the context of
search control, these bindings will increase the complexity of the goal L if a variable is bound to
a non-variable term, considering a structure is more compiex than & variable. We can quantify the
increase in complexity from unifications and use it to control the search.

The modified problem reduction format {10] embodies similar structure. Letting solve(G, S,

" F, E) be the procedure to soive goal G with the ffort bound E, starting bound S and F-S being
:memofmmcmmmmmmmmmmmmmm

L:-LL,, . .., L, illustrates our implementation
solve(L,, S, F. E).-
mawm*lﬁ{l‘l!l-ﬂ,.---. L.}.V,[V,';Vz'..‘... v.])l

Eyis S + clamse_cost(L. :-L,,L,...., L) + match_oost(L,, V),
E<E, :

F! is BO + m‘m&n vl)- Mlo ‘Fh El. oE)-
Fz is Eo + mawn_m Vz). m(l-'b F)- El -E)’

F, is Eg + match_cost(L;, V), solve(L;, F,, E; ,E),

Fn is Eg"‘ mtch___GOM(L,,. V.)n me(l-lnl FmEl !E)‘
Fis max{EE,,..., E}.

The procedure match(Lo, L, {L1, Ly ..., L), V, [V}, V2 ,..., VD), collects the variables in L,
into the list V, performs a unification operation between L, and L and collects the variables in L;
into the list V; (1<i<n) after the unification operation. The procedure clause_cost determines the

T tw

cost of using an input clause. The procedure match_cost determines the cost of matching vari-
ables in the unification operations. The top-level call is solve(false :~ [], 0, F, E)whemElsthc
input and ¥ is the ontput.

We first define the function complexity for a term t: (1) complexity(t) = 0 if t is a variable;
(2) complexity(t) = n + zommy({,) ift=ft, t,...., t,) and n20. For a positive literal L =

Bt byl), We m complexity(l) = max{compiexity(y,), complexity(i)}. For a

negative meral N = — L, we define complexity(N) = complexity(L).

We will give two definitions for clause_cost. Let C denote the input clause L :-Ly, L,, ...,

L, We say the clause C satisfics the variabie condition, denoted by variable_condition(C), if
- there is o variable ¥ in C such that v occurs more inone of L, L, ,.... L thanitdoesin L. Let B

= max{complexity(L,), complexity(ip) ..., complexity(i,)} and H = complexity(L), we give
two definitions for clause_ m.mchwﬂlhecauedCCiw(IRrupecﬁvdy

, if B>H
= {t if B=H
CClL: clause costC)=4; i varishle_condition(C) AB<H
otherwise
and
B-H if B>H
W+flogsn] if B=H
CC2: clause_cos(C) = 4, if varkable_condition(C) A B<H
otherwise

These two definitions obviously favor the input clavses which reduce the complexity of the
subgoals. The varisbie condition is introduced to take into consideration the fact that more
occusrences of a variable in & literal of the clause body will increase the complexity of the
subgoals during the proof and this increase of complexity during the proof nesds to penalized.

,ﬂnlognMnmctemmCCzismduMwmﬁmmcMQﬁmﬂwmebiggcr

branching factors.

The procedure match_cost can aiso be defined in different ways. mpurpmeistndetemam

. the cost of the unification operation. We define march_cost only o chrge for the binding of the
... varisbles, In the call march _cosi(L, V), L is the subgoal and ¥ is the ligt of terms bound o the
. variables in L. LetVt{tl.t,. tjand S={s, s ,..., 5,] where § is the set of non-variable

sublerms of 4;, 4 ,..., L, waimginmdeﬁnﬁmfum_m.ﬂuchmnbecaued MCi
andMCstpectively.

MCI: match_cost(L.V)=X complexity(s)
ol

MC2: m:cn._mm.mimm&ytsa

That is, MC2 does not charge for repeated sublerms. The idea is that we can regard a subterm as a
pleoeofmfonnmmaboutmcpmof mmuinpleomuﬂmsofﬂ\cammmshouldbe

LI

w;; fur

encouraged since this may indicate better concentration of the scarch process.

Consider an example where the subgoal is p(f(g(a),X)) and the clause is

- pUECX, Y))-q(R(X, Y)). The match_cost between p(f(g(a),X)) and p{&(X,Y)) is O since no variable

in the subgoal is bound 10 a complex term. If the subgoal is p(X) and the clause is
p(f(g(a,X))):—q(X), the match_cost between p(X) and p(f(g(a,X))) is complexity(Kg(a,X))). In
general, itkmvmmmmmmmmeswﬂntmmrmm_m

We have experimented with different definitions of match_cost and clause_cost using the

~ depth prover. We use (CCI, MC1) t0 denote the prover using CC1 for clause_cost and MC1 for

match_cost. The results are summarized in Table 4. All four combinations perform well. The

" combination (CC2,MC2) appears t0 de the best in general. No special attention is given to any

individual problem in these experiments.

Table 4. Sumsmary Data for Proof Complexity Measures

| Average Time
Pu'l‘heowm 224.30 _ 154.95 158.57 191.95 110.26

- We have customized the definitions for match_ cosrmdc{ause cost 10 solve several prob-
lems from (13}, including am8, pd.lcm.equmdexqz The basic idea is to favor certain func-
tion symbols, certain clauses or certain terms by charging less for them. mumﬂmegy
canmtsoiveﬁwmuefﬁcremlyormmtmlvcmanaull

4. Related ’Works

The priority system is built o the mvmm The moiivatios is to simulate
best-ﬁrstsearchusing DFID; Mhpmmwﬂnpwwmmbmmmmplc-
meritation of DFID, Let's consider the werst-case of the priority systesm. The worst-case behavior

_ of the priority sysiem occurs when the priofity 1ist has to reach its maximal length in theorem A
to find a solution. Consider the search space formalized as a tvee. Assyme that the minimal soly-

tion length is N, the branching factoris B. We also assume that §; is 1 snd E; is ixS in figure 1, At
stage i, the priority list is of length C'xL. Suppose a solution is found at stage 1. The total
mmherofopemnomperfmmedbyhptbﬁtysymwﬂlheam |

PS() = }:DF{,D(ixS) = };Exa"‘
m} : =l

n’-x' B’—i— IDDS)

where E = (5%)? andI= mu{-’é‘-. Q¥+ 1)dogeB-log(L(B-1))+1). This analysis Is sienilar to that

; in[ll]andusesoneleaﬂtDF!D(d)uﬂxB‘fmit We can see that the priority system is gen-
_ erally a constant factor BB

_ efﬂmmlbecauscﬂwdepmmmbemhhtgerm&ndep&mmform We point

; times as expensive as DFID. But the priority sysiem can be less

out that this comparison is based on worst-case analysis and does not consider the heuristic effect
of the priority system. From our experience, the priority system gonesal pecforms betier than pure
DFID. Furthermore, the priority dist can be implemented using much less space than the goal
queuc in the breadth-first [8] search or A* scarch [3, 4), since anly the priority values need t0 be
stored, which seems tobea szgmﬁcmt advamtage.

R 1)

An elaborate scheme is described in [7] for calculating the complexity of the clauses in a
resolution theorem prover. That scheme could probably be used 1o define our priority function in

- the priority system.or to define the procedure match_cost. Our proof complexity method probably

hasamoremmmvememng.puﬁdlybecauseﬁcmoomplemyhsammdimnmmm '
the search process. Thus cur method could be more easily understood and used by the user. The
proof complexity does not charge anything for the matches between constant symbols (functio:
symbokorpzuhu&zyabalx)dmﬂiydoesmtchmmyﬁaghnmhuwmavm-
able and unary function symbols. As a result, the proof paths which contain less variables arc

favored. msmakumrmeﬂndMMﬂnudcaomeh{ﬂ] One major difference

m&atwcuseDFled[? 13§ueben—ﬂfnseuch

5, Conciusions

We have discussed two refimessents — & priofity system and & proof complexity measare —

L bmmmmmmmmmmmnnmmm
vvide significant improvements in a theosesn prover. The priority system Is a complete search stra-

tegy that preserves the advantage of mgquiring small memory to operate and allows the otherwise
brote-force DFID search 10 use certain heusistic information provided by the priority function.

S _Mpmfwm%mmbemdfmmmmmﬂi&mmm
. intelligent systems,
- - Ingeneral, wefedﬂwatcmbcapmerﬂdtooimhdpusmemm

e have used. K 10 solve some probiems which can not be solved without it,

References |

1.: Bose, S., EM. Clarke, D.E. Long and S. Michaylov, "Pathenon: A Pasalic! Theorem

Prover for Non-Hom Clauses™, Technical Report No. com-¢5-88-137, mesﬂcnoe
wc-mmumw 1988.

2. Greenbaum, .S, MWMRMMTW for

nmmmmmmomuac Pr.D. mmwmm_
mmUmw.@oInMqum-ﬂmmm 1986. |

3. . Han, P.E.,N_J. Nilsson and B. Raghael, "A Formal Bms for the Heuristic Detemmination of

Minimum Cost Paths", m Trw. on Sys. Sci. and Cybernetics, .My 1968.

4. Huyn, N, R. Dechier and J. Peard, HobabiksticAnalyﬂkefﬂlemeplexityofA*"

" -Artificial !n:emgeuce. Vﬁ. is.pp 24!-254 1980.

5. Koff,RE., Depﬁbﬁmherﬂwe Deepemng an Optimal Am Tree Seamh" Artificial
Intelligence, Vol. 27 97-!09. 1985. ‘

6. . Kowalski, R., "Search Stumsfnr Theorem-Proving” .Macinme Intelligence, Vol. S, pp.

-181-201, 1970

7. Overbeck, R, . MeCharen and L. Wos, "Complexity and Related Eshancements for

Aumatedﬂmm-?mvmgms Comp. & Math. wwcAppk Vol. 2, pp. 1-16,
1976.

b

10,

11.

Pear, J., and R.E. Korf, "Search Techniques”, Ann. Rev Compm Sci., pp. 451467, V012
1987.

Plaisted, D.A. and S. Greenbaum, "Problem Representations for Back Chaining and Equal-
ity in Resolution Theorem Proving”, First Anneal Al Applications Conference, Denver,
Colorado, December 1984,

' Plaisted, D.A., "Non-Hom Clause Logic Programming Without Contrapositives”, Journal

of Automated Reasoning, Vol 4, No. 3, September 1988,

Stickel, M.E. and M.W. Tyson, " An Analysis of Consecutively Bounded Depth-first Search

.. with Application Awomated Deduction”, Proc. of I7CA pp. 1073-!075 1985.

12,

13.

il

. Aw

Stickel, M.E., "A PROLOG Technology Theorem Prover: implementation by an Extended
PROLOGCcmpﬂu‘“ Proc. of IJCAL, pp. 573-587, Oxford, England, July 1986.

~ Wang, T.C, and w.W. Bledsoe, "Hierarchical Deduction”, Jouraal of Automased Reason-
ing, Vol. 3, No. 1, 1987.

10

