
The Fluid Dynamics Machine Architecture

TR88-056

December 1988

Mark C. Davis

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/Affirmative Action Institution.

'

•

•

•

The Fluid Dynamics Machine Architecture

Mark C. Davis

CB # 3175, Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175

December 1, 1987

•

!

•

!

Abstract

The Fluid Dynamics Machine(FDM) is designed to rapidly solve an important physical
problem. Fluid dynamics hu application in automotive engineering, aeronautics and weather
prediction. Previous computers and solution methods have been too slow or too expensive to
be widely usable. This paper describes the architecture of the Fluid Dynamics Machine, a fine
grain, systolic multiproceaeor computer. The FDM has 9612 identical processing elements
in a 96 by 96 array. Multiple communication patha between neighbors embed the processing
elements in a logical heJ<&&OD&I grid. Each of the processing elements simulates fluid flow
using a cellular automata algorithm developed by Frisch. The processing elements also
accumulate momentum averase data to condense the quantity of output from the machine.
A separate input-output processor controls the processing element array and communicates
with a host workstation. Parameter selection to optimize a wafer scale implementation is
also described. An implementation on 9 wafers, each 5 inches in diameter and using 1.2
micron design rules, could be built on one VME board and could calculate fluid flow faster
than a modern workstation could display the results.

!

•

!

•

The Fluid Dynamics Machine Architecture - Marie C. Davis - December I, 1987 1

Contents

1 Preface

2 Fluid Dynamics

2.1 Many Fields Have Fluid Dynamics Problems

2.2 Navier-St.okes and Super Computers Can be Used .

2.3 The FDM Solution

3 The Fluid Dynamics Machine Architecture

3.1 Inter-processing Element Communication System .

3.2 Processing Element Description

3.3 The Input-Output Controller Description .

4 Wafer Scale Implementation Considerations

4.1 Ares- The Parameter Under Designer Control

4.2 Fault Distribution

4.3 Input-Output Requirements

4.4 IO and Yield calculations .

5 Summary

6 Acknowledgements

3

3

3

4

5

8

9

13

19

25

26

27

27

27

28

28

The Fluid Dynamics Machine Arcbilecture- Mark C. Davis- December 1, 198i 2

List of Figures

1 Cellular Automata Hexagonal Grid 6
!

2 Open Space Collision Rules 7

• 3 Inter-Processing Element Communication Paths . 10

4 Nine Inter-Proc-ing Element Communication Paths 11

5 Data Path Interconnection to Form New Paths 12

6 Logical Node Layout and Numbering . 16

7 Multipurpose Data Bus 21

8 Working Storage Register Model 22

9 Instruction Formats 24

!

•

•

•

'

•

Tbe Fluid Dynamics M~U:bine Architecture- Mark C. Davis- December 1, 1987 3

1 Preface

The Fluid Dynamics Machine (FDM) efficiently sinwlates the motion of fluids like air or
water. A special purpoee computer, FDM easily and economically implements Frisch's algo
rithm to solve the fluid dyne.mica problem. The FDM ccwta;na 9216 individual processing
elements, putting it in the class of large order multip~ machines. The architecture
is particularly suited to wafer scale implementation. The important problem, the efficient
algorithm, the high performance multiprocessor architectwe, and the economical wafer scale
implementation makes this machine a valuable addition to &he family of computing machin
ery.

I uaume that the reader of this technical report already undentands dift'erent types of
multiproceaaor architecturee and interconnection schemes. Allo the reader is familiar with
Very Large Scale Integation (VLSI) design techniques and the concepts and difficulties of
wafer seale integation. The VLSI and multiprocessor eoaeepts are covered in Mead and
Conway's introduction to VLSI systema(6). The wafer seale COJI8iderationa may be found in
Hedlund[4).

This technical report describes the architecture of the ftuid dynamics machine and aome
of the design conaiderations. The report begins with a SU81ion of \he fluid dynamics
problem, its applications and its solutions. A description of the architecture of the Fluid
Dynamics Machine follows, ineluding its major components of inter-proceuing element com
munications, processing element architecture and input-outpot procesaor architecture. The
final section presents wafer acale considerations because &he architecture is targeted for that
wafer seale implementation .

2 Fluid Dynamics

Fluid dynamics ia the study of the motion of a fluid like air« water. Moving fluids influence
the activity of many eqineering disciplines. Previous methods of predictiq the behavior of
fluid in motion have been very time consuming. The fluid dyne.mics machine will econom
ically and rapidly predict the behavior of fluids in motion by uaing modem multiprocessor
techniques and an algorithm particularly suited to this type of implementation. This aec
tion presents applications for fluid dynamics, current solu&iou and a features of the Fluid
Dynamics Machine.

2.1 Many Fields Have Fluid Dynamics Problems

Many scientific disciplines require the solution of the fluid dynamics problem. When dis
cussing fluid dynamics, the term fluid means gasses ss well as liquids. Fluid dynamics is
so complex that any nontrivial problem is very difficult to .,ve. Building a car, designing
an airplane, or predicting the weather all require much prediction of fluid behavior. These
three typical applications of fluid dynamics will be discuaeed.

!

•

•

•

The Fluid Dynamics Machin~ Architecture - MarJe C. Davis- December 1, 1987 4

2.1.1 Automotive Design

Automotive Engineers must determine the effects of moving fluids in several areas. The beat
size of power plant depends heavily on the wind resistance of the car's body. The volume
of air flowing into a cylinder during an interna.l combustion engine cycle greatly efl'ects the
horsepower. The size of the water pump will be determined by the resistance to the flow
of cooling water inside the engine block and radiator. AD of these relationships can be
calculated by solving the fluid dynamics problem for the specific caoe. The alternate method
of building prototypes to meuure these properties is very expensive and time consuming.

2.1.2 Aerodynamics

Perhaps the greatest present demand for fluid dynamics solutions is in the aircraft industry.
In the early days of aircraft desi&Jl, wings were deai&ned by trial and error and models were
made and tested before building a complete airplane. The modeling pi'OCell8 became more
sophisticated with the introduction of wind tunnels. Unfortunately, building models and
running wind tunnel testa are very expensive activities. To get faster results and reduce cmta,
computers have been used to simulate airflow acl'OIIS the surfaces of an airplane. Although
computers are used as much as feasible, the accuracy of these computations have been
hampered by the large number of calculations required. Engineers accept conceptua.l models
that simulate only laminar flow or uncompreasible fluids because these models require fewer
computations. As a result, extensive wind tunnel work is still required and the wind tunnel
results can contain some unexpected observations .

2.1.3 Weather Prediction

Simulating the fluid dynamics of weather ia a complicated problem, and it is so hard that
solving it with conventional genera.! purpose computers is infeasible. The volume of air
involved and the numerous sources make this a very large problem. Also, the results are
perishable: nobody wants a prediction of yesterday's weather. As a consequence, weather
prediction is done on a very coarse scale and is notoriously inaccurate.

2.2 Navier-Stokes and Super Computers Can be Used

Although many people need solutions to the fluid dynamics problems, the combination of
algorithms and computer systems used today are too slow and expenaive. Today the most
popular way to solve fluid dynamics problems accurately is to solve the Navier-Stokes equa
tions. These difl'erential equations are difficult to solve, and the only efl'ective way is to run
standard differential equation solving techniques on a supercomputer. Even with a super
computer, obtaining results normally takes many hours. The slow tum around and the very
high cost of these calculations cause great inconvenience for the few engineers who have the
opportunity to use these expensive machines.

'

•

•

•

The Fluid Dynamics Machine Architecture -MarJe C. Davis- December l, 1987 5

2.3 The FDM Solution

Since general purpoee computer architectures inefficiently solve the ftuid dynamics problem,
scientists and engineers need a better approach. Our solution is a special purpose archi
tecture, using an algorithm particularly suited for special purpose computers and having
advanced multiproeeaaing features. The algorithm will be d.:ribed, followed by the high
performance techniques used in the FDM architecture: multiproeeaaing, large order paral
lelism, a systolic array and VLSI.

2.3.1 A Good Algorithm

Frieeh[1] developed an algorithm to solve the 2 dimensional ftuid dynamics problem. Working
at the National Laboratory in Los Alamos, he found cellular automata produced accurate
reaults. A cellular automata is a simple device that proeesse• a few binary inputs to a
few outputs. This technique correctly simulated comp~ble, DOD-laminar ftow, the most
difficult ftuid dyuamica problem. In his algorithm, the area containing the ftuid is divided
up into cella. The motion of the fluid is simulated by "particles" that may travel from cell to
cell or remain stationary in the cell. Each cell is connected to its immediate neighbors by six
paths. The location and direction of motion of all the particles traveling through the cells
make up the state of the area under analysis. Figure 1, taken from d'Bumieres [3], shows 24
cells with the connecting the paths.

When two particles attempt to occupy the aame cell a set of collision rules determines the
final placement of each particle. In some collisions, only one outcome is possible. Frequently,
two outcomes are equally likely. In this ease, a random choice of po11ible placements is
made. One important set of rules describes open space; other sets describe boundaries,
walls, sources, or links. Figure 2 shows rules for open space, with the configuration before
the collision on the left and the p088ible results of the collision on the right. A wall oriented
vertically requires different rules than a wall oriented in some other way.

If this model uses 1 million to 10 million cells to describe an area, it produces very good
results. At this level of resolution, the Frisch algorithm will accurately predict the behavior
of a wing in a wiDd tunnel. The algorithm performs much better than direct solution of
the Navier-Stokes equations because the simple calculations to determine the rules can be
executed much faster than the floating point operations required for direct solution. Also,
since all computations are applications of simple rules using small data groups (seven particles
represented as bits), it is well suited for implementation on a very amall procell8ing element.

2.3.2 Multiprocessors

In order to get higher performance, a computer may consist of multiple processing elements.
As long as the problem can be partitioned into many parts, each processing element busily
works on a separate part. Multiprocessor computers are not widely used today because few
single problems adapt well to the partitioning required for multiprocessing. Fortunately,
implementations of the Frisch algorithm are naturally partitioned to take most ad vantage of
multiprocessing.

Tl!e Fluid Dynamics MacJJine Architecture- Mark C. Davis- December 1. 1981 6

•

•

'

•

Figure 1: Cellular Automata Hexagonal Grid

Tile Fluid Dynamics Macl1ine Arcl1itecture - Mark C. Da1·is- December I, 1987 7

Before After
Collision Collision

' I
• __. .__ or

\c '
' I __. .__

' ~

!
_.0

~

• ~
0_.

• I

Figure 2: 0 pen Space Collision Rules

•

•

•

•

•

Tbe Fluid Dynamics Macbine Architecture- Mark C. Davis- December 1, 1987 8

2.3.3 Large Order Parallelism

Although some taaks permit some form of parallelism in proceuing, the maximum number
of concurrent tasks is oRen limited to 10 or 20. The number of independent proceues and
the amount of shared data limit the number of proceaoon that ean effectively work on a
problem aimultaneoualy. Shared data reduces the available parallelism because otandard
memory can only be read and written in a aerial fashion. Duplicatin& the memory and other
tricks con improve ace- to the memory, but such techniques are expensive and will only
improve the memory performance by an order of mapitude. With Frisch's algorithm, the
partitioning of the problem and the character of the small amount of required data sharing
permit thousands or milliona of independent tasks.

2.3.4 Systolic Data Sharing

A small portion of the data muat be shared between procesaeo. This data may be passed from
a proceaoor to its uejpbor. This movement of data is called systolic because it resembles the
pumping of blood. The architecture of FDM is systolic, and as a result each proceuor needs
to talk to only its neigh bon, 10 no complicated, unreliable, or slow global data communication
paths are required.

2.3.5 VLSI • Much Computing Power for Low Cost

The FDM architecture and the simplicity of the Frisch algorithm permit easy implementation
using Very Large Scale Integrated (VLSI} circuits. A email proceaing unit effectively and
rapidly simulates the cellular automata. Such a processor would occupy a small fraction of
the area on a typical integrated circuit. Using VLSI greatly reduces tbe cost of electronic
components.

3 The Fluid Dynamics Machine Architecture

The fluid dynamics machine eonaiata of three major parts: the proceasing elements, the
intercell conununicationo ayatem, and the input-output oyatern. The machine containo 9216
proceuing elements. Each processing element calculates the new state for 1024 cellular
automata cells. The processing elements are arranged logically into a oquare of 96 by 96
processors. The inter-processing element communication system mows particle data between
adjacent processing elements when required. The input-output proceooor handles data that
falls off the edge of the array and deals with the outside world, which in this case is a host
engineering workstation. Communication between the processing elements is central to the
systolic nature of the FDM architecture and is the part that can be the most confusing, so
we will start with it.

•

•

'

•

•

The Fluid Dynamics Machine Architecture - Mark C. Davis- December 1, 1987 9

3.1 Inter-processing Element Communication System

The inter-processing communications system allows several iypes of daia io move from one
processing element io another. The needs of particle daia communicaiion determined the
number and direction of these daia paths, but the paths are ued io move many types of
data. In addition io moving eellular auiomaia particle daia, the iDter-processing element
communication system muat alao provide paths for loading initial daia iDio the machiDe,
changing the collision rules and gettiDg the results out of the machiDe. Theses paths are
kept as short as pouible by connectiDg only adjacent processiDg elements. By using this
sysiolic architecture, little delay is associated with these daia paths.

3.1.1 Particle Data Path Description

The communications go over unidirectional bit serial lines between processiDg elements that
are connected io form a ~- hexagonal grid of processing elements. The beat shape
for a processing elements is a rectangle, and the best shape for the array is reciangular
with aligned rows and columns. These implementation preferences require an interesting
interconnection scheme.

To design these connections, all cases of iDter-processing element communication must
be examined. If the dark, solid lines in Figure 1 represent the boundary of a processing
element, the required inter-processing element data connections may be seen. Consider the
case of data moviug after a colliaion out of a cell in the North t direction. For ihe lop
left cell in ihe processing element, communication with the processing element above and
to the left is required. For the next cell io the right, communication with the processing
element above is required. For the l.eftll108t cell in the second row, communications with the
processiDg element io the left is required. Figure 3 shows all of the required data paths of
inter-processing element communication.

Each processor has four linea at the lop and bottom and six lines on the left and right
connecting io adjacent processing elements. Each processing element can send to six paths
(two of the paths split io go to two different processing elements) and receive data from
10 different paths. Each output path corresponds io a direction of motion in the cellular
automata model. Some of the input path directions are duplicated because data for a given
direction of motion may come from as many as ihree different proc_,., depending on ihe
location of ihe cell being processed. Figure 4 shows the how the proceaaing elements fit
together to form communication paths connecting nine procesaing elements.

3.1.2 Other Data Path Formation

The primary purpose for these paths is to move particle daia during calculation,. but this
task occupies only a fraction of the available time. This particle data must flow between
processing elements during the calculation of cells on the boundary of the processing element.
There are 124 eells on the boundary, so cellular automata particle data must flow between
processing elements 124 out of every 1024 computation cycles, 12% of the time.

The Fluid Dynamics Machine Architecture- Mark C. Da,•is- December 1, 1987 10

•

•

•

Figure 3: Inter-Processing Element Communication Paths

•

The Fluid Dynamics Al3chine Architecture- Mark C. Davis- December 1, 1987 11

J 'lt I 'L.
~

~ ' ~ ~ "" ~ ~ ~ .. r--. • ..__ ~ -..... •

.,.
, lt

.,. ,
....

.,.
I':'-I' I'

~ ~ ~

•

lt 'L.
~

~ ~ " ~ ~ "" ~ ~
f.+ • ._ ~ -..... .,. ,

'lt
lt "

.,.
" 'L. I'\ 1'\ I' ~ ' ~

• 'lt 'L.

•
~

~ ~ " ~ ... ~
~

~ • • ._ ..
~

... , 'lt
.,. , lt " 'L.

~ I I ~ I 1 ~ I

Figure 4: Nine Inter-Processir.g Element Communication Paths

•

•

•

•

The Fluid Dynamics MaciJine Arcl•itecture - Mark C. Davi_.- December I. !987 12

r •g,ur~ u: .ua(,8. ratn tnterconnectJon to .r·orm New .t"aths

By modifying the interconnection within the processing element, longer and wider data
paths may be created. For example, the system could be used to transfer data other than
cellular automata state data in a Northerly direction by using the Northeast, Northwest,
Southeast and Southwest data paths. Each processing element would logically connect the
Southeast input path to the Northwest output path. The data to be moved would reside
in a shift register until the data paths were not occupied with cellular automata state data,
then one bit of other data is shifted out. Figure 5 shows the connections inside a processing
element to form two North, two South, one East, and one West data paths. To simplify the
control logic, all directions of state data are placed on the data paths during each computation
cycle that cellular automata must move, and other types of data are moved only when state
data movements are not required.

3.1.3 Momentum Average Data

Although the results of the calculation may be obtained by examining the state of the
machine after each calculation, the amount of data produced by the array of processing
elements is too large and requires too much post processing for a conventional architecture
host to use really well. A much better solution is to conduct some calculations inside the
machine and periodically produce a smaller quantity of summary data. The Fluid Dynamics
Machine calculates momentum average data, a smaller and much more usable form of result.
Momentum average data is two numbers from each processing element indicating the average

•

•

•

•

The Fluid Dynamics Machine Architecture - Mark C. Davis- December 1, 1987 13

direction and magnitude of fluid flow for all the cella calculated by that proeeasing element.
Since each processing elements may calculate for thouaands of cella (or aitea) the amount
of data is much reduced. The amount of data is still very lar&e. Every 1024 cycles, 9216
pairs of 12 and 13 bit numbers are produced. The proc:eaaing element usea spare time on
the inter-proceaaing element communication paths to move momentum data to the input
output processing system. That oystem then makes momentum avera&e data a..,.iJable to
the host proee.or at an appropriate rate. The Momentum average data is moved North
a.nd South out the array using the North a.nd South data paths formed from the data paths
as described above. Since two Northerly a.nd two Southerly data paths are a""ilable, the
25 bits of momentum average data are broken into three 6 bit and one 7 bit packets. The
7 bit packets require 672 out of the available 1024 - 124 = 900 cycles to move through 96
processing elements to get completely out of the array.

3.1.4 Loading Rule Data

The user must have a way to change the cellular automata eolliaion rules stored in each
processing element. The same North and South data path arrangement once again transfers
this data.

3.1.5 Loading Particle Data

Before calculation begins, initial particle data must be placed in the array. After calculations
are completed, the engineer may want to examine the final particle otate. To get this data
into and out of the array, it is shifted over this aame North and South data paths .

3.1.6 Controlling the FDM

Certain control information must be sent to the proeeaaing elements and must arrive at all
parts of the machine at one time. The delay introduced by this information slowly progressing
from one proc:eaaing element to the next through the normal data paths is unacceptable for
these signals. Clock signals a.nd global mode eontrolaignals (CALCULATE, RESET, LOAD
STATE, and LOAD RULES) must be globally distributed. The global mode control signals
may be encoded on two conductors, but the each phase of the two phase clock will require
separate conductors. Also power and ground must be globally distributed.

3.2 Processing Element Description

The processing element calculates and stores the state of the simulated fluid. The machine
consists of9216 identical processing elements. This aection will first describe the architecture
of the proceaaing elements and the use of pipelining to improve performance. Then it will
describe the parts of the proceaaing elements: the controller, the state memory, and the rule
memory.

>

•

•

•

•

The Fluid Dynamics Machine Architecture· MarJe C. Davis· December 1, 1987 14

3.2.1 The Processing Element Architecture

This aection will present how the Fluid Dynamics Machine implements the Frisch algorithm.
FDM simulates the motion of the fluid using a set of collision rules defined by Frioch. Particles
in the cellular automata are represented as bits in a particle state memory, aad motion is
simulated by moving those bits between memory locations. Particle data JOOVeB from an
old state memory to a new state memory. Each proceaaing element calculates the motion
of particles in one cell each computing cycle. In addition to calculating fluid motion, the
processing element receives and paaaea along rule, state or control data.

3.2.1.1 Simulating Motion of the Fluid The purpose of this computing machine is
to simulate a fluid's motion using Frillch's algorithm in which particles represent microscopic
portions of the fluid. Particlea are located in cella and may be stationary or moving in one
of six possible directions. The existence of all of the poaaible particlea that may be in one
cell is represented in one word of the new and old state memories. The state words consists
of 9 bits: one bit to indicate a the presence of a stationary particle in the cell, six bits to
indicate particles moving into the cell from each of the poaeible inter-cell directions, and
two bits to indicate the applicable collision rule that applies to the cell. The motion of
these bits representing particles inside a cell is accomplished by table lookup. An address
is formed by adding the data in a state word to the single bit output of a raadom number
generator to provide for the poaaibility of different collision outcomes required by Frillch's
algorithm. That addreas is used to obtain a word from the rule table that cootaina 7 bits
representing the existence of particles exiting the cell in the six possible directioos and the
existence of a stationary particle left in the cell. Since by convention the state memories
contain information on particles entering a cell, new cell addresses must be calculated for
particles exiting the cell. This addreas recalculation is easily implemented by the processing
element. This method of simulating fluid dynamics using Friach's algorithm is called table
lookup.

Although other methods could be used to calculate new state, a lookup table permits
total flexibility in rule COI18truction at the expense of memory area. The machine calcu
lates the expected outcome using the existing particles, and does not depend on any apecial
relationships to calculate the results. The addition of randomly selected rules permits per
formance of the rules defined by Frisch and many similar rule definitiona. Nonraadom rules
are easily specified by providing the same rule entry for each of the possible raadom choices.
This flexibility ensures the usefulness of the Fluid Dynamics Machine in case furtt- research
indicates that a small modification to the Frillch algorithm is beneficial.

By providing four seta of rules, the FDM can simulate multiple types of cellular automata
collisions. These different rule sets may correspond to different media like free space, a rough
wall or a shiny wall. By &88igning different rules to some of the cells, the user may configure
the problem with any shape of material desired .

3.2.1.1.1 Implementing the Rules The rule memory consists of 1024 words of 7
bits each, accounting for 128 particle combinations (27) times 4 media rules times 2 different
random behaviors. In many cases, only free space and obstructed media would be required.
The obstructed medium (which returns each particle along the path from which it came)

•

•

•

•

The Fluid Dynamics Machine Architecture- Mark C. Davis- December l, J987 15

can be used to construct a roiJ&h surface. 'lb simulate a amooth wall, rulea can be specified
to reflect particles out along a different path. The rules must be eDCOded on the host
machine and transferred into Fluid Dynamics Machine's rule memory before calculation
begins. During calculation, each proceuing element will use the addreaa cenerated from the
stale memory and random number generator to acceaa the rule memory. The output of the
rule memory is the new state .

3.2.1.1.2 Movement b)' Address Calculation After table loolr:up in the rule mem
ory produces the new atate for a cell, this new atale moat be diatri!Mltecl to several cells.
FDM calculates the motion of the particles by writing the repreaenta&ive bits to the correct
cell. Except for the stationary particle, the particles will move to &lijKent cells, therefore
the new particle data muat be written to an adjacent cell's memory. The determination of
the correct cell ia made easier b)' intelligent arrangement of cells in the .tate memory. Figure
6 shows an arrangement of 16 cella, and the same techniques apply with the 1024 cells in one
proceaaing element. The memory is organized with an equal number of rowa and columns,
and each row is ahifted one half position to the left of the row above. The address of any
cell is simply the row number concatenated with the column number. To determine the
addreao of the cell to the Southeast, simply add 1 to the column nlllllb. and 1 to the row
number of the current cell. For each calculation, the cilrrent row and column, the next and
previous row and the next and previous column are required. These six qll&lltitiea combine
two at a time to form the required six new addresses. Because this anugement allows the
memory to be physically implemented u a square even though the logieal arrangement is
hexagonal, the state memory may use standard rectangular VLSI layout. AD of the required
operation• described above are aimple, ao they can be rapidly executed on integrated cireuita .
Thia technique of movement by table lookup and addreaa calculation - atandard VLSI
component& and rapidly caleulatea each new cell stale .

The cells on the aides of the processing element add another complezity to addressing:
some of the particle data must move to the adjacent processing el-L Fortunately, the
correct memory address in the adjacent processing element ia the oame u the address already
calculated. When data must move between proceaaing elements, the processors place all
data on the outbound communication paths. Then, baaed on the curreat cell address, the
proceaaing element& determine whether to take local data or data &om ODe of the adjacent
proceaaing element&. The processing element makes this calculation independently for each
particle (corresponding to a direction of motion).

3.2.1.2 State Cell Memory Operations The Fluid Dynamics Machine must efficiently
store the result& of each calculation in the state memory. To improve performance, completely
separate memories are used for the new state and the old otate. As ooon as the new state data
is available, it may be written to the new state memory. At the same time, more old state
can be read from the other section of the memory. Each FDM processinr; element has two
st~te memories that are alternately assigned as old state and new state. After calculatin2 all

•

•

•

•

•

Tbe Fluid Dynamics Machine Arcbitectute- Mark C. Davis- December 1, 1987 16

I
12\ I

0\ I 1\ I 2\ I 3\ I

--·---------·---------·---------·--
1 \0000

I \
I \ I

4\ I 6\ I

I \0001
I \

\ I
6\ I

I \0010
I \

\ I
7\ I

--·---------·---------·---------·--

I \oou
I

I \0100
I \

I \0101
I \

I \0110
I \

I \0111
I

I \ I \ I \ I
8\ I II\ I 10\ I 11\l

--·---------·---------·---------·--
I \1000

I \
\ I

13\ I

I \1001
I \

I \1010
I \

\ I \ I
14\ I 15\ I

1 \1011
I

--·---------·---------·---------·--
1 \1100 I \1101 I \1110 I \1111

Figure 6: Lo&ical Node Layout and Numbering

3.2.2 Performance Improvement through Pipelining

Pipelining, the technique of dividing a computation up into several stages, with output of
each stage providing data to the next, is commonly used to improve the throughput of
computer systems. Because each stage is working on a different problem, the pipeline will
produce a result in the time it takes for only one stage of tbe work to be done. Since each
stage of the pipeline has only a small amount of computation, it may run very fast. M! a
result the cycle time may be very abort and the throughput cA the machine will be high.
Pipelines may be inefficient. if they must be emptied and refilled frequently, but the pipelining
scheme used in FDM does not suffer from this disadvantage. The pipeline requires only 4
cycles to fill, and only requires refilling when calculations are stopped. Typical expected
applications would run many millions of cycles before stopping, ao pipeline fill overhead
would be on the order of0.0001%.

The FDM uses five pipeline stages. In the first stage, a new address is applied to the old
state memory. In the second stage, the old cell state is retrieved from the memory. In the
next stage, the rule memory is consulted. In the fourth stage, the new state data from the
rule memory is transmitted to its destination (which may be in another processing element)
and the new state memory addresses are calculated. In the fifth otage, the new state data is
stored in the memory .

Pipelining is made easier because separate memory is used for new state and old state.
By carefully selecting the order of cell calculation, the pipeline has many cyclea to update a
memory cell before it will be accessed again. This allows ample time for data to reach its

•

'

•

•

•

The Fluid Dynamics Machine Architecture- Marie C. Davis- December l, 1987 17

deatination (even traveling between circuit boards) and prevents any pipeline interlocks while
data is made valid. All a reeult, the pipeline remaino filled and buoy from initial pipeline fill
when the hoet .tarts the calculations until the hoet stope the calculations .

3.2.3 The Controller Section

The controller located in each procesaing element tracks and controls all of its activities. To
do these functions the controller contains a finite state machine and a considerable amount
of random lozic. It contains the counter to remember the current cell being proceaed. It
contains the logic for data routing and addresa calculation, and it al8o contains a random
number generator. Momentum average data is calculated in the controller and stored for
shifting out of the array. The finite state machine selects the proceMing element mode of
operation from the poaibilitiea aa directed by the global mode control eignala of RESET,
CALCULATE, LOAD RULE, and LOAD STATE.

3.2.3.1 The Controller Counter The controller contains a 10 bit counter that is main
tained by a finite etate machine, and aeleets the cell to be calculated next. The counter's
contents are applied aa an addreas for the old state memory and saved for later calculation
of the new .tate memory addrees. The controller increments the counter each cycle during
normal operation, and uoee a method of incrementing that cauoee memory repreeenting cells
at the boundary to be aeeeesed first, and cella internal to the proeeesing element to be ad
drees last. One easy implementation of this strange incrementing ia to invert the high order
bit of the row and column addrees. This order of proceseing cella guaranteee that enough
cycles will pass for the old state memory to be updated before it is needed to calculate a
new cell. The controller aleo eets the counter to zero when the global control signal RESET
is active. Because the RESET signal overrides incrementing the counter, the RESET also
functions aa a halt.

3.2.3.2 Data Path aelection The proeesaing element al8o determines the use of the
interproceseor communication paths. During calculation, two uses are pouil>le. If the cunent
cell is on a boundary, the new state data is placed on the these patbe. Otherwise, momentum
average data ia ehlfted North and South. During rule load, the rulee are shifted through the
rule memory uoing the North and South data paths. During state loading, the old otate is
shifted out and new state is shifted in. Because rule and .tate data shift through the array,
the data in the array at the beginning of the shift may be retrieved by the hoet workstation.
Because of the large amount of data involved, this process is very slow, but this is not serious
because it will only be done rarely.

3.2.3.3 Address Calculation The controller contains two incrementers and two deere
menters to calculate the previous and next row and column addresses. The stored cell address
and the output of these units are combined to form the seven storage addresses for the new
particle data.

•

•

•

•

•

Tbe Fluid Dynamics Machine Architecture - Marie C. Davis- December 1, 1987 18

3.2.3.4 Random Generation The processing element cootroller containa a linear feed
back abift regiater. The pseudo random one bit output from this register is uaed to ae)ect
potentially different colliaion rulea. When a collision baa a deterministic outcome, the two
rules aelected by this random bit will be the Arne .

3.2.3.5 Momentum Averap Data Calculation The controller accumulates momen
tum average data in two regiatera. The North register ia incremented once for each N orthweat
or Northeaat particle and decremented once for each South-t or Southeaat particle. The
West register incremented once for each North-tor South-t particle and decremented
once for each Nortbeut or Soutbeaat particle. The West rqiater ia incremented by two
for each West particle and decremented by two for each Eaa particle. The Eut and West
particles have twice the eft"ect on the West register compared to the other directiona because
of geometry, since the other directiona would have to be multiplied by the ain(30 deg) which
is 0.5.

When the data bu been received for all cella, the momentum data ia trauaferred to four
shift registers. The North data ia aplit into two 6 bit regiaters. Tbe Weat data is placed in
a 6 bit and a 7 bit register. Theae ahift regiaten connect to the inter-processing element
communication patha and are uaed to shift the momentum avemge data out oftbe procesoing
element array. At the arne time, the North and West regiaten are reaet to aero.

3.2.4 The Cell State Memory

The Fluid Dynamics Machine uoea a specialized memory e)'Rem. The cellular automata
state memory of each proe-mg element baa two modulea CClDtaining 1024 words each 9
bits long. Each module hu separate write add~ing for each bit, and the module handles
either 7 bit or 9 bit writes. The 7 bit writes are uaed during ealculation when the two bite
representing the rule to be uaed for that cell are to remain unchanged. Durinr; atate load, the
rule &BBOCiated with each cell may cbanr;e, ao a 9 bit write ia aJ.o provided. The two memory
modules are connected to the controller by a cto~~~bar awitch. This awitcb determines the
old state module and the new atate module. Because the awitch provides enough data paths
and the memories are independent, read and write operatioaa may take place at the ame
time.

The four shift registers mentioned above in the momentum averar;e aection are uaed to
hold incoming and outr;oinr; state data during load. Data ia aiUfted in for three cycles with
the cell address counter held c0111tant. Data is then aimultaneolllliy written into the one
state memory are read from the other state memory.

3.2.5 The Rule Memory

The rule memory contains the collision rules (or next otate rules) for the Fluid Dynamics
Machine. The memory is big enough to provide a randomness selection and four different
rule oete. The memory is a conventional read-write memory without any remarkable features.

•

•

•

•

'

Tbe Fluid Dynamics Macbine Arcbitecture- Mark C. Davis- December 1, 1987 19

Once again, the four shift repters mentioned above in the momentum average section
are uoed to hold incoming and outgoing data during load. Data ill shifted in for two cycles
with the cell addreaa counter held constant. Since the rule memory cannot be read and
written in the aame cycle, old rule data is read on one cycle and new data is written on the
next cycle. Since the four shift regieters are big enough to hold thie data, only time (one
cycle) is required to handle thill problem. This one additional cycle added to the thouaands
of cycles required to load the rules ill insignificant .

3.3 The Input-Output Controller Description

The input output controller is a apecial purpoae cpu to handle the communicatiooa require
menta of the Fluid Dyn&mica Machine. It hu ita own memory, regieters and data bU88e&.
It communicates with the array of proc-ing elements and with the host engineering work
station.

Since the input-output controller is a standard design computer, we wiD present it by
covering the features, the addreaa op&eea, the formats of data and inatruc tiona and the
operations that it can do.

3.3.1 Unusual Features

Although the input-output proceuor operates like a general purpoae computer, it hu several
unusual features. It hu the ability to otop and restart the procesaing elements in the Fluid
Dynamica Machine array. It tr&nlfers data over a bus that varies the function of each
conductor to match the type of data transfer. To communicate with the host work station,
the input-output processor hu several registers that may also be accessed from the host
workstation's data bus.

3.3.1.1 Clock Control by the Input-Output ProceSBor One common problem with
systolic arrays is the very high peak production rate of data at the boundary of the array.
To control the flow of data at the boundary, the input-output proc:e.or can otart and stop
the clock supplied to the proceuing element array. The input-output procesoor runs at the
aame clock opeed u the array, and it interprets a new instruction each clock cycle. Ao it
decodes an instruction, it determines whether the clock signals will go to the processing
element array during this input-output processor clock cycle. Because control of the array
clock is encoded in the instruction word, the clock is under the control of the input-output
proc-or programmer.

3.3.1.2 A Multifunction Data Bus The input-output proceaoor uses a specially de
signed bus for data transfer. Many features are included on this bus because the major
purpose of the input-output processor is to move data around. The multipurpose data bus
uses a different number of conductors for addr- specification and data depending on the
mode of operation. It has modes of operation that read and write from memory simulta
neously. These features speed up and reduce the amount of hardware required for different

•

•

•

•

•

•

The Fluid Dynamics Machine Architecture- Mark C. Davis- December J. J98i 20

types of data transfer.

3.3.1.3 Host Access A oet of registers may be accessed from either the host or the
input-output processor. Theoe registers convey control information to the Fluid Dynamics
Machine, data to the processins element array and data result data to the host .

3.3.2 Addresa Spaces

The input-output processor uaes aeveral spaces. One addresa apace contains the 32 bit long
boundary registers. The aame register addreues are uaed for read and write. A read &eU
data from the array or proceaains elements, while a write aenda data into the array. Thus
a read will not always produce the aame data just written to the aame register address.
Three of theae registers are wide enough to provide one bit of input and output data to each
processing element. Each aide of a processing element requires two bits, however, and there
must be regiaters on each aide or the array. Thus Fluid Dynamic& Machine has 24 of theoe
registers. Another address apace identifies the momentum average memories. Theae are 25
bits long and there are 9216 of them (one for each processing element). The last address
space contains the 32 bit long VME bus interface registers that apecify addreaaes, data and
contrd. information. Eight of theae are available, but currently only 5 are in uae.

3.3.3 Description of Multipurpose Data Bwo

The multipurpoae data bus conaiata of 40 conductors and operates in register transfer mode
or momentum data mode. The address-data partitioning of theae conductors depends on
the value of the first address bit. In register transfer mode, 8 conductors specify the addreaa
and 32 lines transfer data. In the register transfer mode, the bus can perform conventional
operations like fetch from memory an place in accumulator and atore from accumulator into
memory. In this mode it can &lao perform two special operations that simultaneously read
data from one side oC the proceaeing element array and write it to the other aide of the array.
In momentum data transfer mode, 15 bits specify the addreas and 25 bits of data move along
the bus. Figure 7 abows the formats of the multipurpoae data bus.

In momentum mode, the momentum data is mapped onto the locations 0 to 9215. At
tempting to address any other momentum data is an error. The four possible operations
identified in bits 1 and 2 in the register transfer mode are explained in the data handling
operations section below. The register transfer mode is also used to access the VME bus
registers. When the row bits (3 and 4) are zero, then bita 5, 6, and 7 identify VME bus
register&. They are a&&igu aa follows:

• 001 Processing Element Array Command

• 010 Boundary Register Address (only low order 8 bits are valid)

• 011 Boundary Register Data (as seen by host)

• 100 Momentum Address (only low order 14 bita are valid)

•

•

•

•

•

The Fluid Dynamics Machine Architedure- Mark C. Davis- December 1, 1987 21

1 Processor Address Momentum Data

0 I 15 39

Momentum Mode

0 mode row Register Data

0 I 3 5 7 8 39

Register Transfer Mode

Figure 7: Multipurpoae Data Bus

• 101 Momentum data (two 16 bit numbers)

All other addresses in row 00 are invalid and cause an error if addressed. These 32 bit
registers may be accessed by the host using memory addresses on the VME bus .

3.3.4 Working Storage

Working storage consists of the following registers:

• I 32 bit data register (also referred to as the accumulator)

• 1 10 bit cloek ret;ister

• I 10 bit cloek interrupt register

• I 10 bit cloek interrupt address

• I 10 bit cloek interrupt return program counter

• I 10 bit program counter

• 2 1 bit mode indicators

• I 40 bit multipurpose data bus .

Figure 8 shows the register model for the input-output processor. Several data paths are
shown between the Multipurpose Data Bus and the Data Register because different align
ments of the data transferred are used for different operations.

The Fluid Dynamics Machine ,lrc/Jitecture- Mark C. Davis- December J, 1987 22

40 bits

Multipurpose Data Bus

• t j

•
2 bits + 32 bits

Mode Data Register

·I"
.....

10 bits

10 bits rind<
• Interrupt Interrupt

Address ..
10 bits

10 bits

~ Interrupt
Return

•
r-

, !Obits~ 14 bits
Program

• Instructions Counter

•

•I"·

t 14 bits

Address Data
Program Memory

Figure 8: Working Storage Register Model

•

•

•

•

•

•

•

Tbe Fluid Dynamics Machine Architecture- Mark C. Davis- December 1, 1987 23

3.3.5 Formats of Data and Inatructions

This section will describe the formats of data and instructions .

3.3.5.1 Data Formats The input-output processor uses four types of data:

1. internal momentum data

2. external momentum data

3. cellular automata data

4. immediate data.

Momentum data that comes out of the processing element array eonUta of a 13-bit two's
complement number representing avere.ge West direction momentum and a 12-bit two's com
plement number for the North direction. Because the proceuing element forms these num
bers by addition of particles along a hexagon&! grid, the Eut-We.t component of the mo
mentum average date. is on a different scale from the North-South de.ta. This results in the
West direction requiring more bits for representation than the North direction. The factor is
the sin(60 deg), which is .../3/2. To correct this seale factor would require the each process
ing element to contain a multiplier. Such a multiplier would only be used once e\"ery 1024
processing element cyclea, bece.use the scaling would only be required after all momentum
average data had been accumulated. Multipliers occupy too much area for a feature woed so
infrequently .

Momentum data is converted to two 16-bit two's complement numbers when it is pre
sented to the host computer. The West component is placed in the 16 high order bits of the
32-bit VME bus word and the North component is place in the low order 16 bits.

Cellul&r automata data is 32 bits long. The input-output processor transfers the 32-bit
data to and from the array boundary registers and the VME bus rqisters.

Immediate data, located in the inatructions, may be 8 or 10 bits long.

3.3.5.2 Instruction Fonuats FDM has two types of inatructious, move instructions
and register instructions. The two instruction formats are shown in figure 9.

3.3.6 Operations

Only those operations required for the limited requirements of a simple input-output pro
cessor where included. Six operation codes are used; however the Mm'e instruction has
submodes which effectively give a variable length operation code and a total of e.bout 14
operations.

•

•

•

•

'

•

The Fluid Dynamics Machine Architecture- Mark C. Davis- December 1, 1987 24

clock 000 type Address Data

0 1 4 6 13

Move Instructions

clock opcode Address or Data

0 1 4 13

Register Mode

Figure 9: Instruction Format&

3.3.6.1 Data Handling The move operation is the most basic and most used. It has
four modes:

• "move immediate to data register" with 8 bit& of immediate data .

• "move immediate to operation mode" with 2 bit& of immediate data.

• "move momentum data" from memory to data register - address contain in data reg
ister.

• "register transfer" with severalsubmodes (see below).

The "move immediate to operation mode" select& one of the operating modes for the entire
Fluid Dynamics Machine. Pooaible modes are RESET, CALCULATE, LOAD STATE and
LOAD RULE. Loading the operation mode sends the appropriate global control signal to
the processing element array.

The register transfer mode further breaks down to the four multipurpose data bus sub
modes of operation. These aubmodes are indicated by the hip order 2 bit& in the address.
These two bit& and the following bit& are place in bit& 1 through 7 of the multipurpose bus.
The submodes are:

• 00 read boundary register to data register.

• 01 read boundary register and write to opposite side boundary register.

• 10 read boundary register to data register and write to opposite side boundary register .

• 11 write boundary register from data register.

•

•

•

'

•

The Fluid Dynamics Machine Architecture - Mark C. Davis- December 1, 1987 25

3.3.6.2 Sequencing and Decisions Two instructions are uaed for oequencing and de
cision. The • akip on maak" instruction will cauae the following instruction to be akipped if
the logical and of the immediate data and the low order 10 hita of the data resister is not
zero. The "unconditional branch" transfers control to the addreoa specified in the instruc
tion. A "skip on maak" followed by an "unconditional branch" make a conditional branch.
This technique was uaed to avoid creating condition codes. Without using condition codes,
a conditional branch would not fit in the smaU instruction word .

3.3.6.3 Supervioory Proviaio1111 FDM has a clock interrupt. A counter is driven by
the ssme clock sent to the array of proceoaing elements, 10 it contains the aame value as the
countera in aU the proce.ing elements. When this counter contains the II&IDe value as in the
clock interrupt register, the value in the clock interrupt addreoa register is loaded into the
program counter. The old contents of the program counter are saved in the clock interrupt
return program counter. To eupport these features, the input-output proceseor uses the
following instructions:

• "eet next clock interrupt time" from immediate data.

• "increment next clock interrupt time" by immediate data.

• "eet next clock interrupt location" from immediate data.

• "return from interrupt" -reload the program counter with the previous value

The clock signals provided to the processing element array are directly under input-output
processor program control. A bit in each instruction epecifies whether the clock is to be
active during this instruction cycle. This is indicated to the assembler by epecifying (clock)
at the beginning of each instruction requiring a clock ligna! to the proceesing element array.
The main use of this facility is to stop the array long enough to move data from one side
of the array to the other. The programmer is responsible to minise the time without clock
signals to the processing element array to prevent loos of data in dynamic circuits.

The input-output processor provides for three poosible errors:

1. invalid opcode.

2. invalid register address.

3. invalid momentum data addreoa.

On occurrence of any of these errors, the program counter is stored in the data register
(presumably to be transferred to the host) and the program jumps to location 0.

4 Wafer Scale Implementation Considerations

This machine is made up of an array of 9216 identical proceoaors that each take up rela
tively little silicon area. This situation is well suited to wafer acale implementation. Putting

•

•

The Fluid Dynamics Machine Architectu~- Mark C. Davis- December 1. 1987 26

the array on wafer sized pieces oC silicon simultaneously reduces coat and improves perfor
mance. Coat will be reduced because fewer packages and less interpackage communication
is required. Although one wafer coats significantly more than atandard size intergrated cir
cuit, it coats less than tbe coat oC the large number of integrated circuits it replaces. Wafer
scale implementation also oaves greatly on the coat of circuit board and wiring. The ma
chine's performance will be better because the inter-processing element communication in
moat c:asea will be to processing elements adjacent on the same piece of ailicon. Short, low
capacitance wires connect adjacent processing elements, 80 there U. no need for large drivers
to support inter-processing element communication and performance U. faster. Also, since
many large drivers are not required, the chips use silicon more efficiently and have lower
power consumption and cooling problema.

The Fluid Dynamics Machine has many desirable properties for wafer acale implementa
tion, but many parameters oC the machine must be chosen to optimize wafer scale implemen
tation. For example, if each processing element U. 80 big that it occupies a complete wafer,
the machine will be far too expensive. Only a tiny portion of wafera do not have at least
one flaw, 80 it would be uneconomical to make enough to lind one without flaws. Therefore,
the parameters of processing element function (as represented by area), fault density on the
wafer and communication requirements must be balanced.

4.1 Area- The Parameter Under Designer Control

Area ia an important parameter for wafer scale design because function and probability of
faults depend on area. The architect can specify the area oC the wafer and more importantly,
he can control the area of the proceuing element. Proper selection of the aiae of the prote~oSing
element improves the advantage of wafer scale implementation because it effect on yield.

4.1.1 Size or the Wafer

The size of the wafer will determine the number of processing element on each wafer. The
available fabrication process may also depend on the size of the wafer selected.

4.1.2 Size or the Processing Element

The capability of the processing element determines its area. The processing element must
have enough capability to function, but the siae of the state memory may be controUed by
the implementor. In a trial design with only 16 cells, the state memory occupied 40 percent
of the area. Better memory design will require less area, but state memory will be a major
factor in the total area of the processing element.

'

•

•

The Fluid Dynamics Machine Architecture- Mark C. Davis- December 1. 1987 27

4.2 Fault Distribution

A fault is an imperfection on a wafer. A fault may result in a broken wire, a short between
two wires or active components that are inoperative. Wafers made by conunercial fabrication
processes typically have 2 to 5 faults per square centimeter. A. a result, average wafers have
hundreds of faults, and the production of a fault free wafer is almoet atatistically impossible .

A simplified model will be uaed for faults that may occur in fabrication. 0 ur know ledge
of faults is limited becauae fault data is closely guarded proprietary information. The figure
of 2 to 5 faults per square centimeter is derived from private convenations with individuals,
but more concrete refeftlnces are not available. Additionally, we want to model against many
different production lines at varying levels of maturity. Given th- goals, a oimple model
wiU be the most uoeful in much the same way that lambda type deaign rules ser>·e MOSIS
users 10 well. I will aosume that the faults are evenly dilltributed over the wafer. Recent
research indicates that the fault distribution is uneven, but the fault recovery technique to
be uaed worb well with multiple faults in close proximity. A. a result, the even distribution
model will give conservative results. I will also &BBUme that the lise of each fault is relatively
small, 50 microns, 10 the chance of two processing elements being effected by the same fault
is small.

4.2.1 Recovery Potential of a Wafer

To recover from faults, the Hedlund algorithm(4] will be uaed. This algorithm will provide
satisfactory routing around defective cells as long as 60 percent of the cells are available. ·As
a conscquencc, the wafer• must be designed to provide at leut a 60 percent yield.

4.3 Input-Output Requirements

Kung(&] noted that communications requirements are effected by processing element memory
size. The Fluid Dynamico Machine follows this trend. Inter-plOCelling element communi
cation ia required for each procesoing element on the boundary. A. auch inter-processing
element communication durinr; otate calculation is proportional to the square root of the
memory size. Since the processing element can calculate a - cell atate in one c~·cle, we
have air;nificant communicat.iona overcapacity, however, the oame data patho are t<> be used
for momentum data shil\ing. The size of the momentum data ill proportional to the log of
the memory aize since the maximum momentum occurs if all cells have particles going the
same way and lor; (memory size) bits will store that number.

4.4 10 and Yield calculations

The Fluid Dynamics Machine meets the requirements for communications and yield when
configured with 9216 (96 by 96) processing elements and 1024 cells in each processing element.

Communications requirements are met with 1024 cells in each processing element. In 1024

•

The Fluid Dynamics Machine Architecture- Mark C. Davis- December 1, 1987 28

cycles, 124 cycles are used for state dat.a movement (the number of cells on the boundary of
a procesaing element) and 672 are used for momentum average data movement (7 bits acroos
96 proceaaing elements). This leaves 228 extra cycles for use by the input-output processor.

Assuming that a 1.2 micron procesa will be uaed, a fault density of 5 faults per square
centimeter is appropriate. A five inch wafer (a medium size in 1987) provides a 9cm by
9cm square, 150,000 lambda by 150,000 lambda. A processing element containing the rule
set described above and 1024 state memory words would occupy a rectangle 3000 by 4000
lambda. A wafer then contains 1876 processing elements. The same wafer contains 405
faults (5 faults per square em times 81 square em). The chance of a proceoaing element
being good (the aame as the percentage of aU proceaaing element's that are good) is (the
number of proceaaing element&-1)/(the number of processing elements) raised to the power
of the number of faults on the wafer.

In the case of the Fluid Dynamics Machine, the yield is (1874)/(1875)- = .8056889.
This yield wiD amply aupport restructuring around faulted proceaaing elements. AUowing
20 percent loaa for restructuring, an average of 60 percent of the proceoaing elements will
remain active after restructuring, so each wafer will provide 1125 proceaaing elements. Nine
wafers give 10125 procesaing elements, more than enough for a Fluid Dynamiea Machine.

5 Summary

Clearly, the Fluid Dynamics Machi.n1!' rapidly and effectively solves the fluid dyuamics prob
lem. It will calculate 10 miUion cellular automata propaptiona iu 1024 cycles. This machine
should operate with a 25 megahertz clock, so the 10 million calculations could be performed
in 41 microseconds. The Fluid Dynamics Machine would easily provide data falter than an
engineering workstation could display it. The performance is hit;h enough that an engineer
could get data in so short a time that be would consider it inat.antaneous. The coot to man
ufacture would also be low. A single circuit board containing the nine wafers and support
circuitry including the input-output processor could be manufactured for about 5 thousand
doUars, a price within reach of thousands of interested uaers.

6 Acknowledgements

The algorithm adaptation and demonstration simulatioDa were done by Kye Hedlund. The
architecture was designed by Kye Hedlund, Mark Davis and Mike Kotliar. The processing
element was designed by Mark Davis and Mike Kotliar. The input output processor was
designed by Mark Davis.

References

[I] Frisch, U., Hasslacber, B., and Pomeau, Y. • A Lattice Gas Automaton for the
Navier Stokes Equations,• J.os Alamos Nat. Lab., LA-UR-85-3503.

•

..

Tbe Fluid Dynamics Machine Architecture- Mark C. Davis- December 1, 1987 29

[2) Hedlund, K.S. AND Snyder, L. "Systolic Architecture - A Wafer Scale Ap
proach," Proceeding• IEEE International Conference on Compvter De•ign, (Oct.
1984), 604-610.

[3) d'Humierea, D. AND LaUemand, P. AND Shimomura, T., "Lattice Gas Cellular
Automata, A New Experimental Tool for Hydrodynamics" Los Alamos Nat. Lab.,
LA-UR-85-4051.

[4) Hedlund, K. "The Design of a Prototype WASP Machine" Wafer Scale Integrn
tioa, Saucier, G. and Trilhe, J. (Editors) (1986), 89-97.

(5] Kung, H. T. "Memory requirements for Balanced Computer Architectures" IEEE
Coafereace Proceetli•1• o/lke 13 Annual Internetional Sympo•i•m on Computer
Arclilectare, 14-2, 12 (June, 1986), 49-54.

(6] Mead, C. and Con-y, L. Iatrotluclion to VLSI Srnems. Addison Wesley, Read
ing, MaM&ChU8etta, 1980.

(7) Seitz, C. L. "Concurrent VLSI Architectures" IEEE Trnn•action• on Computers,
C-33, 12 (Dec. 1984), 1247-1265 .

