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Subset-logic programming is a paradigm of programming with subset and equality 

assertions, and computing with restricted associative-commutative matching and rewrit

ing. The multiple matches arising from a-c matching effectively serve to iterate over the 

elements of sets, thus permitting many useful set opera~ions to be stated non-recursively . 

Subset assertions are related to equality assertions by adopting a closed-world assumption 

(CWA), which is expressed formally by the 'completion' of the program. The principal 

results are the characterization of the CWA as the least-fixed point of a suitable operator 

on interpretations, and soundness and completeness of the operational semantics. We also 

present the formal semantics of the class of stratified subset-logic programs. In contrast to 

Hom-clause programs with negation, where stratification is used to avoid possible inconsis

tency arising from completing the program, we introduce stratification here for formalizing 

the class of closure functions. These functions are useful in defining the smallest set satis

fying some property, e.g., various reachability sets. We present declarative and procedural 

semantics for stratified subset-logic programs. The declarative semantics requires that the 

auxiliary functions used in defining one closure function in terms of another at the same 

level be subset-monotonic, but no restriction is placed on the auxiliary functions used from 

a lower level. 
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1. Introduction 

Subset-logic programming is a paradigm of programming with subset and equality asser

tions. Our goal in developing this approach (JP87, JNSS] has been to provide a more 

rigorous and efficient way of programming with sets than existing approaches, such as the 

'setof' construct of most Prolog systems, which, although very useful in practice, do not 

provide true sets and are difficult to formalize. A subset-logic program is a collection of 

two kinds of assertions: 

l(terou) = ezpre.t.tion and /( terou) ;:2 ezpreuion. 

Informally, the declarative meaning of an equality (resp. subset) assertion is that, for 

all its ground instances, the function I operating on the argument ground terms is equal 

to (resp. superset of) the ground term denoted by the expression on the right-side. We 

adopt a closed-world assumption, so that the meaning of a set-valued function I operating 

on ground terms can be equated to the union of the respective sets defined by the different 

subset assertions for f. The top-level query is of the fonn 

? upre.t.tion 

where ezpre.t&ion is a ground expression. The meaning of this query is the ground term t 

such that ezpre,ion = tis a logical consequence of the 'completion' of the program, i.e., 

augmenting the subset assertions defining some function I with equality assertions that 

capture the 'collect all' capability of subset assertions. 

In earlier papers we described the operational semantics of subset-logic programs in 

terms of innennost reduction and associative-commutative (a-c) matching [ JP87], and also 

showed how restricted a-c matching can be efficiently compiled into instructions similar to 

those of the" Warren Abstract Machine (WAM) (JNSS]. This paper describes the fonnal 

semantics of subset-logic programs, and presents new results in two areas. 

1. Simple Subset-logic Programs. The principal results here are: (i) a declarative 

fonnalization of the closed-world assumption (CWA) in terms of the completion of the 

program; (ii) a fixed point characterization of the CWA; and (iii) soundness and com

pleteness of the operational semantics. The CWA is computable for subset-logic programs 

because there is no non-membership primitive analogous negation for predicate-logic pro

grams. 

2. Stratified Subset-logic Programs. In contrast to Hom-clause .programs with nega

tion, where stratification is us.ed to avoid possible inconsistency arising from completing 
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the program, we introduce stratification here for formalizing the class of clo6ure function.s. 

These functions are useful in defining the smallest set satisfying some property, e.g., vari

ous reachability sets, dataflow analysis in compilers, etc. In general, stratified subset-logic 

programs consist of (closure and non-closure) functions that are partitioned into several 

levels. We provide model-theoretic, fixed-point and operational semantics for stratified 

subset-logic programs. 

To stay within the page limits, we omit proofs of all theorems. 

2. Simple Subset-logic Programs: An Informal Introduction 

We first specify the syntactic structure of term and expression. 

tenn : : • atom I variable I ¢1 I {term} I term U term I con.structor( term6) 

term6 : : • term I term , term6 

ezpr : : • term I { ezpr} I ezpr U ezpr I con.structor( expr6) I function( ezpr6) 

ezpr6 : : • ezpr I ezpr , ezprs 

We will refer to a term as a 6et if it has one of the set constructors, { } or U, at its 

outermost level-these are the only two set constructo~therwise; we will refer to the 

term as an element. Informally, terms correspond to data objects, and we consider only 

finite terms. We assume that the constructors U and ¢1 obey the following equality theory: 

x U ¢1 = ¢1 U x = z, where x is any set. 

Before we present the formal semantics, we first informally describe the two key notions 

in subset-logic programming: the closed-world assumption, and restricted a-c matching. 

2.1 Closed-World Assumption 

We incorporate a closed-world assumption in order to relate subset and equality assertions. 

There are two aspects to our closed-world assumption: 

(i) The collect-all assumption. If a set-valued expression s is such that 8 2 8 1 , ••• , s 

2 8n, and it is determined that there are no other known subsets for 8 according to the 

given program, then the collect-all assumption allows us to infer 8 = U 8;. 

(ii) The emptiness-a~-failure assumption. This assumption effectively allows us to 

discard all failing reductions when collecting the different subsets of a set. In order to deal 

with failure, we use the device of an undefined element?, which has the following equality 
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theory associated with it: c( ... , ? , ... ) =?, where c is any element-valued constructor, and 

{?} = ¢. 

We express both aspects of the closed-world assumption by 'completing' all program 

assertions by introducing equality assertions. Completion is defined more formally in 

section 3, but basically there are two cases: In the case of the collect-all assumption, we 

augment all subset assertions defining a function by an equality assertion that expresses 

the union of the respective subsets. In the case of the emptiness-as-failure assumption, we 

add the following equality assertions, so that the value of any expression is either a term 

or ? , i.e., non-constructors cannot be part of the final answer. 

(a) Applying an element-valued (non-constructor) function 'f 0 to terms that don't 

match any of the l.h.s. of assertions for 'fe yields ?. Similarly, applying a set-valued 

function t. to terms that don't match any of the l.h.s. of assertions fort. yields¢. 

(b) t.( .. . , ?, ... ) =?,and t.( .. . , ?, ... ) = ¢. 

We illustrate both aspects of the closed-world assumption by the following example. (Note: 

atoms begin with an uppercase letter, and variables begin with a lowercase letter.) 

'f(Bob) • Mark 

t (Ann) • Mark 

'f(Mark) • Joe 

p(x) 2 {t(x)} 

p(x) 2 {m(x)} 

anc(x) 2 p(x) 
• anc(x) 2 anc(f(x)) 

anc(x) 2 anc(m(x)) 

m(Bob) • Mary 

II (Ann) • Mary 

m(Mark) • Jane 

The collect-all assumption is expressed by augmenting p and anc by the assertions p(x) 

= {f(x)} U {m(x)} and anc(x) • p(x) U anc(t(x)) U anc(m(x)) respectively. 

For example, p(Bob) = {t(Bob)} U {m(Bob)} = {Mark} U {Mary} ={Mark, Mary}. 

Similarly, anc(Mark) = {Joe, Jane} because p(Mark) ={Joe, Jane}, and anc(f(Mark)) • 

• anc(m(Mark)) •¢. Thelatterholdsbecauseanc(Joe) • anc(Jane) •¢bytheemptiness

as-failure assumption. Note that f(Joe) • m(Joe)• f(Jane) • m(Jane) • ? because 

f and 111 are element-valued functions, and anc(?) = ¢ because anc is set-valued. 
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2.2. Restricted A-C Matching 

The associative-commutative matching problem may be stated as follows: Given 

two terms t 1 (possibly non-ground) and t 2 (ground), some constructors of which may 

be associative-commutative, is there a substitution 8 such that t18 =sc t2? (=sc means 

'equality modulo the associative and commutative equations'.) This problem was first 

posed by Plotkin (P72] and has since been studied quite extensively in the literature. We 
·-

use the notation {xI t} to refer to a non-empty set, one of whose elements is x and the 

remainder ofthe set is t. Thus, {xI t} = {x} U t. When all set patterns are restricted to 

the form {t1l t2}, where t2 and t2 do not use U explicitly, we obtain a more efficient 

(compilable) matching algorithm, called restricted a-c matching, which we discussed in 

(JN88]. As shown in (JP87, JN88], the multiple a-c matches of {xI t} provide a conve

nient and efficient way of iterating over the elements of a set. Here we use a very simple 

example to convey the basic idea: 

distr(x,{ylt}) 2 {[xly]} 

When matching an expression such as distr(10, {1, 2, 3}) with the left-side of the assertion 

defining distr, all three a-c matches are considered, namely, {x- 10,y- 1, t- {2,3}}, 

{x -1o,y- 2, t- {1,3}}, and {x- 10,y- 3,t- {1,2}}. The right-side of the as

sertion for distr, namely {[x I h]}, is then fully reduced for each of these matches, and the 

union ofthe fully reduced results is defined as the value for distr(10, {1,2,3} ), which in 

this case = {[1011], [1012], [1013]}. Note: (i) Duplicates must be eliminated when taking 

this union, but we described in (JP87, JN88] how this check can be avoided for a particular 

argument when the function 'distributes over union' in this argument. (ii) No assertion is 

needed for the case when the argument set is empty; distr(x,<P) =<P, by the completion 

of the program. (iii) The idempotence of U is not used in a-c matchiflg, to avoid the 

possibility of an infinite recursion (see powerset example in section 2.3). 

Before turning to a more formal account of these ideas, we briefly discuss our conflu

ence assumption. 

2.3. Confluence 

In order that the non-constructor symbols /introduced by program assertions define func

tions, we require that the system of equations and subset assertions be confluent. Stated 

as a syntactic condition, we require that: 

(i) the left-hand side of each equality assertion not overlap with any other assertion, 
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(ii) when set constructors occur in equality assertions, the result should be independent 

of which one of the potentially many a-c matches is selected. 

Note that a subset assertion may overlap with other subset assertions. Other less restrictive 

conditions are possible, but we shall assume the above conditions, for the sake of specificity. 

Thus, for example, the following definition of the powerset of a set is legal: 

powers at( 41) = { 41} 
powers at( { x I t}) = distr2( x, powerset( t)) 

di8tr2( x, 11) 2 8 

dilltr2(x,{y 1- }) 2 {{xI y}} 

However, the definition below for set-to-list conversion is not legal. 

8et2li8t( 41) = [ ) 

8et2lillt({x It})= [x l11et2li11t(t)) 

In defining the semantics of subset-logic programs in the next section, we assume that 

program assertions are confluent. In an earlier paper (JP87), we mentioned methods of 

proving confluence of equational programs with a-c constructors . 

3. Seniantic11 of Simple Subset-logic Programs 

3.1. Completion 

We begin by flattening all expressions so that the arguments of all function calls are terms. 

Temporary variables are introduced as necessary. For the parent and ancestor assertions 

mentioned in section 2.1, the flattened form would be 

p(x) 2 {e} :- f(x) • e 
c 

p(x) 2 {e} :- m(x) • e 

anc:(x) 2 8 :- p(x) • 11 

anc:(x) 2 11 :- f(x) • e, anc:(e) • 8. 

anc:(x) 2 11 :- m(x) • e, anc:(e) • s. 

The general flattened form of an assertion is 

H :- B, 

where H may be either f(t) = u or f(t) 2 u, and B is of the form Et. ... , En, where each E; 

is f;(t;) = u;. Note: (i) B may be empty, in which case we have unconditional assertion;~ 

(ii} f's argument has a single term t rather a sequence of terms, because the latter is 
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subsumed by the former given a sequence constructor; and (iii) the order of equalities on 

the r.h.s. reflects the innermost reduction order for expressions. The flattened form of a 

(ground) query expression will be a sequence of equalities of form f(t) = x, where t is a 

term and x is a variable . 

1. Collect-All Assumption. For each set-valued function f. defined by a collection 

of n subset assertions, f.(tt) ;;2 St :- Bh ... , f.(tn) ;;2 Bn :- Bn, where B; stands for the 

body of each assertion, we add the single equality assertion 

f.(v) = U;.,l,n U {s;: (3y;) V =act; A B;} 

where v is a new variable not appearing in any of the subset assertions defining f. and jj; 

are all the variables of the i-th assertion but excluding s;. 

2. Emptiness-as-Failure Assumption. For each element-valued function fe de

fined by a collection ofn equality assertions, f.(tt) = Ut :- B1, ... , f.(tn) = Un :- Bn, 

we add 

fe(x) • ?, for each x E G- T, 

where G is the universe of ground terms and T is the set of ground terms obtained by 

instantiating each of the terms fJ, ... , tn on the l.h.s of all assertions for f •· In the ease of 

a set-valued function f., defined by equality and subset assertions, we add 

f.(x) • ~.for each x E G- T . 

Finally, we include f.( ... ,?, ... ) • ?, and f.(. .. ,?, ... ) • ~-

We shall refer to the completion of P as comp(P). For the parent-and-ancestor ex-

ample, the collect-all assumption adds the following equality assertions. 

p(v)= U {{e}: (3x)x =acV A f(x) = e} U 

U{{e}: (3x)x =acV A m(x) = e} 

anc(v)= U {s: (3x)x =acV A p(x) = s} U 

U{s: (3x,e)x =acVAf(x) = eA anc(e) = s} U 

U{s: (3x,e)x =acVAm(x) = eA anc(e) = s} 

0 

For the distr function shown earlier, the collect-all assumption adds: 

distr(v1,v2) = U{s: (3x,y) (v~ov2) =ac (x,{y 1- }) As= {[xI y)}} 

3.2. Model-theoretic Semantics 

We define the model-semantics starting from the universe of terms Up (similar to Herbrand 

universe) which is the set of ground terms of the program P augmented with the undefined 
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element ?. By P, we refer to the Battened form of the source program. The ba,e of 

interpretations Bp for a program P (similar to Herbrand base) is the set of unconditional 

ground equality and subset assertions derived from the program assertions. A model of a 

• program Pis an interpretation I !; Bp such that I satisfies every assertion in P, i.e., for 

all ground instances H• :- Ef, ... , E~, whenever {Ef, ... , ~} !; I, we also have H' E I. 

• 

• 

In addition we assume that a model satisfies the following equality theory for comtruc

tor~: (i) associative, commutative, and idempotent properties of U, (ii) c( ... , ? , ... ) =? for 

any element-valued constructor c, and (iii) {?} = </1. Terms that are not equal by the above 

equality theory are assumed to be equal only if they are identical. 

Definition 1-: An assertion A is said to be a logical comequence of a program P, denoted 

P I= A, if every model of P is also a model of A. 

Definition 2: The model-theoretic semantics of P, Mp = {A: comp(P) I= A}, where A 

is an unconditional ground assertion. 

Definition 3: Given a program Panda query expression G, we say 8 is a correct amwer 

substitution, where 8 binds all variables in G to ground terms, iff comp(P) I= G8. 

Proposition. 1: comp(P) I= P. 

Proposition 2: If P is terminating, there is a unique model for comp(P). 

However, non-tenninating subset-logic programs do not have unique models, as illus-

trated by the following program defining two set-valued functions f and g: 

f(x) :;;;:) {1} 

f(x) :;;;:) g(x) 

g(x) =g([x]) 

Note that the collect-all assumption adds the following assertion: 

f(x) = {1} U U{s : g(x) • s}. 

The above program has an infinite number of models of the form (V x) [f(x) :;;;:) {1} and 

. f(x) = {1} U s, and g(x) = s], for any constant sets. However, because of the following 

• proposition, there is a lea,t mode~ which is (V x) [f (x) :;;;:) { 1}] in this example. 

Proposition 3: The intersection of all models of comp(P) is a model. 
• 

Theorem 1: .Mp = n{M :I=M comp(P)}. 

The notation I= M P means M is a model for P. 
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3.3. Fixed-point Semantics 

We characterize the least model as the least fixed-point of an i=ediate-consequence 

operator on interpretations, 'Tp, as follows. 

'Tp(I) = ~p(I) u !p(I), 

where 

~p(I) = { H•: H• :- Ef, ... , E~ is a ground instance of a program assertion 

and {Ef ... Et} s;; I} 

!p(I) = { f(t) = U{8: (3u) f(u) :2 8 E ~p(l) Au =ae t} 

: f(u) :2 8 E ~p(l) for all u = 4 e t 

and all subset assertions for fin P} 

We should note that 'Tp is defined not on comp(P), but on P supplemented with the 

equality assertions for the emptiness-as-failure assumption. ~p(l) derives new uncondi

tional ground assertions from program assertions, and is identical to the transformation 

rule for predicate-logic programs. !p(I) expresses the collect-all assumption by deriving 

an equality assertion involving f(t) only when all subsets of f(u) are known, considering 

each subset assertion for f and each term u =4 e t. Note that are only finitely many u =4 e t 
and also a finite number of subset assertions for fin P. 

Proposition 4: 'Tp is continuous. 

Theorem 2: Mp = T_p'(l.a), where l.a is the empty interpretation. 

For the example in section 3.2, we have 'Tp f 0 = t/1, 'Tp f 1 = 'Tp i w = (Vx)f(x) :2 {1}. 

3.4. Operational Semantics 
• 

As in the fixed-point semantics, we assume that the flattened program P has been sup-

plemented with equality assertions for the emptiness-as-failure assumption. We define 

a rewriting relation --+ by considering the two mutually exclusive cases in rewriting an 

innermost expression. 

Case 1: Given variants of subset assertions, f(tt) :2 s1 :- Bb ... f(tn) :2 Sn :- Bn, and 

a flattened query expression 

where g1 is f(t) = s, we define the rewriting relation --+ such that, if matching t with 
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G-+ (Bt 8u), ... , (Bt 8a,), ... , (B,. 8,.1), ... , (B,. 8n.tn), (Sl, ... , g,.) u, 

where u = {s +- U;j (s;8;j)}. (Note that swill be a variable.) 

Case 2: Given variants of equality assertions, f(tt) = Ut :- Bt. ... t(t,.) = u,. :- B,., 

and a flattened query expression 

where g1 is t(t) = u, we define the rewriting relation -+ such that, if matching t with 

t1 .•• t,. yields respectively the substitutions 8u, ... , 8a,, ... , 8nt. ... , 8n.l:n, then 

G-+ (B; 8;1), (Sl, ... , g,.) u for some i and j, where u = {u +- (u;8;i)}· 

Definition 4: Given a program P and query G, we say that 8 restricted to variables in G 

is the computed amwer of a derivation 

G = Gt ..... G2 ........ -+ G.t = D 

if 8 = u1 ••. u.~;, i.e., the composition of the substitutions u1 , ••• , u.~; at each step. 

The following theorems express the correctness of the operational semantics. 

Theorem 3 (soundness): Given a program P and top-level goal sequence G, the com

. puted answer 8 is a correct answer. 

Theorem 4 (completeness)~ Ghren a program P and top-level goal sequence G, if there 

exists a correct answer 8, then there is a -+-derivation such that 8 is the computed answer . 

4. Stratified Subset-logic Programs 

4.1. Closure Functions 

It turns out that, with a suitably enhanced operational procedure, one can compute more 

information than is defined by the least fixed-point of Tp (equivalently, the least model, 

Mp ). A trivial example is shown below. 

f(x) 2 {x} g(x) 2 {x} 
f (x) 2 g ( [x]) g ( [x]) 2 t (x) 

The above program is nonterminating (according to the operational semantics of section 

3.4), and its least model is (V x) [t(x) 2 {x} and g(x) 2 {x}]. That is, iri the least model, 

we know that f (x) and g (x) contain { x}, but we do not know which set t (x) and g (x) are 

equal to. In this example, although there are an infinite number of models which contain 

f (x) = g (x) = { x, [x]} U s for some set constant s, the least model has none of these 
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assertions. Note also that the nontermination here arises because of a recursive call with 

an identical argument as an outer call, e.g., f(x) = {x} U { [x]} U f(x). Such calls can 

be detected with the use of a memo-table (or extension-table). 

We refer to sets defined cyclically in this manner as 6et clo.,ure.,, and functions defined 

using such sets as clo1ure functioru. All closure functions in this language are set-valued 

functions. A more useful example is the function reaeh below for finding the set of reach

able nodes of a graph g, represented as a set of ordered pairs, starting from some given 

node v. 

reac:h(v, g) 2 {v} 

reach(v, g) 2 allreaeh(adjacent(v, g), g) 

allreach( { x I -},g) 2 reach( x, g) 

adjacent(v, {[v, w] I _ }) 2 {w} 

In general, closure functions are useful whenever one is in interested in defining the smallest 

set satisfying some property, e.g., dataflow analysis in compilers. We require the program

mer to identify all closure functions, say through annotations-otherwise the overhead of 

memo-izing function calls can become excessive. In order to permit the use of closure 

functions as arguments to non-closure functions and still maintain our ability to define a 

suitable and fixed-point semantics, we impose three conditions: 

(i) We 6tratify all assertions into n levels, where level 1 assertions define only non

closure functions, and each of the remaining levels is divided into two sets of assertions: 

assertions defining closure functions and assertions defining non-closure functions. In the 

above example, adjacent would be at level one, and the closure functions reach and 

allreach would be at level two. • 

(ii) We require that all closure functions be terminating (after memo-ization). We can 

relax this requirement, but we will assume it in this paper, for the sake of simplicity in 

presentation. 

(iii) We require that all closure functions at a given level are defined in terms of one 

another using 6Ub6et-monotonic functions, but may be defined in terms of any (closure 

or non-closure) function from a lower level. A set-valued function g is said to be 6ub6et· 

monotonic in a particular argument iffs1 ~ s2 :::> g( . .• , s11 •.. ) ~ g( .• . , s2, ... ). For example, 

set-difference x-y, is not subset-monotonic in its second. argument, but is subset-monotonic 

in its first argument. 

11 



4.2. Semantics of Stratified Subset-logic Programs 

Definition 5: Assuming Pj are all the assertions at level j and PJ are just the assertions 

defining closure functions at level j, Mn defines the model-theoretic 1emantic1 of a stratified 

program with n levels, where 

for j > 1, Mj = Aj U Cj, where 

Aj = { A : comp(Pi) u MH I= A}, 

Cj = { fj;{t) = n{s : (3M, u) I=M comp(PJ) A fj;{u) = s E M A u =4c t} 

: fji is a closure function at level j}, 

At level j, Aj defines the semantics of non-closure functions as well as the sub1et asser

tions for the closure functions that are logical consequences of the program. The equality 

assertion for a closure function fj;{t) at level j is defined by Cj, and is the intersection of 

all sets defined for fj;(u) where u =4 c tin the different models M for PJ. 

To define the fixed-point semantics, let Cj and .Ni be the transformation operators 

used to define the semantics of closure and non-closure functions at level j respectively. 

" Their definitions are identical to Tp of section 3, except that the ordering of intepretations 

for Cj is as follows, where f used below is a closure function. 

• 

I1 !; I2 iff I1 s; I, V {{f(t) = s1 E II) ::> {f{t) = 12 E I2 A s1 s; s2)) 

The above ordering expresses the requirement that a smaller model should have not only 

fewer assertions, but also smaller sets. 

Proposition 5: Cj is continuous w.r.t. !;. 

Definition 6: Assuming P has n levels, the fixed-point semantics is F "' where 

for j > 1, Fj = Fi-1 U .NJ'(Fj-1) U Cj(..Lj), and 

for j > 1, .lj = Fi-1 U {fj;(t) = tP: t E G, i E 1 ... ki}, 

and F1 = TP,(..LB) 

Note that we have effectively assumed that all closure functions are terminating, because 

of the initialization {fj;(t) = <P: t E G, i E 1 ... kj} for eadl closure function fji· 

Theorem 5: For a stratified program with n levels, Mn = F n· 

Finally, we sketch the operational semantic1. We define the -+ relation between pairs 

of the form <G, T>, where G is a goal-sequence as before, and Tis a memo-table, i.e., a 
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set of assertions of the form f(t) = u, where f is a closure function, t is a ground term, 

but u may be non-ground. Initially T = t/1. Given a pair <G, T>, let the first goal in G, 

g1 = f(t) = v. We define <G, T> -+ <G', T'>, as follows. 

(i) Iff is a non-closure function, we define G' as in section 3.4. If q is the computed 

substitution for v in deriving G', we define T' = T u. 

(ii) Iff is a closure function and there is no assertion of the form f(u) =win T for 

any u =act, we define G' as before, and T' = (T U {f(t) = v}) u. 

(iii) Iff is a closure function and f(u) = w is in T for some u =ac t, we define u 

= {v <- norm(w,v)}, G' = (G- [SI)) u, and T' = T u. The term norm(w,v) is the 

normalized form of w with respect to v, i.e., replacing any occurrences v in w by t/1. 

Assuming that the correct an&wer and computed an&wer are re-stated relative to the 

new semantic definitions, we have the following correctness results. 

Theorem 6 (soundness): For a stratified program P and goal G, the computed answer 

() is a correct answer. 

Theorem 7 (completeness): Given a stratified program P and goal G, if there exists a 

correct answer 8, there is a -+-derivation such that () is the computed answer. 

For the example definiDg f and gin section 4.1, the top-level query <f(1) • v, t/1 > 

has a successful -+-derivation with the computed answer {v <- {1} U {[1]} U f/1}. The 

memo-table at the end of the derivation would be {f(1) = {1} U {[1]} U t/1, g([1)) = 

{1} u {[1]} u t/1}. 

5. Conclusions 

We mention the salient points about the s~tics we have presented in comparison with 

that for Hom-clauses with negation [L87]: 

1. Unlike Hom-clauses, the CWA for subset-logic programs is computable, and com

pletion does not lead to inconsistency-basically, we do not provide a ;l1 or non-membership 

primitive in the language. The declarative (or model-theoretic) semantics of a subset-logic 

program P can expressed in terms of the logical consequences of comp(P). Note that 

models for comp(P) have equality assertions and subset assertions, although our interest 

at the top-level is in the term that is equal to a given query expression. 

2. For simple subset-logic programs, the least fixed-point of our 'Tp operator charac

terizes the CWA. The definition of this operator is different from that for Hom clauses in 
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that it incorporates the closed-world assumption. The operational semantics, based on a-c 

matching and innermost-first reduction, is correct (sound and complete) with respect to 

the declarative or fixed-point semantics. 

3. Unlike Hom-clauses with negation, stratification in subset-logic programs is needed 

not to avoid inconsistency but to make possible a fixed-point semantics for clo&ure func

tion&. Our semantics require that the auxiliary functions used in defining one closure 

function in terms of another (at the same level) to be subset-monotonic, and also all clo

sure functions to be terminating-the latter assumption can be relaxed, but we haven't 

explored this issue in this paper. The operational semantics corresponding to the above 

definition essentially uses a memo-table in order avoid nontermination from identical nested 

calls. 

[JP87] 

[JN88] 

[187] 

[P72] 

[VK76] 

References 

B. Jayaraman and D.A. Plaisted, "Functional Programming with Sets," In 

3rt/. Int'l Conf. on Func. Prog. Lang. and Comp. Arch., pp. 194-210, 1987. 

B. Jayaraman and A. Nair, "Subset-logic Programming: Application and lm

plementatio:n," In 5th Int 'l Logic Prog., Con f., pp. 843-858, 1988. 

J.W. Lloyd, "Foundations of Logic Programming," Springer-Verlag; 1987. 

G. Plotkin "Building-in equational theories," In Machine Intell., 1, pp. 73-90, 

1972. 

M. H. van E~den and R. A. Kowalski, "The Semantics of Predicate Logic as 

a Programming Language." JACM 23, No.4 (1976) pp. 733-743 . 

14 


