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ABSTRACT 

MOLTISCALE METHODS 
AND THE SEGMENTATION OF MEDICAL IMAGES 

Stephen M. Pizer 

Depts. of Computer Science, Radiology, and Radiation Oncology 
University of North Carolina 

Chapel Hill, NC 27599-3175, USA 

Multiscale methods analyze an image via relationships between its properties 
at many different levels of spatial scale. Details and noise appear largely at 
small scale, and global properties of image objects appear at large scale. The 
segmentation of images into objects or coherent regions is therefore aided by 
viewing the image in multiscale terms. The methods and approaches that have 
been suggested for multiscale image analysis and for segmentation based on 
this analysis are summarized. 

1. INTRODUCTION 

Multiscale approache8 for dividipg an image into objects (segmentation) are 

based on the idea that the identifying features of an object or any coherent 

image region exist simultaneously at many levels of spatial scale. Global 

properties of the object are dominant at large scale, and at smaller scales 

details of size appropriate to that scale are principally represented. Thus, 

an oak tree consists of a trunk and a treetop at large scale, of limbs at a 

smaller scale, of branches and leaves at a yet smaller scale, and of leaf 

veins and indentations at a quite small scale. Defining the part of an image 

corresponding to an object therefore requires examining the image 

simultaneously at ~ny levels of spatial scale. There is evidence that the 

human visual system operates in such a multiscale manner (Young, 1986). 

Moreover, an image viewed at large scale is much simpler than one viewed at 

smaller scales. Therefore, for efficiency object recognition should occur in a 

sort of top-down manner, finding things tentatively at large scale where the 

image is simple, and then verifying and refining the recognition at smaller 

scales where details are better represented. 

The computation involved in multiresolution segmentation thus requires a means 

of successive simplification of ~he image by increasing in scale, examining 



image features at various scales, and actually defining the objects in terms 

of the features found at the respective scales. The following chapters treat 

these matters in turn. 

2. MEANS OF IMAGE SIMPLIFICATION 

2.1. Pyramid methods. 

Historically the first multiresolution methods were pyramid approaches. These 

depend on forming new larger scale pixels each of which combines the 

information from image pixels into square groups of m x m, thus creating a 

summary of the image with fewer pixels (by l/m2 as shown in Fig. 1). This 

larger scale image is in turn simplified by combining its pixels into groups 

of m X m, creating a yet larger scale image. This process is repeated to 

produce what can be viewed as a pyramid of image representations if the 

successive summaries are piled one on top of the other. 

Figure 1: Pyramid. Compliments of Lawrence Lifshitz (1987). 

Different pyramid methods vary by the means of combining image pixels into 

groups, i.e., by the information that is recorded in the parent pixels. Two 

general categories of pyramid methods can be defined: feature following and 

summary, and wavelet decomposition. 
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In feature following and summary (Burt, 1981; Rosenfeld, 1987) a parent pixel 

summarizes the information about some feature in the pixels that are its 

children at the next lower level of scale. For example, if the feature of 

interest was image intensity, the parent might record the average intensity of 

its children; or if the feature of interest was a line segment, segments 

described in some of the child pixels. would be summarized into a global 

segment in the parent pixel. 

In wavelet decomposition (Jaffard, 1986; Mallat, 1987) the information at 

smaller scale gives only the difference between the image analyzed at that 

scale and the image analyzed at the larger scale. This provides a space­

efficient representation. By an elegant development, the information at each 

scale is represented by orthogonal functions that are band-limited in both the 

space and frequency domains. 

2.2. Blurring methods. 

Another way to simplify the image is to blur it by convolution·with a blurring 

kernel. A number of authors (Yuille, 1983; Witkin, 1983; Koenderink, 1984) 

have shown that the kernel that to the greatest degree limits the creation of 

new structure under blurring is the Gaussian; this kernel also has many 

advantages of compatibility with the measured receptive fields of the human 

visual system, being simultaneously isotropic and separable by coordinates, 

and holding its form under cascaded operation (Koenderink, 1989). As a result 

there has been considerable attention (Pizer, 1988b; Koenderink, 1984; 

Bergholm, 1987; Stiehl, 1988) to image segmentation by following features 

through Gaussian blurring. 

It has been suggested that non-isotropic or non-stationary Gaussian blurring 

can allow the blurring to adjust to the orientations of and spacings between 

objects. This adds a considerable complication to the analysis and leads to 

iterative methods where tentative segmentation suggests the parameters of 

reblurring. The potential strengths of such iteration, as suggested by the 

human visual system, has led to initial consideration of such an approach 

(Lifshitz, 1988) and some trials indicating some success of this idea (Hsieh, 

1988b). A related approach with some promise creates non-Gaussian summaries 

over areas grouped according to consistent geometric properties such as 

intensity gradient direction (Colchester, 1988) . 



Attention to edges suggests following the Laplacian of the image through 

Gaussian blurring. This idea can be combined with resampling with fewer pixels 

to produce the so-called Laplacian pyramid (Burt, 1984). Since D*(B*Image) • 

(D*B)*Image for any differential operator D and blurring kernel B, the 

Laplacian of a blurred image can be found by applying to the image the 

operator that is the Laplacian of a Gaussian. The Laplacian of a Gaussian is 

approximately equal to the difference of that Gaussian (DOG) with a Gaussian 

with standard deviation approximately 1.6 times as large. If one uses V2 in 

place of 1.6, one can efficiently produce a multiresolution image sequence 

from a series of DOG applications: Gi * Image - Gi+1* Image, where 

Gi+1- Gi * Gi (Crowley, 1984). Crowley has used this idea to produce a 

series of images resulting from successive DOG filters, each with the same 

energy but covering a successively lower frequency passband. 

2.3. Discretization and finiteness. 

In actual computation both the space and scale will be discrete, so the 

spatial discretization (pixel spacing) and scale discretization (spacing 

between levels of blurring: for Gaussian blurring, the value of s) must be 

decided. Sampling theory argues that the pixel spacing should be proportional 

to the scale, but a successive decrease in number of pixels covering an image 

forces the decision of how to map locations at higher scale to the new scale. 

Since the image at a larger scale will be simplifed, the representation of 

that image can frequently be made efficient of computer memory without 

increasing the pixel spacing. 

Computational ease has led to many pyramid methods increasing the pixel 

spacing by 2 in each coordinate dimension at each scale step. This is the 

scale increase used in the wavelet decomposition. Crowley has shown how taking 

advantage of diagonal distances can allow efficient computing of the Laplacian 

pyramid with a scale increase of V2 at each scale step. 

Koenderink (1984) and Pizer (Lifshitz, 1987) have suggested that the amount of 

blurring between successive discrete scales be determined by limiting the 

change in intensity of some ba.si.s function as it is blurred between successive 

discrete scales. They limit the intensity change to an amount proportional to 

the accuracy of the underlying floating-point intensities undergoing blurring. 
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Such analysis concludes that increasing the scale by a constant factor between 

steps is correct, but a factor of 2 or even V2 produces too much change in the 

basis function intensity between steps. 

In contrast, some authors have recognized that the essential issue in scale 

discreteness is how it supports the following of image features that is 

involve~ in multiresolution methods. Lifshitz (1988) has suggested that if one 

is following features such as intensity extrema through scale space, with the 

intention that annihilations of one feature into another are to be discovered, 

large successive blurrings that are related to the spacing between the 

features should be used. Similarly, Bergbolm (1987) has noted that if one is 

following a feature such as an edge from an optimal scale for recognition 

through successively smaller scales to its location in the in the original 

image, it is reasonable to limit the successive blurrings so that the feature 

movement is limited to a fixed distance. Bergholm assumes a fixed minimum 

corner angle of edges and then chooses his blurring to limit edge movement to 

1 pixel. 

The method for following features through scales can equivalently be thought 

of as the need to identify a multiscale form, e.g. (as shown in Fig. 2), an 

extremal path (a point extended through a part of the scale dimension) 

(Koenderink, 1984; Lifshitz, 1988) or a Laplacian zero crossing surface (a 

curve extended through part of the scale dimension). This form can be 

determined, either directly or by relaxation, after the corresponding single­

scale form (e.g., extremum of intensity or zero of Laplacian, respectively) 

has been identified at each scale, but artifacts arising due to different 

discrete approximations at each scale can make difficult the determination of 

cross-scale coherences. Instead one can treat the coherence across scales as 

part of the identification process. In this approach, inspired by the "Snakes" 

approach of Terzopoulos, Witkin, and Kass (1987), a multidimensional form, 

such as a surface, with one of its dimensions being scale, is fit to the 

family of multiscale images in such a way as to maximize a combination of 

coherence of the form and fit to whatever image properties correspond to the 

feature being followed (e.g., the derivative properties corresponding to 

extrema of intensity or zero-crossing of the Laplacian, respectively) (Gauch, 

1988b) . 
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Figure 2: Extremal paths through scale. Compliments of Lawrence Lifshitz 

(1987). 

In addition to discreteness, the finiteness of the image can cause problems 

when scale increase is accomplished by Gaussian blurring. The problem is to 

continue the finite image across infinite space so as to achieve desired 

behavior under scale reduction. Reflection across boundaries or the implicit 

wraparound continuation of frequency domain analysis does not allow the image 

to simplify fully as scale is increased without bound. Toet (1984) suggested 

that seeing Gaussian blurring as applying the diffusion equation leads to the 

solution. Based on this idea, Lifshitz (1987) modifies the image by 

subtracting a solution to the diffusion equation that at all levels of scale 

agrees with the original image at its boundary. Applying multiscale analysis 

to the result, extended everywhere outside the image by zeroes, can now go 

ahead·. 

3. USING VARIOUS SCALES 

There are a number of strategies for using the images at multiple scales. Many 

authors (e.g., Coggins, 1986a; Neumann, 1988; Burt, 1981) try to find the 

optimal scale for a particular decision. For example, Laplacian zero-crossings 
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can be used to find edges at an optimal resolution, even in 3D (Bomans, 1987). 

Similarly, in stereo matching, a scale that sets the stereo disparity at a 

given location to a fixed number of pixels is correct for that location (Hoff, 

1988) . In segmentation, the decision that a region is a sensible segment is 

best made at the scale of that segment. In these methods the decisions are 

frequently taken in decreasing order of scale, but it is also possible to go 

in reverse order, choosing the optimal scale when one comes to a scale where 

certain conditions first fail. 

Another strategy for using images at multiple scales is to use each larger 

scale to summarize at each image location the information from the children at 

lower scales (Rosenfeld, 1987; Meer, 1986; Sher, 1987). In the simplest for.m 

of this method, intensity itself might be summarized by averaging over pixels 

that at the next lowest level of scale have been associated with the parent 

pixel being computed. The various methods (Burt, 1981) differ by the way in 

which these associations are determined. For example, one might associate a 

pixel with nearby potential children that are closer in intensity to its 

present intensity than any other potential parent. After these associations 

are determined, the parents' intensities are recomputed and the associations 

redetermined, and this process repeats· until no associations change. After 

these associations have been set, a region can be determined as all the 

descendants of a pixel that is not close enough in intensity to any of its 

potential parents. 

Instead of summarizing a feature as simple as intensity, one might follow a 

geometric feature such as an edge curve or an intensity trough, or a texture 

through scale space (Sher, 1987). Thus, for example, two approximately 

collinear line segments might be .summarized into the larger line segment 

formed by their combination. In this case, also, there must be a means of 

choosing the pixels at the next lower scale that the present pixel is to 

summarize. Even given this, the approach frequently has the difficulty of 

finding a means of summarizing the information from the next smaller scale 

without the storage for a pixel increasing unmanageably with increasing scale. 

Another class of methods takes advantage of the fact that as the image 

simplifies under increase in scale, component features can be expected to 

disappear into the more "important~· features of which they are a part (if the 

features are correctly chosen to characterize image structure of interest). 



The order of disappearance and the way in which image pixels collapse into 

structure-defining geometric forms can be used to define regions and impose a 

hierarchy on them (Koenderink, 1984; Pizer, 1988b). For example (as shown in 

Fig. 3), Lifshitz (1988) and Koenderink have followed intensity extrema to 

annihilation while following intensity values as they collapse into extrema, 

while Gauch (1988a,b) and Blom (1988a) are following to annihilation ridges 

and troughs defined by iso-intensity curve vertices. 

---
Iso-Intensity Contours 
Extremal Paths 
!so-Intensity Paths 
Saddle Pt. Paths 

·r 
f 

Figure 3: Extremal paths and !so-intensity paths through scale space. 

Note that maxima (~), and saddle points (O) move together and annihilate. The 

resulting non-extremal point (•) is then linked via an iso-intensity path to 

another extremal path. 

The final member of our list of approaches to use multiple resolutions 

attempts to identify image features, such as edges or ridges, by their local 

behavior through the full family of resolutions. For example, a pixel on a 

linear edge can be identified by its sequence of values of intensity and 

derivatives as the image is blurred (Korn, 1985; Back, 1988; Blom, 1988a), or 

the occurrence of a particular geometric shape centered at a pixel can be 

identified by its response under a particular filtering as the scale parameter 

of that filter goes over some range (Coggins, 1986b) . Furthermore, information 

about the extent of an edge, its curvature, and its distance from other edges 

can be obtained by the way in which this sequence of values varies,,from the 

sequence that would correspond to an infinite linear edge. 
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4. GE~TRIC FEATURES IN OBJECTS AND INT]I:NSITY AND TIME FAMILIES 

The success of a multiresolution method depends not only on the strategy of 

using the multiple resolutions but also on the geometric forms that are 

examined at each resolution. The forms are chosen to capture image structure 

of interest while at the same time having appropriate behavior as resolution 

is lowered: e.g., capable of being summarized, or smoothly moving to 

annihilation. The choice of these forms requires a good understanding of the 

mathematical discipline of geometry (Koenderink, 1989). This geometry may well 

involve not only the two or three spatial dimensions of the image and possibly 

the dimension of time in a time-series of images, but also the dimensions of 

intensity and scale. The two-dimensional methods discussed below generalize to 

three spatial dimensions, though that generalization has .in many cases not 

been worked out or tried out. 

4.1. Intensity extrema. 

Bright and dark spots are features of importance in an image. Furthermore, 

Morse theory tells us that under Gaussian blurring these intensity extrema 

undergo a regular behavior: each extremum moves smoothly, with maxima 

decreasing in intensity and minima increasing in intensity as scale is 

increased. This behavior continues until the extremum annihilates with a 

saddle point. Unfortunately, it is also possible, though uncollllllon, for 

extremum-saddle point pairs to be created at some level of blurring (Lifshitz, 

1987). 

It seems attractive t.o use extrema as .seeds for extremal regions, locally 

bright or dark image areas. Computation of extre'!'B.l regions requires a means 

of associating pixels with nearby extrema. Furthermore, it seems desirable to 

use extremal annihilation to induce a hierarchy, by seeing one extremum as 

disappearing under scale increase into the hillside or pitside of another 

extremum. To this end a means of association of annihilating extrema as being 

part of the extremal region of another extremum must.be found. Koenderink 

(1984) and Lifshitz (1988) have dealt with this problem by following constant 

intensity levels through scale space. They show that each such iso-intensity 

path must run into an extremum, thereby associating either the pixel or the 

just annihilated extremum at the source of the path with the extremal region 



that contains it. There are two difficulties with this means of association. 

First, it leads to iso-intensity curves as region boundaries. Image features 

such as edges and intensity ridges and troughs play no part. Second, all the 

pixels inside an !so-intensity curve that forms a partial boundary are not 

necessarily associated with the extremum in question (Lifshitz, 1988). 

4.2. Edges. 

Object edges capture more geometry than extrema. Edge information is found in 

the derivatives of the image. Generally methods of edge calculation can be 

divided into those based on the gradient and those based on the Laplacian, 

though Koenderink and Blom have argued that it is useful to include 

information from derivatives of higher order than the second to determine 

edges (Koenderink, 1988b). 

The gradient-based methods compute an edge strength from the magnitude of the 

gradient and a normal direction to the edge from the direction of the 

gradient. These values can be followed through Gaussian blurring, (Koenderink, 

1987) . Hsieh (1988a) has combined the connectionist ideas of Grossberg (1985) 

for producing closed edges with a scheme that lets edges or edge continuations 

at one resolution support those at other resolutions, producing closed edge 

contours that frequently match what we see. Thus, in a multiscale fashion 

image locations cooperate and compete to select strong edges (and corners) 

with consistent edge directions, and continue edges across gaps (at multiple 

scales). Neumann (1988) adds line and channel features to edges in the 

Grossberg scheme, and attempts to identify these at optimal scale. Kern (1985) 

and Back (1988) attempt to find edges according to gradient-of-Gaussian edge 

strength by looking at the family of such edge strength measures across many 

scales. Bergholm 1987] is following the commonly used Canny edges, from a 

scale at which detection is straightforward but the edges are displaced, 

through decreasing scale to their actual location in the original image. Canny 

edges (1983) are locations with gradient magnitude above some threshold and of 

maximum gradient magnitude in the gradient direction. Pyramid methods have 

also been used with edge strengths. 

Marr (1982), among others, has focused on the Laplacian as a direction-free 

indicator of edge strength. Near edges the Laplacian goes from a high positive 

value through zero to a high magnitude negative value. Marr has particularly 

• 

' 



• 

focused on the closed contours given by Laplacian zero crossings, and it has 

been suggested to follow these contours through scale space to select 

important edges (Marr, 1980). While this frequently finds edges well, Blom 

(1987) has shown that all edges of interest do not correspond to a Laplacian 

zero crossing. 

Edges, i.e. region boundaries, can be used in a multiscale way to describe 

objects, after these boundaries have been found. For example, Richards' (1985) 

codons can be followed through decrease in scale as one annihilates into the 

next (Gauch, 1988a). This type of analysis involves describing objects by 

deformation, the subject of section 4.4. 

4.3 Central Axes. 

While edges provide important object information, that information is rather 

local. The axis down the center of an object, together with the behavior of 

the width of the object about its axis as a function of axis position, gives 

more gl~bal information about the object. When put in a form that applies to 

intensity-varying images, such axes can summarize information about edges, 

spatial shape, and the shape of variations in the intensity dimension. Two 

different categories of central axes have received attention. The first 

involves actual axes of symmetry, and the second involves intensity ridges or 

troughs, which tend to run down the center of objects. 

Three symmetry axes of objec~s have been suggested (as shown in Fig. 4); all 

are related to the the family of circles tangent at two locations on the 

object boundary. The locus of the circle centers forms the symmetric or medial 

axis (Blum, 1978). The internal medial axis, made from the centers of tangent 

circles entirely within the object, has the advantage, for objects without 

holes, of being a tree which when divided into its branches subdivides the 

object into bulges. Each branch endpoint is the center of a circle which 

touches the object in a second degree way at one point, a point of maximum 

positive curvature of the object boundary. Similarly, the object's external 

medial axis, defined as the internal medial axis of the object's complement, 

is the center of a circle touching the object at a point of minimum negative 

curvature: A 3D object's axial surface, defined in terms of tangent spheres, 

has much the same properties listed above for the medial axis of a 2D object 

(Nackman, 1985; Bloomberg, 1988) . 
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Figure 4: Points on axes of symmetry. Medial axis is locus of points of type 

A. Smooth local symmetry axis is locus of points of type B. Process-inferred 

symmetric axis is locus of points of type C. 

The second axis, the locus of the centers of chords between the two tangent 

locations, forms the smooth local symmetry axis (Brady, 1984) . It is not 

necessarily connected, even when it is restricted to internal circles. Brady 

has suggested combining this axis with the behavior of the object boundary 

curvature as it is followed through scale increase to produce object 

descriptions. 

The third axis is the locus of center points of the smaller of the parts of 

the tangent circle between the two tangent points. Layton (1988) calls it the 

process-inferred symmetric axis (PISA), because it touches the object on the 

side of the object where a deforming force can be thought to have been applied 

to make the object from a circle (or sphere, in 3D). We will return to the 

PISA in section 4.4, but here we will focus on the medial axis. 

The problem is to find a form of the medial axis that applies to intensity­

varying images, rather than to objects whose boundaries have already been 

determined (Gauch, 1988a,b; Pizer, 1988b). One can view the image as an 

intensity surface one dimension above the n-dimensional image. However, 

because intensity is incommensurate with the spatial dimensions, one cannot 

use a surface of symmetry in n+l dimensions. Rather, think of the image as a 

single parameter family of intensity level curves, as in a terrain map. For 

each level curve, the medial, axis can'be computed and the result placed a its 

corresponding height. The resulting medial axis pile, that we will call the 
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intensity axis of symmetry or IAS, can be shown to be made of branching 

sheets (as shown in Fig. 5), in some cases with loop branches. The IAS depends 

on the way the image was divided into an intensity family; in the above it was 

sliced along !so-intensity levels. An open area for study is the relative 

advantages of various means of slicing the intensity terrain. 

a) b) 

Figure 5: A simple intensity varying image and its IAS. a) 4 level curves of 

intensity; b) level curves and corresponding IAS. 

Under Gaussian blurring, medial axis sheets annihilate into other sheets until 

a set of separate, simple (unbranching) sheets remains. Thus, the blurring 

process induces a set of hierarchies. Furthermore, associated with each 

subtree of sheets in this hierarchy is a subimage: at each pixel the intensity 

of the subimage is the maximum of the intensities of the IAS disks covering 

that pixel, where each IAS sheet point forms the center of a disk at the 

intensity of the point. That disk is the maximal disk corresponding to the 

medial axis point in question (for the particular level curve at that 

intensity). The way in which image regions should be formed by associating 

pixels absolutely or probabilistically with a sheet has yet to be determined. 

Presumably the association should take place via these subimages or geometric 

features such as surrounding intensity ridges or troughs It will not be 

surprising if the answer itself involves the multiscale following, back to the 



original scale, of a feature found near the annihilation scale of the IAS 

sheet determining the region. 

Ridges and courses on the image terrain are features that not only tend to run 

down the middle of image objects but also have visual po-.r. In the following, 

the many definitions of the general notion of ridge will be given, with the 

understanding that for each there is a corresponding notion of the 

complementary geometric form, the course. Full image analysis must lead to the 

possibility of light figure# o~ a dark ground or the re~rae, and simultaneous 

analysis in both polarities must be a part of any successful general 

segmentation process. 

Crowley 1984) focuses on locations of high positive (or low negative) values 

of an energy-normalized Laplacian to find a sort of ridge in these values. He 

follows these ridges and peaks through scale space. Scale-space maxima in the 

magnitude of these peaks and pits designate the scale of. a feature. While this 

method has a good intuitive basis, the mathematical behavior of the normalized 

Laplacians in scale space has not been worked out. Other methods with good 

intuitive basis also depend on cross-correlation of the image with some 

template function (Neumann, 1988). 

Ridges can also be computed as watersheds, but the identification of 

watersheds is unfortunately nonlocal. That is, a change in the image at some 

distance away from a pixel can move a watershed from or to that pixel. 

Other definitions of a ridge apply to any surface, independent of its 

orientation, and thus have the probably desirable property of being 

independent of the value of intensity or intensity slope. The best of these 

take advantage of the knowledge that the intensity surface forms a function, 

of space, i.e., is single-valued. One of particular interest is the locus of 

intensity level curve maxima of curvature, or vertex curve, because of its 

relation to the IAS: each vertex curve point is the touching point of the 

maximal circle corresponding to the endpoint of the medial axis of the 

intensity level curve at that intensity (as shown in Fig. 6). That is, there 

is a 1-1 relationship between vertex curves and IAS sheets. As a result, 

vertex curves can be followed through scale space to annihilation, a much 

simpler task computationally than following IAS sheets. The connectedness of 

the image is established by the branching of the IAS, which needs only to be 

computed for the original image, but the parent:child relationships are 
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established by the order in which the vertex curves annihilate together with 

the relationship of the vertex curves to the IAS branches. 

--

a) 

M+Vcrtices 
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b) 

Figure 6: a) The relationship between the IAS and vertex curves; b) the same 

vertex curves shown superi~sed on the intensity level curves. Vertices 

corresponding to positive curvature maxima (ridges) are indicated by M+, and 

vertices corresponding to negative curvature minima (courses) are indicated by 

m-. 

4.4. Deformation . 

Time series of images make it necessary to follow the moving images, and their 

component objects, through scale space. In general, the motion involves non­

rigid deformation, rotation, and translation of the image objects, and this 

compound motion can be used to help define these objects. 

The same issues of multiple scales that are important in the spatial 

dimensions are also important in the time dimension. However, time is not 

simply another spatial dimension; it is asymmetric (the past affects the 

future); it is incommensurate with space; yet space and time are interrelated, 

by pixel velocities. The means for space-time multiscale analysis using these 

ideas has not been adequately developed. Certain approximations may 

nevertheless be useful. 

For example, analyzing the time course as if it were independent of space can 

yield useful information. Koenderink (1988a] has treated the question of how 

time should be increased in scale to analyze a time series, e.g. at a single 



pixel, in a multiresolution fashion. He concludes that a present moment, to, 

should be chosen as a parameter and the transformation from the asymmetric 

variable tSto to the symmetric variable s • logCto - t) be carried out. Then 

increase in the time scale by Gaussian blurring in s has the desired 

properties of not violating temporal causality and treating temporal intervals 

in proportion to their time in the past. This transformation and blurring in s 

can be combined with the ordinary Gaussian blurring in the spatial variables 

to produce a fo~ of spatia-temporal scale increase, with independent scale 

parameters in the time and spatial dimensions. With this scale change one is 

analyzing the time series of images as a single parameter family of images and 

looking at geometric structures such as bulges (ridges) and indentations 

(courses) in this "pile" of images. 

With such a scheme, if regions are segmented to produce objects, the 

deformation of these objects can be described in terms of closest distances 

from an object boundary (or some other special object feature) at one point in 

time to that boundary (or feature) as time is increased. However, this does 

not lead to a description of the deformation of the whole object. 

The description of this deformation can itself be described in multiscale 

terma if the object boundaries at successive times have already been found. 

The description is produced by minimizing a measure of energy to defo~ the 

object at between the successive points in the time series. If an appropriate 

energy measure is used (Bookstein, 1988; Terzopoulos, 1983), a multiscale 

deformation description is produced. Bookstein has shown how thin-plate spline 

deformation, generalized to be applied independently within each spatial co­

ordinate, provides an energy function that is a quadratic fo~. The simplicity 

of the quadratic fo~ makes the energy minimization mathematically tractable. 

Furthe~ore, the eigenvectors of the matrix involved in the quadratic fo~ 

define principal warps, each concentrated in a particular region whose size is 

inversely related to the magnitude of the corresponding eigenvalues. Since the 

final defo~ation is made up of a linear combination of these basis principal 

warps, the deformation can be thought to be decomposed into multiscale 

components. 

Oliver and Bookstein (1988) have suggested how this energy can be combined 

with a translational energy terl!l to give a form.whose minimi;;:ation will 

specify, for all points in an object, the deformation between the object at 

two times, given the object boundaries at the two times. Oliver suggests that 
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matching the medial axis endpoints which survive after increase in scale can 

provide a useful initial boundary match for the iterative minimization of 

energy that determines the deformation. 

This approach, and the one to follow, depends on knowing the object 

boundaries. Its generalization to the situation in which one starts with 

intensity-varying images has yet to be investigated. 

Deformation can also be used as a means of object description. The idea is 

that an object is described by the way it is obtained by deformation from a 

primal form, normally a circle or avoid (Koenderink, 1986; Leyton, 1988). 

Leyton has shown how the PISA gives locations of maximum positive or minimum 

curvature at which these deformational forces are to be applied, and gives the 

direction of each force, as well. Lee (1988) is investigating how a hierarchy 

can be imposed on this set of forces, by multiscale analysis with Gaussian 

blurring of the object boundary, i.e., convolving a Gaussian .in arc-length s 

with the boundary function (x(s), y(s)). This approach might be applicable to 

grey-scale images by examining the PISA IAS, that is, the intensity family of 

PISA axes on intensity level curves. 

Koenderink (1986) has investigated multiscale shape description by deformation 

with three-dimensional objects and blurring of the objectis characteristic 

function rather than the boundary. This analysis focuses on the genesis, under 

decrease in scale (deblurring), of surface regions of specified curvature: 

convex elliptic, concave elliptic, hyperbolic (saddle-shaped), and parabolic 

(curves of flatness separating elliptic and hyperbolic regions). This idea of 

object analysis by treating the object layout in space as an intensity-varying 

image given by a characteristic function has much power. This approach can be 

used to describe models of images, but there is little experience in the use 

of such model descriptions for image segmentation, so characteristic function 

blurring will not be discussed further here. 

5. OBJECT DEFINITION APPROACHES 

The approaches described in chapters 1-3 produce image descriptions by 

multiscale analysis. In this section means are discussed of using these 



descriptions to deterndne objects or object probabilities for each pixel. This 

object definition must involve not only these image descriptions based only on 

image structure, but also semantics of the image, i.e., knowledge of what 

objects and object groupings appear in the real world. The two basic 

approaches to object definition, automatic and user-driven, differ in the way 

this semantic information is provided. In automatic object definition the 

information is provided in models or prototypes stored in the computer, 

whereas in user-driven object definition the user utilizes his own knowledge 

of semantics in creating an object definition from the computer-generated 

image description. 

Automatic recognition of objects from multiscale image description can be 

divided into two subcategories: statistical and structural. These two 

methodologies need not be mutually exclusive. 

5.1. Object definition by statistical pattern recognition. 

In an application of classical methods of statistical pattern recognition 

(Duda & Hart, 1973; Jain and Dubes, 1988), an m-vector of values for various 

local features is measured at each location, and objects of various types are 

associated with different regions of the m-space. This vector can include 

features computed at different scales, or a feature that is the optimal scale 

at that location, so this method can be implemented as a multiscale object 

definition strategy. 

An example of methods of this type can be found in the work of Coggins 1985, 

1986b] . Convolution with a sequence of m multiscale filters computes an m­

vector for each pixel composed of the intensity levels of the m filtered 

images at corresponding locations in each filtered image. The pattern of 

responses to the filters at each pixel describes the pixel's relationship to 

its neighb9rhood. Scale extrema in the m-vector as well as spatial extrema in 

each filtered image provide useful information about the image's content. 

Some simple objects can be identified and measured directly from these 

patterns without an explicit image segmentation. 

Coggins Coggins, 1986a; Packard, 1986] has shown not only the effectiveness of 

this idea, but also its generalization to maxima across other dimensions than 

scale, such as orientation. If the filter decomposition is nonspecific, more 

• 
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filters may be needed to obtain the same accuracy as with filters designed and 

tuned to the most critical aspects of the image. Also, the inference 

mechanism may need to be more complex since the object may be identified by 

the appearance of features at different scales and, in particular, relative 

spatial relationships to each other. 

5.2. Object definition by structural pattern recognition. 

Structural methods represent objects by a graph whose nodes describe object 

substructures and whose arcs describe relationships between these 

substructures. The substructures may in turn be described by graphs, but at 

some stage they consist of feature measurements or coded representations of 

primitive structures. Structural methods recognize objects by matching a graph 

describing a prototype object with the graph obtained from the image. Thus, 

object recognition maps into a variant of the graph isomorphism problem (Read, 

1977) . Syntactic pattern recognition (Fu, 1982) is a variant in which the 

graph is reduced to a sequence and the prototype is represented as a grammar. 

This approach maps object definition into the problem of parsing a language. 

Structural approaches often founder either by being excessively time-consuming 

(graph isomorphism is an NP-complete problem) or by being error-prone because 

of the required explicit.representation of structural aspects of the object. 

Structural methods are likely to fail if some relevant structural feature is 

omitted from.the model, or if the placement of structures does not quite 

conform to that expected in the model, or if the image introduces visual 

structure (e.g., shadows) that is not part of the model. 

Multiscale descriptions for producing the graph or string can help with these 

problems. First, if matching proceeds top-down by scale, coarse matches can 

not only be efficient themselves but can guide matches at lower scales, 

limiting the computational complexity of the matching. Second, since important 

items in the graph can be expected to appear at large scale, minor details 

that may not match correctly can affect the matching at small scale, where 

their low importance can be weighted lightly in determining the match. 

There is a problem with this scheme when the hierarchical descriptions have 

the property that a region corresponding to a parent node does not simply 



represent the union of the subregions that are its children, but also an 

additional part (as shown in Fig. 7). This is a property of the hierarchies 

produced by following geometric structures to annihilation. With such 

hierarchies a small change in an object in an image can exchange the role of 

two components, one being part of a larger scale component and the other being 

a subcomponent (as shown in Fig. 7). A solution to this problem, someh.ow 

allowing both components to be seen as subcomponents, at least with some 

probability, must be found by future research. 

A B 

AC 

c c 

a) b) c) d) 

Figure 7: Effect of scale increase on figure 7a through stages b, c, and d 

illustrates the creation of a hierarchy with parent AC with child B. If region 

B is made slightly longer, scale increase will cause the branch A to 

annihilate sooner, so region A will appear in the description, and region B 

will not. 

5.3. Object definition by a user via hierarchical descriptions. 

There seems to be more hope, at least in the short term, of letting the human 

user define objects than having the computer do it automatically. For user­

based object definition to be quick, the image description should be to a 

reasonable degree in human terms, thus allowing the human easily to manipulate 

the components of the description into objects that match the user's 

understanding of semantics. The hope of multiresolution image descriptions is 

that they will generate such descriptions. 
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Therefore, a multiscale image description should generate both image regions 

that are visually coherent to the user and an organization· of those regions 

into. a hierarchy or simple graph. If such a description were fully successful, 

the user would be able to pick semantically meaningful regions simply by 

pointing to a pixel in them and then, if the region is a subregion, asking for 

the next larger containing region an appropriate number of times. 

It is reasonable to hope for a multiresolution image description largely to 

meet these needs, but it is probably realistic to expect that it would at 

least have the following kinds of faults: 

1. Regions might have small numbers of extra or missing pixels at their 

boundaries. 

2 •. A semantically sensible region might not exist in the description but 

rather be joined, e.g. by a narrow isthmus, with another semantically 

sensible region (that may or may not be in the description) to form a 

region that does appear in the description. 

3. A semantically sensible region does not appear as a region in the 

description but rather is a union of regions appearing at various 

positions of the hierarchy. The need to combine these regions probably 

reflects an error in the hierarchy. 

Lifshitz (Lifshitz, 1988; Pizer, 1988a) has shown in prototype and Coggins et 

al 1988) are developing further an interactive display tool with the 

following functions that can allow the fast definition of objects, even from 

descriptions that have these faults. 

1. Given a region or set of regions selected from the image description, 

it displays that region and its relation to the the original image data. 

2. Given a pixel (or voxel) pointed to by the user, it displays the 

smallest region in the image description containing that pixel; given a 

displayed region, under command it displays the parent (containing) 

region in the description hierarchy, 



3. Given two or more selected regions, it displays the union or 

difference of the regions, and under command modifies the hierarchy to 

reflect this logical operation. 

4. It allows hand editing of regions, and the splitting of a region into 

two, given the painting out of joining pixels. 

It remains to be demonstrated whether such a tool together with 

multiresolution image descriptions discussed in this paper can provide 

convenient 2D and 3D segmentation of medical images. 

6. SUMMARY 

A variety of types of multiscale methods for image segmentation have been 

reviewed. While these methods have shown great promise and deserve attention 

because of their attractive conceptual properties and basis in approaches of 

the human visual system, intensive research on these methods has a history of 

only a few years. The ultimate promise of these.methods and the bases of 

choice among them remain to be brought out by further research. 
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