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Sparse Matrix Computations on an FFP Machine* 
(Preliminary Version) 

Abstract 

B.T. Smith, R.K. Singh and G.A. Mag6 
Department of Computer Science 

University of North Carolina 
Chapel Hill, NC 27599-3175 

We describe and analyze an algorithm for performing Gaussian elimination on sparse 
linear systems with an FFP Machine, a small-grain parallel computer. Given an equation 
Ax = b, where A is an nxn matrix, our algorithm yields a permuted upper-triangular system, 
from which we obtain x by back-substitution. If A has e non-zero entries and if f fill-ins 
are created during elimination, then our algorithm solves the system in 0 ( h x ( e + f)) time, 
using O(e +f) processing elements. (The parameter his the height of the FFP Machine's 
connection network, which is O(log(e + !)).) The algorithm makes no assumptions about 
the structure of A and requires no pre-processing. The pivot order may be given in advance, 
or it may be chosen at run-time by the Markowitz heuristic with only a linear increase in 
cost . We also present results of simulations on sample problems, both randomly generated 
and from the Boeing-Harwell set. The results of the simulations, in operation counts, are 
used to estimate the performance of an FFP Machine hardware prototype. 

The Problem 
Matrix problems are encountered in such disciplines as physics, engineering, econometrics 

and operations research. Common to many of these problems is the occurrence of matrices 
t hat are sparse, i.e. , many elements of the matrices are zero. 

The matrices associated with problems from physical sciences and engineering, in addit ion 
to being large and sparse, are frequently structured. For example, they may be symmetric, 

! diagonally dominant , positive definite or banded. Hence, they lend themselves to an efficient 
solution by a variety of special techniques. 

.... *This work was supported in part by NSF grant MIP-8702277, and by the Office of Naval Research, 
Contract N00014-86-K-0680. 
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In contrast, problems in such areas as operations research , non-linear optimization or 
management can yield unstructured sparse matrices. As a consequence, more general sparse 
matrix techniques have been developed for less structured problems [3]. Such techniques are 
characterized by relatively few operations per data element and an unpredictable, dynamic 
growth of data structures. These issues, as summarized in [2], necessitate dynamic storage 

"! management and efficient data structure handling methods. 

• 

In the prevailing paradigm of parallel computation, we address these issues by considering 
a parallel form of the direct Gaussian elimination method, augmented by the Markowitz 
heuristic to establish pivot ordering, for the solution of systems of linear equations. The 
parallel approach we take is based on a computational model of a fine-grain, distributed­
memory, network-based MIMD computer called the FFP Machine (FFPM) . In keeping with 
our interest in less structured problems, we make no assumptions about the structure of 
the coefficient matrices. We give a brief description of the FFPM architecture in the next 
section. The algorithm and results of its theoretical and experimental analyses are presented 
in the following sections. 

FFP Machines 
FFP Machines are a family of small-grain, parallel computers [7] designed to execute the 

FFP languages of Backus [1]. An FFPM, as shown in Figure 1, consists of a linear array of 
PEs, called the L-array of L-cells, connected to each other and to an interconnection network 
of T-cells. Each 1-cell is a small, programmable computer with an A1U and a very small 
memory. There is also a front-end machine that handles 1/0, but for the most part FFP 
execution takes place in the 1-cells and T-cells. In a simple FFPM, as shown in Figure 2, the 
T-cells are organized as a binary tree with an 1-cell at each leaf and the front-end machine 
above the root. A useful FFPM would contain at least a few thousand L-cells. 

FFP 's primary data structure is the sequence, and the FFPM treats sequences as dynamic 
arrays [6]. That is, it is possible to randomly access the elements of a sequence, and at the 
same time easy to add or delete elements at arbitrary positions. Moreover , elements of a 
sequence may be accessed either by relative position in the sequence or by content, as in 
associative memory[5]. Many of these operations correspond to FFP's primitive functions , 
but an FFPM can support functions not in Backus's original language [8 ,9]. This paper 
shows how an FFPM can provide operations on sequences that are well suited to sparse 
matrix computation. Such operations may be added as new FFP primitive functions to be 
used in Gaussian elimination and other computations. 

An FFP expression is placed in the L-array, each symbol in a different L-cell , and the 
FFPM evaluates the expression by rewriting innermost function applications , known as re­
ducible applications or RAs, until no more applications remain. The FFPM operates in 
machine cycles of partitioning, execution and storage management. Partitioning creates an 
independent sub-machine for each RA , consisting of the L-cells holding the RA and a binary 
tree of T-cells, as shown in Figure 2. During execution, the sub-machine's L-cells rewrite 
their RA by performing local computations and exchanging messages. Message packets are 

2 



~ r---

A Front-end machine A 
u u 
X X 
I I 
L l 
I I 
A A 
R R 
y 

Interconnection and processing network y 

M M 
E • • • E 
M M 
0 0 
R r- l - L r-- l - l -·- L 

~ 
R 

y Cell Cell Cell Cell Cell y - -
Figure 1: The components of an FFP Machine. 

< 15 7 > ) 

Figure 2: Partitioning creates a submachine for each RA. 
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sent from the L-cells and contain instructions on how the T-cells shall treat them. The 
sub-machine's T-cell network can select or sort messages. broadcasting the result to all L­
cells in the sub-machine. The T-cell network can also perform parallel prefix operations. 
A sub-machine might request extra space and suspend execution, as occurs when an FFP 
expression grows during evaluation. During storage management. the contents of the L- cells , 
the L-cell images, are shifted through the L-array. retaining the ir left-to-right order, to make 
empty L-cells available where needed, as shown in Figure 3. The shifted L-cell images obtain 
a newT-cell network in the next partitioning stage, and execution continues. 

3 7 

Figure 3: During storage management, L-cell Images are shift ed to provide empty L- cells 
where requested. 

The Algorithm 
The system of equations Ax= b is given rO\\·-wise. as an FFP sequence 

and each rou· 1 is of the form 

<ai,j(i, l)· .... a i .j( i.k, )· bz> 

where the ith 1'0\\. of A contains k; nonzero entries i'n columns j ( i. 1 ) ... . , j(i , ki )- The entries 
bh .. . , bn are from the \·ector b. Each ai,j( i,l) contains the corresponding coefficient in A along 
with its row and column numbers, and it has space for some additional values used during 
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the computation. (For example, values used in choosing pivot elements by the Markowitz 
heuristic.) The number of values required per entry is independent of the matrix size, and 
for this reason, an entry might be an FFP atom and reside in one L-cell. In that case, 
new primitive FFP functions would be required to operate on its components. Or, it could 
be a small FFP sequence, manipulated by the standard FFP functions. The choice would 
influence time and space performance on a particular FFPM, but it has no effect on the 
algorithm or its analysis. 

We will describe the algorithm in three parts. First, and in the greatest detail, we present 
the basic Gaussian elimination algorithm. Second , we describe how the solution is obtained 
via back-substitution. Finally, we discuss how to modify the basic algorithm to choose pivots 
at runtime, using the Markowitz heuristic. 

Gaussian elimination: Initially all rows are "active" . We choose a (non-zero) pivot element 
in an active row and subtract the appropriate multiple of that row from the other active 
rows, so that afterwards they have Os in the pivot element's column. Then we mark the pivot 
element's row as inactive and repeat the process. When there are no non-zero elements in 
active rows - after n steps , if A is non-singular - we have the system in (permuted) upper 
triangular form, and we can find the solution easily by back-substitution. 

The algorithm proceeds by two types of operations: global operations, where the whole 
matrix is contained in one RA, and row operations, where each row is contained in its own 
RA. The global operations choose the pivot, broadcast the pivot row and update the values 
for the Markowitz heuristic. The row operations subtract the appropriate multiple of the 
pivot row, and create fillins. Since Gaussian elimination is so familiar , it suffices to describe 
in detail the "inner loop", as it applies to one active, non-pivot row. 

Suppose we have a 5 x 5 system of equations (neither large nor sparse) that contains the 
following: 

-4x5 = 3 
=5 

(row 2 = pivot row) 
(row 3) 

and that a2 ,3 has been chosen as the pivot . We will trace the effect of a single step on the 
third row. Figure 4 (a) shows row 3 at the beginning of the step. The column numbers of the 
entries in the pivot row are broadcast to the entire matrix in a global operation , and each 
active element counts those less than or equal to its own, shown as temp in Figure 4 (b). 
Each element also records whether one of these matches its own column number , shown as 
hit. Next, each entry computes the number of elements in the pivot row between itself and its 
left neighbor. (This is done separately in each active row, by a parallel prefix computation.) 
This value, minus 1 if hit is true (temp in Figure 4 (c)) gives the number of fillins to be created 
to the left of the entry. The fillin entries are created after an FFPM storage management 
cycle. The elements who are going to be "hit" on this step compute their relative order 
within the row, temp in Figure 4 (d). (This is another parallel prefix computation, done 
separately in each active row.) Now, in another global operation, the values in the pivot row 
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Snapshots of one row of a system of equations during one step of Gaussian 
elimination . Each column shows the contents of one entry (one 1-cell). The 
coefficient , row and column number are shown as value, row and col, respec­
t ively. ("col = b" identifies elements of vector b. ) Booleans active, p-row and 
p-col show that this is an active row , not the pivot row, with an entry in the 
pivot column. The Boolean hit shows which entries correspond to (non-zero) 
entries in the pivot row. The values in temp are used for creat ing fillins in 
(b)-(d), and are the pivot row entries in (e). 
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are broadcast once again, sorted by column number in the T-cell network, and each entry to 
be hit receives the column number and pivot row coefficient indicated by its index from the 
previous step. This is shown in Figure 4 (e), where temp now is the value from the pivot row . 
Finally, in another row operation, the element in the pivot column broadcasts the quotient 
value+ temp and every "hit" entry performs the multiplication and subtraction. 

A subtle point of the algorithm is worth mentioning. The newly created fillins do not 
have column numbers until the pivot row is broadcast the second time. (Shown by "-" in 
Figure 4 (d).) Before the pivot row is broadcast the first time, there is no way, in general, 
for another row to know how many fillins it will need. Nor is there any way to know where 
they will be created. As we remarked earlier, an L-cell is fairly small. It is reasonable to 
assume that it can store several small integers, but it is not reasonable to assume that it can 
store arbitrarily many column numbers. So, the reason for the second broadcast of the pivot 
row is simply that we want to create all fillins for one st ep of the Gaussian elimination in 
one FFPM storage management cycle, rather than deciding as each pivot row entry arrives 
whether it requires a fillin. 

We analyze the Gaussian elimination algorithm as follows. An L-cell does a bounded 
number of arithmetic operations for each value it receives, so we may restrict our attention 
to the time required for communication. Suppose there are e ent ri es in the original system 
and that, for the sequence of pivots we choose, f fi1lins are created. (For convenience we 
assume A is non-singular, so that e 2: n and so that Gaussian elimination will taken steps.) 
Clearly, we need O(e +f) L-cells, and the height h of the binary tree ofT-cells needed to 
connect them is O(log(e +f)). The cost of shifting in the original problem and of making 
room for fillins (over all n steps) is 0( e +f), since the amount of space requested bounds the 
cost of storage movement. Each entry or fillin is in a pivot row exactly once, so it is broadcast 
twice for that purpose. Thus 0( e + f) messages go through the root of a submachine of 
height O(h) in n message waves. That requires O(n x h) time to fill the T-cell pipeline 
n t imes, plus 0( e +f) time for the messages to arrive in sequence. Thus there is a total 
of 0( h x ( e + f)) time for broadcasting the pivot rows. There are a fixed number of row 
operations for each step, and these only broadcast single values and perform parallel prefix 
computations. Each of these requires time 0( h), so over n steps this is also 0( h x ( e +f)). 
We conclude that the entire Gaussian elimination, then, requires 0( h x ( e + f)) time. 

Back-substitution: Once we have the system in permuted upper-triangular form, it is easy to 
finish solving the system by back-substitution. Each row (in an independent row operation) 
determines if it has the value for a variable by seeing if it has exactly one non-zero ai.j 

entry. (One parallel prefix operation can count the number of entries.) If so, it computes 
the value of Xj (by one division) and broadcasts it on the next global operation and becomes 
inactive. Rows that remain active receive the x values and eliminate those variables from 
their equation. Eventually, assuming the system has a unique solution, every row will have 
found the value of one variable. The time for this is O(h x n), which is again O(h x (e+ !)). 

Choosing pivots: We modify the Gaussian elimination algorithm to choose pivots at runtime 
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by the Markowitz heuristic, as follows. Let each entry keep two additional values , nr and 
nc. The number of other non-zero elements in an entry's row will be nr, and the number 
of other non-zero elements in its column will be nc. We can initialize the nr and nc values 
by broadcasting the row and column numbers of the original matrix entries , and letting 
each entry count the number of matches. Every time an entry becomes inactive (or zero), 
it globally broadcasts its row and column numbers, and other (active) entries decrement 
their nr and nc values, respectively, if the row or column numbers match. Every time 
a fillin is created, it globally broadcasts its row and column numbers, and other (active) 
entries increment their nr and nc values, respectively. To choose a pivot, each active entry 
computes the product of its nr and nc values, and the T-cell network chooses a minimal one. 
The additional time required for this is 0( h x ( e + f)), with the analysis much like that for 
the basic algorithm. 

The Simulations 
Our simulations supplement the analysis presented in the previous section. The set 

of sample problems contains both randomly generated matrices and matrices from various 
real-life applications (obtained from the Boeing-Harwell sparse matrix collection[4]). The 
simulator was written in C and run on a Convex C-220 system (two processors), with an 
implicit vectorizing/ parallelizing compiler. 

The simulator is in two parts. The first part is used to study fillin behavior and to count 
the number of floating point operations in triangularizing a coefficient matrix. It omits the 
back-substitution computation, but it does count the work required to choose pivots by the 
Markowitz heuristic. The output of the first part of the simulator is input to the second part , 
which uses parameters for an FFPM hardware prototype to provide performance estimates. 
In the remainder of this section, we describe the two parts of the simulator and summarize 
its results . 

The coefficient matrices are transformed into a 0/1 representation, i.e. , non-zero entries 
are replaced by 1s and zero entries by Os. Due to the relatively small size of our sample 
problems and the simplicity of programming, we use dense matrix representations for storing 
the 0/1 matrices. We note, however, that the sparse nature of the problem is maintained 
in that only operations for non-zero entries are counted. The simulator follows the basic 
Gaussian elimination technique. The Markowitz heuristic, used to choose pivots, tends to 
minimize the number of fillins, retaining the sparsity of a matrix. Numerical stability issues 
were not taken into account, but one can add a threshold based criterion for selecting a 
numerically stable pivot without changing the complexity of the algorithm. 

The results of the first part of our simulations on randomly generated matrices and ma­
trices from the Boeing-Harwell collection are presented in Tables 1 and 2, respectively. The 
number "entries" is the number of non-zero entries in the initial coefficient matrix, "fillins" 
is the number of entries created during Gaussian elimination, and "sequential operations" is 
the sum of divisions , multiplications, and subtractions performed. The results presented in 
Table 1 were obtained by averaging the results of 5 separate trials on random matrices with 
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order entries fillins mean size of sequential 
pivot row operations 

100 516 746 7 9955 
200 1995 9380 29 548937 
300 4466 31332 60 3560740 
400 7922 68512 96 11749105 
500 12421 125662 139 29876633 

Table 1: Randomly generated matrices . 

order discipline entries fillins mean size of sequential 
pivot row operations 

180 astrophysics 2659 145 7 30628 
199 stress analysis 701 703 4 5003 
541 chemical kinetics 4285 11442 14 301068 
600 oil recovery 13760 30304 37 2060332 
822 linear programming 4790 1701 5 15132 

Table 2: Matrices from the Boeing-Harwell collection. 

an average density of 5%. 
Next we present the performance estimates produced by the second part of the simulator. 

Due to the pipelined nature of the FFPM architecture, there is a considerable overlap between 
useful computation and communication. Therefore, it is most meaningful to account for the 
net solut ion time for a problem. Messages are typically made up of several packets , based 
on data size and the format required by the T -cells . The speed of operation is directly 
governed by the parameters of hardware employed. The parameters used in this model were 
derived from the specifications of a transputer (20 MIPS) operating at the clock rate of 20 
MHz. The communication channels in the tree-network were modeled to be bit-serial with 
peak throughput of 10 Mbps. The communication channels among cells in the L-array were 
considered to be byte wide with a peak data rate of 10 MBps. 

The results are shown in Tables 3 and , corresponding to the entries in Tables 1 and 2. 
Here "parallel operations" is the sum of all divisions , multiplications, and subtraction oper­
ations performed in each disjoint sub-machine, and corresponds to the operations performed 
on the last message received by an 1-cell. We have presented the results of total solut ion 
time for the problems under two distinct situations, the first where the pivoting sequence 
was defined before elimination, and the second where Markowitz heuristic was employed to 
determine the pivoting sequence during the computation. (Both use the same ordering for 
each matrix. ) The cost of choosing pivots at runtime is surprisingly high, but this is due, in 
part, to the size of the message packets required in the design being simulated. 
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order parallel time ( rnsec) 
operations given order runtime pivoting 

100 1338 18 61 
200 7084 102 486 
300 19989 293 1497 
400 41042 601 3172 
500 72579 1064 5708 

Table 3: Performance estimates (random matrices) . 

order parallel time ( rnsec) 
operations given order runtime pivoting 

180 2675 36 128 
199 2108 27 77 

541 12078 161 693 
600 25682 394 1861 
822 8151 128 352 

Table 4: Performance estimates (Boeing- Harwell mat rices). 

Conclusions 
We have described and analyzed an algorithm for performing Gaussian elimination on 

sparse matrices with an FFPM . This work is relevant to FFPM development in two ways. 
First , it demonstrates how the basic FFP language can be extended with new primitive op­
erat ions , to better support operations on sparse matrices. Secondly, it provides performance 
estimates for an FFPM hardware prototype on a real-life problem. 
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