
..

Sparse Matrix Cornpu tations
on an FFP Machine

TR88-049

October 1988

Bruce T . Smith
Raj K . Singh

Gyula A. Mag6

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

~
/[·/ ~0.

This work was supported in part by NSF grant MIP-8702277 and by the Office of
Naval Research, Con tract N00014-86-K-0680.
Presented at Frontiers '88: The Second Symposium on the Frontiers of Massively
Parallel Computation, October 10-12, 1988. Fairfax, Virginia
UNC is an Equal Opportunity/Affirmative A ction Instit ution.

..

!

..

Sparse Matrix Computations on an FFP Machine*
(Preliminary Version)

Abstract

B.T. Smith, R.K. Singh and G.A. Mag6
Department of Computer Science

University of North Carolina
Chapel Hill, NC 27599-3175

We describe and analyze an algorithm for performing Gaussian elimination on sparse
linear systems with an FFP Machine, a small-grain parallel computer. Given an equation
Ax = b, where A is an nxn matrix, our algorithm yields a permuted upper-triangular system,
from which we obtain x by back-substitution. If A has e non-zero entries and if f fill-ins
are created during elimination, then our algorithm solves the system in 0 (h x (e + f)) time,
using O(e +f) processing elements. (The parameter his the height of the FFP Machine's
connection network, which is O(log(e + !)).) The algorithm makes no assumptions about
the structure of A and requires no pre-processing. The pivot order may be given in advance,
or it may be chosen at run-time by the Markowitz heuristic with only a linear increase in
cost . We also present results of simulations on sample problems, both randomly generated
and from the Boeing-Harwell set. The results of the simulations, in operation counts, are
used to estimate the performance of an FFP Machine hardware prototype.

The Problem
Matrix problems are encountered in such disciplines as physics, engineering, econometrics

and operations research. Common to many of these problems is the occurrence of matrices
t hat are sparse, i.e. , many elements of the matrices are zero.

The matrices associated with problems from physical sciences and engineering, in addit ion
to being large and sparse, are frequently structured. For example, they may be symmetric,

! diagonally dominant , positive definite or banded. Hence, they lend themselves to an efficient
solution by a variety of special techniques.

.... *This work was supported in part by NSF grant MIP-8702277, and by the Office of Naval Research,
Contract N00014-86-K-0680.

1

In contrast, problems in such areas as operations research , non-linear optimization or
management can yield unstructured sparse matrices. As a consequence, more general sparse
matrix techniques have been developed for less structured problems [3]. Such techniques are
characterized by relatively few operations per data element and an unpredictable, dynamic
growth of data structures. These issues, as summarized in [2], necessitate dynamic storage

"! management and efficient data structure handling methods.

•

In the prevailing paradigm of parallel computation, we address these issues by considering
a parallel form of the direct Gaussian elimination method, augmented by the Markowitz
heuristic to establish pivot ordering, for the solution of systems of linear equations. The
parallel approach we take is based on a computational model of a fine-grain, distributed­
memory, network-based MIMD computer called the FFP Machine (FFPM) . In keeping with
our interest in less structured problems, we make no assumptions about the structure of
the coefficient matrices. We give a brief description of the FFPM architecture in the next
section. The algorithm and results of its theoretical and experimental analyses are presented
in the following sections.

FFP Machines
FFP Machines are a family of small-grain, parallel computers [7] designed to execute the

FFP languages of Backus [1]. An FFPM, as shown in Figure 1, consists of a linear array of
PEs, called the L-array of L-cells, connected to each other and to an interconnection network
of T-cells. Each 1-cell is a small, programmable computer with an A1U and a very small
memory. There is also a front-end machine that handles 1/0, but for the most part FFP
execution takes place in the 1-cells and T-cells. In a simple FFPM, as shown in Figure 2, the
T-cells are organized as a binary tree with an 1-cell at each leaf and the front-end machine
above the root. A useful FFPM would contain at least a few thousand L-cells.

FFP 's primary data structure is the sequence, and the FFPM treats sequences as dynamic
arrays [6]. That is, it is possible to randomly access the elements of a sequence, and at the
same time easy to add or delete elements at arbitrary positions. Moreover , elements of a
sequence may be accessed either by relative position in the sequence or by content, as in
associative memory[5]. Many of these operations correspond to FFP's primitive functions ,
but an FFPM can support functions not in Backus's original language [8 ,9]. This paper
shows how an FFPM can provide operations on sequences that are well suited to sparse
matrix computation. Such operations may be added as new FFP primitive functions to be
used in Gaussian elimination and other computations.

An FFP expression is placed in the L-array, each symbol in a different L-cell , and the
FFPM evaluates the expression by rewriting innermost function applications , known as re­
ducible applications or RAs, until no more applications remain. The FFPM operates in
machine cycles of partitioning, execution and storage management. Partitioning creates an
independent sub-machine for each RA , consisting of the L-cells holding the RA and a binary
tree of T-cells, as shown in Figure 2. During execution, the sub-machine's L-cells rewrite
their RA by performing local computations and exchanging messages. Message packets are

2

~ r---

A Front-end machine A
u u
X X
I I
L l
I I
A A
R R
y

Interconnection and processing network y

M M
E • • • E
M M
0 0
R r- l - L r-- l - l -·- L

~
R

y Cell Cell Cell Cell Cell y - -
Figure 1: The components of an FFP Machine.

< 15 7 >)

Figure 2: Partitioning creates a submachine for each RA.

•

;

...

sent from the L-cells and contain instructions on how the T-cells shall treat them. The
sub-machine's T-cell network can select or sort messages. broadcasting the result to all L­
cells in the sub-machine. The T-cell network can also perform parallel prefix operations.
A sub-machine might request extra space and suspend execution, as occurs when an FFP
expression grows during evaluation. During storage management. the contents of the L- cells ,
the L-cell images, are shifted through the L-array. retaining the ir left-to-right order, to make
empty L-cells available where needed, as shown in Figure 3. The shifted L-cell images obtain
a newT-cell network in the next partitioning stage, and execution continues.

3 7

Figure 3: During storage management, L-cell Images are shift ed to provide empty L- cells
where requested.

The Algorithm
The system of equations Ax= b is given rO\\·-wise. as an FFP sequence

and each rou· 1 is of the form

<ai,j(i, l)· a i .j(i.k,)· bz>

where the ith 1'0\\. of A contains k; nonzero entries i'n columns j (i. 1) , j(i , ki)- The entries
bh .. . , bn are from the \·ector b. Each ai,j(i,l) contains the corresponding coefficient in A along
with its row and column numbers, and it has space for some additional values used during

'

,

the computation. (For example, values used in choosing pivot elements by the Markowitz
heuristic.) The number of values required per entry is independent of the matrix size, and
for this reason, an entry might be an FFP atom and reside in one L-cell. In that case,
new primitive FFP functions would be required to operate on its components. Or, it could
be a small FFP sequence, manipulated by the standard FFP functions. The choice would
influence time and space performance on a particular FFPM, but it has no effect on the
algorithm or its analysis.

We will describe the algorithm in three parts. First, and in the greatest detail, we present
the basic Gaussian elimination algorithm. Second , we describe how the solution is obtained
via back-substitution. Finally, we discuss how to modify the basic algorithm to choose pivots
at runtime, using the Markowitz heuristic.

Gaussian elimination: Initially all rows are "active" . We choose a (non-zero) pivot element
in an active row and subtract the appropriate multiple of that row from the other active
rows, so that afterwards they have Os in the pivot element's column. Then we mark the pivot
element's row as inactive and repeat the process. When there are no non-zero elements in
active rows - after n steps , if A is non-singular - we have the system in (permuted) upper
triangular form, and we can find the solution easily by back-substitution.

The algorithm proceeds by two types of operations: global operations, where the whole
matrix is contained in one RA, and row operations, where each row is contained in its own
RA. The global operations choose the pivot, broadcast the pivot row and update the values
for the Markowitz heuristic. The row operations subtract the appropriate multiple of the
pivot row, and create fillins. Since Gaussian elimination is so familiar , it suffices to describe
in detail the "inner loop", as it applies to one active, non-pivot row.

Suppose we have a 5 x 5 system of equations (neither large nor sparse) that contains the
following:

-4x5 = 3
=5

(row 2 = pivot row)
(row 3)

and that a2 ,3 has been chosen as the pivot . We will trace the effect of a single step on the
third row. Figure 4 (a) shows row 3 at the beginning of the step. The column numbers of the
entries in the pivot row are broadcast to the entire matrix in a global operation , and each
active element counts those less than or equal to its own, shown as temp in Figure 4 (b).
Each element also records whether one of these matches its own column number , shown as
hit. Next, each entry computes the number of elements in the pivot row between itself and its
left neighbor. (This is done separately in each active row, by a parallel prefix computation.)
This value, minus 1 if hit is true (temp in Figure 4 (c)) gives the number of fillins to be created
to the left of the entry. The fillin entries are created after an FFPM storage management
cycle. The elements who are going to be "hit" on this step compute their relative order
within the row, temp in Figure 4 (d). (This is another parallel prefix computation, done
separately in each active row.) Now, in another global operation, the values in the pivot row

5

'
value

row
col

active
p-row
p-col

hit
temp

value
row
col

active
p-row
p-col

hit
temp

value
row
col

active
p-row
p-col

hit
temp

(a)

1
3
2
T
F
F
-

-

(c)

1
3
2
T
F
F
F
1

(e)

0
3
1
T
F
F
T
3

2 5
3 3
3 b
T T
F F
T F
- -
- -

2 5
3 3
3 b
T T
F F
T F
T T
0 1

1 2 0 5
3 3 3 3
2 3 5 b
T T T T
F F F F
F T F F
F T T T
- 1 -4 3

Figure 4:

value
row
col

active
p-row
p-col

hit
temp

value
row
col

active

value
row
col

active
p-row
p-col

hit
temp

(d)

0 1
3 3
- 2

T T
F F
F F
T F
1 -

(f)

-6 1
3 3
1 2
T T

(b)

1 2 5
3 3 3
2 3 b
T T T
F F F
F T F
F T T
1 2 4

2 0 5
3 3 3
3 - b
T T T
F F F
T F F
T T T
2 3 4

0 8 -1
3 3 3
3 5 b
T T T

Snapshots of one row of a system of equations during one step of Gaussian
elimination . Each column shows the contents of one entry (one 1-cell). The
coefficient , row and column number are shown as value, row and col, respec­
t ively. ("col = b" identifies elements of vector b.) Booleans active, p-row and
p-col show that this is an active row , not the pivot row, with an entry in the
pivot column. The Boolean hit shows which entries correspond to (non-zero)
entries in the pivot row. The values in temp are used for creat ing fillins in
(b)-(d), and are the pivot row entries in (e).

6

..

are broadcast once again, sorted by column number in the T-cell network, and each entry to
be hit receives the column number and pivot row coefficient indicated by its index from the
previous step. This is shown in Figure 4 (e), where temp now is the value from the pivot row .
Finally, in another row operation, the element in the pivot column broadcasts the quotient
value+ temp and every "hit" entry performs the multiplication and subtraction.

A subtle point of the algorithm is worth mentioning. The newly created fillins do not
have column numbers until the pivot row is broadcast the second time. (Shown by "-" in
Figure 4 (d).) Before the pivot row is broadcast the first time, there is no way, in general,
for another row to know how many fillins it will need. Nor is there any way to know where
they will be created. As we remarked earlier, an L-cell is fairly small. It is reasonable to
assume that it can store several small integers, but it is not reasonable to assume that it can
store arbitrarily many column numbers. So, the reason for the second broadcast of the pivot
row is simply that we want to create all fillins for one st ep of the Gaussian elimination in
one FFPM storage management cycle, rather than deciding as each pivot row entry arrives
whether it requires a fillin.

We analyze the Gaussian elimination algorithm as follows. An L-cell does a bounded
number of arithmetic operations for each value it receives, so we may restrict our attention
to the time required for communication. Suppose there are e ent ri es in the original system
and that, for the sequence of pivots we choose, f fi1lins are created. (For convenience we
assume A is non-singular, so that e 2: n and so that Gaussian elimination will taken steps.)
Clearly, we need O(e +f) L-cells, and the height h of the binary tree ofT-cells needed to
connect them is O(log(e +f)). The cost of shifting in the original problem and of making
room for fillins (over all n steps) is 0(e +f), since the amount of space requested bounds the
cost of storage movement. Each entry or fillin is in a pivot row exactly once, so it is broadcast
twice for that purpose. Thus 0(e + f) messages go through the root of a submachine of
height O(h) in n message waves. That requires O(n x h) time to fill the T-cell pipeline
n t imes, plus 0(e +f) time for the messages to arrive in sequence. Thus there is a total
of 0(h x (e + f)) time for broadcasting the pivot rows. There are a fixed number of row
operations for each step, and these only broadcast single values and perform parallel prefix
computations. Each of these requires time 0(h), so over n steps this is also 0(h x (e +f)).
We conclude that the entire Gaussian elimination, then, requires 0(h x (e + f)) time.

Back-substitution: Once we have the system in permuted upper-triangular form, it is easy to
finish solving the system by back-substitution. Each row (in an independent row operation)
determines if it has the value for a variable by seeing if it has exactly one non-zero ai.j

entry. (One parallel prefix operation can count the number of entries.) If so, it computes
the value of Xj (by one division) and broadcasts it on the next global operation and becomes
inactive. Rows that remain active receive the x values and eliminate those variables from
their equation. Eventually, assuming the system has a unique solution, every row will have
found the value of one variable. The time for this is O(h x n), which is again O(h x (e+ !)).

Choosing pivots: We modify the Gaussian elimination algorithm to choose pivots at runtime

7

...

by the Markowitz heuristic, as follows. Let each entry keep two additional values , nr and
nc. The number of other non-zero elements in an entry's row will be nr, and the number
of other non-zero elements in its column will be nc. We can initialize the nr and nc values
by broadcasting the row and column numbers of the original matrix entries , and letting
each entry count the number of matches. Every time an entry becomes inactive (or zero),
it globally broadcasts its row and column numbers, and other (active) entries decrement
their nr and nc values, respectively, if the row or column numbers match. Every time
a fillin is created, it globally broadcasts its row and column numbers, and other (active)
entries increment their nr and nc values, respectively. To choose a pivot, each active entry
computes the product of its nr and nc values, and the T-cell network chooses a minimal one.
The additional time required for this is 0(h x (e + f)), with the analysis much like that for
the basic algorithm.

The Simulations
Our simulations supplement the analysis presented in the previous section. The set

of sample problems contains both randomly generated matrices and matrices from various
real-life applications (obtained from the Boeing-Harwell sparse matrix collection[4]). The
simulator was written in C and run on a Convex C-220 system (two processors), with an
implicit vectorizing/ parallelizing compiler.

The simulator is in two parts. The first part is used to study fillin behavior and to count
the number of floating point operations in triangularizing a coefficient matrix. It omits the
back-substitution computation, but it does count the work required to choose pivots by the
Markowitz heuristic. The output of the first part of the simulator is input to the second part ,
which uses parameters for an FFPM hardware prototype to provide performance estimates.
In the remainder of this section, we describe the two parts of the simulator and summarize
its results .

The coefficient matrices are transformed into a 0/1 representation, i.e. , non-zero entries
are replaced by 1s and zero entries by Os. Due to the relatively small size of our sample
problems and the simplicity of programming, we use dense matrix representations for storing
the 0/1 matrices. We note, however, that the sparse nature of the problem is maintained
in that only operations for non-zero entries are counted. The simulator follows the basic
Gaussian elimination technique. The Markowitz heuristic, used to choose pivots, tends to
minimize the number of fillins, retaining the sparsity of a matrix. Numerical stability issues
were not taken into account, but one can add a threshold based criterion for selecting a
numerically stable pivot without changing the complexity of the algorithm.

The results of the first part of our simulations on randomly generated matrices and ma­
trices from the Boeing-Harwell collection are presented in Tables 1 and 2, respectively. The
number "entries" is the number of non-zero entries in the initial coefficient matrix, "fillins"
is the number of entries created during Gaussian elimination, and "sequential operations" is
the sum of divisions , multiplications, and subtractions performed. The results presented in
Table 1 were obtained by averaging the results of 5 separate trials on random matrices with

8

order entries fillins mean size of sequential
pivot row operations

100 516 746 7 9955
200 1995 9380 29 548937
300 4466 31332 60 3560740
400 7922 68512 96 11749105
500 12421 125662 139 29876633

Table 1: Randomly generated matrices .

order discipline entries fillins mean size of sequential
pivot row operations

180 astrophysics 2659 145 7 30628
199 stress analysis 701 703 4 5003
541 chemical kinetics 4285 11442 14 301068
600 oil recovery 13760 30304 37 2060332
822 linear programming 4790 1701 5 15132

Table 2: Matrices from the Boeing-Harwell collection.

an average density of 5%.
Next we present the performance estimates produced by the second part of the simulator.

Due to the pipelined nature of the FFPM architecture, there is a considerable overlap between
useful computation and communication. Therefore, it is most meaningful to account for the
net solut ion time for a problem. Messages are typically made up of several packets , based
on data size and the format required by the T -cells . The speed of operation is directly
governed by the parameters of hardware employed. The parameters used in this model were
derived from the specifications of a transputer (20 MIPS) operating at the clock rate of 20
MHz. The communication channels in the tree-network were modeled to be bit-serial with
peak throughput of 10 Mbps. The communication channels among cells in the L-array were
considered to be byte wide with a peak data rate of 10 MBps.

The results are shown in Tables 3 and , corresponding to the entries in Tables 1 and 2.
Here "parallel operations" is the sum of all divisions , multiplications, and subtraction oper­
ations performed in each disjoint sub-machine, and corresponds to the operations performed
on the last message received by an 1-cell. We have presented the results of total solut ion
time for the problems under two distinct situations, the first where the pivoting sequence
was defined before elimination, and the second where Markowitz heuristic was employed to
determine the pivoting sequence during the computation. (Both use the same ordering for
each matrix.) The cost of choosing pivots at runtime is surprisingly high, but this is due, in
part, to the size of the message packets required in the design being simulated.

9

r

order parallel time (rnsec)
operations given order runtime pivoting

100 1338 18 61
200 7084 102 486
300 19989 293 1497
400 41042 601 3172
500 72579 1064 5708

Table 3: Performance estimates (random matrices) .

order parallel time (rnsec)
operations given order runtime pivoting

180 2675 36 128
199 2108 27 77

541 12078 161 693
600 25682 394 1861
822 8151 128 352

Table 4: Performance estimates (Boeing- Harwell mat rices).

Conclusions
We have described and analyzed an algorithm for performing Gaussian elimination on

sparse matrices with an FFPM . This work is relevant to FFPM development in two ways.
First , it demonstrates how the basic FFP language can be extended with new primitive op­
erat ions , to better support operations on sparse matrices. Secondly, it provides performance
estimates for an FFPM hardware prototype on a real-life problem.

Acknowledgements
We would like to thank Dr. A.M. Erisman and Dr. R.G. Grimes of Boeing Computer

Services, Seattle, Washington, for providing us with Boeing-Harwell collection of sparse
matrices. Mr. Mike Padrick and Mr. Larry Mason, of Academic Computing Services
at UNC, provided assistance with systems related issues on the Convex computer. In the
Department of Computer Science, Vernon Chi, William Partain and Donald Stanat provided
encouragement and valuable suggestions , and Deborah Stogner produced the figures.

References

[1] J. Backus. Can programming be liberated from the von Neumann style? A functional
st yle and its algebra of programs. Communications of the ACM, 21 (8):613-641 , 1978.

10

[2) I.S. Duff. The use of vector and parallel computers in the solution of large sparse linear
equations. In Large Scale Scientific Computing, Birkhauser, 1986.

[3) I.S . Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices. Clarendon
Press, 1986.

[4) I.S. Duff, R.G. Grimes, and J.G. Lewis. Sparse Matrix Test Problems. Technical Report,
Computer Science and Systems Division, Harwell Laboratory, 1987.

[5) G.A. Mag6. Data sharing in an FFP Machine. In Conference Record of the 1982 ACM
Symposium on LISP and Functional Programming, pages 201-207, 1982.

[6) G.A. Mag6 and W. Partain. Implementing dynamic arrays: a challenge for high­
performance machines. In Proceedings of the Second International Conference on Su­
percomputing, pages 491-493, 1987.

[7) G.A. Mag6 and D.F. Stanat. The FFP Machine. In High-Level Language Computer
Architecture, Computer Science Press , 1988.

[8) D. Middleton and B.T. Smith. FFP Machine support for language extensions. In Proceed­
ings of the 19th Hawaiian International Conference on Systems Sciences, pages 59-65,
1986.

[9] B.T. Smith and D. Middleton. Exploiting fine-grained parallelism in production sys­
tems. In Proceedings of the Seventh Biennial Conference of the Canadian Society for
Computational Studies of Intelligence, pages 262-270, 1988.

11

