
AN OPTIMALLY PORTABLE SIMD PROGRAMMING LANGUAGE

Russ Tuck
Computer Science Deryartment, Duke University, and

Computer Science Department, University of North Carolina at Chapel Hill •

ABSTRACT

Existing programming languages for SIMD (Single-Instruction Multiple
Data) parallel computers make implicit architectural assumptions. These limit
each language to architectures satisfying its assumptions. This paper presents a
theoretical foundation for developing much more portable languages for SIMD
computers. It also describes worlc: in progress on the design and implementa
tion of such a language.

An optimally portable programming language for a set of architectures is
one which allows each program to specify the subset of those architectures on
which it must be able to run, and which then allows the program to exploit
exactly those architectural features available on all of the target architectures.
The features available on an architecture are defined to be those the archi
tecture can implement with a constant-bounded number of operations. This
definition ensures reasonable execution efficiency, and identifies architectural
differences which are relevant to algorithm selection.

An optimally portable programming language for SIMD computers, called
Porta-SIMD (porta-simm'd), is being developed to demonstrate these ideas.
Based on C++, it currently runs on the Connection Machine and Pixel-Planes 4.

Keywords: Portable, SIMD Parallel, Programming Language, Porta-SIMD,
Taxonomy, Pixel-Planes, Connection Machine, C++.

INTRODUCTION

Portable high-level languages for von Neumann computers are major accom
plishments in computer science. These languages have radically improved the
quality, cost, reliability, and availability of software. However, the greater
architectural diversity of SIMD (Single-Instruction Multiple-Data) computers
has so far kept them from fully benefiting from such languages. Each existing
SIMD language contains architectural assumptions which make it suitable for
programming only a certain subset of SIMD machines.

Optimal portability is a new concept which can guide the development of
much more portable SIMD programming languages. It is based on the recog
nition that some differences among SIMD architectures significantly influence
algorithm selection. These should not be completely hidden from the program
mer.

The programmer makes an algorithm's architectural assumptions explicit
by expressing the algorithm as a program for a particular set of architec
tures. These architectural assumptions precisely define the program's portabil
ity. The programmer may then take full advantage of all architectural features
common to all members of that set, and no more. Selecting a small set of very
similar architectures limits a program's portability, but allows it to take full
advantage of specialized features the members share. Selecting a large diverse
set of architectures produces a program that is very portable, but may not take
full advantage of some of the architectures. This selectable tradeoff between
breadth and power provides optimal portability.

•This worl< was supported by the Pixel-Planes Projec~ Henry Fuchs and John Poulton, P.l.s,
and its grants: National Science Foundation grant I#MIP-8601552, Defense Advanced Research
Projects Agency order 116090, Office of Naval Research contract IIN0014-86-K-0680; and by the
GRIP Project, Frederick Brooks, P.I., under National Institutes of Health grant I#RR 02170. Ac·
cess to a Connection Machine was provided by the Advanced Computing Research Facility at
Argonne National Laboratories, under grants NSF-ASC-8808327 and DOE-W-31-109-ENG-38.
Author's phone and electronic address: (919) 962-1755 or (919) 684-511 0; tuck@cs.unc.edu or
nt@cs.duke.edu.

CH2649-2/89/0000/0617$01.00 © 1988 IEEE

617

This is entirely consistent with Chandy and Misra's (Ref. 8) ideas on algo
rithm portability. They advocate developing algorithms that are progressively
more tightly bound to particular architectures, until an algorithm is specialized
~ufficiently to provide the desired performance. They provide a language
Independent notation for expressing algorithms during development, which
must be translated into a language for a particular architecture before execu
tion. With an optimally portable language, this would not have to be a different
language for each target architecture. Avoiding the necessity of learning and
remembering details of a different language for each architecture is a signifi
cant time and cost savings.

In practice, an optimally portable language for a set of architectures needs
both a definition and a taxonomy of that set These provide a precise way to
specify the architectures on which a program must run. They also contribute
to improved understanding of the architectures, and their algorithms and lan
guages. Both a definition and a taxonomy of SIMD architectures are given in
the section "A SIMD Taxonomy for Programmers."

Existing SIMD programming languages are not optimally portable. They
are built on a variety of inflexible architectural assumptions, including spe
cific processor interconnection networks and the presence or absence of fea
tures like local addressing of memory. The section titled "Existing SIMD Lan
guages" surveys these languages.

I am currently working on the design and implementation of a new op
timally portable language for SIMD computers: Porta-SIMD (pronounced
porta-simm'd). Its overall structure is modeled on the proposed SIMD tax
onomy for programmers, allowing it to present to the programmer an appro
priate programming model for any subset of SIMD architectures. It is intended
to demonstrate the feasibility of designing, implementing, and using optimally
portable languages. The ongoing design and implementation of Porta-SIMD
are discussed in the section "An Optimally Portable Language."

OPTIMAL PORTABILITY

Optimal portability is best defined in terms of a few supporting definitions.
An abstract architecture is the set of fundamental data typeS and operations
provided by a computer, without regard to how the data and operations are
represented. It does not include implementation details such as the the amount
of memory present in a machine, or the number of processors in a parallel
machine. Except where explicitly stated otherwise, I will use architecture as
a synonym for abstract architecture.

The members of a set of architectures are equivalent if and only if their in
tersection is identical to their union. The union of a set of architectures is an
architecture containing all data typeS and operations contained in any mem
ber of the set The intersection of a set S of architectures is an architecture
constructed as follows:

l. Let architecture u be the union of S. To each member A; of S add each
data type and operation in u which A; can simulate with a constant num
ber of its own data elements and operations.

2. Take the intersection of the sets of data types and operations of all mem
bers of S, as augmented by the previous step, to create the intersection
architecture.

The intersection of a set of architectures will also be called the shared architec
ture of the set. These definitions imply that any member of a set of equivalent
architectures can simulate the operation of any other member, and the number
of native operations they execute will be within a constant factor of each other.

A particular computer may be considered to implement only a single set of
equivalent architectures. This set must be the set of architectures equivalent to
the architecture defined by the computer's lowest-level publically documented
programming interface. For most sequential computers, that interface is as
sembly language. For some SIMD computers it is a library.

A program is portable across a set S of architectures if and only if it can
be compiled and correctly executed on the shared architecture of S. Such a
program can therefore be compiled and correctly executed on every member
of S. The architecture on which a program is intended to run is called the
program's target architecture. A program is said to use a data type or operation
if and only if it contains a direct or indirect reference to a language feature that
provides a capability equivalent to that data type or operation.

A programming language L is optimally portable for a setS of architectures
if and only if all of the following are true:

• L requires each program p to specify some architecture A, E S as its tar
get architecture. (A default target architecture may be implicitly specified
in the absence of an explicit specification.)

• L does not allow p to use any data type or operation not in Ap.

• L allows p to use any data type or operation in Ap.

This definition implies thatp is portable across any set St ~ S such that Ap
is the shared architecture of S1, including the maximal such set, Sp. Therefore,
p cannot be portable across a larger set of architectures without giving up the
use of one or more data types or operations. In addition, p cannot use additional
data types or operations without adding to Ap. This would potentially reduce
p's portability by removing architectures from Sp.

A few points in the definition of optimal portability deserve discussion. It
is difficult, perhaps impossible, to find a simple set of rules to accurately and
impartially determine the programmer-visible architecture of every computer.
Computer systems have many layers of architecture, and features are some
times implemented in the "wrong" layer conceptually to improve performance.
However, identifying such features is a matter of judgement which is not easily
reduced to simple rules. Great care has been taken in constructing the defini
tions above, but they are not perfect.

It is important to construct a good test for whether an abstract architecture
can usefully simulate some data type or operation. Any Turing-equivalent
machine may simulate any architecture, but not always with useful perfor
mance. The constant-bounded criterion above for operations and data en
sures reasonable performance and fits well with intuitive notions of equiva
lent architectures. It also makes equivalence transitive. (Suppose architecture
A., can simulate architecture Ay in op(A.,, Ay) operations, and equivalence
is denoted by "=". Then At = A; and A; = Ak implies op(A;, A;) ::::;
op(A;,A;)op(A;,Ak), which implies A; = Ak because op(A;,A;) and
op(A;, Ak) are constants.) Logarithmic and polynomial bounds do not have
this important property.

In some cases, a single machine may be reasonably described by two or
more quite different abstract architectures. As long as they are equivalent,
they are equally valid descriptions. For example, a bit-serial SIMD machine
may be described as having operations on bits, on multi-bit integers, or on
floating-point numbers. Operations on the multi-bit data types can be simu
lated by a constant number of bit-serial operations. The constant (which may
be over 1000) depends on the nature and size (in bits) of the simulated data
type, but does not depend on the values stored in data elements of that type.
The architectures are equivalent. This is consistent with the common practice
of building implementations of a single architecture with varying execution
speeds.

Another example is a SIMD machine with a 2-dimensional grid interconnec
tion network which allows communication in parallel between pairs of adja
cent PEs (Processing Elements), using its lowest-level publically documented
programing interface.. With an additional layer of software to do automatic
routing, it might also be described as providing communication between ar
bitrary pairs of PEs. The number of operations required to simulate arbitrary
communication with this network depends heavily on the dynamically chosen
communication pattern. A lower bound for the worst case is the diameter of
the network, which is at least the square root of the number of PEs. Since a
SIMD architecture does not specify a maximum number of PEs, this is not a
constant bound. Therefore, the two descriptions are not equivalent, and only
the first is pan of a valid abstract architecture for this machine.

618

However, if the automatic routing software were hidden beneath the lowest
level publically documented programming interface, the architecture would be
considered by the above definitions to provide communication between arbi
trary pairs of PEs.

There are several reasons to define a machine's architecture by its lowest
level publically documented programming interface, rather than by its hard
ware. A programmer has no access to the hardware except through this in
terface. Hardware documentation is not always publicly available; it is often
less complete and precise than the programming interface, largely because pro
gramming interfaces must be well documented in order for important software
to be developed. Machine builders are free to implement a single architec
ture with different hardware designs, transparently to the programmer. These
identically programmed machines should be considered to have the same ar
chitecture (from a programmer's perspective).

It is difficult to define precisely which data types and operations a program
uses. The important feature of the definition of use above is that usage is de
fined with respect to the source code, not the compiled object code. This pre
vents the compiler from making features not available in the target architecture
available to the program by generating code to simulate them with arbitrary
numbers of data elements and operations. (Of course, a compiler generating
code for an architecture equivalent to Ap may generate a constant number of
data elements and operations to simulate data types and operations of Ap .)

Prohibiting compilers from simulating data types and operations not present
in Ap ensures portability with useful performance, not just theoretical portabil
ity. This does not restrict the function of programs, since p may simulate such
data types and operations itself. The implementers of L may even provide, as
a convenience to programmers, a package written in L to do this simulation.

A SIMD TAXONOMY FOR PROGRAMMERS

A programming language is optimally portable only for a specific set of archi
tectures. Therefore, any optimally portable SIMD programming language will
require a definition of SIMD architectures.

Definition of SIMD Architectures

An architecture A is a SIMD architecture if and only if all of the following are
true:

• A has a host computer which handles ordinary scalar computations and
flow control, and which broadcasts instructions, one at a time, to all PEs
(Processing Elements).

• A has n > 1 identical PEs which all execute, simultaneously, each in
struction broadcast by the host.

• Each PE is able to evaluate basic arithmetic and logical expressions.

I believe every useful SIMD architecture also has the following properties:

1. Each PE is able, in response to broadcast instructions, to independently
choose whether to ignore instructions to modify its memory. (PEs exe
cuting all instructions are enabled, while those ignoring instructions to
modify memory are disabled. PEs can be considered to have an enable
bit which is I only in enabled PEs.)

2. Each PE is able to compute its unique PE number 0 ::::; p < n- I, given
sufficient time.

3. Each PE has its own private memory.

Property 1 can be simulated with a constant number of ordinary arithmetic
and logical operations. Architectures that do not have this property are there
fore equivalent to those that do, and can be considered to have it. This property
takes many different but equivalent forms in various machines, with it being
possible to ignore different subsets of an instruction set.

Property 2 certainly holds for all architectures which have a connected com
munication graph, and which allow any single PE to be distinguished in any
way. It also holds for all architectures with parallel input, since the data being
read can be the PE numbers. Property 2 holds if an architecture can load into
each PE a different element of a set of distinct values, by any means, since
this set can be the PE numbers. If there is a SIMD architecture which does not

have this property, I do not think it is very interesting because the PEs cannot
be given unique predetermined data on which to operate. That is the whole
purpose of a SIMD architecture.

The only claimed exception to property 3, that I am aware of, is an alter
native set of architectures where PEs access a global memory space through a
network of some kind (e.g., (Ref. 20, pp. 326-327)). I believe that any such
architecture is equivalent to a local-memory architecture in which the PEs are
connected to each other by the same network that connects the PEs to the global
memory.

Specifically, the BSP (Burroughs Scientific Processor) (Ref. 20, pp. 326-
327, 410-422) is the only non-local memory architecture I know of. It is equiv
alent to a large subset of the CM (Connection Machine) architecture (Refs. 18,
10, 1). (Both architectures are discussed briefly in a later section.) The BSP
can simulate the CM simply by assigning a distinct portion of global memory
to each PE for private use, and accessing memory assigned to other PEs only to
simulate communication. Similarly, the CM can simulate the BSP by using its
communication primitives to access memory, treating all the private memory
as a single global memory space. Both simulations take constant time, so the
BSP's global memory and arbitrary PE to memory interconnection network
is equivalent to the CM's local memory and a subset of its communication
primitives. The only difference between the architectures is that the CM has
somewhat more powerful mechanisms for resolving simultaneous accesses to
a single memory location.

If any of these properties is not true of all SIMD architectures, then the
taxonomy below is considered to have an additional dimension for each such
property. Because all architectures currently classified by this taxonomy have
the same coordinates along these dimensions, those coordinates will not be
mentioned further.

Taxonomy of SIMD Architectures

An optimally portable SIMD programming language must recognize and han
dle the full diversity of SIMD architectures that exist within this definition. A
taxonomy of S IMD architectures will be crucial to this task. Although many
architectural differences can be almost completely hidden by a high-level lan
guage, others fundamentally influence the programmer's algorithm selection.
To be most useful for portable language design, the taxonomy should exclude
the former and focus on the latter. The differences that do not influence al
gorithm selection can be uniformly hidden from the programmer by language
abstraction. However, an optimally portable language must make the remain
ing differences visible to the programmer, in the form of language features
which exploit the target architecture.

Previous SIMD taxonomies have been constructed with different goals, and
consider some architectural features which need not be visible to a program
mer. Examples include work by Hwang and Briggs (Ref. 20, chapters 5-6),
and a tutorial by Seitz (Ref. 32). Fountain (Ref. 13) and Gerritsen (Ref. 16)
compare certain SIMD implementations at a level appropriate for system de
signers and architects, rather than programmers. An extended abstract by
Jamieson (Ref. 21) considers matching algorithms with all kinds of parallel
architectures, not just SIMD. Karp (Ref. 22) presents a taxonomy restricted to
"those aspects that affect coding style," but considers only MIMD (Multiple
Instruction Multiple-Data) architectures. These taxonomies not suited for de
signing an optimally portable SIMD language.

Beginning with the most important, the architectural differences that can
significantly influence algorithm selection include:

Topology- the labeling and adjacencies of the PEs;

Communication- whether each PE can read/write data to/from (0) no other
PE, (1) a globally-selected adjacent PE, (2) a globally-selected location
in a locally-selected adjacent PE, or (3) a locally-selected location in a
locally-selected adjacent PE;

Collision Resolution- whether multiple writes to the same location under
communication types (2) and (3) are resolved by (0) serializing the ac
cesses, or (1) combining them by applying an arithmetic or logical oper
ation;

Local Addressing- whether local PEs' memories can be addressed (0) only
by a single globally computed address, or (1) also by addresses computed
locally at each PE;

Global Logical-Or/Multiple-Response Resolver- whether the host can de
termine in a constant number of operations (0) neither of the following,
(1) if any PE has a non-zero value in a certain field of memory (global
logical-or), or (2) the identity of at least one PE having a non-zero value
in a certain field of memory, if such a PE exists (multiple-response re
solver);

Parallel I/O (Input/Output)- whether it is (0) impossible or (1) possible for
all PEs to transfer data to and from a mass storage subsystem in parallel;

PE to Host I/0- whether the host can obtain data from (0) noPE, (1) only
a subset of PEs, or (2) any selected PE.

These architectural differences define a discrete 7-dimensional space. A
SIMD architecture can be characterized by a 7 -tuple giving its location in
this space. All the dimensions except the first, topology, have a finite set of
values enumerated in their descriptions above. As new SIMD architectures
are developed, it may be necessary to add new dimensions to this taxonomy to
accomodate newly invented architectural features.

Topology and communication are very closely related. Without inter-PE
communication, all topologies are equivalent. However, a SIMD architecture
without inter-PE communication may still use a particular topology. The 20
topology of Pixel-Planes (discussed below) is a good example. The (x, y)
labeling and adjacency of PEs are necessary to evaluate bilinear expressions,
and to map computed values from PEs to pixels.

In both communication and local addressing, local selection subsumes
global selection, since it is trivial to make the same local selection at all PEs.

Communication type (3) provides local addressing as a side effect. It would
be conceptually cleaner to eliminate this communication option and allow it
to be simulated by communication type (2) and local addressing. This was
not done because the simulation takes operations proportional to the maxi
mum number of access to any one PE, and because communication type (3)
is a single operation of the CM and BSP. However, both these machines es
sentially perform the same simulation in hardware or microcode. This is an
example of an operation moved down a layer in the architecture for perfor
mance reasons. It exposes a limitation of the methods used here to delineate
programmer-visible architectures.

Global logical-or has several equivalent variants. These include the similar
"global logical-and", and the related special case "all enables off", which is
the inverse of global logical-or applied to the bit which determines whether
local memory is write-protected.

This taxonomy has not yet been extended to include two architectural fea
tures. The first is cut-through routing of data between PEs. Cut-through rout
ing allows some PEs to send data to non-adjacent PEs, provided the intervening
PEs do not send data. The Princeton Engine (Ref. 9) and the ASP (Associative
String Processor) (Ref. 23), both 1D architectures, use this.

The second feature is performing parallel-prefix as a single operation. The
CM provides this capability, though the microcode must simulate it in a number
of operations logarithmic in the number of PEs involved. (This can be proven,
since each PE can only combine two values in a single operation.) This is
another example of an operation moved down a layer in the architecture for
performance reasons.

This taxonomy of SIMD architectures specifically excludes a variety of dif
ferences which may be very important to computer architects, but which need
not influence algorithm selection. Among these are word length, memory
structure and size, special hardware for floating-point operations, and details
of scalar and parallel machine instructions. These are all routinely hidden by
the abstractions of ordinary high-levellanguages, and handled by compilers.
Of course, the hiding is sometimes imperfect, and it is possible to write non
portable programs which depend on word length, byte order, or other machine
specific details. However, a few simple coding rules are generally sufficient
to avoid these problems. Neither the problems nor the solutions differ fun
damentally between sequential and SIMD-parallel architectures. SIMD lan
guages should be able to hide these architectural differences as well as, but not
necessarily better than, sequential languages.

Figure 1 represents as a tree the space of SIMD architectures defined by the
proposed taxonomy. The labels on the left identify the dimension of space
represented by each level of branching. The label at each interior tree node
identifies the location of the subtree rooted at that node along one dimension
of architectural space. Leaf nodes represent selected published SIMD archi
tectures. Subtrees containing no selected architectures are not shown. The

619

SIMD

7
Topology 1D 2D T 4~ Coor I ~ Communication 0 0 2 2 1 3

Collision I I I I I 1\
0 0 1 1 0 0 1

Resolution

I I ~ I I I I Local 0 0 0 1 0 1 Addressing

I 1\ 1\ 1\ I I I I Global
Logical-Or/
MRR

Parallel
I/0

PE->Host
I/0

2

I
0

I
2

Oldfield
et al.

0

I
0

I
0

Pixel
Planes

4

1

I
1

I
0

Pixel
Planes

5

0

I

I
Nickolls

/Cole

1

I

I
2

MPP
DAP

0

I
1

I
2

llliac
N

0

I I
1 1

I I
2

Blitzen BVM

1 0 1

I I I
1 1

I I I
2 2 2

GFll BSP CM

Figure 1. SIMD Architectures

space available is not sufficient for the entire set of SIMD architectures, so I
have included as representative a variety as possible. Additional references
are always welcome.

This taxonomy has the desirable characteristic that it is easy to determine
that certain architectures are subsets of others. This is useful because programs
for a particular architecture are portable to all supersets of that architecture.
The enumerated dimensions all obey a strict subset ordering. Therefore, one
architecture is a subset of another if they have the same topology and if each of
the remaining elements of the first 5-tuple is no greater than the corresponding
element of the second 5-tuple. For example, the MPP (2D, 2, 1, 0, 1, 1, 2) is a
subsetofBLI1ZEN (2D, 2, 1, 1, 1, 1, 2), but not of Pixel-Planes 4 (2D, 0, 0,
0, 0,0, 0).

In a few special cases, an architecture may fail this criterion and yet be a
subset of another. Examples include the following:

• For topologies with a constant number of neighbors per PE, local and
global selection of neighbors for communication are equivalent. Col
lision resolution by serialization or combination are also equivalent for
these topologies. Of the topologies discussed below, lD , 2D, and CCC
have a constant number of neighbors per PE, but Hypercube, Arbitrary
Permutation, and Complete do not.

• Communication type (3) effectively provides local addressing type (1).

• Global logical-or effectively provides arbitrary PE to host I/0 (2).

• An architecture which has parallel I/O to a random access storage device
which the host can also manipulate, but does not have PE to host I/0, can
simulate arbitrary PE to host I/0. A second architecture differing from

620

the first only in having PE to host I/0 and lacking parallel I/0 is therefore
a subset of the first

In each case, the result is that adjacent points in architectural space are related
by the equivalence rather than the subset relation.

Survey of SIMD Architectures

~ost of the remainder of this section surveys the S IMD architectures appearing
m figure 1. It shows how they fit within the space of the proposed taxonomy,
giving evidence that the taxonomy is reasonably complete. For simplicity,
each architecture is described as if it were the equivalent canonical architecture
defined by its location in architectural space. The proofs of equivalence are
generally not difficult, but will not be presented here. The architectures will
be treated in order from left to right across the tree of figure 1. Each heading
includes the coordinates of the architecture it describes.

A tremendous variety of topologies is possible for SIMD machines. In prac
tice, though, a few simple topologies are used by most SIMD architectures.
The simplest, lD (1-dimensional), is a property of SIMD architectures. Al
though it will not be mentioned in their descriptions, all the other topologies
contain it in addition to their advertised features. A 1D topology simply labels
each of n PEs with a unique integer 0 < x ::::; n. PE x has two neighbors,
x - 1 and x + I. Boundary conditions can be defined so PEs 0 and n - I
are neighbors (forming a ring), or so their missing neighbors (PEs -1 and n)
always provide null values (forming a line segment). Since these architectures
are equivalent, they will not be distinguished.

The most common topology is 2D, which labels each PE with an ordered
pair (x,y) such that 0 < x <X, 0 < y < Y, and n = XY. Each PE has
four or eight neighbors, differing by plus or minus one in one or both dimen-

sions. Boundary conditions can be defined to provide wrap-around (forming
a torus), or null boundary values (forming a rectangular sheet). The archi
tectures using all the topologies allowed by these choices are equivalent, so
they will not be distinguished. The remaining topologies will be discussed as
necessary with the architectures using them. These include Cube-Connected
Cycles, Arbitrary, and Complete graphs.

Oldfield/Williams/Wiseman/Briile (lD, 0, 0, 0, 2, 0, 2)-J. V. Oldfield,
R. D. Williams, N. E. Wiseman, and M. R. Brule propose a CAM (Content
Addressable Memory) with sufficient processing power at each row to qual
ify as a SIMD architecture (Ref. 26). (Simulation of arithmetic operations and
the enable-bit is rather laborious, but possible with a constant number of opera
tions.) There is no communication between PEs, but the 1D topology provides
row addresses. There is no local addressing or parallel I/O.

Pixel-Planes 4 (2D, 0, 0, 0, 0, 0, 0)-Pixel-Planes 4 (Refs. 15, 14, 12) is de
signed for high-performance interactive graphics applications. It has a simple
2D topology. There is no communication between PEs, but the PE coordinates
(x, y) are used to compute bilinear expressions of the form ax +by+ c at each
PE (for scalar floating-point values a, b, and c). Although there is special hard
ware to evaluate these expressions quickly, they can be computed in constant
time without it. These expressions can be used to display polygons and spheres
very quickly. There is no local addressing, global logical-or, parallel I/0, or
PE to host 1/0. However, images can be displayed on a video monitor, with
each PE providing the data for one pixel of the image.

Video display of data in most architectures is done by parallel output to
a frame buffer. The fact that data can be seen, but not otherwise externally
accessed due to the absence of 1/0, is a minor anomaly of Pixel-Planes 4. Be
cause it cannot influence algorithm selection, there is no need to recognize it
in the taxonomy.

Pixel-Planes 5 (2D, 0, 0, 0, 1, 1, 0)-Pixel-Planes 5 (Refs. 17, 12) is designed
to provide greater speed and flexibility in order to interactively display more
complex and realistic images. With regard to the taxonomy, it differs archi
tecturally from Pixel-Planes 4 only in providing global logical-or and parallel
I/0.

However, it has hardware support for biquadratic expressions in x andy, in
addition to bilinear expressions. It also has a MIMD host. Both of these dif
ferences provide significant constant-bounded speedups. In addition, multiple
sets of PEs can be combined in a single system. A program may choose to treat
them as separate machines controlled by different processes in the host, or as
a single large machine controlled by a single logical process. This is similar
to the partitioning allowed by the Connection Machine.

Nickolls/Cole (2D, 2, 1, 0, 0, 1, 1)-P. M. Nickolls and T. W. Cole (Ref. 25)
present a fault-tolerant 2D processor array for image synthesis. It has a 2D
topology, with globally selected neighbor communication. It does not provide
local memory addressing or global logical-or. It also provides parallel I/0 and
allows the host to obtain data from certain PEs at the edge of the PE array.

The distinguishing feature of this machine is not visible architectually. It is a
programmable interconnection network that allows defective PEs and network
connections to be configured out of the machine by deleting rows or columns
containing the defective hardware.

MPP (2D, 2, 1, 0, 1, 1, 2)-The MPP (Massively Parallel Processor) (Ref. 29)
has a 2D topology and allows each PE to communicate with a locally chosen
neighbor. There is only global memory addressing. Global logical-or and
parallel I/O are provided, and the host can obtain data from any PE.

DAP (2D, 2, 1, 0, 1, 1, 2)-The Active Memory Technology DAP (Distributed
Array Processor) (Ref. 27) -formerly the ICL DAP -architecture appears
identical to that of the MPP, at the level under discussion. (However, I have
not been able to verify support for global logical-or.)

Illiac IV (2D, 2, 1, 1, 0, 1, 2)-The Illiac IV (Ref. 19) is an early SIMD ar
chitecture. Its 2D topology provides communication between each PE and its

621

immediate neighbors, with local neighbor selection. The PEs have local ad
dressing of their memories. Global logical-oris not provided. There is support
for parallel I/O, and PE to host 1/0 from any PE.

BUTZEN (2D, 2, 1, 1, 1, 1, 2)-BLITZEN (Refs. 6, 11, 7) builds on many
ideas from the MPP. Its architecture differs primarily in providing local ad
dressing of PE memory. The architecture is almost identical, at this level, to
that of the Illiac IV, differing only in supporting global logical-or.

BVM (CCC, 2, 1, 0, 0, 1, 1)-The BVM (Boolean Vector Machine) (Ref.
38) arranges PEs in a CCC (Cube-Connected Cycles) network (Ref. 30). Each
PE can communicate with its choice of its three neighbor PEs. Only global
memory addressing is provided. Global logical-or is not provided. Parallel
1/0 is supported, and the host can read data directly from a single distinguished
PE.

GFll (Arbitrary Permutation, 1, 0, 1, 1, 1, 2)-The GFll (designed to
achieve 11 GFLOPS) (Refs. 5, 4) can provide multiple arbitrary permutations
for inter-PE communication. Each permutation is defined by a directed graph
which specifies the PE from which each PE receives data, with exactly one PE
receiving data from each PE. A particular permutation is globally selected for
each communication operation between PEs.

Local addressing, global logical-or, parallel I/O, and arbitrary PE to host 1/0
are all supported.

BSP (Complete, 3, 0, 1, 0, 1, 2)-The BSP (Burroughs Scientific Processor)
(Ref. 20, pp. 326-327, 410-422) architecture provides a complete intercon
nection graph, and allows each PE to determine locally with which neighbor
to communicate, and which memory location to use. Since the complete graph
makes neighbors of every pair of PEs, this provides completely arbitrary lo
cally controlled inter-PE communication. Collision resolution is by serializa
tion.

Local addressing, parallel I/O, and arbitrary PE to host 1/0 are all supported.
Global logical-or is not.

As discussed above, although the BSP's memory is physically global, its
architecture is fully equivalent to the description just given.

CM (Complete, 3, 1, 1, 1, 1, 2)-The Thinking Machines CM (Cohnection
Machine) (Refs. 18, 10, 1) architecture provides a complete interconnection
graph, and allows each PE to determine locally with which neighbor to com
municate, and which memory location to use. Since the complete graph makes
neighbors of every pair of PEs, this provides completely arbitrary locally con
trolled inter-PE communication. Collision resolution can be by serialization
or combination.

Local addressing, global logical-or, parallel I/O, and arbitrary PE to host 110
are all supported.

There is a discrepancy between the CM's architecture, which provides a
complete graph connecting PEs, and its hardware, which provides a hyper
cube (also known as a binary n-cube). This is a result of its system software
and the definitions given earlier in this paper. As previously discussed, those
definitions require a machine's architecture to be equivalent to the lowest-level
publically documented programming interface. For the CM, that interface is
currently Paris (Parallellnstruction Set) (Ref. 1). Paris's operations provide the
communication system described above, but they are currently implemented
by a physical hypercube with routing hardware. Paris operations can take time
proportional to the number of PEs, so the architecture and hardware are not
equivalent.

Evaluating The Taxonomy

It is probably not possible to prove that a taxonomy of SIMD architectures is
complete, in the sense of adequately classifying all possible architectures that
will ever be imagined. A more reasonable test of such a taxonomy is twofold:

• Does it adequately classify each SIMD architecture in the literature?

• Does it adequately classify every SIMD architecture which could be
formed by taking different combinations of features from SIMD archi
tectures in the literature?

The previous paragraphs have begun the work of showing that the proposed
taxonomy satisfies the first of these criteria.

The nature of the proposed taxonomy makes the second criterion trivial to
establish, once the first has been established. The taxonomy defines a multi
dimensional orthogonal space without holes, with a one-to-one and onto re
lation between dimensions and architectural features. This ensures that any
combination of features corresponds to a single defined point in the architec
tural space.

EXISTING SIMD LANGUAGES

The research reported in this paper is primarily concerned with procedural
languages, with a level of abstraction similar to C, C++, Pascal, or Fortran.
Languages of this type both allow and require the programmer to express an
algorithm unambiguously. Except for eliminating obviously redundant opera
tions arising from the way an operation is expressed, the compiler for such a
language is not involved in algorithm selection.

Some other families oflanguages allow the programmer to express the com
putation in a less algorthmic form, leaving the language implementation more
latitude in choosing an exact algorithm. Some claim that the relative algo
rithm independence of the program allows greater portability among diverse
parallel architectures. This is most often claimed with regard to modest paral
lelism on MIMD (multiple-instruction multiple-data) architectures. However,
the way the problem is stated by the programmer can have a perhaps subtle but
nevertheless profound effect on the algorithm ultimately used. In my opinion,
this effect often ties such programs to a particular architecture as effectively
as a procedural program expressing the same algorithm. I am not aware of
any work on the use of non-procedural languages to programm SIMD archi
tectures. Non-procedural languages will not be discussed further.

Survey of SIMD Languages

A careful search of the literature has found no SIMD programming languages
satisfying the definition of optimal portability. Most existing languages for
SIMD computers include implicit architectural assumptions. These limit them
to some subset of the architectural space defined in the previous section. Some
languages are not portable at all. To my knowledge, only one language, Fortran
8x, has been implemented on more than one SIMD machine. However, none
is a complete implementation, and it is not clear how similar the subsets are. In
the brief survey ofSIMD languages below,Ianguages other than Fortran 8x are
grouped by machines. Very low-level languages are not considered, leaving
no languages to discuss for some machines.

llliac IV Languages-Three main languages were developed for the Illiac IV:
GLYPNIR (Algol-like), CFD (Fortran-based), and IVTRAN (Fortran-based).
(Ref. 19) All require the programmer to use and understand low-level hard
ware features and limitations. They are not true high-level languages. A more
portable Pascal-based language called Actus (Ref. 28) was also developed.
Actus is limited by its assumption of 2D grid communication.

MPP Language-The MPP's implementation of Parallel Pascal also fails to
insulate programmers from hardware details, contrary to the language defini
tion. Even as defined, Parallel Pascal is suitable only for architectures with a
2-dimensional rectangular inter-PE commJJnication network. (Ref. 29)

CM Languages-Likewise, C* and Connection Machine Lisp, two admirably
well-designed high-level languages for the CM, assume the presence of the
CM's powerful, expensive, and almost unique support of arbitrary inter-PE
communication. (Refs. 10, 31, 33)

BVM Language--BVL-0 (Boolean Vector Language 0) (Refs. 36, 37) is a
C-like language for the BVM. It was designed to be the only language for the
B VM, so it includes some very low-level machine-specific features. It assumes
the presence of a CCC network, and does not provide for features not present
in the BVM, like local addressing. Although it could be adapted for use on
other architectures with a constant number of adjacent PEs, programs written
to use the BVM's CCC network would have to be rewritten.

622

BSP Language-The BSP Fortran Vectorizer (Ref. 20, pp. 417422) com
bines some automatic vectorization of ordinary Fortran with some vector
oriented language extensions. Some of these extensions assume the presence
of the BSP's arbitrary communication.

Fortran 8x-A language consisting of Fortran 77 with some VAX extensions
and some proposed Fortran 8x array extensions and a few machine-specific
features was proposed in 1984 (Ref. 24), but not implemented (Ref. 3). More
recently, a subset of Fortran 77, with proposed Fortran 8x array extensions
(including some "removed extensions"), has been implemented for the CM
(Ref. 3). FORTRAN-PLUS for the DAP 500 is an implementation of Fortran
77, minus I/0 facilities, plus some proposed Fortran 8x array extensions (Refs.
27, 2). It is not yet clear how compatible these implementations are.

The proposed Fortran 8x standard (Ref. 35) is the most portable language
yet implemented for SIMD architectures. Although it is not optimally portable,
its "removed extensions" are a step in that direction because they can be im
plemented on those architectures that support them effidently. They include
vector-valued array subscripts, which require arbitrary communication. Still,
Fortran 8x requires communication and uses 2D grid communication heavily,
so it cannot be implemented on all SIMD architectures.

Existing Languages Fail

Each of these languages contains embedded assumptions about the architec
ture or architectures on which programs will run, violating the first part of the
definition of optimal portability. The discussion of each language commented
on these assumptions. Every language discussed allowed the use of one or
more features not preserit in all architectures, and most failed to allow the use
of some feature present in some architecture. Therefore, they all failed to sat
isfy the second or third part of the definition of optimal portability.

AN OPTIMALLY PORTABLE LANGUAGE

A programming model is a complete description of the visible features and be
havior r.[a computer system, as seen by a program. One reason existing SIMD
languages are not optimally portable is each one provides on! y a single pro
gramming model, reflecting a fixed set of architectural features and assump
tions. The second programming model provided by Fortran 8x's "removed
extensions" is a small step away from this problem, but Fortran 8x still em
bodies many architectural assumptions.

An optimally portable SIMD language must support a family of program
ming models corresponding to the architectures defined by a taxonomy like the
one proposed above. Each model is specified by the coordinates of its point in
architectural space. Thus, each model embodies the architectural requirements
of the algorithms expressed in that model.

Porta-SIMD is a new language which will provide these programming mod
els. Its design and prototype implementation are being carried out to demon
strate the feasibility and power of optimally portable SIMD languages. It is
not intended to be the only or ultimate such language, but to stimulate the
development and use of optimally portable languages. For this reason, some
compromises have been made in aesthetic details of the language, and in per
formance, in order to proceed in a timely manner with limited resources.

These considerations contributed to the choice of C++ (Ref. 34) as the base
language for Porta-SIMD. There was no need nor time to invent new syntax
and semantics for the scalar and sequential sections of SIMD programs, and
much to be gained by using a language with which programmers were already
familiar. SIMD parallel datatypes and operations can be expressed as classes
and overloaded operators in C++, extending the language cleanly without mod
ifying the compiler. This would not have been true with Fortran, C, or Pascal.

Porta-SIMD defines a set of classes, one per data type, for each program
ming model, and a model for each point in the architectural space defined by
the taxonomy proposed above. The models are derived (using C++ inheri
tance) from the base model, which implements the "least common denomina
tor" SIMD architecture (ID, 0, 0, 0, 0, 0, 0). C++'s coming multiple inher
itance will be used to derive an arbitrary model from the base model and an
additional model for each architectural dimension along which the arbitrary
model has features above the base model. This will prevent the implementa
tion effort from exploding combinatorially with the size of architectural space.

I* Define programming model: (2D,0,0,0,0,0,0) *I
#include <simd_int_2d.h>
simd_mach_2d mach;

I* square accepts the upper left and lower right
* corners of a square. Returns 1 in each PE
* inside the square, 0 in each PE outside.
*I

simd_int_2d square(int x1, int y1, int x2, int y2)
(

simd_int_2d inside(mach, 1);
simd_int_2d x(mach, 16), y(mach, 16);
inside = 1;
x.coord_x();
y.coord__y();
inside&= (x > x1);
inside&= (y > y1);
inside&= (x < x2);
inside&= (y < y2);
return(inside);

main()
(

display(-square(2,6,24,57));

Figure 2. Example Porta-SIMD program.

Parallel expressions are evaluated at each active PE according to the normal
C++ rules.

A parallel language needs parallel control structures, as well as parallel data
types. It is sufficient to extend the semantics of the if statement to allow a
parallel value in the test expression. An element of this value is used by each
PE to to determine whether to execute the body of the if or the else clause
following the test. Unfortunately, C++ does not provide a means to extend
the semantics of control structures, like it does for data types. This semantic
extension could be accomplished by a conceptually simple Porta-SIMD to C++
pre-processor which replaced parallel if statements with small blocks of code
to enable and disable PEs appropriately. Unfortunately, writing such a pre
processor (or deriving one by modifying a C++ compiler) is a difficult and
time-consuming task in practice. For now, a few macros are used to express
parallel if statements, instead. For example, if p is a parallel variable,

if (p)

a;
else

b;

is instead written as

IF (p)

a;
ELSE

b;
END IF

A more detailed language description is beyond the scope of this paper. A
sample program is shown in figure 2.

Choosing to implement Porta-SIMD primarily as C++ classes has both wel
come and unwelcome consequences. The primary benefit is avoiding the need
to write a compiler. The amount of work this saves cannot be overempha
sized. Another benefit is that the Porta-SIMD prototype is itself very easy to
port: C++ is widely available, and the prototype has been written in a coding
style which carefully separates machine-independent from machine-dependent
code. The primary disadvantage is that the evaluation of parallel expressions
proceeds operator by operator, without any overview of the expression. This is
because the code implementing each parallel operator has no way to know any
thing about its place in the expression. The result is that extraneous temporary

values and redundant copies are sometimes necessary, reducing execution effi
ciency. Although this would probably be unacceptable in a production-quality
language implementation, it is acceptably small for the current purposes. It is
certainly possible to write an optimizing compiler for Porta-SIMD, but this is
well beyond the scope of the current research.

Initial development was done on Pixel-Planes 4, a 256K PE machine in reg
ular use at UNC. The base model (lD, 0, 0, 0, 0, 0, 0) was ported to a 16K
PE CM-2 in five days, including the time required to learn Paris. This was
done in the ACRF (Advanced Computing Research Facility) at Argonne Na
tional Labs. The Pixel-Planes 4 model (2D, 0, 0, 0, 0, 0, 0) is now running on
both Pixel-Planes 4 and the CM. Integers of all sizes are supported. However,
floating point types have been deferred while effort focuses on the central ar
chitectural and language design issues. Other models are in various stages of
development. A port to the Pixel-Planes 5 simulator is planned for the near fu
ture. No performance tuning or detailed measurements have been attempted,
but this early prototype obviously provides lots of room for improvement. A
few brave early users are already providing valuable and encouraging feed
back.

CONCLUSIONS

The extraordinary architectural diversity of SIMD computers is too important
to algorithm selection to completely hide from p(Ogrammers. Optimal porta
bility is a new concept for managing this architectural diversity. It provides
specific criteria for identifying the architectural features a programmer needs
to see. It allows the programmer to precisely specify the portability of each
program. This lets the programmer judge the proper tradeoff between acheiv
ing broad portability and taking full advantage of a particular architecture. Ex
isting languages usurp this decision with predetermined architectural assump
tions.

Porta-SIMD is being implemented to demonstrate the power and feasibility
of optimally portable languages. It takes advantage of C++ classes and op
erator overloading to reduce the implementation effort. Although only a few
programming models have been implemented so far, Porta-SIMD is already
running on Pixel-Planes 4 and a CM-2. This is probably the first language to
be implemented identically on more than one SIMD computer.

Although optimal portability has been applied here to SIMD architectures,
it is potentially valuable for any diverse but related class of architectures.

ACKNOWLEDGEMENTS

Profs. Frederick Brooks and Henry Fuchs have given me valuable advice,
support, and encouragement. Greg Turk has been a valuable sounding board
for ideas and problems. He and Brice Tebbs were willing to use Porta-SIMD
very early, and have given me valuable feedback. It is a privilege to be part
of the Pixel-Planes team. I appreciate the people and facilities of the ACRF,
especially Rick Stevens, who helped me get started on their CM.

623

REFERENCES

I. Connection Machine Parallel Instruction Set (Paris): The C Interface
(Version 4.0). Thinking Machines Corporation, Cambridge, MA, 1987.

2. DAP 500 Introduction to FORTRAN-PLUS Programming. Active Mem
ory Technology Limited, Reading, UK, 1987.

3. Eugene Albert, Kathleen Knobe, Joan D. Lukas, and Guy L. Steele, Jr.
Compiling Fortran 8x array features for the Connection Machine computer
system. SIGPLAN Notices, 23(9):42-56, September 1988. (Proceedings
of the ACM/SIGPLAN PPEALS 1988).

4. John Beetem, Monty Denneau, and Don Weingarten. GF11. Journal of
Statistical Physics, 43(5/6), June 1986.

5. John Beetem, Monty Denneau, and Don Weingarten. The GF11 super
computer. In IEEE Proceedings of the 12th Annuallnternational Sympo
sium on Computer Architecture, pages 108-115, June 1985.

6. Donald W. Blevins, Edward W. Davis, and John H. Reif. Processing Ele·
ment and Custom Chip Architecture for the BUTZEN Massively Parallel
Processor. September 1987.

7. Donald W. Blevins and R. A. Heaton. The BUTZEN PE array chip fea·
ture set. In Second Symposium on the Frontiers of Massively Parallel
Computation, October 1988.

8. K. Mani Chandy and J ayadev Misra. Architecture independent program
ming. In Third International Conference on Supercomputing, Vol. 3,
pages 345-351, International Supercomputing Institute, Inc., 1988.

9. D Chin, J Passe, F Bernard, H Taylor, and S. Knight. The Princeton En
gine: a real-time video system simulator. ICCE, May 1988.

10. Thinking Machines Corporation. Connection Machine Model CM-2 Tech
nical Summary. Technical Report HA87-4, Thinking Machines Corpora·
tion, April 1987.

11. Edward W. Davis and John H. Reif. Architecture and operation of the
BUTZEN processing element. In Third International Conference on Su
percomputing, Vol. 3, pages 128-137, International Supercomputing In
stitute, Inc., 1988.

12. John Eyles, John Austin, Henry Fuchs, Trey Greer, and John Poulton.
Pixel-Planes 4: a summary. In Proceedings of £urographies '87 Second
Workshop on Graphics Hardware, 1987.

13. T. J. Fountain. A survey of bit-serial array processor circuits. In M. J. B
Duff, editor, Computing Structures for Image Processing, chapter 1, Aca
demic Press, Inc., Orlando, FL, 1983.

14. Henry Fuchs, Jack Goldfeather, Jeff P. Hultquist, Susan Spach, John D.
Austin, Frederick P. Brooks, Jr., John G. Eyles, and John Poulton. Fast
spheres, shadows, textures, transparencies, and image enhancements in
Pixel-Planes. Computer Graphics, 19(3): 111-120, July 1985. (Proceed
ings of SIGGRAPH '85).

15. Henry Fuchs and John Poulton. Pixel-Planes: a VLSI-oriented design for
a raster graphics engine. VLSI Design, 2(3):20-28, 1981.

16. F. A. Gerritsen. A comparison of the CLIP4, DAP, and MPP processor
array implementations. In M. J. B Duff, editor, Computing Structures for
Image Processing, chapter 2, Academic Press, Inc., Orlando, FL, 1983.

17. Jack Goldfeather, Jeff P. Hultquist, and Henry Fuchs. Fast constructive
solid geometry display in the Pixel-Powers graphics system. Computer
Graphics, 20(4):107-116, July 1986. (Proceedings of SIGGRAPH '86).

18. W. Daniel Hillis. The Connection Machine. MIT Press Series in Artificial
Intelligence, The MIT Press, Cambridge, MA, 1985.

19. R. Michael Hord. The Illiac IV: The First Supercomputer. Computer
Science Press, Inc., Rockville, MD, 1982.

20. Kai Hwang and Faye A. Briggs. Computer Architecture and Parallel Pro·
cessing. McGraw-Hill Book Company, New York, 1984.

21. Leah H. Jamieson. Features of parallel algorithms. In Second Interna·
tiona/ Conference on Supercomputing, Vol. 1, pages 476-478, Interna
tional Supercomputing Institute, Inc., 1987.

22. Alan H. Karp. Programming for parallelism. Computer, 43-56, May
1987.

23. A. Krikelis and R. M. Lea. Low-level vision tasks using parallel string
architectures. In Parallel Processing for Computer Vision and Display,
January 1988.

24. A FORTRAN Compiler for the Massively Parallel Processor. Mas·
sachusetts Computer Associates, Inc., February 1984. CADD-8402-21 0 I.

25. P. M. Nickolls and T. W. Cole. A fault-tolerant 2-d prvcessor array for
image analysis. In Parallel Processing for Computer Vision and Display,
January 1988.

624

26. J. V. Oldfield, R. D. Williams, N. E. Wiseman, and M. R. Brule. Content
addressable memories for quadtree-based images. In Proceedings of £u
rographies' 88 Third Workshop on Graphics Hardware, 1988.

27. D. Parkinson, D. J. Hunt, and K. S. MacQueen. The AMT DAP 500. In
Spring COMPCON 88: digest of papers, pages 196-199, The Computer
Society of the IEEE, IEEE Computer Society Press, February 1988.

28. R. H. Perrott. A language for array and vector processors. ACM Trans·
actions on Programming Languages and Systems, 1(2): 177-195, October
1975.

29. J. L. Potter, editor. The Massively Parallel Processor. MIT Press Series
in Scientific Computation, The MIT Press, Cambridge, MA, 1985.

30. Franco P. Preparata and Jean Vuillemin. The Cube-Connected Cycles: a
versatile network for parallel computation. Communications of the ACM,
24(5):300-309, May 1981.

31. John R. Rose and Guy L. Steele Jr. C*: An Extended C Language for
Data Parallel Programming. Technical Report PL87-5, Thinking Ma
chines Corporation, Aprill987.

32. Charles L. Seitz. Concurrent VLSI architectures. IEEE Transactions on
Computers, C-33(12):1247-1265, December 1984.

33. Guy L. Steele Jr. and W. Daniel Hillis. Connection Machine Lisp: Fine·
Grained Parallel Symbolic Processing. Technical Report 86.16, Thinking
Machines Corporation, May 1986.

34. Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley
Publishing Company, Reading, MA, 1986.

35. Accredited Standards Committee X3 · Information Processing Systems
Technical Committee X3J3 ·Fortran. X 3 .9· 198x: Draft Proposed Revised
American National Standard Programming Language Fortran (Version
104). American National Standards Institute, April 1987.

36. Sherry J. Tomboulian, Mary Mace, and Robert A. Wagner. Language
report and description for BVL-0. Aprill985. Unpublished paper.

37. Russell R. Tuck, III. Issues in the Design of an Optimizing Code Gener·
ator for BVL-0. Master's thesis, Duke University, Durham, NC, 1987.

38. Robert A. Wagner. The Boolean Vector Machine (BVM). In IEEE 1983
Conference Proceedings of the lOth Annual International Symposium on
Computer Architecture, pages 59-66, 1983.

