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A:\IL \"AIR: Compilation of Subset-Logic Programs (Under the direction of Dr. 

BHARAT .JAYARAMAN) . 

Abstract 

Subset logic programming is a paradigm of programming with subset 

and equality assertions, and whose execution model is based on associative­

commutative (a-c) matching and innermost reduction. SEL (Set Equational 

Language) is a language that has been proposed to illustrate this approach. 

Th.is thesis describes the design and implementation of a system that com­

piles SEL programs into an instruction set similar to the \Varren Abstract 

Machine instructions for Prolog. The novel aspects of our implementation 

include the compilation of a-c matching, backtracking upon failure and suc­

cess , and the implementation of quantifiers over sets. This implementation 

ha.s been completed and will run under any Unix system. 
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1 Introduction 

Logic programming has gained a lot of popularity in the last decade largely due 

to its declarative style of programming and the success of Prolog. Prolog is based 

on predicate logic programming, and its success has made the term "logic pro­

gramming" to be synonymous with "predicate logic programming." HoweYer, in re­

cent years researchers have experimented with new forms of logic programming: no­

tably constraint logic programming [JL87) and equational logic programming [08.5). 

In this thesis, we explore yet another approach, called subset logic programming 

[JP87 ,JN88). 

The primary motivation for subset logic programming was to give a correct and 

efficient basis for programming with sets. Although set constructs are to be found 

in existing functional and logic languages (e .g., the "setof" construct of most Prolog 

systems [N85) and the relative-set construct in Miranda [T85}), t hese constructs do 

not support true sets. These languages have sacrificed clean semantics in incorpo­

rating sets as extra features. 

The practicality of predicate logic programming has been enhanced by recent 

advances in compilat ion [W83}, i.e .: techniques for compiling unification and the 

control strategy of Prolog (depth-first search with backtracking ). Compilation has 

speeded up the execution of predicate logic programs by at least an order of mag­

nitude over interpreting. 

This thesis presents similar efficient ways of compiling subset logic programs. \Ve 

describe the implementation of a subset logic language called SEL (Set Equational 

Language) [JP87 ,J N88]. A SEL program consists of equality and subset assertions , 

and is executed using innermost reduction and restricted associative-commutat ive 

matching. These features are compiled into an instruction set similar to the ·warren 

Abstract Machine (\VAM) used for Prolog [W83]. 

The rest of this document is organized as follows. Chapter 2 describes the SEL 

language informally and giws a few examples. Chapter 3 describes the SEL system 

that has been implemented and guidelines for using it efficiently. Chapter 4 describes 

the two phases of the implementation: compilation to V\'AM-like instructions and 

emulation of the inst ruction set by so~·r ware. Chapters 2 and 3 should sen·e as a 
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users ' manual for the system, while Chapter 4 should serve as an implementors ' 

manual. Chapter 5 presents a brief summary and directions for further work . 

\ Ve assume that the reader has some familiarity with Prolog terminology (e.g. , 

unification) and the basic implementation issues involved in Prolog . 



2 SEL: The Language 

This chapter gives the syntax and informal semant ics of SEL programs, along 

with examples. 

2.1 Syntax 

In the following BNF de~cription of the syntax for SEL, we use the typewriter font 

for keywords and literals. 

rules ::= role I rult roles 

rule ::= equation . I .3ubset 

equation::= function.( terms) = expr 

subset ::=function ( ft rms ) contains expr 

terms : := te. rm I term , terms 

term ::= boolean I inf tger I atom I variable I listterm I setterm 

list term ::= [ ] I [ t e. rm I term ] I [ terms] 

set term ::= { } I { tt rm I term } I { terms } 

expr ::= term I fu nction ( exprs ) I if expr then expr else expr 

exprs ::= e:rpr I expr , exprs 

The data objects of SEL are booleans , integers , atoms. lists , and sets. The 

current implementation of SEL provides only integer numbers, e.g. 10, -3999, etc; 

real numbers are not supported. The booleans are true and false. Any sequence of 

characters encloseti within si:::1gle quotes is t aken to be an atom, e.g. , 'apple' , 'also 

an atom' , etc. l\ote that 5EL does give significance to the case of the alphabet , 

e.g., the atom 'a ' is different from 'A' . A variable is any sequence of alphanumeric 

characters starting with an c.lphabet. It could start with upper or lower case (unlike 

P rolog), e.g., index, EL~KT etc. A list [1,2,3] is syntact ic sugar for [1 I [ 2 I 
[ 3 ! [ ] ] ] ] . The list pattern [h i t] is used to match the head and t ail of a 

list, as in P ro log. Similarly a set { 1, 2, 3} is syntactic sugar for { 1 I { 2 I { 3 I 
{ } } } } . A set pattern { x ! t} matches a set by matching x against one elem ent 
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of the set and t against the rest of the set. The "_ ~ symbol represents the '·don 't 

ca.re1' variable, as in Prolog. 

2.2 Informal Semantics 

SEL programs consist of equality and subset assertions. At the top level the user 

enters an expression, referred to as the goal. The goal has to be a ground expression , 

i.e., an expression with no variables in it. Its , -a lue is obtained by reducing the ex­

pression in leftmost innermost order. Since arguments to functions must be ground 

terms, function application requires one-way mat ching. rather than unification . T he 

matching operation is actually a restricted form of a.ssociati,·e-commutative match­

ing [JN88]. 

Associative commutative matching [P72] can be used to match ground terms 

(possibly sets) against patterns (possibly set pat terns ). For example, if a set { 1, 2, 3} 

is matched against the pat tern {hit} , it produces three matchings, viz., {h ~ 1. t -

{2,3}}, {h ~ 2, t ~ {1,3}} , and {h ~ 3, t ~ {1,2}}. Note that all set pa t terns 

are of the form { term1 I term2 } rather than the more general term1 U term 2. 

Patterns of the form x U y are useful in iterat ing o\·er all subsets of a set , but they 

are computationally expensive and do not occur frequently in practice; hence we do 

not support them. Patterns of the form { x I t }. on the other hand are useful for 

iterating over all elem ents of a set and are needed oft en. The complete matching 

algorithm is described by the following Prolog program. The first argument of match 

is a possibly non-ground term, representing the head of an assert ion, and the second 

argument is a ground term, representing the argument s of a function call. 

match(A,A) :- atomic(A), ! . 

match([],[]). 

mat ch({},{}). 

match(V,Arg) :- var(V), ! , V = Arg . 

match([T1 IT2], [Arg1 IArg2]) ·-

match(T1,Arg1), match(T2,Arg2). 

matchC{Elem1 1Set 1}, Argset) :­

generate(Argset,Elem2,Set 2) , 

match(Elem1,Elem2), 

match(Set1,Set2) . 
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generate ( {Elem!Set} ,Elem, Set). 

generate ( { Elem!Set}, Elem2, {Elern!Set2 }) ·­

generate(Set,Elern2,Set2) . 

It is important to note that we do not follow this recursive algorithm literally in our 

implementation. The main purpose of compilation is to avoid the general matching 

algorithm in the !;impler cases. 

Now we describe the meaning of equality and subset rules. If an innermost 

expression matches an equality rule , it is replaced by the body of the rule (r.h.s.) 

after substituting for the variables on the left hand side suitably. Note that if more 

than one equahty rule matches or if one equality rule matches in more than one 

way, any one match is used to reduce the body of the rule. Thus , the programmer 

has to make st:.re that the result is independent of which match is chosen. If the 

expression matches a subset rule, the right hand side is reduced for each differen t 

a-c match, and t he expression is reduced to the union of the sets obtained for each 

a-c match. If n one of the subset rules match, the expression is reduced to the null 

set. If more thc.n one subset rule matches , the expression is reduced to the union of 

the right hand sides of all matching rules. This behaviour follo\\'s from the closed 

world assumption of SEL, i.e. , a set is completely defined by its subsets: there are 

no other elemen ts in the set than the ones specified . 

A non-set Yalued function is undefined (denoted by ?) if there are no equality 

rules defining it or if none of the equality rules match. The undefined set , on the 

other hand, is t he empty set. We also define{?} = {}. That is , an undefined value 

as an element of ?. set can be dropped from the set. This captures the notion of 

"emptiness as fai lure" . 

The conditio nal expression if e1 then e2 else e3 reduces to e2 if e1 reduces to 

t rue, and to e3 if e1 terminates but is not true. That is , the conditional captures 

a form of "nega 'l ioa by fai lure" . 

2.3 Examples 

The standard LISP-like defini tion of the "append" of two lists can be r:i efined using 

:he followin g eq·Jal: ty rules. 
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append([] ,y) = y. 

append([hlt] ,y) = [hlappend(t,y)] . 

The following assertions illustrate the use of subset rules to define the cross-product 

and intersection of two sets. Note that no assertion is needed when one of the 

argument sets is empty. The result is the empty set in these cases, by the closed 

world assumption discussed earlier. 

crossproduct({xl_},{yl_}) contains {[xly]}. 

intersect({hl_},{hl_}) contains {h}. 

The "permut ations" example below illustrates recursive subset rules. Note that 

perms takes a set as argument and returns a set of lists. 

perms({ }) = {[ J}. 

perms({xlt}) contains distr(x,perrns(t)). 

distr(x,{yl_}) contains {[xly]}. 

The "8-queens" program below shows bow SEL can be used to formulate fairly 

complex problems easily. The queens function, when invoked at the top leYel as 

queens(1,{}) returns the set of all solutions to the 8-queens problem. 

queens(col,safeset) = if eq(col,9) 

then { safeset} 

else placequeen(col,{1,2,3,4},safeset). 

placequeen(col, {row!-}, safeset) contains 

if safe([col jrow] ,safeset) 

safe([c1 jr1] ,{}) =true. 

then queens (col +1, {[coli row] jsafeset}) 

else {}. 

safe([c1 jr1] ,{[c2lr2]js}) = (abs(c1 - c2) <> abs(r1- r2 )) 

and ( r1 <> r2) and safe ( [c1jr1], s ) 



7 

2.4 Quantifiers over sets 

SEL provide~ the ifall and ifone constructs in order to simulate quantifiers over 

sets. For e.xao ple. the predicate 

p(s) = ' ix E s)q(x) 

can be defLnerl in SEL as 

p({x J_}) ifall q(x). 

Similarly, t he predicate 

p(s ) = , jx E s)q(x) 

can be define .~ as 

p({x J_}) ifone q(x). 

Operationc.lly. the ifall rule says that the predicate being defined is true if for all 

a-c matches o: the head, the body of the rule reduces to true . The ifone rule says 

that the pr·-::d: :ate is true if for any one match the body of the rule reduces to true. 

For examp ~e. 7>e can define the function disjoint of two sets using the following 

definition . 

disjoiL~({xl_},{yl_}) ifall x <> y. 

The defaul r. cc..ses of the ifall and if one rules should be noted. When a ifone rule 

defines a pred:cate and there are no matches for the rule , the default returned value 

is false. Bu1 when a ifall rule defines a predicate and there are no matches for 

the rule , th~n ~he default returned value is "true". The current implementation also 

allows a predi,:ate to be defined using multiple ifall rules or multiple ifone rules. 

\ .Vhen mult jp]'-" if all rules define a predicate, execution chains through them until 

one of the ~ig2t hand sides reduces to a non-true value. However, when mul tiple 

ifone ru le~ df.:1ne a function , execution chains through them until one of the right 

hand sides rel~ ·.1ces to true in which case the resul t is true . Note: It is illegal to 

use both if aL and if one rules in defining a predicate. because the default for the 

if all confL c1 ~ wi t h that of the if one rule. 
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2.5 Distribution over Union 

We now discuss an important property of certain SEL functions, which has implica­

tions for considerable performance improvement. A function f is said to distribute 

over union in some argument iff 

f( ... ,xUy, ... ) = f( ... ,x, ... )Uj( ... ,y ... ) 

There are some important benefits if we know which functions have this property. 

For example, in computing f( ... , g( . . . ), .. . ) we need not compute the entire set that 

g( .. . ) stands for; instead we can compute one element of g( .. . ) at a time and apply 

f to each one of these singleton sets and propagate the union. 'vVe save time by 

computing one element at a time because we avoid checking for duplicates of the 

intermediate set. \Ve also save space because we avoid accumulating a possibly large 

intermediate set. (This optimisation is similar to the transformation in functional 

languages that avoids the creation of intermediate lists.) In the current system. 

we assume that the programmer annotates programs indicating which function::: 

distribute over union in which argument. For example, in the perms definition of the 

previous section, the distr function distributes over union in its second argument . 

This can be annotated as 

distr(x,{yl_}) contains {[xly]}. distribute(distr,2). 

The distribute annotation must appear after the definition of the function. In the 

current implementation, multiple distribute annotations must be used to specify 

that a function distributes over union in more than one argument. 

When a function is called to produce one subset at a time rather than the 

entire set , we say that the function is called in "call-one" mode. \Vhen it is called 

to return the entire set , we say the function is called in "call-all" mode. In the 

permutat ions example, we find that the perms function can be invoked in "call-one'· 

mode. Although there appears to be a big advantage of using call-one, in this case 

it turns out that the advantage is not much because of the following trade-off. If we 

call perms in call-one, each call to distr will distribute a constant over a one elemen r. 

set , resulting in many more calls to distr compared wit h invoking perms with ca.ll ­

all mode. T hus the cost of extra function calls nearly equals the cost of checking for 

duplicat es and forming intermed iate sets. In this example, there are n * n ~ calls to 
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C.is:r if it is called in call-one mode, whereas there are only n+n*(n -1) + ... +n! 

c.aLo to distr if it is called in call-all mode. For a. 5 element set , this means that 

tbe~ e are 5 * 5!- (5 + 5 * 4 + . .. + 1) = 600- 325 = 275 calls more calls to distr. 

_-\ ' ~ace of call-one against call-all for the goal perms ( { 1 , 2, 3}) is given below to 

cla~-:fy this point. Note that distr is always called with a singleton set in the left 

c ol ">.:.mn. 

perms({1,2 ,3}) with distribute(distr,2) perms({1,2,3}) 

Call to perms( {1,2,3} ). Call to perms( {1,2,3} )-

Call to perms( {2,3}). 

Call to perms( {3}). 

Call to perms({}). 

Call to distr({0},3). 

Call to distr( {[3]},2). 

Call to distr( {[2,3]},1). 

Call to perms( { 2} ). 

Call to perms({}). 

Call to distr( {0},2). 

Call to distr( {[2]},3). 

Call to distr( {[3,2]} ,1). 

Call to perms({1 ,3}) . 

Call to perms( {3} ). 

Call to perms({}). 

Call to distr( {0},3). 

Call to distr({[3]},1). 

Call to distr( {[1,3]},2) . 

Call to perms( { 1} ). 

Call to perms({}). 

Call to distr( { 0 },1). 

Call to distr( {[1]},3). 

Call to distr ( {[3 ,1]} ,2) . 

Call to perms( {2 ,1} ). 

Call to perms ( { 1} ). 

Call to perms( {2,3} ). 

Call to perms( {3} ). 

Call to perms({}). 

Call to distr( {0},3). 

Call to distr( {[3]},2). 

Call to perms( {2}). 

Call to perms({}). 

Call to distr( {0},2) . 

Call to distr( {[2]},3). 

Call to distr( {[3,2},[2,3]} ,1 ). 

Call to perms( {1,3} ). 

Call to perms( {3} ). 

Call to perms( {} ). 

Call to distr( {0},3). 

Call to distr( {[3]},1). 

Call to perms( { 1}). 

Call to perms({}). 

Call to distr( {0} ,1). 

Call to distr( {[1]},3). 

Call to distr( {[3,1],[1 ,3]},2). 

Call to perms({2,1}) . 

Call to perms({ l}). 

Call to perms({}). 

Call to distr( {[]} ,1) . 



Call to perms ( {}). 

Call to distr ({ 0},1). 

Call to distr( {[1]},2). 

Call to distr( {[2,1]},3). 

Call to perms( {2} ). 

Call to perms({}). 

Call to distr({0},2). 

Call to distr( { [2l} ,1 ). 

Call to distr( {[1 ,2]} ,3). 

Call to distr( { [1]} ,2). 

Call to perms( {2} ). 

Call to perms({}). 

Call to distr( {[]},2). 

Call to distr( {[2]},1). 

Call to distr( {[1,2] ,[2.1]} ,3). 

10 

The following table shows the time taken by the two approaches for all permu­

tations of a 3.4 . .5 , and 6 element set. All time measurements are in milliseconds. 

:\umber of elements in the set 

• 3 4 5 6 

27300 

23200 

, 

call-all 42 183 1500 

call-one 42 166 1350 

It turns out that the call-one mechanism pro\·ides a limited form of lazy eval­

uation. To understand this point, we must examine call-one further. When a 

function is called using call-one, it computes one subset of the solution~ suspends 

the other matches. and returns to the caller. When resumed later (due to failure or 

success), the suspended computation produces a new subset derived from the next 

a-c match. 

Call-one can abo be used to implement a form of "generate and test. " Suppose, 

in the program below, the function test fails if its argument set does not satisfy 

some conditions. Then we can define test as distributing over union , and test can 

act on one element of generate at a t ime. If none of the elements produced by 

generate is accepted by test , then test returns undefi ned. 

generate ( .. . ) contains 

test({x l-} , ... ) = ... . 
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distribute(test,l). 

SEL does not support infinite objects. But we can use t he con t rol behaviour of 

call-one as a programming trick to define functions that potentially accept infinite 

se ts as arguments. Below, function f works element-at-a-time, and hence it can 

accept an infini te set as an argument. The details of predicate p are not relevant 

here. 

natural(x) contains {x}. 

natural(x) contains natural(x+l). 

f({yl_}) = p(y). 

distribute(f,l). 

For example, if the top-level goal is f(natural(10) , ... ), natural will generate 

subsets { 10}, { 11}, .. . until we get one on which p will not fail. 

Note that in the previous two examples, the functions f and test are not set­

valued functions and they do not truly have the property of distributing oYer union , 

but they do "distribute" in a more general sense. 

2.6 Avoiding Check for Duplicates 

Checking for duplicates is the most time consuming operation when computing with 

sets in a programming language. In many practical uses , the sets defined by multiple 

subset assert ions are found to be disjoint. In these cases , SEL allows the programmer 

to request bypassing the check for duplicates by using annotations. For example, 

the definition for product of two sets does not produce duplicates , and hence can 

be annotated to prevent checking for duplicates as follows: 

product({xl_},{yl-}) contains {[xly] } . 

nodup(product). 

The anno tation nodup(product) may appear anywhere after t he definition of 

product . Among t he examples in the previous chapter , fu nctions intersect. queens , 

:)erms . distr do not generate du plicates. an d cou ld each be annotated wi t h the 
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"nodup" clause. A performance comparison for computations with and without 

duplicate checking is given in the following table. All times arf: in milliseconds. 

goal With duplicate Without duplicc>.te 

checking checking 

perms of a 5 element set 1500 916 

all solutions to the 8 queens problem 78000 75000 

product of two 10 element sets 416 133 

the power set of a 6 element set 350 96 

2. 7 Error Trapping 

The "emptiness as failure" notion provides a limited way to trap errors. For example. 

a function f(x) that returns ? (undefined) on certain inputs can be augmented to 

give an error message in the following way: 

trap(x) contains {f(x)}. 

action({},x) = ['bad' ,'input' ,x]. 

action({x},J = x. 

toplevel(x) = action(trap(x),x). 

Now, toplevel(x) would return the same value as f(x) if f(x) is defined, but 

would return an error message if f (x) is not defined. Note, that general exception 

handling is much more powerful. 



3 The User Interface 

This chapter describes the user interface and special fea t ures of the current imple­

mentation , and offers some hints for debugging and writing more efficient programs. 

3.1 Entering and Leaving the System 

To invoke the system, type sel along with any flag options from the Unix shell (see 

appendix A) . The interpreter responds as follows: 

SEL Version 1.0 

sel> 

r p on receiving the prompt , the user can type in any goal terminated with a period 

and carriage return. For example the query 

sel> 3 * 4. 

results in 

12 

sel> 

To exit the interpreter , type CTRL-d at the prompt. The interpreter responds with 

SEL Execution halted 

and t'xits back to t he shell. To abort a run-a\\·ay computat ion or to suspend SEL, 

use the regular shell kill characters. SEL does not t rap any of these interrupts. A 

sc,.mple of a complete session with t he system is giYen in a ppendix B. 



3.2 Compiling Files 

The only way to access and execute user-defined functions in SEL is by placing tbe 

definitions in a file and compiling them with the compile command. For example. 

to execute the append function, enter· its definition in a Unix file , say append. sel. 

and compile it as follows . · 

sel> cornpile('append . sel') . 

SEL will respond with a list of functions that are now defined , 

[append] 

sel> 

Now the append function can be invoked by typing 

sel> append([1,2],[3,4]). 

SEL responds with 

[1,2,3,4] 

sel> 

In the current implementation, there is no facility to redefine functions or to type 

in rules interactively. The only way to do this is to leave the system and to edit the 

files containing the definitions and by starting the system all over again . The user 

can keep definitions in multiple files and compile these files as needed. 

The user can optionally type an optimise flag after the filename to get SEL t .o 

compile set patterns, so that sets are adjusted in O(n) space and t ime, rather tha:J 

making n different copies of the remainder of ann-element set (see section 4.1. pare. . 

6). For example, compile('foo' ,$opt) would result in all set patterns in the fi ls: 

foo to be compiled with this optimisation. 
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3.3 Obtaining One Solution 

.-\s discussed in the previous chapter, a function that distributes over union calls 

:ts argument function using call-one. The any system call can be used if the user 

-;v ant s to call the top-level goal using call-one. If the function is defined using a 

:ubset rule, it would return to the top level after one subset is computed, rather 

~ han try all a-c matches. For example, after compiling the perms example, we can 

call the goal permsC{1,2,3}) using call-one by typing 

sel> any(perms(1,2,3)). 

The response of the system would be 

; [1,2,3]} 

3.4 Timing Goals 

Io time a goal, we provide the built-in function cputime. It returns the number 

c:· milliseconds used by cpu for the SEL process so far. For example, the goal 

::ev ( [ 1, 2, 3, 4, 5, 6, 7] ) can be timed the following ,..,. ay. 

sel> cputimeO 

so 
sel> rev([1,2,3,4,5,6,7]). 

~7 ' 6 '5 '4 '3' 2' 1] 

sel> cputime() 

E5 

This means that t he goal took 66- 50= 16 ms to execute. 

3.5 Error Handling and Tracing 

I~ror :1 andling is rather primitived in SEL. All lex ical errors a nd syntactic errors 

r.~e CCL:ght by the parser, which has been writ t en using the ·u nix tools , "lex" and 
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"yacc" . The parser reports the line numbers on which errors occurred and the 

token near which the error occurred. On encountering an error, the entire ru le or 

goal in which the error occurred is discarded. The most common syntax errors are 

due to using keywords as variable or function names. The following the keywords 

are reserved in SEL: or, and , not , lessp, greaterp: numberp, listp, gretereq, 

lesseq. eq, neq, null , atom, plus , minus, times , divide , mo d, div, abs, if , then, 

else , true , false , compile, contains , ifall , ifone, nodup, distribute , any, 

cputime, trace. 

In order to assist debugging , SEL has a trace feature that will show the calls 

being made along with the arguments. The only way to see t he results of the 

function call is to see where the result of that function call is used. H it is passed 

as an argument to another function , look at the argumen ts of that function call. 

Tracing can be switched on by typing 

sel> trace. 

Selective tracing can be specified by providing the name of the function as an ar­

gument to trace. For example, to see the calls to s-ome two functions f and g. but 

not any other functions type 

sel> trace(f). 

sel> trace(g). 

To switch off tracing once again type 

sel> trace. 

3.6 Hints on Programming 

V./e first offer a few hints on making SEL programs a lit t:e more efficien t. The 

compiled code does clause indexing among multiple definiti ons of a function bc.sed 

on t he first argument. For such a function, it is preferable, i:· possible, to rearrc:nge 

arguments ~o that they differ in the first argument. 

The two kinds of set-patterns {xjy} and {x l-} work with :Efferent efficien cie~ . If 

a fun ction does not need the remainder of a set. use {xl-}. rather than {x y}. as 

{xl-} a \·oid::: constructing the remainder of the set. 
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The current implementation is not true to the semantics of SELin a few respects. 

The behaviour {?} = {} is achieved only if the set-valued function is defined using 

subset rules. If an equality rule defines a set-valued function and an element of the 

set turns out to be undefined (? ), then the function returns ? , rather than the set 

with all the remaining elements. The current implementation is also not completely 

correct with respect to the semantics of if-then-else. If the condition evaluates 

to ? , the conditional expression reduces to ? , rather than to the value of the else 

clause. 

The compiler does not check for the confluence of program assertions , and hence 

the order in which the equality assertions are placed is significant. 
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4 Execution of SEL 

This chapter describes the abstraCt machine model used in implementing SEL, 

\Ve assume that the reader.has some familiari ty with implementation issues in Prolog 

and the \VA:M (vVarren Abstract Machine)[\V83) . 

4.1 Flattening Expressions 

The execution of SEL programs can be separated into two steps: compilation, fol­

lowed by interpretation of the compiled code. Before compilation . all expressions 

are flattened to reflect leftmost innermost reduction order. This conYerts the body 

of each rule to a series of function calls . For example, shown below are the flattened 

forms of the append and perms definitions of Chapter 2. 

append([ ] , y) = y. 

append([hlt], y) = [hltl] · - append(t,y) = tl. 

perms({}) = {[ J}. 

perrns({xlt}) contains vi ·- perrns(t) contains v2, 

distr(x , v2) = vi. 

Note that contains is used in flattening perms in the r.h.s because distr distributes 

over union in its second argument. A nested SEL definition of the form 

f(x) = g(h(i (x))) 

gets flattened into a series of goals 

f(x) = z :- i(x) = v, h(v) = y, g(y) = z. 

The re:'ult of each fun ction call can ,·iewed as a n extra argument of a. Prolog- like 

defini t ion. For example, t he above may be viewed a:' 
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f (x, z) ·- i (x, w) , h ( w, y) , g (y, z) . 

4.2 Basic Execution Model 

A function application is initiated by a call instruction. It is first matched against 

all equality rules defining the function. If there is a successful match and if the 

matching equality rule has permanent variables, an envir_onment record is created 

on the control stack for the call. Control then transfers to the execution of the 

body of the equality rule. Once the body is executed, this rule is exited and control 

goes back to the caller of this function. If there are no equality rules defining the 

function or if none of them matches, then we try to match this call against any 

subset rules defining the function. If none of the rules match, failure-backtracking 

is initiated. The multiple subset rules that match a. given call and the multiple a-c 

matches within any subset rule are attempted sequentially in a depth-first order. 

\\'hen entering a subset rule, a choice point is created on the control stack to keep 

track of rules not yet tried. A choice point is also saved when a subset rule matches , 

so as to try all possible matches within the rule. In this case, the choice point can 

have multiple branch points, one to record each occurrence of a set pattern in the 

head. (Note: this choice point is created only if the body of the call involves a 

function call , otherwise the rule is executed like local nested loops. ) 

As discussed in Chapter 2, a function can be called in two ways: call-one or 

call-all. If a subset assertion is called using call-all, each successful completion 

of the rule causes success-backtracking to the most recent choice point. If it is 

called using call-one, each successful completion causes an exit to the caller. The 

environment record is not deleted at this time. Once all branch points have been 

exhausted, the next subset assertion is attempted and the current environment is 

deleted. As each subset is computed it is added to the overall set after removing 

duplicates. 

The actions on success and failure backtracking are nearly the same. The most 

recent choice point is retrieved and computation resumes from the information in 

the choice point. The effect of the backtracking is to produce the next subset. The 

difference between failure and success backtracking is that the subset computed 

frum the curren t path is considered empty and hen ce neglected in the case of failure 
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backtracking, whereas it is collected in the case of the success backao.cking. 

The control behaviour of ifall and ifone rules is a little di fferent from that 

of the subset rules. If there are no equality rules, or if none of the equality rules 

match, then the ifall and ifone rules would be tried sequentially in a depth­

first fashion. The difference from a subset rule is that if the body of a ifone (resp. 

ifall) reduces to a value true (resp. other than true) then control returns to the 

caller. The remaining matches and the remaining rules are not tried. 

The instructions used to compile the various cases in a-c matching are similar 

to the ones used in WAM for unification. One of the main differences is that we 

can identify the terms that are going to be bound at compile time. This means that 

we can identify the read and write modes of WAM's unify instructiom. \Ve use the 

match and store instructions for the two cases respectively. The different actions 

taken by the W AM's get instructions when the argument is bound a::1d unbound can 

also be recognized at compile time. We use the get and store_indirec: instructions 

for the two cases. Note that the only unbound argument is the result o: the function 

call, and the store_indirect instructions are used to return the result of function 

calls. 

In order to deal with sets in a-c matching, we have introduced instructions to 

match sets against set patterns and to adjust the sets to produce di:Ierent matches. 

The I set constructor is represented as a. cell of two pointers. one to the head of the 

list and one to the rest of the cell. This is the structure that has to be ::adjusted" 

to provide the different representations. There are three ways of adjuscing sets. For 

example, if a set {1,2,3} pointed to by register A1 is matched agaim t {hJ_} , after 

the first match (where h gets 1) , we can adjust A1 to point to {2 ,3} (Fig. 4.1). 

This operation is performed by the adj _set ...head instruction. If the set pattern is 

of the form {hJt }, we can construct the n remainders of an n-elemen: set in O(n) 

space, using destructive modification (Fig. 4.2). Note that this adj ust operation is 

a constant time operation. This can be done only in the case where t is not being 

returned (either directly or indirectly) as part of the answer. Detect ing this case 

needs global data-flow analysis, which is not supported in the compiler yet. If the 

remainders do become part of the answer, we have to use the adj_se:_with_copy 

instruction. This makes n copies for the n remainders and takes 0 ( n :: 1 space. The 

adj _set_with_copy instruction is used by default for set patterns of the form {x!t} 

(see section 3.2) . 



adj set_head Vi 2 1 

1. Vi Vi.tail 

Vi 

1 
• 

3 { } 3 { } 3 { } 

Fig. 4.1 adj_set_head 

adj set Vi 

1. X = new node on heap 

2. x.head N.tail.head 

3 . x. tail Vi 

4. N.tail N.tail.tail 

5 . Vi = X 

Vi,N Vi Vi 

1 1 

3 { } 3 { } 3 { } 

Fig. 4.2 adj_set 
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4.3 Data Objects 

Every term in SEL is represented by a word containing a value and a tag. The types 

of data objects allowed presently include atoms. boolean values, integers , variables, 

lists and sets. Lists and sets are represented using a sequence of tagged pointer 

pairs, for the "head" and " tail" of the list or set. 

4.4 Data Areas 

The main data areas consist of the code area, the stack and the heap. The code area 

holds all the compiled code. The stack is used to allocate environments for function 

calls and choice points for backtracking. An environment allocated on the stack 

stores all permanent variables associated with a rule. It also has a continuat ion 

consisting of a coatinuation code pointer and a continuation environment pointer. 

A choice point is created if there are multipie ~ubset rules to be tried or if a call 

is made as call-one. A choice point contain.s a.ll information necessary to restore 

an earlier state of computation. The information stored includes a pointer to the 

other subset rule or the branch pointers B1. . . Bm. all argument registers A1. .. An, the 

continuation prog::-am pointer CP, CE the current environment pointer, LCP the last 

choice point and Y. the mode register. These are described in the next section in a 

little more detail. The heap is used to store all ~;:ructured objects. Once structures 

are created on the heap, they are not retracte-d 2 • .s is in the case in Prolog. 

4.5 Registers 

The registers that are used to store the curren\ state of a SEL program in execution 

are: 

P program pointe~ (to the code area.) 

CP continuation ?rogram pointer (to the cod e area ) 

CE current envir(·nment (on the local stack) 

LCP last choice ;··oint (on the local stack) 

H top of heap 
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S structure pointer (to the heap) 

CB current branch point register 

M mode register 

Al,A2 ... An argument registers 

Xl,X2 ... Xn temporary registers 

Bl,B2 . . . Bn branch pointers (to the code area) 

As in the WAM, the A registers and X registers are identical: the different names 

merely reflect their different usages. The A registers are used to pass the arguments 

of a function call. The X registers are used to hold the values of temporary variables. 

4.6 Compilation 

SEL programs are compiled into instructions for an abstract machine. These in­

structions are then emulated in software. In general, each SEL symbol corresponds 

to one instruction. An instruction consists of an opcode with one. two or three 

operands. The opcode generally encodes the type of SEL symbol along with the 

context in which it occurs. An operand is either a constant. e.g .. an integer or 

atom, a register, or an address. 

The entire instruction set can be divided into a number of classes, viz., the get 

instructions, the store_indirect instructions, the match instructions, the put in­

structions, the store instructions, the procedural instructions and the indexing 

instructions. \Ve describe the compilation of SEL programs by describing each class 

of instructions. 

The get instructions correspond to the terms in the head of a rule. and are 

responsible for matching the rule against the arguments of the function call, which 

are in the A registers. For example, if a [] in the head of a rule is to be matched 

against the third argument of a function call, it would get compiled into getJlil 

A3. The get_variable ~nstruct.ion is used for the first occurrence of a variable in 

the head. If it is not the first occurrence of_ the variable, t.he get_ value instruction 

i~ used. The get instructions are: 



get_variable Vn,Ai 

get_constant C,Ai 

get_list Ai 

get_-val ue Vn,Ai 

get.....!l il Ai 

get_set Ai, Vn 
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Note: Here and in the descriptions tha t follow, Ai represents an argument regis­

ter, Vi represents a variable (which could be a temporary register Xi or a permanent 

variable Yi ), and C represents a constant . 

The store_indirect instructions are used to return the result of the function 

call, and is generated for the last argument of a function. The argument that is being 

matched against is sure to have a reference to an unbound variable. For example, if 

the result of a t wo-argument function call is the constant 5, then it is compiled to 

store_ind_const 5 ,A3. The store_indirect instructions are: 

store_ind...nil Ai 

store_ind_const C,Ai 

store_ind_list Ai 

store_variable Ai 

store_i nd_phi Ai 

store_i nd_set Ai 

store_i nd_value Ai 

If the body of a rule is a variable (note : it cannot be the firs t occurrence) , then the 

store_ind_value instruction is used. T he store_variable instruction is used for 

all subset rules and for all equality rule s v•·i th a function as the body of the rule. 

The match instructions are used to match arguments of lists or sets in the head 

of a rule. This ins t ruction is always preceded by a get_list or get_set inst ruction. 

For example, if a list pattern [hltJ is to be matched agains t t he third argument of 

a function call, it would get compiled into 

get_list X3 

match_variable Vi 

match_variable Vj 

r. [ 
r. h 

r. t J 

This example assumes it is the first occurrence of the variables h and t , and t hat 

t here values are stored in variables Vi and Vj. Note: Here a.nd in all following 

descriptions . we annotate the compiled co ~~e with the correspondi ng program text , 

as comments a t t he end of ea.ch line. 



The match instructions are: 

match_variable Vn 

match...nil 

match_const C 

match_value Vn 

match_phi 
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The put instructions are used to load the registers with the arguments before a 

function call is made. For example, if the second argument to a function call is the 

null set, then the corresponding compiled code for that would be put_phi A2. The 

put instructions are: 

put...nil Ai 

put_const C,Ai 

put_variable Yn, Ai 

put_list Ai 

put_phi Ai 

put_value Vn, Ai 

put_set Ai 

The put_ variable instruction is used only to load the address of the place where 

the result of the function call should go. 

The store instructions are used to load arguments of lists and sets. They follow 

either a put_l ist, put_set , store_ind_list or a store_ind_set instruction. For 

example, if the first argument to a function call is [2lhJ , it would get compiled into 

put_list A1 

store_const 2 

store_value Vi 

The store instructions are: 

store_nil 

store_const C 

store_variable Vn 

'/. [ 

'/. 2 

'/. h ] 

store_phi 

s to re_value Vn 

The store_variable instruction is used only when the argument to the list or set 

constructor is a function call. 
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The procedural instructions are responsible for control transfer , environment 

allocation , and function im·ocation. The procedural instructions a.re: 

allocate deallocate 

execute P proceed 

calLall P ,N cal Lone P,N 

save_choice_point? collect? Vrn,Vn 

ifone Vrn,Vn if all Vrn, Vn 

if..false_jurnp Vn,Ptr ju.mp Ptr 

where P represents the code pointer of a function, N is the number of variables (still 

in use) in the environment, and Ptr is a pointer in the code for an if-then-else 

statement. 

The allocate instruction appears at the beginning of any equality rule that has 

two function calls in its body (in its flattened form), or any subset rule that has one 

function call. The deallocate rule appears before the call to the last function in an 

equality rule. In the case of the subse:r rule, the collect does the deallocation too. 

The execute instruction is used to call t he last function in the body of an equality 

rule. This is how last-call optimisation :s achieved. The proceed instruction ends 

an equality rule with no function calls i::1 its body. All functions in the body of a 

subset rule and all functiom in an equ ah y rule except the last one is invoked with 

a call instruction. The call -one in.stnction is used if we have distribution over 

umon. The call-all instruction is used for all other cases. The first argument 

for all these instructions is the pointer co the code of the function that is called. 

The second argument is the number of Yariables that are still in use in the current 

environment. This facilitates environment trimming. The collect? instruction 

appears at the end of each 3ubset n J e. The first argument is the destination of 

the result of the funct ion call (the union of all subsets ) and the second argument is 

where each subset gets stored. The save_choice_point? instruction appears after 

the head and before the body of each sub~et rule. The if one and if all instructions 

appear at the end of an ifone and ifall rule respectively. The iLfalse_jurnp and the 

j urnp instructions are used to compile ~ h e control of an if-then-else in the bod:--·. 

The indexing instructio r: ~ are usee U• index among the definitions for one fun c­

t ion. The indexing inst ructiws are: 
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try _equ_else P try _sub_and P 

sw i tch_on_ground_term Lc,Ll,Ls 

The try _equ_else instruction appears before every equality rule which has another 

equality rule. with the same type of first argument , following it. The try_sub_and 

instruction precedes the definition of every rule which has a subset rule, with the 

same type of first argument , following it. Note that all equality rules will be tried 

first and the sunset rules after. In both these case the argument is the code pointer 

for the next rule. The swi tch_on_ground_term Lc ,Ll, Ls is used to do clause index­

ing. This instruction appears at the beginning of any function that is defined with 

multiple rules having different first arguments. Lc, Ll, Ls are the addresses of the 

definitions which haYe a constant, a list or a set as their first argument respectively. 

4. 7 Examples of Compiled Code 

Now we present a few examples of programs with their complete compiled code. 

First we gi\·e the SEL definitions and follow it with the compiled code with each 

instruction commented with the corresponding symbol in the SEL program in its 

flattened form. The append and qsort examples should illustrate the basic use of 

most instructions. 

append([] ,y) = y. 

append([h lt],y) = [hiappend(t,y)]. 

swi tch_on_ground_term Ll,L2,fail 

11: get_nil Al '!. append ( [ ], 
get_ variable X4, A2 '!. y ) 

store_ind_val ue X4,A3 '!. = y 

proceed '!. 
L·) . get_list Al '!. append( [ 

match_variable X4 '!. h 

rna t ch_ v ar i able X5 '!. t ], 

get_variable X6, A2 '!. y ) 

s to re_ i nd_list A3 '!. = [ 
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store_value X4 '!. h 

store_vari able X7 '!. z ] 

put_ value xs, A1 '!. where append( t , 

put_value X6, A2 '!. y ) 
put_value X7, A3 '!. = z 

execute append/2 '!. 

qsort([]) = []. 
qsort([p jl]) = q2(p, partition(l,p)). 

switch_on_ground_term Ll ,L2 ,fail 

Ll : get__nil A1 ~ qsort( []) 

store_ind....nil A2 '1. = [] 

proceed '1. 

L2 : allocate 

get_list A1 ~ qsort ( [ 

match_variable Y1 '1. p 

match_variable Y2 '1. 1 J ) 

get_ variable Y3, A3 '1. = z 

put_va1ue Y2, A1 '1. where partition( 1, 

put_va1ue Y1, A2 '1. p) 

put_variab1e Y4, A3 '1. = y 

ca1l_all partition, 4 '1. 

put_ value Y1, A1 '1. q2( p, 

put_ value Y4, A2 '1. y) 

put _va1ue Y3, A3 '1. = z 

deallocate '1. 

execute q2 '1. 

T he intersect and perms examp:C.s should illustrate the use of set patterns and 

~ubset rules . 

intersect ( {h j_}, {hj_}) contain s {h }. 
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get_set Al, X4 '!. intersect ( 

adj _set _head X4 '!. 
match_variable X5 '!. h 1- } 
get_set A2, X5 '!. { 

adj _set _head X5 '!. 
match_value X5 '!. h 1- } 
save_choice_point? '!. :) 

store_ind_set X6 '!. { 

store_value X5 '!. h I 
store_phi '!. {} } 

collect? A3, X5 '!. 

perms({}) ={}. 

perms({hlt}) contains distr(perms(t) ,h) . 

distribute(distr,l). 

s~itch_on_ground_term L1,fail,L2 

Ll: get_phi A1 

store_ind_set A2 

store..nil 

store_phi 

proceed 

12: get_set A1, Y1 

adj_set Y1 

match_variable Y2 

match_variable Y3 

get_variable Y4, A2 

save_choice_point? 

put_ value Y3, Al 

put_variable YS, A2 

calLone perms, 6 

'!. perms() 

'!. = { 
'!. n I 
'!. {} } 

'!. 
'!. perms( { 

'!. 

'!. h I 
'!. t } 

'!. :J vi 

'!. ~here 

'!. perms(t) 

'!. 2 v2 , 

'!. 

' 

) 

29 

{ 
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put_ value YS, J..l Y. distr( v2, 

put_ value Y2, J..2 Y. h) 

put_ variable YE, A3 Y. :> v3 

calLall distr , 6 Y. 

collect? Y4, ':'6. Y. v1 = v1 U v3 

4.8 The Instruction Set t 

This section describes tb-: actions taken on executing each instruction. Note: In the 

following descriptions. V:. is generically used to denote a permanent variable Yn, or 

a temporary variable Xn . Instructions marked with an asterisk are similar to those 

of the WAM [W83). 

4.8.1 Control Instructions 

allocate* This instruc t:·)n appears at the beginning of a rule that has at least 

one permanent -,·a::.able. A frame is allocated on the top of the stack after 

the last choice poi:.t or environment . The continuation is saved in the new 

environment anc t:::.e em·ironment pointer CE is set to this frame. 

deallocate* This ins~n: :tion appears before the last call of a rule that has perma­

nent variables. T l:_ ; pre,ious environment is restored from the continuation 

and the current en·.~ronrnent is discarded. 

calLall Proc, N* Tl::.!.i5 :nstruction appears if there is a function call on the right 

hand side of a rule If t he function call is an argument to another function 

and if that functio:. dis tr:butes over union, then calLone is used instead of 

calLall. The con~ :nuat ion pointer CP is set to the following code and control 

is transferred by se-~ cing ·he program counter P to Pro c. N is the number of 

variables in the cu:-::-ent :·rame that may be used after this call. The mode 

register M, is set ::o ·.he al:mode. 

calLone Proc, N Tf.:..is ~:1strudion is used to invoke a fun ction that appears as an 

argument of a.no i he func: ion that di st ributes over union in this argument. 
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collect? Vm, Vn This instruction occurs at the end of every subset rule. H has 

serves both cont rol and data fun ct ions . which depend on the mode in which 

the rule was called. If the mode is allmode, it computes the union of Vm and 

Vn by assigning the tail of the . set pointed to by Vn to Vm , and assigns t he 

result to Vm. Contro~ passes to the most recent choice point or to any branch 

point within this rule. If the mode is onemode , Vm is set to Vn and control goes 

back to the caller. This is done by setting the environment pointer CE and the 

program counter P from the continuation. 

ifone Vm,Vn This instruction occurs at the end of every "ifone" rule. If the body 

of the rule reduced to a value other than true (Vn has a value other than 

true ), control passes to the most recent choice point or to any branch point 

within this rule if it exists . If Vn has the value true, Vm is set to true: the 

current branch point CB is set to 0, and control goes back to the caller. 

if all V m, V n This instruction occurs at the end of every "ifall" rule. If the body of 

the rule reduced to a value true (Vn has a value true) then control passes to 

the most recent choice point or to a branch point within this rule if it exists. 

If Vn has a value other than true then Vm is set to false , the current branch 

point CB is set to 0, and control goes back to the caller. 

execute Proc* This instruction makes the outermost function call of the body of 

an equality assertion . The program counter P is set to Proc. 

proceed* If the right-hand side of a rule does not have a func tion call , then it 

is terminated with this instruction. The program counter P is set to the 

continuation pointer CP. 

save_choice_point? This instruction appears after the head of every subset rule . 

Its action is also dependent on the mode in which the rule is called. If the rule 

was called in allrnode then no choice point is created. If the rule was called 

in on emode then a new choice point is created and all registers A1. . . An. all 

bran ch registers B 1. .. Bm, the last choice point LCP, the em·ironment register 

CE. the mode register M. are saved in the choice point . 

iLfalse_jump Vn, Code This inst ruction appears after t he condition in an if­

then-else in the body. If the value in variable Vn is not true, the program 

pointer P is set to Code . 
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jump Code This instruction appears after the then clause of an if-then-else in the 

body. This in:struction sets the program pointer P unconditionally to Code. 

4.8.2 Get instructions 

The get instructions are used to match the arguments of a call against the head 

of a rule. They are different from the W AM get instructions because Pro log does 

unification rather than matching, and hence the arguments of a call in Prolog could 

have unbound variables. In SEL, checking if the value in the register is an unbound 

variable is unnecessary because all SEL arguments must be ground terms. 

get_variable Vn, Ai This instruction appears if the term in the head of the rule 

is a variable e>..nd it is the first occurrence of that variable. The instruction 

simply assigns the value in register Ai to variable Vn. 

get_value Vn, Ai This instruction appears if the term in the head of the rule is 

a variable and it is not the first occurrence of that variable in the rule. The 

instruction checks if the values in register Ai and variable Vn match. If it does 

not, it sets the fail flag. 

getJlil Ai This imtruction appears if the term in the head is []. The imtruction 

checks if register Ai holds the null list. If it does not then it sets the fa il flag. 

get_phi Ai This instruction appears if the term in the head is {}. The instruction 

checks if register Ai holds the null set. If it does not, it sets the fail flag. 

get_const C, Ai This instruction appears if the term in the head is an integer , 

atom or boolean. The instruction checks if register Ai has the value C. If it 

does not, it sets the fail flag. 

getJist Ai This instruction is used when a list-pattern appears in the head of a 

rule. It checks if register Ai is pointing to a list. If so, it assigns the structure 

pointer S to it . If it does not , the fail flag is raised. 

geLset Ai, Vn Th is inst ruction followed by an "adjust"" instruct ion are used when 

a set-pattern a_Jpears in the head of a rule. The inst ruct ion checks if register 

Ai holds a set. If it does, the vari able Vn get s the \·a.lu e c•f Ai : other\\"ise the 

fai l fla g is set. 
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adj...seLhead Vn This instruction appears after a get-set instruction if there is a 

set-pattern with the don't-care variable "-" following the "I" in the set pattern. 

This "_, variable indices that the remainder of the set does not ha.ve to be 

constructed. The structure pointerS gets the value of Vn, and Vn is adjusted to 

point to the remainder of the set. The current branch pointer CB is incremented 

by one and the branch register B(CB) (the CB-th branch register) is made to 

point to this instruction. 

adj...set Vn This instruction appears after a get..set instruction if the remainder 

is a variable and the remainder does not have to be copied. The structure 

pointer gets the value of Vn and Vn is adjusted to point to the next element 

of the set as head and tail. The current branch pointer is incremented by one 

and the branch register B (CB) is made to point this instruction. 

adj...seLwith_copy Vn This instruction is just like the adj...set except that the tail 

of the set is copied each time the set is adjusted. 

4.8.3 Put Instructions 

The put instructions are used to load the registers with the arguments of a call. 

These instructions are similar to the put instructions of the \V AM . 

puLnil Ai* This instruction appears if the argument to a call is the null list. It 

loads the register Ai with []. 

puLphi Ai This instruction appears if the argument to a call is the null set. It 

loads the register Ai with {} . 

puLconst C,Ai* This instruction appears if the argument to a call is a integer, 

atom or boolean. It loads the register Ai with the constant C. 

puLvariable Yn, Ai* This instruction is used only to load the locat ion for the 

result of a function call. A pointer to Yn (address of Yn) is stored in register 

Ai . 

puLvalue Vn, Ai* This instruction is used for the second or later occurrence of 

a variable as an argument to a. function call. The instruction a.ssigns the value 

in \·ariable Vn to register Ai. 
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putJist Ai* This instruct]oL is used if the argument to a function call ts a list . 

The instruction puts a li!t pointer to the top of heap in Ai. 

put...set Ai This instruction is used if the argument to a function call is a set. The 

instruction puts a set pvint.er to the top of heap in Ai. 

4.8.4 Store Indirect Instructions 

The store indirect instructions are used to return values. If we view the location 

where the answer is returned as an extra argument of the corresponding Prolog 

predicate, these instructions a~e the W AM's get instructions. The difference is that 

here we know at compile time when the register is going to have an unbound variable. 

storeJnd_nil Ai This instruction is used if the right hand side of a rule is the null 

list. It sets the variable ?ointed to by Ai equal to []. 

storeJnd_phi Ai This inst.rudion is used if the right hand side of a rule is the null 

set. It assigns the nuL set to the variable pointed to by Ai. 

storeJnd_const C,Ai Th.:s :J.st ruction is used if the right hand side of a rule is 

an integer, atom or be-olean. It assigns the constant C to the variable pointed 

to by Ai. 

storeJnd_list Ai This ins~n: ,: t ion is used if the right hand side is a list. It sets 

the variable pointed to b:: Ai to a list pointer pointing to top of heap. 

storeJnd...set Ai This instru ction is used if the right hand side is a set. It sets the 

variable poin ted to by A: to a set pointer pointing to top of heap. 

storeJnd_value Vn, Ai Thi~ instruction is used if the right hand side of a rule is 

a variable. The instruct ic• n makes the value of the variable pointed to by Ai 

equal to that of the vc.1uc in Vn. 

storeJnd_variable Vn,Ai T "::. is instruct ion is used if the right hand side of a rule 

is a function call or if it :, a subset rule. The instruction stores the reference 

to the unbound variab ~e : :1 Ai . in Vn. 



• 

• 

35 

4.8.5 Match and Store Instructions 

These instructions are used to match nested patterns and to load nested arguments . 

These are the WAM's unify instructions in read and write mode. Note that there is 

no need for an instruction similar to the WAM's unify JocaLvalue . 

match_variable Vn This instruction is used if there is a variable within a list or 

set pattern in the head and it is the first occurrence of that variable in the 

rule. The instruction gets the value pointed to by the structure pointer S, and 

stores it in Vn. S is incremented by 1. 

match_value Vn This instruction is used if there is a variable within a list or set 

pattern in the head and it is not the first occurrence of that variable in the 

rule. The instruction checks if the value pointed to by the structure pointer 

matches the value in Vn. If it does not, the fail flag is set. S is incremented by 

1. 

match_nil This instruction is used if [] occurs within a list or set pattern in the 

head of a rule. If the ,·alue pointed to by the structure pointer S is not equal 

to [], then the fail flag is set . 

match_phi This instruction is used if {} occurs within a list or set pattern in the 

head of a rule. If the Yalue pointed to by the structure pointer S is not equal 

to the null set, then the fail flag is raised. 

match_const C This instruction is used if there is an integer, boolean or atom 

in alist or set pattern in the head of a rule. If the value pointed to by the 

structure pointer S is not equal to C, the Jail flag is assigned true. 

store_nil This instruction is used if the null list is part of the structure that is an 

argument to a function call. The null list is pushed on top of heap . 

store_phi This instruction is used if {} is part of the structure that is an argument 

to a function call. The null set is pushed on top of heap. 

store_const C This instruc ion is used if there is an integer. boolean or a tom as 

part of a structure that is a.n argument to a function call. The constam C is 

pushed on to the heap. 
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store_variable Vn This im :ruction is used if there is a. function call as part of 

a structure that is an ~rgument to another function call. A new unbound 

variable is pushed on tc? of heap and a reference to it is stored in Vn . 

store_ value Vn This instruo.ion is tised if there is a. variable as part of a structure 

that is an argument to <1 function call. The value in Vn is pushed on top of 

heap . 

4.8 .6 Indexing Instructic.ns 

There are fewer indexing·inst~11ctions here than in the WAM . 

try _equ_else Proc This ins :~uction precedes every equality rule that has at least 

one more rule with thf same first argument in the rule head. Proc is the 

ad dress of the following rule. All registers are stored in an alternate register 

set to try the other rule :f this fails to match. The alternate program counter 

is set to Proc. 

try _su b_and Proc This ins1~uction precedes every subset rule that has at least one 

more subset rule with t'::.e same kind of first head argument. A choice point 

is created and all regi~ :.~rs A 1. .. An, the last choice point LCP , the current 

environment pointer CE :.nd the continuation pointer CP etc are saved in the 

choice point. 

switch_on_ground_term Lc .Ll,Ls This instruction is used to switch control to 

different groups of clausc:>s dependent on t he first argument of t he function 

call. The program poin:~r P is set to Lc, Ll or Ls depending on whether the 

register A1 holds a cons ~ :..nt, list or set. 

4. 9 Comparison with Prolog 

In tb e> followi ng table, we cc·=lpare our implementation with a. couple of Prolog 

imple:nen tat ions. The table f.~ ves the time taken in milliseconds (on a Sun 3/60) 

for a :'ew programs run under : J.e C-prolog in terpreter , the Quintus Prolog compiler 

and t ::e SEL interpreter. Th t actual Prolog programs used are gi \·en in appendix 

C. \' ,· ;e that. when "setof" or :'rations are used the SEL in terprete r is faster th an 
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C-Prolog, but slower than Quintus Prolog. This is because of the highly optimised 

code generated and runtime emulation by Quintus Prolog. 

goal C-Prolog Quintus Prolog SEL 
reverse of a 30 element list 166 33 266 

prod of 2 20-elernent sets 250 84 416 

perms of a 6 element sets 16350 2200 5866 

all solutions to the 8-queens 173633 33766 75000 

subset testing of two 20 element sets 150 17 66 
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5 Conclusions 

This thesis has presented.techniques similar to the WAM [W83] for compiling subset 

logic programs. We have described instructions for the compilation of restricted a-c 

matching and the compilation of the depth-first control strategy. The multiple a-c 

matches are represented by multiple "branch-points" within WAM's choice point. A 

distinct feature of the control is that we have backtracking on failurr. (as in Prolog) 

as well as on .::u ccess (to collect all elements of a set). 

The property of functions "distributing over union" was made use of in the im­

plementation by providing two modes of calling a function: call-one and call-all. 

It was found tha t this property does aid in reducing execution time (because it ob­

viates duplicate checking}, but the extent of improvement is usually diminished by 

the increase in the number of function calls to be performed. Explictly annotating 

functions to bypc.ss duplicate checking has also been found very useiul. 

In the proces~ of undertaking this implementation, we found that the basic com­

putat ional mode: for subset assertions could be readily adapted to s·:1pport quanti­

fiers over sets , t :.e ifall and ifone constructs). From our experien.:e using them, 

we found that t bey lead to short programs that are also efficient . 

This thesis hc-.s concentrated on run-t ime issues rather than compJe- time issues. 

There appears to be many opportunities for global compile time aE alysis. For ex­

ample , the compiler should be able to check in many cases the confluence of equality 

assertions and also the property of distribution over union. It is al3o desirable to 

ha,;e methods th.?.t could tell us which definitions could possibly generate duplicate 

elements in a set and do duplicate checking only in those cases. These are proba­

bly undecidable i~sues. but partial (correct) information could be provided which is 

better than no il2 :.ormation. Global analysis is also required to deter:nine when a-c 

mat ching may de:~tructively "adjust a set " and when it has to make separate copies 

of remainder set~. Type inference is another area to be inYestigate:D which could 

lead to substanti c.l savings in run time error checking of operat ions s~ch as union of 

sets and arithrne;: c. 

The current i:nplementation does not perform garbage collectio;-, of the hea p, 

whi ch would b e '.1esi ra ble in an improwd version. Run time exter":::ions are al~o 
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needed to support set closures [JP88]. 
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A UNIX Man Page 

SEL(1) UNIX P~ogrammer's Manual SEL(l) 

NAME 

sel - interpreter for SEL 

SYNOPSIS 

sel [ option · 

DESCRIPTION 

SEL is a subset :ogic language designed for 

programming vith sets. It uses equality and 

subset assertions to define functions . 

The system (SEl ·:ersion 1. 0) consists of a 

compiler that co=piles SEL programs into an 

instruction se t :or an abstract machine, and 

an emulator fer :he instruction set. It is 

an integrated pa:kage to experiment vith 

SEL programs. It features some elementary 

trace facili t ies and integer arithmetic. 

The folloving op:1ons are recognized. 

-a Prints the assembled instructions 

of the abstrac~ Lachine for each 

rule and goal 

-I Prints runt i rn .:: statistics at the 

instruct ion le-.re: 

-C Generates c ~l:-all at the outermost 

level 
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AUTHORS 

The system was written by Anil Nair using 

lex, yacc and C . 

SEE ALSO 

Subset Logic Programming: Application and 

Implementation 

B.Jayararnan and Anil Nair, In Fifth 

Int'l Logic Programming Conference, 

pp. 843-858, Seattle, 1988. 

Compilation of Subset Logic Programs 

Anil Nair (M . S. Thesis), UNC, Chapel Hill,1988. 

BUGS 

~eport to bj~cs.unc.edu. 
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B A Sample Session 

unc % sel 

SEL Version 1.0 

sel> compile('queens'). 

[iota, queens, solve, placequeen, safe, ] 

sel> cputime(). 

66 

sel> solve(4). 

{ { [ 413] , [311], [214] , [ 1 I 2:}, { [ 412] , [314] , [2 11] , [ 113]}} 

sel> cputime(). 

250 

sel> trace(queens). 

sel> solve(4). 

Call to queens(4,1,{},{4 ,3,2,1}). 

Call to queens(4,2,{[114:},{4,3,2,1}). 

Call to queens(4,3,{[212: ,[114]},{4,3,2,1}). 

Call to queens ( 4 , 3 , { [ 2 I 1: , [ 1 14]} , { 4 , 3 , 2 , 1}) . 

Call to queens(4,4,{[313: ,[211],[114]},{4,3,2,1}). 

Call to queens(4,2,{[113:},{4,3,2,1}). 

Call to queens ( 4, 3, { [2 11: , [ 113]}, { 4, 3, 2, 1}) . 

Call to queens(4,4,{[314:, [211], [113]},{4,3,2, 1}). 

Call to queens ( 4, 5, { [ 412: , [314] , [211] , [113]}, { 4, 3, 2, 1}). 

Call to queens(4,2,{[112: } ,{4,3,2,1}). 

Call to queens ( 4, 3, { [2 14: , [ 112]}, { 4, 3, 2, 1}) . 

Call to queens(4,4,{[311J,[214],[112]},{4,3,2,1}). 

Call to queens(4,5,{[413j , [311], [214], [112]},{4,3,2,1}). 

Call to queens(4,2,{[111J~,{4,3,2,1}). 

Cal l to queens(4,3,{[214], [111]},{4,3,2,1}). 

Cal l to queens(4,4,{[312J , [214],[111]},{4,3,2,1} ) . 

Call to queens (4 ,3,{[213] , [111]},{4,3,2,1}). 

{.'[413], [311], [2 14]' [112:: :- ,{[412] J [314], [211], [113]}} 
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sel> -o 
SEL execution halted 

unc Y. 
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C Prolog Programs 

Th is appendix gives the listings o: the Prolog programs used in section 4.9. 

rev ( [] , []) . 

rev ([HIT] 1 Z) ·- rev (T, Y) 1 append (Y I [H] I Z) . 

append([], X, X). 

append([HIT], Y1 [HIZJ) ·- app(~~ Y1 Z). 

prod ( [] I Y 1 [] ) . 

prod([XIY] 1S1T) ·- distr(X,S 1U),prod(Y 1S1V) 1append(U,V,T). 

distr (X 1 [] 1 []) . 

distr (X, [HIT], [[XIH] IZ]) ·- ciis-:r(X,T,Z) . 

perm ( [] , [] ) . 

perm(L, [EIX]) :- select(E, F., :..) , perm(R, X) . 

select (X, L 1 [X I L]) . 

select(Y, [XIL2], [XIL]) ·- select(Y, L2, L) . 

allperms(L 1 P) :- setof(X, perm ~ L , X), P). 

solve(Board_size, All_Soln) :­

bagof (Soln,queens(Board_size, [, Soln) ,All_Soln). 

% queens accumulates the : Jsitions of occupied squares 

queens (Bs, [square(Bs 1 Y) I L] 1 [square (Bs 1 Y) I L]) ·- size(Bs). 

queens (Board_size, Initial, Final ) · -

place(Initial1 Next), 

queens(Board_size, [Nex: I Initial] 1 Final ). 



mern (H, [HI_] , t ) 0 

rnern(H,[XIY],t ) : - mern(H,Y,t)o 

subset ([],X, t ) 0 

subset([HIT] ,S,t) :- _rnern(H,S,t),subset(T,S,t)o 

subset(X,Y,f) o 
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; 

% place generates legal pos it ions for next queen 

place( [], square(1, X)) :- snint(X). 

place ([square (I, J) I Rest] , square (X, Y)) ·­

X is I + 1, 

snint(Y) , 

not(threatened(I, J, X, Y) ), 

safe(X, Y, Rest). 

not(G) :- G,! ,fail. 

not(G). 

% safe checks whether square ( X, Y) 1s threatened by any 

% existing queens 

safe(X, Y, []). 

safe(X, Y, [square(I, J) I L]) :­

not(threatened(I, J, X, Y)), 

safe(X, Y, L). 

% threatened checks whether squares (I , J) and (X, Y) 

% threaten each other 

threatened (I, J' X, Y) . - (I = X)' ! . 

threatened (I, J, X, Y) . - (J = Y), ! . 

threatened (I , J' X, Y) . - (U lS I J) ' (V lS X Y)' (U = 

threatened (I , J, X, Y) . - (U lS I + J), (V is X + Y)' (U = 

snint (1). snint(2). snint(3) . snint ( 4). 

snint(5) . snint(6). snint(7 ) . snint (8) . 

size(8) . 

V)' 

V)' 

! . 

! . 
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