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Image Description via the Multiresolution Intensity Axis of Symmetry 

Abstract 

John M. Gauchl, Stephen M. Pizer1,2 

Departments of Computer Science I and Radiology2 
University of North Carolina, Chapel Hill, North Carolina, USA 

A fundamental approach for providing an image description in terms of visually sensible image 
regions is described. It involves a) the representation of the image by a structure that captures 
essential image information and then b) the definition of a hierarchy of components of that structure 
by the order of annihilation of those components as the image is continuously simplified by 
lowering the scale. The information-capturing "essential structure" is chosen so that image 
regions are associated with each structure comj>onent during the image simplification. To guarantee 
image simplification, successive Gaussian blurring is chosen as the means of scale lowering. We 
argue that an essential structure that describes shape in both the spatial and intensity dimensions 
will produce an image description most likely to be useful for computer or human specification of 
image objects. In particular, we suggest that the intensity axis of symmetry (lAS) satisfies all 
desirable criteria for an essential structure. With such shape-based essential structures the approach 
of image description via annihilation under image simplification becomes a very attractive 
paradigm. 

Introduction 

Any process for the definition and labeling of objects appearing in images benefits from 
transforming the original image data into a description in terms of visually sensible regions. With 
such a description a source of intelligence, be it a human interacting with the display of the image 
or a computer program exhibiting artificial intelligence, has a good basis for fitting the image 
information to its model of the world in order to recognize an object. 

In this paper we discuss the approach of producing such a useful image description by measuring 
an essential structure in the image and following it to annihilation as the resolution of the image is 
reduced. We give five properties which ensure that the image description is well behaved for image 
analysis. We show the lAS is an essential structure satisfying these properties, and we demonstrate 
a method for computing it. 

Early Multiresolution Analysis 

The most popular models of the human visual system (Robson [17], Koenderink [8,10], Wilson 
[19], Ginsburg [6]) recognize that it preprocesses the image by analyzing it simultaneously at 
multiple scales. In computer vision Crowley [4] realized early that analysis at multiple scales could 
provide an important means of image description on which model-based pattern recognition could 
be based, and not just efficient analysis, as suggested by many (e.g., Burt [3], Rosenfeld [18]). 
Crowley based his analysis on various Difference Of Gaussians approximations to the Laplacian of 
the image. He followed peaks and ridges (or their negative counterparts) in this Laplacian image 
through many scales while keeping the energy of the blurred Laplacian operator constant. 
Describing the image involved locating the scale at which each peak appeared most strongly. 
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More oriented to simultaneous description of image features at many spatial scales is a blurring 
approach that simplifies the image and defines objects in terms of the disappearance of their 
features with simplification. The idea is that image objects are defined first by regions of large 
scale, with detail of these objects defined by regions of smaller scale. Regions of large scale are 
those that are retained as the image is simplified by reducing resolution (blurring), while small
scale regions disappear under less blurring. The description must also include the relation between 
small- and large-scale regions. 

Witkin [20], Yuille [21], and Koenderink [8,11] each suggested that Gaussian convolution was the 
best form of blurring, since it guaranteed image simplification with blurring, i.e., was the only 
form of blurring that did not allow the local creation of new values of any linear function of 
derivatives of the image as the blurring proceeded. Thus, for example, neither local image 
intensities (Oth derivatives) nor Laplacian zeroes are created by this process. Lifshitz [13] has 
shown that the required Gaussian blurring need be neither isotropic nor stationary for the 
simplification guarantee to be met, and he has suggested that variation of the parameters of the 
blurring Gaussian across the image could be used to reflect a priori or tentative knowledge about 
the scene. 

Essential Structures and Their Annihilation 

Using the notion of following image features through simplification, Koenderink [8] suggested 
that the following of intensity extrema and of iso-intensity paths through Gaussian blurring could 
defme sensible image regions: you followed each extremum to annihilation with a saddle point and 
defined the region as those locations whose iso-intensity paths ran into the path in scale space 
tracked by the extremum (the extremal path). Koenderink and we realized that this approach could 
be used to form an image description made from a hierarchy of these regions, where regions lower 
in the hierarchy were of smaller scale and blurred into their parent regions in the hierarchy. Lifshitz 
[14] implemented and experimented with this approach. 

We suggest that a most important feature of this approach was that image regions were defmed by 
the annihilation of their extrema under blurring, or to take a more constructive point of view, by the 
creation of these extrema as deblurring was successively applied to the fully blurred image. In this 
paper we develop a generalization of this idea of creating an image description that is hierarchical 
by scale by following what we call essential structures to annihilation. 

The concept is that an essential structure should be an image descriptor that has the following five 
properties: 

1. It induces a subdivision of the image into regions. 
2. It captures essential region properties, including the way intensity varies across it and the 

spatial properties of the region, i.e., its shape, and therefore the regions it induces are 
semantically sensible. 

3. The structure relating image components does not change until a component annihilates. 
4. It induces a hierarchy of regions by defming for each component the containing component into 

which it annihilates. 
5. It is applicable for images of any spatial dimension. 

The major difficulty with focusing on the multiresolution behavior of extremal paths is that the 
regions defined by this method do not adequately reflect the shape of structures in the image. 
Thus, we need to devise multiresolution shape descriptors which are applicable to images and 
satisfy the five criteria above. 

Page2 



The Intensity Axis of Symmetry 

To accomplish this task, we view the image as a terrain map, with intensity as height. Since the 
intensity dimension is incommensurate with the spatial dimensions, we must treat height specially 
and view the terrain map as being made up of a continuous pile of binary images, each 
corresponding to a level slice through the terrain, and having value 0 where there is air and value 1 
where there is earth. The image l(x,y) has thus been characterized as a sequence of binary images, 
with height (intensity level L) parameterizing the selection of the slice. 

When the shape of each of these binary images is captured by an appropriate shape description, the 
family of these descriptions with L as a parameter forms an image description which reflects both 
the spatial and intensity aspects of image shape. The description should decompose the binary 
image into cardinal regions. One of the most attractive approaches for such decomposition has 
focused on axes of symmetry (e.g., Blum [1], Brady [2], and Leyton [12]). Of the various 
alternatives the symmetric, or medial, axis (SA) stands out by being a connected tree that by 
division at branch points induces a decomposition into regions. The axis is the center of a figure 
and its associated radius function specifies the locations inside the figure. With the shape of each of 
the binary images characterizing an image captured by the SA (or any other axis of symmetry), the 
family across L forms an image description called the intensity axis of symmetry (/AS); or the 
'earthen' lAS since the SA of figures with value 1 is used. Since each SA endpoint corresponds to 
a boundary point of maximum curvature magnitude (a vertex), each lAS sheet corresponds to a 
curve of level curve vertices (a vertex curve). These vertex curves are simply tracks in the original 
image, corresponding to ridges or courses in the "terrain map" and hence reflect the branching 
structure of the lAS. In the following we consider how the lAS I vertex curve image description 
meets our essential structure criteria 

Region Definition. Gauch [5] has shown that because the SA varies smoothly with image 
intensity, the lAS consists of a collection of branching sheets, each such branch characterizing 
shape in both space and intensity of a corresponding part of the image (see Figure 1). Associated 
with each sheet in the lAS there is a radius function, and a region imageR defined by R(x,y) = 
the maximum intensity level for which the radius function of a sheet point at that level includes x,y. 
Thus, the lAS induces a subdivision of the image into regions that also carry information on 
intensity variation within the region. 

Region Sensibleness. The fact that the lAS branches reflect ridges and courses in the image 
seems to allow curving objects to be followed and prevents objects from breaking into unrelated 
pieces. Like the regions defined by intensity extrema annihilation, the lAS structure captures the 
behavior of critical points in the image (they are peaks, pits or branch points in the lAS), but is 
more oriented toward to a whole object rather than these isolated points. Thus, the lAS captures 
essential image properties and defmes sensible regions. 

Region Hierarchy. Furthermore, branches in the lAS shrink to annihilation under Gaussian 
blurring of the image I. By detecting the order of annihilation of these structures it is possible to 
induce a hierarchy on lAS sheets and their associated image regions (see Figure 2). The lAS for an 
n-dimensional image is an n+ !-dimensional forest of sheets, a prodigious object to follow through 
image blurring. However, vertex curves mark the top of lAS sheets (see Figure 3), so they can be 
followed through image blurring and when a vertex curve annihilates, the lAS sheet that it 
corresponds to must also annihilate. Therefore, it is possible to compute the lAS only for the 
original image, and for each vertex curve annihilation to follow the corresponding lAS sheet to its 
branch curve. This sheet defines a region image R and specifies R as a subregion of the region 
image corresponding to the limb sheet into which it connects. The hierarchy induced by this image 
simplification involves only a selection among branch sheets of the lAS which are already in the 
form of a tree (or a forest of trees). Furthermore, the regions they induce are directly described in 
terms of intensity and spatial shape by the properties of the symmetric axis transform. 
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a) b) 

c) d) 

Figure 1: a) A simple grey-scale image represented by four level curves, b) its associated 
symmetric axis pile with the SA for each level shown in bold, c) the union of maximal 
circles centered on one branch of the lAS, d) the highest intensity at each point within this 
union yields an image associated with this lAS sheet. 
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a) b) c) 

Figure 2: The effects of resolution reduction on the 'earthen' lAS of figure 2a are shown in 
2b and 2c. The branch sheets appear under the ridges of the image represented by the level 
curves. When branch 'C' annihilates, we identify it as a subobject of the combined branch 
'BD'. Similarly, branch 'A' is determined to be a sub-branch of 'BDE'. 

[Til lAS Sheets 
- M+ Vertices 

a) 

M+ Vertices 
m- Vertices 
!so-intensitY 

Contours 

b) 

Figure 3: a) The relationship between the lAS for an image and the vertex curves 
corresponding to the end curves of the 'earthen' lAS. For clarity, only the vertex curves 
corresponding to positive cmvature maxima (M+), are shown. b) !so-intensity contours 
and vertex curves corresponding to positive curvature maxima (M+) and negative curvature 
minima (m-). 

-- --- --- --- --- --- --- --- --- --- --- -
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Consistent Simplification. Because vertex curves are used to study the multiresolution 
behavior of the lAS, we must consider the effect of Gaussian blurring on these curves. To locate 
vertex curves in an image, we calculate level curve curvature K= vt hessian(!) v, where I is the 
image and v is the unit vector in the direction of the level curve tangent, ( -al/()y' avax), and the 
first two derivatives of curvature K' and K" in the direction of the level curve tangent. Points 
where K>O, K'=O, and K"<O are identified as vertex curves which correspond to the tops of lAS 
sheets. These curvature values are computed by the multiresolution n-jet approach of Koenderink 

[10]. This approach involves computing partial derivatives of the image anvaxmayn-m for all n 
less than some limit, all m ~ n, and all degrees of blurring. We know that blurring does not cause 
new values of these derivatives to be created but what about K, K', and K"? These values can be 
shown already to range from +oo to -oo. Thus, under image blurring no new values of level curve 
curvature are created. Unfortunately, the topology of the associated vertex curves can change. 
These changes occur when saddle-extremum pairs annihilate (or form) and also when locally 
concave or convex regions on the side of hills and valleys are destroyed. Fortunately, by 
following the smooth evolution of vertex curves through small increments of blurring, the 
simplification of lAS structure can be deduced. 

Generalization to All Dimensions. This method seems extendable to higher dimensions, 
though details still need to be investigated. The notion of symmetry axes extends to higher 
dimensions by simply considering the locus of centers of maximal n-balls at each intensity level 
manifold. For example, if n=3 the axis characterizing each level surface L is the 3D SA described 
by Nackman [15]. The extension of vertex curves to higher dimensions is more complex because 
the number of types of curvature increases with the dimension of the manifold. For example, 
when n=3 surfaces have two types of curvature (Gaussian and mean). The extension of the lAS 
approach to higher dimensions (and temporal images) ought to be a subject of active research. 

The lAS of the original image together with multiresolution vertex curves seem to satisfy all of the 
criteria specified for an essential structure and thus seems quite promising. Our next consideration 
is how to effectively compute these structures. 

Calculating the Intensity Axis of Symmetry 

While it is natural to describe the lAS in terms of the SA for a collection of binary images, there are 
several inherent problems with using this approach to calculate the lAS. In medical applications it 
is common for images to contain 12 or more bits of data per pixel. Thus, many slices would be 
necessary to represent image structures accurately, making the time to calculate the SAs for each 
slice considerable. More seriously, the boundaries of these binary images change topology as 
intensity varies. This makes it difficult to connect contours or axes from slice to slice. Finally, the 
simple thresholding techniques used to generate .binary images often causes pixel artifacts in their 
corresponding SAs, and these complicate following the SAs from slice to slice. These problems 
together make it almost impossible to calculate the lAS on a slice by slice basis. Therefore, we 
must search for more global methods which process all intensity levels in the image 
simultaneously. 

One way to accomplish this task is to extend the active contour model of Kass [7] to surfaces; 
thereby creating an active surface model. This will enable us to solve for the entire lAS structure 
simultaneously. When the original image is viewed as a surface in (x,y,I), it encapsulates the basic 
structure of the lAS. Thus, we use this surface as an initial approximation of the lAS. Then we 
calculate a function of (x,y,I) which reflects the symmetry of the image at each location and 
intensity level in the image. We use this symmetry function to "attract" the original image surface to 
the lAS surfaces. Finally, we determine the scale of each of the lAS sheets by following their 
corresponding vertex curves to annihilation under blurring. 
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Active Surface Model. The active contour model provides a technique for fitting closed 
curves to image features while maintaining internal constraints on the curve. These constraints are 
based on first and second derivative properties of the curve and ensure that the solution is smooth 
and well behaved, hence this technique is relatively insensitive to noisy image features. The key to 
this technique is the minimization of an energy functional. When the functional used by Kass for 
closed curves is generalized to surfaces, the equation becomes: 

Energy = ff [ WI lfu(u,v)l2 + W2 lfv(u,v)l2 + W3 lfuu(u,v)l2 + 
W4 lfuv(u,v)l2 + ws lfvv(u,v)l2 + g(u,v) ] du dv 

where f(u,v) = (x(u,v),y(u,v),l(u,v)) are the coordinates of the surface, and partial derivatives are 
denoted with subscripts. The five weights above control the effects of these partial derivatives and 
enable us to specify the surface behavior to be like a spline or like a flexible membrane. The 
attraction the surface by image features is given by g(u,v). 

While curves with several hundred points can be solved using the Euler equations described by 
Kass, the surfaces we are dealing with consist of tens of thousands of points. Thus, simultaneous 
solution via Euler equations becomes unreasonable and iterative relaxation techniques are more 
practical. In our implementation, each point on the active surface is examined on each iteration to 
see if any of the nearest neighbors in (x,y ,1) has a lower contribution to the total energy than the 
current location. If so, that point on the active surface is moved to its new location. We say that the 
active surface has converged when the number of points moved in an iteration falls below a 
specified threshold. 

Image Symmetry Function. The image-based constraint we use to direct the active surface 
towards the lAS is a function of (x,y,l) we call the image symmetry function. This function is 
defined to be g(u,v,l) = distance from (u,v,l) to nearest point on the image surface at the same 
intensity. This follows the grassfire analogy used by Blum [1] to describe the symmetric axis. We 
compute the fire's quench points while ensuring smooth lAS structure by setting the initial active 
surface to be the same as the original image surface and using -g(u,v,l) as the image-based 
component of the energy functional to be minimized on our active surface and iterating until 
convergence. Because the step size in our initial implementation is only one pixel, 50 iterations are 
often required before the active surface converges on the lAS. Variable step sizes like those used in 
simulated annealing might speed up this process while also ensuring that more global 
minimizations are found. 

Using Vertex Curves. With a means of calculating the lAS for the original image, it or its 
corresponding vertex curves must be followed through decreasing resolution. Our initial attempts 
to follow vertex curves rely on the relationship between watershed boundaries and vertex curves. 
A watershed is defined to be the image region which drains to a common intensity minimum. 
Almost all major vertex curves in an image are also the tops of intensity ridges which act as 
watershed boundaries in the original image. The vertex curves which do not fall into this category 
are sub-branches of these ridges and can be processed separately. Therefore, it is possible to 
determine the scale of lAS sheets by following watershed boundaries through blurring. 

We accomplish this by first identifying the intensity minima in an image and then following these 
extrema using a variation of Lifshitz's linking algorithm through a sequence of blurring steps until 
the minima annihilate with an intensity saddle point. Then we identify the parent watershed region 
to be the region which now captures the water from the annihilated minima. Thus, a hierarchy on 
watersheds is imposed. Finally, we identify the scale of each segment of watershed boundary (and 
hence vertex curve segments and their corresponding lAS sheets) by examining the scale of the 
two watersheds on either side of the boundary segment. This enables us to capture multiresolution 
behavior of the lAS without the excessive cost of recomputing the lAS for each level of blurring. 

Page7 



Results. The algorithms described above have been implemented inC under UNIX on both 
SUN and VAX machines and are part of a general purpose image processing environment at UNC
CH. For test images we have used digital subtraction angiograms of blood vessels because they 
contain long branching structures difficult to study using other methods. To illustrate the results of 
our calculations we display the "top view" of the lAS where the intensity at (x,y) corresponds to 
the brightest intensity of any lAS sheet which passes through the point (x,y). We have not yet 
developed tools which interactively use this image description to define image regions. Thus, we 
illustrate the multiresolution properties of the lAS by displaying the image, and its associated lAS, 
vertex curves and watershed boundaries at several levels of blurring (see Figure 4). 

Discussion 

We have described an effective method for capturing spatial and intensity aspects of image shape 
via the multiresolution lAS. However, the usefulness of this image description and some of its 
mathematical properties are still under investigation. The following problems must be addressed. 

1. The dependence on intensity level curves seems unfortunate, and alternate means of slicing the 
image surface, perhaps reflecting image structure, need to be developed. 

2. By definition, the 'earthen' lAS reflects the shape of white structures on black backgrounds. 
By considering the external SA of each intensity slice in our image (i.e., the 'air' lAS), we can 
derive an lAS which captures the shape of black structures on white backgrounds. How these 
two descriptions of the same image can be used simultaneously is an open question. 

3. Hierarchies generated by the lAS share the inherent problems of the otherwise promising 
general category of methods based on annihilation of essential structures: 

a. Since these descriptions are defined only by image intensities, they cannot be expected 
always to reflect semantic information. Some means will be necessary either to edit the 
resulting descriptions to reflect such image understanding or to let such understanding 
affect the creation of the descriptions. 

b. An important weakness of the type of hierarchical description produced by following 
essential structures through blurring is its sensitivity to the order of essential structure 
annihilation. Similar images have descriptions that are made up of qualitatively different 
regions if their essential structure components annihilate in a different order. Others in our 
laboratory are working on this problem in an attempt to record sensitivity as part of the 
shape description. 

c. While the approaches we have sketched appear to apply to images of any number of spatial 
dimensions, it is not yet clear how to extend them to vector-valued images or to images of 
space and time. 

Summary 

We have shown that describing images hierarchically by following essential structures to 
annihilation is attractive if the essential structures satisfy a number of criteria. We have seen that the 
idea can be applied to a wide range of essential structures. However, the lAS I vertex curve 
essential structure seems particularly attractive in meeting all of the criteria. Other structures based 
on geometrical features of the intensity surface might also have these strengths. 
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Figure 4: A sequence of blurred digital subtraction angiogram images (first column) with 
their corresponding lAS "top views" (second column) and level curve curvature (third 
column) and watershed boundary images (fourth column). In the curvature images 
magnitude of curvature is shown by the grey level; high positive curvature is shown in 
white, and low negative curvature in black. The vertex curves which correspond to the tops 
of lAS sheets are those with positive curvature maxima. Notice the consistent simplillcation 
of all four structures with blurring. 
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This paper has left many open directions for exploration, including how edges should be reflected, 
how cuts through terrain images should be made, how useful the vertex curve-based descriptions 
will be, and what other essential structures ought to be investigated. We are confident that such 
research will lead to the production of useful image descriptions. 
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