
...

·-

An Overview of the
Architecture for MicroArras 1.0

TR88-042

September 1988

Scott Southard
John B. Smith

Stephen F. Weiss
Gordon J. Ferguson

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

A TextLab Report
This research was also supported by the National Endowment for the Humanities,
Grant #RT-20483-84 and by Northern Telecom, Inc.
UNC is an Equal Opportunity/Affirmative Action Institution.

•

·-

Introduction

This document describes the architecture of MicroArras, a full-text retrieval system

being developed at the University of North Carolina at Chapel Hill. The purpose of this

report is to describe the retrieval and analysis components of MicroArras in enough detail to

allow the reader to understand the relationships among the different modules of the system

and the design decisions made in developing the system. Consequently, the descriJ?tion is

technical, discussing the system from the programmer's rather than the user's point of

view. For a description of the system from the user's perspective, see [Smith, et. al.,

1986]. Because this paper concentrates on the architecture of the system, rather than its

implementation, the reader does not have to know particulars, such as the programming

language (C) or the development environments (UNIX and MS-DOS). However, the reader

should have some knowledge of structured software design principles.

The first section of the paper presents an overview of the system. The overview de­

scribes the general structure of the system, which is composed of three basic parts: the

User Interface, the Engine (that part of the system that does the text retrieval and manip­

ulation), and a language called Flange that is used for two-way communication between

the Interface and the Engine. Because the User Interface is not part of the retrieval system,

no further details will be presented on the User Interface beyond the brief description in

the first section.

The second section describes the communication language, Flange, in more detail. This

section describes the architecture of Flange in terms of both the format of Flange messages

and the protocols of message passing. This section also presents the routines responsible

for sending and receiving Flange messages.

The third section describes the architecture of the Engine. The modules which make

up the Engine are presented in terms of a hierarchy of levels, and the interaction between

the modules is described.

The Appendices provide additional technical details for Flange, message passing pro­

tocols, as well as a description of MicroArras system states.

2

L System Overview

Introduction

· MicroArras is composed of two sub-programs, the User Interface and the Engine,

which communicate with each other through a communication link. The User Interface

is responsible for querying the user for requests and sending these requests through the

communication link to the Engine; it is also responsible for receiving responses from the

Engine and displaying results to the user. The Engine accepts queries from the User

Interface and supplies appropriate responses. The User Interface performs all interaction

with the user; the Engine performs all text retrieval and manipulation. These interactions

are shown in Figure 1.

User Interface

Accept Query From ·user Display Result To User

Translate Query Into Flange Translate Result From Flange

Send Flange To Engine Receive Flange From Engine

Flange

Engine

Receive Flange From Ul Send Flange Result To Ul

Process Flange Command

Figure 1.
3

Flange Overview

Communication between the Engine ana Interlace is accomplished by sending messages

in Flange, a text processing language developed specifically for this purpose in MicroArras.

The information contained in Flange messages includes commands ~iven to the Engine,

data returned to the Interlace, and various control messages. All information passed

between the Interlace and the Engine in both directions is in the form of Flange messages.

Flange messages fall into four basic categories: command messages, return messages,

special return messages, and control messages. Commands sent by the User Interlace to

the Eng~ne are simply requests for the Engine to do some kind of work. Return messages

are sent by the Engine to the User Interlace when the Engine has processed a command;

these messages may contain data or error information, depending on the situation. Special

return messages contain return information from .a command other than that sent from

the Interlace (e.g., a command read from a file). Control messages are sent by the User

Interlace to specify how the Engine is to proceed in situa~ions where the Engine has a

choice of types of information to return. The most common control messages are those

used to abort or continue the Engine's processing of a command.

User Interface Overview

The method by which the User Interlace queries the user or displays information is

irrelevant so far as the Engine is concerned. Thus the User Interlace may take any num­

ber of forms, so long as it can interact with the Engine; the only requirement is that it

communicate in Flange. In fact, programs other than a user interlace may interact with

the Engine. One such application we have developed is an intelligent assistant function,

based on expert system technology, that helps users' search the textual database by refor­

mulating queries until the desired number are found and then arranging them in order of

probable interest [Gauch & Smith, 1987].

Although the Interlace could conceivably be implemented as a part of the same program

as the Engine, it is more interesting to consider it as a separate entity. Flange commands

are composed of ascii characters and may be transmitted easily through virtually any

communications medium. Consequently, the User Interlace may even be run on a different

machine than the Engine, with Flange messages sent through a phone line or a hardwired

connection.

Current work on a menu based interlace is nearing completion, while future versions

may include graphics-based direct manipulation designs. The User Interface may be sim­

ple, exploiting only those functions directly provided by Flange commands, or it may be

4

more complex, either by analyzing and modifying the data returned by the Engine before

displaying it, or by supporting complex user queries which require several Flange com­

mands to process. In fact, programs other than interface programs may communicate

with the Engine in Flange. In a separate project, expert system technology is being used

to build intelligent functions. In this design, the expert system conduct~ the dialogue

rather than the User Interface.

Engine Overview

The MicroArras Engine is the workhorse of the system. It has three primary purposes.

First, it very quickly retrieves text from a database of documents. The documents in the

database are stored as inverted files (Smith, 1987], which allows fast access to their content

regardless of their size. The second purpose of the Engine is to provide functions that

create and manipulate high level abstractions of textual "objects". A few examples of text

objects are tokens , which represent single occurrences of words in a text, and spans, which

represent sequences of consecutive words in a text. An example of a token is the 293rd word

in the text Atlas Shrugged. An example of a span is the first two paragraphs of the second

chapter of The Fountainhead. The third purpose of the Engine is to provide facilities for

managing Flange conversation and Flange message interpretation. The modules contained

in each of these three levels are described below:

The highest level of the Engine supports Flange management. This level consists of

modules that perform verification of Flange commands, execution of Flange commands,

communication with the User Interface via Flange messages, and Symbol Table manage­

ment.

The intermediate level of the Engine supports manipulation of text objects. Various

text objects are supported, and routines are provided for creating, deleting, and modifying

each of the various types.

The lowest level of the Engine supports access to the inverted text file and the bibli­

ographic file, which stores bibliographic information concerning the texts in the inverted

file. All accesses to either file are made through the two modules at this level.

Besides providing these functions, the Engine also performs maintenance operations

such as internal error handling and memory management. However, knowledge of these

modules is not necessary for understanding the system, and they will not be discussed any

further.

5

•

II. Flange Architecture

In trod uctio~

This section describes the architecture of Flange. The presentation will concentrate

on the format of Flange messages and the message passing protocols, rather than the

syntax of particular messages. For information on the syntax of messages refer to the

Flange Specification Document. This section will also present a few relevant details of the

realization of the system.

Format

Flange messages have a strict format. Every message is composed of a type, a possible

subtype, zero or more data syllables, and an end-of-message syllable. The presence of

a subtype depends on the message type. The presence and order of data syllables is

determined by the type and subtype. Each data syllable is composed of a syllable type

and (possibly null) content.

The message subtypes and syllable types are numerous and will not be given here.

The message types will be discussed, however, to aid the discussion of the message passing

protocols given in the next section. The Appendix contains a complete list of Flange

message types, subtypes, and syllable types.

Flange messages sent by the User Interface are sent complete, in a single packet.

Messages sent by the Engine may require multiple packets for a complete message. Control

messages are provided to allow the User Interface to tell the Engine whether to continue

or abort multiple-packet messages between packets.

Following is a list of the Flange message types. Normal Flange conversations between

the User Interface and the Engine consists of messages of the first five types . The last

three types are used rarely but are included here for completeness.

COMMAND

RETURN

A command sent from the User Interface to the Engine. The

subtype specifies the specific command to be processed, and

the data syllables contain the content of the command

A return message sent from the Engine to the User Interface.

The subtype specifies the type of return message, and the

data syllables contain the content of the return message.

6

CONTINUE

ABORT

RESET

SHOW ..FLANGE

DISASTER

A control message sent from the User Interface to the En­

gine. This message tells the Engine to send the next packet

of the multiple-packet return message from the previous

command. No subtype or data syllables are given.

A control message sent from the User Interface to the En­

gine. This message tells the Engine to send no more pack­

ets of the multiple-packet return message from the previous

command. No subtype or data syllables are given.

A control message sent from the Engine to the User Interface

if the User Interface aborted a RETURN message before

all packets of the message were sent. No subtype or data

syllables are given.

A control message sent from the User Interface to the

Engine after receiving a RETURN ..FILE message. This

message type is used to force the Engine to send a RE­

TURN_COMMAND message. No subtype or data syllables

are giVen.

A control message sent from the Engine to the User Interface

if the Engine suffers an internal error, such as an out of

memory condition. No subtype or data syllables are given.

RETURN_COMMAND A special return message sent from the Engine to the User

Interface when the user has requested to see the Flange com­

mand that was used to define some particular object. The

subtype specifies the type of command being returned, and

the data syllables contain the content of the command being

returned.

7

RETURN _FILE

Protocols

A special return message sent from the Engine to the User

Interface in response to a command to read and process

Flange commands from a file. The subtype and data sylla­

bles are the same as those in an ordinary return message, but

the RETURN _FILE type specifies that the command yield­

ing this return message was read from a file rather than sent

from the Interface.

The most common message types are the COMMAND and RETURN types. Normal

conversation between the User Interface and the Engine consists of the Interface and En­

gine alternately sending COMMAND and RETURN messages. As mentioned previously,

messages sent by the User Interface are sent in a single packet, while messages sent by the

Engine may require multiple packets for a complete message. If a return message is longer

than a single packet, the Engine will append a WAIT ._SYLLABLE as the last data syllable

to tell the Interface that more data is yet to come. In this case the Interface should not

send another command, but should instead send one of the control messages CONTINUE

~ or ABORT. A sample dialogue illustrating this interaction is given below:

1. The User Interface sends a COMMAND requesting that a window be defined. A

window is an object representing portions of text from one or more documents in the

database (for example, the first three chapters of some text).

2. The Engine sends a RETURN message saying it has defined the window.

3. The User Interface sends a COMMAND requesting that the text comprising the win­

dow be displayed.

4. The Engine sends a RETURN message containing the text in the window; since the

window may be large a WAIT ..SYLLABLE may be appended to the end of the first

packet of text. Before returning any more text, the Engine waits for a control message

from the User Interface.

5. The User Interface sends a CONTINUE message.

6. The Engine sends the next packet of text. This packet completes the response, so no

WAIT..SYLLABLE is appended to the message.

7. The User Interface sends another COMMAND.

8

The message passing protocol is strict. On system startup the Engine sends a message

to the User Interface, letting the Interface know that .the Engine is ready for input. The

User Interface and Engine are then free to send messages to each other, with the following

restrictions:

• Consecutive messages must be passed in different directions; i.e., neither the Interface

nor the Engine may send a message without first receiving a response to its previous

message.

• If the Engine receives a COMMAND message, it must respond by sending a RETURN

message. There are two exceptions to this restriction: if a READ_ WS command was

received by the Engine it may return a READ_FILE message, and if a DISP _WS

command was received the Engine may return a RETURN_COMMAND message.

• If the Engine receives a CONTINUE message, it must send the packet of syllables

logically following the most recent message it sent. Since the type and subtype were

given in an earlier message, they are not sent in subsequent packets of the same logical

message.

• If the Engine receives an ABORT message, it sends a RESET message.

· • If the User Interface receives a RETURN message from the Engine,· and the last syllable

is not a WAIT_5YLLABLE, then the User Interface must send a COMMAND.

• If the User Interface receives a RETURN message which contains a WAIT _5YLLABLE

as the last syllable, then the User Interface must send either a CONTINUE or an

ABORT message.

• If the User Interface receives a RESET message, it sends a COMMAND.

Three message types, RETURN...FILE, RETURN_COMMAND, and DISASTER are

exceptions to the above rules and require special protocols. Examination of these protocols

is not necessary for a basic understanding of the system, but the protocols have been

included in the Appendix for completeness.

Realization

The Engine uses two routines to send and receive Flange messages. PuLstring() is

used to send a message to the User Interface, and get...string() is used to receive a message

from the User Interface. All messages passed between the Engine and the User Interface

are sent via these two routines.

9

-.

The message passing protocols described above must be implemented in both the User

Interface and the Engine. Both the Interface and the Engine must keep track of the state

of the communications in order to follow the protocols. The Engine maintains the state in

the communications module, which is described in section III, below; the communications

module calls put..string() and get..string() as necessary to pass messages. Put..string() is

called by the the communications module to send return messages, special return messages,

and control messages to the User Interface, and get ..string() is used to read control messages

sent by the Interface. The only other place put..string() and get..string() are called is in

the top level loop, which reads and processes command messages.

10

III. Engine Architecture

Introduction

As explained above, the MicroArras Engine is responsible for several functions. It will

be useful in this section to view the Engine as composing three levels, as described in

the Engine Overview section. The three levels which will be examined are the Command

Processor (the highest level), the Arrish Engine (the intermediate level), and the ·Text

Access level (the lowest level). Note that the Arrish Engine is a subset of the Engine as a

whole. This document will always refer to the Arrish Engine as such, or by the abbreviation

"AE", so there should be no ambiguity with the single word "Engine" . The responsibilities

of the Command Processor (CP) are verifying and executing Flange commands, providing

Flange communications facilities, and storing objects. The responsibilities of the Arrish

Engine (AE) are to create, modify, and destroy objects. The responsibility of the Text

Access (TA) level is to retrieve text and bibliographic information.

The modules that accomplish these functions are outlined below, and are described in

detail in the following sections:

Level

CP

AE

TA

Function

Flange Verification

Flange Execution

Flange Communication

Object Storage

Object Manipulation

Text Access

Bibliographic Search

Module

Verify

Execute

Communication

Symbol Table

Arit.hmetic Variables

Category Expressions

Contexts

Frequencies

Hierarchies

Segment Marks

SIE Specifications

Spans

Tokens

Token Lists

Type Lists

Windows

Text Access

Search

11

•.

The relationships among modules is shown in Figure 2. A thin solid arrow between

two modules indicates that the module at the tail of the arrow may call the module at

the head. A thick arrow indicates access in some form other than a function call (e.g., via

Flange message passing or file i/o). The single thin dashed arrow represents the limited

ability of the Object Manipulation routines to call the Communications Module. In this

case only the routine comm_write_word(), which sends a single Flange data syllable, may

be called from the Object Manipulation routines.

The following important points should be noted:

• Only the Verify module may call the Execute module.

• Only the Verify and Execute modules can call the Symbol Table Manager.

• The Command Processor modules know the format and syntax of Flange messages,

but the Arrish Engine modules do not.

• The Arrish Engine modules know about the internals of the objects they manipulate.

The Command Processor modules know nothing about object internals and must call

the appropriate module to access information about an object.

12

MicroArras Call Graph

Verify

Execute

Object

Manipulation

Text Access

and

Bibliographic Search

Symbol

Table

File 1/0

Figure 2.

Text

Reconstruction

To User Interface

Flange

Communication

Text Database

Bibliographic Database

• '

"

Command Processor

Verification

When a Flange command is sent from the User Interface, the command is first checked

for correctness. There are four steps to this process. First, the overall structure of the

message is checked. This step verifies that the message has the type COMMAND, a legal

subtype, some positive number of legal data syllables, and an end-of-message syllable. It

also verifies that each syllable, as well as the whole command, is of acceptable length.

The second stage of verific;:ation is data syllable verification. Each data syllable is

checked to verify that the information contained in the syllable is of the type given by the

syllable type. For instance, if the syllable type is WINDOW ..NAME, the string following

the syllable type must be the name of a window object known by the Engine.

The third stage of verification is the data syllable sequence check. This stage verifies

that data syllables are present and in the proper order in the message, through constraints

determined from the message subtype.

The last stage verifies any special conditions particular to the command.

If a command fails any of the verification steps, a RETURN message with subtype

ERRMSG is sent to the User Interface, and no further processing of the command is

done. The data syllables of the error message specify the type of error that occurred and

the offending syllable of the command, if appropriate. A complete listing of Flange error

messages is included in the realization of the system in the file "flange.h".

If the message passes all four verification steps successfully, it is then executed.

Note: a command may still result in an error even though it successfully negotiated

the verification stage. This is because some subtle errors cannot be checked for until deep

within the execution stage.

Execution

There are two basic types of Flange commands: those that define objects and those

that display information. Definition routines define or redefine objects and place the

definitions in the symbol table. These routines commonly call Arrish Engine routines to

create the object to be stored. Display routines access information about the object to be

displayed from the symbol table, or in the case of bibliographic search commands, from

14

the bibliographic file. They then send a Flange message containing the information to be

displayed to the User Interface, which displays it to the user.

Thus, the execution routines normally call the Symbol Table Manager to access objects

and Arrish Engine modules to manipulate those objects. For example, if a window is being

defined, it is first created by the Arrish Engine window module, then stored in the symbol

table by the Symbol Table Manager. If the text in the window is later displayed (i.e.,

the Flange command DISP _TEXT is sent from the User Interface), then the object is

retrieved from the symbol table via the Symbol Table Manager and displayed via the Text

Reconstruction module.

Symbol Table Manager

The Symbol Table Manager keeps track of information for all text objects in the system,

including the name of the object, the type of the object, the Flange command that created

the object, and the object itself. Several functions are provided by the Symbol Tal;>le

Manager: creation of a symbol table entry, deletion of an entry, retrieval of an object,

retrieval of the command that created an object, and verification that an object with a

given name and type exists.

Communication Module

The Communications module provides the mechanism for transmitting Flange mes­

sages to the User Interface. It is a high level interface to the low level put...string() routine,

providing buffering for large packets of information. All responses to the User Interface

and any control messages from the User Interface are sent through this module. Facilities

provided include routines to start a Flange message, add a syllable to a Flange message,

and close (and thus send) a Flange message.

The module is also responsible for maintaining the state of the system; it implements

the Flange protocol described earlier. The state insures that the Engine and the User

Interface remain in sync with each other and that they obey the message passing protocol.

Most of the state maintenance required is done implicitly within this module, but routines

are provided to allow other modules to retrieve and modify the state of the system. This

allows routines that require special handling to force the communications module to take

special action on messages sent by those routines. For example, the READ_WS command

reads Flange commands from a file and executes them just as if they were sent from the

User Interface. Before executing the commands the routine which processes the READ_WS

command explicitly sets the state of the system. The commands are then executed, and

15

·~

each sends a RETURN message which is intercepted by the communications module and

converted to a RETURN ..FILE message. The routine then resets the state to its normal

processing state and sends a RETURN message. This scheme allows the User Interface to

know which return messages are from the commands read from the file and which is from

the READ_WS command itself.

The Appendix gives a complete finite state graph of all states in the system. Following

are the most important system states and their meanings:

State Meaning

init....st

ready....st

processing....st

ack....st

reset....st

shutdown....st

System is initializing

Engine is awaiting a COMMAND

Engine is processing a command

Engine is awaiting a CONTINUE or ABORT

Engine received an ABORT, but isn't yet ready for input

Engine is preparing to shut down

16

Arrish Engine

Object Manipulation Modules

The Arrish Engine is concerned with the manipulation of text objects. Text objects

are concrete implementations of high level abstractions. The text objects supported by

the Arrish Engine are:

Token

Token List

Type List

Span

Window

Segment Mark

Mark Set

SIE Specification

a linear position of a word in a given text (for example, the
fifth word in Anna Karenina)

an ordered list of tokens

an alphabetically ordered set of words

a sequence of consecutive words in a text

an ordered list of spans

a mark indicating the beginning of a conceptual segment (for
example, paragraph, line, or sentence)

an ordered list of segment marks

a specification of the segment marks in effect during the
display of a window of text

Context a description of an area surrounding a token (for example,
three words on each side of the token)

Category an unordered set of token lists, type lists, and other cate­
gories, or a boolean combination of other categories

Hierarchy an hierarchically ordered list of segment marks

Arithmetic Variable a scalar, vector, or matrix of numbers

Frequency an arithmetic variable which is a vector of numbers repre­
senting a frequency distribution (for example, the number
of sentences in each paragraph of a text)

These object types can be divided into three intersecting groups. The first group

consists of those objects which are directly related to the text database. This group

consists of tokens and segment marks, since each text is made up solely of tokens (the text 's

content) and marks (the text's structure). The next group is made up of those objects

that are implemented in the Engine but are not recognized by Flange. These are tokens,

spans, mark sets, and frequencies. Objects in this group are used to implement the higher

17

level objects that are recognized by Flange. These high level objects comprise the third

group, and consist of token lists, type lists, windows, segment marks, SIE specifications,

contexts, categories, hierarchies, and arithmetic variables.

The object manipulation modules provide routines to create, modify, and delete objects

of these types. Most of these modules use routines in other AE modules for support. For

instance, some window routines may call the span module, and many modules call the

token module.

The following sections provide details of the text objects, as well as the relationships

among the objects. These descriptions use the terms static and dynamic. A static object

is bound to a certain position or set of positions in a document when the object is defined.

A dynamic object is one which must be applied to a static object before it is bound to a

specific location. For example, a token is static since it is bound to a specific location in

a specific text (for example, the twentieth word in Even Cowgirls Get The Blues, while

a type (word) is dynamic, since it may reference any occurrence of that word in any text

(for example, the word "thumb").

Tokens

A token is a linear position in a text. Examples of tokens are the 3,498th word of

The Unbearable Lightness of Being or the first word of The King's Indian. Tokens do not

reference any other type of object; they consist only of a text and a position within that

text. Tokens are static.

Token Lists

A token list is an ordered list of tokens. Multiple occurrences of the same token in

a list are not allowed. Tokens are ordered primarily by text, and secondarily by position

within text. Text order is derived from the position of the text within the database of

texts. For example, a token list may consist of the second and ninth words of The Society

of Mind and the first word of The Master and Margarita, in that order. Token lists do not

reference any other type of object except tokens. Token lists are static.

Type Lists

A type list is an alphabetically ordered list of types, or words. Multiple occurrences

of the same word are not allowed. The words may or may not occur in any given text .

A type list may consist of the words "ego" and "selfish", for example. Type lists are not

18

dependent on any other object. Type lists are dynamic, and become bound when used

within a window.

Spans

A span is a set of sequential words in a text, and thus can be represented by a pair of

tokens, representing the first and last words in the span. The first token must be less than

or equal to the second token. For example, a span may consist of the second paragraph of

The Mind's I. Spans reference tokens. Spans are static.

Windows

A window is an ordered sequence of spans. Spans are ordered by the tokens beginning

the spans. Spans in a window may not overlap; that is, if a token is in one span of a

window it will not be in another. For example, a window may consist of a span consisting

of the first paragraph of The Moon is a Harsh Mistress and the third paragraph of the

same text . Windows are dependent on spans (and thus on tokens, since spans depend on

tokens). Windows are static.

Segment Marks

Segment marks are used to logically partition a text. Marks are an inherent part of the

texts and thus cannot be defined. Before a document is put into the database, formatting

information is inserted into the text . These format marks define the beginning of logical

sections of the text, such as words, lines, pages, paragraphs, and chapters. The Engine

recognizes the segment marks that have been inserted into the text as objects and provides

mechanisms for computing locations of marks (for example, where the second paragraph

of The Vampire Lestat begins), translating between marks (for example, determining what

page the third chapter begins on), and performing various other functions. Segment marks

are dynamic, since an index and a text must be applied to a mark before it can specify a

position. For example, "paragraph" doesn't specify an absolute position, but "paragraph

2 of The Sirens of Titan" does.

Mark Sets

A mark set is an ordered list of segment marks. Order in a list is imposed by the user

and is unrestricted, although some orders make more sense than others. A mark may be

repeated in a set, although this would probably not be useful. The facilities described

above for manipulating segment marks are implemented in the Arrish Engine in the mark

set module. Segment marks are implicit within a document and cannot be defined, while

19

T

mark sets may be defined to consist of arbitrary lists of marks. For example, a mark set

may consist of chapter, paragraph, sentence, and word marks. Because they are dependent

on segment marks, mark sets are dynamic.

SIE Specifications

SIE (Segment-In-Effect) specifications describe the formatting information to be re­

turned with text being sent to the User Interface by the Engine. Three attributes are

covered by an SIE specification. The first specifies the segment marks to be used to de­

scribe the starting position of the text being returned (for example, returned text could

be referenced as either "chapter 2, paragraph 1, sentence 7, word 3", or "page 35, line

12, word 13"). The second attribute specifies the segment titles to be returned, allowing,

for example, titles of chapters to be displayed if they are present in the document. The

third attribute controls whether or not the segment marks describing the starting position

are hierarchical with respect to one another; that is, whether relative or absolute indexing

should be used in describing the starting position. For example, "chapter 3, paragraph 1"

is hierarchical, while "chapter 3, page 79" may not be. In the first case, what is meant

is that the starting position of the text begins in the first paragraph of the third chapter,

while in the second case the starting position of the text is in the third chapter, and is on

page seventy-nine. SIE specifications depend only on segment marks. SIE specifications

are not used to reference text positions, and are thus neither static nor dynamic.

Contexts

A context is used to delineate an area around a token (the context's pivot). They are

like types, however, in that they are not bound to a single text or position. A context is

applied to a token to yield a span. For example, a context may specify five words on each

side of the pivot; when this context is applied to a token it would yield a span of 11 tokens.

Contexts reference segment marks. Contexts are dynamic, and are bound when applied to

a token.

Categories

A category (or "category expression") is either a boolean combination of other cat-­

egories or a group of type lists, token lists, and other categories. A boolean category is

called a "configuration expression", and may be, for example, "Cat1 and (Cat2 or Cat9)",

where Cat1, Cat2, and Cat9 are previously defined categories. The boolean operators

apply within a given context, so a token is in the example category above if it is within

the context of Cat1 and is within the context of either Cat2 or Cat9. The second type

20

of category is called a "recursive category". A recursive category is a collection of other

categories. For example, a recursive category may consist of Types1 and TokenList1, where

Types1 and TokenList1 are previously defined type lists and token lists, respectively. Cat­

egories are dependent on type lists, token lists, other categories, and contexts. Categories

are dynamic; a category is evaluated in a window to yield a token list.

Hierarchies

A hierarchy is an ordered list of segment marks. Order is imposed by the user and unre­

stricted; however, hierarchy objects are used to support logical hierarchies (e.g., "chapter,

paragraph, sentence, word"), so non-hierarchical ordering of marks is not really useful.

Hierarchies, like mark lists, must be paired with indexes and evaluated within a text to

yield an absolute position, and are thus dynamic.

Arithmetic Variables

An arithmetic variable is a zero-, one-, or two-dimensional array (i.e., a scalar, vector,

or matrix) of floating point numbers. Variables do not reference text positions and are

neither static nor dynamic.

Frequencies

A frequency is an arithmetic variable representing a frequency distribution. For exam­

ple, it may represent the frequency with which a certain word occurs in each chapter of a

given text. Frequencies have no structure of their own; they are simply arithmetic variables

that are vectors. Since frequencies are arithmetic variables they can be considered to be

neither static nor dynamic. However, since a frequency represents a distribution of tokens

(which are static) across a window (which is also static), it may be considered to be static

entity.

The relationships among the objects are shown in Figure 3. The highest level objects

are at the bottom, while the more basic low level objects are at the top. The arrows can

be read "are built upon", so for instance windows are built upon spans, and spans and

token lists are built upon tokens.

21

Type Lists

Mark Sets Token Lists

Contexts

Figure 3.

Text Access Level

Text Access

All accesses to the document database are done through the text access module. The

module provides routines for finding all locations of a word in a text, determining the

position in a text at which the nth occurrence of a segment mark occurs, finding the index

of the segment of a given type which covers a given token, and various other functions .

Text access routines are available to all other modules of the system.

Internally, text access routines call local functions to deal with the different types of

information accessed from the database. Thus, the text access routines available to the

rest of the system do not access the database directly, but call lower level routines that

understand the structure of the database file. The lower level routines, in turn, use a third

level to do actual physical reading of data, which is done in blocks. The third level also

maintains a list of buffers containing recently read blocks.

Bibliographic Search

All accesses to the bibliographic file are done through the bibliographic search module.

This module provides routines for finding bibliographic citations for texts, for locating texts

whose citations match a given boolean search request (for example, all texts whose author

is Ayn Rand or were written between 1935 and 1940), and for computing the intersection

and union of text lists.

23

-

IV. Acknowledgments

Portions of this research were supported by the National Endowment for the Humani­

ties (Grant# ~T-20483-84) and by Northern Telecom, Inc. The project was led by faculty

researchers John B. Smith and Stephen F. Weiss. Research Associate Gordon J . Ferguson

was chief architect of the system. Graduate students who contributed to the coding effort

included Scott Southard, Bobby Starn, Candee Ellis, John Gauch, Susan Gauch, Richard

Potter, and James Ericksen. Scott Southard was the principal author of this report .

24

References

Smith, J. B., Weiss, S. F., & Ferguson, G. J . (1986), MicroArras: An Overview, Chapel

Hill, NC: UNC Department of Computer Science Technical Report# 86-017.

Gauch, S. & Smith, J . B. (1987), Intelligent Search of Full-Text Databases, Chapel Hill, ~

NC: UNC Department of Computer Science Technical Report # 87-035.

25

Appendices

26

COMMAND

RETURN

Flange Message Types

A command being sent from the User Interface to the En­
gine. The subtype specifies the specific command to be pro­
cessed, and the data syllables contain the content of the
command

A return message sent from the Engine to the User Interface.
The subtype specifies the type of return message, and the
data syllables contain the content of the return message.

RETURN_COMMAND A special return message sent from the Engine to the User
Interface in response to a DISP _WS or READ_WS com­
mand. The subtype specifies the type of command being
returned, and the data syllables contain the content of the
command being returned.

RETURN _FILE A special return message sent from the Engine to the User
Interface in response to a READ _ WS command. The sub­
type and data syllables are the same as those in an ordinary
return message, but the RETURN _FILE type specifies that
the command yielding this return message was read from a
file rather than sent from the Interface.

RESET

DISASTER

CONTINUE

ABORT

SHOW _FLANGE

A control message sent from the Engine to the User Inter­
face if the User Interface aborted a RETURN message. No
subtype or data syllables are given.

A control message sent from the Engine to the User Interface
if the Engine suffers an internal error, such as an out of
memory condition. No subtype or data syllables are given.

A control message sent from the User Interface to the En­
gine. This message tells the Engine to continue sending the
return message from the previous command. No subtype or
data syllables are given.

A control message sent from the User Interface to the En­
gine. This message tells the Engine to stop sending the
return message from the previous command. No subtype or
data syllables are given.

A control message sent from the User Interface to the
Engine after receiving a RETURN _FILE message. This
message type is used to force the Engine to send a RE­
TURN_COMMAND message. No subtype or data syllables
are gtven.

27

•

Flange Command Message Subtypes

WINDOW..DEF

WINDOW ..SET

WINDOW _UNION

WINDOW _INTERSECT

WINDOW _CLIP

CONTEXT ..DEF

CONTEXT ..SET

SIE..DEF

SIE..SET

DEF..HIER

LOCATE..HIER

HIER..MARKS

DEF..LIN_CAT

LIN_CAT_ADD

LIN _CAT ..DELETE

LIN_CAT_CLIP

LIN _CAT ..SIZE

DEF_TLIST

TLIST_ADD

TLIST ..DELETE

PATTERN

RANGE

WORD..BY ..FREQ

Define a window from a list of endpoints or pivot-context
pall"S.

Set the default window.

Define a window as the union of other windows.

Define a window as the intersection of other windows.

Define a window as part of another window.

Define a context.

Set the default context.

Define a segment-in-effect specification.

Set the default segment-in-effect specification.

Define a hierarchy.

Translate between hierarchies.

Display format marks in hierarchy.

Define a token list (linear category) .

Add elements to a token list.

Delete elements from a token list.

Define a token list as the first n tokens of another list.

Display the number of tokens in a token list.

Define a type list by enumerating types in the list.

Add types to a type list.

Delete types from a type list.

Define a type list of all words matching a pattern.

Define a type list of all words in an alphabetic range.

Define a type list of all words occurring with a given
frequency.

28

CO_OCCURENCE

TLIST_CLIP

PATTERN _CLIP

RANGE_CLIP

TLIST_8IZE

DEF _REC_CAT

REC_CAT_ADD

REC_CAT _DELETE

CHANGE_ WINDOW

CONFIG

EVAL_CAT

DEF_VAR

ARITH_VAR

FREQUENCY

SIZES

READ_WS

WRITE_WS

DELETE_WS

DISP_WS

DISP_TEXT

DISP_CONC

Define a type list of all words occurring close to a given token
list.

Define a type list of the first n tokens of another list.

Define a type list of all words of another list matching a
pat tern . .

Define a type list of all words of another list in an alphabetic
range.

Display the number of types in a list.

Define a recursive category from other categories, type lists,
and token lists.

Add elements to a recursive category.

Delete elements from a recursive category.

Modify the window attached to a recursive category.

Define a configuration expression.

Define a token list by·evaluating a recursive category.

Define an arithmetic variable.

Perform an arithmetic operation on variables.

Define an arithmetic variable by performing a frequency
distribution of format marks or category words across a
window.

Define an arithmetic variable by computing the distribution
of sizes of a frequency distribution.

Read Flange commands from a file.

Write Flange commands into a file.

Delete objects in the workspace.

Display names of objects in workspace, or Flange commands
use to create named objects.

Display text in a window.

Display a concordance of words in a category or list.

29

~-

DISP_DICT

; DISP_VAR

CANON

DISP ..MARKS

FIND_TEXT

FIND_CITATION

OK_TOKEN

TOKEN_TYPE

STOP

NOP

Display the words in a type list, with their frequency of
occurrence.

Display an arithmetic variable.

Display a list of the canonical format marks.

Display the format marks used in a specific text.

Display names of texts in database that match boolean
search constraints.

Display the citation for the given text.

Verify that syllable is valid.

Display the syllable type of the given syllable.

Stop the MicroArras session.

No operation.

30

CANON _LIST

CITATION

ERRMSG

HIERYOS

LEXICON

MARK_LIST

NAMES

NUMBERS

SIZE

Flange Return Message Subtypes

A list of canonical format marks.

A bibliographic citation.

An error message.

A hierarchical description of a position in a text.

A list of words, possibly with their frequencies of occurrence.

A list of segment marks used in a text.

A list of defined objects.

A scalar, vector, or matrix of numbers.

A number representing the length of a token list or type list.

SYLLABLE_TYPES A list of syllable types.

TEXT A sequence of text words and segment marks.

TEXT _LIST A list of text titles.

WARNMSG A warning message.

31

..

....

FILE..NAME

TEXT ..NAME

Flange Data Syllable Types

The name of a file.

The name of a text in the database.

WINDOW..NAME The name of a window .

CONTEXT ..NAME The name of a context.

CAT ..NAME

TLIST..NAME

VAR..NAME

SIE..NAME

HIER..NAME

NAME

NEW ..NAME

FIG_OP

FIELD_OP

ARITH_OP

BOOL_OP

WRITE_OP

CLASS_OP

SEARCH_OP

STRING

COUNT

FMARK

TEXT_WORD

LINENO

PARTITION

The name of a category.

The name of a type list.

The name of an arithmetic variable.

The name of an SIE specification.

The name of a hierarchy.

The name of an object.

An undefined name.

A boolean operator used in a configuration expression.

A field of a bibliographic citation.

An arithmetic operation.

A boolean operator used in a bibliographic search.

An operator specifying whether to overwrite or create a file.

A class of object (window, context, etc.).

An operator specifying precision of bibliographic search.

Any string of characters.

A non-negative integer.

A segment (format) mark.

A word in a text.

A line number of a configuration or arithmetic expression.

A positive integer representing a number of partitions.

32

INTEGER

FLOAT

NEW ..LINE

WAIT_CODE

UNKNOWN

ANY

END

An unrestricted integer.

A floating point number.

A syllable used as a delimiter in a Flange message.

A code used for Flange protocol management.

An object of unknown class.

An object of any object class.

The end of a command or return message.

33

Flange Message Passing Protocols

The following table presents the possible actions that may be taken by the Engine when
it receives a message of the given type from the User Interface:

User Interface Engine

COMMAND RETURN

RETURN _FILE

RETURN_COMMAND

DISASTER

CONTINUE (Next Packet)

RETURN

RETURN_COMMAND

DISASTER

ABORT RESET

DISASTER

SHOW _FLANGE RETURN_COMMAND

DISASTER

34

When Used ·

Normal return message

Return message from command read
from a file

Content of message of command read
from a file

Engine internal error

More of last message needs to be sent

Finished sending commands read
from file or symbol table

If Engine is sending commands read
from file

Engine internal error

User aborted return message between
packets

Engine internal error

User requested content of message
read from file or symbol table

Engine internal error

The following table presents the possible actions that may be taken by the User Inter­
face when it receives a message of the given type from the Engine:

Engine User Interface When Used

RETURN COMMAND Send another command

RETURN_COMMAND CONTINUE Send next command read from file or
symbol table, or return message

ABORT Stop sending commands read from
file or symbol table; just send return,
message

RETURN ..FILE CONTINUE Send next command read from file

ABORT Stop sending commands read from
file

SHOW ..FLANGE Show the Flange command just read
from file

RESET COMMAND Send another command

DISASTER any Prepare for Engine to die

35

~

~·

-~

!

Figure 4 shows all possible states of the system and the relations among them. The

rectangular nodes represent the states the Engine is in when ready to accept a Flange

message from the User Interface. The elliptical nodes represent states passed through

during processing of a message. Transitions are made from a rectangular node to an

elliptical node when the Engine receives a Flange message from the User Interface, and

from an elliptical node to a rectangular node when the Engine sends a message to the

Interface. For example, if the system is in the processing..st state and receives a command

other than READ_WS, the system will be in the wait..st state. Eventually the Engine

will send a Flange message. If the message is short enough to fit into a buffer the system

follows the arrow back to the processing..st state. If not, the system goes to the ack..st

state and is then ready to accept only a CONTINUE or ABORT control message.

36

..

MicroArras System States

command

rcvparterr_st

rcvpartfl_st

continue

Figure 4.

