Using IDL in a Heterogeneous Environment

TR88-040

August 1988

Sundar Varadarajan

The University of North Carolina at Chapel Hill
Department of Computer Science

CB#3175, Sitterson Hall

Chapel Hill, NC 27599-3175

UNC is an Egqual Opportunity/A firmative Action Institution

Using IDL in a Heterogeneous Environment
by

Sundar Varadarajan

A Thesis submitted to the faculty of the University of North Carolina at
Chapel Hill in partial fulfillment of the requirements for the degree of Master
of Science in the Department of Computer Science.

Chapel Hill

August 1938

Approved by:

1 dmd Ed ot

Advisor — Dr. Rjr:ha.rld Snodgrass

fé”fﬁﬂs

Rea&er - Dy. Jale/
y

ader — Dr. rDean Brock

©1988
Sundar Varadarajan
ALL RIGHTS RESERVED

Acknowledgements

[would like to thank Rick Snodgrass for his help and encouragement through the
course of this research. I would like to thank Jan Prins and Dean Brock for taking
their time to serve on the thesis committee and for their comments on this text. |
would like to thank Ed Mckenzie for his advice on various matters.

v

To
Appa and Manni

Contents

1 Introduction 1
11 Peublen o oo i e, i e e e i G T e e e
2 Previous Work 5
3 The Methodology 7
3.1 Dimensions Of the Problem Space 4 ... 10
N ISR oo bl e P, Wl B L 12
E IRt e WS R SRR AR R R G 18
S DA oy o o BRSSO T, B i 18
3.5 ‘Mebriceon the Solobitis . o ici ey B e e i SuE B 20
35 CREEETEENGURE o oo e s R B e BaE 27
3.7 Trapslorming Many Interfaces - .. , v 0 5o v g sas 40k v s wa 28
¥ LOnEIBIOnE: «: = v6 st om 5% Sale S S e e ae 2ue soes s 29
4 Transforming a Syntax-directed Editor 30
4.1 Transformation of the output interface 32
4.2 Transformation of the input interface 35
£ Conclumons: i« v w2 006 S5s plaE S 8ead B B ede @ e 38
5 Transforming XDR 39
5.1 Transformation of the Input Interface 41
5.2 Transformation of the Output Interface 43
i CoOmUIUEIONSE s GG v e Sl i wa weene B Sed dE 3 e 45
6 Conclusions 47
Bil. POAEEWOER . . s ox cim s mesae wew O wm APRd s T AR E wid i A7
7 Bibliography 49
A Glossary 51
B Code for Syntax-directed Editor 54
Bl ThHESereBaabion o s v win® o dlnct s Sod abls S mskm s 54
B.2 Transformation of the Output Interface ., 57
B.3 Transformation of the Input Interface 62

vi

C Code for XDR
C.1 The Specification
C.2 Input and Output using XDR

D Summary of the Methodology

IRl TNEE

Vil

...................

C.3 Transformation of the Input Interface
C.4 Transformation of the Qutput Interface

..................

74
T4
i
80

84

87

Chapter 1

Introduction

One of the major problems in Computer Science concerns the development and main-
tenance of complex software systems. A method of development is to divide the sys-
tem into smaller subsystems that interact with each other and the environment in
a well-defined fashion. These subsystems could then cooperate to achieve the goals
of the computer system. While such a division is neither trivial nor obvious, once
it has been done the subsystems can be developed independently and concurrently.
Parallel implementation assumes that the subsystem, as well as its interaction with
other subsystems and the environment, is completely specified. Therefore, we need a
framework to specify the subsystem.

A subsystem is specified when its interfaces and the transformation it performs
on the input data to compute the output data is specified. This specification can be
used to develop and test the subsystem. It is conceivable that a subsystem can be
generated from such a specification. The specification for a subsystem consists of a
part that specifies the structure of the data at the interfaces and another that specifies
the transformations that it performs. The interface data structure specification can
be used to generate data to test the subsystem. The subsystem reads and writes
instances of these data structures. The mapping from these instances to a form that
is communicable across the physical interface can be done automatically.

The Interface Description Language (IDL) [Nestor et al. 1982] is a language for
specifying the structure of the data communicated across the interfaces. IDL is a data
structure specification language and includes a set of basic types and constructors
that may be used to construct new types from other types. The basic types are
Integer, String, Boolean and Rational. A nedein IDL is analogous to a Pascal [Wirth
1971] record. The attribules of a node are analogous to the fields of a record. Some
attribute values may be shared between two or more nodes. Sets and Sequences of a
tvpe may also be constructed. A class is a group of nodes that may have some common
attributes. Every structure specification has a distinguished node (or class) called the
root from which all the other nodes in the structure may be accessed. For example,
consider the specification in Figure 1.1, that specifies an expression tree. The root
of the structure ‘exp’ is a class that has as its subclasses ‘binop_exp’, ‘unop.exp’
and ‘term’. The class ‘exp’ has associated with it the attribute ‘value’ of type
Integer. The class ‘binop-exp’ has two attributes ‘left_exp' and ‘right_exp’, that

L]

Structure exp_tree Root exp Is
exp ::= binop.exp | unop.exp | term ;
exp => wvalue: Integer ;
binop_exp ::= add_exp | sub_exp | mult_exp | div_exp ;
binop_exp => left_exp: exp,
right_exp: exp ;

uncp.exp ::= negate_exp ;
unop_exp => expr: exp;
End

Figure 1.1: An IDL specification for an expression tree

add_exp
[value 5;
left_exp term

[value 2];
right_exp L1°
]
Ll: term
[value 3]
#

Figure 1.2: ASCII ERL representation of an expression tree

are common to all sub-classes of that class. ‘term’ is a node that has no attributes.
IDL can be used to specify directed, and possibly cyclic, graphs.

The IDL Toolkit [Snodgrass 1988] provides a number of tools to facilitate the use
of IDL on subsystems developed for use with the UNIX operating system. In this
realization of IDL, each subsystem is mapped to a UNIX process. The subsystems
interact with each other through data communicated through files (or through pipes).
The data, which are an instance of the IDL specification, are communicated as a
sequence of ASCII characters in a format called the ASCII External Representation
Language or ASCII ERL.

The ASCII ERL representation of a structure is the ASCII ERL representation of
the root of the structure. The ASCII ERL representation of a node is the name of the
type of the node concatenated with enumeration of all the attributes of the node. The
ASCII ERL representation of the expression tree for the expression ‘243" is given in
Figure 1.2. This expression tree is an instance of the IDL specification in Figure 1.1.
Each attribute of the node is listed as an (attribute name, attribute value) pair (e.g.,
value 3). Instead, the attribute may be listed as a (attribute name, attribute label)
pair(e.g., right_exp L1~) . This label refers to the value of the attribute that occurs

output

structure

Figure 1.3: An IDL generated process

elsewhere in the IDL instance.

The idl translator (IDLC), one of tools in the toolkit, maps IDL specifications into
data declarations in a target language, i.e., a programming language like ‘C’. IDLC
also generates readers, that create the IDL instance in memory from the data in
ASCII ERL format. Similarly, writers are generated to write out the in-memory [DL
instance in the ASCII ERL format. A tool implemented using the toolkit reads in
the IDL instance using the readers, computes the output instance and writes out the
IDL instance using the writers. This is illustrated in Figure 1.3. The IDL instance
output can be read by another process. Communication of complex data structures
is fairly simple using the readers and writers provided by IDLC.

1.1 Problem

A tool may be specified in IDL by specifying the structure of its input and output
data in IDL. There are a number of existing tools (processes) which are not written
using the toolkit, but whose input and output can be specified in IDL. The format in
which the input and output data are stored externally are specific to each tool. Even

if two processes input and output the same data structure, they may not be able to
communicate with each other, since the formats may be different. This research will
consider ways to enable such processes to input/output the IDL instances to other
processes using the toolkit.

The basic problem is one of using [DL in a heterogeneous environment, an envi-
ronment in which some processes use IDLC and some do not. First one has to specify
the process’ input and output in IDL. Then the process should communicate instances
of this specification in a format acceptable to other processes. The problem of com-
municating instances in a format acceptable to other processes is the main focus of
this research.

There are two solutions to this problem. One is to modify IDLC to generate code
that accepts the data produced by the process as a representation of an IDL instance.
Another is to modify the process to input and output the IDL instance in the standard
format. Consider a situation in which n processes output the same IDL instance. In
the first case, n different processes would produce n representations for the same
IDL instance. If m tools accepted this IDL instance, n versions of each tool would
be needed, requiring m * n tools. In the second case, n processes would have to be
modified and only m tools would be needed. The idea is to convert the IDL instance
to the standard format expected by IDLC so that any process written using IDLC can
use the information.

This research considers the problem of transforming the process (or its input
and output) so that data structure it communicates will be in the standard format.
There are a few approaches to performing such a transformation. A methodology is
proposed that may be used to choose between the various approaches depending on
the characteristics of the problem. Metrics associated with the different approaches
are provided. The methodology is tested by applying it to transform two tools.

Related work done in the area of higher level data interfaces is considered in
the next chapter. Chapter 3 presents the different approaches, the methodology to
choose between the different approaches and the metries associated with the different
approaches. The methodology is applied to two different tools, a syntax directed
editor, discussed in Chapter 4 and XDR, discussed in Chapter 5. Chapter 6 presents
the results of this research and points to future work in the area.

Chapter 2

Previous Work

The area of higher level data interfaces overlaps two areas: computer communication,
concerned with the transfer of data, and interprocess communication, concerned with
issues in exchanging messages between processes. This chapter examines the work
done in these areas with emphasis on higher level data interfaces.

The advent of computer networks has given rise to a number of communication
protocols. The International Standards Organization has developed a seven-layered
model of a computer network called the Reference Model of Open Systems Intercon-
nection [Tanenbaum 1981A]. Most of the existing communication protocols [Tanen-
baum 1981B] are transport, network and data link layer protocols (e.g., HDLC, X.25).
These layers are concerned with the issues of routing and the unreliability of the
physical medium. The session, presentation and application layers are concerned with
establishing communication, performing transformations on data (e.g., data compres-
sion and encryption) and supporting specific applications. Most existing high level
protocols like virtual terminal protocols, file transfer protocols and message transfer
protocols are geared to very specific applications. The ASCII ERL could form the
basis of a protocol to communicate complex data structures between processes on a
computer network,

Interprocess communication is concerned with issues in exchanging messages be-
tween processes. The emphasis in research has been the sharing of resources between
processes. There has been a lot of work in process synchronization, atomicity and
serialization of operations. There are a number of algorithms and models that resolve
some of these issues [Chambers, et al. 1984],

There has not been much work in the area of higher level data interfaces. Most
data interfaces (e.g., UNIX pipes) are organized as a stream of bytes or charac-
ters. Some data representation protocols are capable of communicating complex data
structures. An example of this is the External Data Representation Scheme (XDR)
[XDR 1986] developed by Sun Microsystems Inc. XDR is a procedural interface that
can be used to communicate between processes’, data structures specified in the ‘C’
programming language [Kernighan & Ritchie 1988]. However, data structures com-
municated using XDR are represented in-memory and therefore cannot be stored in
files as data communicated using pipes can.

IDL is a language for specifying data structures communicated between processes.

The IDL Toolkit, a set of tools to facilitate the use of IDL, represents data structures
externally in the ASCII ERL format. Biyani [Biyani 1987] has developed a run-time
system for IDL that represents IDL data structures in a more compact, but language
and machine dependent, format.

Chapter 3
The Methodology

Consider a tool that reads data, performs some computation and writes out data as
shown in the Figure 3.1. The input and output data are in a format specific to the
tool. The routines that read and write external data, and the implied format of that
data, is termed the tool’s interface. It is desired that this tool be converted so that its
input and output data are instances of IDL structures as shown in Figure 3.2, That
is, all the interfaces need to be transformed to read and write IDL instances.

This chapter discusses a methodology to transform an interface so that it may
read or write instances in the standardized IDL External Representation Language,
or simply the IDL format. In general, more than one interface may need to be
transformed. The methodology that is proposed here will aid the transformation
of one such interface at a time. However all the interfaces may be transformed by
applying the methodology separately to each one of the interfaces. Thus a tool with
several interfaces can be transformed to input and output IDL instances. Such a tool
would input and output IDL instances in the standardized format.

The use of a standardized data format (the IDL format) gives rise to the possibility
that several tools may be interfaced together. For example, a code-generator can be
built that can generate code from the frontends (consisting of syntactic and semantic
analysis phases) of both Pascal and C compilers. At first sight, it appears that the
transformation of the interface between a frontend and the code generator should be
simple. The transformation will be simple if just the format of the interface alone
were changed to the IDL format. However, the purpose behind the transformation is
to make it easv to build new tools. It may be desirable that these frontends output
all the useful information they can even if it can be re-computed. For example,
the semantic analysis phases of the above compiler frontends should include in its
symbol table not only the defining occurrences of symbols, but also all their uses.
This latter information is computed during semantic analysis and would be useful
to later optimization phases. The internal data structure of the semantic analyzer
may contain this information, but its output data may not. Usually, the internal
data structures of tools contain complex relationships between the data items, but
the output data does not contain these relationships.

Consider a tool whose oulput data does not contain complex relationships be-
tween data items that are present in the internal data structure. These relationships

Input Output
Data Data

(tool-dependent (tool-dependent
format) format)

Figure 3.1: Example of a tool

Input Output
Dam Data
(in IDL format) (in IDL format)

Figure 3.2: Example of a tool whose interfaces have been transformed

may be computed by other tools that use this tool’s output as their input. If the
output of this tool contains the complex relationships between the data items then
these relationships need not be re-computed by every new tool that is implemented.
Therefore it is desirable that the output of the tool contain the complex relationships
between the data items.

Output formats of tools are restricted by the linear nature of the output interface.
These formats are usually simple and do not describe complex relationships between
data items that are present in the internal data structure. These relationships are
computed internally after the input data is read and are ignored when output data
is being written out. However, IDL can be used to describe complex relationships
between data items. These relationships are embedded as attributes of the data
items. The relationships are preserved when an IDL structure is externalized in the
IDL format. If the interface routines were transformed to generate IDL instances,
then these relationships can be output as well.

Since the IDL format is being used to exchange data, it is necessary that a tool also
accept [DL instances as input. Input interfaces need to be transformed to accept [DL
instances. Further, these transformations should not affect the tool's functionality.
Special care is needed when input interfaces are being transformed.

To transform an interface, the methodology requires the tool and the interface that
is to be transformed be known. The methodology is not concerned with specifying the
IDL structure that should be associated with the interface being transformed. The
methodology assumes that this IDL structure is completely specified. If the interface
is an output interface then it is assumed that the information present in the output
IDL instance is already computed by the tool. If the interface is an input interface
then it is assumed that the input IDL instance contains all the information required
by the tool’s input. The method by which the output IDL instance may be computed
from the information available in the tool (for output interfaces), or how the input
IDL instance may be used to compute the tool’s input data or internal data structure
(for input interfaces) must also be known.

The methodology is applied as follows, There are many aspects to the problem
of transforming an interface to communicate an IDL instance. Some of these aspects
may be cast as dimensions. These dimensions when taken together characterize the
set of problems and may be considered as the problem space. A particular problem
can be examined and its characteristics determined. Using these characteristics, the
particular problem may be identified with a point in the problem space. Associated
with each point in the problem space is an approach applicable to that point along
with the metrics of the transformation. The approach specifies how an interface may
be transformed to communicate an [DL instance. Some points in the problem space
have no approaches associated with them. The metrics associated with each approach
discuss how easy the process of transformation would be. Sometimes more than one
approach may be applicable to a point in the space. Then the metrics for all the
approaches will be listed. The approach that is best suited to the problem should be
chosen.

In the subsequent sections the dimensions, approaches and metrics are defined.

10

Following these definitions, a mapping of the points in the problem space into ap-
proaches is provided. Metrics are then provided for each solution. The chapter
concludes by discussing the merits and deficiencies of this methodology.

3.1 Dimensions Of the Problem Space

The problem space has four dimensions. Some of the problems may be multi-valued
along some of the dimensions. In that case, the different values have to be considered
separately to determine the approach that is best suited.

Input or Qutput This dimension specifies if the interface that is being transformed
is an input interface or an output interface.

Choice of Data A problem may have multiple values for this dimension. The [DL
structure specifies the data structure that should be communicated by the in-
terface. This data structure contains some complex relationships between the
data items. For example, an attributed syntax tree output by the semantic
analysis phase of a compiler contains, for every symbol, the defining occurrence
of the symbol.

If an output interface is being transformed, then these relationships have to be
computed. They may be computed from different forms of data. This dimension
specifies the forms of data from which these relationships may be computed.
Similarly, if an input interface is being transformed, these relationships should
be translated to data meaningful to the tool. This data may be in different
forms. Since the information present in the input IDL instance may be limited,
it may be possible to translate this instance into some forms of the data. There
many different forms of data, but only the following are of interest.

External The choice of data is the external data. External data refers to data
that is external to the original tool, i.e. its original input or original output
data. If an output interface is being transformed, then this means that the
original output data contains sufficient information to compute the output
IDL instance. If an input interface is being transformed, this means {hat
the input IDL instance contains sufficient information to compute original
input data.

Consider an expression evaluator that accepts expressions in postfix form
as input. If the input [DL instance is an expression tree, then the choice of
data is external, since the expression tree can be converted into the postfix
form.

Consider a tool that produces as output an expression in prefix form. If
the output IDL instance is an expression tree, then the choice of data is

external, since the expression tree in prefix form can be converted into the
expression tree (the arity of the operators is known).

1l

Internal The choice of the data is the internal data structure. This refers to
data that is internal to the tool. In particular, this refers to the global
data structure present in main memory during the execution of the tool.
If an output interface is being transformed, this means that the state of
the internal data structure (just before data output) contains sufficient
information to compute the IDL instance. If an input interface is being
transformed, this means that the input IDL instance contains sufficient
information to compute the state of the internal data structure (just after
the input data is read).

Consider a program that evaluates the type of an expression. This pro-
gram produces as output the expression tree along with the type of the
expression, If the IDL structure requires the type of all sub-expressions
of the expression, then that choice of data is internal (i.e., not available
in the tool’s original output, but computed as a side effect in the internal
data structure).

Consider a program that evaluates an arithmetic expression. This program
accepts as input an infix expression. The internal data structure stores the
expression tree. If the input IDL instance is the expression tree, then the
choice of data is internal, since the internal data structure can be computed
from the input IDL instance.

If the tool's only input interface is being transformed, the input IDL instance
contains sufficient information to compute the state of the internal data struc-
ture and the original mput data. That is, the problem of transforming an
input interface is always multivalued in this dimension. However, the value
the particular problem has along the dimension ‘Complexity of Computation’
is dependent on the choice of data.

Complexity of Computation The preceding dimension concerns a computation
that needs to be performed, that of adding relationships not explicit in the
tool’s original input or output. This dimension considers the complexity of
that computation. It is not possible to give a precise definition of complexity.
Characterizations of simple computation are

1. The computation is simple if there is correspondence between attributes
in the [DL structure and portions of the data.

2. The computation is simple if two attributes that are independent in the
IDL instance are also independent in the data.

Two attributes in an IDL instance are independent if their values which are
directed graphs do not have any common nodes. Independece in the data is
defined analogously. A complez computation is one that is not simple. For ex-
ample, the parser of a compiler may output the parse-tree. If the IDL structure
required that every symbol in the parse tree point to its declaration, that would
be a complex computation.

12

Constraints on the Implementation There are many attributes of the problem
that are pertinent to this dimension. A problem may have multiple values along
this dimension. The different values along this dimension are as listed below.

Availability of the external data format.

Availability of the name space used by the program.

Documentation about the internal data structure.

Availability of the source code, with documentation,

P e ey

Availability of the source code for modification.

3.2 Approaches

There are many ways in which an interface may be transformed to read or write
instances in the IDL format. This section discusses some of the general approaches,
The approaches that apply to a few specific cases are not presented. Some of these
approaches can be cast into one of the general approaches after some modifications
to the problem. These techniques are described in Section 3.6.

When an interface is being transformed the IDL data structure that should be
communicated across the interface must be specified. An ezternal IDL instance is
an instance of this IDL data structure that is in the IDL format. An internal [DL
instance is an instance of an DL data structure that is stored in a main memory data
structure. This data structure may be a derivation of the IDL structure specification
that is transmitted across the interface. The extra attributes available in the internal
IDL instance need to be computed and may be used ease the transformation of the
interface. Routines provided by IDLC can be used to convert between the internal and
external IDL instances. There are 10 approaches and they fall into two categories.

Converting between IDL instance and external data These approaches em-
ploy filters to convert between the IDL instance and the external data of the
tool. A filter is a program that connects the interface to the external world by
converting the data from one format to another. Examples of these approaches
are illustrated in the Figure 3.3. These approaches are non-invasive, in that
the tool is not modified in any way. Only the working environment is changed.

These approaches require a complete understanding of the external data format
of the tool.

There are four such approaches. The first two apply to input interfaces and the
next two apply to output interfaces.

1. The tool’s input is created from the external IDL instance, The filter reads
the input IDL instance incrementally and processes it to produce the orig-
inal input of the tool. Small parts of the input IDL instance are processed
to produce portions of the original input data of the tool. These portions
are produced in the order in which the parts are read. Routines provided
by IDLC cannot be used to read the input IDL instance incrementally.

13

/ Filters \

Input Qurput [Output \ Output
> > | toIDL >
data data instance data
(in IDL
(in tool-dependent format)

Figure 3.3: Examples of filters

Consider an expression evaluator that requires the expression tree encoded
in preorder. The input IDL instance contains the expression tree, which is
encoded in preorder. For example, the expression

add_exp[
left_exp sub_exp(
left_exp constant[value 2]
right_exp constant[value 3]]
right_exp constant[value 5]]

may be transformed into

+

%}

5

by a simple scanner that transforms

‘add_exp[’ — 4
‘sub_exp[’ - 5
*left_exp’ — :
‘right_exp’ —

\-]' — i

‘constant [value' #]' — =

where z is an integer.

14

2. The tool’s input data is generated from the internal IDL instance. The
input IDL instance is read into main memory by routines provided by
IDLC. The original input data required by the tool is computed from the
IDL instance and is written out by the filter. Since the IDL instance is
in memory, the attributes of the IDL instance can be examined in any
order. It may sometimes be necessary to build other data structures to
compute the original input data. Usually, the original input data should
be computable from the IDL instance in memory and a few variables.
Consider an expression evaluator that expects the expression tree encoded
in postorder. The input IDL instance contains the expression tree, but
it is encoded in preorder. The expression tree can be read into main
memory using routines provided by IDLC. The tree can then be traversed
in postorder and the original input data constructed for the original tool.

3. The external IDL instance is created from the tool's output. This approach
is similar to the approach 1 listed above. The filter reads the original
output of the tool incrementally and processes it to produce the output
IDL instance. Small parts of the tool's output are processed to produce
portions of the output IDL instance. These portions are produced in the
order in which the parts are read. Routines provided by IDLC cannot be
used to output the IDL instance incrementally. These routines need to
generate not only the values of the attributes, but also the names of the
attributes. If the attribute names are not available in the output data,
then it must be computed from the IDL structure specification.

Consider a tool that produces as output an expression in prefix notation,
i.e. similar to the original input of Approach 1. The output IDL instance
required as output is one that contains the expression tree. Since a tree
in the [DL format is encoded in preorder, the IDL instance can be created
from the output of the tool (the arity of the operators is known). The
tree may be built depth first as follows. A stack of operators, initialized to
empty, contains the count of the operands associated with each operator.
When an operator (say '4') is encountered in the input, the operators
on the top of the stack that have the count of the operands equal to
their arity are removed. For each operator removed, a ‘1" is output. The
count of operands of the operator on top of the stack is incremented. The
attribute name corresponding to the number of the operand (‘left_exp’
if 1, ‘right_exp’ if 2) is output. The current operator is added to the
stack and its count of operators is set to 0. The name of the current
operator (lL.e. ‘add.exp[’) is output. If a constant (say z) is encountered
then ‘constant[value r]'is output. The stack has to be set up initially
and special processing is required on end of input.

4. The internal IDL instance is created from the tool’s output. This approach
is similar to the Approach 2 listed above, The output data of the tool is
read and the [DL instance is created in memory as the data is being read,
This IDL instance may then be output using write routines provided by

15

Input Output
:> Subroutine b

data data

(in IDL format) (in IDL format)

Figure 3.4: Use of subroutines

IDLC. Since the IDL instance is in memory the attributes of the IDL
instance can be computed in any order. Sometimes intermediate data
structures may have to be built to compute the IDL instance.

Consider an expression translator that takes as input an infix expression
and produces as output a postfix expression. This output data needs to
be converted into an IDL instance of the expression tree. This tree may
be built bottom up as follows. A stack initialized to empty, contains the
current operands. Whenever an operand (a constant) is encountered in the
original output it is added to the stack. When an operator is encountered
in the original output, the top two operands are removed from the stack,
a new operand (which is the operator acting on the operands) is added to
the stack. The only element on the stack at the end of the input is the
required tree. This may then be output using routines provided by IDLC.

Converting between the IDL instance and internal data structure These
approaches convert between the [DL instance and internal data siructure of
the tool. Usually, this can be done by a subroutine that converts between the
internal data structure and the [DL instance as illustrated in the Figure 3.4.
Approaches 7 and 10 replace whole or part of the internal data structure of the
tool. These approaches require a complete understanding of the internal data
structure of the tool. Further, the source code for the relevant portion of the
tool should be available for modification. The tool must also be modified so
that it does not read or write through its original interface.

There are six such approaches. The first three deal with transformation of input

16

interfaces and the rest with the transformation of output interfaces,

5.

=1

The tool’s internal data structure is created from the external IDL instance.
The subroutine reads the input IDL instance incrementally and builds the
internal data structure of the tool. As each part of the input IDL instance
is read, it builds or modifies a portion of the internal data structure. This
is done in the order in which the parts of the input IDL instance are
réad. Routines provided by IDLC cannot be used to read the [DL instance
incrementally.

The internal data structure of an expression evaluator contains an ex-
pression tree. The input input IDL instance contains the expression tree
encoded in the IDL format. The input interface may be transformed to
accept this input IDL instance and build the internal data structure as
suggested by this approach. The transformation can be simplified by con-
sidering some functions. The function ascend() sets the current node (a
global variable) to its parent. The function createfnode) creates the new
node, adds the node as the left son of the current node if free, else as
the right son, then sets the current node to the new node. The function
add(const) adds the constant to left son of the current node if free, else as
the right son. The current node is initialized to a special node called root
that has only one son. The example given for Approach 1 may then be
transformed by the following set of pattern matching rules.

‘add_exp[’ — create(plus_node)
‘sub_exp[’ — create{minus_node)
‘left_exp’ — do nothing
‘right_exp’ — do nothing
‘constant [value' x']’ — add(x)

E — ascend()

. The tool’s internal data structure is created from the internal IDL instance.

The subroutine reads the input IDL instance into memory using routines
provided by IDLC. The internal data structure is computed by traversing
the IDL instance in memory. Since the IDL instance is in memory, the
attributes of the IDL instance may be examined in any order.

. In this approach, the IDL input instance is read into an IDL structure

using routines provided by IDLC, This IDL structure is a derivation of the
input interface’s IDL specification. This internal IDL structure replaces
all or part of the internal data structure of the tool. A part of the data
structure may still need to be built from the IDL data structure. All
accesses and modifications to the internal data structure are replaced by
equivalent accesses and modifications that act on both the internal data
structure and the IDL data structure.

For example, a tool’s input may be a list of items. The tool’s internal data
structure is also a list which is implemented using an array. This internal

17

data structure may be replaced by an IDL data structure, The access
routines that accessed the original data structure have to be modified to
access the new data structure.

8. The external IDL instance is produced from the internal data structure.
This approach is similar to Approach 5. The subroutine writes out portions
of the output IDL instance by interpreting portions of the internal data
structure of the tool. Routines provided by IDLC cannot be used to output
IDL instances incrementally. The external format requires the attribute
names and their values, If the attribute names are not available in the
internal data structure of the tool, then these names have to hard-coded
into the subroutine or encoded in a table. These attribute names may be
obtained from the IDL structure specification. The internal data structure
can be traversed in any sequence and the output IDL instance produced,

An expression evaluator produces the value of the expression as its out-
put, but its internal data structure contains the expression tree. If the
output IDL instance is an expression tree, this can be done by doing a
preorder traversal of internal data structure and outputting the operators
and operands in the IDL format.

9. The internal IDL instance is produced from the internal data structure.

This approach is similar to Approach 6. The IDL instance in memory is
created from the internal data structure of the tool. The IDL instance
may then be output using write routines provided by IDLC. Since the IDL
instance is being built in memory, the attributes of the IDL instance may
be computed in any order.
The internal data structure of the semantic analyzer phase of a compiler
contains the attributed parse tree. This tree needs to be output in the IDL
format. A routine that walks the parse-tree and builds the corresponding
instance of the IDL structure in memory can be written. This IDL instance
in memory can then be output by routines provided by IDLC.

10. In this approach an IDL data structure is built that may replace part or
whole of the internal data structure of the tool. This IDL data struc-
ture is a derivation of the IDL specification of the output interface being
transformed. The output IDL instance is written out using routines pro-
vided by 1bLe, Like approach 7, macros that access and build the internal
data structure of the tool have to be replaced by equivalent accesses and
modifications to the internal data structure and the IDL data structure.
For example, consider the semantic analyzer phase of a compiler. The out-
put interface that outputs the errors detected in semantic analysis needs to
be transformed to output IDL instances. This may be done by building an
IDL data structure that is built as and when an error is encountered. Since
errors are not very infrequent, this may be more efficient than computing
the list of errors after the semantic analysis phase is completed.

Instead of transforming an existing output interface, a new interface to output

18

IDL instances can be created, by applying one of Approaches 8, 9 or 10. It is
possible to build this interface without any side-effects on the tool. This offers
the advantage that both the original output and the output IDL instance are
available, so either output may be used.

3.3 Metrics

This section considers the metrics that may be used to evaluate the different solutions
to transforming an interface. These metrics apply to the process of transformation
and the particular tool whose interface has been transformed. In this section, a
transformed tool is a tool whose interface has been transformed to communicate IDL
instances. There are three kinds of metrics that are considered.

Metrics on the transformation These metrics are concerned with the cost of
transforming the interface.
1. Length of time required to do the transformation
2. Manpower required to do the transformation.
3. Other resources that are required, e.g., disk space.
Metrics on the transformed tool These metrics are concerned with the extra
cost incurred by using the transformed tool instead of the original tool.
1. Amount of extra space required (static and dynamic).
2. Amount of extra time required.
3. Maintenance cost of the tool.
4. Other resources required (disk space ete.,.)
Robustness of the transformed tool These metrics are concerned with the ro-
bustness of the transformed tool to change.
1. Robustness over different versions of the tool.
2. Robustness over different versions of IDL and the IDL Toolkit.

3. Robustness over different versions of the environment.

3.4 Mapping

This section presents the mapping between the points in the problem space to ap-
proaches. There are four dimensions in the problem space: Input or Output, Data,
Complexity of Computation, Constraints on the Implementation. Some problems
may be multi-valued along some of the dimensions. Each of the different values have
to be considered separately as though they were separate problems and the approach
suitable found. From these approaches, the best approach should be chosen.

1P

1
n
Input P
1.2 2 o u
t
0
T
O
u
L
3.4 i t
P
Simple Complex ':

Complexity of Computation
[igure 3.5: Approaches for problems with data dimension ‘external’

The mapping is done as follows. The problem space may be partitioned into two
along the data dimension. The problems in the first partition (i.e. data dimension
‘external’) may be solved by approaches in the first category. The problems in the
second partition may be solved by the approaches in the second category. The dimen-
sion ‘Constraints on the Implementation’ refers to some conditions that have to be
satisfied before the approaches may be applied. The other two dimensions determine
the particular approach in the category that is applicable to the problem.

The approaches in the first category are suited to the problems that have the
value along the data dimension as ‘external’. For these approaches, the format of the
original data must be known to transform the interface. The approaches suitable for
the different problems are illustrated in Figure 3.5. The numbers identify the relevant
approach.

The approaches in the second category are suited to problems that have the value
along the data dimension as ‘internal’. For these approaches the source code of the
original tool must be available for modification. The approaches suitable for the
different problems are illustrated in Figure 3.6, The numbers here also identify the
relevant approach.

Approaches 1 and 5 suggest that the input IDL instance be processed incremen-
tally. It is not clear how the IDL instance should be split up to be processed in-
crementally, or if such a split is possible at all. However, these two approaches are
apphlicable only if the *Complexity Of Computation’ is simple. One characterization
given of a simple computation is that two attributes that are independent in the
IDL instance are also independent in the data. The IDL instance can be split into
attributes that are independent and these can be used to generate pieces of the data

20

I

n

Input p

51617 ﬁ,? pu u
t

0

T

8]

Output =

8.9.10 g :
Simple Complex ‘:

Complexity of Computation

Figure 3.6: Approaches for problems with data dimension ‘internal’

(either the original input data or internal data structure).

Similarly, Approaches 3 and 8 suggest that the data (either input data or internal
data structure) be processed incrementally. These approaches are applicable only
if the ‘Complexity Of Computation’ is simple. Another characterization given of a
simple computation is that there is a correspondence between attributes in the IDL
structure and portions of the data. These portions of the data should be used to
compute the corresponding attributes of the IDL structure.

3.5 Metrics on the Solutions

This section considers the metrics on the solutions presented in the previous section.
First the effect of modifications to IDL and IDL toolkit on the different approaches is
examined. Then some aspects aflecting more than one approach are presented. For
each approach, a general discussion about the difficulty of the approach, followed by
values for the different metrics, is presented.

The format in which the IDL data structures are written out (the IDL format)
is fixed by the IDL toolkit. IDLC maps a structure specification in IDL into data
structures in the target language and provides routines to read and write these data
structures, IDLC also provides some operators to operate on these data structures.
Changes to IDLC could change one or more of the above.

Approaches 1,3,5 and 8 do not use IDLC and the IDL toolkit but for the external
representation format of an IDL instance. They are therefore robust over changes in
IDLC with respect to the interface routines, data structures and operations on these
data structures, provided by IDLC.

21

Approaches 2, 4, 6, 7, 9 and 10 use the interface routines and the data structure
declarations provided by IDLC. Changes to the interface routines and the external
format should not pose a problem, since the interface routines should still be able
to read/write the data structures in the appropriate format. These approaches may
need to be rewritten if there are changes to the data structures and the operators.
These changes should be fairly simple since the basic nature of IDL will not change.
It may be possible to automate the process of rewriting these approaches.

The changes to IDLC and the external format may affect the metrics on the trans-
formed tool. For instance, a compact external representation may improve the per-
formance of the transformed tool substantially. These changes may also affect the
approach that is most suitable for a particular problem. These changes affect the
“Complexity of Computation” of the problem. Other approaches may then become
more suitable. For the example in Approach 1, if the input IDL instance were encoded
in binary format [Biyani 1987], it may not be practical to build a scanner as shown.

Among the different approaches, those that create the IDL instance in memory
(2, 4, 6, 7, 9 and 10) would require extra storage space at run-time. However if
the IDL instance is in memory, it is possible to access the attributes in any order.
A disadvantage in building IDL instances of complex structures in memory is that
accessing them requires significantly more code.

An interface is transformed by approaches 1, 2, 3 and 4 by the use of a filter. These
filters can be debugged separately, before they are coupled with the tool. Hence, they
can be developed faster. These filters may be constructed using tools like SED, AWK
and LEX [Kernighan & Pike 1984]. Then, the time for transforming the interface will
be fairly short.

Approaches 5 and 6 are not generally attractive for transforming input interfaces.
The incorrect computation of the internal data structure could alter the functionality
of the tool. Even though the same problem exists when the tool's original input is
computed, the tool may be better equipped to handle inconsistencies in its original
input data rather than the internal data structure. Approaches 5, 6, 7, 8, 9 and 10
are attractive, if the tool has simple mechanisms to access the internal data structure.
Table-driven data structures tend to have simple access mechanisms.

From the mapping in the previous section it appears that the values for the ‘Con-
straints on Implementation’ dimension do not affect the choice of the approach. How-
ever, these values affect the metrics on the solution. For example, approaches 5, 6, 7,
8, 9 and 10 require just that the source code be available for modification. While this
is sufficient, the availability of the documentation about the internal data structure
would reduce the time and effort required to transform the interface. The source code
may itsell be considered as documentation about the internal data structure, but its
quality is likely to be poor, If more constraints are satisfied then the transformation
using approaches 5, 6, 7, 8, 9 and 10 is easier. For approaches 1 to 4 the availability
of the external data format is sufficient and the other constraints do not change the
metrics on the transformation.

Approach 1 The input IDL instance is processed incrementally by splitting it into
small parts and the equivalent portion of the original input data generated.

22

The characteristics of the parts determine the difficulty of transforming the
input interface. The size of each part determines the difficulty in processing
each part to produce the corresponding output. The number of different parts
determines the amount of code that needs to be written. However, some of the
processing may be common between the different parts and the code may be
shared. Another aspect to consider is the difficulty in developing a reader to
read the different parts of input IDL instance. This approach is appropriate
when the mput IDL instance can be split into a few different parts, whose
processing is simple,

Therefore, the transformation should be simple, and hence the length of time
and the manpower required should be small. The metrics on the transformed
tool are given below.

1. The program should be small, since simple data is being processed. Since
no large data structures are being stored, the amount of dynamic data
space required is also small.

2. Processing the input IDL instance to produce the original input data to
the tool is simple and efficient in time. Since the IDL format is space
inefficient, [/O might make the filter slow, especially for a large input [DL
instance.

3. Maintenance cost of the tool is not significantly altered. There is however
a small additional cost in maintaining the filter.

4. The output of the filter has to be connected to the original input of the
tool. On the UNIX operating system, this can be done easily using pipes
[Kernighan & Pike 1984]. On another operating systems, an intermediate
file may have to be created.

5. The transformed tool is robust over changes in the original tool in that the
filter can be used with different versions of the original tool as long as the
input format does not change.

6. Since the transformed tool depends only on the external format of input
IDL instance (which is unlikely to change), it is robust over changes in IDL
and the IDL Toolkit. However, if the processing depends on the order of
the different attributes, then it is less robust over changes in 1DL, the IDL
Toolkit or changes in the IDL specification.

7. The tool does not depend on any special features of the environment,
therefore it is robust over changes in the environment.

Approach 2 The input IDL instance is read into memory by routines provided by
IDLC. The original input data is computed by traversing the IDL instance in
memory. Since the read roulines are provided by IDLC there is no effort in
writing these routines. The difficulty of the transformation depends on the
complexity of the computation that computes the eriginal input data.

23

Since this approach would be used for moderately complex transformations,
the length of time and manpower should be moderate. The metrics on the
transformed tool are given below.

|

(%]

For moderate sized IDL structure specifications, the program would be
large because of the readers provided by IDLC. Since the IDL instance is
stored in memory, dynamic data space required is large.

For large input IDL instance I/O might slow down the tool. This effect
may dominate the time taken to compute the original input data.

There is the added maintenance cost of maintaining the filter.

As In the previous approach, a mechanism is required to feed the output
of the filter as the input of the tool.

The transformed tool is robust over changes in the tool as in Approach 1.

6. The transformed tool is robust over changes in IDL and the IDL Toolkit

since routines provided by IDLC are being used to read input IDL instance.

The transformed tool is robust over changes in the environment because
of reasons outlined in the previous approach.

Approach 3 This approach is very similar to Approach 1 listed above. The only
difference is that Approach 1 considers the transformation of an input interface,
while this approach refers to the transformation of an output interface. The
original output data is processed incrementally by splitting it into small parts
and the equivalent portion of output IDL instance is generated. Like Approach
1 the size and number of parts decide the difficulty and the size of the code.
A writer has to be developed that writes out the output IDL instance. This
approach is appropriate when the original output data of the tool can be split
into a few different parts, whose processing is simple.

As explained in Approach 1, the length of time and manpower should be small.
The metrics on the transformed tool are given below

1.

Like Approach 1, the static and dynamic data requirements should be
small.

. Like Approach 1, the filter may be slowed by 1/0.,

Like Approach 1, the maintenance cost is not significantly altered,

. Like Approach 1, a mechanism is required to supply the output data of

the tool as the inpul data of the filter.

The transformed tool is robust over changes in the tool in that the filter
can be used with the different versions of the tool as long as the output
format of the tool does not change.

Since the tool depends only on the IDL format, it is robust to changes in
IDL and the IDL Toolkit.

24

7. The tool is robust over changes in the environment.

Approach 4 The in-memory IDL data structure is created and this is output using
routines provided by IDLC. The original output data is read and as it is read the
in-memory IDL data structure is constructed. Since the routines to produce the
output IDL instance are generated by IDLC there is no effort in writing these
routines. The difficulty of the transformation depends on the complexity of the
computation that computes the internal IDL instance.

As in Approach 2 listed above, the length of time and manpower should be

moderate., The metrics on the transformed tool are the same as for Approach
2.

Approach 5 The input IDL instance is processed incrementally by splitting it into
small parts and an equivalent portion of the internal data structure is built.
The difference between this approach and Approach 1 is that the input [DL
instance builds the internal data structure, rather than the original input data.
The metrics are also similar. This approach i1s appropriate when the input IDL
instance can be split into a few different parts, whose effect on the internal data
structure 1s simple.

The transformation of the input interface should be simple. The length of time
and the manpower required should be small. The metrics on the transformed
tool are given below.

1. The subroutine should be small, since simple data is being processed. Since
large data structures are not stored, the amount of dynamic data space
required is also small.

2. Processing the input IDL instance to build the internal data structure is
simple and efficient. Since the IDL format is space inefficient, the trans-
formed tool may be slowed down because of 1/0.

3. The maintenance cost of the tool is higher in this approach than in the
first four approaches. Since the tool is being modified, bugs in the mod-
ification are more difficult to identify and correct. Since it is difficult to
detect inconsistencies in the internal data structure (which is built by this
approach), the maintenance costs are high.

4. No extra resources are required.

5. The transformed tool is not robust over changes in the tool. Some internal
modifications in the tool may require that the interface be transformed
again, not just re-implementation of the transformation, since other ap-
proaches may be better.

6. As in Approach 1 the transformed tool is robust over changes in 1DL and
the IDL Toolkit, provided the processing is independent of the order of the
dilferent attributes in the input IDL instance.

. The tool is robust over changes in the environment.

25

Approach 6 The input IDL instance is read into memory by routines provided by
IDLC. This approach differs from Approach 2 in that the internal data structure
is computed by this approach, rather than the original input data. The internal
data structure of the tool is computed by traversing the IDL instance in memory.
The read routines are provided by IDLC. The difficulty of the transformation
depends on the complexity of building the internal data structure.

Like Approach 2, the length of time and manpower required for the transfor-
mation will be moderate. The metrics on the transformed tool are given below.

1. Since the internal data structure of the tool and the input IDL instance
are being stored in memory concurrently, the dynamic storage space re-
quirement larger than Approach 2. The static slorage space requirement
will also be large because of readers provided by IDLC.

2. Like Approach 2 the increase in [/O time will be the major contributor to
the loss in speed. However, since the original input data is not written out
and read again, the decrease in execution speed will be less than that of
Approach 2.

3. Like Approach 5 the maintenance cost of the transformed tool is higher
than in the first four approaches.

4. No extra resources are required.

5. Like Approach 5 the transformed tool is not robust over changes in the
tool.

6. Like Approach 2 the transformed tool is robust over changes in IDL and
the IDL Toolkit.

7. The tool is robust over changes in the environment.

Approach 7 The input IDL instance is read into an IDL structure. This structure
is a derivation of the input interface’s IDL specification. Some portion of the
internal data structure of the tool may need to be computed. The accesses to the
internal data structure need to be replaced with equivalent access routines that
act on both the internal data structure and the IDL structure. The complexity
of these determine the complexity of the transformation.

If the internal data structure were to be replaced by the internal IDL data
structure, then all accesses to the internal data structure need to be changed
to equivalent accesses to the internal IDL data structure. But the original
internal data structure need not be computed. If only a part of the internal
data structure were being replaced by the IDL structure, then the remainder
has to be computed from the input IDL instance, but only some of the accesses
to the internal data structure need be changed.

To replace internal data structures that are not simple, a substantial portion of
the tool’s source code may have to be rewritten. Therefore a moderate amount
of manpower and time would be required. The metrics on the transformed tool
are given below.

26

1. Like Approach 2, the static and dynamic storage requirements will be large.
Unlike Approach 6, only a part of the internal data structure may need to
be stored. But, the IDL structure may require more space, since it may
contain extra attributes.

2. Like Approach 6 increase in [/O time may affect the speed of execution,
The processing time, even though increased may not be a major factor.

3. The maintenance cost of the tool is fairly high, even higher than that of
Approach 6, since extensive modification is required.

4. No extra resources are required,

5. Like Approach 5 the transformed tool is not robust over changes in the
tool.

6. Like Approach 2 the transformed tool is robust over changes in IDL and
the IDL Toolkit.

7. The tool is robust over changes in the environment.

Approach 8 The output IDL instance is produced by traversing the internal data
structure. A writer writes out the IDL instance in the IDL format. This
approach is suitable if the internal data structure contains all the attributes
required by the IDL structure specification. The complexity of the traversal

required to generate the output IDL instance determines the complexity of the
transformation.

The traversal of the data structure should be simple, Therefore, the length of
time and the manpower required should be small. The metrics on the trans-
formed tool are given below.

1. Like Approach 5 the static and dynamic space required should be small.
2. Like Approach 5 the tool may be slowed down by 1/0.

3. Like Approach 5 the maintenance cost of the tool is higher for this approach
than for the first four approaches.

4. No extra resources are required.

5. As in Approach 3, the transformed tool is not robust over changes in the
tool.

6. As in Approach 3, the transformed tool is robust over changes in IDL and
the IDL Toolkit.

7. The tool is robust over changes in the environment.

Approach 9 The IDL instance is created in memory and this is output using rou-
tines provided by 1bDLC. This approach differs from Approach 4 in that the in-
memory data structure is created from the internal data structure, rather than
the original output data. The IDL instance in memory is created by traversing
the internal data structure. The difficulty of the transformation depends on the
complexity of the computation to compute the IDL instance in memory.

2
=]

As in Approach 2, the length of time and manpower should be moderate. The
metrics of the performance and robustness of the transformed tool are the same
as for Approach 6.

Approach 10 The internal data structure of the tool is replaced in whole or in part
by an IDL data structure that is a derivation of the IDL specification for the
output interface being transformed. Like approach 7 the accesses to the internal
data structure have to be modified so that they act on both the internal data
structure and the IDL data structure. The new internal data structure (IDL
structure and a part of the original internal data structure) is directly computed
from the input data, since the accesses have been modified.

Like Approach 7, the transformation of the interface should be fairly complex.
Therefore a moderate amount of time and manpower would be required. The
other metrics are the same as those for Approach 7.

3.6 Other Techniques

The methodology considers only two points along the data dimension, i.e. external
data and internal data structure. When an output interface is being transformed,
the internal data structure of the tool or the output data may not contain adequate
information to compute the output IDL instance. The methodology that is presented
above will not be able to solve such a problem. This section presents techniques that
may be used to solve some of those problems. Each of these techniques modifies the
problem so that the methodology can be applied to it.

Technique 1 This technique may be used in the transformation of an output in-
terface. A tool may compute some attributes that are required by the IDL
instance, but these attributes may be discarded and not stored in the internal
data strocture. Instead, a special data structure may be built to store such
attributes. The new internal data structure can be considered to be the spe-
cial data structure and the internal data structure of the original tool. One of
Approaches 5, 6, 7, 8 9 and 10 may be applicable. For example, the semantic
analysis phase of a compiler may compute the usage of the symbols, but may
not store it in its internal data structure. This information can be captured
in a special data structure and then used to help in the transformation. The
transformation is a little more complex, since the information is present in two
different structures. The transformed tool requires more static and dynamic
data space, but not substantiaily so.

Technique 2 This technique may be used in the transformation of an output inter-
face. A tool may compute its output incrementally. The internal data structure
of the tool may only contain information about a portion of the output. A new
data structure can be built that accumulates the internal data structure. This
new data structure is updated whenever data is input. This new data structure

28

bﬂurput
Data

(in IDL format)

(in IDL format)

Figure 3.7: A two step transformation

serves as the internal data structure for applying the methodology. One of Ap-
proaches 5, 6, T, 8, 9 and 10 may be applicable. The transformed tool requires
more static and dynamic data space.

Technique 3 This technique may be used in the transformation of an output inter-
face. A tool may not output sufficient information in its output. The tool can
be modified so that the extra attributes are also output. The new output now
contains sufficient information to perform a transformation. One of Approaches
1, 2, 3 and 4 may be applicable.

Technique 4 This technique may be used to transform an input or an output inter-
face. It may be far too complex to perform the transformation of the interface
in one step. An intermediate [DL structure may be developed that can be used
to simply the transformation. This technique is illustrated in Figure 3.7. This
technique may slow down the transformed tool considerably. Since a number of
different programs are involved, significant additional static and dynamic data
space may be required.

3.7 Transforming Many Interfaces

The methodology may be used to transform one interface at a time. If more than one
interface 15 being transformed, the methodology suggests that they be transformed
independently. However when multiple interfaces are transformed, a sequential ap-
proach may not result in the best overall solution. Approaches 7 and 10 build the [DL

29

data structures in memory. If an input interface were transformed using Approach
7 and an output interface using Approach 9, then these transformations could be
combined in such a way that the total cost would be less than the sum of the cost of
transforming the two interfaces.

For example, the internal data structure of an expression type checker may con-
tain an expression tree, but the checker may input and output expressions in infix
format. If the input and output interface need to be transformed to input and cutput
expression trees in IDL format, then the internal data structure can be replaced by
an IDL data structure which is a derivation of the input and output data structures.
The input and output IDL instances can then be read and written using routines
provided by IDLC. Replacing the internal data structure with the [DL structure may
be easier than transforming both the input and output interfaces separately,

3.8 Conclusions

This chapter presents a methodology for transforming an interface. First the partic-
ular problem of transforming an interface is examined and its characteristics deter-
mined. A set of approaches that may be used to transform an interface are considered.
A mapping associates the characteristics with an appropriate approach. The metrics
associated with the different approaches are discussed. Other techniques that may
be used to help the transformation of an interface are evaluated. The chapter ends
by considering the transformation of more than one interface. The methodology is
summarized in Appendix D.

Chapter 4

Transforming a Syntax-directed
Editor

This chapter discusses an application of the methodology presented in Chapter 3
to transform an input and an output interface of a syntax-directed editor. First,
the tool whose interfaces are being transformed is discussed in detail. Then, the
transformation of an output interface is considered. The methodology is then applied
to transform an input interface.

A text editor is used to enter and modify text. A syntax-directed editor is used
to create and modify programs in a particular language. The syntax of the language
is the syntax of the data that may be edited by the editor. For example, a syntax-
directed editor for the Pascal programming language may be used to create and edit
programs in Pascal. The text produced by this editor is guaranteed to be syntactically
correct. Such an editor can be generated using the Synthesizer Generator [Reps &
Teitelbaum 1984].

The Synthesizer Generator is a tool that generates syntax-directed editors when
provided with their specification. A part of this specification is the abstract syntar
of the data. The abstract syntax is a set of grammar rules, essentially productions
of a context free grammar [Hoperoft & Ullman 1979]. Each production has a name,
known as the operator. The abstract syntaz tree is an instance of the abstract syntax
represented as a tree. A set of parsing declarations specify how the abstract syntax
tree may be computed from text that is input to the editor. A set of unparsing
declarations specify the textual representation of the abstract syntax tree. Terms
and productions in the abstract syntax may have attributes associated with them. A
set of attribution rules specify how the attributes may be evaluated from the other
attributes in the tree. The aftributed syntaz tree is the abstract syntax tree along
with these attributes.

Given these specifications, the Synthesizer Generator generates a syntax-directed
editor that computes the abstract syntax tree from the input text using the pars-
ing declarations, evaluates the atiributes as specified by the attribution rules, and
computes the textual representation of the abstract syntax tree as specified by the
unparsing declarations. This textual representation may be edited interactively and
the attributed syntax tree is recomputed whenever the text is changed. The text that

31

Qutput

(structure
{smicum: . I
or textual

format)
format)

User interaction

Figure 4.1: An editor generated using the Synthesizer Generator

is being edited is also modified to reflect the changes in the abstract syntax tree.

An editor generated using the Synthesizer Generator (see Figure 4.1 inputs and
outputs data in two different formats. The first, the teztual format, is the textual
representation of the abstract syntax tree. This may be computed from the abstract
syntax tree using the unparsing rules. The editor accepts as input, textual data
and computes the abstract syntax tree by using the parsing rules. The second, the
structure format, contains an abstract syntax tree encoded as a list of operators with
their name and arity, followed by the operators in the abstract syntax tree listed in
preorder.

The Synthesizer Generator can be used to build a number of fairly sophisticated
editors that check both the syntax and semantics of input programs for programming
languages like Pascal, C and Fortran77. The internal data structure of these editors
contains the abstract syntax tree along with the attributes. However the output of
these editors contains only the abstract syntax tree. The methodology presented in
Chapter 3 will be used to transform such an editor to output an attributed tree, The
input and output interfaces of an editor that accepts a simple expression language in
infix format and functions as a desk calculator will be transformed. The transformed
interfaces communicate their instances in the IDL format.

The data structure that is input and output by the transformed editor should be an
mnstance of the attributed syntax tree represented in the IDL format. The attributes
associated with the nodes in the abstract syntax tree that are computed by the editor
will be present in the output. The editor should also acecept its output as input.
The transformation of an editor using the methodology demonstrates how an editor
generated by the Synthesizer Generator may be transformed to input and output IDL

32

instances. An editor for the Pascal language, generated by the Synthesizer Generator
can be transformed to output an attributed syntax tree. This attributed syntax tree
can be used by a code generator to generate executable code. The syntax-directed
editor thus transformed can be used as the frontend for a prototype compiler.

The methodoelogy given in Chapter 3 may be used to transform only one interface
at a time. Therefore the transformation of the output interface of the editor will be
considered first. Then, the transformation of the input interface will be considered.

4.1 Transformation of the output interface

To apply the methodology the characteristics of the problem along the different di-
mensions of the problem space have to be determined. The problem space has four
dimensions: Input or Output, Data, Complexity of Computation, Constraints on the
Implementation. The output interface is being transformed, therefore the value along
the ‘Input or Qutput’ dimension is ‘Output’. Along the ‘Constraints on the Imple-
mentation’ dimension, the formats of data input and output by the tool (external
data format) are available and the source code is available for modification. However,
the name space used by the program, the documentation about the internal data
structure and the documentation on the source code are not available. The ‘Data’
and the ‘Complexity of Computation’ dimensions are discussed below.

The problem of transforming the ontput interface of the desk calculator is multi-
valued along the data dimension i.e., its value is both ‘internal’ and ‘external’. The
output IDL instance may be computed from the data output by the editor as well as
the internal data structure of the editor.

The editor outputs its data in two formats, a textual format and a structure
format, representing the abstract syntax tree. The attributed syntax tree, represented
in IDL format, may be computed from either of these outputs. The syntax tree may
be computed by parsing the text output by the editor. The syntax tree may also be
built from the structure output of the editor. In either case, the attributes of the
nodes in the syntax tree may be computed using the attribution rules. An attribute
in the output IDL instance is independent of other attributes in the IDL instance.
However, the evaluation of an attribute by applying the attribution rules on the
abstract syntax tree may require the evaluation of the other attributes. This is one
of the characteristics of a complex computation as defined in Chapter 3. Hence the
‘Complexity of Computation’ of both these computations (i.e. computing the output
IDL instance from the textual or structure input) is ‘Complex’.

The internal data structure of the editor contains an attributed tree that stores
the abstract syntax tree of the data being edited along with the attributes. Each
node in the attributed tree is an instance of a production in the abstract syntax.
The node has as its sons instances of all the nonterminals that are part of the right
hand side of the production. The node also has as its sons all the attributes of the
nonterminal on the right hand side of the production and all the attributes local to
the production, Some of these sons are subtrees and some of them are constants (e.g.,
integer). Further, there are number of arrays that contain properties of productions

33

and the nonterminals in the syntax. Two of them are, the number of nonterminals in
each production, and the names of the nonterminals. There are also many flags that
are used to ensure that the attributes of the syntax tree are computed in a optimal
manner. Many macros are available to access the internal data structure of the tool
easily. Since the attributed syntax tree is contained in the internal data structure,
the attributes required by the IDL data structure do not have to be computed. The
complexity of this computation is simple.

Summarizing, this problem maps to the following two points in the problem space.
One of the points has along the data dimension, the value external and along the com-
plexity of communication dimension, the value complex. The other point has along
the data dimension the value internal and along the complexity of communication
dimension the value simple. Both points have along the input or output dimension
the value output. From the mapping given in Chapter 3, the Approaches 4, 8, 9 and
10 are applicable. The metrics on the transformation of the interface of the tool using
the different approaches must be considered to choose the most appropriate approach
from these approaches.

In Approach 4, the in-memory data structure is created from the output of the
tool(either the structure or textual output) and this is output using routines provided
by IDLC. The complexity of the computing the internal IDL instance determines the
difficulty of the transformation. In the case of the desk calculator, computing the
attributes of the different nodes in the syntax tree using the attribution rules can be
moderately difficult, hence the transformation is moderately difficult. For an editor
generated from a more complex language, computing the attributes of the different
nodes 1s likely to be more difficult.

In Approach 8, a subroutine writes out the IDL instance in the IDL format by
traversing the internal data structure. This IDL instance contains the attributes in
preorder. The complexity of the traversal determines the difficulty of the transfor-
mation. In the case of the desk calculator, the internal data structure contains the
attributed syntax tree which can be traversed in preorder easily. Therefore, the trans-
formation is fairly simple. This holds even for an editor that is generated from a more
complex language.

In Approach 9, the IDL instance is created in memory and this is output using
routines provided by IDLC. The difficulty of the transformation is determined by the
complexity of computing the IDL instance in memory. While it is fairly simple to
compute the attributes of the different nodes of the tree, creating an internal IDL
data structure is complicated, since a separate routine is required for each node type
in the IDL specification. This is fairly complicated even for a small specification. For
an editor generated from a more complex language, it would be more complicated.

In Approach 10, the part of the internal data structure that contains the attributed
syntax tree is replaced by an [DL data structure that is a derivation of the [DL
specification for the output interface. This part of the internal data structure other
than containing just the attributed syntax also contains information about how the
attributes may be evaluated efficiently. This information is stored in flags at every
node of the abstract syntax tree. Since sufficient documentation is not available

34

exp : Null()
Sum(exp,exp)
Diff (exp,exp)
Prod(exp,exp)
Quot (exp,exp)
Const (INT)

exp { synthesized INT v;};
Figure 4.2: A part of the specification to the Synthesizer Generator

exp ::= Null | Sum | Diff | Prod | Quot | Comnst ;
exp => v ! Integer;

Null => ;

Sum => Suml:exp, Sum2:exp;

Diff => Diffl:exp, Diff2:exp;

Prod => Prodl:exp, Prod2:exp;

Quot => Quotli:exp, Quot2:exp;

Const => Constl:Integer;

Figure 4.3: IDL specification for the abstract syntax in Fig, 4.2

about the internal data structure, it is not clear how these flags may be evaluated.
Further, all accesses to the attributed syntax tree have to be modified to access the
IDL structure. Even though macros are used to access the internal data structure,
these macros are highly parametrized (e.g. set_attr(a.b,c), set attribute b of node a to
¢). Given the nature of the data declarations produced by IDLC, it would be difficult
to provide such macros to access the IDL data structure. Therefore replacing the
internal data structure with an IDL data structure is complex. The transformation
using this approach is fairly complex.

Judging by the difficulty of the transformation, Approach 8 seems to be the hest
approach at hand. Instead of transforming an existing interface, a new interface was
created to output the IDL instance. The transformed editor can output the attributed
syntax tree in IDL format and the abstract syntax tree in text and structure formats.

The portion of the specification used by the Synthesizer Generator to generate
the desk calculator is shown in Figure 4.2 and the corresponding IDL specification of
the output interface is shown in Figure 4.3.

A nonterminal in the abstract syntax corresponds to a class in the IDL specifica-
tion with the productions as its sub-classes. The names of the attributes in the [DL
specification are the same as the attribute names in the specification of the editor. In
the abstract syntax specification ‘exp’ is a nonterminal with a number of productions.

35

In the IDL specification, ‘exp’ is a class containing a number of nodes. Each of these
nodes corresponds to a production of ‘exp’ and is named from it. The nonterminal
‘exp’ has an attribute *v’, The class ‘exp’ has the corresponding attribute *v', The
non-terminals on the right hand side of a production in the abstract syntax are con-
sidered as attributes of the non-terminal on the left hand side of a production. The
names of these attributes are derived from the name of the production in the abstract
syntax. The production ‘Sum’ is made of two occurrences of the nonterminal ‘exp’.
The node ‘Sum’ has two attributes ‘Sum1’ and ‘Sum2’ each of type ‘exp’. Other schemes
for naming the attributes may be used e.g., using the name of the non-terminal on
the left hand side of the production, If a production does not have any non-terminals
on the right hand side then it has no attributes. The production ‘Null’ has no non-
terminals in it. The node ‘Null' has no attributes. Even though the IDL specification
has been generated by hand, it can be generated from the specification of the editor
mechanically. The complete specification of the syntax-directed editor and the IDL
specification of its output is provided in Appendix B.1.

Building a new output interface was fairly simple as predicted by the methodology.
The output interface is a subroutine that outputs the IDL structure of the portion of
the edited text that has been selected. This structure in ASCII ERL is output to the
file *“foo’. This subroutine replaces the function ‘dump-on’ of the editor that printed
the values of the atiributes of the current selection. The editor can be modified to
make this subroutine a new function. The code for the output interface, provided in
Appendix B.2 was 150 lines long and took about 3 days to develop. It was simple
because the traversal of the data structure was simple. Since the data structure had
simple access macros, the traversal was not complicated. The number of attributes
in a production and names of the different attributes were available in the internal
data structure of the tool itself, therefore they were not hard-coded into the output
interface. Because the data structures generated by the Synthesizer Generator are
similar for different editors, this new output interface can be used by other editors as
well.

4.2 Transformation of the input interface

This section considers the transformation of the input interface of the editor., The
editor must be able to accept the IDL instance that it produces as output. The
problem is to transform the input interface of the editor so thal it accepts as input
an instance of the [DL specification mentioned in Appendix B.1. This instance could
have been produced by the new output interface constructed in Section 4.1. For
this problem, the value along the Input or Output dimension is input. Along the
Constraints of Implementation dimension, the external data format of the tool is
known and the source code is available for modification.

Consider the IDL specification of the input data given in Figure 4.3. Some of the
attributes of a node correspond to nonterminals in the abstract syntax (e.g. ‘Sumi’,
‘Sum2’ etc.,.). A syntectic atfribute is an attribute of a node that corresponds to a
nonterminal in the abstract syntax. Some of the attributes correspond to attributes

36

of nonterminals in the abstract syntax (e.g. ‘v’). A semantic aftribuie is an attribute
that corresponds to an attribute of a nonterminal or to an attribute of a production
in the specification of the editor.

Consider the transformation between the attribute tree represented as an [DL
instance and the input text of the editor. Subtrees contained in the IDL instance
correspond to contiguous portions of text. Independent subtrees correspond to inde-
pendent portions of text. Hence, the ‘Complexity of Computation’ is *simple’.

Consider the transformation between the attribute tree represented as an IDL
instance and the structure input of the editor. The structure input to the editor
is essentially a list of the operators in the abstract syntax tree listed in preorder.
The attributed tree is a representation of the abstract syntax tree with attributes
associated with some nodes in the tree. Therefore, the operators for two independent
subtrees correspond to independent portions of the list. Therefore, the ‘Complexity
of Computation’ is ‘simple’.

The part of the internal data structure that contains the attributed syntax tree
can be computed from the IDL instance. The IDL instance contains all the attributes
required to build the attributed syntax tree. However, the attributed syntax tree con-
tained in the internal data structure contains a set of flags associated with each node
in the tree. Some of these flags are used to evaluate the attributes efficiently. These
attributes should be computed fairly easily. Then, the ‘Complexity of Computation’
is ‘simple’.

Summarizing, this problem maps to three points in the problem space each of
which have along the ‘Complexity of Computation’ dimension, the value ‘simple’,
two of the three points have along the ‘Data’ dimension the value ‘external’, and
the other has along the ‘Data’ dimension, the value ‘internal’. From the mapping
given in Chapter 3, Approaches 1, 2, 5, 6 and 7 are applicable. The metrics on the
transformation of the interface of the tool using the different approaches must be
considered to choose the most appropriate approach from these approaches

Approach 1 may be applied to transform the input IDL instance to the textual
or the structure input of the editor. The structure input of the editor contains the
operators in the abstract syntax tree listed in preorder. The input IDL instance
contains the attributed syntax tree in preorder. This IDL instance can be parsed
and whenever a syntactic attribute is encountered, the operator corresponding to it
is output. At the end of processing, the set of operators (along with their name and
arity) is prefixed to the output. If the attributes of the nodes do not appear in order,
then the list of operators must be stored and output at the end of processing.

The textual input of the tool can be generated by building the textual representa-
tions of the syntactic attributes in a bottom up fashion. The textual representation
of a syntactic attribute which is a node is calculated from the textual representation
of all syntactic attributes of the node using the appropriate unparsing rule. If the
syntactic attribute were a node without any attributes or one of the basic types, then
its textual representation is straightforward. The input IDL instance can be parsed
and the representations can be computed bottom up. The solution is not affected
by the order of the attributes in the IDL instance. Though both methods are fairly

37

simple, it is easier to generate the structure input to the editor.

Approach 2 may be applied to transform the input IDL instance to the textual
or the structure input of the tool. In both cases the in memory IDL structure is
created by reading in the IDL instance using routines provided by IpLC. To produce
the structure input of the editor, the syntactic attributes are traversed in preorder
and they are output. To produce the textual representation, the tree is traversed
bottom up and the textual representation is built as specified in the previous section.
Both these solutions are fairly straightforward, but the traversal of the in-memory
IDL instance is complicated, since a separate routine is required for each node type
in the [DL specification. This is fairly complicated even for a small specification. For
an editor generated from a more complex language, it would be more complicated,
These transformations are more complex than those that use Approach 1.

Approaches 5, 6 and 7 may be applied to build the attributed syntax tree portion
of the internal data structure from the IDL instance. However associated with every
node in the abstract syntax tree is a set of flags. Some of these flags are used to eval-
uate the attributes more efficiently. Since there i1s no documentation available about
the internal data structure, it is not clear how these flags are computed. Further,
errors in the evaluation of these flags are harder to detect since the editor is not well
equipped to handle inconsistencies in its internal data structure. Therefore, transfor-
mation using these approaches is complicated. Approaches 5 and 6 may be applied to
build the attributed syntax tree in preorder. Approach T may be used to build an [DL
structure that takes the place of the attributed syntax tree contained in the internal
data structure of the editor. The other parts of the internal data structure will not
be changed, for e.g., arrays that contains the properties of the non-terminals., The
code and the macros that access the attribute syntax tree will have to be modified
appropriately.

The metrics on the different transformed editors (i.e. transformed using different
approaches) are discussed in Chapter 3. Judging by the difficulty of the transforma-
tion it seems best to generate the structure input of the editor using Approach 1,

A filter was built that parsed the IDL instance (using YACC, see Figure 4.4) and
output the list of operators in preorder into a file. The function ‘check_syntactic.at-
tribute’ checks to see if the attribute whose name has been encountered is a syntactic
or a semantic attribute. If it is a syntactic attribute, a flag is set. Subsequently when
the operator associated with the attribute is encountered, the operator is output using
the ‘output_op’ function. If the attribute value is a constant, then it is output using
the function ‘output_basic_type’ function. The filter also stores the set of operators
encountered and this set was output to a separate file. The latter file was prefixed to
the former and this was provided as input to the editor. This filter was fairly easy
to build. The code, presented in Appendix B.3 is about 330 lines long and it took
about 17 days to develop,

38

fstart value

wi

value : TCONST { if syntactic.attr($1) output_basic_type($1):}
| operator

| operator TLBRAC attributes TRBRAC

operator : TID { if syntactic_attr($1) output_op($1);};
attributes : attributes TSEMICOLON attribute
| attribute ;
attribute : name value ;
name | TID { check.syntactic_attribute($1);} ;
WA

Figure 4.4: Parser used to build filter

4.3 Conclusions

In this chapter the methodology given in Chapter 3 was applied to transform an input
interface and an output interface. The methodology recommended a number of differ-
ent approaches. Each approach provided a method of transforming the interface that
had associated with it a number of metrics. The approach that provided the easiest
transformation was adopted for implementation. The two interfaces were transformed
and the results were as predicted. For instance, the metrics on the transformation
predicted methods using Approaches 1, 2, 3 and 4 would be developed much faster,
The output interface was transformed using Approach 8 and the input interface was
transformed using Approach 1. Even though much less code was developed to trans-
form the output interface, the input interface was transformed in half as much time
as it took to transform the output interface.

The editor generated by the Synthesizer Generator consists of a set of core rou-
tines that perform all the basic functions of the editor. Those functions that are
particular to an editor (e.g. the unparsing rules) are encoded in a table and the table
is interpreted whenever those functions are required. The new output interface that
has been built is capable of producing the attributed syntax tree in IDL format from
any editor generated by the Synthesizer Generator, Similarly, the filter generated
to transform an output interface is capable of producing a structure input from the

attributed syntax tree in IDL format for any editor generated by the Synthesizer
Generator.

Chapter 5
Transforming XDR

This chapter considers the application of the methodology to the External Data Rep-
resentation (XDR) protocol [XDR 1986]. XDR will be examined to see how it fits the
model of a tool. The methodology will then be applied to the transformation of the
input interface of XDR. Next, the methodology will be applied to the transformation
of the output interface of XDR. The chapter will conclude from the experience gained
from these two transformations.

The International Standards Organization (ISO) has developed a seven-layered
model for Open Systems Interconnection (OSI) [Tanenbaum 1981A]. This model de-
scribes the level of interaction in data communication between two computer systems.
The sixth layer, the presentation layer, provides functions such as data encryption,
data compression and other transformations on data that would be communicated
between the systems. XDR is a presentation layer protocol, using which two hetero-
geneous machines can exchange in-memeory data structures.

XDR is a protocol developed by Sun Microsystems Inc (see Figure 5.1), XDR con-
verts between the machine dependent formats in which the data may be represented.
Using XDR, two heterogeneous machines can exchange data structures specified in
the ‘C’ programming language. XDR can be used to exchange data structures con-
structed from the basic ‘C’ types (int, char, ete.) using constructors for arrayvs,
records and unions. Pointers can also be exchanged, but in a limited way. Data
structures containing multiple pointers to the same location cannot be exchanged
directly using XDR.

Even though XDR is very different from the syntax-directed editor considered in
Chapter 4, it can be considered as a tool. The editor read in an expression as its
input, and output an expression after processing it using commands from the user.
XDR takes as input an in-memory ‘C’ data structure on one machine and provides
as output the same data structure on a different machine.

The editor performs some transformations on its input to compute its output.
XDR on the other hand moves the data structure from one machine to another. There
were two objectives in the transformation of the editor, the first, to communicate
with more tools (i.e. use a standard format) and the second, to communicate more
information. XDR will be transformed so that it can communicate [DL instances
between machines.

40

/ Network
Procedural
interface
Input Output
data data
structure structure
Procedural
. ine 2
Machine 1 Machine i

Figure 5.1: XDR

Unlike the editor that reads and writes data into files, XDR has a procedural
interface, 1.e., a data structure is communicated by XDR by calling a subroutine, The
same subroutine can be used to send and receive the data structure. This routine calls
the routines provided by XDR to communicate the basic types and some constructors.
At one end, the ‘C’ data structure is converted by the subroutine into a series of bytes
in a machine-independent format. These bytes are then transmitted to the other
machine. At the other end, these bytes are converted into the data structure. The
direction of data communication determines the type of conversion.

This procedural interface will be considered as the input and output interface of
XDR. The format of the data structure associated with this interface is the format
of the interface. The data structure created by routines generated by IDLC could
have multiple pointers to the same location. These data structures cannot be directly
communicated using XDR. Therefore the data structure declarations produced by
IDLC cannot be the format of the interface.

The methodology requires that input and output data structures of the trans-
formed tool be specified in IDL. For the purpose of transforming XDR a simple DL
specification was chosen. This specification is provided in Figure 5.2. This specifica-
tion contains the basic types of IDL as well as the constructors.

The methodology considers the internal data structure of the tool to be trans-
formed. It is not obvious what should be considered as the internal data structure
of XDR. The only data structures maintained by XDR are buffers that are used to
buffer the input and output data. However, these data structures store only a part
of the input data. The representation of the input data structure as a sequence of
bytes that are transmitted across the network can be considered as the internal data

4]

Structure test Root Aval Is
Aval => first: Cval,
second: Dval,
third: Seq Of Integer;
Bval ::= Cval | Dwal :
Bval => Enode: Ewval;
Cval => mname: String;
Dval => value: String;
Eval => number: Integer,
name: String,
value: Rational,
flag: Boolean;
End

Figure 5.2: IDL specification of the interfaces of the transformed tool

structure of XDR.

5.1 Transformation of the Input Interface

The input interface of XDR is a procedural interface that accepts a 'C’ data structure
and transmits it over the network to another machine. The data structure input to
XDR is specified using IDL in Figure 5.2,

To apply the methodology, the characteristics of the problem along the different
dimensions of the problem space have to be determined. The problem space has four
dimensions: Input or Output, Data, Complexity of Computation and Constraints on
the Implementation. The input interface is being transformed, therefore the value
along the ‘Input or Output’ dimension is ‘Input’. Along the ‘Constraints on the
Implementation’ dimension, the format of the data input and output by the tool are
available. The problem is multi-valued along the ‘Data’ dimension.

Consider the value ‘external’ along the ‘Data’ dimension. The ‘C’ data structure
communicated by XDR cannot have multiple pointers to the same memory location,
i.e. nodes may not be shared. In the IDL data structure, the node of type ‘Eval’
may be shared by the two nodes of the class ‘Bval’ (see Figure 5.3). Since this
data structure may have to be communicated, the sharing of the node has to be
encoded in the data structure communicated by XDR. This may be an attribute in
the data structure communicated by XDR. The computation of this attribute requires
the examination of the whole data structure. The *Complexity of Computation’ is
‘Complex’.

Consider the value ‘internal’ along the ‘Data’ dimension, i.e. computation of
the internal data structure from the IDL instance. The internal data structure is
a representation of interface data structure. The computation of the internal data

42

-=- structure test
Aval
[first Cval
[name "Sundar" ;
Enode L10: Eval
[number 5 ;
name "Sundar" ;
value 5.0 ;
flag 0 ;

13
second Dval
[value "Sundar" ;
Enode L10~];
third €1 2 »
]

Figure 5.3: An instance of the specification in Figure 5.2 in IDL format

structure requires the encoding of the sharing of nodes. This requires examination of
the entire data structure. Therefore the ‘Complexity of Computation’ along the data
dimension is ‘Complex’.

Summarizing, this problem resolves to two points in the problem space. One of
them has value ‘external’ and another the value ‘internal’ along the ‘Data’ dimension.
Both points have, along the ‘Input or Output’ dimension, the value ‘input’ and, along
the ‘Complexity of Computation’ dimension, the value ‘Complex’. From the mapping
given in Chapter 3, Approach 2 is applicable. Approaches 6 and 7 are not applicable
since the source code is not available. The XDR protocol specifies the encoding of a
‘C" data structure in a machine independent format to be communicated to another
machine. Using this specification the DL data structure can he converted to a format
to be communicated to another machine. This would amount to a re-implementation
of XDR, which is not considered as an approach by the methodology.

In Approach 2, the in-memory IDL structure is created by reading the input
IDL instance using routines provided by IDLC. This structure is traversed and the
input data of the tool is computed. In the case of XDR, this structure is traversed
and the data structure that is required by the input interface of XDR is computed.
Since XDR has a procedural interface, this data structure has to be computed by a
subroutine. This application of Approach 2 is similar to Approach 6 in which the
internal data structure of the toel is computed using a subroutine. The difficulty of
the transformation depends on the difficulty of computing the data structure required
by XDR.

43

The data structure to be supplied to XDR needs to be specified before the diffi-
culty of the transformation can be evaluated. The data structure supplied to XDR
will be computed by traversing the IDL data structure. The data structure can be
computed easily if it is similar to the IDL data structure. This data structure has
to encode the sharing of nodes. A data structure was chosen that was very similar
to the IDL data structure. This data structure shown in Figure 5.4 encodes sharing
of nodes of type ‘Eval’ using character strings as labels. Further, null pointers in
the structure ‘intseq’ are implemented using discriminated unions, since XDR can-
not communicate null pointers directly, The transformation is straightforward and
fairly simple. However, for a more complex structure, the transformation would be
complicated, given the nature of data declarations produced by IDLC.

The IDL structure is read into memory using routines provided by IDLC. The
data structure required by the input interface can be computed in two phases. In
the first phase the IDL structure is traversed and nodes of type ‘Eval’ are marked as
touched. If a node marked as touched is encountered, it is marked as shared. In the
second phase, the data structure is created from the IDL data structure. If a node
marked shared is encountered, then it is labeled. Subsequent references to the node
are encoded in the data structure as labels. The data structure is then communicated
using XDR. The program provided in Appendix C.3 is about 120 lines long and took
about a day to develop.

5.2 Transformation of the Output Interface

The data structure communicated across the input and output interfaces of XDR is
the same. The output interface of XDR is a procedure that when called produces an
instance of the data structure specified in Figure 5.4. This data structure needs to
be converted into an equivalent instance of the IDL specification in Figure 5.2.

To apply the methodology, the characteristics of the problem along the dimensions
of the problem space have to be determined. The problem space has four dimensions:
Input or Output, Data, Complexity of Computation and Constraints on the Imple-
mentation. The output interface of XDR is being transformed, therefore the value
along the ‘Input or Output’ dimension is ‘Output’. Along the Constraints on the
Implementation” dimension, the format of the data input and output by the tool are
available. The problem is multi-valued along the ‘Data’ dimension.

Nodes of type ‘Eval’ may be shared in the IDL instance. This is encoded in the
data structure using labels and label references. This is similar to the IDL format for
representing nodes that are shared. There is a one to one correlation between the fields
of the data structure and the IDL format. Therefore, for the value ‘external’ along
the ‘Data’ dimension, the value along the ‘Complexity of Computation’ dimension
is ‘simple’. Recall that the value along this dimension in the transformation of the
input interface was ‘Complex”.

The internal data structure is a representation of the data structure of the output
interface. The internal data structure contains shared nodes encoded using labels
and label references. This is similar to the representation of the data structure in the

struct hE {
enum {ISLABEL=1,ISNODE=2} Etype;
union {
int label_no;
struct hEvalue {
enum {NOLABEL=1,LABELDEF=2} Etype;
int label_no;
struct {
int number;
char #*name;
float value;
int flag;
} value;
} value;
} value;
i

struct hC {
char *name;
struct hE Enode;
};

struct hD {

char *value;
struct hE Enode;
};

struct intseq {
int wval;
enum {NULLELEM=1,VALELEM=2} nodetype;
struct intseq #* next;

B

struct hA {
struct hC first;
struct hD second;
struct intseq third;

};

I'igure 5.4: Data structure of the interface specified in ‘C’

struct hE {
enum {ISLABEL=1,ISNODE=2} Etype;
union {
int label_no;
struct hEvalue {
enum {NOLABEL=1,LABELDEF=2} Etype;
int label_no;
struct {
int number;
char *name;
float wvalue;
int flag;
} value;
} value;
} value;
33

struct hC {
char *name:;
struct hE Enode;
¥3

struct hD {
char *value;
struct hE Enode:
¥

struct intseq {
int wval:
enum {NULLELEM=1,VALELEM=2} nodetype;
struct intseq * next;

¥

struct hA {
struct hC first;
struct hD second;
struct intseq third;

F

Figure 5.4: Data structure of the interface specified in ‘C’

45

IDL format. Therefore, for the value ‘internal’ along the ‘Data’ dimension, the value
along the ‘Complexity of Computation’ dimension is ‘simple’.

From the mapping given in Chapter 3, Approaches 3 and 4 are applicable. Ap-
proaches 8, 9 and 10 are not applicable since the source code is not available. As
in the transformation of the input interface, the re-implementation of XDR is not
considered.

Approach 4 can be applied to build the IDL data structure internally. The IDL
data structure represents sharing of nodes by using multiple pointers to the same
location. The interface data structure encodes the sharing of nodes using labels and
label references. A table of labels and their associated pointers has to be constructed.
Since labels may be encountered in the traversal of the internal data structure before
they are defined, the table may also need to contain references to all references to
the label. The interface data structure is traversed depth-first and the IDL data
structure is built top-down. If a field in the interface data structure is not a reference
to a label, then the node corresponding to it is built. If the field is shared, it may
define a label that would be referenced later. Then the table is updated with the
label and a reference to the newly built node. If the field is a reference to a label,
then its value is obtained by looking up the table. References to labels that are not
yet defined will have to be handled as well. This approach is straightforward, but
complicated. For a more complex structure it would be more complicated.

Approach 3 can be applied by traversing the interface data structure and out-
putting the attributes of the different nodes in the IDL format. The interface data
structure has been created by a call to an XDR routine. If a node of type ‘Eval’
is shared, then it is encoded in the data structure using labels and label references.
This is similar to the IDL format for encoding nodes that are shared. A subroutine
that outputs the interface data structure in the IDL format was written. Since the
interface data structure did not contain the names of the fields, they were coded into
the subroutine. This approach is straightforward and simple. For a more complex
interface data structure, this approach would be more complicated. This approach
was implemented. The code, provided in Appendix C.4, is 66 lines long and took
about 1 a day to develop.

5.3 Conclusions

This chapter discussed the application of the methodology to XDR. Since XDR is very
different from a conventional tool like the syntax-directed editor, the transformation
was unconventional. Conventionally, this transformation would have been viewed
as the problem of representing an IDL instance in XDR. In that case, the issues
would have been a compact and efficient representation using XDR. However the
methodology required the specification of the IDL structure and the specification of
XDR’s interface were specified a priori. Therefore this methodology cannot be used
to directly measure the efficiency of the representation in XDR.

Another issue that would have been considered would be to automate this trans-
formation. That is, given the IDL specification, the specification of the XDR interface

46

and the routines to communicate the IDL instance be done mechanically.

In this transformation the XDR format of the interface was specified. The format
of the XDR interface could have been specified as a stream of characters. In that
case, the instance in ASCII ERL can be communicated directly. However, this would
have defeated the purpose of XDR which is meant to communicate data structures
in machine dependent format between heterogeneous machines.

Chapter 6

Conclusions

This research provides a methodology to transform the the input and output interfaces
of an existing tool to communicate instances in the IDL format. The characteristics
of the problem are used to choose the approaches appropriate to the problem. The
approaches can be evaluated using the metrics associated with them. The method-
ology was applied to two problems, transforming the input and output interfaces of
a syntax directed editor and transforming XDR to communicate IDL instances. The
results of these applications provide testimony to the validity of the methodology.
This research provides a systematic way to transform tools to communicate [DL
structures and to evaluate the cost of such a transformation. The transformed tool
may be able to communicate with many other tools. The transformed tool can also

be tested and debugged using the IDL toolkit.

6.1 Future Work

As mentioned in Chapter 3, this research did not consider how the IDL specification
of the interfaces may be derived from the tool. The IDL specification of the inter-
faces of the syntax-directed editor could have been automatically generated from the
specification of the editor. The attributes of a node in the IDL specification are the
syntactic and semantic attributes of the corresponding production in the abstract
syntax. The IDL specification cannol be derived automatically for all tools that are
specified formally. It would illuminating to consider the aspects of the specification
that make such a derivation possible.

After an IDL specification has been derived, it needs to be evaluated to determine
if it contains all the attributes that would be required by other tools that communicate
the IDL instance. This is dependent on the environment in which that transformed
tool is to function.

In the transformation of XDR, it was noted that the transformation could be
automated. This needs to be examined. In general, automating the transformation
would be be very difficult, if not impossible.

The methodology considers the transformation of just one interface at a time.
There may be advantages in considering the transformation of the tool as a whole.

48

The new tool may be more efficient and also more easily maintainable. In some cases,
even the transformation may be easier. This needs to be investigated further.

The methodology assumes that the tool reads in all the input data into its in-
ternal data structure, preforms computations on the data, and then produces the
output data from its internal data structure. Some tools may process the input in-
crementally. Some tools may encode the information about the input data structure
in their program state (e.g. recursive descent parsers). The methodology may not be
able to provide a practical solution for such problems. Specialized techniques may be
considered.

As stated in Chapter 1, the transformation of IDLC to accept IDL instances in
tool dependent formats was not considered. In some cases, it may be cost effective
to build a filter that converts between the tool dependent format of the IDL instance
and the IDL format.

Chapter 7

Bibliography

[Biyani 1987] Biyani, V. An Efficient Runtime System for IDL. Master’s Thesis, Uni-
versity of North Carolina at Chapel Hill, Oct. 1987,

[Chambers, et al. 1984] Chambers, F., D. Duce and I. Gillian. Distributed Computing.
London: Academic Press, 1984.

[Hoperoft & Ullman 1979] Hoperoft, J.E. and J.D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley Publishing Company,
1979.

[Kernighan & Pike 1984] Kernighan, B.W. and R. Pike. The UNIX Programming
Environment. Englewood Cliffs, NJ 07632: Prentice-Hall, 1984.

[Kernighan & Ritchie 1988] Kernighan, B.W. and D.M. Ritchie. The C Programming
Language. Vol. second edition of Prentic Hall Software Series. Englewood
Cliffs, NJ: Prentice Hall, 1988.

[Nestor et al. 1982] Nestor, J.R., W.A. Wulfand D.A. Lamb. IDL - Interface Descrip-
tion Language - Formal Description - Draft Revision 2.0. Internal Document.
Computer Science Department, Carnegie-Mellon University. June 1982,

[Reps & Teitelbaum 1984] Reps, T. and T. Teitelbaum. The Synthesizer Generator,
in Proceedings of the Symposium on Practical Software Development Environ-
ments, Pittsburgh, PA: Apr. 1984, pp. 42-48.

[Snodgrass 1988] Snodgrass, R. The Interface Description Language: Definition and
Use (forthcoming). Rockville, MD: Computer Science Press, 1988,

[Tanenbaum 1981 B| Tanenbaum, A. 8. Network Protocols. ACM Computing Surveys,
13, No. 4, Dec. 1981, pp. 453-489.

50

[Tanenbaum 1981A] Tanenbaum, A.S. Computer Networks. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1981.

[Wirth 1971] Wirth, N. The Programming Language Pascal. Acta Informat., 1(1971),
pp. 35-63.

[XDR 1986| Erternal Data Representation Protocol Specification. Sun Microsystems
Inc., Mountainview, CA, 1986.

Appendix A

Glossary

IDL format The standard format (ASCII ERL) in which the IDL structure is read
or written to external storage.

IDL Interface Description Language. A language developed to communicate data
structures between programs.

Synthesizer Generator A program that can be used to generate syntax-directed
editor. For more details see Chapter 4.

XDR A protocol developed by Sun Microsystems Inc., to communicate ‘C’ data
structures between heterogenous machines.

abstract syntax tree The derivation of a sentence in the abstract syntax repre-
sented as a tree.

abstract syntax A set of productions that specifies the syntax of a language without
the use of terminal symbols.

attribute A named value whose domain is specified by its type. In IDL, an at-
tribute is conceptually similar to a field of a Pascal record. In the specification
of a syntax-directed editor, attributes are attached to ecither non-terminals or
productions,

attributed syntax tree The abstract syntax tree along with the semantic attributes
associated with the non-terminals and operators in the tree.

attribution rule In the specification for the Synthesizer Generator, a rule used to
compute the value of an attribute.

complex computation A computation that is not simple.

external IDL instance The IDL data structure represented in the IDL format.

52

filter A program that converts the input or output data between the tool dependent
format and IDL format.

interface The format of data and the set of routines that read and write the data.
internal IDL instance The IDL data structure represented in memory.

node A data type in IDL that is a named collection of attributes. This is similar to
a Pascal record.

operator In the specification of a syntax-directed editor, the name of a production
in the abstract syntax.

parsing declaration The rule used to generate a portion of the abstract syntax tree
from the input text. A set of parsing decalarations specify how the abstract
syntax tree may be computed from the input text.

pipe A mechanism provided by the UNIX operating system to communicate the out-
put of one program as the input of another program without using intermediate

files.

presentation layer The sixth layer in the ISO’s OSI model that provides functions
such as data encryption, data compression and other transformations on data.

root A distinguished node in the IDL structure from which all other nodes may be
accessed.

semantic attribute When the attributed syntax tree is represented as an IDL struc-
ture, the attributes in the IDL structure that correspond to attributes of the
non-terminals and operators.

simple computation A computation of the IDL instance from the internal data
structure where there is correspondance between attributes in the IDL specifica-
tion and portions of the internal data structure. For a more complete definition
see Section 3.1.

structure format The representation of the abstract syntax tree, with the list of
operators with their name and arity, followed by the operators in the abstract
syntax tree listed in preorder.

syntactic attribute When the attributed syntax tree is represented as an [DL struc-
ture, the attributes in the IDL structure that correspond to non-terminals in
the abstract syntax.

syntax-directed editor A text editor where the text edited is constrained to be a
program in a language. This may be generated using the Synthesizer Generator.

textual format The textual representation of the abstract syntax tree using the
unparsing rules.

53

tool dependent format The format of the input and output data. This format is
usually dependent on the tool.

tool A program that has an input and an output.

unparsing rule A rule that used to generate the textual representation of a produc-
tion in the abstract syntax tree.

Appendix B

Code for Syntax-directed Editor

Chapter 4 describes the transformation of a syntax directed editor. This appendix
contains the IDL specification of the new input and output interfaces and the code
needed for the tranformation.

B.1 The Specification

This section contains a part of the specification of the syntax directed editor, with
the abstract syntax and the attributes. The complete IDL specification resembles the
editor's specification rather closely. The specification of the editor provided here is
not the same as that distributed with the Synthesizer Generator.

The abstract syntax specification of the editor with attributes

/* Abstract syntax %/

root calc;

list cale:

calc : CalcPair({exp calc)
| CaleNil()

*
»

exp : HNull()

Sum, Diff, Prod(exp exp)

Quot(exp exp) { local STR error;}

Const(INT)

Let(symb exp exp)

Use_id(ID) { local BINDING b; local STR error;}

symb : DefBot()
| Def(ID)

/* Semantic attributes of the non-terminals +/
exp { synthesized INT v;};

exp 1 inherited ENV env; }:

symb { synthesized ID id; };

/* Type definition for environments /
list ENV;
ENV : NullEnv()

| EnvConcat(BINDING ENV)

BINDING : Binding(ID INT);

[| |

on

Structura
calc
CalcPair

CalecNil
axp
Null
Sum
Dift
Prod
Quot

Const
Let

Usa_id

symb
DetfBot
Det

The complete IDL specification

exp_tree Root calc Is

::= CalcPair | CaleNil ;

=> CalcPairl: axp,
CalcPair2: calc :

=

t:= Hull | Sum | Diff | Prod | Quot | Comst | Let | Use_id ;

==

=> Suml: axp,
Sum2: exp ;

=> Diffl: exp,
Diffd: exp;

=> Prodi: exp,
Prod2: exp;

=> Quoti: exp,
Quot2: exp,

error: String;
=> Constl: Integer;
=> Latl: symb,
Let2: eaxp,
Let2: eoxp ;
=» Use_idl: String,
b: BINDING,
error: String;
::= DefBot | Def ;

=> Defl: String ;

-= Semantic attribtutes.

axp
axp
symb

- Symbol
ENV
§ullEnv

=x v: Integer;
=> anv: ENV;
=> id: String;

table
::= NullEnv | EnvConcat ;
=> o

r

EnvConcat => EnvConcatl: BINDING,

BINDING
Binding

End

EnvConcat2: ENV;
:1= Binding ;
=> Bindingl: String,
Binding2: Integer;

B.2 Transformation of the Output Interface

The output interface was transformed using Approach 8. The subroutine that was
coded ‘MET_print_ERL’ is presented in this section. The function ‘dump-on’ of the edi-
tor was modified so that the subroutine ‘dump_atree’ calls the subroutine ‘MET_print_E-
RL’ with the current selection.

File : test.c page 1

#include “lang.h"
#include "structures.h"
#include "grammar.h"
#include "attr.h"
#include "types.h"
#include "atree.h"
#include "selsction.h"
#include "buffera.h"
#include "degueue.h"
#inclede "output.h”
#include “display_map.h"
#include "viewport.h"
#include “browser_exp.h"
#include "hash_table.h"
#include "edit_buf.h"
#include <stdio.h>
#include <strings.h>

PROCEDURE MET print_ERL(tree,filename)
register ATREE tree;
char #filename;
/# Open the file and gets things ready for printing ¢/

register PROD_INSTANCE start_p;
char t[100];

int 1;

FILE #fp, *fopen();

fp=fopen{filename,"s");

if (fp==NULL) {
fprintf(stderr, "Can’t open file %s for writing\n", filemame);
return;’}

start_p = selection_apex(selection(tree));
MET _print_parse_tree(fp,start_p,0);
fclosa(fp);

File : test.c page 2

PROCEDURE MET_print_parse_tree{fp.p,is_attr)
FILE #*fp;
register PROD_INSTANCE p;
int is_attr; /# 1= is an attribute, 0 is a parse-tree */

/* Given a parse tree print all the sons and all the attributes +*/
/* associated with the trees. =/

{
char t[100], <MET_comp_son_name();

if (atom(production(p))) MET_print_atom{fp,p);
elsa
{ int i
char =s;
s=op_name(production(p));
sprintf(t, "%s\n",s);
MET_print_string(fp,t);
if (('is_attr &k (no_attrs(lhs_occ(production(p)))>0))||
(no_sens{production(p))>0))
MET_print_string(fp,"[");
if (!'ds_attr && (no_attrs(lhs_occ(production(p)}))}>0})
{ MET_print_attr_tree(fp, p);
i? (no_sons(preduction(p))>0) MET print_string(fp,";\n");
}
for (i=1;i<srightmost_son{production(p));i++)
{ PROD_INSTANCE q;:
sprintf(t,"%s \n" MET_comp_son_name(s,i)):
MET_print_string(fp.t);
g=son(p,i);
MET_print_parse_tree(fp,q,is_attr);
it (i!=rightmost_son(production(p))) MET_print_string(fp,";\n");
}
if ({!is_attr &% (no_attrs(lhs_occ(production(p)))>0))||
{no_sons(production(p))>0))
MET_print_string(fp,"]");

File : test.c page 3

static PROCEDURE MET_print_attr_tree(fp, p)
FILE ={p;
register PROD_INSTANCE p;

/* Given a parse tree p print all attributes of p, both local to the
production as well as attributes of the left hand aide #/

char t[100];
int k;
ATTR current_attr;

current_attr = f1d_index(lhs(production(p)));
for (k = 0; k < no_attrs{lhs_occc{production(p)});) {
MET_print_string(fp,"\n");
it (k == no_fields(sym_index(lhs_occ(production(p)))))
current_attr = local_f1d(lhs_occ(production(p)));

sprintf(t, "%s ", fld_id(current_attr));

MET_print_string(fp,t);

CUTITAnt_atir++;

MET_print_attr(fp, attr_instance(p, 0, k));

if (++k < mo_attrs{lhs_occ(production(p)))) HET_print_string(fp,":\a");

S
MET_print_attr

-
* Print value of ATTR_INSTANCE b to FILE fp
*/
static PROCEDURE MET_print_attr(fp, b)
FILE =1p;
ATTR_INSTANCE b;

register PROD_INSTANCE attr_v;
attr_v= demand_value(b); /* ensure that value of b is available =/
if (attr_v== (PROD_INSTANCE) 0)
MET_print_string(fp,"-- Null Value\n");
elze

MET_print_parse_tree(fp,attr_v,1);

60

61

File ; test.c page 4

/* Given an atomic PROD_INSTANCE p, print p to file fp */

MET_print_atom(fp, p)
FILE =1ip;
PROD_INSTANCE p;
{ char t[50];
char =str0_to_str();
switch (atomic_type(production(p))) {
case 0: sprintf(t," %d\n",IntValue(p)); break;
case 1: sprintf(t," ¥d\n" RealValue(p)); break;
cage 2: sprintf(t," Yd\n",DrealValue(p)); break;
case 3: sprintf(ec," \'%c\’'\n",CharValue(p)); break;
case 4: sprintf(t,"\"%s\"\n", ((BoolValue(p))?"TRUE":"FALSE")); break;
case 5: MET_print_string(fp,"\""};
MET print_string{fp,str0_to_str(son(p,1)));
MET_print_string(fp,"\"");return;
case 6: MET_print_string(fp,"-— Ptr not supported\n"); return;
case 7: MET_print_string(fp,"-- Attr not supported\n"); return;

case 8: MET_print_string(fp,"-- Hash table not supported\n"); return;
}
MET_print_string(fp,t):

char * MET_comp_son_name(s,i)
char #s;
int i;
/* Compute the name of the ith non terminal in a production. */
{ static char t[50]:
it (#3=='\0") return(s):
sprintf(t,"%s¥d" s,1);
return(t);

}

MET_print_string(fp,t)

FILE «ip;

char et;

/* Print the string to the output file #/
{ fprintf(fp, "ha",)13

B.3 Transformation of the Input Interface

The input interface was transformed using Approach 1. A lexical analyser (using
LEX) and a parser (using YACC) were built to parse the input. The parser is called
with 2 file names. At the end of execution the first file contains the name and arity
of the different operators. The second file contains the operators listed in preorder.

File ; test.c

/* Given an atomic PROD_INSTANCE p, print p to file fp */

MET_print_atom({fp, pJ

FILE =1p;
PROD_INSTANCE p;
{ char t[50];

char *+str0_to_stz();
switch (atomic_type(production(p))) {
case 0: sprintf(t,” %d\n",IntValus(p)); break;
case 1: sprintf(t,” %d\n", RealValue(p)); break;
case 2: aprintf{t,” %d\n",DrealValue(p)); break;
casa 3: sprintf(t,” \'¥e\'\n",CharValue(p)); break;
case 4: sprintf(t,"\"¥%s\"\n",((BoolValue{p))?"TRUE":"FALSE")); break;
case 5: MET_print_string(fp,"\""};

MET_print_string{fp,str0_to_str(son(p,1)));
MET_print_string(fp,"\"");return;
case 8: MET_print_string(fp,"-- Ptr not supported\n"): returm;
case 7: MET_print_string(fp,"—— Attr not supported\n"); return;

case 8: MET _print_string(fp,”-- Hash table not supperted\n"); return;

}

MET_print_string{fp.t);

char * MET_comp_son_name(s,i)

char #s;

int i;

/* Compute the name of the ith non terminal in a production. +/
{ static char t[50];

if (=s==

'\0') return(s);

sprintf{t,"Ks¥d",8.1);
return(t):

}

MET_print_string(fp,t)

FILE »fp;

char »t;

/+ Print the string to the cutput file =/
{ fprintf{fp,"%s",t);}

page 4

6l

62
B.3 Transformation of the Input Interface

The input interface was transformed using Approach 1. A lexical analyser (using
LEX) and a parser (using YACC) were built to parse the input. The parser is called
with 2 file names. At the end of execution the first file contains the name and arity
of the different operators. The second file contains the operators listed in preorder.

File : main.c

#include <atdio.h>
axtern FILE #fpl, »ip2;
main(arge,argv)
int arge;
char 'a:‘g?[];
{ FILE *fopen();
int token;
if (argc!=3)
{ fprintf(stderr,"usage:%s filel file2\n", argvi0l);exit(99);}
fpil=fopen(argv[1],"w");
it (fp1==NULL)
{ fprintf(stderr,"Can't opan ¥s\n",argv(1]1); exit(29);}
fp2=fopen(argv[2],"w"});
if (fp2==NULL)
{ fprintf(stderr,"Can’t open %s\n" ,argv[2]); exit(99);}
yyparse();
print_opers();
}

yyerroris)
char =s;
{ printf(“parser error Ys\n",s);}

File : yace.h

#include <stdio.h>
extern struct const_elem {
int tag; /* 0 = integer, 1 = string, 2 = rational, 3 = boolean */
union {
int int_value;
char = atr_value;
float real_value;
int bool_value;
} walue;
} const_array[500];

extern int ne_of_consts, no_of_ids,no_of_opers,linenoc;
extern int const_id[4];

extern struct id_elem {
char #*name;
int operator; /+ number >=0 if operator */
} id_array[500];

axtearn struct oper_elem {
int id; /* pointer into id_array s/
int arity; /* number >=0 indicates proper arity +/
} oper_array[500];

page 1

page 1

/% maintain a stack of currently active operands #/

extern int curr_oper[500],curr_len[500],curr_arity[500],op_depth;
axtern FILE =fpl,*Ip2;

axtern int is_attr,sig;

64

File : gram.y

%1
#include "yacc.h"
A
%start value
%term CONST TID LBRAC RBRAC SEMICOLON
wh
value : CONST
{ output_const{$1); }
1 TID
{ handle_0_op($1);}
| TID { setup_n_op($1);} LBRAC attributes RBRAC
{ winddown_n_op();}

attributas : attributes SEMICOLON attribute
| attribute
attribute : TID { start_son($1):} wvalue

{end_sen(%1);}

(]

%h

page |

65

66

File : gram.y pags 2

output_const(n)
int n;
/* output constants &/
{ char t[1000];
if (lis_attr) {
fprintf (£p2,"%d\n",id_array[const_id[const_array[nl.tag)].operator);
switch(const_array[n] .tag){
case 0 : {
sprintf(t,"}d",const_array[n] .value.int_value);
fprintf{fp2,"id ¥%s\n",strlen(t),t);
}; break;
case 1 : {
char #a;
int i;
s=const_array[nl.value.str_value;i=0;
while (*s != '%0')
{ int cods;
code = *s &k 0x7T{;
if { coda == 0x7f || code == OxBc || code < 0x21)
{ char str[10];
sprintf (str,"\\}30 ", code);tlil="\0";
strcat{t,str); ;i=i+5;
}
elsa t[i++]= *s;
‘4’-4-;
}
t[il="\o?;
fprintf(£p2,"¥%d Ns'\n",strlen(s},t);
}; break;
case 2 : {
sprintf(t,"Ye\n", ,const_array[n].value.real_value);
fprintf (fp2,"id Ys\n",strlen(t),t);
}: break;
casa 3 : {
if (const_array[n].value.bool_valua)
fprintf(fp2."4 true\n");
else fprintf(fp2,"5 false\n");
}; break;
default : fprintf(stderr,"What tag Yd\n",.const_array[n].tag),break;
b
4
}

File : gram.y

handle_0_op(n)
int n;

/+ Handle an operator of arity 0 #/

{ it (lis_attr) {
it (id_array([n].operator >= 0)
/* previcusly defined as an operator s/
i? (oper_array[id_array(n].operator].arity != 0)
{
fprintf (stderr,"operator Ys has different arities\n",
id_array[n] .name);
fprintf (stderr,"Error occured about %d line\n", lineno);
exit(99);
}
else ;
else
{ id_array(n].operator=no_of_opers;
oper_array[no_of_opers].id=n;
oper_array[no_of_opers] .arity=0;
no_of_opers++;
}
fprintf(fp2,"%d\n",id_array[n] .operator);

}
b

setup_n_op(n)
int mn;

/* Set up to handle an operator of arity >0 +/

{ it ('is_attr)
{ int opnum;
if (id_array[n].operator»=0) opnum=id_array[n].operator;
alse {

if (no_of_opers>=(sizeof(oper_array)/sizeof{oper_array[0])))

{ fprintf(stderr, "Too many operators‘\n"); exit{98);}
id_array[n] .operator=no_of_opers;
oper_array[no_of_opers] .id=n;

oper_array[no_of_opers] .arity= —1; /* arity not yet decided +/

opnum=no_of_opers;no_of_opers++;
+
op_depth++;
eurr_arity[ep_depth]l=0;
curr_oper [op_depth]=opnum;
curr_len[op_depthl=strlen(id_array[n].name);
fprintf{£p2,"d\n" opnum);

page 3

File ; gram.y

winddown_n_op()
/* A productien has been fully parsed =/
{ if (ris_attr)
{ if (oper_array[curr_oper[op_depth]].arity>=0)
i? (oper_arraylcurr_oper[cp_depthl].arity!scurr_arity[op_depth])
{ fprintf(stderr,"oper }a has different arity\n",
id_array[oper_array[curr_oper[op_depth]].id] .name);
fprintf{stderr,"error is on lins ¥d\n",lineno);
axit(98);
*
oper_array[curr_oper[op_depth]].arity=curr_arity[op_depth];
op_depth—;
}
}

start_son(n)
int n;
/* A new attribute is being encountered =/
{
if (‘(is_attr ||
strncnp(id_array[n] .name,
id_array[oper_array[curr_oper[op_depth]l].id] .name,
curr_len{op_depth])})
curr_aritylop_depthl=curr_arity[op_depthl+1;
else is_attr++;

}

end_son(n)
int n;
/* Attribute has been parsed, process appropriately. */
{ it (is_ater ||
strnemp{id_array[n] .name,
id_arrayloper_arraylcurr_oper [op_depth]l].id] .name,
curr_len[op_depthl))
is_attr——;

}

print_opers()
{/* print the list of operators with their name and arity +/
{ int i:
fprintf (fpl, "ARSHCESHSELAVEZ\n");
fprinti(fpi,"Soperators \n");
for(i=0;i<no_of_opers;i++)
if (is_primitive(i))
fprintf(fp1,"%s 0 1\n",id_array[oper_array[i].id].name);
else
fprint?(f£p1,"%s %d O\n",id_array[oper_array([i].id].name,
oper_array[i].arity);
fprintf(fpl,"Sterm \n"):

page 4

68

File : gram.y

int is_primitive(n)
int n:
/* Check to see if the operator i one of the primitive operators +/
{ int -id.i;
id=oper_array([n].id;
for(i=0;i<d;i++)
if (comst_id[il==id) returm(1}:
return(0);

page 5

File : test.lex

pas
#include <stdio.h>
#include “"y.tab.h"

%t

struct const_elam {

int tag; /* O = integer, 1 = string, 2 = rational, 3 = boolean */

union {
int int_valus;
char = str value;
float real_value;
int bool_value;
} value;
} const_array[500];

int no_of_consts=0,no_of_ids=0,no_oi_ocpers=0,linenc=1;
int comnst_id[4]= {-1,-1,-1,-1};

struct id_elem {

char =name;

int operator; /+* number >=0 if operator %/
} id_array[s00];

struct oper_elem {

int id; /* pointer into id_array */

int arity; /+* number >=0 indicates proper arity +/
} oper_array[500];

/* maintain a stack of currently active operands */

int curr_oper[500],curr_len[500],curr arity[500],0p_depth= -1;

FILE *fp2,+1pl;
int is_attr=0;

extern int yylval;

File : test.Jex page 2

DIGITS ([0-8]+)

DTDIGITS (({DIGITS}" . "I (. *{DIGITS}) | ({DIGITS}"."{DIGITS}))
EXP ([Eel [-+]17{DIGITS})

FLOAT1 ({DIGITS}{EXP})

FLOAT2 ({DTDIGITSHEXP}?)

RATIONAL (({FLOAT2})|({FLOAT1}))

INTEGER (("+"|"-")7{DIGITS)})

STRIEG \"[~\"\n]le\"

1D [A-Za-z_] [A-Za-z0-9_]=
i d
B return(LBRAC) ;
L [return(RBRAC) ;
{INTEGER} { yylvalsadd_const(yytext,0);
return(CONST);
3
{STRING} { yylval=add_const(yytext,1);
return({CONST);
}
{RATIONAL} { yylval=add_const(yytext,2);
return(CONST);
}

{1D} { it ((!stremp(yytext,"TRUE")) || (!stremp(yytext,"FALSE")))
{ yylval=add_const(yytext,3);
return(CONST);
}
alse { yylvalsadd id{yytext):
return(TID);
}
}
) return{SEMICDLON);
Ll
. fprintf (stderr,"error unrecognisable character '%c¢' on line Yd\n",
*yytext,lineno);
b L lineno++;
%

File : test.lex page 3

int add_const(yytext,tag)

}

char *yytext;
int tag; /* 0 = integer, 1 = string, 2 = ratiomal, 3 = boolean wf
/% Add a constant to tha list of constants «/

int value;

char *malloc(),#*s,*t;

float real;

struct const_elem *new_elem;

J+ first add the constant to the list of constants */

if (no_of_conats >=(sizeof(const_array)/sizeof(const_array[0])))
{ fprintf(stderr,"Too many constants\n"); exit(99);}
new_slem= &(const_array[nc_of_consts]);
new_slem—>tag=tag;
switch (tag) {
case 0 : value=atoi(yytext); new_elem->value.int_value=value;t="Int";break;
case 1 : s=malloc(strlen(yytext)+1);strcpy(s,yytext);
nev_alem->value.str_value=a;t="5tr";break;
case 2 : realsatof(yytext); new_slem->value.real_value=real;t="Real";break;
case 3 : new_elem->value.bool_value = strcmp(yytext,"FALSE"); t="Bool";break;
¥

/* Make sure that there is an operator of the base type in the
operator table =/
if (!is_attr k&(const_id[tagl<0))
{ const_id[tagl=add_id(t);
if (no_of_opers>=
(sizeocf(oper_array)/sizeof(oper_array[0])))

{ fprintf(stderr,"Too many operatorsin"); exit(s@);}
id_arraylconst_id[tagl].operator=nc_of_opers;
oper_array[no_of_opers].id=const_id[tag];
oper_array[no_of_opers] .arity=0;
no_of_opers++;

¥

return{no_of _consts++);

File ; test.lex page 4

int add_id(s)

i

}

char =s;

/* Add an identifier to the list of identifiers =/
int i;
char #aspace;

/* Linear search through table te see if token is already therae */
for (i=0: i<no_of_ids; i++)
if (lstremp(s,id_array(i] .name)) return{i);

/% Not found in table, so table size goes up by one #*/
space = (char #) malloc(i+strlen(s));
if (space == NULL)

{ fprintf{stderr,"Malloc failed\n");exit(99):}
if (no_of_ids >= (sizeof(id_array)/sizeof(id_arrayl0])))

{ fprinti(stderr,"Too many identifiers\n");exit(99):}
strcpy(space,s);
id_array[no_of_ids].name=spacs;
id_array[no_of_ids].oparator= -1; /% yet to ba determined =/
return({no_of_ids++);

yywrap()
{ return(1);}

Appendix C

Code for XDR

Chapter 5 describes the transformation of XDR. This appendix contains the 1DL
specification of the data structure communicated using XDR, as well as the specifi-
cation of the process that reads the IDL data structure and communicates it using
XDR. The data structure communicated by XDR is specified in the C language. The
code needed for the transformation is also provided.

C.1 The Specification

This section contains the specification of the IDL data structure communicated using
XDR and the data structure communicated by XDR specified in ‘C".

The IDL data structure specification

Structure test Koot Aval Is
Aval => first: Cval,
second: Dval,
third: Seq Of Integer;
Bval ::= Cval | Dwval ;
Bval => Enode: Eval;
Cval => name: String;
Dval => wvalue: String;
Eval => number: Integer,
name: String,
value: Rational,
flag: Boolaan;
End

Structure proc_inv Rocot Aval From test Is
Eval => touched: Integer,
shared: Integer,
label_no: Integer;
End

Process writer Inv proc_inv Is
Targat Language C;
Pre input: test;

==-Post output: XDR;

End

The data structure communicated by XDR

struct hE {
enum {ISLABEL=1,ISNODE=2} Etype;
union {
int label_no;
struct hEvalue {
enum {NOLABEL=1,LABELDEF=2} Etype;
int label_no;
struct {
int number:
char *name;
float value:
int flag;
} wvalua:
} value;
} value;
E 2

struct he {
char *name;
struct hE Enode;
¥;

struct hD {
char *value;
atruct hE Enode;
X

struct intseq {
int val;
enum {NULLELEM=1,VALELEM=2} nodetype;
struct intseg * next;

&

struct hi {
stuct hC first:
struct hD gecond:
struct intseq third;

¥

=]

-]

C.2 Input and Output using XDR

This section contains the code that is used to communicate the data structure specified
in the previous section using XDR.

File : foo.e

#include <rpc/rpc.h>
#include "foo.h"

bool_t xdr_Evalue(), xdr_intseq();
struct xdr_discrim varm[3]={

{i, zdr_int},

{2, xdr_Evalue},

{100,NULL}
¥

struct xdr_discrim warm[3]={
{1, xdr_void},
{2, zdr_int},
{100, NULL}

};

struct xdr_discrim zarm[3]1={
{1,xdr_woid},
{2,xdr_intseql,
{100, NULL}

i

/* routines to communicate the structure A using XDR »/

bool_t xdr_A{xdrs,gp)
XDR #xdrs;
struct hi *=gp;

{ return {

xdr_C(xdrs , k{gp->first))ak
xdr_D(xdrs ,&(gp->second)) k&
xdr_intseq(xdrs, &(gp->third))});}

bool_t xdr_intseq(xdrs,gp)
IDR #*xdrs;
struct intseq *gp;

{ if (xdr_enum(xdrs,&(gp->nodetype)))

if (gp->nodetype==VALELEN)

return(xdr_int(xdrs,2(gp->val)) &2
xdr_reference(xdrs,&(gp->next),sizeof(struct intseq),
xdr_intseq));

else return{TRUE);
elsa return(FALSE);
}

bool_t xdr_C{xdrs,gp)
XDR »xdrs:
struct hC *gp;

{ return(xdr_string(xdrs, &(gp->name),255) &&
xdr_E(xdrs,&(gp->Encde)));}

page 1

File ; foo.e page 2

bool_t xdr_D{xdrs,gp)
XDR *xdrs;
struct hD =*gp;
{ return{xdr_string(xdrs, &(gp->value),255) &k
rdr_E{xdrs,&(gp->Enode)));}

beol_t xdr_E(xdrs,gp)
XDR #*xdrs;
struct hE #=gp;
{ return(xdr_enum{xdrs,&(gp->Etype)) &&
xdr_union(xdrs, k(gp->Etype), &(gp->value), varm,NULL));}

bool_t xdr_Evalue(xdrs,gp)
XDR #+xdrs;
atruct hEvalue #gp;
{ return(xdr_enum(xdrs,k(gp->Etype)) &%
xdr_union(xdrs, &({gp->Etype), &(gp->label_nc),warm,NULL) &&
xdr_int(xdrs, &(gp->value.nunmber)) k&
xdr_string(xdrs, &(gp->value.name), 255) k&
xdr_float(xdrs, E(gp->value.value)) kk
xdr_int(xdrs, &(gp->value.flag)));}

20

C.3 Transformation of the Input Interface

This section contains the code concerned with the transformation of the input inter-
face.

File : main_write.c

#include <stdioc.h>
#include <rpc/rpec.h>
#include "foo.h"
#include "writer.h"
int global_label=1;

buildA(idlnode,Cnode)
Aval idlnode;
struct hA *Cnode;
{
buildC{idlnode->first,&(Cnode->firat));
buildD{idlnode~>second,&(Cnode~>second));
buildintseq(idlnode->third,&(Cnode->third)});
}

buildintseq({idinode,Cnode)
SEQint idlnode;
satruct intseq *Cnods;
{ SEQint tempseq;
int aval:
struct intseq *currnode;
currnode=Cnoda;
foreachinSEQint{idlnode,tempsag,aval)
{ currnede->val=aval:
currnode->nodetype=VALELEM;
currnode—>next = (struct intseq *) malloc(sizeof(struct
currnode=currnode->next;
}
currnode—>nodetype=NULLELEN;
}

buildC(idlnode,Cnode)
Cval idlnode;
struct hC *=Cnode;
{
Cnode—>name=StringToChar (idlnode->name) ;
buildE(idlnode->Encde ,&(Cnode->Encda));
}

buildD{idlinode,Cnode)
Dval idlnode;
struct hD *Cnoda:
{
Cnode->value=StringToChar(idlnode=->value);
buildE({idinocde~->Enode,&(Cnode->Encdal});
}

intseq));

page |

81

File : main_write.c

buildE(idlnode,Cnode)
Eval idlnode;
struct hE »Cnode;
{
if (idlnode->toucheds==0)
{ Cnode->Etype=ISLABEL;
Cnode->value.labal_no=idlnode->label_no;
¥
else {
Cnode->Etype=ISNODE;
if (idlnode->shared)

{ Cnode->value.value.Etype=LABELDEF;
Cnode->value.value.label _no=global labal;
idlnode->label _no=global _label++;

b,

else Cnode—>value.value.Etype=NOLABEL;
idinode->touched=0;
idlnode->shared=0;
Cnode->value.value, value.number=idlnode->number;
Cnode=->value.value.value.name=StringToChar({idlnode->name);
Cnode->valne.valus.value.value=idlnode->value;
Cnode->value.value.value.flag=((idlnode->flag)?1:0);

}

b

markA(node)
Aval node;

{

markC{node->first);
markD(node->second);
}

markC(node)
Cval node;
{
markE(nede->Encda)
>

markD{node)
Dval node;

{
markE({node~->Enoda):

}

markE(node)
Eval node;
{
if (node=->touched) node->shared=i;
node—>touched=1;

}

page 2

82

83
File : main_write.c page 3

main(argc,argv)
int argc;
char #argv(]:
{ XDR xdrs;
FILE *fp, #fopen();
struct hA *cstructure;
Aval idl_struct;
if (argec!=2) { fprintf(stderr,"Usage:%s <file>\n",argv[0]);exit(99);}
it ((fp=fopen(argv(1],"r"))==NULL)
{ fprintf(stderr, "Can’t open file ¥s\n", argv[1]):exit(99);}
xdretdio_creata(kxdrs,stdout, IDR_ENCODE) ;
id1l_struct=input(fp);
markA(idl_struct);
catructura=s {atruct hiA *) malloc{sizeof(struct hi}):
buildA{idl_struct,cstructurs);
if ('xdr_A(&xdrs,cstructura})
fprintf(atderr,"XDR failed\n"):

C.4 Transformation of the Output Interface

This section contains code for the transformation of the output interface of XDR.

File : reader.c

#include <stdio.h>

#include <rpc/rpc.h>
#include "foo.h"

bool_t xdr_A();

main()
{
XDR xdrs;
struct hA *gp;
gp = (struct hA #) malloc(sizeof{struct hA)};
xdratdio_create(kxdrs,stdin,XDR_DECODE);
if (ixdr_ A(kxdrs,gp))
{ fprintf(stderr,”Error: XDR failed\n"); exit(99);}
output_ascii(gp);
}

output_ascii(gp)

struct hA =gp;

{ printf({"— structure Avall\n");
printf{"Aval [\nfirst \a");
output_Cl&k(gp->first));
printf("; second \n"};
output_D(&(gp->second)};
printf("; third <\n");
cutput_intseq(k({gp->third));
printf(*]1\n#\n");

T

cutput_intseqlgp)
struct intseq %gp;
{ struct intseq *currnode;
currnode=gp;
while (currnode->nodetype!=NULLELEM) {
printf(" %d ",currnode->val);
currnode=currnode->next ;
}
printf (™ >\n");
}
output _Clgp)
struct hC =gp;
 §
printf("Cval [name ‘n");
print? ("\"¥%s\" ; \nEnode ", gp->name);
output_E(&{gp->Enode)); printf(*”] \n");
¥

page L

85

86

File ;: main_write.c page 2

sutput_D{gp)
struct hD *gp;
{
printf("Dval [value \a");
printf{"\"%s\" ; \nEnode ",gp->valua);
output_E(&(gp->Enode)); printf("] \a");

}
cutput_E(gp)

struct hE *gp;
¢

if (gp->Etype==ISLABEL) printf(" LY%4" \n",gp->value.label_no);
alss
{ if (gp~>value.value.Etype==LABELDEF)
printf("L¥d: \n",gp->value.value.label_no);
printf("Eval [number %d ; ‘n".gp->value.valus.value.number);
printf("name \"%s\" ; \avalue %f ; \nflag %d] \n",
gp->value.value.value.name, gp->value.value.value.value,
gp—>value.value,value.flag);

Appendix D

Summary of the Methodology

This appendix presents a summary of the methodology discussed in Chapter 3. This
is meant to be a quick reference an does not contain all the details. The methodology
consists of the following steps.

Step 1 Characterise the problem in the dimensions of the problem space deseribed
below.
Input or Output Type of interface being transformed, either input or output.

Choice of data Data that may be used to compute the IDL instance (for
output) or that may be computed from the IDL instance (for input), either
internal or external.

Complexity of Computation Complexity of the computation mentioned
above, either simple or complex.

Constraints on the Implementation Availability of the source code for
modification, availability of the format of input and output data.

Step 2 Find the appropriate approach(es) from the mapping.
Complexity of Computation Complexity of Computation

Simple Complex Simple Complex
|
1.2 p Input 5.6.7 Iﬁ.?
3.4 G Ouput —ggTp ©.10
Internal External

Source of Data

88

Step 3 Using the metrics evaluate the different approaches. Choose the approach

that is best suited following project constraints

1. Metrics on the transformation.
2, Metrics on the transformed tool.
3. Robustness of the transformed tool.

Step 4 Implement the approach.

A brief description of the approaches is presented here.

b2

10,

. A filter that reads the IDL instance incrementally and computes the input data

of the tool.

A filter that reads the IDL instance using routines provided by IDLC and com-
putes the input data of the tool from the instance in main memory.

. A filter that reads the output data of the tool and computes the IDL instance

incrementally.

A filter that reads the output data of the tool, computes the IDL instance in
memory and outputs it using routines provided by IDLC.

A subroutine that reads the IDL instance incrementally and computes the in-
ternal data structure of the tool.

. A subroutine that reads the IDL instance into memory using routines provided

by IDLC and computes the internal data structure of the tool.

. Part of internal data structure of the tool is replaced by an IDL structure that

is a derivation of the input IDL structure.

A subroutine traverses the internal data structure and computes the IDL in-
stance incrementally.

A subroutine computes the IDL structure in memory from the internal data
structure of the tool.

Part of the internal data structure of the tool is replaced by an IDL structure
that is a derivation of the output [DL structure.

