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Chapter 1 

Introduction 

One of the major problems in Computer Science concerns the development and maiu­
tenance of complex software systems. A method of development is to divide the sys­
tem into smaller subsystems that in teract with each other and the environmen~ in 
a well-defined fasruon. These subsystems could then cooperate to achieve the goals 
of the computer system. While such a division is neither kivial nor obvious. once 
it has been done the subsystems can be developed independently and concurrently. 
Parallel implementation assumes that. the subsystem, as well as its interadion with 
other subsystems and the environment, is completely specified. Therefore, we need a 
framework to specify the subsystem. 

A subsystem is specified when its interfaces and the transformation it performs 
on the input data to compute the output data is specified. This specification can be 
used to develop and test the subsystem. H is conceivable that a subsystem can be 
generated from such a specification. The specification for a subsystem consists of a 
part that specifies the structure of the data at the int.erfaces and another that specifics 
the transformations that it performs. T he interface data structure specification c:tn 
be used to generate data to tes~ the subsystem. The subsystem reads and writes 
instances of these data structures. Tbe mapping from these instances to a form that 
is co=unkable across the physical interface can be done automatically. 

The interface Description Language (IDL) (Nestor et al. 1982) is a language for 
specifying t.he structure of the data co=ullicated across the interfaces. IDL is a dat~ 
structure specification language and includes a set of basic types and constructors 
that may be used to construct new types from other types. The basic types are 
[nteger, String, Boolean and Rational. A node in IDL is analogous to a Pascal [vVinh 
1971] record. The attributes of a node are analogous to the fields of a record. Some 
attribute values may be shared between two or more nodes. Sets and Sequences of a 
type may also be constructed. A class is a group of nodes that may have some common 
attributes. 8very structure specification has a distinguished node (or class) called t he 
root from which all the other nodes in t. he structure may be a.cccssed. For example, 
consider ihc specification in Figure 1.1, thai specifies an expression tree. The root 
of the structure ' exp' is a class that has as its subclasses ·binop_exp', ' unop_exp· 
and 'term'. The class 'exp' has associated with it the attribute 'value' of type 
Integer. The class 'binop_exp' has two attributes 'left_exp' and 'right_exp', that 



Structure exp_tree Root exp I s 
exp · ·= binop_exp I unop_exp I term ; 
exp 
binop_exp 
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=> value: Integer ; 
.. - add_exp I sub_exp I mult_exp I div_exp 
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right_exp: exp 
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unop_exp => expr: exp; 
End 

Figure 1.1: An IDL specification for an expression tree 
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Figure 1.2: ASCII ERL representation of an expression tree 
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are common to aU sub-classes of that class. 'term' is a node that has no attributes. 
IDL can be used to specify directed, and possibly cyclic, graphs. 

The IDL Toolkit [Snodgrass 1988] provides a number of tools to facilitate the use 
of IDL on subsystems developed for use with the uNIX operating system. In this 
realization of IDL, each subsystem is mapped to a UNIX process. The subsystems 
in teract with each other through data communicated through files (or through pipes). 
The data, which are an instance of the IDL specification, are communicated as a 
sequence of ASCII characters in a format called the ASCII External Representation 
Language or ASCII ERL. 

The ASCU ERL representation of a structure is the ASCII ERL representation of 
the root of the structure. The ASCII ERL representation of a node is the name of the 
type of the node concatenated with enumeration of all the attributes of the node. The 
ASCII E:RL representation of the expression tree for the expression ' 2+3' is given in 
Figure 1.2. This expression tree is an instance of the rDL specification in Figur<' I I. 
Each attribute of the node is listed as an (attribute name, attribute value) pair (e.g., 
value 3). Instead, the attribute may be listed as a (attribute name, a~t ribute lah<'i) 
pair( e.g .. right _exp L1-) . This label refers to the value of the attribute tha t occurs 



IDL 

specification 

input 

data 

structure 

algorithm 

writer 

internal 

data structure 

Figure 1.3: An IDL generated process 
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T he idl translator (lDLC), one of tools in the too lkit, maps IDL specifications in to 
data declarat ions in a target language, i.e., a. programming language like 'C'. IDLC 

also generates readers. that create the IDL instance in memory from the data in 
ASCII ERL format. Similarly, writers are generated to write out the in-memory IDL 
instance in the ASCII ERL format. A tool implemented using the toolkit reads in 
the IDL instance using the readers, computes the output instance and writes out the 
IDL instance using t he writers. This is illustrated in Figure 1.3. The IDL instance 
output can be read by another process. Communication of complex data structures 
is fairly s imple using the readers and writers provided by lOLC. 

1.1 Problem 

A tool may be specified in IDL by specifying the s tructlU'e of its input and outpul. 
data in LDL. There are a number of exist ing tools (processes) which are not written 
using the toolkit, but whoS<' input and output can be specified in ID L. The format in 
which the input and output data are stored externally are specific to each tool. Even 
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if two processes input and output the same data structure, they may not be able to 
communicate with each ot her, since the formats may be different. This research will 
consider ways to enable such processes to input/output the IDL instances to other 
processes using the toolkit. 

The basic problem is one of using !DL in a heterogeneous environment, an envi­
ronment in which some processes use IDLC and some do not. First one has to specify 
the process' input and output in IDL. Then the process should communicate instances 
of t his specification in a format acceptable to other processes. The problem of com· 
municating instances in a format acceptable to other processes is the main focus of 
this research. 

There are two solutions to this problem. One is to modify IDLC to generate code 
that accepts the data produced by the process as a representation of an IDL instance. 
Another is to modify the process to input and output the IDL instance in the standard 
format. Consider a situation in which n processes output the same IDL instance. In 
the first case, n different processes would produce n representations for the same 
IDL instance. If m tools accepted this IDL instance, n versions of each tool would 
be needed, requiring m • n tools. In the second case, n processes would have to be 
modified and only m tools would be needoo. The idea is to con vert the !D L instance' 
to the standard format expected by IOLC so that any process written using IDLC can 
use the information. 

This research considers the problem of transforming the> process (or ils input 
and output) so t hat data st ructure it communicates will be in the standard rormat. 
There are a few approaches to performing such a transformation. A methodology is 
proposed thal may be used to choose between the various approaches depending on 
the characteristics of the problem. Metrics associated with the different approaches 
are provided. The methodology is tested by applying it t o transform t wo tools. 

Related work done in the area of higher level data interfaces is considered in 
the nex-t chapter. Chapter 3 presents the different approaches, the methodology to 
choose between the different approaches and the metrics associated with the different 
approaches. The methodology is applied to two different tools, a syntax direcLed 
editor, discussed in Chapter 4 and XDR, discussed in Chapter 5. Chapter 6 presents 
the results of this research and points to future work in the area. 



Chapter 2 

Previous Work 

The area of higher level data interfaces overlaps two areas: computer communication. 
concerned with the transfer of data, and interprocess communication, concerned with 
issues in exchanging messages between processes. This chapter examines the work 
done in these areas with emphasis on higher level data interfaces. 

The advent of computer networks has given rise to a number of communication 
protocols. The International Standards Organization has developed a seven-layered 
model of a computer network called the Reference :0.1odel of Open Systems Intercon­
nection (Tanenbaum 1981A]. Most of the existing co=unication protocols (Tanen­
baum 198lB) are transport, network and data link layer protocols (e.g., HDLC, X.25). 
These layers are concerned with the issues of routing and the unreliabi lity of the 
physical medium. The session, presentation and application layers arc concerned with 
establishing communication, performing transformations on data (e.g., data compres­
sion and encryption) and supporting specific applications. Most exist ing high level 
protocols like virtual terminal protocols, file transfer protocols and message transfer 
protocols arc geared to very specific applications. The ASCII ERL could form the 
basis of a protocol to communicate complex data structures between processes on a 
computer network. 

Tnterprocess communication is concerned with issues in exchanging messages be­
tween processes. The emphasis in res<'arch has been the sharing o[ resources between 
processes. There has been a lot of work in process S}'llchronization. atomicity and 
serialization of operations. There are a number of algorithms and models that resolve 
some of these issues (Chambers, et a!. l984j. 

There has not been much work in the area of higher level data interfaces. i\'lost 
data interfaces (e.g .. UNIX pipes) are organized as a stream of bytes or charac­
ters. Some data representation protocols are capable of communicating complex dat~t 
strnctures. An example of this is the External Data ReprescnlMion Scheme (XDR) 
(XDR 1986) developed by Suo ~1icrosystems Inc. XDR is a procedural interface that 
can he used to communicate between processes', data structures specified in the '(" 
programming language [Kernighan&: Ritchie 1988]. However, data structures com­
lnunicated using XDR are represented in-memory and thereforE' cannot h<' stored in 
lilt's as data communicaL<'d using pipl'S can. 

IDL is a language for specifying data structures communicated bt>tween processes. 
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The IDL Toolkit, a set of tools to facilitate the use of IDL, represents data structures 
externally in the ASCII ERL format . Biyani [Biyani 1987) has developed a run-time 
system for IDL that represents IDL data structures in a more compact, but language 
and mach.ine dependent, format. 



Chapter 3 

The Methodology 

Consider a tool that reads data, performs some computation and writes out data as 
shown in the Figure 3.1. The input and output data are in a formal specific to the 
tool. The routines that read and write external data. and the implied format of that 
data, is termed the tool's interface. It is desired that this tool be converted so that its 
input and output data are instances of TDL structures as shown in Figure 3.2. That 
is, all the interfaces need to be t1·a.nsfo•·med to read and write TDL instances. 

This chapter discusses a methodology to transform an interface so that it may 
read or write instances in the standardized IDL External Representation Language, 
or simply the IDL format. T n general, more than one interface may need to be 
transformed. The methodology that is proposed here will aid the transformation 
of one such interface at a time. However all the interfaces may be transformed by 
applying the methodology separately lo each one of the interfaces. Thus a tool with 
several interfaces can be transformed to input and output IDL instances. Such a tool 
would input and output IDL instances in the standardized format. 

The use of a standardized data formal (the IDL format) gives rise to the possibility 
that several tools may be interfaced together. For example, a code-grncrator can be 
built that can generate code from the frontends (consisting of syntactic and semantic 
analysis phases) of both Pascal and C compilers. At first sight. it appears that the 
transformation of the interface between a frontend and the code generator should be 
simple. The transformation will be simple if just the format of the interface alone 
were changed to the IDL format. However. the purpose behind the transformation is 
to make it easy to build new tools. It may be desirable that these fromends output 
all the useful information they can even if it can be re·cornputcd. For example, 
the semantic analysis phases of the above compiler fron tends should include in its 
symbol table not only the defining occurrences of symbols, but also all their uses. 
This latter information is computed during semantic analysis and would be useful 
to later optimization phases. The intl'rnal data structure of the semantic analyzer 
may contain this information. but its output data may not. Usually, lh(' intcmal 
data structures of tools contain complex relationships between the data items. but 
the output da.la does not contain these relationships. 

Consider a tool whose output datil. docs not contain complex relationships be­
tween data items that are present in the interual data structure. These relationships 
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may be computed by other tools that use thls tool's output as their input. If the 
output of tbis tool contains the complex relationships between the data items then 
these relationships need not he re-corn)Juted by every new tool that is implemented. 
Therefore it is desirable that the output of the tool contain the complex relationships 
between the data items. 

Output formats of tools are restricted by the linear nature of the output interface. 
These formats are usually simple and do not describe complex relationships between 
data items that are present in the internal data structure. These relatiouslups are 
computed internally after the input data is read and are ignored when output data 
is being written out. However, IDL can be used to describe complex relationships 
between data items. These relationships are embedded as attributes of the data 
items. The relationships are preserved when an IDL structure is externalized in the 
IDL format. U the interface routines were transformed to generate IDL instances, 
then these relationships can be output as well. 

Since the IDL format is being used to exchange data, it is necessary that a tool also 
accept IDL instances as input. Input interfaces need to be transformed to accept IDL 
instances. Further, these transformations should not affect the tool's functionality. 
Special care is needed when input interfaces are being transformed. 

To transform an interface, the methodology requires the tool and the interface that 
is to be transformed be known. The methodology is not concerned with specifying the 
IDL structure that should be associated with the interface beiog transformed. The 
methodology assumes that this lDL st.wcture is completely specifled. If the interface 
is an output interface then it is assumed that t he information preseol in the output 
IDL instance is already computed by the tool. I£ the interface is an input interface 
then it is assumed that the input 101 instance contains all the information required 
by the tool's input_ The method by which the output IDL instance may be computed 
from the information available in the tool (for output interfaces), or how the input 
lDL instance may be used to compute the tool's input data or internal data structure 
(for input interfaces) must also be known. 

The methodology is applied as foUows. There are many aspects to the problem 
of transforming an interface to communicate an LDL instance. Some of these aspects 
may be cast as dimensions. These dimensions when taken together characteri?.c tht> 
set of problems and may be considered as the problem space. A particular problem 
can be examined and its characteris tics determined. Using these characteristics, the 
particular problem may be identified with a point in the problem space. Associated 
with each point in the problem space is an approach applicable to that point along 
with the metrics of the transformation. The approach specifies how an interface may 
be ~ransformed to communicate an IDL instance. Some points in the problem span• 
have no approaches associated with them. The metrics associated with each approach 
discuss how easy the process of transformation would be. Sometimes more than onP 
approach may be applicable lo a point in the space. Then the metrics for all Lhe 
a)Jproach<>s will be listed. The approach that is best suiled to the problem should be 
chosen. 

In the subsequent sections the dimensions, approaches and melrics are defined. 
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Following these definitions, a. mapping of the points in the problem space into ap­
proaches is provided. :Metrics are then provided for each solution. The chapter 
concludes by discussing the merits and deficiencies of this methodology. 

3.1 Dimensions Of the Problem Space 

The problem space has four dimensions. Some of the problems may be multi-valued 
along some of the dimensions. ln that case, the different values have to be considered 
separately to determine the approach that is best suited. 

Input or Output This dimension specifies if the interface that is being transformed 
is an input interface or an output interface. 

Choice of Data A problem may have multiple values for this dimension. The IDL 
structure specifies the data structure that should be communicated by the in­
terface. This data structure contains some complex relationships between the 
data items. For example, an attributed synt.ax tree output by the semantic 
analysis phase of a compiler contains, for every symbol, the defining occurrence 
of the symbol. 

II an output interface is being transformed, then these relationships have to be 
computed. They may be computed from different forms of data. This dimension 
specifies the forms of data from which these relationships may be computed. 
Similarly, if an input interface is being transformed, these relationships should 
be translated to data meaningful to the tool. This data may be in different 
forms. Since the information present in the input IDL instance may be limited, 
it may be possible to translate this instance into some forms of the data. There 
many different forms of data, but only the following arc of interest. 

External The choice of data is the external data. External data refers to data 
that is external to the original tool, i.e. its original input or original output 
data. If an output interface is being transformed, then this means that the 
original output data contains sufficient information to compute the output 
lDL instance. H an input interface is being transformed, th is means that 
the input IDL instance contains sufficien~ information to compute original 
input data. 

Consider an expression evaluator that accepts expressions in postfix form 
as input. If the input [DL instance is an expression tree, theu the choice of 
data is external, since the expression tree can be cooverted into the postfix 
form. 
Consider a t,ool t hat produces as outpnt an expression in prefix form. If 
the output IOL instance is an expression tree, then the choice of data is 
t>xteroal, since the expression tree in prefix form can be con,·erted into the 
expression tree (the arity of the operators is known). 
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Internal The choice of the data is the internal data structure. This refers to 
data that is internal to the tool. fn particular, this refers to the global 
data structure present in main memory during the execution of the tool. 
If an output interface is being transformed, th.is means that the state of 
the internal data structure Uust before data output) contains sufficient 
information to compute the IDL instance. If an input interface is being 
transformed, this means that the input IDL instance contains sufficient 
information to compute the state of the internal data structure (just after 
the input data is read). 
Consider a program that evaluates the type of an expression. This pro­
gram produces as output the expression tree along with the type of the 
expression. If the 1DL st ructure requires the type of all sub-expressions 
of the expression, then that choice of data. is internal (i .e., not available 
in the tOol's original output, but computed as a side effect in the internal 
data structure). 
Consider a program that evaluates an arithmetic expression. This program 
accepts as input an infix expression. T he internal data structure stores the 
expression tree. If the input IDL instance is the expression tree, then the 
choice of data is internal, since the internal data structure can be computed 
from the input IDL instance. 

Tf the tool's only input interface is being transformed, the input IDL instance 
contains sufficient information to compute the state of the internal data st ruc­
ture and the original input data. That is, the problem of transfonning an 
input interface is always multivalued in this dimension. However, the value 
the particular problem bas along the dimension 'Complexity of Computation' 
is dependent on the choice of data. 

Complexity of Computation Tbe precedjng dimension concerns a computation 
that needs to be performed, that of adding relationships not explicit in the 
tool's original input or output. This dimension considers the complexity of 
that computation. It is not possible to give a precise defin ition of complexity. 
Characterizations of simple computation are 

l. The computation is simple if there is correspondence between attributes 
in the lD L structure and portions of the data. 

2. T he computat ion is simple if two attributes that are independent in the 
IDL instance are also independent in the data. 

Two attributes in an IDL instance are independent if their values which are 
directed graphs do not have any common nodes. lndependece in the data is 
defined analogously. A complex computation is one that is not simple. Por ex­
ample, the parser of a compiler may output t he parse-tree. Jr the IDL structure 
required thM every symbol in the parse tree point to its declaration. that would 
be a complex computation. 
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Constraints on the Implementation There are many attributes of the problem 
that arc pertinent to this dimension. A problem may have multiple values along 
this dimension. The different values along this dimension are as listed below. 

1. Availabiuty of the external data format. 

2. Availability of the name space used by the program. 

3. Documentation about the internal data structure. 

4. Availability of t he source code, with documentat ion. 

5. Availability of the source code for modification. 

3.2 Approaches 

There are many ways in which an interface may be transformed to read or write 
instances in the IDL format . This sect ion discusses some of the general approaches. 
The approaches that apply to a few specific cases are not presented. Some of lhc.<!e 
approaches can be cast into one of the general approaches after some modifications 
to the problem. These techniques are described in Section 3.6. 

When an interface is being transformed the IDL data st ructure that should be 
communicated across the interface must be specified. An external lDL instance is 
a.n instance of this IDL data structure that is in the IDL format. An internal IDL 
instance is an instance of a.n TD L data structure that is stored in a main memory data 
structure. This data. structure may be a derivation of the fDL struct~tre specification 
that is transmitted across the interface. The extra. atlrih11tes available in the internal 
IDL instance need to be computed and may be used ease the transformation of the 
interface. Routines provided by IDLC can be used to convert between tbe internal and 
external IDL instances. Tbere are 10 approacb.es and they fall into two categories. 

Converting between IDL instance and external data These approache~ em­
ploy lllters to convert between the IDL instance and t he external data of Lhe 
tool. A filter is a program that connects the interface to the external world by 
converting the data from one format to another. Examples of these a pproaches 
are il lustrated in the Figure 3.3. These approaches are non-invasive, in that 
the tool is not modified in any way. Only t he working environment is changed. 
These approaches require a complete understanding of the external data format 
of the tool. 

There are fou r such approaches. The first two apply to input interfaces and the 
next two apply lo output interfaces. 

1. The tool's input is created from the external ID L instance. The filter reads 
the input TDL instance incrementally aod processes it to produce the orig· 
ina! input of the lool. Small parts of thc.> input IDL instance are processed 
t.o produce portions of the original input data of the tool. These portions 
arc produced in the o1·der io which the parts are read. Routines provided 
by IDLC cannot be used to read the input IDL instance incrementally. 
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Filters 

Input Input Output Output Output 

=) instance =) to input 
Tool =) toiDL =) 

dam data data data instance data 

(in IDL 

\ ! 
(in IDL 

format) format) 

(in tool-dependent format) 

Figure 3.3: Examples of filters 

Consider an expression evaluator t hat requires the expression tree encoded 
in preorder. The input IDL instance contains the expression tree, which is 
encoded in preorder. For example, the expression 

add_exp( 
left_exp sub_exp[ 

left_exp constant[value 2] 
right_exp constant[value 3]) 

r ight_exp constant[value 5]] 

may be transformed into 

+ 

5 

2 
3 

by a simple scanner that transforms 

'ad<Lexp[' -> '+' 
'sub_exp[' -+ ' 

, -
'left_exp' -> ·' 
' right_exp' -+ " 
')' -+ " 
' constant [value' .t]' ~ z 

where z is an integer. 
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2. The •ool's input data is generated {rom the internal lDL instance. The 
input IDL instance is read into main memory by routines provided by 
lOLC. The original input data required by the tool is computed from the 
IDL instance and is written out by the filter. Since the IDL instance is 
in memory, the attributes of tne IDL instance can be examined in any 
order. It may sometimes be necessary to build other data. structures to 
compute the original input data.. IJsually, the original inpu~ data should 
be computable from the IDL instance in memory and a. few variables. 
Consider a.n expression evaluator that ex:pects the expression tree encoded 
in postorder. The input IDL instance contains the expression tree, but 
it is encoded in preorder. T he expression tree can be read into main 
memory using routines provided by IDLC. The tree can then be traversed 
in postorder and the original input data constructed for the original tool. 

3. The external IDL instance is created from the tool's output. This approach 
is similar to the approach 1 listed above. The filter reads the original 
output of the tool incrementally and processes it to produce the output 
IDL instance. Small parts of the tool's output are processed to produce 
port ions of the output IDL instance. T hese portions are produced in the 
order in which the parts a.re read. Routines provided by TDI.C cannot be 
used to output the IDL instance incrementally. These routines need to 
generate not only t he values of the attributes, but also the names of the 
attributes. If the attribute names are not available in the output data, 
then it must be computed from the !DL structure specification. 
Consider a tool that produces as output an expression in prefix notation, 
i.e. similar to the original input of Approach 1. The output IDL instance 
requi red as output is one that contains the expression tree. Since a tree 
in the IDL format is encoded in preorder, the lDL instance can be created 
from ~he output of the tool (the arity of the operators is known). The 
tree may be built depth first as follows. A stack of operators, initialized to 
empty, c;ontains the count of the operands associated with each operator. 
When !l.ll operator (say '+') is encountered in the input, the operators 
on the top of the stack tha~ have the count of ~he operands equal to 
their arity a.re removed. For each operator removed, a. ')' is output. The 
count of operands of the operator on top of the stack is incremented. The 
attribute name corresponding to the number of the operand ('left_exp' 
if l, 'right_exp' if 2) is output. The curren t operator is added t.o the 
stack and its count of operators is set to 0. The name of the current. 
operator (i.e. 'add-exp[') is output. If a constant (say x) is encountered 
then 'constant (value .r]' is output. The stack has to be set up initially 
a.nd special processing is required on end of input. 

4. The internal IDI, instance is created from the tool's output. 1 his approach 
is sin1ilar to the Approach 2 listed above. The output data of t.he tool is 
read and 'the IDL instance is created in memory as the data is being read. 
This 10 L instance ma.y then be output using write routines provided hy 
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data 
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Figure 3.4: Use of subroutines 

IDLC. Since the IDL instance is in memory Lhe attributes of the IDL 
instance can be c.omputed in any order. Sometimes intermediate data 
structures may have to be built to compute the IDL instance. 

Consider an expression translator that takes as input an infix expression 
and produces as output a postfix expression. This output data needs to 
be converted into an IDL instance of the expression tree. This tr1;.-e may 
be built bottom up as follows. A stack initialized to empty, contains the 
current operands. Whene,·er an operand (a constant) is encountered in the 
original output it is added to the slack. When an operator is encountered 
in the original output, the top two operands are removed from the stack, 
a new operand (which is the operator acting on the operands) is added to 
the stack. The only element on the stack at the end of the input is Lhe 
required t ree. Tbis may then be output using routines provided by TO LC. 

Converting between the IDL instance and internal data structure T hese 
approaches convert between the tDL instance and internal data structure of 
the tool. Usually, this can be done by a subroutine that converts between the 
internal data structure and the IDL instance as illustrated in the f'igure 3..!. 
Approaches 7 and 10 replace whole or part of the internal data structure of the 
tool. These approaches require a complete understanding of the internal ciata 
structure of the tool. f'urther, the source code for the relevant portion of the 
tool should be available for modification. The tool must also be modified so 
that it does not read or write through its original interface. 

There are six such approaches. The first t hree deal wi t h transformation of input 
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interfaces and the rest with t he transformation of output interfaces. 

5. The tool's internal data structure is created from the external IDL instance. 
The subroutine reads the input !DL instance incrementally and builds the 
internal data strudurc of the too l. As each part of the input IDL instance 
is read, it builds or modifies a portion of the internal data structure. This 
is done in the order in which the parts of the input IDL instance are 
read. Routines provided by lDLC cannot be used to read the IDL instance 
i ncrementa.lly. 
The internal data structure of an expression evaluator contains an ex­
pression tree. The input. input IDL instance contains the e>."j)ression tree 
encoded in the IDL format. The input. interface may be transformed to 
accept this input IDL instance and build the internal data structure as 
suggested by this approach. The transformation can be simplified by con­
sidering some fundions. The function ascend() sets the current node (a. 
global variable) to its parent. The function creatc(node) creates the new 
node, adds the node as the left son of the current node if free, else as 
the right son, then sets the current node to the new node. The function 
add{const) adds the constant to left son of the current node if free, else as 
the right son. The current node is initialized to a special node called root 
that has only one son. The example given for Approach I may then be 
transformed by the following set of pattern matching rules. 

' add..exp(' -+ create(plus...node) 
'sub_exp(' -+ create(minus_node) 
'left_exp' -+ do nothing 
'right _exp' -t do nothing 
·constant (value' x']' ~ add(x) 
']' -+ Mcend{) 

6. The tool's internal data structure is created from the internal!DL instance. 
The subroutine reads the inpu~ IDL instance into memory using routines 
provided by IDLC. The internal data structure is computed by traversing 
the IDL instance in memory. Since the IDL instance is in memory, the 
attributes of the IDL instance may be examined in any ord<'r. 

7. [n this approach, the IDL input instance is read into an IDL structure 
using routines provided by JDLC. This IOL structure is a derivation of the 
input interface's IOL specification. This internal IDL structure replaces 
all or part of the internal data structure of the tool. A part of the data 
structure may still need to be built from the IDL data structure. All 
accesses and modifications to the internal data structure are replaced by 
equivalent accesses and modifications that ad on both the internal data 
structure and the I 0 I. data structure. 
For example, a tool's input may be a list of items. The tool's internal dnta 
structure is also a list which is implemented using an array. This internal 
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data structure may be replaced by an lDL data structure. The access 
rou tines that accessed the original data structure have to be modified to 
access the new data structure. 

8. The external IDL instance is produced from the internal data structure. 
This approach is simi lar to Approach 5. The subroutine writes out portions 
of the output IDL instance by interpreting portions of the internal data 
structure of the tool. Routines provided by IDLC cannot be used to output 
IDL instances incrementally. The external format requires the attribute 
names and their values. If the attribute names are not available in the 
internal data structure of the tool, then these names have to hard-coded 
into the subroutine or encoded in a table. These attribute names may be 
obtained from the IDL structure specification. The internal data structure 
can be traversed in any se(j uence and t he output ID L instance produced. 
An expression evaluator produces t he value of the expression as its out­
put, but its internal data structure contains the expression tree. If the 
output IDL instance is an expression tree, this can be done by doing a 
preorder trav<'Tsal of internal data structure and outputting the operacors 
and operands in the IDL format. 

9. The internal IDL instance is produced from the internal data structure. 
This approach is similar to Approach 6. The IDL instance in memory is 
created from the internal data structure of the tool. The 10 L instance 
may then be output using write routines provided by IDLC. Since the IDL 
instance is being built in memory, the attributes of the IDL instance may 
be computed in any order. 

The internal data structure of the semantic analyzer phase of a compiler 
contains the attributed parse tree. This tree needs to be output in the JOL 
format. A routine that walks the parse-tree and builds the corresponding 
instance of the IDL structure in memory can be written. This IDL instance 
in memory can then be output by routines provided by mr.c. 

10. In this approach an ID L data structure is buill lbat may replace part or 
whole of the internal data structure of the tool. This ID L data struc­
ture is a derivation of the TDL specification of the output interface being 
transformed. The output IDL instance is writ ten out using routines pro­
vided by lDLC. Like approach 7, macros that access and bLtilcl the internal 
data structure of the tool have to be replaced by equivalent accesses and 
modifications to the internal dala structure and the IDL data structure. 
For example, consider the semantic analyzer phase of a compiler. The out­
put interface that outputs the errors detected in semantic analysis needs to 
be transformed to output IDL instances. This may be done by building au 
IDL data structure that is built as and when an error is encountered. Since 
errors are not very infrequent, this may be more efficient than computing 
the list of errors after tbe semant ic analysis phase is completed. 

Instead of transforming an existing outpu~ interface, a new interface Lo output 
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IDL insta.oces can be created, by applying one of Approaches 8, 9 or 10. It is 
possible ~o build this interface without any side-effects on the tooL This offers 
the advantage that both the original output and the output IDL instance are 
available, so either output may be used. 

3 .3 Metrics 

This section considers the metrics that may be used to evaluate the different solutions 
to transforming an in terface. These met rics apply to the process of transformation 
and the particular tool whose interface has been transformed. To this section, a 
transformed tool is a tool whose interface has been transformed to communicate IDL 
instances. There are three lcinds of metrics that are considered. 

Metrics on t he transformation These metr ics are concerned with the cost of 
transforming the interface. 

L Length of time required to do the transformation 

2. Manpower required to do the transformation. 

3. Other resources t.bat are required, e.g., djsk space. 

Metrics on the t ransformed tool These metrics are concerned wi th the extra 
cost incurred by using the transformed tool instead of the original tooL 

L Amount of extra space required (static and dynamic). 

2. Amount of extra time required. 

3. Maintenance cost of the tooL 

4. Other resources required (disk space etc.,.) 

Robustness of the transformed tool These metrics arc concerned with the ro-
bustness of the transformed tool to change. 

1. Robustness over different versions of the tool. 

2. Robustness over differen t versions of IOL and the IDL Toolkit. 

3. Robustness over differen t vers ions of the environment. 

3.4 Mapping 

This section presents the mapping between the points in the problem space to ap· 
proaches. There are four dimensions in the problem space: Input or Output. Data, 
Complexity of Computation, Constraints on the Implementation. Some problems 
may be mult i-valued along some of the dimensions. Each of t he different values have 
to be considered separately as t hough they were separate problems and ~he approach 
suitable found. Prom these approaches, the best approach should be chosen. 
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The mapping is done as follows. The problem space may be partitioned into two 
along the data dimension. The problems in the first partition (i.e. data dimension 
·external') may be solved by approaches in the first category. The problems in the 
second partition may be solved by the approaches in the second category. The dimen­
sion 'Constraints on the Implementation' refers to some condit ions that have to be 
satisfied before the approaches may be applied. The other two dimensions determine 
the particular approach in the category lhal is applicable to the problem. 

The approaches in the first category are suited to the problems that have the 
value along the data dimension as 'external'. For these approaches, the format of I. he 
original data must be known to transform the interface. The approaches suitable for 
the different problems are illustrated in Figure 3.5. The numbers identify the relevant 
approach . 

The approaches in the second category are suited to problems that have the value 
along the data dimension as 'internal'. For these approaches the source code of the 
original tool must be available for modification. The approaches suitable for the 
different problems are illustrated in Figure 3.6. T he numbers here also identify t he 
relevant approach. 

Approaches 1 and 5 suggest that the input IDL instance be processed incremen­
tally. It is not clear bow the TDL instance should be split up to be processed in­
crementally, or if such a spli t is possible at all. However, these two approaches are 
applicable only if the 'Complexity Of Computation' is simple. One characterization 
given of a simple computation is that two attributes that are independent in the 
IDL instance are also independent in the dal<t. The IDL in$tance can be spl it into 
attributes that arc independent and these can be used to generate pieces o£ the data 
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Similarly, Approaches 3 and 8 suggest that the data (either input data or internal 
data structure) be processed incrementally. These approaches are applicable only 
if the 'Complexity Of Computation' is simple. Another characterization given of a 
simple computation is that there is a correspondence between attributes in the IDL 
structure and portions of the data. These portions of the data should be used to 
compute the corresponding attributes of the ID L structure. 

3.5 Metrics on the Solutions 

This section considers the metrics on the solutions presented in the previous section. 
First the effect of modifications to IDL and IDL toolkit on the different approaches is 
examined. Then some aspects affecting more than one approach a re presented. Por 
each approach, a general discussion about t he difficulty of t he approach , foUowed by 
values for the different mctrics, is presented. 

The format in which the IDL data stwctures are written out (the IDL format) 
is fixed by the TDL toolkit. IDLC maps a structure specification in IDL into data 
structures in the target language and provides routines to read and write these data. 
structures. IDLC a.lso provides some operators to operate ou ~h<.'se data structur<.'S. 
Cba.nges to TDT.C could change one or more of the above. 

Approaches 1,3,5 and 8 do not use !DLC a.nd t he TD L toolkit but for the external 
representation format o£ an ID L instance. They arc therefore robust over chang<'S in 
IDLC with respect to the interface routines, data structures and operations on these 
data structures, provided by lDt,C. 
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Approaches 2, 4, 6, 7, 9 and 10 use the interface routines and the data structure 
declarations provided by IDLC. Changes to the interface routines and the external 
format should not pose a problem, since the interface routines should still be able 
to read/write the data structures in the appropriate formal. These approaches may 
need to be rewritten if there are changes to the data structures and the operators. 
These changes should be fairly simple since the basic nature of IDL will not change. 
It may be possible to automate the process of rewriting these approaches. 

The changes to IDLe and the external formal may affect the metrics ou the trans· 
formed tool. For instance, a compact external representation may improve the per­
formance of the transformed tool substantially. These changes may also affect the 
approach that is most suitable for a particular problem. These changes affect the 
"Complexity of Computation" of the problem. Other approaches may then become 
more suitable. For the example in Approach 1, if the input IDL instance were encoded 
in binary format (Diyani 1987]. it may not be practical to build a scanner as shown. 

Among the different approaches, those that create the IDL instanct> in memory 
(2, 4, 6, 7, 9 and 10) would require extra storage space at run-time. However if 
the IDL instance is in memory, it is possible to access the attributes in any order. 
A disadvantage in building IDL instances of complex structures in memory is that 
accessing them requires significant ly more code. 

An interface is transformed by approaches 1, 2, 3 and 4 by the use of a filter. These 
filters can be debugged separately, before they are coupled with the tool. Hence, they 
can be developed [aster. These ftlters may be constructed using tools like SED, ,,w~-: 

and LEX (Kernighan & Pike 1984). Then, the time for transforming the interface 1viU 
be fairly short. 

Approaches 5 and 6 are not generally attractive for transforming input interfaces. 
The incorrect computation of the internal data structure could alter the functionality 
of the tool. Even though the same problem exists when the tool's original inpu~ is 
computed, the tool may be bener equipped to handle inconsistencies in its original 
input data rather than the internal data structure. Approaches 5, 6, 7, 8, 9 and 10 
are attractive, if the tool bas simple mechanisms to access the internal data structure. 
Table-driven data structures tend to have simple access mechanisms. 

From the mapping in the previous section it appears that the values for the 'Con­
straints on Implementation' dimension do not affect the choice of the approach. How­
ever, these values affect. the metrics on the solution. For example, approaches 5, 6. 7. 
8, 9 and 10 require just that the source code be available for modification. While this 
is sufficient, the avai lability of the documentation about t he internal data struclure 
would reduce the time and effort required to transform the interface. The source code 
may itself be considered as documentation about the internal data structure, bnt its 
quality is likely to be poor. If more constraints are satisfied then the transformation 
using approaches 5, 6, 7, 8, 9 and 10 is easier. For approaches l to 4 the availability 
of t.he external data format is sufficient and the other constraints do oo~ change the 
metrics on the transformat ion. 

Approach 1 The input IDL instance is processed iocremcnt.ally by splitting il. inLo 
small parts and the equivalent portion of the original input data generated. 



22 

The characteristics of the parts determine the difficulty of transforming the 
input interface. The size of each part determines the difficulty in processing 
each part to produce the corresponding output. The number of different parts 
determines the amount of code that needs to be written. However, some of the 
processing may be common between the different parts and the code may be 
shared. Another aspect to consider is the difficulty in developing a rea~ler to 
read the different parts of input IDL instance. This approach is appropriate 
when the input IDL instance can be split into a few different parts, whose 
processmg is simple. 

Therefore, the transformation should be simple, and hence the length of time 
and the manpower required should be small. The metrics on the transformed 
tool arc given below. 

1. The program should be small, since simple data is being processed. Since 
no large data structures are being stored, the amount of dynamic data 
space required is also small. 

2. Processing the input lDL instance to produce the original input data to 
the tool is simple and efficient in time. Since the IDL format is space 
inefficient, I/O might make the filter slow, especially for a large inpllt IDL 
instance. 

3. ~laintenance cost of the tool is not significantly altered. There is howev<'r 
a small additional cost in maintaining the filter. 

4. The output of the filter has to be connected to the original input of the 
tool. On the UN LX. operating system, this can be done easily using pipes 
[Kernighan & Pike 1984). On another operating systems, an intem1ediate 
file may have to be created. 

5. The transformed tool is robust over changes in the original tool in that the 
filter can be used with different versions of the original tool as long as the 
input format does not change. 

6. Since the transformed tool depends only on the external format of input 
IDC instance (which is unlikely to change). it is robust over changes in IDL 
and the IDL Toolkit. However, if the processing depends on the order of 
the different attributes, then it is less robust over changes in Jl)C, the IDL 
Toolkit or changes in the IDL specification. 

7. The tool does not depend on any special features of the environment, 
therefore it is robust O\'er changes in the environment. 

Approach 2 The input IDL instance is read into memory by routines provided by 
IDLC. The original input data is computed by traversing the IDL instance in 
memory. Since the read routines are provided by IDLC there is no effort in 
writing these routines. The difficulty of the transformation depends on the 
complexity of the tomputation that computes the original input dctta. 
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Since tills approach would be used for moderately complex transformations, 
the length of time and manpower should be moderate. The metrics on the 
transformed tool are given below. 

1. For moderate sized IDL structure specifications, the program would be 
large because of the readers provided by IDLC. Since the ID L instance is 
stored in memory, dynamic data space required is large. 

2. For large input lDL instance l / 0 might slow down the tool. This effect 
may dominate the time taken to compute the originaJ input data. 

3. There is the added maintenance cost of maintaining t he filter. 

4. As in t he previous approach, a. mechanism is requi red to feed the output 
of the filter as the input of the tool. 

5. The transformed tool is robust over changes in the tool as in Approach 1. 

6. The transformed tool is robust. over changes in IDL and t.he IDL Toolkit 
since routines provided by IDLC are being used to read input IDL instance. 

7. The transformed tool is robust over changes in the environment because 
of reasons outlined in the previous approach. 

Approach 3 This approach is very simila r to Approach 1 listed above. The only 
di fference is that Approach 1 considers t he transformation of an input interface, 
while t his approach refers to the t ransformation of an output interface. The 
original output data is processed incrementally by splitting it in lo small parts 
and the equivalent portion of output lDL instance is generated. Like Approach 
1 the size and number of parts decide the difficulty and the size of the code. 
A writer has to be developed that writes out the output lDL instance. This 
approach is appropriate when the original output data of the tool can be split 
into a few different parts, whose processing is simple. 

As explained in Approach 1. the length of time and manpower sl1ould b<' small. 
The metrics on the transformed tool are given below 

1. Like Approach 1, the static and dynamic data requirem<'nts should be 
small. 

2. Like Approach l , t he filte r may be slowed by 1/0. 

3. Like Approach 1, t he maintenance cost is not significant ly altered. 

4. Like Approach 1, a mechanism is required to supply the output data of 
the tool as the input data of t.he fil ter. 

5. The transformed tool is robust over changes in the tool in that the filter 
can be used with the different versions of the tool as long as the output 
format of the tool does not change. 

6. Since the tool depends only on the IDL format, it is robust to ch:mgcs in 
IDL and the IDL Toolkit. 
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7. The tool is robust over changes in the environment. 

Approach 4 The in-memory IDL data structure is created and tills is output using 
routines provided by JDLC. The original output data is read and as it is read the 
in-memory IDL data structure is constructed. Since the routines to produce the 
output IOL instance are generated by IDLC there is no effort in writing these 
rout ines. The difficulty of the transformation depends on the complexity of the 
computation that computes the internal IDL instance. 

As in Approach 2 listed above, the length of time and manpower should be 
moderate. The mctrics on the transformed tool are the same as for Approach 
2. 

Approach 5 The input IDL instance is processed incrementally by spliLting it into 
smal l parts and an equivalent portion of the internal data structure is built. 
The di lference between tills approach and Approach 1 is that the input IDL 
instance builds the internal data structure, rather than the original input data. 
The metrics are also similar. This approach is appropriate when the input IDL 
instance can be split into a. few different parts, whose effect on the internal data 
structure is simple. 

The transformation of the input interface should be simple. The length of time 
and the manpower required should be small. The metrics on the transformed 
tool are given below. 

1. The subroutine should be small, since simple data is being processed. Since 
large data structures are not stored, the amount of dynamic data space 
required is also small. 

2. Processing the input lD L instance to build the internal data structure is 
simple and efficient. Since the IDL format. is space inefficient, the trans­
formed tool may be slowed down because of I/0. 

3. The maintenance cost of lhe tool is higher in this approach thil.n in the 
first four approaches. Since the tool is being modified, bugs in the mod 
ification are more difficult to identify and correct. Since it is difficult to 
detect inconsistencies in the internal data structure (which is built by this 
approach), the maintenance costs arc high. 

4. No extra resources are required. 

5. The transformed tool is not robust over changes in the tool. Some internal 
modifications io the tool may require that the interface be transformed 
again, not just re-implementation of the transformation, since olher ap 
proaches may be better. 

6. As in Approach 1 the transformed tool is robust o,·er changes in IDL and 
the lD L Toolkit, provided the processing is independent of ~he order of thr 
different att.ributcs in the input IDL instance. 

7. The tool is robust over changes in the environment. 
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Approach 6 The input IDL instance is read into memory by routines provided by 
IDLC. This approach differs from Approach 2 in that the internal data structure 
is computed by this approach, rather than the original input data. The internal 
data structure of the tool is computed by traversing the ID L instance in memory. 
The read routines are provided by JOLC. The difficulty of the transformation 
depends on the complexity of building the internal data stl'U<:turc. 

Like Approach 2, the length of time and manpower required for the transfer· 
mation will be moderate. The metrics on the transformed tool are given below. 

1. Since the internal data structure of the tool and the input IDL instance 
are being stored in memory concurrently, the dynamic storage space re· 
quirement larger than Approach 2. The static storage spa~ requirement 
will also be large because of readers provided by !DLC. 

2. Like Approach 2 the increase in l/0 t ime will be the major cont ributor to 
the loss in speed. However, since the original input data is not written out 
and read again, the decrease in execut ion speed will be less than that of 
Approach 2. 

3. Like Approach 5 the ma.int.enance cost of the t ransformed tool is higher 
than in the first four approaches. 

4. No extra resources are required. 

5. Like Approach 5 the transformed tool is not robust over changes in the 
tool. 

6. Like Approach 2 the transformed tool is robust over changes in IDL and 
the IDL Toolkit. 

7. The tool is robust over changes in the environment. 

Approach 7 The input IDL instance is read into an IDL structure. This structure 
is a derivation of the input interface's IDL specificat ion. Some portion of the 
internal data st ructure of the tool may need to be computed. Th~> accesses to the 
internal data structure need to be replaced with equivalent access routines that 
act on both the internal data structure and the ffiL structure. The complexity 
of these determine the complexity of the transformation. 

I£ Lhe internal data structure were to be replaced by the internal m L data 
structure, then all accesses to the internal data structure need to be changed 
to equivalent accesses to the internal IDL data structure. But the original 
internal data structure need not be computed. U only a part of the internal 
data structure were being replaced by the TDL structure, then the remainder 
has to be computed from t he input IDL instance, but only some of the accesses 
to the internal data structure need be changed. 

To replace internal data structures that are not simple, a substantial portion of 
the tool's source code may have to be rewritten. Therefore a moderate amount 
of manpower and time would be required. The metrics on the transformed tool 
are given below. 
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1. Like Approach 2, the static and dynamic storage requirements will be large. 
Unlike Approach 6, only a part of the internal data structure may need to 
be stored. Bu~. ~he IDL structure may require more space, since it may 
contain extra attributes. 

2. Like Approach 6 increase in I/0 time may affect the speed of execution. 
The processing time, even though increased may not be a major factor. 

3. The maintenance cost of the tool is fairly high, even higher than that of 
Approach 6, since extensive modification is required. 

4. No ext ra resources are required. 

5. Like Approach 5 the transformed tool is not robust over changes in the 
tool. 

6. Like Approach 2 the t ransformed tool is robust over changes in IDL and 
the IDL Toolkit. 

7. The tool is robus~ over changes in the environment. 

Approach 8 The output. IDL instance is produced by traversing t he iu~ern al data 
structure. .A, writer writes out the IDL instance in the IDL format. This 
approach is suitable if the internal data structure contains all the attributes 
reqwred by the IDL structure specification. The complexity of the traversal 
required to generate the output IDL instance determines the complexity of tile 
transformation. 

The traversal of the data structure should be simple. Therefore. the length o£ 
time and the manpower required should be small. The metrics on the trans­
formed tool arc given below. 

1. Like Approach 5 the static and dynamic space required should be smaU. 

2. Like Approach 5 the tool may be slowed down by IfO. 

3. Like Approach 5 the maintenance cost of the tool is higher for this approach 
than for the first four approaches. 

4. No extra resources are required. 

5. As in Approach 5, the transformed tool is not robust over changes in th<' 
tool. 

6. As in Approach 3, the transformed tool is robust over changes in lDL and 
the TDL Toolkit. 

7. The t.ool is robust over changes in the environment. 

Approach 9 The IDL instance is created in memory and this is output using rou­
tines provided by IOLC. This approach differs from Approach 4 io that the in 
memory data structure is created !'rom the intemal data structure, rather than 
the original output daLa. The IDL instance in memory is created by traversing 
the internal data. structure. The difficulty of t he transformation depends on the 
complexity of the computation to compute the IDL instance in memory. 
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As in Approach 2, the length of time and manpower should be moderate. The 
metrics of the performance and robustness of the transformed tool are the same 
as for Approach 6. 

Approach 10 The internal data structure of the tool is replaced in whole or in part 
by an IDL data structure that is a derivation of the lOL specification for the 
output interface being transformed. Like approach i the accesses to the internal 
data structure have to be modified so that they act on both the internal data 
structure and the JDJ,, data structure. The new internal data structure (TDL 
structure and a part of the original internal data structure) is di rectly computed 
from the input data, since the accesses have been modified. 

Like Approach 7, the transformation of the interface should be fairly complex. 
Therefore a moderate amount of time and manpower would be required. The 
other metrics are the same as those for Approach 7. 

3 .6 Other Tech niques 

The methodology considers only two points along the data dimension. i.e. external 
data and internal data structure. When an output interface is being transformed, 
the internal data structure of the tool or the output data may not contain adequate 
information to compute the output IDL instance. The methodology that is presented 
above will not be able to solve such a problem. This section presents techniques that 
may be used to solve some of those problems. Each of these techniques modifies the 
problem so that the methodology can be applied to it. 

T echnique 1 This technique may be used in the transformation of an output in­
terface. A tool may compute some attributes that are required by the fDL 
instance, but these altributes may be discarded and not stored in the internal 
data structure. Instead, a special data structure may be bui It to store such 
attributes. The new internal data structure can be considered to be Lhe spe­
cial data structure and the internal data structure of the original tool. One of 
Approaches 5, 6, 7, 8, 9 and 10 may be applicable. For example, the semantic 
analysis phase of a compiler may compute the usage of the symbols, but may 
not store it in its internal data structure. This information can be captured 
in a special data structure and then used to help in the transformat ion. The 
transformation is a little more complex, since the information is present in two 
different structures. The transformed tool requires more static and dynamic 
data space, but not substantiaUy so. 

Technique 2 This technique may be used in the transformation of an output inter­
face. A tool may compute its output incrementally. The internal data strucwrc 
of the tool may only contain information about a portion of the output. A new 
data structure can be built that accumulates the internal data structure. This 
new data structure is updated whenever data is input. This new data structure 
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serves as the internal data structure for applying the methodology. One of Ap­
proaches 5, 6, 7, 8, 9 and 10 may be appli!=able. The transformed tool requires 
more static and dynamic data space. 

Technique 3 This technique may be used in the transformation of an output inter­
face. A tool may not output sufficient information in its output. The tool can 
be modified so t hat the extra attributes are also output. The new output. now 
contains sufficient information to perform a transformation. One of Approaches 
I, 2, 3 and 4 may be applicable. 

Technique 4 This technique may be used to transform an input or an output inter­
face. It may be far too complex to perform the transformation of the interface 
it1 one step. An intermediate rDL structure may be developed that can be used 
to simply the transformation. This technique is illustrated in Figure 3.i. This 
technique may slow down the transformed tool considerably. Since a number of 
different programs are involved, significant additional static and dynamic data 
spaCP may be required. 

3. 7 Transforming Man y Interfaces 

The methodology may be used lo transform one interface at a time. If more than one 
interface is being transformed, ~be methodology suggests lbat they be tmns[ormed 
indep<'ndcntly. However when multip le interfaces are transformed, a s1•quent ial ap­
proach may not resull in the best overall solution. Approaches 7 and 10 build the lDL 
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data structures in memory. If an input interface were ~ransformed using Approach 
7 and an output interface using Approach 9, then these transformations could be 
combined in such a way that the total cost would be less than the Sltm of the cost of 
transforming the two interfaces. 

For example, the internal data structure of an expression type checker may con­
tain an expression tree, but the checker may input and output expressions in infix 
format. If the input and output interface need to be transformed to input and output 
expression trees in IDL format. then the internal data structure can be replaced by 
an IDL data structure which is a derivation of the input and output data structures. 
The input and output IDL instances can then be read and written using rou tines 
provided by IDJ.C. Replacing the internal data Structure with the IDL structnre may 
be easier than transforming both the input and output interfaces separately. 

3.8 Conclusions 

This chapter presents a methodology for transforming an interface. First the partie· 
ular problem of transforming an interface is examined and its characteri~tics deter­
mined. A set of approaches that may be used to transform an interface arc considered. 
A mapping associates the characteristics with an appropriate approach. The metrics 
associated with the different approaches are discussed. Other techniques that may 
be used to help the transformation of an in terface are evaluated. The chapter ends 
by considering the transformation of mo<e than one interface. The methodology is 
summarized in Appendix D. 



Chapter 4 

Transforming a Syntax-directed 
Editor 

This chapter discusses an application of the meLhodology presented in Chapter 3 
to transform an input and an output interfa,ce of a syntax-directed edilor. First, 
the tool whose interfaces are being transformed is discussed in detail. Then, the 
transformation of an output interface is considered. The methodology is then applied 
to transform an input interface. 

A text editor is used to enter and modify text. A syntax-directed editor is used 
to create and modify programs in a particular language. The syntax of the language 
Is the syntax of the data that may be edited by Lhe editor. For example, a syntax­
directed editor for the Pascal programming language may be used to create and edit 
programs in Pascal. The text produced by this editor is guaranteed to be syntactically 
correct. Such an editor can be generated using the Synthesizer Generator [Reps & 
Teitelbaum 1984]. 

The Synthesizer Generator is a tool that generates syntax-directed editors when 
provided with their specification. A part of this specification is the abstmct syntax 
of the data. The abstract syntax is a set of grammar rules, essentially productions 
of a context free grammar [Hopcroft & Ullman 1979J. Each production has a name. 
known as the operator. The abstract syntax tree is an instance of the abstracl. syntax 
represented as a tree. A sel of pa1·sing declarations specify how the abstract syntax 
tree may be computed from text that is input to the editor. A set of 1111pctrsing 
declarations specify the textual representation of the abstract syntax tree. Terms 
and produclions in the abstract syntax may have attributes associated with them. A 
set of attribution rule.~ specify how the attributes may be evaluated from the other 
at tribu tes in the tree. The altl'ibuted syntax tree is the abstract syntax tree along 
with these attributes. 

Given these specifications, the Synthesizer Generator gen<'rates a syntax-directed 
editor that computes the abstract syntax tree from the input text using the pars­
ing declarations, evaluates the attributes as specified by the attribution rules, and 
computes the textual representation of the abstract syntax tree as specified by the 
unparsiug declarations. This textual representation may be edited interacti"<'ly and 
the attributed syntax tree is recomputed whenever the text is changed. Th<' text that 
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An edit9r generated using the Synthesizer Generator (see Figure 4..1 inputs ano 
outputs data in two dillerent formats. The first, the textual format, is the textual 
representation of the abstract syntax tree. This may be computed from the abstract 
syntax tree using the unparsing rules. The editor accepts as input, textual data 
and computes the abstract syntax tree by using the parsing rules. The second, the 
structu1Y~ format, contains an abstract syntax tree encoded as a list of operators with 
t heir name and a.rity, followed by the opemtors in the abstract syntax tree listed in 
preorder. 

The Synthesizer Generator can be used to bui ld a number of fairly sopllisticaled 
editors that check both the syntax and semantics of input programs for programming 
languages like Pascal, C and Fortran77. The internal data structure of these editors 
contains the abstract syntax tree along with the attributes. However the output of 
these editors contains only the abstract syntax lree. The methodology presented in 
Chapter 3 will be used to transform such an editor to output <lO attributed tree. The 
input and output interfaces of an editor that accepts a simple expression language in 
infix format and functions as a desk calculator will be transformed. The transformed 
interfaces comrnunicat.e their instances in the IDL format. 

The data structure that is input and output by the transformed editor should be an 
instance of the attributed syntax tree represented in tbe IDL format . The altributes 
associated wit h lhe nodes in the abstract syntax tree that are computed by the editor 
will be present in the output. The editor should also accept its output as input. 
The transformation of an editor using the methodology demonstrates bow an editor 
generated by the Synthesizer Generator may be transformed to input and output IDL 
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instances. An editor for the Pascal language, generated by the Synthesioer Generator 
can be t ransformed to output an attributed syntax tree. This attributed syntax tree 
can be used by a code generator to generate executable code. The syntax-directed 
editor thus transformed can be used as the frontend for a prototype compiler. 

The methodology given in Chapter 3 may be used to tr3nsform only one interface 
at a time. Therefore the transformation of the output interface of the editor will be 
considered first. Then, the transformation of the input interface will be considered. 

4 .1 Transformation of the output interface 

To apply the methodology the characteristics of the problem along the different di­
mensions of the problem space have to be determined. The problem space has four 
dimensions: Input or Output, Data, Complexity of Computation, Constraints on the 
Implementation. The output interface is being transformed, therefore the value along 
the 'Input or Output' dimension is 'Output'. Along the 'Constraints on the [mple­
mentatioo' dimension, the formats of data input and output by the tool (external 
data format) arc available and the source code is available for modification. However, 
the name space used by the program, the documentation about the internal data 
struc~ure and the documentation on the source code are not available. The 'Data' 
and the 'Complexity of Computation' dimensions are discussed below. 

The problem of transforming the output interface of the desk calculator is multi­
valued along the data dimension i.e., its value is both 'internal' and 'external'. The 
output !DL instance may be computed from the data outpu~ by the editor as well as 
the internal data structure of the editor. 

The editor outputs its data in two formats, a textual format and a structure 
format, representing the abstract syntax tree. The attributed syntax tree, represented 
in TDL format, may be computed from either of these outputs. Tbe syntax tree may 
be computed by parsing the text output by the editor. The syntax tree may also be 
built from the structure ou~put of the editor. In either case, the attributes of the 
nodes in the syntax tree may be computed using t he attribution rules. An attribute 
in the output IDL instance is independent of other attributes in the IDL instance. 
However, the evaluation of an attribute by applying the attribution rules on the 
abstract syntax tree may require the evaluation of the other attributes. This is one 
of the characteristics of a complex computation as defined in Chapter 3. lienee the 
'Complexity of Computation' of both these computat ions (i.e. computing the oulput 
IDL instance from the textual or structure input) is 'Complex'. 

The internal data structure of the editor contains an attributed tree that stores 
the abstract syntax tree of the data being edited along wit h the attributes. Each 
node in the attributed tree is an instance of a production in the abslract syntax. 
The node has as its sons instances of all the nonterminals that are part of the right 
band side of lhe production. The node also has as its sons all the attributes of the 
nonterminal on the righ t hand side of the production and all the attributes local to 
the production. Some of these sons are subtrees and some of Litem are constants (e.g., 
integer). Further, there are number of arrays that contain properties of productions 
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and the non terminals in the syntax. Two of them are, the number of non terminals in 
each production, and the names of the nonterminals. There a.re also many flags that 
a.re used to ensure that the attributes of the syntax tree are computed in a optimal 
manner. Many macros are available to access the internal data structure of the tool 
easily. Since the attributed syntax tree is contained in the internal data structure, 
the attributes required by the IDL data structure do not have to be computed. The 
complexity of this computation is simple. 

Summarizing, this problem maps to the foUowing two points in the problem space. 
One of the points has along the data dimension, the value external and along the com· 
plexity of communication dimension, the value complex. The other point has along 
the data dimension the value internal and along the complexity of communication 
dimension the value simple. Both points have along the input or output dimension 
the value output. From the mapping given in Chapter 3, the Approaches 4, 8, 9 and 
10 are applicable. The metrics on the transformation of the interface of the tool using 
the different approaches must be considered to choose the most appropriate approach 
from these approaches. 

In Approach 4, the in-memory data structure is created from the output of the 
tool( either the structure or textual output) and this is output using routines prO\-ided 
by IDLC. The complexity of the computing the internaiiDL instance determines the 
difficulty of the transformation. In the case of the desk calculator, computing the 
attributes of the different nodes in the syntax tree using the attribution rules can be 
moderately difficult, hence the transformation is moderately difficult. For an editor 
generated from a more complex language, computing the attributes of the different 
nodes is likely to be more difficult. 

In Approach 8, a subroutine writes out the !DL instance in the !DL format by 
traversing the internal data structure. This 10 L instance contains the attributes in 
preorder. The complexity of the traversal determines the difficulty of the transfor­
mation. In the case of the desk calculator, the internal data structure contains the 
attributed syntax tree which can be traversed in preorder easily. Therefore, the trans­
formation is fairly simple. This holds even for an editor that is generated from a. more 
complex language. 

In Approach 9, the IDL instance is created in memory and th is is output using 
routines provided by IOLC. The difficulty of ~he transformation is determined by the 
complexity of computing ~he IDL instance in memory. While it is fairly simple to 
compute the aLLribules of the different nodes of the t-ree, creating an internal IDL 
data structure is complicated, since a separate routine is required for each node typ<> 
in the IDL specification. This is fairly complicated even for a. small specification. For 
an editor generated l"rom a more complex language, it would be more complicated. 

In Approa<:h 10, the parl of the internal d<tta structure that. contains the attributed 
syntax tree is replaced by an IDL data structure that is a dcriv~.tion of Lhe lDL 
specification for the output interface. This part of the internal data structure other 
than containing jusL the at.lributed synta:< also contains information about how lh<' 
attributes may be evaluated efficiently. This information is stored in flags at every 
node of t.he abstract syntax tree. Since sufficient documentation is no~ available 
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about t he internal data structure, it is not clear bow these flags may be evaluated. 
Further, all accesses to the altributed synLax tree have to be modified to access the 
IDL structure. Even though macros are used lo access the internal data structure, 
these macros are highly parametrized (e.g. seLattr( a,b,c) , set attribute b of nodr a to 
c). Given the nature of the data declarations produced by IDLC. it would be difficult 
to provide such macros to access the ID L data structure. Therefore replacing lhe 
internal data structure with an IDL data structure is complex. The t ransformal ion 
using th is approa,ch is fairly complex. 

Judging by the difficulty of the transformation, Approach 8 seems to be the best 
approach at hand. Instead of transforming an existing interface, a new interfa<"<' was 
created to output the IDL instance. The transformed edit.or can outpu~ the attribu ted 
syntax tree in IDL format and the abst ract syntax tree in text and structure formats. 

The portion of the specification used by l.he Synthesi~C'r Generator to generate 
the desk calculator is shown in Figure 4.2 and the corresponding IDL specification of 
the output interface is shown in Figure 4.3. 

A nonterrninal in the abstract syntax corresponds to a class in the IDL specifica­
tion with the productions as il.s sub-classes. The names of the attributes in the 101 
specificat ion are the same as the attribute names in the sp<1dncation of t he editor. T n 
t he abstract syntax specification 'exp' is a nonterminal with a number of productions. 
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In the !DL specification, 'exp' is a class containing a number of nodes. Each of these 
nodes corresponds to a production of ' exp ' and is named from it. The nonterminal 
' exp' bas an attribute 'v ' . T he class ' exp' bas the corresponding attribute ' v'. The 
non-terminals on the right hand side of a production in the abstract syntax are cou­
sidered as attributes of the non-terminal on the left hand side of a. production. The 
names of these attributes are derived from the name of the production in the abstract 
syntax. The production ·sum' is made of two occurrences of the nonterminal 'exp'. 
The node 'Sum' has two attributes ' Sum1' and 'Sum2' each of type 'exp'. Other schC'mes 
for naming the attributes may be used e.g., using the name of the non-terminal on 
the left hand side of the production. If a production does not have any non-terminal~ 
on the right hand side then it has no attributes. The production 'Null' has no non­
terminals in it. The node ' tlull' has no attributes. Even though the IDL specification 
has been generated by hand, it can be generated from the specification of the l"<<itor 
mechanically. The complete specification of the syntax-directed editor and thC' IDL 
specification of its output is provided in Appendix B.l. 

Building a new output interface was fairly simple as predicted by the methodology. 
The output interface is a subroutine that outputs the IDL structure of the portion of 
the edited text that has been selected. This structure in ASCII ERL is output to the 
file 'foo'. This subroutine replaces the function 'dump- on' of the editor that primed 
the values of the attributes of the current selection. The editor can be modified to 
make this subroutine a new function. The code for the output interface, provicled in 
Appendix 8.2 was 150 lin P.S long and took about 3 days to develop. It was simple 
because the traversal of the data structure was simple. Since the data s tructure had 
simple access macros, the traversal was not complicated. 'T'he number of attributes 
in a production and names of the different attributes were available io the internal 
data structure of the tool itself, therefore they were not bard-coded into the output 
interface. Because the data structures generated by the Synthesizer Generator arc 
similar fo1· different editors, t his new output interface can be used by other editors as 
well. 

4.2 Transformation of the input interface 

This section considers the transformation of the input interface of the editor. The 
editor must be able to accept the IDL insta.nce that it produces as output. The 
problem is to transform lhe input interface of the editor so thal it accepts as input 
an instance of the IDL speciftcation mentioned in Appendix 13.1. This instance could 
have been produced by the new output interface constructed in Section 4.1. For 
this problem, the value along the Input or Output dimension is input. Along the 
Constraints of Implementation dimension, the external data format of the tool is 
known and the source code is available for modification. 

Consider the IDL specification of the inpui data given in Figure? 4.3. Som<' of tht: 
attributes of a node correspond to nonterminals in the abstract syntax (e.g. 'Suml', 
'Sum2' etc.,.). A syntactic allribule is an attribute of a node that corresponds to a 
nonlt!rrninal in the abstract syntax. Some of the attributes correspond to attributes 
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of non terminals in the abstract syntax (e.g. ' v'). A semantic attribute is an attribute 
that corresponds to an attribute of a nonterminal or to an altribute of a production 
in the specification of the editor. 

Consider the transformation between the attribute tree represented as an IDL 
instance and the input text of the editor. Subtrees contained in the IOL instance 
correspond to contiguous portions of text. Independent subtrees correspond to inde­
pendent portions of text. Hence, the 'Complexity of Computation' is 'simple'. 

Consider the transformat ion between the attribute tree represented as an 1DL 
instance and the structure input of the editor. The structure input to the editor 
is essentially a list of the operators in the abstract syntax tree listed in preorder. 
The attributed tree is a representation of the abstract syntax tree with attributes 
associated with some nodes in the tree. Therefore, the operators for two independent 
subtrees correspond to independent portions of the list. Therefore, the 'Complexity 
of Computation' is 'simple'. 

The part of the internal data structure that contains the attributed syntax tree 
can be computed from the IDL instance. The fDL instance contains aU the att.rib\Jtes 
required to build the attributed syntax tree. However, the aHributed synt<tX tree con­
tained in the internal data structure contains a set of flags associated with each node 
in the tree. Some of these flags arc used to evaluate the attributes efficiently. These 
attributes should be computed fairly easily. Then, the 'Complexity of Computation' 
is 'simple'. 

Summarizing, this problem maps to three points in the problem space each of 
which have along the 'Complexity of Computation' dimension, the value 'simple', 
two of the three points have along the 'Data' dimension the value ·external', and 
the other has along the ·Data' dimension, the value 'internal'. From the mapping 
given in Chapter 3, Approaches 1, 2, 5, 6 and 7 are applicable. The metrics on the 
transformation of the int.erface of the tool using the different approaches must be 
considered to choose the most appropriate approach from these approaches 

Approach I may be applied to transform the input IDL instance to the textual 
or the structure input of the editor. The structure input of the editor contains the 
operators in the abstract syntax tree listed in preorder. The input IDL instance 
contains the attributed syntax tree io preorder. This IDL instance can be parsed 
and whenever a syntact ic attribute is encountered, the operator corresponding to it 
is output. At the end of processing, the set of operators (along with their name and 
arity) is prefixed to the output. If the attributes of the nodes do not appear in order. 
then the list of operators must be stored and output at the end of processing. 

The textual inpuL of the tool can be generated by building the textual representa­
tions of the syntactic attributes in a bottom up fashion. The textual representation 
of a syntact ic attribute which is a node is calculated from the textual representation 
of all syntactic aUributes of the node using the appropriate unparsing rule. If t he 
syntactic attribute wert> a node without any attributes or one of the basic types, then 
its Lextual represt>ntat ion is straightforward. The inpnt IDL inst.ance can be parsed 
and the representations can be computed bottom up. The solution is not affected 
by the order of the attributes in the !DL instance. Though both methods are fairly 
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simple, iL is easier to generate the structure input to the ediLor. 
Approach 2 may be applied to transform the input IDL instance to the textual 

or the st ructure input of the tool. In both cases the in memory IDL structure is 
created by reading in the ID L instance using rou tines provided by iDLe. To produce 
tbe structure input of the editor. the syntactic attributes are traversed in preorder 
and they are output. To produce the textual representation, the tree is traversed 
bottom up and the textual representation is built as specified in the preyjous section. 
Both these solutions are fairly straightforward, but the traversal of the in-memory 
IDL instance is complicated, since a separate routine is requi red for each node type 
in the IOL specification. This is fairly complicated even for a small specification. For 
an editor generated from a more complex language, it would be more complicated. 
These transformations are more complex than those that use Approach l. 

Approaches 5, 6 and 7 may be applied to build the attributed syntax tree portion 
of the internal data structure from the IDL instance. However associated with every 
node in t he abstract syntax tree is a set of Hags. Some of these Hags are used t.o eval­
uate t he attributes more efficiently. Since there is no documentation available about 
the internal data structure, it is not clear how these flags are computed. Furth<'r, 
errors in the evaluation of these Hags are harder to deted since the editor is nol well 
equipped to handle inconsistencies in its internal data structure. Therefore. transfor­
mation using these approaches is complicated. Approaches 5 and 6 may be applied TO 

build the attributed syntax tree in preorder. Approach 7 may be used to build an IDL 
structure that takes the place of the attributed syntax tree contained in the internal 
data structure of the editor. The other parts of the internal data structure will not 
be changed, for e.g., arrays that contains the properties of the non-terminals. The 
code a.nd the macros that access the attribute syntax tree will have to be modified 
appropriately. 

The metrics on the different transformed editors (i.e. transformed using different 
approaches) are discussed in Chapter 3. Judging by the difficulty of the transform<t· 
tion it seems best to generate the structure input of the editor using Approach I. 

A niter was built that parsed the IDL instance (using YACC, see Figure '1.4) and 
output the list of operators in preorder into a ftle. The function 'check..syntactic_at­
tribute' checks to see if the attribute whose name has been encountered is a syntactic 
or a semantic attribute. If it is a syntaclic attribute, a flag is set. Subsequently when 
the operator a.5sociated wiLb the attribllte is encountered , the operator is output using 
t he 'output_op' function. [f l.he attribute value is a. constant, then it is omput using 
the function 'output_basic_type' function. The niter also stores the set of op<'rators 
encountered and this seL was output to a separate file. The latter file was prefixed to 
the former and this was provided as input to the editor. This filter was fairly easy 
to build. The code, presented in Appendix 6.3 is about 330 lines long and it took 
about 11 days to develop. 
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In ~his chapter the methodology given in Chapter 3 was applied to transform an input 
interface and an output interface. The methodology recommended a number of differ­
ent. approaches. Each approach provided a method of transforming the interface that 
had associated with it a number of mettics. The approach that provided the easiest 
transformation was adopted for implementation. The two interfaces were transformed 
and the results were as predicted. For instance, the metrics on the transformation 
predicted methods using Approaches 1, 2, 3 and 4 would be developed much faster. 
The output interface was transformed using Approach 8 and the input interface was 
transformed using Approach L Even though much less code was developed to trans­
form the output interface, the input interface was transformed in half as much time 
as it took to transform the output interface. 

The editor generated by the Synthesizer Generator consists of a set of core rou­
tines that perform all the basic functions of the editor. Those functions that are 
part icular to an editor (e.g. the unparsing rules} are encoded in a table and the table 
is interpreted whenever tl10se functions are required. The new output interfact' that 
has been built is capable of producing t.he attributed syntax tree in IDL formal from 
any editor generated by the Synthesizer Generator. Similarly, the filler generated 
to transform an output interface is capable of producing a structure input from the 
attributed synlax tree in TDL format for any editor generated by the Synthesizer 
Generator. 



Chapter 5 

Transforming XDR 

This chapter considers Lhe application of the methodology to the External Data Rep· 
resentation (XDR) protocol [XDR 1986]. XDR will be examined to see how it fits the 
model of a tool. The methodology will then be applied to the transformation of the 
input interface of XDR. Next, the methodology will be applied to the transformation 
or the outpul. interface of XDR. The chapter will conclude from the experience gained 
from these two transformations. 

The International Standards Organization {ISO) has developed a seven-layered 
model for Open Systems Interconnection (OSI) [Tanenbaum 1981A]. This model de· 
scribes the level of interaction in data communicat ion between two compu ter systems. 
The six th layer, the presentation layer, provides functions such as data encrypl.ion, 
data compression and other transformations on data that would be comrnunicated 
between the systems. XDR is a presentation layer protocol, using which lwo hetero­
geneous machines can exchange in-memory data structures. 

XOR is a protocol developed by Sun Microsystems Inc (see Figure 5.1). XDR con· 
verts between the machine dependent formals in which the data may be represented. 
Using XDR, two heterogeneous machines can exchange data structures specified in 
the 'C' programming language. XDR can be used to exchange data structures con· 
structed from the basic 'C' types (int, char, etc.) using const ructors for ana.ys, 
records and unions. Pointers can also be exchanged, but in a limited way. Data 
structures containing multiple pointers to Lhe same location cannot be exchanged 
directly using XDR. 

Even though XOR is very different rrom the syntax-directed editor considered in 
Chapter 4, il can be considered as a tool. The editor read in an expression as its 
input, and output an expression after processing it using commands from the user. 
XDR takes as input an in-memory 'C' data structure on one machine and provides 
as output the same data structure on a differenl. machine. 

The editor performs some transformations on its input to compute its output. 
XOR on the other hand moves the data structure from one machine to another. There 
were two objectives in the transformation of the editor, the first, to communicate 
with more tools (i .e. use a standard format) and the second, to communicate more 
information. XDR wi ll be transformed so that it can communicate rDL instanc('S 
bet.ween machines. 
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Unlike the editor that reads aod writes data into files, XDR has a procedural 
interface, i.e., a data structure is communicated by XDR by call ing a subroutine. The 
same subroutine can be used to send and receive the data structure. This routine calls 
the routines provided by XDR to communicate the basic types and some constructors. 
At one end, the 'C' data structure is converted by the subroutine into a series of bytes 
in a machine-independent format. These bytes are then transmitted to the other 
machine. At the other end, these bytes arc converted into the data structure. The 
direction of data communication de termines the type of conversion. 

This procedunl interface will be considered as the input and output interface of 
XDR. The formal of the data structure associated with this interface is the format 
of the interface. The data structure created by routines generated by IOLC cm1ld 
have multiple pointers to the same location. These data structures cannot be directly 
communicated using XDR. Therefore the data structure declarations produced by 
IDLC cannot be the format of the interface. 

The methodology requires that input and output data structures of the trans­
formed tool be specified in IDL. F'or the purpose of transforming XDR a simple LDL 
specification was chosen. This specification is provided in Figure 5.2. This specifica· 
tion contains the basic types of I 0 L as well as the constructors. 

The methodology considers the internal data structure of the tool to be trans­
formed. Tt is not obvious what should be considered as the internal data structure 
of XDR. The only data structures maintained by XDR are buffers that arc used to 
bufft:r the input and output data. However, these data structures store only a part 
of t he input data. The representation of the input data structure as a sequence of 
bytes that are transmitted across the network can be considered as the internal data 



St ructure test Root Aval Is 
Aval => first: Cval, 

second : Oval , 

Bval 
Bval 
Cval 
Oval 
Eval 

End 

.. :: 
•> 
:) 

.. > 
=> 

t hird: Seq Of Integer; 
Cval I Oval ; 
Enode : Eval; 
name: Str ing; 
value : String; 
number: Integer, 

name: St r ing, 
value: Rational , 
flag : Boolean; 

F'igure 5.2: 101 specification of the interfaces of the transformed tool 

structure of XOR. 

5 .1 Transformation of the Input Interfa ce 
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The input interface of XDR is a procedural interface that accepts a 'C' data structure 
and transmits it over the network to another maclllne. The data structure inpu~ lo 
XDR is specified using IDL in F'igure 5.2. 

To apply the methodology, the characteristics of the problem along the difTerent 
dimensions of the problem space have to be dewrmined. The problem space has four 
dimensions: Input or Output, Data, Complexity of Computation and Constraints on 
the Implementation. The inpuL interface is being transformed, therefore the value 
along the 'Input or Output' dimension is 'Input'. Along the 'Constraints on the 
Implementation' dimension, the format of the data input and output by the tool are 
available. The problem is multi-valued along the 'Data' dimension. 

Consider the value 'external' along the 'Data' dimension. The 'C' data structure 
communicated by XDR cannot have multiple pointers to the same memory location, 
i.e. nodes may not be shared. In the 101 data structure, the node of typ<' ·Eval' 
may be shared by Lhe two nodes of the class 'Bval' (see Figure 5.3). Since this 
data structure may have to be communicated, the sharing of the node has to be 
encoded in the data structure communicated by XDR. This may be an attribule in 
the data stn1cture communicated by X DR. The computation of this attribute requires 
t he examination of the whole data structure. The 'Complexity of Computation' is 
'Complex'. 

Consider the value ·internal" along the 'Data' dimension, i.e. computation of 
the internal data structur<' from the 101 instance. The internal data strudure is 
a representation of interface data structure. The computation of the internal data 



structure test 
A val 

# 

[ first Cval 

] 

[ name "Sundar" 
Enode L10: Eval 

] ; 

[ number 5 ; 
name "Sundar" 
value 5.0 
flag 0 ; 

] 

second Oval 
[ value "Sundar" 

Enode L10- ] ; 

third < 1 2 > 

Figure 5.3: An instance of the specification in Figure 5.2 in IDL format 
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structure requires the encoding of the sharing of nodes. This requires examination of 
the entire data structure. Therefore the 'Complexity of Computation' along the data 
dimension is 'Complex'. 

Summarizing, this problem resolves to two points in the problem space. One of 
them has value 'external' and another the value 'internal' along the' Data' dimension. 
Both points have, along the 'Input or Output' dimension, the value 'input' and. along 
the 'Complexity of Computation' dimension, the value 'Complex'. From the mlLpping 
given in Chapter 3, Approach 2 is applicable. Approaches 6 and 7 are not applicable 
since the source code is not available. The XDR protocol specifies the encoding of a 
'C' data structure in a machine independent format to be communicated to another 
machine. Using this specification the lDL data structure can be converted to a format 
to be communicated to another machine. This would amount to a re-implemenlation 
of XDR, which is not considered as an approach by the methodology. 

In Approach 2, the in-memory IDL structure is created by rca.ding the input 
IDL instance using routines provided by IDLC. This structure is traversed and the 
input data of the tool is computed. In the case of XDR, this structure is traver~ed 
and the data. structure that is required by the input interface of XDR is computed. 
Since XD R has a. procedural interface, this data structure has to be computeo by a 
subroutine. This application of Approach 2 is similar to Approach 6 in which the 
internal data structure of the tool is computed using a subroutine. The difficulty of 
the transformation depends on the difficulty of computing the data structure required 
by X.DR. 
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The data structure to be supplied to XDR needs to be specified before ~he diffi­
culty of the transformation can be evaluated. The data structure supplied to XDR 
will be computed by traversing the IDL data structure. The data structure can be 
computed easily if it is similar to the IDL data structure. This data structure has 
to encode the sharing of nodes. A data structure was chosen that was very similar 
to the IDL data structure. This data structure shown in Figure 5.4 encodes sharing 
of nodes of type 'Eval ' using character strings as labels. Further, null pointers in 
the struchue ' intseq' are implemented using discriminated unions, since XDR can­
not communicate null pointers directly. The tra.nsfonnation is straightforward and 
fairly simple. However, for a more complex structure, the t ransformation would be 
complicated, given the nature of data declarations produced by IDLC. 

The IDL structure is read into memory using routines provided by lDLC. The 
data structure required by the input imedace can be computed m two phases. In 
the first phase the IDL st ructure is traversed and nodes of type 'Eval' are marked as 
touched. If a node marked as touched is encountered, it is marked as shared. In the 
second phase, the data structure is created £rom the IDL data structure. If a node 
marked shared is encountered, then it is labeled. Subsequent references to the node 
arc encoded in the data. structure as labels. The data structure is then communicated 
using XDR. The program provided in Appendix C.3 is about 120 lines long and took 
about a day to develop. 

5 .2 Tra nsform ation of the Output Interface 

The data s~ructure communicated across the inpu~ and output interfaces of XDR is 
the same. The output interface of XDR is a procedure that when called produces an 
instance of the data structure specified in Figure 5.4. This data structure needs to 
be converted into an equivalent instance of the IDL specification in Figure 5.2. 

To apply the methodology, the characteristics of t.he problem along the dimensions 
of the problem space have to be determined. The problem space has four dimensions: 
h1put or Output., Data, Complexity or Computation and Constraints on Lhe Imple­
mentation. The output interface of XDR is being transformed, therefore the value 
along the 'Input or Output' dimension is 'Output'. Along the Constraints on the 
Implementation' dimension, the format of the data input. and output. by tbe tool are 
available. The problem is mult i-valued along the 'Data' dimension. 

:-lodes of type 'Eval' may be shared in the IDL instance. This is encoded in the 
data structure using labels and label references. This is similar to the lDL format for 
representing nodes that are shared. There is a one to one correlation be~ ween the fields 
of the data structure and the IDL format. Therefore, for the value 'external' along 
the 'Data' dimension. the value along the 'Complexity of Computation' dimension 
is 'simple". Recall that the value along this dimension in the transformation of the 
input interfac<' was 'Complex'. 

The internal data structu.re is a representation of the data structure of the ottlpu~ 
interface. T he internal data structure contains shared nodes encoded using labels 
and label references. This is similar to the representation of the data struc~ure in the 



struc:t hE { 

}; 

enum {ISLABEL=1,ISNODEa2} Etype; 
union { 

int label_no; 
struc:t hEvalue { 

enum {NOLABEL=l,LABELDEF=2} Etype; 
int l abel_no; 
struct { 

J.nt number; 
char *name ; 
float value; 
int flag; 

} value; 
} value ; 

} value; 

struc:t hC { 

char •name; 
struct hE Enode; 

} ; 

struct hD { 
char •value; 
struct hE Enode; 

} ; 

struct intseq { 
int val; 

} ; 

enum {!IULLELEM=l, V ALELEM=2} nodetype; 
st ruct intseq * next; 

struct hA { 

}; 

struct hC first; 
struct hD second; 
struct intseq third; 

Figure 5.4: Data st ruclure of the interface specified in •C' 

44 



struct hE { 

}; 

enum {ISLABEL=l, ISNODE•2} Etype; 
union { 

int label_no; 
struct hEvalue { 

enum {NOLABEL=1,LABELDEF=2} Etype; 
int label_no; 
struct { 

int number ; 
char *name; 
float value; 
int flag; 

} value; 
} value; 

} value; 

struct hC { 

}; 

char *name; 
struct hE Enode; 

struct bD { 
char *value; 
struct bE Enode; 

} ; 

struct intseq { 
int val; 

} ; 

enum {NULLELEM=1,VALELEH=2} nodetype; 
struct intseq *next ; 

struct bA { 

}; 

struct hC first; 
struct hD second; 
struct intseq third; 

fo'igurc 5.4: Data structure of the interface specified in 'C' 
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IDL format. Therefore, for the value 'internal' along the 'Data' dimension, the value 
along the 'Complexity of Computation' dimension is 'simple'. 

From the mapping given in Chapter 3, Approaches 3 and 'I are applicable. Ap­
proaches 8, 9 and 10 are not applicable since the source code is not available. As 
in the transformation of the input interface, the re-implementation of XDR is not 
considered. 

Approach 4 can be applied to build the IDL data structure internally. The IDL 
data structure represents sharing of nodes by using multiple pointers to the same 
location . The interface data structure enC()des the sharing of nodes using labels and 
label references. A table of labels and their associated pointers bas to be constructed. 
Since labels may be encountered in the traversal of the internal data structure before 
they arc defined. tbe table may also need to contain references to all referenc<'S to 
the label. The interface data structure is traversed depth-first and the IDL data 
structure is built top-down. If a field in the interface data structure is not a reference 
to a label, then the node corresponding to it is builL. If the field is shared, it may 
define a label that would be referenced later. Then the table is updated with the 
label and a reference to the newly built node. If the field is a reference to a labeL 
then its value is obtained by looking up the table. References to labels that are not 
yet defined will have to be handled as well. This approach is straightforward. but 
complicated. F'or a more complex structure it would be more complicated. 

Approach 3 can be applied by t raversing the interface data structure and out­
putting the attr ibutes of the different nodes in the IDL format. The interface data 
st ructure has been created by a call to an XDR routine. lf a node of type ·Eva!' 
is shared, then it is encoded in the data structure using labels and label references. 
This is similar to the IDL format for encoding nodes that arc shared. A subroutine 
that outputs the interface data structure in the IDL format was written. Since the 
interface data structure did not contain the names of the fields, they were cod<'d into 
the subroutine. This approach is straightforward and simple. For a more complex 
interface data structure, this approach would be more complicated. This approach 
was implemented. The code, provided in Appendix C.4, is 66 lines long and took 
about ~ a day to develop. 

5.3 Conclusions 

T his chapter discussed the application of the methodology to XDR. Since XDR is very 
different from a conventional tool like the syntax-directed editor, the transformation 
was unconventional. Conventionally, this transformation would have been viewed 
as the problem of representing an IDL instance in XDR. In that case, the issues 
would have been a compact and efficient representation using XDR. However the 
methodology requiTed the speci fication of the TOL structure and t.he specification of 
XD R's interface were specified a priori. Therefore t his methodology cannot lw used 
to directly measure the efficiency of the representation in XDR. 

Another issue that would have been considered would be to automate this trans­
formation. That is, given th<" IOL specification, the specification of the XOR interface 
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and the routines to communjcate the J DL instance be done mechanically. 
In thls transformation the XDR format of the interface was specified. The for mal 

of the XDR interface could have been specified as a stream of characters. In that 
case, the instance in ASCI! ERL can be communicated wrectly. However, this would 
have defeated the purpose of XDR which is meant to communicate dat.a struct.urcs 
in machine dependent format between heterogeneous machines. 



Chapter 6 

Conclusions 

This research provides a methodology to transform the the input and output interfaces 
of an existing tool to communicate instances in the IDL format. The characteristics 
of the problem are used to choose the approaches appropriate to the problem. The 
approaches can be evaluated using the met rics associated with them. The method­
ology was applied to two problems, t ransforming the input and output interfaces of 
a syntax directed editor and trao;~forming XDR to communicate IDL instances. The 
results of these applications provide testimony to the validity of the methodology. 

This research provides a systematic way to transform tools to communicate lDL 
structures and to evaluate the cost of such a transformation. The transformed tool 
may be able to communicate with many ot her tools. T he t ransformed tool can also 
be tested and debugged using the IDL toolkit. 

6 .1 F u ture Work 

As mentioned in Chapter 3, this research did ooL consider how the IDL specification 
of the interfaces may be derived from the tool. The IDL specification of the inter­
faces of the syntax-directed editor could have been automatically generated from the 
specification of the editor. The attributes of a node in the lDL specification are the 
syntactic and scmant,ic a ttributes of the corresponding productioo in the abstract. 
syntax. The IDL specificaLion cannot be derived automat ically for all tools that arc 
specified formally. lt. would illuminating to consider the aspects of ~he specification 
~hat make such a derivation possible. 

After an IDL specification bas been derived, it needs to be evaluated to determine 
if it contains all t he at ~ributes that would be required by ot her tools that communicate 
Lhc lDL instance. T his is dependent on t.he environment in which that transformed 
tool is to function. 

ln the transformation of XDR, it was noted that the transformation could be 
automated. This needs to be examined. ln general, automating the t ransformation 
would be be very difficult, if not impossible. 

The methodology considers the transformat ion of just one intcrfa<'e at a lime. 
There may be ad vantages in considering the transformation of the tool as a whole. 
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The new ~ool may be more efficient and a lso more easi ly maintainable. Lc some cases, 
even the transforma~ion may be easier. This needs to be investigated further. 

The methodology assumes that the tool reads in all the input data into its in­
ternal data st ructure, preforms computat ions on the data, and then produces the 
output data from its internal data structure. Some tools may process the inpul in­
crementally. Some tools may encode the information about the input data structure 
in their program state (e.g. recursive descent parsers). The methodology may not be 
able to provide a pract ical solution for sucb problems. Special ized techniques may be 
considered. 

A.s stated in Chapter 1, the transformation of IDLC to accept lDL instances in 
tool dependent formats was not considered. ln some cases, it may be c;ost effective 
to build a filter t hat converts between the tool dependent format of t he IDL in~tance 
and the 1D L formal. 
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Appendix A 

Glossary 

IDL format The standard format (ASCII ERL) in which the TOL structure is read 
or written to external storage. 

IDL Interface Description Language. A language developed to communicate data 
structures between programs. 

Synthesizer Generator A program that can be used to generate syntax-directed 
editor. For more details see Chapter 4. 

XDR A protocol developed by Sun ~1.icrosystems Inc., to communicate 'C' data 
structures between heterogenous machines. 

abstract syntax tree The derivation of a sentence in the abstract syntax repre­
sented as a tree. 

abstract syntax A set o( productions that specifies the syntax of a language without 
the use of terminal symbols. 

attribute A named value whose domain is specified by its type. In IDL, an at­
tribute is conceplually similar to a field of a Pascal record. In the specification 
of a syntax-directed editor, attributes arc attached lo either non-terminals or 
productions. 

attributed syntax tree The abstract syntax tree along with the semantic attribute~ 
associated with the non-terminals and operators in the tree. 

attribution rule In the specification for the Synthesizer Generator, a rule used to 
compute the value of an attribute. 

complex computation A computat ion that is not simple. 

external IDL instance The IDL data structure represented in the IDL format. 
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filt er A program ~hat converts the input or ou'tput daLa between Lhe lool dependent 
format and IDL format. 

interface The format of daLa and the set of routines that read and write the data. 

internal IDL instance The IDL data structure represented in memory. 

node A data type in JDL that is a named collection of attributes. Tb1s is similar to 
a Pascal record. 

operator [n the specification of a syntax-directed editor, the name of a production 
in the abstract syntax. 

parsing declaration The ru le used to generate a portion of the abstract syntax tree 
from the input text. A set of parsing decalarations specify how the abstrac~ 
syntax tree may be computed from the input text. 

pipe A mechanism provided by the UNIX operating system to communicate the out­
put of one program as tbe input of another program without using intermediate 
files. 

p r esentation layer The sixth layer in the !SO's OSI model that provides funct ions 
such as data encryption, data compression and other transformations on data. 

root A distinguished node in the IDL st ructure from which all other nodes may be 
accessed. 

semantic attribute When the attributed syntax tree is represented as an IDL struc­
ture, the attributes in the IDL structure that correspond to attributes of the 
non-terminals and operators. 

simple computation A computation of the IDL instance from the internal data 
struc~ure where there is correspoodance between attributes in the lDL specifica­
tion and portions of the internal data strudure. For a more complete definition 
sec Section 3.1. 

structure format The representation of the abstract syntax tree, with the list of 
operators with their name and arity, followed by the operators in the abstract 
syntax tree listed in prcorder. 

syntactic attribute When the attributed syntax tree is rcpresenled as an ffi L struc­
ture, the attributes in the IDL structure that correspond to non-terminals in 
the abstract syntax. 

syntax-directed editor .A. text editor where the text edited is constrained to be a 
program in a language. This may be generated using the Synthesizer GenNator. 

textual format The textual representation of the abstract syntax t.ree using the 
unparsing rules. 
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tool dependent format The format of the input and outpuL data. This format is 
usually dependent on the tool. 

t ool A program that has an input and an output. 

unparsing rule A rule that used to generate lhe textual representation of a produc­
tion iu the abstract syntax tree. 



Appendix B 

Code for Syntax-directed Editor 

Chapter 4 describes the transformation of a syntax direded editor. This appendix 
contains the IDL specification of the new input and output interfaces and the code 
needed for the tranformation. 

B.l The Specification 

This section contains a part of the speciJication of the syntax directed editor. with 
the abstract syntax and the attributes. The complete IDI, specification resembles the 
editor's specifica.tion rather closely. The specification of the editor provided llere is 
not the same as tbal distributed with the Synthesizer Generator. 



Tbe abstract syntax specification of tbe editor with attributes 

I • Abs~rac~ syu~ax •I 
root eale; 
list calc ; 
calc CalcPair(exp calc) 

CalcHil() 

exp lull() 
Sum, Ditt, Prod(oxp exp) 
Quo~(erp exp) { local STR error;} 
Cona~(INT) 
Let (symb oxp oxp) 
Use_id(ID) { local BIHDINC b; local STR error;} 

symb DetBo~() 
Det(ID) 

I • Semantic a~~ribu~es ot the non-terminals •/ 
exp { syn~hesized INT v;}; 
exp { inherited ENV onv; } ; 
symb { synthesized ID id; } ; 

I • Type definition tor environments •/ 
list £!IV; 
EIV 5u11E.nv() 

I E.nvConcat(BIIDIJC EJV) 

BIJDIIIC : Binding(ID IHT); 
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The complete IDL specification 

Structure exp_tree Root calc Is 
calc ::= CalcPair I Calcl i l 
CalcPair => CalcPairl: exp, 

CalcPair2: calc ; 
Calcllil 
exp 
!lull 
Sua 

01!1 

Prod 

Quot 

Conet 
Let 

Use_i d 

symb 
DatBot 
Def 

=> 

=> 
=> 

=> 

=> 

Null I Sum I Di!! I Prod I Quot I Const I Lot I Use_id 

Swo1: exp, 
SWII2: exp ; 
Dit!1: oxp, 
D11t2: exp; 
Prodl: oxp, 
Prod2: exp; 

=> Quot1: exp, 
Quot2: exp, 
error: String; 

=> Const1: Integer; 
=> Le1:1: symb, 

Let2: exp, 
Lot3 : exp ; 

=> Uae_id1: String, 
b: BIIIDI!IG, 

.. -
=> 
=> 

error: String; 
De!Bot I De! 

Defl : String 

-- Semantic attribtutos. 
exp => v: Integer; 
axp => env: ENV; 
symb => id: String; 

-- Symbol table 
E!IV .. - BullEnv I EnvConcat ; 
NullEnv => 
EnvConcat => EnvConcat1; BINDING, 

EnvConcat2: EHV; 
8!1/DIHG 
B1nd1ng => 

Bin<hng ; 
Bindi ng1: 
B1nding2: 

String, 
Integer; 

56 



57 

B.2 Transformation of the Output Interface 

The output interlace was transformed using Approach 8. The subroutine that was 
coded 'HET_print..ERL' is presented in this section. The function 'dump-on' of the edi­
tor was modified so that the subroutine 'dump_atree' calls the subroutine 'MET_pnnt ...E­
RL' with the current selection. 



File : test.c 

#include "lang.b" 
#include "etructures.h11 

#include "grammar .h" 
#include ~~a:ttr.b" 
#include "types.h11 

#include "a t r ee . h" 
#include "selection.h" 
#include "but 1era.h11 

#include "dequeue.h11 

# include "output . h11 

#i nclude "display _map. b" 
#111clude "viewport. h'' 
hnclude "brovser_exp.h" 
#include ''hash_ table .h'' 
#include "edit_buf.h" 
#include <atclio .h> 
#include <strings . h> 

PROCEDURE KET_print_ERL(tree,filename) 
register !TREE tree; 

{ 

} 

ebar •t i lename; 
I • Open the file and gets thing• ready for printing •/ 

regi ster PROO_I NSTANCE start_p; 
char t (100] ; 

int i; 
FILE • tp, • topen(); 

fp:fopen(tiloname, "v"); 
it {tp::NULL) { 

tprintf(stdetT. "C&n•t open tile Xs tor vriting\n", f ilename); 
return;} 

atart_p: selection_apex(selection(tree)); 
MET_print _parse_treo(!p,start_p,O) ; 
:!'close(fp) ; 
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File : test.c 

PROCEDURE KET_print_parse_troe(tp,p,ia_attr) 
FILE +tp; 

{ 

} 

register PROO_IRSTANCE p; 
i nt is_attr; I• 1= is an attribute, 0 is a parse-tree •I 

I • Given a parae tree print all the aona and all the attributes • / 
/ • associated vith the tree. • I 

char t[100), • KET_eomp_son_name(); 

if (atom(produetion(p))) KET_print_atom(fp,p); 
else 

{ int i; 

} 

char • a; 
s=op_namo(production(p)); 
sprinU(t, "Y.a\n" ,s); 
KET_pr int_atrlng(fp,t); 
if ((!ie_attr at (no_attrs(lhs_occ(prodoetion(p)))>O))I I 

(no_aona(production(p))>O)) 
KET_print_atring(:tp," ["); 

if (!is_attr ta (no_attrs(lhs_oce(produetion(p)))>O)) 
{ HET_print_attr_tree(tp , p); 

if (no_aons(product i on(p))>O) KET_print_string(tp, " ;\n"); 
} 

tor (i=1;i<•rightmost_son(produetion(p));i++) 
{ PROD_IISTAJCE q; 

} 

sprintf(t, "Y.s \nu ,M"ET_co=p_son_name(s, i)); 
HET_pr>nt_atring(fp,t ); 
q=aon(p,i); 
HET_print_parso_tree(fp,q,is_attr); 
it (il=rightmost_son(produetion(p))) MET_pr int_string(tp,";\n"); 

it ((lis_attr at (no_attrs(lhs_oec(produetion(p)))>O))I I 
(no_sona(produetion(p))>O)) 

KET_pnnt_atring(fp, ")"); 
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File : tcst.c 

static PROCEDURE HET_print_attr_trea(fp, p) 
FILE • tp; 

{ 

register PROD_IMSTANCE p; 

I • Given a parae tree p print all attributes of p, both l ocal to the 
production aa gall as attributes of the left hand aide •I 

char t[!OO]; 
int k; 
ATTR current_attr; 

eurrent_attr = fld_indax(lha(productlOD(p) )); 
tor (k c 0; k < no_attrs(lha_occ(production(p)));) { 

MET_print _string(fp, "\n"); 
if (k == no_fields(sym_index(lhs_occ(produetion(p))))) 

eurrent_attr = local_fld(lhs_occ(product ion(p))); 

sprintf(t, "'l.a ", fld_id(curre.nt_attr)); 
MET_print_string(fp,t}; 
currant_attr++i 
HET_print_attr(fp, attr_instanca(p, 0, k)); 
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i1 ( ++lt < no_attrs(lhs_occ(production(p)))) HET_print_atring(fp," ; \n"); 
} 

} 

I • 
• MET_print_attr 
• 
• Print valu~ of ATTR_IBSTANCE b to FILE tp 
•I 

static PROCEDURE HET_print_attr(tp, b) 
FILE •fp; 

{ 

} 

ATTR_!MSTANCE b; 

reg1ster PROD_INSTAMCE attr_v; 
attr_v• demand_valua(b); I • ensure that value of b i s ava1lable • I 
if (attr_v== (PROD_INSTANCE) 0) 

KET_print_string(fp, "-- Null Value\n"); 
else 

KET_print_parae_trae(fp,attr_v,l ); 
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File : test .c 

I • Given an atomiG PROD_IJSTAICE p, print p to tile tp • I 

HET_print_atom(tp , p) 
FILE •tp; 
P!!Ol)_USTAliCE p; 

{ char t [SO) ; 

} 

char • strO_to_str(); 
eqitch ( atomic_t ype(production( p)) ) { 
ease 0: sprintt(t, " Y.d\n",IntValue(p)); break; 
ease 1: sprintt(t," Y.d\11" ,RealValue(p)); break; 
ease 2: spril1tf(t," Y.d\11",Drea1Valuo(p)); break; 
ease 3: apriut!(t," \•Y.c:\'\n",CharValue (p)); break; 
cue 4: aprintt(t,"\" Y.e\" \n" , ((BoolValue(p))? "TRUE":"FALSE") ) ; break; 
case 5: MET_print_string(fp, "\"" ); 

KET_print_otring(!p,strO_to_str(son(p,l))); 
KET_print_strillg (tp, "\"") ;return; 

ease 5 : !!ET_print_string(tp , " - Ptr not s upported\n"); return; 
ease 7: KET_print_string( tp, "-- Attr not supported\n" ); return; 
ease 8: MET_print_string(fp, "-- Bash table not supported\n"); return; 
} 

MET_print_atring (fp,t); 

char • KET_Gomp_son_name(o,i) 
char • e; 
int i; 
I • Compute the name of the ith non t erminal in a production. •/ 

{ static char t [SO] ; 

} 

it (•s== •\o•) return(a); 
sprintt(t ,"Y.sY.d11 .s, i); 
return(t); 

MET_print_string(tp,t) 
FILE • !p; 
char • t; 
I• Print the string to the output file •I 

{ fprintf(!p , "Y.s", t);} 
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62 

B.3 Transformation of the Input Interface 

The input interface was transformed using Approach 1. A lexical analyser (using 
LEX) and a parser (using YACC) were built. to parse the input. . The parser is called 
wi t h 2 file names. At tbe end of execution the first file contains the name a,nd arity 
of lhe different operators. The second file contains the operators listed in preorder. 



File : test.c 

I • Given an atomic PROD_IISTAICE p, print p to filo fp • / 

MET_print_atom(fp , p) 
FILE •tp; 
PROD_IISTAICE p; 

{ char t [SO) ; 

} 

char •strO_to_atr(); 
s witch ( atom i c_type(production(p)) ) { 
case 0: sprintf(t," Y.d\n",IntValue(p)) ; break; 
case 1: sprintt(t, " Y.d\n",RealValuo(p)); break; 
case 2: sprint!{t, " Y.d\n",DrealValuo(p)); break; 
case 3: sprintt ( t, " \•:t.c\•\n",CharValue(p)}; break; 
c ase 4: spr i ntf( t, "\":t.s\"\n", ((Bool Value(p) )?"TRUE": "FALSE")) ; break; 
case S: MET_print_string(tp, "\""); 

MET_pr int_string(tp ,s trO_to_str (son(p, l ))); 
KET_print _atring(fp, "\""); return; 

case 6: M£T_print_strug(fp ,"- Ptr not supported\n"); return; 
case 7: M£T_print _string(fp, "-- Attr not supported\n"); return; 
case 8: M£T_print_str ing (fp,"-- Huh table not supportod\n") ; return ; 
} 
HET_print_string(tp,t ); 

char • MET_comp_aon_name(a,i) 
char +s ; 
int i; 
I • Compute tho name of the ith non terminal in a production . •/ 

{static char t(SO); 

} 

it ( •s== •\0') return(s); 
sprint.t (t, "Y.aYA" .s . i); 
roturn{t ); 

MET_print_string ( fp ,t) 
FILE • fp; 
char • t; 
I • Print the string to the output tile • I 

{ tprintt(fp, "'l.s", t);} 
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62 

B .3 Transformation of the Input Interface 

The input interface was transformed using Approach l. A lexical analyser (using 
LEX) and a parser (using YACC) were built to parse the input. The parser is called 
wi th 2 file names. At tbe end of execution the first file contains the name and arity 
of ~he different operators. The second file contains the operators listed in preorder 



file ; main.c 

#include <stdio.h> 
axtern FILE •tpl, • tp2; 
main ( argc , argv) 

i nt arge; 
char • argv (] ; 

{ FILE •topon(); 
int token; 

} 

it (argc!:3) 
{ fprintf (atdorr, "usago;Y.s filel tilo2\n" ,argv[O]); exit (99) ;} 

tpl=fopen(argv [ 1], "v"); 
if (fpl=NULL) 

{ fprintf(stdorr,"Can't open Y.s\n" ,argv(!]) ; exit(99) ;} 
tp2=topen(argv [2), "v"); 
it ( f p2==HULL) 

{ t printf(atderr,"Can•t open Y.s\n",argv[2]); exit (99) ;} 
yyparse(); 
print_opers (); 

yyerror(s) 
char •s; 

{ printt("parser error Y.s\n",s) ;} 

Pile : yacc.b 

tinclude <atdio.b> 
ex~ern s~ruct conat_elem { 

int tag; I • 0 = integer, 1 = string, 2 = rational, 3 =boolean • I 
union { 

int int_value; 
char * str_value ; 
flo~t real_valuo ; 
int bool_value: 

} value; 
} const_array[SOO]; 

extern int no_of_consts,no_ot_ids,no_ot_opers,lineno; 
extern int const_id(4]; 

extern struct id_elem { 
char •nruno; 
int operator; I• number >=0 it operator • I 
} id_array[SOO]; 

extern struct oper_elom { 
1nt id; I • pointer into id_array •I 
int ar1ty; / • number >:0 1nd1catea proper arity • I 
} oper_array[SOO]; 
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I• maintain a atack ot currentl y active operands • / 
extern int curr_oper[SOO] ,curr_len[SOO] ,curr_arity[SOO],op_depth; 
extern FILE •fpl, • fp2; 
extern int is_&~tr,sig; 
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File : graru.y 

1.{ 
"#include "yacc.h11 

1.} 
Y.eta.rt value 
Y.term COiST TID LBRlC RBRAC S~~ICOLOB 
Y.'l. 
val ue : COIIST 

at~ributes 

attribute 

{ output_const ( $1); } 
TID 
{ handle_O_op($1);} 
TID { aatup_n_op($1);} LBRlC attributes RBRAC 
{ v lnddogn_n_op() ;} 

attr ibutes SEMICOLON attribut• 
attribu'te 

TID { atart_son($1);} value 
{end_aon($1) ;} 
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File : gram.y 

output _const(n) 
int n; 
I • output constants • / 

{ char t [ 1000) ; 

} 

it (! ia_attr) { 

} 

tprintt (1p2, "Y.d\11" ,1d_array [const_id [const_array [nJ. tag)) .operator); 
s vitch(conet_array[n) . tag){ 
case 0 : { 

sprinU(t, "Y.d" ,conet_array [n]. value . int_value); 
1printf(fp2,"Y.d Y.s\n",strlen(t),t); 

}; break ; 
caee 1 : { 

char •s i 
i.Dt i; 
a•const_array[n] . value.s~r_value: i=O: 

while (•s !; •\o• ) 
{ int code; 

code = • s 1: Ox7f ; 
if (code;: Ox7t I I code== OxSc I I code< Ox21) 

{ char str[10] ; 

} 

sprintt(str,"\\Y.3o ", codel.:t[i):•\o•; 
otrcat(t,atr);i=i+S; 

else t[i++]= •s; 
a++; 

} 

t [iJ;•\o• : 
1printf(fp2, "Y.d Y.e\n", strlen(s), t); 

}; break; 
case 2 : { 

sprintt ( t, 11%e\n", const_array [n] . value .real_ value) i 
fprintf(fp2,"Y.d Y.s\n",strlen(t) ,t); 

}; break; 
case 3 : { 

it (const_arra y [n] . value . bool_value) 
fprintt (tp2,"4 true\n"); 

else fprintt ( fp2, "S false\n"); 
}; break; 

default : fprintt(stderr , "What tag Y,d\n", const_array [n] . tag ) ;break; 
} 
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File ; grrun.y 

llandle_o_op(n) 
int n; 

I • Handle an operator of arity 0 • I 

{if (lis_attr) { 

} 

} 

i f (id_array W. operator >= 0 ) 
I • previously defined as an operator •I 
11 (oper_array[id_array[n).operator] .arity != 0) 

{ 

} 

f printt (stderT , "operator Y.s has different aritioa\n", 
id_array[n) .name); 

tprintt (stde.rr ... Error oecured about Y.d line\n" . lineno); 
uit(99); 

else ; 
else 

{ id_array[n) .operator=no_ot_opers; 
oper_array[no_ot_opers] .id=n; 
oper_array [no_of _opers) .arity=O; 
no_of_opera++i 

} 

tprintf(tp2 ,"Y.d\n",id_a7:ray[n) .operator); 

aetup_n_op{n) 
int n; 

I• Set up to handle an operator of arity >0 •I 

{ if ( 'is_attr) 
{ in~ opnw:t; 

} 
} 

i f (id_array[n) .operator>•O) opnum=id_array[n) .operator ; 
elae { 

} 

if (no_ot_opers>=(sizeof(oper_array)lsizeof(oper_arYay[O] ) )) 
{ fprintf(nderT,"Too many operators\n" ); exit(99);} 

ld_array[n).operator=no_ot_opers; 
oper _array [no_ot _opera] . id=n; 
oper_array(no_ot_opera).arity= - l; I • arity not yet decided +I 
opnum=no_of_opars;no_ot_opers++; 

op_depth++ ; 
eurr_ar>ty [op_depthl=O; 
curT_oper[op_depth) =opnum; 
curr_len[op_depthl=strlen(id_array[n) .name); 
fprintt (fp2, "Y.d\n" , opnum); 
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F'i le : grnm.y 

~inddovn_n_op() 

I• A production has been full y parsed •/ 
{ if (! ia_attr) 

} 

{it (oper_array(eurr_opor(op_doptb]].arity>=O) 

} 

if (oper_array[curr_opor(op_dopth]].arityl=curr_arity[op_depthl) 
{ fprintf(stderr, "oper Y,s has different arity\n", 

id_array[oper_array(curr_oper [op_depth]]. id] .no.mo); 
1print1'(atderr. "error is on line 1.d\nu ,lineno): 
exit(99); 

} 

oper_array[curr_oper[op_depth] ]. arity=curr_arity[op_depth]; 
op_depth- ; 

otart_son(n) 
int n: 

{ 

} 

I• A nov attribute is being encountered • I 

if (! (is_attr I I 
atrncmp(id_array [n] .name, 

id_array[oper_array[curr_opor (op_depth]] . id).name, 
curr_len(op_dopth]))) 

curr_arity(op_dopth)=curr_arity[op_depth]+!; 
else io_attr++; 

end_son(n) 
int n: 
I • Attribute bas been parsed, process appropriately . • / 

{ it (is_attr I I 

} 

strnemp(id_array [n]. name, 
id_array(oper_array[curr_oper[op_depth]] . ldJ.name, 
curr_len(op_dopth])) 

is_attr--: 

print_opors() 
I• prlnt the list of operators vith their name and arity • / 

{ int i; 

} 

!printt (tp!, "A#S#C#S#S#L#V#2\n"); 
fpr int1 (fpl, "$operators \n"); 
for(i=O;i<no_of_opers;i++) 

it (la_primitive(i)) 
tprintf(fpl , " 'los 0 1 \n", i d_array [opor_array [i]. id] .name); 

else 
fpnntf (fpl, "'los 'l.d O\n" ,id..array(opor_array (i] id] . na~~e, 

oper_array[i].arity); 
fprintt (fpl, "$ term \n") ; 
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Pile : gram.y 

int is_primitivo(n) 
int nj 
I• Check to eoe if the operator is one of the primit i ve operators •I 

{ int id,i; 

} 

id=oper_array(n]. i d; 
for(i=O ; i<4;i++) 

if ( eonst_id(i)••id) return(l); 
returu(O); 
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File : test. lex 

Y,{ 
#include <s~dio.h> 
#include .. y.t~b . h" 

s truct conat_elem { 
int tag ; I • 0 = in~eger, 1 =string, 2 = rational, 3 =boolean • I 
union { 

int int_valuo; 
char • str_value; 
float real _value; 
int bool_value; 

} val.ue; 
} cons~_array[SOO); 

int no_ot_eonsts=O,no_of_ids=O.no_ot_opera=O,lineno=l; 
int const_id[4)= {-1,-1,-1,-1}; 

struct i d_olem { 
char •nruae; 
1nt operatorj / • number >=0 it operator • I 

} id_array (500) ; 

struct oper_ele~ { 
int id; I • pointer into i d_array • I 
int arity ; I• number >=0 indicates proper arity •I 

} oper_array(SOO); 

I* maintain a stack of current ly act ive operands •I 
int curr_oper[SOO),curr_lon(600),curr_ari~y[SOO),op_depth= -1; 
FILE •tp2 , • tp1; 
in~ is_attr=O; 

extern int yylval: 
Y.} 
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File : test.Je.x 

DIGITS ( (0-9) +) 
DTDIGITS ( ({DIGITS}". ") I(". "{DIGITS}) I ({DIGITS}" . "{DIGITS})) 
EXP ( [Ee)(- +) ?{DIGITS}) 
FLOATl ({DIGITS}{EXP}) 
FLOAT2 ({DTDICITS}{EXP}?) 
RATIONAL (({FLOAT2}) 1({FLOAT1})) 
IIITECER (("+"1"-")?{DICITS}) 
STRIIC \" [-\"\n] • \" 
ID [A-Za-z_) [ A-Za-z0-9_] • 

'/."1. 

"[" returu( LBRAC); 
")" retllr1l(RBRAC); 
{INTEGER} { yylval;add_const (yytext,O); 

rat urn ( CONST) ; 
} 

{STR!IG} { yylval=add_const(yytext,l); 
return(COJST); 

} 
{RATIO!iAL} { yylval=add_eonst (yytoxt,2); 

return(COIIST); 
} 

{ID} { it ((! stre10p(yytext, "TRUE" )) I I ( ! strcmp(yytext, "F'ALSE" ))) 

"·" • 
[ \t) 

{ yylval=add_eonst(yytext,3); 
return ( CONST) ; 

} 

else { yylval=add_id(yyuxt); 
rotnrn(TID); 

} 
} 

return(SEMICOLOII); 
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fprint"t (atderr , "error unrecognisable character ' Y.c ' on line Y.d\n", 
• yytext,lineno); 

"\n.. lineno++; 
Y.Y. 



File : test.lex page 3 

int add_const(yytext,tag) 
char •yytut; 

{ 

} 

int tag; / • 0 = integer, 1 = string, 2: rationalJ 3 • boolean • / 
I • Add a constant t o the llst ot cons tants •I 

int value; 
char •malloc(), • s, • t; 
:float real; 
struet const_ele~ -nev_elem; 

I • tirst add tho constant to the list ot constants • I 

if (no_of_consts >=(a i zoof(const_array)/aizeof(const_array[O]))) 
{ fpn.nl:f (s tderr, "Too many constants\ n" ); exit(99);} 

nev_elem= a(const _array[no_of_consts)); 
nev_elom- >tag=tag; 
sgitch (tag) { 
caae 0 : value=-a.toi(yytext ): nev_ele;a->value. int _value=value;t:"lnt" ;brea.k: 
case I : s=malloc(strlon(yytert )+1); strcpy(s,yytext ) ; 

nev_ elem->value.str_value =a ; t="Str";break; 
case 2 reU• atot(yytext); nov_elem:->valu.e . real_value=real ;t="Real" ;break; 
case 3 : nev_eleg.->value.bool_value = atrc:mp(yytext,nFALSE"); t=uBool .. ;break; 
} 

I • Kake sure that there i s an operator of the base type in the 
operator table • / 

it (lis_attr tt(const_id[tag)<O)) 
{ const_id(tag] =add_id( t) ; 

} 

if (no_ot_opers>• 
(sizeof{oper_array)lsizeof {opor_array[O)))) 

{ fprintt(stderr, "Too many operators\n") ; oxit(99);} 
id_array(const_id(tag] ] .operator=no_ot_opera; 
oper_array(no_ot _opers].id=eonst_ld(tag); 
oper _array[no_of _opers) .ar1ty=O; 
no_of_opere++; 

return{no_of_eon&ts++); 
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File . test.lex 

in1: aclcl_id(s) 
ehar •s: 
I • Add an identifier to the llat ot identitiers • I 

{ int 1; 

} 

char •space; 

I• Linear search through table to aee if token is already there • I 
tor (i•O; i<no_ot _ids; i++) 

it (!strcmp(s , id_array[i] .name)) return(i); 

I • Not found in table, so tablo size goes up by one • I 
apace • (char • ) malloc(l+strlon(a)); 
it (space =• lULL ) 

{ tprintt(stderr,"Kalloe tuled\n");exit(99);} 
it (no_ot_ids >• (sizeof(>d_array)lsizeof(id_array(O)))) 

{ fprintf(stderr, "Too many >clentifiers\n"); exit(99);} 
atrcpy(space,s); 
id_array[no_of _ids).nace=apaco; 
icl_array[no_of _ids).operator• -1; I • yet to be determined •/ 
return(no_of_ids++); 

yywrapO 
{return(!);} 
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Appendix C 

Code for XDR 

Chapter 5 describes the transformation of XDR. This appendix contains the lDL 
specification of the data structure communicated using XDR, as well as the specifi 
cation of the process that reads the IDL data structure and communicates it using 
XDR. The data structure communicated by XDR is specified in the C language. The 
code needed for the transformation is also provided. 

C.l The Specification 

This section contains the specification of the IDL data structure communicated using 
XDR and the data structure communicated by XDR specified in 'C'. 



The IDL data structure specification 

Structure test Root Aval la 
Aval. => first: Cval, 

second; Oval, 
third: Seq Of Integer; 

Bval. · · = Cval. I Oval ; 
Bval => 
Cval => 
Oval => 
eval. => 

End 

Enode: Eval; 
name: String; 
value: String; 
number: Integer. 
name:_ String, 
value: Rational. 
flag: Boolean; 

Structura 
Eval => 

proc_inv Roo~ Aval From t•at Ia 
touched: Integer, 
shared: Integer, 
label_no: Integer; 

End 

Proceaa writer Inv proc_inv Ia 
Target Language C; 
Pre input: test; 

··Poat output: XDR; 
End 
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The data struc.ture communicated by XDR 

struct hE { 

} ; 

enum {1SUBEL~l,ISNODE•2} Etype; 
union { 

int label_no; 
struct hEvalue { 

enum {!IOUBEL•I,LABELDEF=2} Etype; 
int labal_no; 
struct { 

int nu=ber; 
char • name; 
float value; 
int nag; 

} value; 
} value; 

} value; 

struet hC { 

} ; 

char •name; 
struct hE Enode; 

struct hD { 

}; 

char •value; 
st.:ruct h.£ E.node; 

struct intseq { 
int va.l; 

}; 

enum {IULLELEK•l,VALELEM=2} nodetype; 
struet intseq • next; 

struct liA { 

} ; 

struct hC tirst; 
struct hO second; 
struct intseq th~rd; 
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C.2 Input and Output using XDR 

This section contains the code that is used to communicate the data structure specified 
in the previous section using XDR. 



Fi le : foo.c 

#i nclude <rpc/rpc.h> 
#include 11:too.hn 

bool_~ xdr_Evalue() , xdr_in~aeq(); 
atruct xdr_discrim varm[3)={ 

{1 , xdr_int}, 
{2, xdr_Evalue}, 
{lOO,BUU.} 

}; 

atruct xdr_discr im varm[3) ={ 
{1, xdr_void}, 
{2, xdr_int}, 
{100,1111LL} 

}; 

atruct xdr_discrim xarm[3)={ 
{l,xdr_void}, 
{2,xdr_intseq}, 
{100,N11U.} 

} ; 

I • rou~inea to eommunieate the structure A using XDR •/ 

bool_t xdr_A(xdra,gp) 
XDR •xdrs; 
struet hA •gp; 

{ return ( 
xdr_C(xdra,t(gp->firs~))tt 

xdr_D(xdra,t(gp->second)) ta 
xdr_intseq(xdrs, t(gp->third)));} 

bool_t xdr_intseq( xdrs,gp) 
XDR •xdrs; 
struct intseq ~gp; 

{ if (xdr_enum(xdrs,lt(gp->nodetype) )) 

} 

if (gp->nodetype==VALELEK) 
return(xdr_lnt(xdrs,t(gp->val)) tt 

xdr_reterence(xdrs,lt(gp->next),sizeot(struct intseq), 
xclr_intseq)); 

else returu(TRUE); 
else return(FALS£); 

bool_t xdr_C(xdrs,gp) 
XDR • xdrs ; 
suuct hC • gp; 

{ return( xdr_string(xdrs,t(gp• >name) , 255) Itt 
xdr.E(xdra,t(gp- >Enode)));} 
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File: foo.c 

bool_~ xdr_D{xdro,gp) 
XDR *Xdrs; 
struct llO •gp; 

{ return{xdr_string(xdrs,t(gp- >value),256) U 
xdr_E(xdrs,ll{gp->Enode)));} 

bool_t xdr_E{xdro,gp) 
XDR • xdrs; 
struct hE •gp; 

{ return{xdr_enum{xdrs,t{gp->Etype)) til 

xdr_un ion(xdrs, ll (gp- >Etype), ll{gp->value),vara,IULL));} 

bool_t xdr_Evalue(xdrs,gp) 
lOR •.x<lrs ; 
atruct hEvalue • gp; 

{ return(xdr_enum(xdra,a(gp->Etype)) t il 

xdr_union(xdrs, t(gp->Etype), t (gp->label_no) ,varm,NULL) tt 
xdr_int(xdrs, a (gp->value.number)) "" 
xdr_stri ng(xdrs, t(gp->value. name), 255) tt 
xdr_float(xdrs, t (gp->value .value)) tt 
xdr_int(xdrs, t(gp->vnlue.!lag)));} 
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C.3 Transformation of the Input Interface 

This sect ion contains the code concerned with the transformation of the input inter­
face. 



File : maitLwrite.c 

#include <stdio.h> 
#include <rpc/rpc.h> 
#include 11 1oo.h" 
#include 11 vriter. h" 
int global_label=l; 

buildA(idlnode,Cnodo) 
Aval idlnodo; 
struet hA. • Cnode: 

{ 

} 

buildC( idlnodo->first,t(Cnode->first)); 
buildD(idlnodo->socond, t (Cnode->second)) ; 
buildintseq( i dlnode->third,&(Cnodo->third)); 

buildintseq(idlnodo,Cnode) 
SEQint idlnode; 
atruct intseq • Cnode; 
{ SEX)int tupseq; 

} 

int aval; 
struct intseq •currnode ; 
currnode=Cnode ; 
!oreachinSEQint(idlnode,tempseq,aval) 

{ currnode->val=aval: 
currnodo->nodetype=VALELEK; 
eurrnode->noxt = (struct intseq • ) Dalloc(sizeof(struct intsoq)); 
eurrnode=currnode->next: 

} 

currnode->nodotype=IULLELEK; 

buildC(idlnode,Cnode) 
Cval idlnodo; 
struct hC • Cnode ; 

{ 

} 

Cnode- >name=StringToChar(idlnode->namo); 
buildE(idlnodo->Enode,t (Cnode->Enodo)); 

buildD(idlnodo,Cnode) 
DvaJ. idlnode; 
struet bD • Cnode; 

{ 

} 

Cnode- >value=StringToChar(idlnode->valuo); 
buildE(idlnode->Enode,t(Cnode->Enode)); 
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Fi le : main_write.c 

buildE(idlnode,Cnode) 
Eva.l idlnode; 
struct hE •Cnode; 

{ 

} 

if (~dlnodo->toucbod==O) 
{ Cnode->Etype~ISLABEL; 

Cnode->va.luo.label_no=idlnode->label_no; 
} 

else { 
Cnode->Etype=ISXODE; 
it (idlnode- >shared) 

} 

{ Cnode->valuo.va.lue.Etypo=LABELDEF; 
Cnode->va.luo.va.lue.labol_no=global_labol; 
idlnode->labol_no=global_label++; 

} 

else Cnode- >value .value.Etype=SOLABEL; 
idlnode->touchod=O; 
idlnodo->shared• O; 
Cnode->value.value.value.number=idlnode->number; 
Cnode->value.va.lue.va.luo.name=StringToChar(idlnode->namo}; 
Cnode->value.value.value.valne=idlnode->value; 
Cnodo->value. value. va.lno. flag=( (idlnode->!lag}?1: 0}; 

aarkl(node) 
J.va.l node ; 

{ 

} 

markC(node->tirat); 
markD(node->second}; 

markC(node) 
Cval node; 

{ 
markE(nodo->Enode); 

} 

aarkD(node} 
Dval node i 

{ 

markE(node->Enode); 
} 

markE(node} 
Eval node; 

{ 

} 

1t (node->touched} node- >sbared=1; 
node- >touehed=t; 
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File : main_write.c 

main(arge,argv) 
int argc: 
char •argv 0 ; 

{ XDR xdrs; 

} 

FILE •tp, • topen(); 
struet hJ. • enrueture; 
!val idl_struet; 
it (arge!=2) { fprintf(atderr,"Usage:Y.s <filo>\n",argv[O]);oxit(99);} 
it (( tp=fopen(argv[1), "r"))=JULL) 

{ tprinU(atderr, "Can't open file Y.a\n", argv(l]);exit(99);} 
xdrstdio_ereate (~xdrs,stdout,XDR_EHCODE); 
idl_struct=input(!p); 
markA(idl_struet); 
cstructure= (struct hA •l malloc(oizoof(struct hA)); 
buildA(idl_struet,estrueture); 
i f (!xdr_A(txdra,eatrueture)) 

tprintf(stdorr, "XDR tailed\n"); 
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C.4 Transformation of the Output Interface 

This section contains code for the ~ransformation of the output interface of XDR. 



File : rcader.c 

#include <stdio.h> 
#include <rpc/rpc.h> 
#include ":foo .h" 

bool_ t xdr _A 0 ; 

main() 
{ 

} 

XDR xdrs; 
struet h.A •gp: 
gp • (struct hA •) malloc ( sizoot(struct hA)); 
xdrstdio_croate(&xdra,stdin,XDR_DECODE); 
if ( !xdr_!(txdro,gp)) 

{ tprintt(stden, "Error : XDR tailed\n"); exit(99) ;} 
output_ascii(gp); 

output_aacii(gp) 
atruct hA • gp; 

{ priJitt("-- structure !val. \n"); 
pn.ntt ("Aval ( \ntirn \ n"); 
output_C(t(gp->tirst)); 
print:f(" i second \n"); 
output_D(t(gp->second)); 
print!("; third <\n"); 
output_intseq(a(gp->third)); 
printt("] \ n#\n"); 

} 

output_intseq(gp) 
struct intaeq • gp; 

{ struet in~seq • currnode; 
currnode=gp; 
vbile ( currnode->nodetype! =NULLELEM) { 

printt(" Y.d ",currnode->val} ; 
eurrnode~currnode->next ; 

} 

pratt(" >\n"); 
} 

output_C(gp) 

{ 

} 

struct bC • gp; 

printt("Cval (name \n"); 
prl.nt1("\"Y.s\" ; \nEnode ".gp->naz:1e); 
output_E(&(gp->Enode)); printt ( "] \n"); 
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File : maiu__write.c 

output_D(gp) 

{ 

} 

struet hD •gp: 

printf("Dval ( value \n"): 
printf("\"1.s\" ; \n£node ",gp->value): 
output_E(It (gp->Enode)): printf ( "] \n"); 

outpu~;_E(gp) 

{ 

} 

struet hE • gp; 

it (gp->Etype::ISU.BEL) print!(" L'l.d" \n" ,gp->value.label_no): 
else 

{ if (gp->value.value.Etype==LABELDEF) 
print1("LY.d: \n",gp->value .value.label_no); 

} 

printf("Eval [ nuaber Y.d ; \n11 .gp->value . value. value. number); 
printf("nU~e \"Y.s\" ; \nvalue '!.f ; \ntlag '!.d ) \n", 

gp- >value.value .value.name. gp->value.value.v•lue.value, 
gp->value.valuo.value .tlag); 
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Appendix D 

Summary of the M ethodology 

This appendix presents a summary of the methodology discussed in Cha.pte•· 3. This 
is meant to be a quick reference an does not contain all the details. The methodology 
consists of the following steps. 

Step 1 Charactel'ise the pr·oblem in the dimen.~ions of the problem space described 
below. 

Input or Output Type of interface being t ransformed, either input or output. 

Choice of data Data that may be used to compute the IDL instance (for 
output) or that may be computed from the IDL instance (for input), either 
internal or external. 

Complexity of Compu tation Complexity of the computation mentioned 
above, either simple or complex. 

Constraints on the Implementation Availability of the sourc<' code for 
modificat ion, availability of the format of input and output data. 

Step 2 Find the app1-opriate approach(es} from the mapping. 

Complexity of Computation 

Simple Complex 

I ,2 Input 

13,4 Ou!put 

Lntemal 

Complexity of Computation 

Simple Complex 

5,6,7 

8,9,10 

External 

~.7 

19, 10 

Souree of Data 
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Step 3 Using the metrics evaluate the dijJe1·ent approaches. Choose the appToach 
that is best suited following project constroints 

l. Metrics on the transformation. 

2. Metrics ou the transformed tool. 

3. Robustness of the transformed tool. 

Step 4 Implement the approach. 

A brief description of the approaches is presented here. 

1. A filter that reads the lDL instance incrementally and computes the input data 
of the tool. 

2. A filter that reads the IDL instance using routines provided by IOLC and com­
putes the input data of the tool from the instance in main memory. 

3. A filte r that reads the output data of the tool and computes the lDL instance 
incrementally. 

4. A filter that reads the output data of the tool, computes the IDL instance in 
memory and outputs it using routines provided by ID L,C. 

5. A subroutine that reads the IDL instance incrementally and computes the in­
ternal data structure of the tool. 

6. A subroutine that reads the IDL instance into memory using routines provided 
by IDLC and computes the internal data structure of the tool. 

7. Part of internal data structure of the tool is replaced by an IOT~ structure that 
is a de rivation of the input IDL structure. 

8. A subroutine traverses the internal data structure and computes the IDL in· 
stance incrementally. 

9. A subroutine computes the IDL structure in memory from the internal data 
structure of the tool. 

10. Part of the internal data structure of the tool is replaced by an lDL structure 
that is a derivation of the output IDL structure. 


