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This paper! describes an algorithm detecting corners in two dimensional
grey-scale images. In the following the paper first introduces why a connec-
tionist approach is applied, Then it describes the design considerations of
the edge and corner detectors: Next the paper summarizes the simulation
results. A discussion on implementation issues and a short conclusion then
follow,

1 Introduction

Substantial psychophysical and physiclegical evidence [Barlow 83, Treis.
man 86, etc.] indicates that nature has evolved a pre-attentive, highly-
parallel, and data-driven early visual system, Furthermore, this early visual
system stabilizes in the first several years of an animal’s life. Various visual
illusions, for example, subjective contour, simultaneous tontrast, ..., etc,
further demonstrate this, My research is to investigate this stable, highly
effective pre-process. It is hoped that the knowledge will contribute to the
design of a real time vision machine.

The bounding contours of ob jects in a two dimensional image are known to
be important for recognition. Attneave [34] further emphasized that corners,
or discontinuous curvature ch';-iuges along & contour, are important. Many
approaches have been proposed for corner detection. [Asada and Brady 86,
Baugher and Rosenfeld 87, Davis 77, etc]. But most methods assume that a
given contour exists and the algorithm just decides where along the contour
the corners reside. From the viewpoint of a vision machine, the problem js
more difficult. The contours of objects in the scene are not given. Yet the
corners need to be located.
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Moreover, the detection must be fast so that the robot or the organism can
interact with its environment effectively. Psychophysical data shows that
recognition takes less than 200 milliseconds. So corner detection, supposedly
a prerequisite for recognition, must be completed at least within hundreds
of milliseconds. What architecture and algorithm would enable the corner
detection be performed in real-time?

1. Why a connectionist approach ?

The von Nenmann machine is not the answer. The sequential computer is
tov slow to process the time sequence of two dimensional images. A simple
calculation suffices to illustrate this point. Assuming that ten frames of
visual input are processed per second, each frame is of one thousand by
one thousand pixels. To parse and classify all these pixels requires, say, on
average a hundred instructions per pixel. So it takes a dedicated computer
of one BIPS to achieve the required performance. This is not likely, or at
least not cost-effective, based on the current technology.

Conventional parallel processing techniques do not seem to be the right
answer either. The reason is that each node of the multiprocessor is still a
von Neumann machine. The need of {eading instructions and data to each
processor requires the identification of simultaneously executable portions
of a given algorithm. This task of parallelism detection is well known to be
difficult. Together with the overhead of inter-processor communication, the
multi-processing scheme is not likely to provide the required performance.

So a special-purpose mechanism tuned to process two-dimensional images
15 neaded. Based on the knowledge m the biological visual system, a neural
network, or a connectionist approach, seems to be the answer. Contrary
to the conventional computer, the connectionist approach investigates how
a gross number of local processing units, when properly connected, can
perform globally useful functions.

2. Several constraints of the connectionist approach

The most prominent property of a connectionist approach is local wiring
which, as Hubel and Wiesel [77] pointed out, is one of the common char-
acteristics of the neural system. The local wining distributes the sensory
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information so the input image is processed in parallel. The local wiring
also allows the flexibility of changing the local structure, thus enabling the
system to adapt and learn. Lastly the locality assures reliability.

Adaptivity and parallelism have cost too. Each neuron isa local processor
with limited capability. Thus a task requiring global information is very
dificult to implement. Moreover, the receptive field and target function
of a specific neuron are decided completely by the connections along the
path from the input to this neuron. Locally a neuron has no control of its
function. A consequence is that, if a layer of neurons is topographic to the
retina, there exists regular connections from receptors in the sensor to the
neurons in this layer. However, if a neural layer is not topographic, then the
spatial relationship can not be recovered for the neural layers whose input
depends solely on this layer. In other words, if vision is to answer what is
where, then where has to be decided early in the process. The fact that only
early visual areas, V1, V2, V3a are topographic to retina [Phillips 84, Van
Essen B3] may serve as a demonstration of this point,

Anpther problem of the connectionist approach is the costly data repre-
sentation. Since a neuran can only represent the amount of a specific signal,
it takes numerous neurons to represent a quantity, For example, if edge
information is to be calcnlated by a connectionist algorithm, then a neuron
is needed for every orientation at every location.

2 The algorithm

Qur visual world ic highly regular. The imaging condition is consistent
through years of evolution; the shape of many objects have common prop-
erties. Therefore, when proper constraints are buili-in in the connection
patterns of a neural network, reasonable feature extraction can be achieved
in real time. The incorporatien of knowledge in the detection mechansm
reflecis the viewpoint of Gibson’s ecological optics. The difference is that
nowadays the connectionist approach is within the grasp of computer sim-
ulation. This section describes an algorithm for corner detection following
this line of thinking.

Edge detectors in this algorithm are defined as filters which combine a
smoothing operator with a differentiation operator. As Marr [80] and many



others pointed out, a problem of the feature detection approach is that a
significant response of such an edge filter does not necessarily indicate the
presence of an edge. To cope with this problem, it is assumed that the
appearance of an edge can be better justified by the combination of these
filter outputs at the same sampling point, while the appearance of a corner
can be decided by = neighborhood operation of these edge filter outputs, In
some sense, the edge detection is a first-order statistic and corner detection,
the second. My simulation results verify that this idea is effective in finding
edges and corners.

This section also describes a simple operation, called artifact cancellation.
It is the counter-interaction of the outputs of edge filters with perpendic-
ular orientations at each sampling location. The essence is that the edge
filter outputs contain the artifact due to discrete sampling and finite ap-
proximation. The counter-interaction between edge filters of perpendicular
orientations effectively discounts this artifact.

2.1 Edge filtering

Given an image, where is the information which best indicates the bound-
ing contours of objects? From the information theoretic sense, the place
where image changes most contains the most information. Koenderink's [87]
derivative of Gaussian (GD) model provides a mathematical background for
detecting these changes. The n-jet - the convelution of nth-order derivatives
of Gaussian with the image - not only describes the early visual process
elegantly, but also provides an efficient computation scheme. The question
is what of those components in n-jet are semantically meaningfull

Torre and Poggio [85, 86] showed that edge detection is an ill-posed prob-
lem because the numerical differentiation in the process causes the solution
not to depend on the data continuously. To make the problem regular, the
physical constraint af smoothness, i.e., that a real edge must have spatial
coherence with its neighbors, needs to be included in the sdge computation.
The result is that the differentiation must couple with a smoothing filter.

For smoothing, among the several possible choices, the Gaussian, giving
the minimal uncertzinty and being computationally efficient [Koenderink 84
JPosgio 86, Asada and Brady 86], seems to be the best chaice.
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Figure 1: (a) The kernels of an isotropic edge filter with ¢ = 1.5 (b) an
anisotropic kernel with a different standard deviation in the filter's target
otientation and the direction perpendicular to the target orientation . Let
the ¢ and o, stand for these standard deviations, For the current imple-
mentation, ¢ = 1.5, and o3 = 0.75. In the figure, the area enclosed by the
circles and squares is proportional to the weight of the filter.

For differentiation, Marr and Hildreth's [80] zero-crossing of Laplacian
of Gaussian (72G) is widely applied in the field of computer vision. The
scheme always gives a closed contour, is computationally efficient, and re-
sembles the familiar shape of on-center, off-surround receptive field. How-
ever, this approach has its shortcomings too. First, the isotropy of the filter
also causes spatial inaccuracy, especially for the sharp corners [Berzins 84].
Next, the second-order differentiation in G, compared with the edge de-
tectors using only first.order derivatives, further amplifies the noise. Lastly,
from the viewpeint of connectionist approach, since no orientation is specif-
ically represented, it is very difficult, if not impossible, for this scheme to
explain the further usage of edge information. For example, how can subjec-
tive contours, which the author conjectures to be an evidence for the preat-
tentive segmentation process, be generated? Insummary, the zero-crossings
of 7% may provide a preliminary information on ebject boundaries, but,
as Torre and Peggio [36] commented, it may be insufficient to account for
the segmentation process in early vision.
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Figure 2: The definition of the polarity of edge filters. Note that the fil-
ters are arranged from right to left to reflect the usual representation of
counter-clockwise rotating angles. Edge filters sensitive to four orientations
are applied in this implementation and are labeled by integers from 0 to 3,

The next choice is the first directional derivative of the Gaussian. Though
in R? derivatives at all directions can be caleulated based on two of them,
the connectionist scheme needs a neuron to calculate each of the orienta-
tions hecause of the representation constraint. The shape of the kernels of
these filters is depicted in figure la. The performance of the filter is not
satisfactory because, for this algorithm, the edge filters are to detect the
real object boundary, while the above-mentioned filters are equivalent to
matched filters tuned to detect the edges blurred to a certain degree.

Therefore, the algorithm uses a Gaussian with constant standard devia-
tion in the direction perpendicular to the target orientation (denoted by o )
as the edge filter kernel. Figure 1b depicts the shape of these filter kernels,
which resembles the receptive fields of Hubel and Wiesel’s [77] simple cells.
At each sampling point, the algorithm applies four edge fiiters with each
of them sensitive to a different orientation. For each orientation, there are
twa possible directions of contrast, called polarities, which are illustrated in
figure 2.

The remaining question is which o, to use, The result of a preliminary
study shews that the sensitivity of the filter with a certain ¢, is not much
affected by the different blurring levels in the input image. This justifies the
use of the anisotropic edge filters. How the o is selected is discussed with



other implementation issues.

In summary, let E(z,y;8) be the edge filter output of orientation # at
location (z'l vh
E(z,y:8) = K(z,y;8) « I{z,y).

where, I(z,y) is the input image, and K(z,y;#) is the edge filter kernel.
K(z,y:8) = {w(z,y)lw(z,y) = k x 8G(z,y)/08, z* + y* < threshold).
where k is a normalization constant such that

E kxwzy=-1%& z Exuw(z,yl=1

{zy)awizy|<0 (zyldwiz.yi20
Moreover, Koenderink [87] shows that

aG a0 : .
ﬁ(:,y,ﬂ} = E{z cosf + ysinf, —zsinf + ycosh).
where the anisotropic Gaussian function, for orientation 0 in figure 2, is

S S -
G(:.y]-mﬂfi xmale 2

2.2 Artifact cancellation

Grossberg and Mingolla [86,87), in designing a connectionist model for
their edge-based segmentation scheme, found that the edge filter output
gives better results for later processing, if the output of the filter with per-
pendicular target orientation is subtracted from the edge filter output under
consideration. A further examination of this method shows that this scheme
is effective to diminish the artifact due to the pixellation and digital sam-
pling. Figure 3 demonstrates this point. Let E(z,y;8) and E(z,y;8.) be
the outputs of the edge filters of perpendicular orientations # and #; at the
sampling location (x.y). Since there can not be perpendicular edges at a
specific sampling point, the fact that both E{z,y;8) and E(z, y;8, ) are not
zero means that there is artifact. A reasonable thing to do is to perform

Blz,yi8) =4 TAOME(s%6) — | E(2,5:0.)]) if E(z,y:8) >0
EUE = max(0, 1Bz, 5:0)| - 1Bz, ;i00)) i E(z,y:8) < 0

Note that only the output of the filter with target orientation right on edge,
as in figure 3a, is not affected. The output strength is adjusted downward
for edge filters of all other orientations.
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Figure 3: The artifact generated by edge filters. (a) The target orientaticn
is right on edge (b) Both filters with target orientation perpendicular to each
other have outputs (¢) The situation when the artifact cancellation process
may destroy useful information

The only place this operation may destroy useful information is around the
right corner as deseribad in fipure 3e. Howaver, since the corner detection
s devised as second order statistics, i.e., it 15 based on information at more
than one sampling locations, the loss of this information does not affect the
detection of a right angle.

2.3 Corner detection

What is a corner? For two-dimensional grey-scale images, a cornet can be
viewed as the place where two edges meet. A corner can not be detected by
template matching as edge filters do for image intensity changes. A simple
caloulation on reqguired number of neurons shows this: A corner can have
various opening angles and vagous opening directiops. Since there is no way
10 know where there will be a corner in the image, there must be a corner
template of every possible opening angle and opening direction everywhere
in the visual field. A conservative estimate follows. Assuming the resolution
of image is 1k by 1k and corners can open to ten difterent diréctions and
have ten different opening angles. Without counting the polarity change,
the required number of corner templates is 10 % 10 x 1k x 1& = 10° which
is closed to the total number of neurons in V1 [Wissel and Hubel, 77]
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Figure 4: The edge filtering near a corner on a rectangular sampling grid.

The derivation of the corner detector started from the idea that corner is
a local property and thus can be detected from local information, Further-
more, there are evidence that humans detect corners after edges [Blakemore
79, Barlow 83]. A reasonable assumption is that, for a rectangular sampling
grid as used in this algorithm, whether a corner exists within a pixel can
be decided by the output patterns of the edge filters sampled at the pixel's
nearest neighborhood. For example, in a rectangular sampling grid as in
fiure 4, whether 2 corner exists within the pixel defined by the four sam-
pling points (indicated by 0 — 3) can be decided by the edge filter outputs
at these four sampling points enly.

Furthermore, assuming that the corner detection follows second order
statistic, then there may be fixed patterns between edge filter outputs sam-
pled at each pair of the four locations. After studying edge filter outputs at
the six possible pairs of locations, the finding is that, if an edge resides in a
pixel, there is at least a pair edge filter outputs showing a certain polarity
pattern. Figure 5 summarizes these patterns which can be further catego-
rized into twe types. The first kind is indicated by corner types 0, 2, 4,
and 6, while the second kind by corner type 1, 3, 5, and 7. For corner type
0, among the 16 edge filters, the ones indicated by the short line segments
in the figure should have significant responses. Moregver, the edge filter of
43° at position 0 znd the one of 135° at position 3 should both have nega-
tive polarity. This is also true for positions 2 and 3, but the responses are
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Figure 5: The possible patterns of edge filter outputs near a corner on a
rectangular sampling grid. There are eight of them (labeled 0 — 7 in the
figure) based mainly on the corner's opening direction.

smaller. For corner type 1, both the pair of edge filters of orientation 135°
at location 0 and 2 and the pair of 90° at location 1 and 0 at location 3
have opposite polarities,

The algorithm is tolerant with the definition of these patterns. When |
changed the details of the definition, the result does not vary significantly
i{f the definition follows what illustrated in figure 5. An example of the
definition for corner type 0 and 1 is described by the following equations.

max(0, f(E(0;1), E(3;3))  if E[0;1)x E(3:3) <0 &
- f(E(1; 1), E(2;3))) E(1;1)x E(223) <0 &
= E(1;1),E(2;3) > Ethd &

C(loe;0) =
E{0;1), E(3,3) > E_thd
0 otherwise
fE(0;3), E(2;3)) if B(0:3) x E(2;3) < 0 &
Xl . : _the
Cllog 1) = E(0;3), E{2:3)> E-thd &

Efl; 3. E(3:0) > Ethd
4] otherwise



where, C(loc; type) denotes the probability of occurrence of a corner (called
corner strength) at the location surrounded by sampling points 0 - 3, type
specifies the corner type defined in figure 5, E{loc; #) denotes the edge filter
output of orientation # at location loc, E.thd stands for edge threshold, and
f(E1,E2) is a simple function giving a pixel’s corner strength based on the
adge filter outputs. An example of this function is | min(]E1},|£2]).

A program detecting these patterns based on the above definition was
implemented. Simulation results show that most of the sampling locations
marked by a small circle in figure 5 are satisfactorily detected as corners,

The algorithm is mainly based on the polarity of the edge filter outputs,
hence is more stable against noise than the method based on the numeric val-
ues of edge filter outputs. Another strength of the algorithm lies in the fact
that the algorithm depends only on the local information and is very simple.
Not only an efficient implementation on conventional computer architecture
is possible, but a construction of a connectionist algorithm is feasible.

Figure 6 shows a possible connectionist implementation of this algorithm.
There are four layers. In the input image layer, each circle indicates a
receptor which stores a pixel intensity of an image. Each edge filter detects
the intensity change at the sampling peints in between the pixels of the
input image layer. At each sampling point, there are eight edge filters of
different target orientations or polarities. The wiring between the edge filter
layer and the input image is not shown because of the complication it causes.
Each neuron in layer 3 has inputs from edge filters at two sampling locations.
An example of the connections befwean the edge filter layer and the layer 3
{marked with dotted wiring and shaded cirele) is illustrated in more detail in
figure fib, which shows that both orientation and paolarity centribute to the
corner detection. Each neuron in laver 4 has inputs from mainly neurons in
layer 3. Its firing indicates that there is a corner within the pixel surrounded
by sampling points 1—4 in theinput image layer. Since there are eight corner
types, the neurons shown in 4 nesd to repeat for eight times. Since each
connection described above performs only a very simple function, a neural
netwark construction is feasible.
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Figure 6: (a) A connectionist implementation of the algorithm. (b) A more
detailed description of an example of connections from layer 2 to layer 3.

3 Simulation results

The algorithm is implemented by programs in C on a Sun workstation.
Figure 7 shows the output after each stage of the algorithm. Figure 7a
is the sampled input of a triangle. 7b shows the result of edge detection.
Note that, at each sampling location, edge filter outputs of four different
target orientations are shown. 7c is the result after artifact cancellation. 7d
demonstrates that the three corners are successfully datected. What follows
describes the strengths and limits of the algorithm.

1. The algorithm works under various situations.

Figure 8 shows four corners of various opening angles. They are selected
from a collection of simulated results on artificial, ideal corners. All of these
corners are located at (8, 8) of a (16, 16) grid. For the corner of 15°, the
location detected is shifted because of the inadeguacy of the rectangular
sampling, which is clearly shown in the sampled test input. For a flat edge,
there is no comner detected as expected There are also corners detected
near the boundary of the frame
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Figure 7: For test pattern of a triangle of 30°,60° and 90°. (a) the sampled
input (b) the result of edge filtering (c) after artifact cancellation (d) the

detected corners
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Figure &: Corners of various opening angles, (a) 153° (b) 90° (¢} 150° (d)
180°. Row I shows the input patterns. Row Il shows the results after artifact
cancellation. Row III is the result of corner detection.
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(a) (b)

Figure 9: Two triangles of arbitrary orientations. (a) a triangle of 457, 457,
and 90° (b) a triangle of 30°, 30°, and 120°.

(a) (b)

Figure 10: Corners not formed by two linear edges. (a) a pacman (b) a
pacman with a line segment.

Figure 9 demonstirates the simulation results of two trangles arbitrarily
oriented. Tb and 7d are the simulation results of test patterns 7a and T¢
raspectively. Note that, for each corner, the algorithm does not give a single
location. Instead several pixels near the exact location of carner are indi-
cated. This is mainly due to the digital sampling and can be improved by
mutual inhibition.

Fipure 10 shows the detection of corners not formed by two linear edges.
8b also shows that the algorithm can detect the corners causad by the overlap
of two shapes.

Figure 11 shows the simulation result on a portion of a real scene. Since
a natural scene is usually very complicated, causing the simulation result to
be difficult to see, this test pattern is intentionally selected by its relative
simplicity. The locations of detected corners are compared with the image.
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The result is satisfactory.

2. Line ends are detected naturally.

The algorithm detects line ends naturally. If a line segment is too wide,
l.e., it becomes a rectangle, then four corners will be shown. Figure 12 shows
the simulation result,

3. The algorithm has its capability limits.

This subsection describes the capability limits of the algorithm. The effect
of comers of sharp and nearly flat angles, noise, and blurring are respectively
discussed. Possible solutions are discussed in the next section.

The algorithm does not work as well on sharp and nearly flat corners.
Figure 13 shows the result on corners of 15° and 150°, The reason is that
edge filters are 45° apart. For corners of flat angles, they can not tell if it is
near a corner or 15 a perfect edge. For corners with sharp angles, the cutput
of edge filters are more seriously affected by the noise and the artifact of
pixellation. Since the corner detection is based on the edge filter outputs, it
is accordingly affected.

Noise affects the performance of the algorithm. This is expected since a
corner, as a property of 2-jet, is more sensitive to noise than edges. In figure
14, the results are not thresholded. It seems that the performance is heavily
influenced for random noise of signal to noise ratio below 1.67.

Figure 15 describes the affect of blurring. The algorithm does not behave
as well when the ¢ of the blurring Gaussian exceeds 3 pixels. Figure 15b
and 15¢ show another problem= blurring smooths the corner, but the number
of corners shown increases with the increasing blurring levels. The reason
is that, at those situations, besides decreasing the intensity gradients at a
real edge, blurring alse causes the intensity gradients to spread out. Since
the threshold for the edge filters is small (1 in 10) and unchanged through
these simulations, the detected edges spread out and the corner detection
is affected. When the blurring level increases as in figure 154, the corners
disappear.
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(a) (b)

Figure 12: Two examples of line end detection.

Figure 13: A triangle of 15°, 15%, and 150°,



(a) (b) (c) (d)

Figure 14: The effect of random noise. The signal to noise ratio is (a) 5 (b)
2.5 (c) 1.67 (d) 1.25.

.......

(=] {b) (€) (d)

Figure 15: The effect of blurring. A two dimensional Gaussian is used as
the blurring function. The &35 (a) 0.75(b) 1.5 (¢) 3.0 (d) 6.0 pixels.
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4 Discussion

As Tsotsos commented [B7],

computer simulation is different from mathematical modeling be-
cause the problem of pizellation, sampling, and computational
complezity must be considered.

In this section these problems related to input representation, edge filtering,
and corner detection are deseribed. The section ends with a brief discussion
on the computational complexity of the algorithm.

The first problem is the representation of the input image, Since a bio-
logical visual system performs an imaging process just as a vision machine
does, the sampling problem is inevitable. For convenience, the input repre-
sentation is chosen to be a two dimensional array of real numbers ranging
from zero to one. For artificial test patterns, the portion of a pixel covered
by a figure is calculated and the pixel intensity is accordingly adjusted.

For edge filters, the first question is what should be the o and ;. The
trade-off is that a bigger o gives a better signal to noise ratio; while a smaller
one more accurately indicates the location of the detected feature. A clue
comes {rom the psychophysical data. Bergen and Wilson [79] showed that
four scales with o approximately equal to 3, 6, 12, 23 pixels suffice to explain
many psychophysical phenomena. Marr, Poggio, and Hildreth [80] further
pointed out that a smaller scale is likely. Based on these considerations,
o and o) are selected to be 1.5 and 0.75 pixels respectively. Another
consideration is from the sampling theory. The Nyquist frequency for the
first-order differential of Gaussian with & equal to 1 is about 1.2 cycles per
pixel. So the filter selected as above causes aliasing error. However, the
corner detection is based mainly on the orientation and polarity of edges at
neighboring sampling locations, so it is not sensitive to the small sampling
error. The trade-off of spatial accuracy is well worth it. Another set of
simulation based on kernels with both ¢ and o equal to 0.75 pixels generally
shows even better performance.

Aneoiher question about the edge filter is that, at each sampling location,

how many orientations shall we apply the edge fiiter? Since sampling ison 2
rectangnlar grid. four orientations with each of tliem having both polarities
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Figure 16: Two possible schemes to improve the algorithm: (a) more sam-
pling points are considered (b) a hexagonal sampling grid.

suit the purpose, | investigated the possibility of applying edge filters on
more orientations. It does not increase the algorithm performance by much,
but causes the programming and the construction of 2 connectionist model
to be more difficult.

As described in the last section, the proposed corner detector does not
work as well for sharp and nearly flat corners. Its performance is also af-
fected by noise and blurring. There are two passible remedies at the cost
of throwing in more resources. Figure 16a demonstrates that an example of
how this algorithm can be extended (o taking into account the neighboring
16 sampling points. Instead of considering only loeations 6, 7, 10, 11, all
locations marked with an arrow can be used to either increase or decrease
the estimation of the probability of the existence of a corner in the shaded
area. For example, if the edge filter pair at location I and 4 with marked omni-
entation fire substantially and have opposite polarity, then the probability
should increase. Another scheme is by using the hexagonal sampling grid as
depicted in figure 16b. A version of the program based on this scheme is now
under construction. [ believe that this scheme will improve the algorithm
performance.



Another observation on the performance of corner detection is that it
really depends on the edge filters. If the edge filters are not working properly,
corner detection will not work either. In this sense; the edge filter can be
viewed as a part of the corner detector.

Though the algorithm has its shortcomings, the author does not consider
thesa as a serious drawback. The point is that all visual systems have
limited resources - limited processing power and limited processing time. Yet
the visual environment is arbitrarily complicated. Unpredictable situations
beyond the visual system’s detection capability may always occur. Therefore
it is impractical to always seck for perfect solutions. The economic use of
resources is important.

The resources required for this algorithm is briefly analyzed as follows,
Note that the estimation is based on the current implementation. Assuming
the resolution of the input image is m % n, the number of orientations is
k, the number of corner types is ¢, then we need m % n x k edge filters,
(6 + ¢) % m % n corner detectors, plus other intermediate connections in
the order of m x n. Note that each neuron has only local connections,
say, of upper bound /. Then the number of connections in the network is
in O(lmn(6 + k + c)). If the algorithm is simulated on a von Neumann
machine, this figure indicates the order of required computation time, For
the current implementation, with image of 128 x 128, neural comnections
of 50 on average, the computation load is about 1.5 108, With a 10
MIPS machine, a Sun 4 for now, it takes minutes to run. Evidently, with a
connectionist implementation or a multi-processing architecture, real-fime
performance ¢an be expected.

5 Conclusion

This paper describes an adge-based corner and line end detector. [t has
been shown that the intuitively simple scheme successfully detects corners
under various conditions. The essence of the scheme lies on the fact that
the detection is based only on the local information: Hence 2 connectionist
algorithm can be built and an efficient implementation on a multi-processing
architecture is Jikely,
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The design of the algorithm is based on the knowledge in human visual
system, the constraints imposed by our visual world, and the functional
analysis on the computational needs of visual tasks. Besides the design
of a better computer vision system, it is hoped that the knowledge thus
attained will help understanding the working principles of the biological
visual system.

There are many problems left, for example, how to cope with noise and
blurring in the image? How will the hexagonal sampling grid help detecting
corners? Answers Lo these questions still await further investigation,
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