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ABSTRACT 

A class of families of linear congruent!al pseudo-random 
sequences is defined. for which 1t Is possible to branch at any event 
without changing the sequence of random numbers used 1n the original 
random walk. and for which the sequences 1n d1fferent branches show 
properties analogous to mutual stallsllcal Independence. This ts a 
hitherto unavailable. and computationally desirable. tool. 

1. INTRODUCTION 

During the last forty or fifty years. the Monte Carlo method has 
been used with considerable success, to solve large mathematical 
problems too computationally complicated to yield to the classical 
numerical methods developed during the previous four centuries. For 
general discussions. the reader is referred to. e.g .. BUS 62, HA.\1 64. 
HAL 70. ERM 71. SOB 73. KLE 75. YAK 77. or RUB 81 [references in this format 
are to the Bibliography at the end of this paper] . In particular. there 
is an extensive history of the effective application of the Monte Carlo 
method to particle-transport problems. such as arise in the design of 
radiation shielding. n uclear reactors. and fiss ion and fusion bombs 
(see. e.g .. SPA 69, CAR 75). 

While the method was originally conceived in terms of 
representing the solution of a problem as a parameter of a hypothetical 
population. and using a [truly] random sequence of numbers to 



construct a sample of the population. from which stati.st!cal estimates 
of the parameters can be obtained (see HAL 70): It soon became 
apparent, from the point of view of the need. both for repeatable 
results to 'debug· the Monte Carlo computer programs and for a large. 
stable supply of suitable 'random numbers', that certain deterministic 
sequences exhibiting some of the properties of truly random 
sequences would be more useful in practice. These became known as 
pseudo-random sequences (and, by corruption of terms, as sequences 
of 'pseudo-random numbers') (see the above-mentioned references. 
and also L.EH 51, HUL 62. KNU 69, TAU 65. JAN 66, and NIE 78). Somewhat 
later. even less 'random-looking' sequences. dubbed quasi-random. 
having exceptionally good uniformity properties and leading to fast 
convergence of the resulting Monte Carlo estimates. were proposed 
(see HAM 60. HAL 60, and ZAR 68) . The uniformity of distribution of the 
pseudo-random sequences was found to be imperfect when they were 
used to define points in several dimensions (rnA 63. GRE 65. MAR 72), and 
several non-statistical approaches were developed for error-analysts 
(HAL 60. ZAR 66. ZAR 68, HAL 72). 

One of the most successful classes of pseudo-random number­
generators Is the so-called linear·congruential algorithm (originally .. 
due to Lehmer: see L.EH 51). The sequence 1 ~0 • ~ 1 . ~2 . ~3 · ... I= l~}J=o 

of canonical pseudo-random numbers, which should be independently 
uniformly distributed in the semi-open unit interval 10. 1), ls obtained ... 
from an Integer sequence IXQ. x1 . .xz. x3 .... I = l~h=O· by 

(l) 

and the x1 are uniquely determined by selecting M. a. b. and x0 . and 
taking 

(''<:!} ~ 0) 0 S XJ < 2M. XJ+l 5 ax)+ b (mod 2M). (2) 

Given the integer parameters a and b and an initial Integer x0 : each 
successive xJ +l is the residue of axj + b modulo 2M (I.e .. the remainder 
when axj + b is integer-divided by 2M). When we perform binary 
computations. such as are now universally used in digital computers. 
this residue is easily obtained. as the integer consisting of the M least 
significant bits of ax1 + b. The value of M is mainly machine­
dependent; in 'supercomputers', a typical value of M Is 48. and then 
24"8 ~ 2.8 x 1014. Given integers Z and Q > 0. we shall henceforth 
write 

R = <zl Q> = {O s R < Q. R = z {mod Ql). (3) 
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yielding (4) 

Many calculations using the Monte Carlo method (including 
those of particle transport alluded to above) involve the use of long 
sequences of pseudo-random numbers to generate sequential histories 
of flights and collisions. usually referred-to as random walks. By 
averaging appropriately-selected scores (functions of single random 
walks generated in this way) over large numbers of such random 
histories. it is possible to estimate the parameters of interest with 
considerable accuracy. 

It is clear that different random sequences will. In general. 
produce different random-walk histories; and these latter. in tum. will 
generally lead to different scores. While it is inherent in the Monte 
Carlo method that Its results should show random fluctuations. it Is 
extremely convenient to be able to reproduce a given computational 
result exactly. when we wish to do so. In particular. this Is important 
in the lnitial 'debugging· stage of developing a new program (or 
program-module). when we need to separate the effects of desirable 
randomness from those of undesirable programming errors, so as to 
ensure that the program or module will do correctly what the 
programmer intends; and it Is also useful when several runs must be 
made. to develop intentionally-correlated random samples. all 
depending on the same random walk. Some of these ends can be 
achieved by storing, and later retrieving. the values of the thousands. 
millions. or even billions, of random numbers required; but it is clearly 
much more convenient to redesign the random generator (algorithm) 
tn such a way that no such mass-storage is required. The original 
invention of pseudo-random sequences was partly motivated by this 
need. 

When one attempts to refine the physics underlying a particle­
transport computation. by taking Into account the concomitant 
generation and subsequent motion of additional particles or radiation. 
it is useful to compare the scores obtained with and without these 
refinements, for the same random walks. Since this leads to situations 
in which the random walks branch In a tree-like manner. requiring 
random sequences of differing lengths and unpredictable 
relationships. the problem becomes far more complex. We are now 
required to be able to generate a tree-structure of pseudo-random 
numbers. with good uniformity properties within each branch and 
good properties of independence between branches. In a typical 
conventional particle-transport calculation. uslnj non-branching 
random walks . we may compute some 103 - 10 random walks. 
averaging perhaps 102 - 106 steps each. with every step requiring 
around 10 random numbers; this adds up to a need for something of 
the order of 106 - 1015 random numbers. With current generators 
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having periods of the order of 1014, such a requirement Is acceptable; 
since techniques are available to Increase the periods (without 
unacceptably increasing the time required to generate the random 
numbers) to the order of 1 o60 or so. 

However. If our model is expanded to allow branching at every 
step. a comparable tree-structured calculation would. In principle. 
need some 104 x 2102 ~ 1034 to 109 x 2 106 ~ 1030I039 random 
numbers. It is. of course. entirely out of the question. in any case, to 
use this many random numbers: since. according to current 
astrophysical thought, the calculation would hardly have begun when 
the Sun, in Its red-giant phase, would consume the Earth, just a mere 
1 o26 - 1027 nanoseconds from now! The problem Is, rather, to 
provide theoretical access to suitably-distributed random numbers: so 
that they will be available as and when needed . The actual 
consumption of random numbers in a computation of this kind could 
hardly exceed some 1016 or so, unless computer technology makes 
rather remarkable progress even in comparison With its astonishing 
record; thus. we must rely on sampling techniques such as 'Russian 
roulette' to keep the overall needs down. Nevertheless, we must be 
able to generate those random numbers that we do need, with 
appropriate properties of distribution. The present development is an 
attempt to address this potential need. The problem was first raised 
by Warnock (see WAR 83) and useful suggestions of a general and 
heuristic nature were made by him as to Its solution. In the present 
paper. I propose a possible explicit approach to the task of generating 
a large number of branching pseudo-random sequences which are 
mutually Independent In a rigorously specified manner. 

2. PRELIMINARIES 

For any positive integer n and real a. let 

S0(a) = 0 and Sn(a) = 1 +a+ a2 + ci3 + ... + an-1. (5) 

This Is consistent. since the sum Sn(a) has n terms. Then 

and 

Snla) = n. ilf a = l. 

Sn(a) = (an - 1)/(a- 1). if a # 1. 

Lemma 1. For any non-negative Integer m and real z. 

(6) 

(7) 

s2m(Z) = (1 + Z) Sm(z2). (8) 
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<<By (5). if m = 0. then (8) is immediate; and, otherwise, 

s2m(z) = (1 + z) + (z2 + z3) + ... + (z2m-2 + z2m-l) 

= (1 + z) (1 + z2 + z4 + ... + z2m-2); (9) 

which yields (8) at once.>> [Proofs will. throughout this paper, be 

enclosed between<< and>>.) 

Definition 1. If N Is any positive Integer. then we express the 
fact that another positive Integer k Is a factor of N [i.e., integer­
divides it. without remainder) by the usual notation 

kIN. (10) 

We now see, In particular, that there is a unique non-negative Integer 
tL. such that ku divides N. but ku+J does not. We shall write 

(11) 

to express this situation. If v ~ u, then we also have. as In (10), that 

k 0 I N. 

We extend the notation (11) to N = 0 by writing, for any k > 0, 

k"" 1l 0. 

(12) 

(13) 

The notation defined In (11) and (13) Is slightly tricky: while k I N Is 
a relation between two Integers. k and N: ku 1l N is a relation between 
three Integers, k, u, and N. When we use an abbreviation, such as 
"8 1l x". It will be understood to mean "23 1l x": the member on the 
left of the symbol 1l w111 always be a pure power of one uniquely 
determined k. Hereinafter, we shall particularly make use of the 
special case. when k = 2. 

Lemma 2. For any odd positive integer a. there are unique 
positive integers q and r, such that 

a = (2r - 1) 2q - 1. (14) 

~~Since a is odd. a + 1 is necessarily even. Thus. there is a 

unique maximum q for which 2Q I (a + 1), and q <: 1. For this q. we 
have 2q 1l (a+ 1). Also, the quotient. when we divide (a + 1) by 2Q, Is 
odd: whence it can be expressed uniquely in the form 
(2r- 1). This immediately yields (14).>> 
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Lemma 3 . With a. q, and r defl11ed as in Lemma 2; if u ~ 0 and 
v ~ 0 are the unique integers such that 2u fi nand 2u fi Sn(a). then 
u = u + q - 1: that is, 

2u+q-l fi Sn(a) if and only if 2u fin. (15) 

<<By repeated application of Lemma 1. we get that 

sn (a) = (1 + a) sn/2(a2) = (1 +a) (1 + a2) sn/4(a4) = ... 
= (1 +a) (l + a2) (1 + a4) .. . (1 + a2u-l) sn/2u(a2u). (16) 

Also. by (14). 2Q n (1 + a). and q;;:: 1: and every binomial factor on the 
right of (16). after the first one. is of the form 1 + a2m, with integer 
m ~ 1. Since a is odd. either a= 1 or a • 3 (mod 4): whence a2 = l 
(mod 4): and. therefore. 

(';tm ;:: 1) a2m = 1 (mod 4). (17) 

Hence, ('v' m ;:: 1) 1 + a 2m = 2 (mod 4): I.e .. ('v' m;::: 1) 2 fi (1 + a 2m). 
Therefore, the product of all the bin omial factors on the righ t of (16) 
is divisible by 2 exactly q + (u - 1) times. Finally, we observe that. 
since a is odd by our hypothesis. every power of a is odd too: whence. 
by (5). the last factor on the right of (16) Is the sum of an odd number. 
n/2u. of odd numbers. and so must itself be odd. Thus. when u and u 
are defined as stated. u = q + u- 1, and (15) follows immediately.>> 

Definition 2 . 
.. 

If (x0. x 1 , x2 •... I= [x)J=O is a sequence of 

numbers. and if we are given that. for some 0 s. i <j. 

('v' k 0:: 0) XJ+ k = Xt+k • (18) 

then we say that the sequence is periodic. If 1 is the least value of the 
difference j - ~ for which (18) holds, then we say that the period is 1. 

lf his the least value of i satisfying (18) for j- i =A.. we say that 
the periodiCity starts at Index h: and lf h = 0. then we say that the 
sequence Is completely periodic. .. 

Note that, if the sequence lx)J=O Is periodic. with period 4. 

starting at Index h; then. for any ojjset a, the same Is true of the .. 
sequence [xJ - alr-o· 
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Lemma 4. Given that the sequence [x}J=O is periodic with 

period A.. starting at index h, and given i andj, with i <j, satisfying the 

relation (18); it follows that J1 =J - i is an integer multiple of A.; that is, 

(19) 

<<Since A. is minimal, we have 0 <A. s; fl. Because the sequence 

is periodic with period A., starting at index h; it is clear from (18) that 
xh+k = x(h+.:l)+k = xh+(.:l+k) = x(h+.:ll+(A.+kl = xh+(2 .l.+k) = ... , that is. by 
induction on integers r , 

(\fk ~ 0) (\fr ~ 0) xh+rA.+k = xh+k: (20} 

and. similarly, by (18) for i and}. by induction on integers s. 

(\f k ~ O) (V s ~ 0) xi+SJ.L+k = xl+k . (21) 

Write n = max(l. h}, so that n ~ h and n ~ i; and replace k. throughout 
(20). by k + n- h and, throughout (21}, by k + n- L Then. whatever 
is true with the resulting universal quantifiers, namely, (V k ~ h - n) 
and (\fk;:: i-n}, is also true with the quantifier (Vk ~ 0): so that 

N k ;:: 0) (V r ;:: 0) (V s ~ 0) xn+r.:l+k = xn+k = Xn+sJ!+k . (22) 

The Euclidean Algorithm Theorem states that. if y denotes the 
g.c.d. of positive A. and 11 (so that r I A. and r I Jl, and r is maximal). 
there are integers U0 and v0 such that r = U0 A. + V0 ,u. Proof: <<Let Z 

be the set of all integers. The set e = (8 = UA. + VJ1: U e Z. v e Z). has 
a subset e+ = (B = UA. + VJ1: U e Z. V e Z. 8 > 0). which is non-empty, 
since 0 < A = 1 X A + 0 X J1 E e+ and 0 < fl = 0 X A + 1 X J1 E e+. Let K = 
UoA. + VoJ1 be the least e E e+. Integer-divide A by K: then A = CJK + p 

(where 0 s; p < K). and so p =A- CJK = (1 - aUo)A - aVofl E e. Since 

p < K, and K is minimal in e+. p e; e+: and therefore p = 0 (i.e., K I A). 
Integer-divide J1 by K , to show, similarly. that K I p: whence x I y, since 
y is the maximal divisor. Since we also know that r I A, r I fl. and 
K E E>; r I K. Therefore. K = y. This proves the theorem.>> Now, Uo 

and v0 must have opposite signs, srnce we have that 0 < r sA. s 11: so 
that there must be non-negative integers r0 and s0 • such that either (!) 

r0 A. - s011 = r or (ii) s011 - r0 A. = 'Y· In both cases, take r = r0 and s = s0 
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in (22); then. In case (i). replace n by v - s0J.t; in case (li), replace n by 
v- r0A. Either way. we see that 

(23) 

But thJs means that the sequence is periodic, with period at most y. 
Since A. is minimal, by Deflnltlon 2, we must have A !> y. Thus. r = A, 
and the lemma follows at once.>> 

This means that the period of a periodic sequence is unique. 

Definition 3. Given a semi-open interval (A. B) on the real line. 
and a set J of Q points z1 < z2 < ... < zg in it. we say that the points 
are cyclically equally spaced (CES) in [A. B) If 

zh+l - zh = (B - A)/Q for h = l , 2, .... Q- 1. (24) 

Note that this implies that (z 1 -A) + (B- zgl = (B- A)/Q also. 
since Zg- z1 = (Q - I)(B- A)/Q. If we Imagine the interval [A. B). with 
the points of J in it. wrapped around a circle; then these Q points 
would be equally-spaced around the circle. Note. too. that. If the set J 
is CES in (A. B). so is any offset set of points zh- a (reduced. modulo 
B -A. to fall in the interval). 

Though it is not necessary to do so. we hereafter llmit ourselves 
to integer sequences and the interval [0, Q). 

Definition 4. Given the set J = (0. 1, 2 ..... Q - 1}. CES In 
QO 

[0, Q); if the sequence lx;IJ=o is per-iodic, with period .t. stai'tlng at 
QO 

index h , and If the set K 0 = lx}.J=h of values taken by the x1. once the 

per-iodicity Is established. Is a subset of J. with P distinct points in It; 
and if. further. these P values are also CES in [0. Q). and P =A.: then we 
say that tbe sequence is uniform in J. with coarseness Ql P. 

Lemma 5. In the situation described in Definition 4. 

PI Q; (25) 

so that the coarseness of a uniform sequence is always a positive 
integer. 

<<The points of J may be thought of as equally spaced around a 
circle of circumference B - A: the points of K (which are also in J) are 
also equally spaced around the circle. Thus. there Is an integer G. 
such that adjacent points of K have a spacing just G times as great as 
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that of adjacent points of J : that Is. PG = Q; whence (25) follows. G is 
therefore the coarseness of the sequence In J.> > 

~ 

Note that. If the period of the sequence lx}r-o passes through aU 

the points of J (that Is. if P = Q). then the coarseness of the sequence 
In J takes its minimum possible value. namely. 1. 

Definition 5. Given the set J = (0. l. 2 . .... Q- 1}. CES in 

[0. Ql: if two sequences lx}j=O and (xt1Jj=o are such. that the 

~ 

difference-sequence, I ~jl}=O· where 

(26) 

Is periodic, and Is uniform in J with coarseness G: then we say. by 
analogy with the definition of uniformJty and coarseness. that the two 
sequences are independent with respect to J, and that their 
consonance is G. 

3. ANALYSIS OF LINEAR CONGRUENTIAL GENERATORS 

We are Interested in generating a canonical pseudo-random 
~ 

sequence I~}J=O of numbers in [0. 1). for use in Monte Carlo 

computations. We therefore want the ~J to take a large number of 
distinct values, distributed with near-constant density In [0. 1). Our 
present consideration will be limited to the linear congruential 
sequences, which are related through (1) to the Integer sequences .. 
lx1JJ=O defined in (2) or (4). with M a non-negative Integer. This 

implies that. if we write (as we shall do henceforth) 

2M = Q. (27) 

then ('Q'j ~ 0) JC_j E J = {0, 1. 2, ... , Q - 1), (28) 

and therefore 

{'VJ ~ 0) ~J E p = (0. 1/Q. 2/Q ..... IQ- 1)/Q}. (29) 

In the terminology of Definition 3. the sets J and Pare CES. in the 
semi-open intervals [0. Ql and [0. 1). respectively. 
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Note that we may (and do, henceforth) assume, without loss of 
generality. that a and b are also integers selected from J. We further 
assume that a~ 0. [If a= 0. then, clearly. by (4), for allj <!: 1. x1 = b. I 

Lemma 6 . The recurrence relat!on (4) is satisfted. for all n ~ 0. 

xn = <a" Xo + Sn(a) b I Q>: 

where Sn(a) is defined as the sum in (5). 

(30) 

<<When n = 0, we know that a" = 1 and the sum Sn(a) = 0: so 
that. in fact. xn = a"xo + Sn(a)b. Suppose that the relation holds for 
n = k. say (this is initially true when k = 0). Then, by (4) with (3). we 
have that 

xk+l = <axk + bl Q> =<a [ak Xo + S~a) bl + bl Q> 
= < ak+l Xo + Ia StJa) + 11 bl Q>: 

and. by (5) . it is easily seen that 

a Sk(a) + 1 = Sk+ 1{a); 

{31) 

(32) 

whence the congruence will also hold for n = k + I. The lemma 
follows by induction.> > 

.. 
Lemma 7 . The sequence lx}J=O is per!odic, with per!od not 

exceeding Q. 

<<By (28), there are at most Q possible distinct values of xi 
among the Q + 1 numbers Xo· x 1• x2 • ...• xg. there must be two values 
alike. and we can always further specify that all intermediate values 
different from these and each-other: x 1 = x1 . say. with 0 ~ i <j and 
x 1. x 1+l• x 1+2 .... , x1_1 all different [If some intermediate value 
xk = x 1, say. replace j by k ; if two Intermediate values xh = xk, say, 
replace i by h andj by k]. It is now clear from the form of (4) that (18) 
will hold, since each member of the sequence is determined solely 
and uniquely by Its immediate predecessor . without regard to its 
position in the sequence. Hence. the sequence is periodic and. by 
Lemma 4. J - i is a multiple of the peliod, which thus. clearly. cannot 
exceed Q.>> 
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Lemma 8. If a is any even integer, the sequence [x)J=O is 

periodic. with the period 1. 

<<we have already seen that the period is 1 when a= 0. For 

any even a. clearly aM s 0 (mod QJ; so there will be a unique minimal 
h. such that ah s 0 (mod Q). If n ~ h; then. by (5). 

Sn(a) = Sh(a) + ah Sn-h(a) = Sh(a) (mod Q). (33) 

Therefore. in particular, by (30) and (33). 

xh+l = < ah+ 1 xo+Sh+1(a) biQ> = <sh(al biQ> 

= <ah Xo + Sh(a) bl 9> = xh; (34) 

whence. by Defmitlon 2. the sequence Is periodic. starting at index h. 
with period 1.>> 

Of course. a period of length 1 Is of very little use for the 
generation of pseudo-random numbers; so we shall henceforth assume 
that a is odd. 

Lemma 9. If a is any odd integer, then the sequence lx}j:o is 

completely periodic. 

<<consider the Q integers 1. a. a2 . ... , a9, reduced modulo Q. 
Their values must He in the set J; so. arguing exactly as In proving 
Lemma 7, we see that we must have 0 s t <j s Q, such that <atiQ> = 
<aliQ>. while <at!Q>. <a1+IIg>. <a1+2IQ> ..... <ai-II Q> are all 
different. Thus, d- a1 = a~d-1 - 1) must be divisible by Q; and since a 
is odd, it follows that Q I (d-1 - 1); so that there must be a positive 
Integer m = j - i s Q. such that 

am = 1 (mod Q) . (35) 

By (2) and (35), we have that x1_1 = amx1_1 s am-l(x1 - b) (mod Q); so 
that, writing c = am-l and d = -cb, we have 

or. by (3). 

('v'j ~ l) x
1

_1 s cx
1 

+ d (mod Q), 

('v'j ~ 1) x1_1 = <(;X_j+ d iQ>. 

- 11 -
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Thus. each member of the sequence is determined solely and uniquely 
by its immediate successor, without regard to its position In the 
sequence, and the equation (18) also holds for negative k, so long as 
the index i + k ~ 0. This extends the periodicity of the sequence 
(already established In Lemma 7) to the starting index 0. proving the 

present lemma.>> 

From now on. we shall always suppose that a is odd. satisfying 
(14) and thereby uniquely defining positive Integers q and r, as stated 
In Lemma 2. Since we also suppose (without loss of generality) that 
a e J. we see. by (28). that 1 s (2r- 1) 2q - 1 s 2M - 1: whence r ~ 1. 
and therefore 2q S 2M. Since q ~ 1. we conclude that 

1 s q S M. (38) 

Now write (39) 

and. by appeal to Definition 1, put 

2c 1l b. 2s 1l Xo· 2d 1l (a - 1), and 29 1l w. (40) 

Since (again without loss of generality) we also suppose that b e J and 
Xo e J. it now follows that. unless b = 0 [c = oo] or Xo = 0 (s = oo], 

0 s c < M and 0 $ s < M: 

and. since a Is odd. a - 1 is even. whence d ~ 1. 

(41) 

Lemma 10. The period A. of the completely periodic sequence 
00 

[x}J=O is given by 

,t = 2u. where u = max(O. M- g- q + 1}, (42) 

and g is defined uniquely by (39) and (40). 

< <By Definition 2 and (30). A. Is the leastj for which 

(43) 

If a '~' 1. by (7). a! x0 - x 0 = S}al (a - 1) x0 ; whence. by (3). (39). and 
(43). 

Sjal W = 0 (mod Q). (44) 

If a = 1. we note that W = b. and so (43) Implies (44) directly. Thus 
(44) Is true for all a. Therefore. either 
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W = 0 (mod Q) (45) 

(i.e .. g <! M. including the possibility that W : 0 and g : co); or g < M. 
and 

zM-g I S}al. (46) 

If (45) holds. then clearly, by (4) and (39), x1 = x0: so that A = 1. 
Thus, u = 0 and M - g - q + 1 $ 0 [since. by the assumption of (45). 
g ~ M, and, by (38) . q ~ II: so that (42) Is satisfied. 

If, instead. g < M and (46) h olds. we observe that. by Lemma 3. 
2u+q-1 fi S}aJ if and only if zu 1l j; whence there Is an Integer u <! 0. 

such that u + q - 1 ~ M - g and 2u fi A. Thus. since the period A Is 
minimal. u will be the least non-negative solution of 

A. : zu and u + q - 1 <! M -g. 

Clearly, this Is given by (42).>> 

Lemma 11 . With g defined by (39) and (40); 

(I) if c < s + d. then g = c: 

(il) if c "' s + d. then g > c: 

(ill) if c > s + d, then g = s + d. 

(47) 

<<By (40). 2s+d 1l (a - l)x0 and zc fi b. Write (a - l)x0 = zs+d U 

and b = zc V. where U and V are odd Integers. By (39). there are now 
three cases, characterized as in our lemma. (i) If c < s + d. then 
W = < Ia- l)XQ + b iQ> = < 2c{zs+d-c U + VJI Q> = zc X1• and the factor 

X 1 is odd: so that g =c. (li) If c = s +d. then W = <2c{U + VJIQ> 
"'2c X2 • and the factor X2 Is even. being the sum of two odd numbers: 
so that zc+ I I w (tha t is, g > c). (iii) If c > s + d . then 
w = <2s+d (U + zc- s-d V) I Q> = zs+d Xs, and the factor Xs is odd: so 

that g = s +d.>> 

As we shall see later, It is not always possible to control the 
parity of b; but we can, and do. control the value of a (and thus the 
parity of a - 1). We naturally seek to make the period of the sequence 
as long as possible. The absolute maximum is clearly Q = zM. but this 
cannot always be attained. Referring to Lemma 10. we see that both q 
and g should be as small as possible: and. since. by (38). q ~ 1. we 
stipulate that 
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q = 1. (48) 

By the definition (14) of q and r. this is equivalent to a = (2r- 1)2 - 1 
= 4(r - 1) + 1; so that 

a = 1 (mod 4). (49) 

By the definition (40) of d, we have that. for some integer r', 

a = (2r' - 1)2d + 1 (50) 

[compare (14)], which implies that 

a = 1 (mod zd). (51) 

Now. we have (above) that a - 1 = 4(r- 1); so that. by (50). 

d ~ 2. (52) 

Conversely, by (50). if we assume (52). a - 1 = (2r' - 1)2d = 4r". which 
implies (49); further, a= (2r" + 1)2 - 1, which yields (48). by (14) . 

First, let us consider what happens when b * 0. 

Lemma 12. Under the conditions of Lemmas 10 and 11. if we 
impose the restrictions (50) and (52) on the parameter a and suppose 
that b "' 0. then 

(i) if c s s + d - 1, the period of the sequence is zM-c ~ 2; 

(ii) if c = s + d, the period of the sequence is max{l. 2M-g), 
where g ~ c + 1 ; 

(Iii) if c ~ s + d + 1, the period of the sequence is 2M-s-d ~ 4 . 

<<Without regard to b. we know that (50) and (52) imply q = 1. 
Thus. (42) reduces to 

.ll = 2u. where u = max{O. M - g); (53) 

and the three cases of Lemma 11 are the same as those of the present 
lemma. Now restrict consideration to b * 0. 

(i) If c s s + d - 1, then g = c. By (41). since b * 0. c < M, and 
it follows that M- g = M- c ~ 1: so that, by (53). A.. = 2M-c ~ 2 1 = 2. 

(ii) If c = s + d. then g > c; and. by (53) . .ll = max{1 , 2M-g). 

(ill) If c <: s + d + 1. then g = s + d . Since b * 0. by (41) and our 
hypothesis, s + d < c < M, so we get that M - g = M - s - d ~ 2; so 
that, by (53). .ll = 2M-s-d ~ 22 = 4.> > 
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Now we turn to the omitted case. when b = 0 and c = oo. By (4) 
or (30), we see that 

(54) 

Therefore, if x0 = 0. every xn = 0 too: so that A. = 1. If. on the other 

hand. Xo 'F- 0, so that 2 5 1t x0 , with 0 s s < M: we can write Xo = 2 5 w0 . 

where co0 is odd. and we see that (since a Is odd) 2 5 1t xn too: so that, 
for all n. 

where wn is odd. Thus. (54) reduces, on diVision by 25 . to 

(t)n = < an wo i2M-5> · 

(55) 

(56) 

We are therefore led to examine the dependence on m = M - s of the .. 
period Am of the sequence !w}J=O with w0 (and therefore all the wJ) 

odd. when all numbers are reduced modulo 2m. By (56). this problem 
Is seen to be equivalent to that of finding the least n for which 

an ~ 1 (mod 2m). (57) 

By (50) and (52). and since. clearly. lf u <! v. 

X ;; Y (mod 2u) ~ X = Y (mod 2VJ: (58) 

it follows that the A.m are nondecreasing as m -4 oo, and that 

(59) 

As a further preliminary. we need the following result. 

Lemma 13. When a satisfres (50) and (52). the least value of n 
for which (57) holds is 2m-d. for all m <! d. 
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<<Since A.m is the least n for which (57) holds: for each m. 
there is an Integer qm. such that 

(60) 

Suppose it known that A.m = 2m-d for all d s m s h; by (59). this Is 

certainly true for h = d. Putting A.h = 21t-d ln (60). we get that 
a21t-d = 1 + qh 2h: and. on squaring. this yields 

a2n.l-<t = (a2'42 = (1 + qh 2h) 2 = 1 + qh 2h+J + qh2 22h. 

Therefore, since h ~ d ~ 2. by (52); we get that 

a2h+i·d = 1 (mod 211+1): (61) 

whence A.h+l s 2/t+l-d. Further. since the A.m are nondecreasing. we 

get }.h+l ~ A.h = 2h-d. lf we let X= l..h+l - 2h-d, so that 0 s; X s 2h-d. 

then 

(62) 

Let aX= Y + s 2h. with 0 S Y < 2h. Then aJ.n+l = (Y + s 2h) (1 + qh zh) ~ 

Y + (Y qh + s)211 = Y + Z 2h (mod 21t+ 1J. where Z = < Yq11 + sl2> Is 

0 or 1. Since a;.h+i = 1 (mod 2h+ 1) and 0 s Y < 2h, It is clearly 
necessary that Y = 1 and Z = 0: so that aX= 1 (mod 2h): whence 
X<: 2 11-d. Since we also have X s 2 11-d, it follows that X= 2h-d: whence 
A.h+! = 2h-d +X= 2h-d + 2h-d = 2/t+l-d. The lemma now follows by 

induction.>> 

Lemma 14. When a satisfies (50) and (52) and b = 0. the 
period of the sequence [x}j:o is max{l . 2M- s-d). 

<<(!) If x0 = 0. s = oo and. as we have seen. A. = 1. agreeing \vilh 
the lemma. (li) If x0 ~ 0 and M- s- d::; 0: then 1 s; M- s s d. by (41). 

Since m = M - s in (57). we get by (59) that A. = -"M- s = 1. again 
agreeing \vith the lemma. (Iii) Other\vise. x0 ~ 0 and M - s - d > 0. 

and the lemma asserts that the sequence lx}j:o has a period 2M-s-d. 

-Now. the period of the sequence lx} J=O· given by (54). Is clearly. by 
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-(55) and (56). the same as that of the sequence lwh=o with w0 odd: 

and this, in tum. equals the least n for which (57) holds. when m = M 
- s. By Lemma 13, this is zM-s-d, completing the proof of our 

lemma.>> 

Lemmas 12 and 14 show the general desirability of using odd 
values of b. Then. c = 0. and we are in Case (i) of Lemma 12, with A. = 
zM. the optimal situation. However, as we shall see later. this will not 
always be possible to achieve. 

It is Interesting to see under what circumstances the least 
desirable situation (namely. when A.= 1) occurs. We already know, by 
Lemma 8. that this can happen when a is even. Lemma 12 now tells 
us that. when a is odd and satisfies (50) and (52). and b ~ 0. It can only 
happen in Case (ii). when c = s +d. Let us write 

Xo = zM - 8, a - 1 = 2M - a, b = zM - {3; (63) 

where, by (50). a = zd (2U - 1) with 1 s; Us; zM-d- 1; and, since b and 
x0 are in J. {3 = zs+d (2V - 1) with 1 s; v s; zM-s-d-1. and e = zs (2X - 1) 
with 1 s; X s; zM-s- 1. Then. by (39). 

w = <z2M- zM (a+ e-ll+ ae- fJI Q>. (64) 

and therefore. by (53). we get that A. = 1 if and only if g ~ M: i.e .. If and 
only if 

f3!!!! a8 (mod Q). i.e.. v E 2UX- u-X+ 1 (mod zM-s-d- 1). (65) 

Finally. Lemma 14 tells us that we can have A.= 1 when b = 0. either if 
x0 = 0 or if x0 is a multiple of zM-ct. 

-Lemma 15. If the sequence l~h=o is generated by (4). with the 

parameter a odd, then, giuen (40). we haue that 

(a) ifc<~andcS.:s -1. ('TIJ;:: 0) {ze+1 ll0_j and zcnX2)+d: 

(b) if c = s < ~. 

(c) if c ~ s + I or if c = s = oo, ('T/j ;:: 0) 25 1l X; . 
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<<For allj ~ 0. define the powers ~by 

2~ 1l J<_j. (66) 

Then. by (4). since a Is odd. 2~ 1l axJ, and. by (40). zc 1l b. We recall 
that it is possible for b or any x1 to vanish. yielding that c = oo or ~ = oo, 

respectively (see (13)]. Using an argument exactly analogous to that 
used in proving Lemma 11. we see that (!) If b = x1 = 0. then c = ~ = oo, 

and, in fact. every xn = 0 (including Xo = 0: see (2) and (36)); so that s 
= oo and ('VJ ~ 0) 25 1l x1; (II) If C < ~· then 2c fl XJ+ 1 ; (ili) if c = ~. then 
x1+ 1 must be an even mulUple of zc. so that 2c+ 1 I x1+ 1 : and (iv) if 

c > ~· then 2~ n xj+1' Thus. 

l_j > C => ~+1 = C; ~ = C => ~+1 > c; ~ < C => ~+I = l_j. (67) 

.. 
But the sequence [ ~IJ=O begins with Co = s: whence the lemma follows 

immediately.>> 

Lemma 16. Given M > 0, with Q = 2M and L = (0. Q); define the .. 
set J by (28). and let the sequence Lx.h=o be periOdiC, with period A., .. 
starting at tndex h. Let the set Ko = (J<_J)J=h· of values of the J<_J, once 

the periodicity has started, be a subset of J. and let the number of 
distinct values in it be P = I K 0 I = A.. Then a sufficient condition for .. 
the sequence [J<_J)J=O to be uniform tn J, is that there be integers a and 

p. with 0 $ p $ M, such that 

A. = 2M-p and ('rlj ~ h) 2P I (x1 - a). (68) 

.. 
<<Since the sequence lx}J=o is periodic, with period A.. starting 

.. 
at index h: the sequence IJ<_J - a)J=O· offset from the first by -a. is also 

periodic, with the same period A., starting at the same index h, as is 
noted after Definition 2. That the set K0 has just A. distinct elements 
indicates that. in the period. there are no repeated values. Now. let 
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Ka = {<~-aiQ>Jj:h be the set of offset periodic values. reduced 

modulo Q: clearly. these are also just A In number. If we write 

J0 = J and Jp = (r2P: 0 5 r s 2M-p- 1}. (69) 

then JP is obviously the set of all integer multiples of 2P 1n J (and so 1n 

L). Hence. the total number of such multiples is 2M-p. and '11s CES in 
L (by Definition 3. since adjacent points are 2P = (Q - 0)/2 -p apart). 
If (68) holds. then Ka is clearly a subset of JP, since 2P diVides every 

xJ -a: and so. since A= 2M-p. Ka must equal JP. Thus. Ka Is CES in L: 

and therefore so is the original set K0. offset from Ka by +a, as is 
~ 

noted after Definition 3. Thus, by Definition 4. the sequence lx}J=O is 

uniform 1n J, with coarseness Q/A..>> 
~ 

Lemma 17. The period, A., of the sequence fx}J=O generated by 

(4) equals the number, P = I K 0 I. of distinct values in the periodic set 
~ 

K0 = lx}J=h. 

<<we refer to the proof of Lemma 7. The j- i values x1 • x 1• 1• 

x 1• 2 • ...• xJ-l are all different. and thereafter the values repeat. 
because. by (2) or (4). equal predecessors in the sequence have equal 
Immediate successors. and because x1 = ~. Thus, P = j - l. Therefore. 

by Lemma 4. P is a multiple of J... But. since all P values in the above 

Ust differ, A cannot be less than P: whence A. = P.>> 
We now have all the facts we need to prove our main result. 

T heorem 1. If the set J is defmed by (28) and the sequence .. 
fx}J=O is generated by (4) with odd parameter a satisfying (50) and 

(52): then the sequence is uniform in J. in the sense of Definition 4. 
When g is defined by (39) and (40). the coarseness of the sequence is 
given by 

(i) 2'. il c s s + d - 1 and c < oo: 

(ii) min(2M. 29). if C = s + d and c < oo; 

(iii) min{2M. 25+dj, if c :2: s + d + 1 or c = s = 00• 
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... 
<<Lemma 9 tells us that the sequence [x}j=O generated by (4) 

is completely periodic, since the parameter a is odd; and Lemma 17 
tells us that the number, P, of distinct values of -") in the period of the 

sequence equals its period, A (i.e .. the period consists of A different 
values. with no repetitions). Lemma 16 gives sufficient conditions for 
the sequence to be uniform: and, in the pr esent case. all of that ... 
lemma's preliminaries are satisfied. with h = 0. K 0 = {x_h=o· and 

P = I K0 I =A.. By (53) [v.rhich holds for all b (see Lemma 10]. X takes 
the form zu with 0 s u s M: which translates. if we Write u = M - p. 
into the first part, A. = 2M-p. of the condition (68) of Lemma 16. 
Further. Lemmas 12 and 14 specify the corresponding values of p. 
Therefore. the second part of the condition (68). which becomes 

(V j ~ 0) zP I l:<.J - a). (70) 

alone remains to be verified, with the help of Lemma 15. Given that 
the sequence is indeed uniform in J. it then follows from Defmition 4 
that the coarseness of the sequence Is Q/ P = Q/ ,t = 2M j2M-p = 2P. 

An examination of Lemmas 12. 14. and 15 indicates that there 
are six cases to be considered . Necessary correspondences between 
cases are tabulated below. Cases (I) . (II). and (III) correspond to Part 
(i) of our theorem: Case (IV). to Part (ii); and Cases (V) and (VI) to Part 
(iii). 

TABLE 1 

Case Lemma 12 

c < oo: 

(Dcss-1 Wp=c<M 
(II) c = s (i) p = c < M 

(111) s + 1 s c s s + d - 1 

(i) p = c < M 
(IV) c = s + d < g (ii) p = min{M. g) 

c < 00 or c = oo; 

(V) c ~ s + d + 1 (iii) p = s + d < M 
(VI)c=s = oo 

Lemma 14 

p = min{M, s + d) 

p= M 
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(!) If c < oo and c !> s - 1. then we have Case (a) of Lemma 15: .. 
members x 21 of the sequence tx1JJ=O are even multiples of 2c. and 

members x2J+l are odd multiples of 2c: so all x1 are multiples of 2c. 

Thus. (70) holds if we take a= 0 and apply p = c (from Lemma 12). 
The sequence is therefore uniform In J. with coarseness 2c. 

(ll) If c = s < oo, then we have Case (b) of Lemma 15: members 
x 21 of the sequence are odd multiples of 2c. and members x2J+l are 
even multiples of 2c; so that. again. all X; are multiples of 2c: whence. 
as before. since p = c, the sequence Is uniform in J . with coarseness 
2C. 

In all remaining cases. we have Case (c) of Lemma 15: all the x1 
are odd multiples of 2 5 • Also. for all j. by equation (7). a1 - 1 = 
(a - 1lS}al: so that. by Lemma 6. with equation (39). 

~ = <xo + (al- 1lxo + S;(alb I Q> = <xo + .~ya>w l Q>: (71) 

whence, for some c1. X;- x0 = S}aJW + c1 2M; so that, by (40), 

(Vj ~ 0) 2mln(g. M) I r:x; - Xo). (72) 

(Ill) If c < oo and s + 1 s c s s + d - 1. then. again. p = c. By 
(39). (40). and (41). since c < s + d. g = c < M; whence c = min{g. M ). 
If we take a = x0 . (70) follows from (72.); so that the sequence is. once 
again, uniform in J. with coarseness 2c. This completes the proof of 
Part (i) of our theorem. 

{IV) If c = s + d < co, then. by Lemma 12. p = min(M. g), where g 
is defined by (39) and (40). Taking a= x0 , we see that (70) holds, by .. 
(72.); whence the sequence [x}J=O is uniform in J. with coarseness 2P 

= min{2M, 29). This proves Part (il) of our theorem. 

(V) if c ~ s + d + 1. then either c < oo and p = s + d s M - 2. by 
Lemma 12(ili); or c = oo and p = rnln(M. s + d). by Lemma 14. Thus. if 
p = M s s + d. we have A.= 1. b = 0 . and [since we are n.ot In Case (VT); 
I.e .. since x0 ;e 0] s < M. by (41): and 1 s; M - s s d, which Is possible. 
by (52). In thls case. a ll the x1 are equal; whence we see that every 

x1 - x0 = 0. which Is divisible by 2M = 2P. Thus. taking a = x 0 . we 
obtain (70); so that our sequence will be unlform in J. with coarseness 
2P = 2M = mln(2M, 2S+dj. 
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If p = s + d < M, on the other hand. then c may be f'mite or 
infinite. By Lemma 15(c). write 

XJ = 25 ~, (73) 

where every~ IS an odd number. Then. by (2), 

~+1 = a}(_]+ 2-s b (mod zM-S). 

where, by (52). M - s > d :2: 2. and 2 -s b is divisible by 2d (by (40). 
since, in the present case. c- s :2: d + 1]. Hence. by (51) and (58). 

~. 1 = ~ (mod zd): (74) 

so that all the ){_] are not only odd, but congruent to the same odd 
number, modulo zd. This means that every x1 equals Xo = 2 5 Xo plus a 

multiple of 2s+d = 2.P. Taking cc = x0 . we see that (70) holds: and ... 
therefore, again, the sequence [xJ]J=O ls uniform in J. with coarseness 

2P = zs+d = min[2M. zs+d). 

(Vl) Finally. If c = s = oo, then b = x0 = 0. whence. by (2). every 

x1 = 0: hence 1.. = 1 and so p = M. By the same token. (70) holds for cc 
= 0; so that our sequence is indeed unlform in J. with coarseness Q. 
This completes the proof of our theorem.>> 

... 
Corolla.ry 1. The coarseness of the sequence l.':h=O· defined as 

in Theorem 1, attains its minimum possible value, namely, 1, if and 
only if c = 0. 

<<It is clear from the definitions (39) and (40) underlying 

Theorem 1 that s ~ 0 and c ~ 0. By (50) and (52). and since a e J. 
5 $ zd + 1 $ (2r- 1) zd + 1 = a < 2M; whence 

M~3. (75) 

In Case (i) of the theorem. the coarseness zc = 1 only when c = O: 
implying that s + d - 1 ~ 0 and thus in no way restricting the allowable 
values of s (since s :2: 0 anyway. and. by (52). d 2! 2]. In Case (ii). 
g :2: c + 1 = s + d + 1 and the coarseness Is min(2M, 29]. By (75). 
2M 2! 8; and. since S 2! 0, g :2: d + 1 <!: 3, by (52), so that 29 ~ 8. Thus. 
either way. the coarseness is at least 8. In Case (iii), similarly. by (75). 
and because s ;e: 0 and d :2: 2. the coarseness min{2M. zs+dJ Is at least 4. 
Thus. the absolutely best coarseness. 1. is attained when and only 

when c = 0 (in Case (i)].>> 
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Corollary 2. Giuen the set F defined in (29) and the sequence .. 
!;}J=O· defined by (1) and (2), with parameter a satisfying (50) and 

(52); the sequence is uniform in P. in the sense of Definition 4. and 
the coarseness of the sequence is gluen by the values in Cases (i). (ii). 
and (111) of Theorem 1. 

<<Both sets. J and F'. have Q members (points) and are .. 
respectively CES. In (0, Q) and [0. 1). The sequence lx}J=O stands in .. 
the same relation to J as does !;}J=O to F', and the corresponding sets 

.. .. 
Ko = (x}J=O and K 1 = !;}J=o both have just A. members. Thus, by 

Definition 4 and Theorem 1, the corollary follows.>> 

We have now collected sufficient information. on the uniformity 
properties of llnear-congruential pseudo-random sequences. to enable 
us to move on to the main purpose of our study: namely. the 
generation and analysis of tree-structured families of generators. We 
shall discover that the results. embodied. for the most part. in 
Theorem 1 and its corollaries. which tell us about the unlformtty and 
coarseness of a single sequeilce, suffice to analyze the properties of 
Independence and consonance between members of families of such 
sequences. 

4. TREE-STRUCTURED FAMILIES OF GENERATORS 

We now proceed to consider tree-like branching processes. We 
take particle-transport problems as Important and typical paradigms. 
The model often used has two kinds of random steps: those 
representing the rectilinear (or. In the presence of force-fields. 
curved) particle flight across the empty space of which all materials 
are overwhelmingly composed (a statistical Poisson distribution of 
path-length. determined by the 'mean free path', is used to sample 
the distance traveled); alternating with steps representing ·collision· 
events. terminating such free ll!ghts. Collision events include elastic 
or inelastic rebound-collisions and various nuclear reactions. which 
often generate new particles (of matter or radiation): these last lead to 
a branching of the particle histories. The creation of 'virtual particles' 
(used. for example. in the Monte Carlo 'particle-splitting' technlque. 
and in obtaining Monte Carlo scores at small-aperture detectors) also 
leads to branching. (Of course, in most Monte Carlo computations. all 
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'particles· are more-or-less virtual!) Since each step In a particle 
history (or random walk) may typically require about 10 random 
numbers. we may expect our pseudo-random sequence to entail 
branching at every T-th term. where TIs of the order of 10. While it 
is certainly feasible to allow branching at euery random number. it is 
likely to be more economical to pick such a T and only allow 
branching at every T-th step of the random sequence. The price we 
pay is that T must be an over-estimate. so as to ensure that. at least. 
most of the time. T random numbers suffice to compute a random­
walk step [if more are needed. in a particular step. then we must 
allocate an integer multiple of T random numbers to this step): thus, 
quite a few random numbers will be wasted In the process. 

Before we can move forward. we must consider the behavior of 
00 

the sequence lxr-l· x 2T-l· x 3T-l· x 4T-l· ... I= (x.JT-llj=t corresponding 
to the branch-points of the process (xJT- 1 is the current pseudo­
random number last obtained, when T numbers have been generated 
and a branch may occur). 

Lemma 18. 
.. 

The behaulor of the sequence Ix1r_ 1IJ=l of 
branch-points is giuen by 

~+l = <AJS+BIQ>. (76) 

when we write 

A = <aTig>. B = <S~albiQ>. and ~ = x.JT-i' (77) 

<<By Lemma 6. the relation (30) holds; so that. using (5). we 
sec that. modulo Q. 

xU+t)T-t • aU+1lT-1 Xo + SU+llT-1(a) b 

;;; aU+l)T-1 Xo + (a!J+1lT-2 + a1J+1)T-3 +. _. + a2 +a+ 1) b 

e aT [ a!T-1 Xo + (afT-2 + afl'-3 + ... + a2 +a+ 1) b) 
+ ( aT-1 + aT-2 + aT-3 + ... + a2 + a+ 1) b 

"' aT [aJT-1 Xo + SJT-l (a) b] + Sy(a) b 

e aT ~T-1 + S~al b. 

With the notations of (3} and (77), (78) takes the form (76).>> 
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The recurrence relation (76) ls exactly of the same form as (4); 
so that all our earlier analysis applies here. and Theorem 1 applies to 

M ~ 

the sequence IX;IJ,. 0 just as it does to lxh=o· By Corollary 1. we 

observe that odd values of B are preferable: and. clearly. by (77) and 
Lemma 3 [with q = 1. by (48)], B will be odd. if and only tf both b and 
Tare odd. It is easily seen. by (51). that 

(79) 

for all values of T. Henceforth. we shall revert. throughout. to the 
more familiar notation of (4). rather than that of (76); but with the 

00 ~ 

understanding that an equally-spaced subsequence IX)T-llj= 1 of [:':h =o 

may well be what we are really dealing with. 

The recurrence relation (4). with parameters a. b. and x 0 (we 
take Q and M as fixed), generates a linear·congruentiaL sequence 

00 

lx)J=O of integers ln J. It constitutes a pseudo-random generator. 

which we may denote by <1> =~(a, b. x0). Having analyzed Lhe periodic 
behavior and uniformity of a single llrlear congruentlal sequence, we 

00 

can now consider a pair of such sequences: (i) [x}J=O· with generator 

<1> =~(a. b. x0). characterized by (4). and (ii) [x•}j:0 . with generator 

<r>t =~(at. bt . xtoJ. say. characterized by 

(80) 

~ 

We may now define the difference-sequence l~h=o as we did in (26). 

and observe at once that 

fv'J~O) ~+l = <a~+(a - a')xt1 +(b-bt) I Q>. (81) 

By applying (71) to both !Xjl_i:o and (xt}_i:o in (26). we get that 

(82) 

where wt =(at - l)xt0 + bt is the counterpart. for the generator <r>t. of 
W, defined In (39). This formula Is rather difficult to analyze for the 
period and uniformity of the difference-sequence: but a particular case 

- 25-



proves to be more tractable. Suppose that we restrict our 
consideration to al =a; then (81) becomes 

(83) 

which is exactly similar to (4). except that b is replaced by {3 = 
<b-bt! Q>. It follows that all the results obtained so far (up to and -including Theorem 1 and its corollaries) for the sequence lx}J=O apply .. 
also to the sequence 18)J=O· It is just another linear-congruential 

sequence. whose generator may be written as 6 =~(a, {3. 80). 

All this can now be generalized to a family of generators. which 
we may denote by ct>ll =(>(all. bll' xll0). with parameters all' bll' and xj.t(). 
satisfying 

We restrict our consideration, by taking ('v',u) all= a. and write 

f3w = <bll- b) Q> and 81lvJ = <x111 - xv) Q>. (85) 

Then (86) 

It is reasonable to minimize the coarseness of each indiVidual 
sequence: and. by Corollary 1. the absolute minimum. 1. Is attainable 
when and only when every cJ.l. = 0. i.e .. every bJ.l. is odd. The values of 
the parameters xll0 and a. subject only to (50) and (52). are arbitrary. 
This means that we have at our disposal fully half of all possible llnear­
congruential sequences (altogether 2M- l sequences) for each choice of 
Xo· when a Is flx.ed. However. this does entail that every f31lv will now 
be euen. (There is no choice of more than two integers bll which will 

permit us to get all odd f31lv·l 

Now let us consider the kind of branching random walk for 
which the present study is Intended to provide effective pseudo­
random generators. In Figure l, we see the frrst flve levels of a binary 
tree with the nodes numbered in a simple. systematic manner. The 
caption explains the system. From any odd-numbered node. say 
Nf = 2,u + l. (.u = 0. 1. 2 .... ). we define a random walk. or sequence 
o nodes. 
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r
11 

= [N
11

--+ 2N11 --+ 4N
11 

--+ .•• --+ 2mN11 --+ • . • ]. (87) 

obtained by taking the left-slanting branch at every node (I.e .. gotng 
from parent to left-child, every time). which Will correspond, for 
example. in the case of a particle-transport problem. to a single 
particle- track. 

Level 2 

Level4 

18 2l 22 23 24 25 26 'Z7 28 29 30 

FJeure 1. 
Binary Tree Structure. 

Level k has 2k nodes. numbered (boldface. next to node-ctrcle) 2k. 2k + 1, 
2k + 2 ..... 2k+J - 1. Children of node number n are nodes numbers 2n (on 
left) and 2n + 1 (on right). Left branches are shown thicker; they denote 
continuing random walks rp !Index shown 1n node-circles; 11 In (88)f , 
generated by single Unear-congruenUal generators. 

Associated with the walk rJ.l' there will be, at each node, an array 
or other data-structure. giving the properties of the corresponding 
event. e.g .. of a collision In the particle-history. The statistical 
samples occurring at every node of the random walk Will be computed 
using pseudo-random numbers coming from a single generator of type 
4>11 =~(a. bJ.l' x110). satisfying (84). \vith parameters x110• bJ.L. and a

11 
= a . 

satisfying (50} and (52). When an additional particle is generated at 
node number v. this will correspond to taking a right-slanting branch. 
to the child-node numbered Nv = 2v + 1. where a new pseudo-random 
generator <!>v =~(a. bv. xvO). With parameters a. bv. and xvO. initiates a 

new. concurrent particle-track or random walk. r.,. 
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Since it is typical that branching does not actually occur at every 
node (and. indeed, since. as has been explained in §I. it would be 
totally impossible. in practice, to perform the computations needed if 
every branch did occur). it is of great practical utility. that the 
generator <~>v. needed on branching at node number v, should be 
idcntJlled by appeal only to the index: v. or, at worst, to a small number 
of parameters computed and stored at the node v. 

Let v be a node in r/.1; so that. by (87). for some integer m. 

v = 2m(2p + 1) and 2m n v. (88) 

Then we may associate. with the node v. a record. 

Rv = (2m N Jl.' b!l' XJlm), (89) 

consisting of(!) the current node number. v = 2mN
11 

(from which both 
m and p can be uniquely determined): (II) the value of the parameter 
bJl of the current generator <!> Jl (remember that the parameter a Is 
supposed to be common to all rand!om generators in this scheme. or 
family); and (iii) the current random number xJ.Lm· We now begin the 
new random walk rv. with new parameters, bv and xvO. and the 
particular scheme that we adopt Is specified when we define the 
functional relationships between these new parameters and the 
record: 

bv = 1J(2m Nil' bJl. x11m) = 1l(RJ}· 
xvO = X(2m N11• bw x11ml = X(RJ 

This can also be formalized by putting: 

(90) 

IRNv = (Nv. bv, X,.o) = .n(2m Nf.L, b!l' x
11

m) = .n(JR). (91) 

The mapping n (or. more explicitly, the functions 1l and X 
compiising it) determine the particular algorithm we choose. 

Consider, first. the relationship between two segments of the 
00 

same random sequence 1-':JJ.r-<>· say one beginning at xo and the other al 

xH. Then we may take 

(92} 
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so that. by (83) with bt = b. we see that the sequence lo;Jj..o defined in 

(26) has generator A =~(a. 0. x0 - xH). 

Lemma 19. Giuen the set J defined in (28). the sequence 
~ 

[xJ]J=O generated by (4) with parameter a satisfying (50) and (52). and 
~ 00 

giuen any positiue integer H; the sequences !x)J=O and !xh=H (which 

differ only by the positional offset H) are independent with respect to 
J. in the sense of Definition 5. When c. s, d, and g are defined by (39) 
and (40). and K: by 

2K ll H. (93) 

the two sequences haue consonance min(2M. 2K+g+dj. 

<<Applying Theorem 1 to the generator A. we see at once that 
00 

the sequence lo}J=O Is uniform in J: and therefore, by Definition 5. we 

~ 00 

Immediately conclude that the two sequences !x}J=O and [xJ]J=H are 

independent with respect to J. Since, by (13). 2 .. 11 0. and the second 
parameter of the generator Is 0. the corresponding ·power of 
dlvtsibility· of that parameter Is co: so that. by Theorem 1. the 

coarseness of (o1Jj..0 is G = min(2M. za+dJ. where d Is defined by (50) 

and (52). and a Is defined by za 1l (x0 - xH). Hence. by Definition 5. 
00 ~ 

the consonance of lx}J=O and lx}J=H is G. 

Now. by (15) \'lith (48). 2K 1l SH(a): by (39) and (40). 29 1l W: 

and. finally. by (71). <Xo -xH> "' < -sH(aJWI Q>. Therefore. we see 

that (1 = /( + g: and so G :; min(2M. zK+g+dJ.>> 

Just as we stipulated, first. that the parameter a be odd, and 
then that it should satisfy (50) and (52). so as to minimize the 
coarseness [that is, maximize the uniformity] of the individual 
sequences: so we now seek to minimize the consonance G of a pair of 
sequences. To this end. we may roipimlze d. subject to (52). by 

d :; 2. (94) 
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so that. by (50). this is equivalent to a = (2r'- 1)4 + 1 = 8(r' - 1) + 5. 
or 

a = 5 (mod 8). (95) 

Corollary 3. Under the conditions of Lemma 19. if we impose 
the additional constraint (95), and choose the parameter b to be odd: 
then the consonance of the two sequences becomes mln(2M. 2n2 }. 

<<Since (95) Is equivalent to (94). direct substitution of 2 for d 

In the formula given by the lemma yields G = min(2M. 2"'+Y+2). Since .b 
Is made odd. so that c = 0. we have c < s + 2 = s + d, by (94); whence 
Case (i) of Lemma 11 yields that g = c = 0. The corollary now follows 

Immediately.>> 

Warnock (see WAR 83) proposes. In our notation. that all 
'left-slanting' generators 4>1' should share common parameters a and b. 

Thus. his function of type :8. say :Bw. Is the projection of the second 
argument. unchanged: 

(96) 

His function of type X. say Xw. applies a step of type (4}. with its own 
Independent parameters, a• and bf. say. to go from the last random 
number x11m to the first one of the new sequence: 

x~ = X,(2m N11, bll' Xpml = < atx11m + bt I Q>. (97) 

Since all the left-slanting generators in Warnock's scheme have 
the same parameters a and b. if we select a satisfying (95) [and so 
(50) and (52)] and b odd [c = 0 [: then. by Corollary 1. all the resulting 
sequences will be uniform in J, with minimal coarseness 1. Thus. the 
period has length Q; that is. every value in J occurs in each such 
sequence. Consequently. aU the possible sequences are just positional 
offsets of each other: and therefore. by Corollary 3. If a pair of such 
sequences has positional offset H satisfying (93). It will exhibit the 
consonance mln{2M, 2"'+2}. 

Unfortunately. It is impossible to improve the situation optimally 
by making all K = 0. This is because of the structure of the Integers. 
with respect to divisibility by powers of 2. The sequence of K-values 
takes the form shown In Figure 2. 
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H 

K 

- 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 

1 

-? t y ~ j 1 v lr 115 1{ lf! 211 ~ 2f 2r 2f! 311 3? 315 3r 3r 4l 'if 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 1 l I l 1 1 1 1 

2 2 2 2 2 2 

3 3 3 
4 

5 

00 

Figure 2. 

Divisibility of the Integer Sequence by Powers of 2. 

For a segment of the sequence of Integers H. the corresponding values of 
.-. such that 2" > H. are tabulated, with each row havtng a single value of.-. 
(The structure Is rern1n.lscent of the "Sieve of Eratosthenes· used to find 
prime numbers.) Observe that. to be as far as possible from .-2:. .-0 . one has 
to be close to a value of H with .- = .-0 - 1. For example, with .-0 = 4 and H 
lying between 16 and 32. it iS best to choose H = 21 or 23, somewhat closer 
to the lesser of the extreme .--values. 4 and 5. The two extreme values 
will. of course, never be equal. 

We can, at best. hope that sequences corresponding to 
immediately adjacent events will have low values of K. The generator 
<l> J.l begins at the node numbered N J.l = 21-l + 1 and passes, in a left­
slanting direction, through the node numbered v = 2mNJ.l; from which 
a branch goes to its right-child node. numbered Nv = 2v + l. The 

~ 

generator <1> 11 begins there. and its sequence lxv)J=O• in Warnock's 

scheme. is. as we have seen, just a positionally-offset copy of the 
~ 

sequence [xg.tiJ=o of generator <l>w We certainly want the two histories. 

beginning at the left and right children of node v. to have the least 
possible consonance: so we would like the offset. between 

x!l(m+l) = <axJ.lm + bl Q> and xvO = <atxJ.lm + bt J Q>. to be odd; this is 
clearly equivalent to haVing the offset between xllm and xvO even. By an 
obvious extension of (30}, we require that there be an integer n. such 
that 

(98) 
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(99) 

Since (99) Is Independent of xJI.m' we see that a single transformation 
of the form (97) will work In all cases. 

However. our advantage is somewhat brittle. It is physically 
desirable that the track. generated by <l>v and beginning at node Nv. 
should also have small consonance with tracks beginning at nodes 
neighboring node 2v in the chain generated by ct>Jl; i.e .. corresponding 
to sequential (positional) offsets close to. but different from. 2n - 1 
(With n the same as that in (99)). These offsets will be even. in about 
half the cases. and examination of the sequence of K-values in Figure 2 
indicates that. if we wish to avoid K ~ K0 . say. we shall certainly have a 
near-neighbor with K = Ko - 1. As for more distant tracks, across the 
tree, these will have a variety of offsets. but this is hardly to be avoided. 
After all. we are looking at a universe of only 2M distinct sequences. to 
fill 2k-1 tracks [left-slanting branches]. in a binary tree of height k. 
with 2" - 1 branch-points and 2k+1 nodes. Since a typical value of this 
k is perhaps 102 - 106. while a typical value of M is about 48. the 
capacity of the scheme is evidently overloaded. 

The plausible argument. that computational runs requiring some 
1 o3 - 107 random numbers should be pretty unrelated. when taken 
from random segments of a pseudo-random sequence with period of 
the order of 248 "" 3 x l 014• at least thirty million times longer. turns 
out not to be entirely valid. However. in mitigation, it should be 
pointed out that. until now. no rigorous analysis of the algorithm was 
available. 

If one nevertheless decides to adopt this scheme. the indication 
is strong that one should adopt a satisfying (95). b odd. and at and b 1 

satisfying (99). with values of n such as 11. 12. 22. 23. or 24 (for 
H = 21. 23. 43, 45. or 47, respectively). 

We now leave Warnock's algorithm. and return to our 
consideration of the more general relationship between two 

sequences. lx}j=o and (x1
1Jj=O· whose respective generators are 

<l> =~(a. b. x0) and <1>t =~(a. bl. xf0). and whose difference I~Jj:0 • with 

~ = <-XJ - x') Q>. satisfies (83). with f3 = <b- b' I Q> ;t 0. We shall 
assume that both band bt are odd integers. and that a satisfies (95). 
Following (39) and (40). let 
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( 100) 

and ( 10 1) 

By Theorem 1 and Definition 5. we now obtain: 

Theorem 2. Given the set J defined in (28) and the 
parameters a, with (95}. and b and bf, both odd, with <b - bt I Q> ;o 0: 

the sequences lx;J):o and [xf;J;o. with generators <l> = iJ (a, b. x0) and 

<l> • = iJ (a. bf. xt 0). respectively, are independent with respect to J. If 
n, r. a. and-rare defmed as in (100) and (101). then the consonance 
of the sequences is given by 

(i) 2 Y, 

(li) min(2M, 21') with t > r. 
(!I I) 

if r s a+ I: 

if r = a+ 2: 

if r ~ a+ 3. 

<<By (83) and (95). which lmplles (94), we have the conditions 

of Theorem l. with d = 2. and n. r. a. and r respectively taking the 
places of W. c. s. and g. By our assumptions. 

1 s r< M: ( 1 02) 

whence the case of r = a = oo Is impossible. and M > r > a + 2 

[compare Lemma 12). Theorem 2 follows immediately.>> 

Coro llary 4. Under the conditions of Theorem 2. if 
o0 = x0 - x t0 = 0, then the consonance of the sequences is 2r. 

<<If o0 = 0, then. by (101) with (13) . a=""· Thus, by (102). we 

are In Case (i) of Theorem 2: and the corollary is immediate.>> 

It is instructive to note the dependence on a. for any given y. 
of the consonance determined by Theorem 2. This is sketched in 
Figure 3. 
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p = log consonance 
2 

M - 1 1--------------, 

~ ~--------------------~ 
r < r:<M 

2 

0 

=a +2 

Case (ill) 

r-3 r -1 
y-2 

FWrre 3. 

P =r 

Case(!) 

Consonance as a Function of a, for Fixed y. 

a 

-The Ioganlhm to base 2 of the consonance of two sequences. (><:h=o and 

(xt;Jj:0 . with generators <I> = ~(a. b. XoJ and <1> t = ~(a. bt, xt oJ. respectively, 

is plotted against (j (where 2°11 So= <xo- xt 0 I Q>l. for given r (where 

2 r 1l f3 = < b- bt I Q> ., 0). Cases indicated are those used for 
classification of results in Theorem 2. 

In the general situation described by (84) - (9 1). in which a 
family of generators <I>Jl' With a single common parameter a, satisfying 
(95), and With all their individual parameters bil odd, is matched to 
the odd-numbered nodes Nil and left-slanting random walks rJ.l of a 
binary tree; we seek, as ever. to minimiZe the consonance between the 
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sequences generated by the different <t>J1• and especially between those 
sequences close to each other ln. the tree. The closest physical 
relationshlp will be between the sequences originating at the two 
chUd-nodes of any given node: for example, if the parent node is 

.. 00 

numbered v. the sequences are [xJ.CJIJ=m+l =[xJ.l(i+m+lll l=O· beginning at 

.. 
node 2v, and fxv}J=O· begining at node 2v + 1 = Nv. If. in Theorem 2. 

we take 

so that 

and 

X; = XJ.I(m+j+ 1)• b = bJI' xt1 = Xvj . bt = bv: 

{3 = <b-btlg> = <bJ.I-bviQ> = f3J.Iv * 0 

o1 = < x;-x+)Q> = < xJ.I(m+j+l) -xv)Q> : 

{103) 

(104) 

(105) 

then the conditions of the theorem are satisfied and the conclusions of 
the theorem hold. for all indices v and functions 1J and X:. 

Let u s write 

( 1 06) 

(the notation makes sense. since. by (88). J.L and v determine m). 
Then we note. by (105). that. in particular. 

(107) 

We shall denote the logarithmic consonance (i.e .. the logarithm to base 
2 of the consonance) of our two sequences by PJ.lvl' 

Corollary 5. If t.J.Ivl is odd. then the logarithmic consonance of .. .. 
the sequences [x.J.IIl+m+ 1111=0 and [xl!h=o is giuen by 

(i) PJ.Ivl = 1. ifr = 1: 

(li) 2 < PJ.Ivl ~ M, ifr = 2: 

(iii) PJ.Ivl = 2, ifr~ 3: 

where r is dej'med by ( 10 l). 
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<<If t.J.lvl Is odd, then (j = 0. and. by (102), the three cases of 
Theorem 2 become those listed above: whence the values of PJtvl are 

as stated.>> 

This result suggests that we should take t.J.lvl odd and 

r ;:: 3: (108) 

the latter condition is easily satisfied. e.g .. by taking every bll = 1 
(mod 8). Note that, tf t.Jlvl is even and not zero. it is much harder to 
conf'tne the values of PJ.lvl· 

Now consider. as we did for Warnock's scheme. what happens if .. .. 
we compare the sequences [xp(l+m+HJI~;:o and lxv)r-o· with a positional 

offset In one sequence. Then {3 (and therefore also rl is unaffected: but 
80 (and therefore also n. (1. and -r) wHl depend on H. since now 

( 1 09) 

Theorem 2 will clearly still apply. For different values of H. the 
logarithmic consonance of our two sequences. which is denoted by 
PJ.I.vH· Will depend on (j as shown In Figure 3, with an Isolated 

maximum-value 'spike' when (j = r- 2 and r < P1-1vH < M. The 

dependence of (j on H will be scattered. rather as in Figure 2: and. as 
for Warnock's algorithm. this creates a problem. 

By (71) and (106), we see that 

6Jl.vh = < t.llvO + Sh(a)WJ.lm I Q> : 

where WJ.I.ffi =<<a- 1)xpm + bJ.I.I Q> 

Is analogous to Win (39). Thus. by (110) with h = 1. 

61Jvl = < t.JtvO + Sl(a)WJl.m i Q > . 

( ll 0) 

( 1 1 1) 

( 112) 

Since, by (111) with (49) and because all the bJ.I. are going to be odd in 
our present discussion. Wpm is odd: and since, also. S 1 (a) = 1: we see 
that 

t.Jtvl Is odd if and only if t.11ve is even. ( 113) 
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Further. by (93). (48). and Lemma 3, we have that 2,.. ft SH(a)Wilm' 
Now. let us write 

2<7pvn fl t.JlV/t . (1 14) 

Then. our usual line of argument (see, e.g .. Lemmas 11 and 12]. 
applied to (110) with h = H. yields that: 

(a) (JjlVH = (JiliO 

(b) (JjlVH > K' 

(c) CJp.vH = K' 

jf (JiliO < 

jf CJJ.IIO = 

jf CJJ.IIO > 

K'; 

K' ; (115) 

K'. 

Using Figure 4 as a gulde. it is not too hard to derive, from (115) and 
Theorem 2 with CJ = CJJlvH· the relationships shown in Table 2. Here. D 
denotes the diameter of the cube bounded by coordinates 0 and M - 1. 
In which the triangles T1, T2 • and T3 meet. 

T.ABLE2 

Region Case in (115) Case in Theorem 2 PJ.fvH 

'1' (a) (Iii) (JiliO + 2 

'2' (c) (ili) I('+ 2 

'3' (a). (b). (c) (i) r 

Tl (c) (ii) p>r 

T2 (a) (ii) p>y 

T3 (b) indeterminate ? 

D (b) (i) r 

Theorem 3 . Define r by ( 10 1). I(' by (93). 6JlVh by (1 06). and 

CJJlvh by (114): and let 6!lvl be odd (Le .. CJJ.fvl = 0). Then t.ttvO is even: 

and, if a clear minimum occurs (i.e., one of CJ!lvO + 2, K' + 2. and r. is 
strictly smaller than the other two).then 

PJ.fvH = min{CJJ.I\10 + 2. K' + 2. y}. ( 116) 
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K+2 

<1JlV0 + 2 

r = I(+ 2 < crjlvo + 2 

r = crjlva + 2 < I( + 2 

I( + 2 = crjlvo + 2 < r 

• I( + 2 > <1jlv0 + 2 < r 

@ <1jlv0 + 2 > I(+ 2 < r 

• K + 2 > 'Y < Oj.lvO + 2 

Figure 4 . 

Logarithmic Consonance as a Function of cr.u,.o• K, and y. 

The numbered solid regions. '1', "2'. and ·3·. are pyramidal portions of the 
cube, bounded by faces of the cube and by trl.angular plane regions shaded 
othetwlse than their own shading-key. and lying opposite . to the 
similarly-shaded tT!angles: Regton '1" ts bounded by T2 and T3 . and lies 
opposite to T 1: Region '2" ls bounded by T3 and T1• and lies opposite to T

2
: 

and Region '3" ls bounded by T 1 and T 2 . and lies opposite to T3. The 
resulting values of the logartthmic consonance PJlvH are given in Table 2. 
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<<The first conclusion of the theorem. that llJ.lvO Is even. 

follows at once from (113). since llpvl is postulated to be odd. The 
result (116) follows 1nm1ediately from Table 2 and the Information in 
Figure 4. where we see that a "clear minimum" occurs precisely when 
we are in the interior of one of the regions T. ·2·. or '3'.)>)> 

Since. by Theorem 3 and (114). aJ.lvO > 0; when H = 1 (so that K 

= 0). apvO > K; whence Pllvl = y if r < K + 2 = 2. and Pllvl = K + 2 = 2 if 
y > K + 2 = 2. Thus we recover Cases (i) and (iii) of Corollary 5. 

TABLE 3 

a 11ve + 2 and y Region P11vH 

aJ.lve + 2 < r K+ 2 < (1J.lv0 + 2 '2' I(+ 2 

K + 2 = aJ.l.vO + 2 T3 ? 

aJ.lve + 2 < I(+ 2 < r '1' (11lv0 + 2 

K+2 =r '1' (1/lvO + 2 

K+2> y '1. (1J.lv0 + 2 

allve + 2 = r IC+2<r '2' K+2 

K+2 =r D r 
K+2 >r T2 P>r 

aJ.lve + 2 > r K+2 <r '2' I(+ 2 

K+2 =r TJ p>r 

r< K+ 2 < a11-ve + 2 '3' r 
I(+ 2 = (1J.lv0 + 2 '3' r 
I(+ 2 > (jJ.lvO + 2 '3' r 
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We can. to some extent. control the values of rand of aJJ.vO; but 
we have no control over 1r. since H is a variable. Table 3 (based on 
Figure 4 and Table 2) shows the dependence of PpvH on all three 
parameters. for all their possible relative magrutudes. The 'bad' (high­
consonance) cases arise in the triangular plane regions T1. T2 • and T3 : 

and least damage is done if bad values of Hare as few as possible. Note 
that half the values of Hare odd (K = 0). a quarter are divisible by 2 but 
not by 4 (K = 1). an eighth are divisible by 4 but not by 8 (K' = 2). etc.: 
with the value K' = 11. say. accounting for a fraction 2-'1-1 of all values of 
H: and with all values of K > 11 accounting for the same fraction. Thus. 
if apvO + 2 > y, the fraction of bad H-values (in T 1: K' = y- 2) is 2 -i'+' 1: if 
apvO + 2 = y, the fraction (in T2 : K > y - 2) is again 2 -i'+'l; and if apvO + 2 

< y. the fraction (in T3: K = apvOl is 2-ap.o- 1 > 2-1"' 1. We therefore see 

that It is desirable to take 6pvl odd lap vi = OJ and y <!: 3 [as noted in 
(108)). and then 

apvO <: r- 2. ( 1 1 7) 

Since the fraction of 'bad' values of H Is then 2-1"' 1• il is probably wise 
to exceed the criterion In ( 1 08) somewhat. to make this fraction 
smaller. A reasonable condition might be 

y'2 8. ( 118) 

yielding a fraction 2-7 (less than 1 %) of bad values of H. This Is 
achieved. for example, by taking every bJ.I s 1 (mod 256). As the lower 
bound on r increases. (a) the ·good' values of H yield somewhat less 
desirable consonances. and (b) the numbers of available distinct values 
of b11 and of xp.o decrease correspondirlgly: so there is a trade-off here. 
as in so many such situations. and an ·engineering solution· 
(i.e .. a compromise) is Indicated. 

Note the special solution . when 

6J.Iv0 = 0: I.e.. aJ.IvO = ~. ( 119) 

Then. as Is pointed out In Corollary 4. we have Pp.vH = r for all H; but at 

the cost of no choice of ap.vO and so of xp.o· 

We must not overemphasize the Importance of the conson ances 
of positionally offset pairs of sequences. The unfortunate results can. 
to some extent. be minimized by suitably avoidir!g unfavorable offsets: 
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but only at the cost of wasting some random numbers which might 
otherwise be put to use. Again. suitable compromises are indicated. 

Finally. we consider the consonance between sequences not 
arising from the same branch-point. Of course. Theorem 2 still 
applies. Let <:!> 11 and <:!> v begin at nodes numbered N 11 = 2J1 + 1 and 
Nv = 2v + 1. respectively. but now without the relation (88). Then the 
level. m, of N11 Is given by 

( 120) 

and the level. n. of Nv Will be determined similarly. Now. /3 and r will 
still be defined by (101) and (104): but the appropriate 80 [see (26)] 
Will now be 

80 = x11(k-ml - xv(k-nJ· where k = max(m. n). ( 121) 

Whatever condition we apply to all the b'l. to ensure (108) or (118). 
Will still help us here: but all the x'70 Will already have been fixed (as 

discussed above) in a way that Will not likely help us here. The new 80 
and a will thus be out of our control: whence the consonance 2P of <:l>J.L 

and <:l>v will float freely, in accordance to Theorem 2 and Figure 3. with 

p S: r. except for the 'bad' cases. when a = r - 2. As before. this will 
tend to occur about 2 - yrl of the time. 

5. SPECIFIC PROCEDURES 

We now have all the underlying machinery that we shall need. to 
select specific procedures. to generate tree-structured families of 
linear congruential pseudo-random generators. yielding sequences 
which are individually uniform. With minimal coarseness. and which 
are mutualJy Independent. With acceptably low consonances. 

To put things In perspective, we observe that. for a gtven fixed 
choice of the farameter a [which we have supposed to satisfy (95)]. 
there are 2M- distinct possible values of the b'l satisfying (108) (or 
2M-B distinct values satisfying (118)1, and altogether 2M distinct 
possible values of the x 110 • The possible distinct pseudo-random 

- 41-



sequences are thus in any case no more than 22M-3 in number: and 
probably less. in any given procedure (e.g .. in Warnock's algorithm. 
there are only at most 2M distinct sequences). Since the sequences 
begin at all the odd-numbered nodes (numbered N 11 = 2J.1 + 1) of a 
binary tree (see Figure 1). It Is clear that there must be at least one 
repetition in the first 2M- 1 levels, and thereafter. more and more 
frequently Within each level (since Level 2M - 2 alone has 22M-2 
nodes. and so 22M-3 odd-numbered nodes: and each level has tw1ce as 
many nodes as its immediate predecessor). We thus cannot expect to 
avoid the recurrence of the same pseudo-random sequences at 
scattered points in our binary tree. (Even if we were to exploit every 
possible sequence of the form {4) in our tree. there would still have to 
be at least one repetition In the first 3M + 2 levels.) In practice. It is 
extremely difficult to avoid the occurrence of repetitions somewhat 
more frequent than these extreme bounds. However. we must recall 
that the nodes of our binary tree correspond to batches of T 
consecutive pseudo-random numbers (see Lemma 181. one of which 
usually suffices to generate a single physical event: and these events 
will rarely lead to actual branching (or. as has been pointed out. the 
resulting computations would be en ormously, Impossibly. too 
laborious) . Thus only a very sparse, random sample of the branches Is 
actually exploited in any realistic calculation. This is what saves us. in 
practice. Nevertheless. any repetitions that do occur must be 
lllinimized With respect to quantity, and dispersed as far as possible In 
their distribution over the tree. 

Perhaps the simplest hypothesis to adopt would be that 

( 122) 

Th1s is comparable in economy to Warnock's definition of :Bw in (96). 
and is equivalent, of course. by (106). to (119). 

Note that all the parameters b v are postulated to be odd. with 
(108) holding: which we can ensure by choosing, once and for all, any 
odd value bo = 28 + 1, and then taking 

(V' v ~ O) bv = bo (mod 8). ( 123) 

Since every starting node of a new generator <l>v has an odd number. 
Nv = 2v + 1. with all the v different. of course: it is natural to adopt the 
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simple relation 

bv = 11N,3(2mNJl' bJl' x!Lml = < 8v+ boiQ>. ( 124) 

As a slight generalization. we may consider 

bv = 11N.</>(2mN11, bwx11ml = <2¢v +b0 IQ> . ( 125) 

w here 

b0 = <29 + 1 1 2<~>> ( 126) 

and [see (75) and (108)) 

( 127) 

Since bv- b0 E J¢ (see (69)]. we see that there will be exactly 2M-¢ 

distinct values of bv satisfying (125). Obviously. for (125). 

f3!Jv = <2<1> ()1 - v) I Q>: ( 128) 

whence, r ~ 1/1. This result would indicate that. in fact. (124). with 
1/1 = 3. is the best choice: though the considerations leading to (118) 

would suggest something closer to ¢ = 8. Instead. 

Observe that. while Warnock bas a single generator family 
identified by the parameters (a. bJ for all left-slanting sequences [see 
(96)]. and generates Xvo from x!Jm by means of another single 
generator (at, bt); we propose to have the bv specified from the index 
v by a formula (see (125)1. and xva equal to the parent value xflffi. 

If the parameters a. bJl' and bv satisfy (95) and (123). and we 

make ~flv0 = < x!Jm- Xva I Q> euen: then. by (108) and (113). Corollary 
5(iii) applies. and the conson ance between 'parallel' sequences. 
[ .. m+ 1 ( ) 1 .. x11(i+m+ 111 i=O. beginning at node 2 v = 2 2 J.l + 1 . and x vJI J=O· 

begining at node 2v + 1. will be 2J'I'vl = 22 = 4. which is just fine. 

If we adopt the simple algorithm embodied by (122). then the 
node record Rv [see (89)) suffices to carry all necessary Information at 
every node. for initializing a right-slanting branch whenever needed. 
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Algorithm 1. The procedure carries at each node, numbered 
v = zmN11 = zm(z.u + 1). a record Rv = (2mNI1' bw x 11ml. the 
transformation for which, on passage to the two child-nodes is given 
b.J 

~v = Ls.9!RJ . Rzv+l = RNv = ns.9!Rvl· 

These mappings are defined by 

2v = zm+1N
11 

b-value at 2v ~ 

{ 
2v+ 1 = zm+

1
N11 + 1} 

(b-value at NJ = bv ~ 

~ 

2 X (v - zmN) - 11 

(b-value at v) = b/.1 

<axllm + bil l Q> 

2 X (v = zmN
11
) + 1 

<24>v + b0 I Q> 

( 129) 

(130) 

( 131) 

This agrees with (122) and (125). Thus, Xvo = X 5 (Rvl and 

bv = 11N,¢(Rvl. 

However. as has been borne out by some ingeniously contrived, 
but realistically possible. simulations performed by T. E. BOOTH [private 
communication]. there can well occur many identical repllcations of 
sequences. This undesirable situation may not show up. because of the 
extreme sparseness of the subtree actually occurring in any practical 
computation: but the possibility nevertheless remains and presents a 
serious, lurking threat. it is to reduce this risk that Algorithm 2 is 
developed below. 

We have seen that. for a fixed value of the parameter a. there are 
at the very most z2M-3 distinct linear-congruential sequences: so that 
a repetition must occur within at most 2M - 1 levels. We now seek to 
construct a scheme which will guarantee the absence of all repetitions 
for as many levels as possible. 

The class of generation schemes which we shall henceforth 
consider has b-values determined by (125) with a suitable choice of 4> 
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satisfying (127). A b-value will be said to originate (or to have its 
origin) at an odd-numbered node; thereafter. it will apply to aU the 
(even-numbered) left-slanting descendants of this node. 

Definition 6. Glven a binary tree (see Figure 1) associated With 
a family {<t> .u = i5 (a. bw xJl0 ): J.l. = 0. 1. 2 .... ) of Hnear-cong.ruential 
generators [with fixed parameter a satisfying (95). and all the bJl odd 
and satisfying (125) for fixed ¢): we define the first k + 1 levels of the 
tree (I.e .. Levels 0 through k) to be the k -body of the tree and we 
denote it by B k. In particular. we define the (M - ¢)-body of the tree 

(I.e .. the first M - ¢ + 1 levels of the tree: Levels 0 through M - ¢) to be 
the apex of the tree and we denote It by BM-~ =A~. 

Lemma 20. Any particular b·ualue, say b*. will occur at 
intervals of length 2M-¢ in the index v (this correspond to Intervals of 
length 2M-¢+l +1 In the node-number 2v + 1): and will therefore 
originate once and only once in the apex A9 of the binary tree specified 
in Defmition 6. For any 

k > M - ¢. ( 132} 

the k -body B k of the tree will contain exactly 2k- M+¢ origins of the 

b-ualue b•: with one origination in the apex, one in Level M - ¢ + 1, 
two in Level M- <P + 2, jour in Level M- ¢ + 3 ..... and 2k-M+¢-i in 
Level k. 

<<By (85) and (1 28) [which Is a consequence of (125)). 
whatever odd b-value b0 [see (126)) we choose for the root of the tree. 

every f3,uv= <bJl-b)Q> = <2~(J.l. - v)IQ>. and, therefore. b.u = bv If 
and only i.f 2M- .p fl {J1. - v): SO that any b-value b• repeats at intervals of 
length 2M-¢ In the index v. Since the indices occurring In the apex A 9 
of the tree are 0. l, 2 ..... 2M-¢ - 1 (2M- 9 consecutive. distinct 
values: corresponding to the consecutive odd node-numbers. 1. 3. 5 . 
• . . • 2M-¢+! - 1). these indices are all less than 2M- ¢ apart: and 
therefore no b-value can originate twice in the apex. Since there are. 
altogether. 2M-~ possible b-values satisfying (125). each possible value 
must originate just once in A<P. 

Figure 1 Ulustrates the fact that. for any h > 0. Level h of a binary 
tree contains 2h consecutively-numbered nodes, half of which. 2h-l. 
are odd-numbered. Therefore. the k-body Bk of the tree will contain 
2 k+ 1 - 1 consecutively-numbered nodes: 2k - 1 of them even­
numbered and 2k of them odd-numbered: the latter corresponding to 
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Indices 0. 1. 2 ..... 2k - l. Since we have just shown that each 
possible b-value b " originates at intervals of j ust 2M-I! in the index, it 
follows that each b" will originate just on ce in the apex: exactly 
2h-M+¢-1 times in Level h (for h = M - ~ + 1, M - ¢ + 2. M- if>+ 3, . . . . 

k): and just 2k-M+¢ times. altogether, 1n the k-body of the tree.> > 

We shall henceforth further restrict the class of generation 
schemes considered, to those in which. at any odd-numbered node 
NV' first. the b-value b• is determined by (125). then a tentative initial 
x-value x: is obtained in some computationally efficient way. Its parity 
IS compared with that of the x-value xJ.Lm at the parent-node v, and. 
only if the parities differ. x : is replaced by its su ccessor <ax: + b•l Q> 
Ln the sequence. to yield the actual ln!Ual x-value x>O: thus we impose 

the parity-condition. that t.ti>O should be even (see (106). (113). and 
Corollary 5). 

Definition 7 . If we select an a e J satisfying (95). an odd 
bo e J, an integer foe J, an integer ¢ satisfying (127). an integer lfl 

such that ¢ <lfl $ M. and a non -negauve index v: we can uniquely defme 
[see (125): use lfl > ¢ in (135)) 

whence 

and 

v0 = <v i 2M-Il> . s = (v- vo)f2M-¢: 

b• = bv = < 2¢v+b0IQ> = <2~'v0 +b0 I Q>. 

x" = <2'~'v + J0 IQ> = < 2'1' v0 + J0 1 Q>. 

( 133) 

( 134) 

( 135) 

(Note that b* and x" are clearly functions only of v0. not of s.) Then .. 
the sequence [x/lJ=O· with generator <t> • = ~(a. b* . x") will be called 

the master sequence belonging to b" . .. 
Lemma 21. Any sequence 1-':JIJ=O· with parameters (a. b•) and 

initial x ·value x0 : i.e., with generator <I> = ~(a. b • . x0). will be a 
displacement, along its length, of the master sequence belonging to 
the given b" . 

<<Since a satisfies (95) and b• Is odd. we are in Case (i) of 
Lemma 12 (c = 0. by (40). d ~ 2. by (52). and s ~ 0. by (41)1: so that 
the master sequence [all of whose members are in J. by (4) and (28)] 
has period Q. By Lemma 17. this means that the master sequence 
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runs through exactly Q distinct values. Since every x 0 e J, whose 
cardinality is I J I = Q also. it follows that all these x 0 are members of 
the master sequence. Therefore any generator <1> generates the master 
sequence. displaced to the member x0 as its starting-point.>> 

0 d enotes starting· point of new 
sequence with given b·value 

I Sequence·index =(node number - 1)/2 

NUM13ER 
of 

NODE$ 
tn 

SEQUENCE 
between 

gluen 
L EVELS 

Sk+l 

I a=2 M-,p+I 

11'=2'1J+1 

k-M+~ 

k-M+9- 1 

k-M+ 9-2 

Fi~e5 

Sequences with a common f>.value 

Analysis of x-value counts in sequences (lefl-slanttng chains) arising 
from the same b-value b•. down to Level k. The b-value repeats every 
2M~ Index-values: so originates once In the ·apex·. once in Level M-IP+ l. 
twice in Level M-~P+2. and so on. T

5 
Is the cumulallve number of nodes to 

be skipped. In the ·master sequence·. beginning at node 2 v0 + I In the 

apex. to the beg!nnlng the s-th sequence. at node 2v
5 

+ 1 = 2v0 + 1 + s 2M~. 
The s-va!ues are gtven in the circles representing the lnltlal nodes . 
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Lemma 22. For each possible odd value b* given by {134). the 
total number of x-values generated in all the sequences occurring in 
the k·body B k. with parameters (a. b*). does not exceed 

( 136) 

<<The situation Is Illustrated In Figure 5. By Lemma 20, the 
value b* will originate just once. with some index v0 < 2M- 9. in the 
apex A 9, at some level ranging from 0 to M - ¢. The tentative initial 
x-value xv~ will then be computed. and the parity-check may yield a 
skip-forward In the master sequence: ex cept if we are at the root 
(when v = 0). for then no check Is necessary or possible. and therefore 
no such parity·skip can occur. If the resulting sequence originates a t 
Level h (0 s h s M - ¢. since we are in the apex). It will generate 
exactly (k - h + 1) x-values. one at each level of the k-body B k· 

beginning with Level h; and so the number rk of x-values needed by 
this sequence will not exceed k + 1 (it will be k - h + 1 = k + 1. if 
h = 0: and at most k - h + 2 $ k + 1. if h ~ 1). 

The s ingle sequen ce which, Lemma 20 tells us. Will originate In 
Level M - ¢ + 1 with the b-value b*. will similarly generate no more 
than (k - M + ¢ + 1) x -values. allowing for a possible parity-skip: the 
two sequences originating In Level M - ¢ + 2 will. together. generate 
no more than 2(k - M + ¢) x-values, since they start one level lower: 
and so on. Thus. the total number of x-values generated in Levels 0 
through k , by sequences having the b-value b• will not exceed 

Zk = k + 1 + (k - M + ¢ + 1) + 2(k - M + ¢) + 4(k - M + ¢ - 1) 

+ ... + 2h-M+~I (k - h + 2) + ... + 2k-M+~-l x 2 

= ! k + 1 3
1 

+ [ 2 (k - M + ¢ + 1) 

+ [ 4(k- M + ¢) 

+ [ S(k - M + ¢ - 1) 

- ! k - M + ¢ + 1 l 1 I 
- 2(k - M +¢)I 

- 4(k - M + ¢ - 1) I 

- 2k-M+~l X 2 ). 

The middle expression above partially 'telescopes' (excepting the 
terms in I ... &. which are combined according to the small subscripts 
attached thereto) to yield 
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zk = ( M- ¢ ~~ + 2 + 4 +a + ... + 2k-M+~l + l 2k- M+41+1 a2 

:: M - ~ _ 2 + 2k-M+~ + 2k-M+~ I. 

which is (136).>> 

Let us write 

M' = M - ¢ and k' = k - M' = k - M + ¢: 

then (127) and (132) become 

¢ ~ 3, M' ~ 0. and k' ~ 1; 

and (136) becomes 

( 137) 

( 138) 

(139) 

Lemma 21 tells us that all sequences of x-values with parameters 
a and b* will be displacements of the (a. b*) master sequence. Such 

sequences will intersect Bk [In the sense that each node of Bk carries 
an x-value) in segments (I.e., continuous sequential pieces) of this 
master sequence. In order to avoid repetitions of x-values in these 
segments. it will be necessary. for all of them to be disjoint; so that. 
for each fixed value of b* . all Zk x-values counted In Lemma 22 will 
have to be different. Of course. this cannot be done for arbitrarily 
large k; so we shall have to find an upper bound on k for which a 
solution exists. As was argued in the proof of Lemma 21, any master 
sequence has just Q = 2M x-values in it. and Q is the total number of 
possible x-values. by (28). Thus, for feasibility. we require that 

zk !> 2M: (140) 

by (137) and (139). this means that 

(141) 

Lemma 23. Subject to the condition (138). the inequality 
(141) is sattsfred if and only if 

k' $ M' + ¢ - 2. ( 142) 

<<Note that, by (138). M' + ¢- 2 ~ I and k' ~ 1: so that it is 
possible for both (138) and (142) to hold true. 
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Now consider the Inequality 

M'- 2 < zM'+ 1. (143) 

It is certainly true when 0 .s: M' ~ 2 (since the left-hand side Is then 
negative or zero, while the right-hand side is positive). Suppose, 
therefore. that (143) holds for M' = t ~ 0 (so that 2t+l ~ 21 > 1); then 
t- 2 < zt+l; whence 

!t + 1) _ 2 = lt _ 21 + 1 < 2 t+l + 1 < 2 t+l + 2 r+I = zlt+ll+l; 

that is. ( 143) holds for M' = t + 1; and so. by induction on t. (143) IS 
proved for all M'. Since. by (138). ¢- 2 ~ 1, it follows from {143) that 

M' - 2 < 2M'+(I?-2. ( 144) 

If (142) holds. then. by (144). 

M' - 2 + 3 x 2~<' .s: M' - 2 + 3 x 2M'+¢-2 < 4 x 2M•¢-2 = zM'+¢. 

which is the required Inequality (141). 

Contrariwise. if (142) does not hold, then. since we are dealing 
in Integers. 

k' ~ M' + ¢- 1. (145) 

Now consider the inequality 

2 - M' < 2M'+2. ( 146) 

It is certainly true whenever M' ~ 2 (since the left-hand side is then 
negative or zero. while the right-hand side is positive). Since. by 
(138). M' ~ 0; this leaves M' = 0, when (146) is 2 < 22 ; and M' = I, 
when it is 1 < z3. Thus. (146) is true for all M' ~ 0. Now. by (138). 
¢ - 1 ~ 2: so. by (145) and (146). 

M' - 2 + 3 x 2k' ~ (M'- 2 + zM'+¢-1) + 2 x 2M'+¢- I 

~ (M' - 2 + zM•2J + 2 x 2M'+¢-l 

> 2 x zM'+¢-l = zM•¢. 

which contradicts (141). This completes the proof of the lemma.>> 
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The inequalities (138) and (142) are illustrated In Figure 6. 
Since we seek to maximize the height of the k-body B k, so as to have 
as many segments as possible disjoint. and for the greatest possible 
length, it is clear from Lemma 23 that we must select 

-1 

k' = M' + ~ - 2. i.e.. k = 2M - ~ - 2. ( 147) 

1 2 3 4 5 6 7 8 

Figure 6 

Graph of allowed (M', k') region 

M = M - 41 and I<= k - M + ifJ satisfy Lhe tnequaUUes (138) and (142). Thts 
makes auowable the region shaded In lhe figure. Stnce M and .pare given 
first. and we seek the greatest possible k. It IS clear that the sloping line. 
I< = M' + .p - 2. or k = 2M - .p - 2 yields the best value of k. 

- 51-



For any index v occurring in Bk. the node Nvo is. by (133). In the 
apex A~ (see proof of Lemma 20): the b-value bv = b• . given by (134). 
will originate at the odd-numbered nodes Nv

1 
with indices denoted by 

v0 . Vl = Vo + 2M· .P, v2 = Vo + 2 x 2 M·¢ . 

. . . , Vt = Vo + tx 2M-¢, ... ; ( 148) 

and. in particular. by (133). v = v5 • Node NvL will be in A¢. fort= 0; In 

Level M- ¢ + 1. for t = 1; in Level M- ¢ + 2, for t = 2 and 3; and so on. 
This node will be in Level h. If h > M - ¢. for 

t = 2h-M+¢-l, 2h-M+9-1 + 1. 2h-M+¢-l + 2, .... 2h-M+Q _ 1. 

If v < 2M- ¢ (s = 0). the node Nvs = Nv Will be in A 9: otherwise. It will 

be In Level h. with h > M - ¢. If 

2h-M+.P..l ~ s < 2h-M+¢. (149) 

We can express the index v In binary notation as 

v = {Bk-l ... BM·¢ BM-t-l ... B0): (150) 

where the B1 are the uniquely determined bits of v (binary digits: 
taking the value 0 or 1). given by 

B1 = l<vl21•1>/ziJ. (151) 

Here. t . .. J' denotes the "floor· function (the integer Infimum). 
just as f .. . 1' denotes the ·rooi function (the integer supremum); 
for example, Ll7J = 1171 = 17. but L28.3J = 28 and 128.31 = 29. Since 
there are just 21<: odd-numbered nodes (indexed from 0 through 
2k- 1) in Levels 0 through k. the k bits shown in (150) suffice for any 
Index occurring in the k-body Bk. 

By (133). s = {Bk-l ... BM_J : and 

where 

Define n5 by 

Vo = {BM-~1 ... Bo) = {Y BM-.p.-2 ... Bo}. 

y = BM-¢-1· 

if 

if 
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s = 0}. 
s 2! 1 

( 152) 

( 153) 

( 154) 



Then. clearly. n5 is the number of signifiCant bits in s: that Is. 

Bk-1 = ... = BM-~ns = 0 and BM-¢+ns-1 = 1: 

and so s = {0 0 ... 01 BM-</>+ns-2 ... BM-~· (155) 

Observe that. if s > 0 (i.e .• if node N v is not in A~: or. 
equivalently. v ~ 2M-¢): then. for any node Nv in Level h > M - ¢ 
[compare (149) with (154)1. 

n5 = h - M + ¢ > 0. (156) 

In other words. all nodes Nvs with given n5 > 0 (and varying v0 and s) 

are in the same level. h5 . and 

( 157) 

If we pass from the parent-node. numbered v. to its left and 
right child-nodes. numbered 2v and Nv = Nv

5 
= 2v + 1. the node­

numbers change from 

{0 ... 0 0 1 BM- ¢+n.-2 ··· BM- ¢ • Y BM-~-2 . .. 8 0 } 

into {0 . .. 0 1 BM- ¢+ns-2 ... BM- ¢ Y + BM-~2 . .. 80 0} ( 158) 

and {0 . .. 0 1 BM-¢+ns-2 ... BM-¢ Y • BM-~2 ... Bo 1} 

where the diamond ( • I marks the separation between the bits of s and 
those of v0 . Therefore. if the node Nv is in the apex (s = 0) and if. 
further. Y = BM-~l = 0. then the nodes N2 v and N2 v+t are also in the 
apex. and neither s nor n 5 w111 change: while. if the nodes N 2v and 

N 2 v+ l are not In the apex (s = 0 and Y = 1. or s ~ 1: i.e .. v ~ 2m-~1J. 
then n5 will increase by just 1 and s will become 2s + Y. If we denote 
the values of sand n5 for N2v by s' and n5 •• and for N2V+ 1 by s" and n5 ... 

then 

s' = s" = 2s + Y } 

{
ns + Y, If s = 0} 

ns· = ns.. = ns + 1. If s ~ l . 
(159) 

When we Wish to branch to the right. it is a practical necessity 
to do so without information about the many previous pseudo-random 
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numbers generated in the cun·ent calculation. In the proof of Lemma 
22. we determined an upper bound for the maximum number of 
x-values that may need to be compu ted for each of the segments. of 
the master sequence belonging to any selected b-value b*. occurring in 
the k-body B k as parts of sequences with parameters (a. b*). We use 
this information to guarantee the disjointness of all these segments. 
To go to a r ight branch from a node v, we shall proceed as follows: 

1. Carry. in the current node-record. or quickly compute. 
v0 . s, b*, and x* lsee (133) - (135)). 

2. Compute the tentative Initial x-value x;. by its 
displacement T

5 
from the Initial x-value x • a long the 

master sequence. Use the notation !similar to (77)1 

A5 = <aT•IQ>, S 5 = <Sr)aJIQ>. 8 5 = < S 5 b*I Q> . (160) 

and apply (30) to yield that 

(161) 

3. Carry. in the node-record . the current x-value xJl.m· 

4. Compare the parities of xJ.Im and x.;; if they are the 
same. take the Initial x-value of the new sequence to be 
x 110 = x;: if the parities differ. take xv0 = <ax; + b*>· 

Following the proof of Lemma 22. we choose th e displacements 
T 5 in such a manner as to allow enough space. along the master 
sequence. for the maximum number of x-values that may be needed by 
the segments of sequences originating at earlier nodes (Nvo· Nv

1
• N

112 
• 

. • . • Nv
5

_ 1). The situation Is sketched in Figure 5. and the results are 
tabulated In Table 4. As the simplest choice. we take 

T0 =o. i.e .• x0 =x* . (1 62) 

We see from Table 4 that the rule. for s <!: 1. is 

( 163) 

with n5 defined in (154). For k optimal !see (147)]. this gives that 

( 164) 

whence. for s ~ 2. since T 1 = k + 1 = 2M- o- l. 
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s-1 
Ts = Tl + L (Tr+l - Trl = 

r=l 

s 
T 1 + L (M - nrl - M + n5 

r=l 

s 
= (s + 1)M + n 5 - ~ - 1 - L, ~ . 

r=l 

( 165) 

We observe that. for any integer n > 0. nr = n. when r = 2"-1• 2n-l + 1. 
2n-1 + 2 ..... 2" - 1 (i.e .. for 2n-J consecutive values of r). Thus. 

TABLE4 

LEVELOFNvs LEVEL OF Nvs+J 0ISPLACEME!\'T 

s ns (CURRENT NODE) (NEXT NODE) INCREMENT 

MINUS M- ¢I MINUS M- ¢I (Ts+l - Ts) 
0 0 in Apex 1 k + 1 
1 1 1 2 k-M+¢+1 
2 2 2 2 k -M + ¢ 
3 2 2 3 k-M+¢ 
4 3 3 3 k-M+¢-l 

5 3 3 3 k-M+¢-1 
6 3 3 3 k-M+¢ - 1 
7 ~ 3 4 ~-M+Q.-1 

8 4 4 4 k-M+¢-2 
9 4 4 4 /c-M +¢-2 
10 4 4 4 k-M + ¢ -2 
1 1 4 4 4 k-M+¢-2 
12 4 4 4 k-M+¢1-2 
13 4 4 4 k-M+¢-2 
14 4 4 4 k-M+¢-2 

!:2 1 4 l2 ~-M+¢-2 

16 5 5 5 k-M+¢-3 
17 5 5 5 k-M+¢-3 
18 5 5 5 k-M+¢ - 3 
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s 
L, n,. = 1 + 2 x 2 + 22 x 3 + 23 x 4 + ... + 2ns-2 (n5 - 1) 
r= l 

+ n
5
(s + 1 - 2ns-l) 

= 2 X 1 - 1 X 1 

+ 22 x2 -2 X 2 

+ 23 x3 -22 X 3 

+ 24 x4 -23 X 4 

+ 

+ { 2ns-l (ns - 1) it - 2ns-2 (ns - 1) + { ns (s + 1 - 2ns - 1) lz 

= i 2ns-l (ns- 1) )t + { ns (s + 1 - 2ns-l) l2 

- (1 + 2 + 22 + ... + 2n•-2) 

:: n
5 

(s + 1) - (1 + 2 + 22 + ... + 2ns-l] = n
5 

(s + 1) - 2ns + 1, 

where, again, we have taken advantage of the 'telescoping' trick used 
in deriving (136): so that. by (165). 

T 5 = (s + l)M- n
5 

s + 2ns - 4>- 2. (166) 

Note that the T5 , and. therefore. by (160). also A5 and S 5 • are all 
independent of the b-value b•. Furthermore. by (159). the nodes N2v 

and N2 v+ l [right-children of the children of the parent of Nvl Will 
share the values of T

5
• = T

5 
... A

5
• = A

5 
•• and S

5
• = $

5
.: and. once v 2: 

2M-¢-l (i.e .. by the argument between (158) and (159). once N2 v and 
N2 V+ 1 are out of the apex!. 

T5 • = T5 .. = (2s + Y + l)M - (n
5 

+ 1)(2s + Y) + 2n,+i - ¢ - 2 

= 2T5 - 2s + Y(M - n 5 - 1) - (M - ¢ - 2). ( 167) 

Until then. n5 and s both remain zero. 

The total number of occurrences of b • in Levels 0 through 
k =2M -¢ - 2 is. by Lemma 20, 2k-M+¢ =2M-2 • and so s Will run from 
0 through 2M-2 - 1. Even though. as we have seen. we can economize 
by using the same parameters for all values of b• [see (160)]. it is still 
not practical to store such a large number of coefficients (typically. as 
we have noted. M = 48 and 2M-2 .. 7 x 10 13). so they must be 
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computable when needed. To do this. we return to the concept of a 
node record. carrying all the information needed to generate both the 
left-slanting ·regular' branch or sequence. and any right-children, 
whenever the latter are required. In order to generate the regular 
left-slanting branch according to the generator <ll }1 = j) (a, bJl' x.u0), it 
suffices that the node-record should carry bJl and xJlm' where. as in 

(88). v = 2m(2J.I + 1). The record R 2 v = (2m+l NJl' bJl' x11(m+l)) can be 
obtained from Rv = (2m Nw bw x11ml !see (89)) by (129) and (130), as 
In Algorithm 1. However, this record will have to be extended. to 
carry all the information needed to generate any right-children that 
may be needed: and we shall denote this expanded record by 

Ry• = IRv: Cvl· ( 168) 

where Cv denotes the additional information. By Definition 7, like a 
and M (or Q = 2M): ~ (or 29) , yt (or 2IJI). b0 = 28 + 1. and fo are 
universal parameters of the algorithm. The record Rv thus suffices 
also to enable us to compute the node-number. Nv = 2v + 1, of the 

right-child and the new b-value. bv = b* = <2~v + b0 J Q> [see (134)). 

However . to determine xvO by (160) and (16 1), With a possible parity­

skip. we need. apart from the universal parameters yt and j 0 , and their 
derived parameter x". to have the coefficients A5 and 5 5 . 

We note. by Lemma 13 with (94). that a2M-
2 

!! 1 (mod 2M): 
whence 

- 2M-2_1 a = a ( 169) 

acts as the reciprocal of a. modulo 2M= Q: in the sense that a factor 
ccr. appearing in any integer-valued product. reduced modulo Q. may 
be replaced by the factor ar. [Suppose that such a product is X= Y a- r: 
where X must be an integer. by our hypothesis. Then Y =X ar; and. 

therefore. Yar =X a' a'= X (ad)r = X(a2M-2
)' =X= Ya-r (mod Q).] Thus. 

by (1601. (166). and (169). 

A
5 

= <aTsJ Q> = <als+l)M-nss+2"'+2J Q> 

( 170) 

When we tum to the other coefficient. 5 5 = Srs(a). that we shall need 
to carry at every node, we first need to establish some straightforward 
properties of the function Sn(z). 
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Lemma 24. For any non·negative integers p and q. and real z, 

Sp+q(Z) = Sp(z) + zP Sq(z): ( 1 71) 

Sp-qlzl = SP(z) - zP-q Sq(z), if p ~ q: ( 1 72) 

( 1 73) 

and. in particular, 

s2P(z) = (1 + z) Sp(z2) = (1 + zP) SP(z). ( 17 4) 

<<we refer to the definitions ln equation (5). lf z = 1. then. by 

(6). (V'n ~ 0) zn = 1 and Sn(1) = n: whence (171)- (174) all hold. as is 
trivial to verify. Similarly. if p = 0 or q = 0. or p = q in (172). then 
(171) - (17 4) all hold. triVially. Suppose. therefore. that z * I. p > 0, 
q > 0. and p > q in (172). Then. first. 

Sp+q(z} = 1 + z + z2 + ... + zP-1 + zP + zp+l + ... + zp+Q-1 

= (l + z + z2 + ... + zP-1) + zP ( 1 + z + z2 + ... + zQ-1}. 

from which (1 7 1) follows at once. Replacin g p by p' In (171) and 
rearranging terms. we get 

Sp.(z) = Sp'+q(Z)-zP'Sq(z): (175) 

whence (172} follows immediately. when we write p' = p- q. Now. by 
repeated application of ( 171). we see that 

Spq(z) = Sp+p(q-l)(z) = SP(z) + zPSp(q- l)(z) 

= SP(z) + zPSP(z) + z2Psp!q-z)(z) 

= Sp(z) + zPSp(Z) + z2PSP(z) + z3PSp(q-JJ(z) 

= ... = Sp(Z) {1 + zP + z2P + z3P + . .. + z((J- l )P), 

which yields (173). Finally. we note that the equality of the first and 
second members of (174) Is Lemma 1 [equation (8)). while. if we put 
q = p In (171) . we get the equality of the first and third members of 
(174). Also. the same two identities are obtained. respectively, by 
putting p = 2 (and then replacing q by p) and by putting q = 2. in 
(173).>> 

By (166). (169). and (l 71) - (1 73) of Lemma 24. we see that 
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Sr.!a) = s(S+l)M-n,s+2"--~2(a) = SMs-n,s+2"-+M-¢-2(a) 

= s ( ) Ms-n s+2"' S ( ) Ms-n.s+2"- a + a • M-¢-2 a 

= SMs-nss(a) + aMs-n.s {Szn.(a) + a2"" SM+2(al} 

= SMs(a) - aMs-n.s { Sn_.s(a) - s2,.(a) - a2"' SM-¢-2(a)} 

= SJ\~a) S 5 (aM) 

- aMs-n,s { sn.s<al - s2,_(a) - a2"" SM-¢-2(a)}: ( 1 7 6) 

so that. by (160) and (176). 

S 5 = <sr.!al I Q> 
= < S,w(a) Ss(aM) - aMs a"•5 { Sn~s(a) - s2,_(a) - a2"" SM-¢-2(a)} I 9>· 

( 1 77) 

An examination of (170) and ( 177) reveals the parameters which 
need to be carried in the record .R• v· and updated from father-node to 
children. to execute the algorithm. (The need for some of these will 
only be seen when the details of the algorithm are examined.) The 
supplem entary universal parameters of the algorithm (I.e.. those 
Independent of s). 

Kl• = <aM-~2IQ>. ( 178) 

K2 = <a2 IQ>. Kz. = <a2M-2-21 Q> = <a21 Q>. 

are computed once and for all. and stored With M (and Q = 2M), a, ¢. 

VJ. b0 . j 0 . and d. to be used at all nodes. [The congruence for K2• is a 
consequence of Lemma 13 with (94).) This leaves thirteen variable 
Is-dependent) coefficients to be added to Rv to make up R • v: namely. 
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Us = <cz2s lg>. 

us· = <a2sl Q>. 

Xs = <r:?-""1 Q>. 

vs = <artsiQ>. 

vs· = <a~"~• I Q>. 

( 179) 

Using (159) and Lemma 24. we can now compute the update­
relations for these. As was remarked at (148) and (149). and by (154). 
when 0 !> v < 2M-¢. n5 = s = 0: whence. for all such v. 

Us = Vs = W5 = Us" = Vs" = Ws• = Xs" = X5t = 1. } 

Ys = Z5 = Y5* = Zs" = 0. and X5 = a. 
( 180) 

Now. note that the bit Y = BM-Il-l can only be 0 or 1. and S0(z) = 0 and 
S 1 (z) = 1; so that 

Sy(Z) = Y and Sny(Z) = Y Sn(z). (181) 

S1m1larly (although it is usually simplest to take zY as the conditional: 
zY = 11fY = 0. zY = z ifY = 1). It can be useful. instead. to use the 
identity 

zY = 1 + (z- l)Y. ( 182) 

Also. repeated factors Y. in the same term can be simplified. since 

y2 = Y and Y z Y = Y z. ( 1 8 3) 

Thus, for all v ~ 2M-~-l (when either s = 0 and Y = 1. or s ~ 1: as is 
noted between (158) and (159)1. we have. in the simplest terms. 
modulo Q: 

Us· = Us· = a2(2s+Y) = U/· fS. Y. 

V5 • = V5 • = arts+ I = arts a = vs a. 
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ws. = ws .. = a{n.+l)(2s+Y) = a2nss+2s+nsY+Y 

- ws2 Us !Vs a)Y ;; ws2 Us vs,Y· 

Us·* = us.· = a2(2s+Y} = U o2 K oY s 2 . 

vs.· = vsll· = ans+l = a"• a = v.-s a, 

ws.· = ws .. • - a!ns+ 1)(2s+ Y) = a2nsS+2S+Tls Y + Y 

= w$•2 us· !Vs· d)y E ws· 2 us· vs .• v. 

Xs, = X _ 2n.+t _ ( 2n.,2 - X 2 s" = a - a 1 = s . 

Ys· = Ys· E s2(2s+Y)(a) = (1 + a2s+Y) ~S+y(a) 

- (1 + Us aY) [S25(a) + a2s Sy(a)] 

= (1 + Us aY) (Y5 + Us Y), 

Z5 • = Zs" = S11,+1(a) = Sn,(a) + an• S 1(a) - Z5 + V 5 • 

X • - X • aM12s+ Y) = X •2 K y s' -' s" - - s 1• 

ys,• = ys.• :: S2s+Y(aM) = S2s(aM) + a2Ms Sy(aM) 

- (1 + aMS) Ss(aM) + xs·2 y 

- (1 + Xs*) ys• + xs•2 Y. 

Zs·· = Zs .. • - Scn,+l)(2s+Y)(a) = s2n.s+2S+n.Y+Y(a) 

= S2nss+2S+nsY(a) + a2nss+2s+n,Y Sy(a) 

- s2n,s+2s(a) + a2ns5+2s sn.v(a) + ws 2 us vs y y 

= ~n.s(a) + a2nss S2s(a) + Ws 2 Us y (Zs + Vsl 

= (1 + a''-SJ sn. s(a) + W/ IYs + us y (Zs + v sll 

E (1 + Wsl zs· + ws2 IYs +us y (Zs + Vsll· 

Xs·t = Xs"t = S2n.•t!al = 8:2x2,.(a) = (1 +X5)X5 t . 
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( 193) 

( 194) 
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In terms of these coefficients. we see that ( l 70) and (1 77) 
become 

As = < K1• Xs• W5• X5 IQ> ( 197) 

and Ss = < Ko ys• - xs· ws· (Zs• -Xst - Xs Ko"'I IQ>. (198) 

Algorithm 2. The procedure carries at each node. numbered 
v = 2mNJl = 2m(2,u + 1), a record [see (89). (168). and (179)) 

.R•v = IRv; :Cvl 

= [2mNJ1. bJl' X~tm; 
( 199) 

us. Vs, Ws us· · vs· · ws· · 

Xs- ys zs xs·· Ys*· zs· · X5tl. 

the transformation for which, on passage to the two child-nodes is 
giuen by 

}R•2v = L T.¢.1Jf(R.• y) . .R•2v+ l = JR • N. = n T.¢.'1'(JR.• v) . (20 0) 

These mappings are defmed as follows. 

and 

(a) for Rv: 

Ly·~'·'l'(v = 2m NJ1) = (2v = 2m+l Nil). 

Ly.¢ . .tb·valuc at v = bJl) = bw 

Ly,¢.otx-value at v = xJLml = ( xt<lm+l ) = < axJlm+ b)Q>) ; 

J't (v = 2m N ) = (N = 2v + 1 = 2m+l N + 1) 
T.~.'JI Jl v Jl • 

7't.r.¢.otb-value at v = bJl) = <2¢ v + b0 I Q> . 

{ 
x; = <A5 x* + S5 b*l Q>} {whicheve~ has thJ); 
<ax; + b*l Q> same panty as xJl 
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where x* = < 211' v0 + J0 IQ>. b" = <2~ v+ b0 l Q>. and As and Ss are 

computed from (197) and (198). using the coefficients in Cv. 

(b) for Cv: the coe.ffu:ients remain at the ualues in (180). 

so long as v < 2M-¢; and, wheneuer v <!: 2M-9-l. 

f-.r .¢ . .yf.Us) = Us· = J't.T.¢ . .yf.U5) = Us· = <U/~YIQ>. 

L.r.¢.Vf(Vsl = Vs. = ~-~·V'(Vsl = Vs" = < Vs al Q> . 

L.r.¢.V'(Wsl = ws. = ~.¢.Vf(Wsl = ws .. = < ws 2 Us vs.Y I Q>. 

f-.r.¢.'1f(Us"l = Us·" = n T.¢.'1f(Us"l = Us .. • = < us•2 ~·YIQ>. 

f-.r .¢.'1f(V5 " ) = Vs.• = Jt.T.9.'1f(V/) = Vs.• = < V/ al Q> . 

f-.r.¢.'1f(W5 ") = Ws.• = J't.T.¢.'f'(W5 ") = Ws .. • 

= <ws•2 Us" vs.•Y I Q>. 

£.r.¢.1f'(Xsl = Xs• ;;; J't..r.¢.,yf.Xsl = Xs" = <Xs 2 1 Q>. 

'-r.¢, .yf.Ysl = Ys· = 'l't.r.¢.,yf.Ysl = Ys· 

= <n + UsaY) (Y5 + Us Yl iQ>. 

f-.r.¢.'1f(Z5) = Z5 • = J't.T.~.'If(Zsl = Z5 .. = <Z5 +V5 IQ>. 

L.r.¢.1/f(xs•) = xs.· = ~.lj.1Jf(X5") = xs'.• = < xs"2 K1YIQ> . 

L.z..9 . .yf.Y/) = Y5·* = ~.~.oiY5") = Y5 -* 

= < II + X5 *) Y5* + Xs"2 Y I Q> . 

L.z..¢.1Jf(zs•) = Z5 ·" = Jt.T .¢.'1'(2 5 ") = Z5 .. • 

= <n + Wsl Zs" + W5
2 [Y5 + U5 Y (Z5 + V.JI I Q> . 

L.z..~w(X5t) = X5·t = 1't.r.¢.\'f(X5 t) = X5.t = < (I + X5) Xst>; 

where the uarious symbols are defmed in ( 178) and (179). 
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A multiplication-count [there are no diVisions. and we may 
suppose that the reductions modulo Q are performed by truncation of 
binary computer-words : also. we do not count multiplications by 
powers of 2. which can be performed by fast bit-shifts! yields l for 
generating the three components of R211 by L-r.¢.'1'' and 9 or 10 for 

generating the three components of R2 v+ 1 by n T .¢.'1' (including 
computing the current A 5 and S5 ): whlle. for generating the thirteen 
components of C211 and C2v+l (which are identical). we require 15 
multiplications when Y = 0. and 7 more when Y = l. Thus. from Level 
M - ifJ - 1 on. the algorithm takes. altogether. an average of 
1 + 19/2 + 15 + 7/2 = 29 multiplications to generate the records .R• 
of both children of any given node (considerably less in the apex of the 
tree}: or an average of 14.5 multiplications per node. Since these 
nodes occur only every T pseudo-random numbers (as we explained 
earlier: see Lemma 18). and we expect T to be of the order of 10. with 
other steps taking 1 multiplication to perform. by (4); the overall 
expected number of multiplications per pseudo-random number 
generated will only be about 2.35: that Is. between 2 and 3 times the 
time required by the highly-efficient linear congruential generator 
itself. without any tree-structure. This would appear to be very 
satisfactory. 

6 . COMPUTATIONAL RESULTS 

A program was written In "C" to execute Algorithm 1. The 
section which inputs and computes the universal parameters of the 
algorithm. 

ANALYSIS M a fo 'If Q = 2111 2¢ 

PROGRAM M a bO fO qb qx Q qqb qqx 

and initializes the first record. at the root of the tree. takes just 
13 commands ("scan f( • .. ) " being taken as one command. and 
·for < .•. ) • being counted as a command additional to what it 
controls]: 

scanf ("\ld \ld %ld %ld %ld", ~M, &a, &bO, &fO, &qb, &qx); 

Q • 1; for ( i • 0; i < M; i++) Q • Q • 2 : 
qqb = 1: for li = 0 : i < qb; i++) qqb • qqb * 2: 
qqx • 1; for (i = 0; i < qx; i ++) qqx qqx ' 2: 
j • 1; bvallj) • bO: xval(j) • fO: 
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Here, "bval ( j]'' stores the b-value and "xval! :I J" stores the x-value, at 
node number";". 

The section which "builds the tree·. I.e., computes the records 
at the child-nodes of a given parent-node. takes 7 commands. 
Including the ·for 1 . . . > • loop over all parent nodes: 

for the left-child of node • i · : 

j ++; 

bva l (j) - bval(i]; 
xva l(j) - res(a k ~val(i) + bval[i)) ; 

for the right-child of node " i ": 

j ++ ; 
bval ( j) = res(qq • i + bO); 
xval ( j ] • xva l ( i(; 

Here. "res< x>" denotes <x lo>. the residue of "x" modulo ·o·. 

With M = 6, ¢ = 3 . and VI = 4 , the computations covered the first 
255 nodes of the tree (8 levels). The folloWing eight sets of data were 
taken. 

a 
bo 

fo 

21 

3 

7 

37 

63 

57 

5 

7 

5 

53 45 13 21 

1 11 33 11 

1 37 33 0 

5 

33 

42 

For every set of data. Identical patterns of numbers of repetitions of 
initial (b. x)-values were observed: 

Le vel 0 : 0 repetitions Level 4: 3 repetitions 
Level l : 0 repeti t i ons Leve l 5 : 7 r e peti tions 
Level 2: 0 repeti t i ons Le ve l 6: 16 r e petitions 
Level 3 : 0 repet i t i ons I,e!.t:el 7· 35 :z:egPtjr: ;na:s 

IQtal · 61 .cepet itigcs 

Since the values of a [subject only to (95)). b 0 loddl. and fo were 
chosen qulte artlessly, the recurring pattern of repetitions suggests 
that a theorem underlies It: the number of repetitions at each level is 
probably a constant, depending only on M. ¢. and 'II· Further 
experimentation, varying M and ¢. supports this conjecture. For 
example. covering the first 511 nodes. when M = 7. ¢ = 5. and VI = 6. 
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we get; both for a= 5. b0 = 5. andfo = 5. and for a = 37. b0 = 23. and 
fo = 30; that the follo\'ling patterns of numbers of repetitions of initial 
(b. x)-values occurred: 

Level 0: 0 eepetitions Level 5: 9 repetitions 
Level 1 : 0 repetitions Level 6: i7 repetitions 
Level 2 : 0 repetitions Level 7 : 22 repetitions 

Level 3: 2 repetit:ions Level a· 21 r~R~tit!gc:~ 

Level 4: 4 repetitions l:Qta l · 75 :::Pgetiticn~ 

Another program was written in "C" to execute Algorithm 2 . 
The section which Inputs and computes the universal parameters of 
the algorithm and their Immediate derlvates. 

ANALYSIS M a bo fo ¢ 'I' 

PROGRAM M a bO fO qb qx 

ANALYSIS 2¢ 2'1' 2M-¢-l 2M-~ 2M-"*1 Q = 2M 

PROORAM qqb qqx QQ 00 Ql Q 

now takes 13 commands: 

scanf("\ld \ld %ld \ld \ld", &M, &a, &bO, &!0, &qb, &qxl; 
QQ • 1; for (i • qb + 1; i < M; i++J QQ = QQ • 2; 
QO • QQ • 2; Ql • QO • 2; 
qqb • 1; for (i • 0; i < qb; i++) qqb = qqb • 2; 
Q • qqb * QO; 
qqx • l ; for (i 0; i < qx; i++) qqx = qqx * 2: 

That which computes the parameters In (169) and (178). 

ANALYSIS 

PROGRAM 

takes 20 commands: 

KKO -0; 
fo~ (i -

( KKO 
v -

KKl -v; 

K • 1 

KO KKO Kl KKl 

u -M - q - 2; v -l; 
0; i < U; i++) - res(KKO + v) ; 

res(v * a); 

KO = KKO; 
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for ( i c u; i < M; iT+) 

KO • res (KO + v ) ; 
v = res(v *a) ; 

Kl = v; K2 • rcs(a • a); 

aa - a; u • a; 
for (i • 3: i < M: i++) 

u_ = res (u • u): 

aa • res(aa • u); 

KK2 = aa; KK2 • res (KK 2 • KK2); 

The lnltlall2ation of the first record. at the root of the tree. takes 
3 commands. as before: 

I j • 1: bval(j] • bO; xval(j] • £0 : 

There remain the fifteen special coefficients [see (179) and (180)]. 

ANALYSIS s ns us vs ws u • s v • s w• s 
PROCRAM St ( i] nt(i ) U(i ) v (i ] w (i] uu [ i) VV(i ] WW(i] 

ANALYSIS ~ Ys Zs x • s y • s z • s X5t 
PROCRA.\ol X( i ] 'f ( i] Z (i ] XX( i ] 'fY[i J ZZ[i ) XXX[ i) 

These are the same throughout the apex of the tree: but. because the 
apex Is. for efficiency, "built" more simply than the rest of the tree, 
we do not need them in the body of the apex. We must, however. 
inltia1l2e the coefficients in Level M - ¢. and this takes 16 commands. 
including the "for 1 .•. > • loop over all nodes in this level: 

st (i ] - 0 ; n t:!il - 0: XXX [ i] = 1; 
u ( i] - 1; V [i ] • l : w [ i] = 1; 

uu [i] • 1 ; VV(i ) - l ; ww li l = 1; 
X [i] • a; '[ [ i J - 0; Z li l = 0; 

XX [i) - 1; '('t[ i l - 0 ; ZZ I i J = 0; 

The section which "builds the apex" takes 11 commands. including 
the " for ( . .. )"loop over all nodes in the apex ["ir ( . .. ) ... else ... • 
being taken as a command, additional to what it controls]: 
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b • res(qqb * i + bO); K • res(qqx • i + fO); 
j++; bval [ j] = bval(i ] ; 

xva l (j ) • res (a * xva l ( i) + b val (i ) ); 

j++; b val (j ] = b; 

if ((xval (i ] + x) \ 2 •• 1) 

xval[jl res(a • x +b); 

else xvalljl x; 

Finally. the section which build s the rest of the tree takes 
63 commands, including the "tor 1 ••• > • loop over all nodes, and the 
copying of all coefficient values (which are common to both left and 
right children of any given node): 

for the left·chlld of node • i": 

z • i \ 01; y = z I QO: 
b • res(qqb • i + bOl; x • res(qqx • i • fO); 
w • res(W[i] • W(il); z • res(XX(i) • XX[i]); 

j++; sc[j] = 2 • st(i) + y; nt [j ) - n~(i] + l; 

bval(j) • bval [i]; U(j) • res (U(i) • U[ i ]); 

V(j] • res(V (i] *a); w(j ) • res (w • U(i)) ; 

UU [ j) • res (UU [i] • UU[i )) ; VV [j ] = res(W(i) • aa) ; 

WW[ j) • res (WW[i] * WW[i) • UU [il) ; 
X(j) • res(X(i] • X[i )) ; 

if (y •• 1) Y(j] = res(Y(i) + U[i]); 

else Y(j] = Y(il: 

if (y - 1) u res (U(i) • a); 

else u = U(i]; 

Y[j) • res((l + u) * Y(j)l; Z(j) = res (Z[i] + V[i)); 

XX ( j ] • z; 'i'i [ j ] = res (( 1 + XX ( i ) ) * YY [ i J ) ; 

if ( y •• 1 ) U = res(Y(i ) + U(i) * (Z [i ] + V(i) ) ); 

else u = Y[iJ; 

ZZ(j) • res((l + W[ i ]) * ZZ(il +" • u); 

XXX ( j I • res (( l + X [ i)l " XXX ( i I l; 
if (y -- l) 

( U(j] = res(U(j) * K2l; W(j) • res (W(j] * V{j]); 

UU(j] = res(UU(j) "KK2) ; WW(j) • res(WW(j) * VV[j]); 

XX (j) • res (XX[ jl * Kl ) ; H(j] = res (YY(j) + Z) ; 

xval(j) • res ta * xval(i J + bval( i]); 

for the right·child of node " i ", first. copy all fifteen coefficients; 
then: 
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j++; bval [j ] = b; 
A(j] • res(KKl * XX (j ] * WW(j] * X[j]); 

u • KO * YY ( j] - XX (j ] * WW(j] 

• ( ZZ(j] - XXX[j] - X(j] * KKO); 

S(j] • res(u); 

xval(j] • res(A(j] • x + S(j] • b); 
if ( (xval(i] + xval (j]) \ 2 = 1) 

xval (j] • res(a • xval(j] +b) ; 

Here, ~A( jJ " denotes A 5 at node "j" and ·sr jl" denotes 5
5 

at node "j"". 
respectively computed per (197) and (198). 

Thus. the avoidance of repetitions in the first k + 1 = 2M - if> - 1 
levels of the tree (and commensurate avoidance of repetitions 
thereafter, within zk- M+¢ = 2M-2 occurrences of any b-value) costs a 
factor of 127/20 = 6.35 in program-complexity. Note that what we 
have counted above are commands in the program listing, not 
executions (which are counted at the end of §5, for a factor of only 
2.325 in computation time). 

With M = 6, if> = 3, and lJI = 4, the computations again covered 
the first 255 nodes (8 levels) of the tree. The same eight sets of data 
were tried. yielding the theoretically predicted absence of repetitions 
in the H.rst k + 1 = 2M - if> - 1 = 8 levels. This confirms the efficacy of 
Algorithm 2. 

7. CONCLUSIONS 

We have presented here, In full and rigorous detail, the theory 
governing the linear congruential type of pseudo-random generator, as 
defined in (1) - (4). In keeping with the most frequent practice. we 
have concentrated on the length of the period of such sequences. 
Linear cong.ruentla1 sequences are periodic [Lemma 71 and have no 
repetition of x-values in a period [Lemma 17). Under the conditions 
that a= 1 (mod 4) and b = 1 (mod 2), the sequences are completely 
periodic [Lemma 9). with period Q = 2M (Lemma 12]. This means that .. 
the sequ ence [x}J=O [defined in (2) - (4)] will. in every period. pass 

just once through each integer value In the interval [0. Q - 1 ). By (1) . .. 
the (similarly periodic) rational sequence I~}J=O will thus pass exactly 

once in every period through each integer multiple of 2-M In the real 
interval [0. 1): yielding pseudo-random numbers whose distribution in 
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[0. 1) is quite close to canonical uniformity. This property. given 
qualitative {"uniformity'') and quantitative ("coarseness") precision In 
Defmition 4. is. of course. crucial to the usefulness of such a sequence 
in performing Monte Carlo computations. 

Turning to branching processes. such as are useful in many 
Monte Carlo computations. we seek to define families of linear 
congruential generators which are easy to specify at any node of a 
binary tree. without storing all possible sets of parameters. since the 
growth of such storage would rapidly become completely prohibitive. 
Seeking a criterion which is both tractable and useful. for the 

independent behavior of sequences !x;Jj:0 and (xt;~j:0 we look at the 

.. 
difference sequence [ojlj=o [defined in (26)) and go. by analogy with 

the concepts of uniformity and coarseness. to those of 
"independence" and "consonance" given In Definition 5. A rather 
thorough analysis of this criterion is gtven here. giVing conditions for 
low consonance between sequences generated at nodes which are 
close to each other in the tree. Further analysis, of discrepancies [see 
HAL 60. HAL 70. HAL 72, HAM 60, HAM 64. NIE 78. ZAR 66. and ZAR 68[ and 
correlations of such proximate sequences, is envisaged for future 
research. to reinforce the results presented here. 

Three algorithms for the generation of suitable families of linear 
congruenUal sequences are analyzed here. The first Is due to Warnock 
[WAR 83) and the other two (herein named Algorithms 1 and 2) are 
new. Algorithm 1 Is similarly simple to Warnock's. but has (as does 
Warnock's algorithm) some problems. In this case related to the 
rather early occurrence of repeated generators. These problems arc 
addressed and substantially alleviated in Algorithm 2. It is calculated 
that the code required for the second. Improved algorithm is six or 
seven times longer than for the first: and that the computation time 
required per random number is two to three times longer than is 
required by the basic (highly efficient) llnear-congruenUal generator. 

While more research can usefully be done on this new tool. fl 
would appear that a powerful and efficient technique has been 
introduced here, with considerable theoretical support. 
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