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ABSTRACT 

N ldenucal lc-dtmenslonal objects (In the ortglnal. 
two-dlmenstonal problem. coins) are Independently. 
untformly. randomly distributed In a lc-dtmens!onal 
hyper-rectangle (orlglnally. a table). The problem ts to 
determine the statistics of the ratio of the k-dimenstonal 
volume covered by N such "colns" to that of the "table" Ln 
this paper. we obtain asymptotic results. for large N. and 
some e.'Cllct results far lc = 1 



The Random Covering ?roolem 

1. IN'IRODUCTION 

The original problem Is to fmd the total area of a rectangLilar 
table that is covered. when N Identical coins (i.e .. circular discs) are 
randomly placed on it. To be more specific. let us say that the table­
top is in a horizontal plane. and has length a and width b; and that the 
discs are of uniform thickness and density. and have radius r. Then 
Lhe centres of the discs are lndependenUy and uniformly distributed 
over lhe table-top (if the centre of a coin falls outside the table-top. 
the coin falls off and is recycled). 

Variations on this problem Include the one-dimensional 
problem, In whJch segmentS of length 2r are randomly placed on an 
interval of length a; the two-dimensional problem. In which the discs 
are replaced by squares. rectangles. ellipses, or other shapes 
(Irregular shapes all being identical and congruently oriented with 
respect tO the rectangular table-top); the same. when. the Identical 
shapes are randomly oriented: the extension to table-tops of arbitrary 
shape; and lhe corresponding k-dimenslonal problems. 

It is also of interest to solve the problem asymptotically. when 
the Identical objects are small and numerous, specifically. when 
N ~ oo, while the total k-d!menslonal volume of the N objects (i.e .. 
N times the volume of one of these objects) remains constant. This Is 
the situation of interest. for example. when calculating the effective 
cross·section of objects. scattered at random through a volume of 
material. (This is important in atomic and nuclear physics.) 

The literature [see, e.g., (3 )] mainly deals with optimally, rather 
than randomly. distributed objects; arranged, for example. in lattices. 
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The k:>dom Covering Pro!>lem 

2. THE ONE-DIMENSIONAL PROBLEM 

We are given an Interval of length a. upon which N segments of 
length 2r are placed. their mld·polnts distributed Independently and 
unlfom1ly at random over the Interval. Let the Interval be (0. al and let 
the center or the segment fal l at c. We shall suppose tllat the Interval 
Is quite a bit greater than the segments: more specifically. we suppose 
that 

a > 4r. (I) 

Let us define the indicator funclion, with variable x. of the 
exterior of a segment of length 2r. ~vl.th centre at c by 

{ 
0 lf 

x !c: x) = 
r 1 lf 

lx-cl s r} 
lx-cl > r . 

(2) 

Note that. by the symmetry of (2). this may also be viewed as the 
Indicator function. with variable c. of the e..xterior of a segment of 
length 2r. with centre at x. Also. for any p > 0. 

J. pr(pc: px) = X,.( c: x) . 

In particular. lf we scale our parameters to a. by writing 

X z =­a· () = c a· 

we conclude that 

). = 2Nr 
a· and 

z,.(c: x) = Xp(8: Z). 

(3) 

(4) 

(5) 

We observe that. If the N segments have their centres at c1• ~· .••. 

eN, and c is the vector (c1• c2 ...•• eN] of the N centres. then the 
function 

N 

X,(c: x) = X,fc1• ~· ...• eN: xl = IT x,(c1: x) (6) 
!;:1 

equals 0 if x lies in any of the N segments. and equals l if x lies 
outside all of the segments. Thus x Is covered by at least one of the 
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The Random Covering Problem 

segments if and only if X,( c: x) = 0. Therefore. the ratio C ;_lN. 6) of 
the measure ("length"). of the set of points of the interval [0. a] 
covered by the N segments. to the length. a. of the interval (i.e .. the 
probability of covering any given polnt) Is. by (4) . (5). and (6). 

C?.(N. 6) = kfo d.x [1 - X,(c: x)] = 1 - ~ d.x 
N 

TI x,lc,: xl 
t= 1 

J
l N 

= 1 - o d.x TI xJ.IIe,: zl. 
I= 1 

{7) 

where 

(8) 

Note that CA.(N. 6) remains unchanged. if we consider. instead. the 

scaled problem. of distributing N segments of length 2).!. with centres 
at 91 (i = 1. 2 ..... N). over the unit Interval. [0. 1]. 

1-pSz!>l: 

integral = z - JL 

J.!SZ$1-p: 
Integral = 1 - 2,u 

Oszsp: 

====...:..;._..;::;..;.;:;_;;;;.;,;.;;--'--J.~ 9 integral = 1 - JL - Z 

fW.xre 1 

Values of integral J: <18 zl'(8; 2) for different values of x. 
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The R=dom Covering Preble=:> 

In Figure 1. the shaded region Indicates where Xp(9: z) = 1. The 

integral from (7). J J.l(z) = J: dO xl'to: zJ. Is the width of the shaded region 

al the height z. When 0 !> z !> Jl. this region is the Interval (J.I + z. 1]. 
whose width is 1 - Jl - z: when Jl s z s L - Jl. the region consists of the 
two lntervals (0. z- 111 and [z + Jl. 11. of widths (z- Jl) and (1 - z- J.l). 

for a total of 1 - 2JI: and when 1 - Jl s z s 1. the region Is the Interval 
10. z- Jll. whose width ts z- Jl. Thus. 

L - Jl - Z If Oszs~t 

1 - 2Jl If Jl $ z $ l - J.L (9) 

z -JI If 1 -JI S z S I 

All the 91 arc uniformly. lndependcntly distributed In the Interval 

(0, II. Therefore. by (9) . rhe expected value of C).(N. e) Is 

Jl Jl fl fl N ~[ C).(N. e1] = 1 - 0 dz 0 d81 0 d~ ... 0 d8N fi Xl'(91: z) 
(:I 

= 1 - J~ dz {J~ d8 Xpl8: z)t 

= 1 - f~ dz (I - 2p)N- f~ dz [ (1 - J.1 - z)N- (1 - 2J1)Nj 

-J1 
dz [tz - Jl)N- (l - 2JIJN] 

1-p 

{ 
(1 - Jl) '''+ l (1 - 2J.Ll'''-l } 

= 1 - (1 - 2J.L)N - 2 N + 1 - N + 1 - J.l ( 1 - 2p)N 

N - 1 ( ). )"~+I 2 ( ). )"•L 
= 1 - N + 1 1 - N ) - N • 1 1 - 2N ) . 
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The Random C~verlng PrebleJ:::> 

As N -+ oo. With ). kept constant. by (A7) (the Corollary to the 
Lemma in AppendiX A). we get the asymptotic behaviour 

1:[C;.IN. eJ] = 1 -(1- ~ )e-?.[1- ~ (l+i).2J]- ~ e-)./2 + o(tk-) 

= 1 -e-.<+ 2~ [14 + 2). + ).2) e-.t- 4 e-l./2] + o(rk-) 
= 1 - e-). + o(~} ( 1 1 ) 

F'or small )., as we might expect. 

1:[ C_.(N. Bl ] = ). + 0().2 ) + 0(1~2): ( l 2) 

l.c .. sparse segments (of total length only ).) are unlikely to overlap. 

To obtain the variance of C;,(N. e). we observe that 

'!In r[ C;.(N. e) ] = 'E[ { c .. (N. eJ - 'E( c ;.IN. eJJ } 2 ] 

= 1{{ 1- C;.IN. Bl}2
]- { 1 -1:(c .. <N. Bl]Y 

= 'I{{ 1- C;.IN. Bl}2
] 

_ {N -1 ( _ l 'r'YT I 
N+ll N} + 

2 ( A r+l}2 
N + 1 l- 2N ' 

Now. by (7). as in the derivation of (10). 

N 

1{ { 1 - C)JN. E>l} 
2
] = J~ dz J~ dz' tJ {J~ det xJll81: zl z~'(81: z1} 

-6-
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The Random Covering Problem 

z: 

1 

0 
1- Jl 

® 
@) 

3Jl 
@ 

~ 2Jl 

® @ 
Jl 

@ ® ® 
0 Jl 2JJ 3Jl 1- Jl 1 

z 

Figure 2 

Analysis of the 9-lntegral.. I = I1i:z. Z' l = J~ d O xJ&. ~ zJ&. z'J In 

the fourteen critical regions of the Sqt.Ull'e. 

where. again. we define J.L. z. and z' as in (4) and write 

( 15) 

We note. by (2). that the product XJ.I(8; z) xJ.I(8; z') equals 0 or 1 
everywhere in its domain. the (8, z. z' )-cube of side 1. Observe that 
there are fourteen distinct regions of the (z . z' )-square, for which I 
takes different forms. The situation is described. and the regions are 
numbered. in Figure 2. It is clear that. throughout this square. 

( 16) 
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The Random Covering Problem 

The fourteen regions are characterized as follows: 

1: z S 1L z~I-JI. 2: ZSJL Z~l-f.( 

3: z-z~2JL z ~ 1-JI, z ~ JI, 4: z-z ~ 2JL z ~ I -J~ z ~ J£ 

5: :t-z ~ 2JL ZSJI, zSI-JI. 6: z-z ~ 2JL z :s; ~~ zs 1-JI, 

7: os:t-zs2JI, z~I-JI. 8: Osz-zS2JL z ~ t -~~ 

9: Os:t-zs2JI, ZSJI, 10: o s z-zs 21L Z'SJ£ 

11: z-z~2JI, z S I -JI, z ~ /-( 12: z-z' ~2JI, z s 1-JI, L~JI, 

13: OS:t-zs2JI, z S. I -JI, z ~ /-( 14: o s z-z s 2JL z S I ·IL Z~IL 

The corresponding values of l = f!J(z. z'). with the ranges In which 
they lie. as z and z' vary. are tabulated below. For example: when (z. z') 
Is In the region ' 1 '. z s J1 and z' ~ I - Jl. so that x!J( 0; z) x!JI9: z') = 1 In 
the 9-lnterval lz + Jl . z' - Jll. whose length ls I = z'- z - 2p; when (z. z') 
ts In '3 ', z'- z ~ 2p. z' ~ 1 - Jl. and z 2 Jl. so that x!J(O: z) z!J(9; z') = I In 

the 9-Intcrvals 10. 2- .ul and tz + Jl. z'- pl. whose summed lengths arc 
l = (z- .ul + (z'- z- 2J.1):: z'- 3Jt; when (z. z') ls in '7', 0 s z'- z s 2J1 
and z' ~ 1 - Jl. so that z!J(O; z) z!J(O; z•) = 1 in the 0-interval 10. z - Jtl. 
whose length Ls I = z - 11: and. finally. when (z. z') is in the region ' 13'. 

0 s z' - z s 2J1. z' s 1 - J.l. and z ~ J.l. so that z!J(O: z) x!JIO; z') = 1 In the 
0-lntervals 10. z - p) and lz' + Jl. 11. whose summed lengths are 
I= (z - J.l.) + (1 - z' - J.l.) = 1 - z' + z - 2J1. 

1: 1 = Z-Z-2}1 E ll-4JI, 1-~1: 2: I = Z - Z - 2}1 E 11 - 41L I - 2JII: 

3: I= z'- 3)J e II - 4JI, 1 - 3.ul: 4: I = z-3pe II -41L I -3tJI: 

5: I= 1 - z - 3p e II - 4JL l - 3.ul: 6: I = l - z-3)1. e (l - 4JI, I - 3p{; 

7: I = Z - !J E {l - 4JI, I -_uj: 8: I=z-!Je ll-4JI, l -Jil: 

9: I= 1-Z-iJ.E I1-4JLI-s.1; 10: I= 1-Z-)J E II -41L I -Jil; 

11: I = 1 - 4/-( 12: I = I -4J£ 

13: I = I -Z+Z-2iJ. e ll-4JI,l-2J4; 14: I = 1-z•z'-2/l e II -4p. I -214. 

-8-



The :R..ndom Covering Problem 

We observe from this that. in regions ' 11 ' and ' 12', whose total 
area is (1 - 4,u)2. 

JJ.l(z. z') = 1 - 4J1. 

while. throughout the entire (z. z')-square, 

1 - 4J1 s IJ.l(z. z') s 1 - ,u. 

(17) 

( 18) 

Considerations of symmetry show that certain regions yield the 
same values of the partial (z. z' )-integrals making up (14). These 
partial integrals are: 

1 & 2 : f
1 

d2' J" dz (z - z - 2SJ)N = 
I ·J.l 0 

- 1 (( 1 - 2f,l]N+2 - 2( 1 - 3J.l)N+2 + ( 1 - 4Jt)N+2[ - (N+ l)(N+2) · 

3 & 4 & 5 & 6 : d2' dz ( z'- 3J.l)N fl Jz'-21' 

7 & 8 & 9 & 10: 

I "'' I' 

= II d2' (z'- 3J,J)N+I = 
l•Jt 

II d2' I' dz (z-p]N : .,...!.....,.Jl d2' ((z'- J.l)N+ I - (z'- 3J.l)N+ I ( 
1-Jt Jz-2!1 IV+ 1 1-J.J 

: (N + I)lN + 2) (!1 - .uJN+2 - (1 - 2f.l)N+2- (1- 3J.l)N+2 + (1- 4tt)N->21. 

11 & 12: 

13 & 14 : 

: N ~ 1 {f; dz' [!1- 2!1)N+I - (1 - z' - Jl.)J\'+ I ] + f~~l' d2' ([1- 2!1)N+l - (1 - 4JllN+I J} 

= N~ 1 ( 1 - N ~ z ) [(1-2J.l)N+2 -(l-4JllN+2j = N! 2 [(1 - 2JJ.)N+2.(1 - 4J1.)N->2J. 

-9-



The Random Covering Problem 

Thus. by (13) and (14). we get 

'Jlar(C IN 81] = 
2 

((1 - 2p)N•2 - 2( I - 3J.l).V•2,. (I - 4J.l)N•2J 
1 • (N + I liN + 2) 

+ N! 2 ((I - 3J.l)N+2 - (I - 4J.1)''11+2J 

+ (N +!UN+ 2) (II -IJJN+2- (I - 21l)N+2- (I- 3J.1)Nt2 + (I- ·IJ.l)N•2J 

+(l-4J.I}N+2 + - 2
-((1 _ 2J.l)N•2 _ (1- 4J.l)t\'+2J 

N+2 

lN- I ( - - - I N+l 
). ).':•l 2 ( ). )N.t}2 
..,. --- 1- -
."11 N+ I 2.V 

4 ( i. ) .'1+'2 2N ( ). ) .\'•Z 
= IN+ IHN+ 2) I- 'IN +IN+ llt.V+ 21 I- .v 

4(N-I) ( 3i. ) N+'2 (N-I)(N-2) ( 2). ) N+Z 
+ (N + I HN + 2) l - 2N .. (N + l HN + 2) l - N 

( 1 9) 

Again we apply the asymptotic formu la (A7). for A. fixed and N ~ ""· as 
we did In (11). Then 

'llar(c,(N. e> ] = ~ e-i. + .!. e-.3i./2 + (1 _§_) e-2i. (1 _.!. (4A. + 2A.2J] " N N N N 

= ~ {2 e-).- (2 + 21 + ).2) e-2).} + o(~} (20) 

Thus. we see that. while the mean 'E [ C;.(N. 8 )] of the relative 

measure C.<(N. 8 ) of the interval covered tends to the constant 1 - e-). 

as N ~ ~ [see (11)]. the standard deViation { o/ar[ C.<(N. e)l} 112 
tends 

to zero like O(N- 112) as N ~ -. 

-10-



:'he !tandom CoverL"g Problem 

L EMMA 1. If a random uariable Xs. with parameter N. has a 

mean ua!ue JlN ~ K and a standard deuiarion u,v ~ 0. as N ~ oo. then 

XN ~ K in quadratic mean and in probability, as N ~ oo. 

PToof. We have that 

= u,..,? + (JI.,v - K)2 - • 0. as N ~ oo. (2 1) 

Thus. by dcfinlllon. 

X.v ~ K (In quadratic mean) as N ~ -: (22) 

and therefore [see. e.g .. (1). p. 176. or (2 ). p. 1601. 

XN ~ K (In probability) as N ~ oo. (23) 

QED. 

We recall that (23) means lhat 

(V'e > 0) Pro6(jx.v- Kj ~ e] ~ 0 as N ~ -. (24) 

An immediate consequence of this lemma is: 

THEOREM 1. The random uariable C;,(N. e) tends to 1 - e-..t in 

quadratic mean. and hence in probability. as N ~ oo. 

Proof. We have sh own [see ( 11) and (20)1 that. if 

XN = C.;,(N. e). (25) 

then PN = 1:(X.v) = 'E[ C.;,(N. e)] ~ 1 - e- ..t (26) 

and u,v2 = Var(XN) = o/ar[ C;,(.V. 8)] ~ 0. (27) 
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The Random Covering Problem 

as N --+ oo. Thus. Lemma 1 applies to C ;.(N. 8) and so the theorem 
r -.,,...,. 

holds. df~.J. 

For small ..t. (20) becomes (compare (12)] 

r{ ] ~3 .t 4 ( 1 } 'Jia Ci.(N. 8) = 3N + 0(-;:Jl + 0 fi1I (28) 

If our principal concern Is for the asymptotic forms. such as 
( 1 1). ( 12). (20). and (28). then we can considerably streamline our 
dcrlvallons. First. we observe that. by (9) and the thlrd line of ( 1 0). 

'£[ C;.(N. 8) ] = 1 - (1 - 2J1]N - Jo dz ((1- J1- zJ""' - (1 - 2Jl)Nj 

-J1 
dz [!z - Jl)N- (1 - 2Jl)N]. 

I ·J.I 

and. tf (With 2J1 = A./N. by (4)] we \VTite z = (u -.t/2)/N In the first 
Integral. and z = 1 - (u - A./2)/ N In the second, we get. by (A7). Lhat 

( ,tJr-1 2J.t { N ( ,t)'1 'E[ c).(N. 81 ] = 1- 1- N - N .l./2 du (1- ~)- 1- N 

= 1 - ( 1 - ~r~ I - ~f~/2 du e-u {I + o(i~)} 

= 1 - e-l [ 1-~ (,\ + i ,t2)]- ~ (e-)./2- e-A) + 0(*) 

= 1 - e-l + 2~ (!4 + 2A. + ..t2) e-). - 4 e-l/2] + o(*} (2 9) 

in agreement. of course. witb (II). 

Secondly. we similarly use ( 14) - (18) to simplify tbe variance 
computation even more markedly. 
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that is, 

The Xandom Coverbg Problem 

( 
2). JN = 1 - N + r;.(Nl. 

I dz I dz' 
Complement or regtons 

·u· and ' 12' 

S (l - (l - 4Jl)2(1(1 - Jl)N- (l - 4Jl)NJ 

4A. 
s 811 = N: 

r;.(Nl = oc~} 
Therefore. by (A7). 

whlle 

1[ { 1 - C).(N. 8)} 2] = e-2J. + o(~) 

{ 1- 'E[ C),lN. e) JY = {e-J. + 0(!~ )r = 

by (11): which. wtth (13). shows that 

War( C;.(N. 8)) = 0(~. 

This. in turn. suffices to prove Theorem 1. 

-13-
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The Random Cave."ing Prol>le:n 

3. THE k-DIMENSIONAL PROBLEM, 
WITH HYPER-RECTANGLES 

The most direct generalisation of the foregoing problem 
replaces the Interval 10. al by a hyper-rectangular lnterval. 

k 

X 10. a;L 
J=l 

k 

of k·dimensional volume A = IT aJ • 
)=1 

(34) 

and replaces the segment lc - r. c + rl by the hyper-rectangular 
Interval. 

k 

X [cJ - lj· cJ + ljl. of k-dlmenslonal volume 
J=l 

k 

v = 2k 11 rJ . (3 5) 

J= 1 

When there are N such -bricks". we denote their centres by c 1• c2 • 

. . . . eN. with c1 : (c0 . ca . .... cikl. for i = 1. 2 ..... N. and write 

c = = (36) 

CNk 

The bricks are supposed to be congruent and s!m.ilarly oriented; so 
the dimension. parallel to the j-th coordinate axis. of every brick is 'j . 
and we may write r = [r1 . r2 ..... rk]. The indicator function of the 
exterior of the i·th brick is then clearly 

k 

Xrlct: x ) : 1 - IT [1 - Xr}ciJ: x} ]: 
J=l 

(37) 

and the function 

-14-



The Qndo:n Covering Problem 

·" 
X ,.(C: xl = IT {.:cr(c1 : xl} 

i= l 

equals 0, if x lies in any of the N bricks. and equals I otherv.-ise. If we 
scale our varlables as in (4) and (8). In the forms 

e = (39) 

5. r .t 
("Vj) zj = and Jlj = .:1 = 2NiJk' aJ '1 

k 
No 

IT A.! . (J) = 
A = 

J=l 

The generalisation of (7) Is then 

C)N. e) = M:' cL~1 Jo ~ .. . J: dxk [1 - X,.{C: x )] 

= l- :1:.Jo' dx1 Jo dx.:z ... J: dxk X,.{C: x ). (43) 

and U1ercfore the analogue of the first llne of (10} is 

~(C,(N. ~j = 1-J~dzlJ~~ .. .J~dzk 

x ... x J: de,VlJ: d~ ... J>~\lc E {~ -E [1 -xi'J!B!I: z;l}. 
(44) 

-15-



which simplifies. much as before. by (9). lO 

II II II N { k Jl } 7:(CA(N.8l] = J- 0 ctz1 0~ ... 0 "4c!] 1-]:
1 

[1- 0 d9yz1~(0y:Z) l 

= I- ~ (-l)q ( N) ~ (~q {1 - 2J1.1 [ 1 -~ + I ]} 
~ q )"I Q + I (Q + 1)2q . 

N k 
_ _ '<' (- )(I ( N) n (-l:.t_)q { _....&_[ __ 2 I 1} 
- l ::0 1 q pi Nlfk I Nil I< 

1 q + 1 + (q + 1)2qj 

(-1-5) 

Since, for q 2: 1. 

2 l 
0 s l - q + l + (q + 1)2Q < 1 [46) 

[the e>..-pression vanishes for q = OJ. and since. for (J) > 0. 

(4 7) 
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The :tandom Covering ?roblew 

and putting (48) 

we have from (45) that 

'£( C,(N. Bl) 

= 1-i 1-llq ('~ ) (Nr {I-j. )}k[ I- q: 1 ~ lq• \l2q]} • ~~) 

Now note that 

(50) 

and that. for any p > 0. 

N 

L Hlq (N)(w'f? 1 
q=O q \N) (q + l)pq 

N 

= L ( N) (-w)q [ t<7+ I 11= I 
q pN q + 1 t=O 

q=O 

= [(- p~ 1 (l _ wtJ~'>'+l]t=l 
w JN + 1 pN t=O 

(51) 

so that. for k ~ 2 (whence 1/N ~ 1/N'lii<J. with all J..J tlxed. as N-.. ~. 
we obtain. using (A7). an asymptotic formula. similar to (I I ): 

-17-



7he Random Covering Problem 

(52) 

TI1c variance calculallon uses [compare (13)1 

'J/ar[ C11(N. 8)] = ~r { C~(N. 8) - 'E{ C,1(N. 8))} 
2

] 

= 1{ {I - c,,(N. 8)} 
2
]- { 1 - ~r c,,(N. 8) JY (53) 

By (43). we get !compare (14)) that 

1:[ [I - C)N. e)} 
2

] = J: dz1 J: ~ J: dzk J: dz'l s: dz'2 · · s: dz'lc 

x E { 1-3
1 
[ I - f~ dByXPJ(By: z.Jl] -3

1 
[ 1-f~ d8g z11}8!J: zjl] 

+ 3J I - J~ dByXPJlBg. zj)- J>e!lzPJ(Bll: Zj) • I>BgXPJlBg· Z;l z11}B!i. zjl]} 
(54) 

-18-



The Ral'tdom Covering Problem 

We note that the initial integrand In (54) Is always in [0. ll: whence 
the result of integrating over all the unit Bu·intervals (the integrand of 
the zJ) is also always in 10. 1). 

In the regions ' 11 ' and ' 12'. of total area (l- 4J1)2 . defined for 
the (z. z' )-square in Figure 2. 

J11(z) = J11(z'l = 1 -21J. and I
1
,(z, z') = 1 -4/J.. (55) 

by (9). ( 15). and (17). Thus. (54). \v:lth (9). ( 15). and (41). yields Lhat 

~[fl-C)N, 9l}
2
] "J~d21J~~ ... J~~J~dz'IJ~dz'2 .. .J~dz'k 

)+-E p -J.u)ZJl] -31 [t -J.u)ZJl] + 31 [I -J.u}zJ) -J.u}z]l + l.u}ZJ' zjl] r 
k N N 

= (1 -2 TI (2J')) + ':1(N) = (1 -~) + r,(Nl. (56) 
J•l 

say: and we see that 

0 s r..,(l\l s ~ (1 -II -411/]k{l- ( I -ir( } < ~ (811/ = 4k (~) . (57) 
~1 ~~ . 

Hence. 

while 

4f1-C,IN.et)2] = (1- ~)\o(~) =e-2"'+0(~) : 

{ 1- ~( C,(N. et]} 2 = {e-(1) + ()(~r = e-201+ ~Ni/k) 

so that. by (53). as N ~ ""· 

We now proceed exactly as in obtaining Theorem 1 to get: 
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THEOREM 2 . The random uarl.able C11(N. e) tends to 1 - e-ro in 

quadratic mean. and hence in probability. as N ~ oc. 

Proof We have shown !see (52) and (60)1 that. If 

XN = C 1(N. e). 

then 

an <I 

J.IN = 'E(XN] = 1.::[ C 1(N. e)] ~ 1 - e-ro 

aN2 = o/ar{XN] = o/ar[ C11IN. eJ] -t o. 

(61) 

(62) 

(63) 

as N -t oo. Thus. Lemma 1 applies to C 1(N. e) and so the theorem 

holds. Q!ED. 
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4. THE k-DIMENSIONAL PROBLEM, 
WITH ARBITRARY IDENTICAL OBJECTS 

We now consider the k-dimensional problem. In which Lhe "table". T. 
Is still an (a1 x ~ x ... x ak) hyper-rectangle. but now the "coins" are 
congruent. similarly-oriented objects Q1. Q2 • ...• Q,v. of arbitrary 

shape ·9 ·. which are bounded by (2r1 x 2r2 x ... x 2rk) hyper­

rectangles (or "bricks") with centres at c1 = [c0 x c 12 x ... c1kl (i = l. 
2 ..... N). as before. We now denote the k-dlmensfonal volume of 
each such object of shape 9 by u9 : so that. by (34). (35) [wtiUng ur 
more explfcitly for u]. and (40} - (42). we get 

k 

ug S l!r = 2k [l'j = A(~} 
j=t 

(64) 

Let ~glct• x) denote the indicator function of the exterior of the i-th 
object of shape 9 : then. clearly. by (37). 

(65) 

in the sense that. since 9 lies inside the brick. the function on the left 
can only be 0 if the functlon on the right is 0. The function 

N 

,~9(c: x} = II ~g!ct : xJ} 
L=l 

(66) 

th en equals 0. if x lies in any of the N objects 9 . and equals 1. 
othervvise. Thus. if. analogously to (7) and (43). Cg (N. B) denotes the 
ratio of the total volume covered by the N randomly-placed objects Q 
to the volume A of the "table". (43) !.mmediately generalises to 
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We can scale the problem with respect to the dimensions of T. as 
before. using (39) - (41). If we \VTite ·s · for the scaled shape 
(obtained from 9 by dMdlng the j-th coordinate of every point by Q_J. 
for j = 1. 2 ..... k) we observe that (compare (3) and (5) 1 

where 

15 !8: z) = £9 tc: x). 

9 = (81• 82. . .. 8kl· 

(68) 

(69) 

Similarly. If ·s · Is the shape of a "brick" (or hyper-rectangle). whose 
projection on the j th coordinate axis Is (z1 - J.lj, z1 + J.lj I (j = 1. 2 . 

. . . k). and we take the shape S to be B. we see that 

0 - -z8 (8: z ) = Xrlc: x ) = Xji(8: z). 

where 

We now get. as before. that 

Cg !N. 8) = C5 (N. 8). 

and, therefore. following (44) and (45). that 

'E[ Cg (N. 8) 1 = 1.{ CsiN. 8) 1 : 1-I~ dzl J~ ~ .. I~ dzk 
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so that 

(73) 

where 

C) Jl fl Jl 0 -F'g(Z) = 
0 

d91 0 
d92 . . • 

0 
d9k Xg(9: z). (7 4) 

Because. by (2). the function Xp(9: z) is symmetric. in 9 and z; we 
can consider ll. not only as the lndlcator function of the exterior of the 
segment with centre at 9. relative to the variable z: but also as the 
indicator function of the exterior of the segment with centre at z. 
relaUve to the variable e. Thus. the function Jll(z) deflned In (9) Is 
seen to be the proportion of the 9-lnterval [0. ll not covered by the 
segment [z -p. z +pl. and therefore the Integrand in the second line 
of (45) Is the N· tb power of 

k 

~B(z) = l- TI [ 1 -Jil}z) ]. 
J=l 

(75) 

This ?-B(z) Is clearly the proportion of the "table" T not covered by a 

brick B. say. of shape B. Similarly. we note that ~5(z) is the proportion 
ofT not covered by an object S of shape S. Thus. since 

S ~B. 

we have 0 s ~B(z) s F5(z) s 1· 

and this yields that 

0 s 'E[ C5 (N. e) ] :5 'E [C"(N. e)]. 

(76) 

(77) 

(78) 

Further. so long as B remains inside T. the corresponding object S 
which It bounds 'Will also be inside T. Thus. just as. by (9). (35). (41). 
and (42). for any z such that B ~ T. 
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k 
0 

FB(z) = l - TI (2Jl} = 
J=l 

(j) 

1- N: (79) 

so. if we analogously define [compare (42)] 

(80) 

Lhcn 
2. ':9. ros ClJ 
rslzl = 1 - A = 1 - N s 1 - N. (8 1 ) 

B will be inside T for z Ln a region of volume not less than. by (48). 

k k 
1 f n 11 - 2p) ~ 1 - fJT'TK L ).1 = 1- !JT'TK· (821 

J=l J=l 

If N is large enough; and. in the remaining region. of volume not 
greater lhan -rtrllk, we know. by (77). that ¥-5 (z} s 1; so. by (73). (81). 
and (82). 

(83) 

Turning to the variance. we see that (compare (54) and (7311 

~ [ { I - CglN. 131} 
2
] = J: dzl J: ~ · .J>~ J>z' 1 J>lz'2 · · J: ciZ k 

(l II II N { 0 - 0 - } 
x ••. x) 0 d~,, 0 d~. . . 0 d8Nc l1 u518r zJ x5!81: z'll 

I= I 

(I Jl (1 { (I Jl (l 0 _ 0 _ }N 
= J 0 dz1 0 ~ .. ·J 0 ~ J 0 d81 0 dll.l . .. J 0 d8k x5(8: zJ .lsl8: z' J . 
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so that 

where 

0 - 0 - ) 1\s Is noted after (74). the function x8 (8: z) z8(8: z ' may be vtcwcd as 

the indicator function. relaUvc to the variable vector B. of the exterior 
of the union of two "bricks". B and B', whose centres arc at z and z'. 
111us. the Integrand In the fourth line of (54} Is the N-th power of 

Q. • f I Jl J I o - o - . <.i8 (z . z ) = 
0 

d81 0 
d92 . . . 

0 
d9k x8 (8: z) x8 l8: z ). (86) 

which Is the proportion of the "table" T not covered by lhe ""bricks" 
B and B', whose centres <rrc at z and z ', Slmllarly, we see lhnl &9(z, z') 
fs U1e proportion of T not covered by the objects S and S' \vtth centres 
at x and x ·. This shows that !compare (77)] 

we have 0 s ~(z. z') s 891z. z') s 1. (87) 

Finally. this yields that 

As before. so long as B remains fns ide T. S will also be Inside T ; and 
then, just as 

k 
0 • n 2w 
G8 (z. z ) = 1 - 2 1211} = 1 - N (89) 

J= I 

so o -- 1 - 2Avg -- 1 - 2NWg G5 (z. z ') (90) 

Now. (89) and (90) will hold for z and z ' in a region of 2k-dlmenslonal 
volume not less than 
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k 
4 

1 - fJT7K L AJ = 
,Fl 

(9 1) 

If N Is large enough: and. in the remaining region. of volume nol 
greater than 4-r N- 11k. 89 (z . z ') ~ 1: so that 

= c-2 r.~S + o(Nftk} (92) 

Now. by (53), with (83) and (92). 

'Var[ c9!N. eJ] = o(~) ~ o. (93) 

Proceeding again as In obtaJnlng Theorems 1 and 2. gel: 

THEOREM 3. The random uariab!e Cg (N. e) tends to 1 - e-OJs in 

quadratic mean. and hence in probability. as N --too. 

Proof- We have shown (see (83) and (93)1 that. if 

then 

and 

X.v = Cg (N. 9). 

J-IN = ~E(XN) = 1:[ Cg (N. 9) ] ~ 1 - e-r.IS 

aN2 = 'llartxN] = 'liar[ c9 (N. e>] ~ o. 

(94) 

(95) 

(96) 

as N ~ oo. Thus. Lemma 1 applies to Cg (N. e) and so the theorem 

holds. QED. 

Now consider the problem with th e objects Q of shape Q 
randomly oriented. as well as randomly located. lt is clear that. in any 
orientation. such a Q will be bounded by a hypercube K of side 

(97) 
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A perusal of the derh·attons for the problem of similarly·oricmed 
objects !see (64) - (96)) shows that. If we replace every JJJ by v. 

I 
defined above. add 2 k (k - 1) rotational parameters to t.bc Indicator 

function z to specify orientation. and integrate over these to obtain 
expected values: we can retrace our steps for the present problem. 
The exact fom1ulae Will change. somewhat. but the asymptotJc resu lts. 
embodied in (83). (92) and (93). will remain unchanged. IL fol lows 
lhal we h:we: 

T HEOREM 4. The random ~:artable c9 (1V. eJ tends to l - c ·<•JS in 

q uadr atic mean. and hence i n probability. as N-+ co, even wllcn tile 
objects of shape Q are allowed to take random orientations (with an 
arbitrary probability distribution oj oriemat!ons}. 
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APPENDIX A 

An asymptotic expansion 

LEMMA. As N ~ ..... 

} I I rf 1 \1 
= eax 11 + N (ay + txc - ~ ax2) + \N'I) . (A I) 

Proof. If I ~/ N I < 1. the senes expansion 

Is absolutely convergent. Thus. asymptotically as N ~ oo, 

(A3) 

Therefore. 

(aN+ bl lo{l + ~) = a~+ ~ (b~- ~a~) + o(~) 

= a~ + log[ 1 + ~ (b~- ~a~) ]+ o(~) 
(A4) 

since. by (A3). 

and we may put 71 = b~- ~a.fl. 

Thus. exponentiating (A4). we get that 
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( 1+ ~~r+b = ea~[1+ ~ (b~ - ia¢2)]exqo(~] 

= eai ( l+ ~ (b~-~a¢2)][l+a(~)J 

Now. let 

= eai [ 1 + 1~ (b; - ~a¢2) + <:{~)]. 

~ =X+ N + o(~) 
then (A5l becomes 

{ 
X y rf 1 ~lru\'.-b 

1+ N + fi1I + \ NJJ 

= ext{ M+ w + <{w)] [ 1 + ~ (bx- ~czx2) + q~)] 

= cax exP(%f +<{~)][ 1 + ~ (bx- }ax2) + q~)] 

= cax [ 1 + ~ + <{~~[ 1 + .~ (bx - ~ax2) + o(~)] 

= eax[ 1 + ~ (ay+ ll-c- ~ax2) + <:{~)]. 

which is (Al ). QJED. 

CoROLLARY. As N ~ ~. 

(A5) 

(i\6) 

{ 1 - ~ r+C = e -( { 1 - ~ ( c( + ~ (2) + o(~ l (A 7 ) 

Proof Put a= 1. b =c. x = -(. and y = 0, in (Al). QJED. 
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