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N identical k-dimensional objects [in the original,
two-dimensional problem, coins] are independently,
uniformly, randomly distributed in a k-dimensional
hyper-rectangle (originally, a table). The problem is to
determine the statistics of the ratio of the k-dimensional
volurne covered by N such “colns® to that of the “table®. In
this paper, we obtain asymptotic resulis. for large N, and
some exact results for k= 1.
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1. INTRODUCTION

The original problem is to find the total area of a rectangular
table that is covered, when N identical coins (i.e., circular discs) are
randomly placed on it. To be more specific, let us say that the table-
top is in a horizontal plane, and has length a and width b; and that the
dises are ol uniform thickness and density, and have radius r. Then
the centres of the discs are independently and uniformly distributed
over the table-top (if the centre of a coin falls outside the table-top.
the coin falls off and is recycled).

Variations on this problem include the one-dimensional
problem, in which segments of length 2r are randomly placed on an
interval of length a; the two-dimensional problem, in which the discs
are replaced by squares, rectangles, ellipses, or other shapes
(irregular shapes all being identical and congruently oriented with
respect to the rectangular table-top); the same, when, the identical
shapes are randomly oriented; the extension to table-tops of arbitrary
shape: and the corresponding k-dimensional problems.

It is also of interest to solve the problem asymptotically, when
the identical objects are small and numerous, specifically, when
N — e, while the total k-dimensional volume of the N objects (i.e.,
N times the volume of one of these objects) remains constant. This is
the situation of interest, for example, when calculating the effective

cross-section of objects, scattered at random through a volume of
material. (This is important in atomic and nuclear physics.)

The literature [see, e.g.. (3)] mainly deals with optimally, rather
than randomly, distributed objects; arranged, for example, in lattices.
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2. THE ONE-DIMENSIONAL PROBLEM

We are given an interval of length a. upon which N segments of
length 2r are placed. their mid-points distributed independently and
uniformly at random over the interval. Let the interval be [0, a] and let
the center of the segment fall at . We shall suppose that the interval
is quite a bit greater than the segments; more specifically, we suppose
that

a > 4r. (1)

Let us define the indicator function, with variable x, of the
exterior of a segment of length 2r, with centre at ¢ by

0 if |x—c| P
xle x) = . (2)
1 if |x-¢l >r

Note that, by the symmetry of (2). this may also be viewed as the
indicator function, with variable ¢, of the exterior of a segment of
length 2r, with centre at x. Also, for any p > 0,

Zplpe: px) = xle: x). (3)
In particular, if we scale our parameters to a. by writing
X c 2Nr r A 1
BEg WEg 3R gy Wb pEgmggpew W
we conclude that zle x) = z,(8: 2z). ()
We observe that, if the N segments have their centres at ¢;, ¢,, . - -,
¢y, and c is the vector [¢;, ¢,. . . ., ¢y] of the N centres, then the
function
N
Xle: ) = Xfcy. €0 iv0a e = ] xle; (6)
=1

equals O if x lies in any of the N segments. and equals 1 if x lies
outside all of the segments. Thus x is covered by at least one of the

- —
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segments if and only if X (c: x) = 0. Therefore. the ratio C,(N, @) of

the measure (“length”), of the set of points of the interval [0. a]
covered by the N segments, to the length, a. of the interval (i.e.. the
probability of covering any given point) is, by (4), (5), and (6),

N
1 I
C,IN.O) = =| dx [1-X[c:x)] = 1-=—|.dx (¢, x)
A Q.E A aJ-; l;[lx"f

1 N

1-| dx [] z.l6; 2), (7)
.J{} 1:31 Kt

where

c = [& e if] (8)

Note that C,(N, @) remains unchanged, if we consider, instead. the
scaled problem, of distributing N segments of length 2u, with centres

at @, (i=1,2,...,N), over the unit interval, [0, 1].
/I\?
1 l-pu<z<l:
-
o ; integral = z-u
1-ppreees i cie B
i
i i
- ;
. psz<l -u:
%,:“; “ o integral = 1 -2
=
" A . . Y
t . O0<z<u:
i YN integral = 1 -~y -z
O U 1-u 1 /7
Figure 1

1
Mudhmljﬂdﬂxutﬂﬂhdiﬁumtm&z
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In Figure 1. the shaded region indicates where z (6 2] = 1. The

1
integral from (7], J“[z] = fﬂ dé z,(#. 2], is the width of the shaded region

at the height z. When O < z < u, this region is the interval [u + z, 1].
whose width is 1 - u - z: when y <z <1 - u, the region consists of the
two intervals [0, z - u] and [z + u. 1], of widths (z - u) and (1 - z - u).
for a total of 1 - 2u; and when 1 - u < z < 1, the region is the interval
[0, z - u], whose width is z - u. Thus,

l-u-2 f Oszsyu
1
Jylz) = J.ﬂ dé x,(6: 2) = 1-2u f usz<l-p¢. (9

z-u if l-uszs1

All the 8, are uniformly, independently distributed in the interval
[0. 1]. Therefore, by (9). the expected value of C;(N, @) is

tlev. )] = 1- [az [ ao,[)ae, .. [, aey [ 20 2
- 1- [ az {f; d6 1,06 z]}N
= ] -f; dz (1 -Qu]”-ﬁdz [{1 ~u-2%-(1 —2,11]”]

1
-J dz [(z - ™ - (1 - 2V]

1-u
1 — )i+l 1 - 2u)V+1
A a2 A 1 A Wl A A
a 1-[1?]"-{?;-1—[[1-%]“ "[1 “FJ'TV ]'H(l“ﬁ]}v}
N-1 A W=l 2 A +1
=1—m[1-ﬂv _m[I-E_NT' (10)
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As N — o, with 4 kept constant, by (A7) (the Corollary to the
Lemma in Appendix A). we get the asymptotic behaviour

slean @] = 1-(1-F)ea[1-Fue ] Feva s ofds

= 1-e4 +%I[4 + 24+ A2) ed -4 e-1/2] + O(ﬁlnzj

i 1_e—l+0&} (11)

For small 4. as we might expect,
Ec,v. 8] = 2+ 0(2) + Og: (12)

l.e.. sparse segments (of total length only i) are unlikely to overlap.

To obtain the variance of C,(N, ), we observe that

Var[c,v. @] = E[{c,wv. o - Elcyw. 8])7]
1{{1 - C,IN. 9}]2] - {1 - E[c,v. &\1]}2
'E{{1 — C4(N. 61}2}

N-1(, AW 2 A ]2
*{N+1[1"FT‘ +N+1(1'W]N } (13}

Now, by (7). as in the derivation of (10).

N
'E{{l -cyn. )] = f; dzf; dz g { i :, a8, 2,(6; 2) 7,(6; 2))

"

= [ dz[  az{[ e z,6: 21200 20}

1 1
” ’ AN
_jndzﬂdz Iz 2')7, (14)
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Analysis of the Gintegral, I=1 [z 2') = J'ﬂdﬂzu(& 4z (6 z)in
the fourteen critical reglons of the square.

where, again, we define y, z, and z’ as in (4) and write

1
I = J"ﬂ[z. z') = J-ﬂ dé z,(6: 2) ;t'p{ﬁ: z'). (15)

We note, by (2), that the product Zul6; 2) 2,(0; 2') equals O or 1

everywhere in its domain, the (8, z, 2z’ )-cube of side 1. Observe that
there are fourteen distinct regions of the (z, z')-square, for which I
takes different forms. The situation is described, and the regions are
numbered, in Figure 2. It is clear that, throughout this square,

0 =[fz2) < 1. (16)
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The fourteen regions are characterized as follows:

1: zE g T2 1-i& 2 Zsu zz1-g
3: Z-z2 Z21-u zZ2 i 4: z-Z22 zzl-u T2k
5: Z-z2 2 zsp ZSl-i 6: z-Z22 ZSu zs1-4
i - Osz-zs2u Z2 1= 8: Osz-2s2n z2 1=
O 0sZ-25s2u zs i 10: 0sz-Zs2u Z=<sp
13 Z-z22u ZsSl-p z2 & 12: z-Z22u zsl-p Zzpx
13: O0<z-z<s2n Z<l-p z2 K¢ 14: 0sz-Zs2u zsl-uw Z2p0

The corresponding values of I = (z, z'), with the ranges in which
they lle, as z and z' vary, are tabulated below. For example: when (z, 2')
is in the region '1', zs u and 2’2 1 - y, so that x,(6; z) x,(6: 2') = 1 In
the 6-interval [z + u, 2’ - y], whose length is I = 2' - z - 2u; when (z, z')
isin'8, 2'-z22u, 2'21 -y, and z 2y, so that ,(6; z) z,(6, z') = 1 In
the @-intervals [0, z - u] and [z + y, 2z’ - ), whose summed lengths are
I=(z-y)+(2-z-2u)=2"-3u; when (2, 2')isin'7’. 02 -2z< 2u
and z'2 1 - u, so that x,(6: 2) ,(6: 2’) = 1 in the 6-interval [0, z - ul.
whose length is I = z - y; and, finally, when (z, z’) is in the region ‘13",
0s2z'-2<2yu, z'<1-p and z2pu, so that z,(8 2) z,(6: z') = 1 in the
@-intervals [0, z - u] and [2' + u, 1], whose summed lengths are
I=(z-p)+(l -2-puy)=1-2"+2 -2

1: Il=2Z-2-2ue [1-4u1-24; = I=2z-2-2u e [1-44 1 -2
3: I=2z-3pe [1-441-34; 4 I=z-3pe [1-4ul-3u
5: I=1-2z-3pe [1-44 1= 6: I'=1-Z-3u e [1-4u 1-3u
7 I=z-pe [1-4p -4 8: I=2Z-pe [1-4u -4
2 4 I=1-Z-pe [1-4u 14 10: I=1-z-pe [1-4 -4
11: I=1-4x 12: [=1-4
13: 1= 1-Z+2-2u € [1-4 1 -24 14: 1= 1-z+Z-2ue [1 -4 1-24
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We observe from this that. in regions '11' and '12’. whose total
area is (1 - 4u)2,

I(z, 2') = 1-4yp, (17)
while, throughout the entire (z, z')-square,
1 -4p < I(z,2) < 1-u (18)
Considerations of symmetry show that certain regions vield the

same values of the partial (z, z')-integrals making up (14). These
partial integrals are:

1 -1
1 & 2: J.l i dZ'I:dZ [f-z-zﬁ]” = ﬁJI dz'“z'_ZIu]N'Fi -‘Z' '3#}N+l]
_ H
1 \ ¥ e
=IN+ DIV + ij tll £ 2.&]‘&*2 -2(1 - S,U]N"'z +[1 = 4ﬂ]N+.Ell
1 ~2p
3&4&5 &6: L d.z’J‘ dz (z' - 3V
-y M

l
= L-n a7 (2 -3 = (1 - 3V2 - (1 - a2,

1 i
1
7&8 &9 & 10: dz dz(z - = T dz [z — piV+L (22 — g Ve

,[‘I-n z-2u e +1j1*# Lo i

1
= WsOWw=g 3] {1 -M."-LI--E ~(1 _2;‘[1}%2 -1 -B,LHN"'Z +(1 - 4#]N+2].

1-n -2 "l i
11 & 12: J- dz‘r dz (1 -4V = J dz' (1 -auN(z -3y = 7 (1 - 4p)¥+2,
3p o S
r3u IT—u
13 & 14; J dz dz{l«z’-u—z-ﬁ,u]-"‘ﬁl[‘ dz’ dz(l -z +z-2uV
M H 3 -2u

1

=1

+

i Lo
1”—: dz' [(1 - 2™ — (1 -z - 1] +J dz’ [{1 - 21 -{1-4;11N+l]}
13 3u

= Ni 1 (1 - ﬂ%ﬁ] 1 —2uV+2 _ 1 —4mﬁ'+2! =ﬁ[[1 —2uN+2 _ 1 ‘4H}N+2]~
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Thus, by (13) and (14). we get
Var[c,n. 8] = m[n - 2uV*2 - 2(1 - 3V & (1 - 4uV+2)
¢ wreg i - 30V2 - (1 - 42

4
ey gy (B = N2 - (1 - 20N+2 (1 - 3N+2 4 (1 - a2

w1 -2 4 %fin - 2uIN*2 (1 - 4uN+2)
{ ("?]m (t—w)”‘T
wnien (- 3) (hv)m

4N - 1) 32 Y¥2  (v-1IN-2 2;. N+2
+IW+1HN+§| ~aN iH+1HN+§i

N+l}2

N+l
-{%:—:{1-3‘;) v g1 - (19)

Again we apply the asymptotic formula (A7), for A fixed and N — =, as
we did in (11). Then

2 4 6
Var[e,v. 0] = § ed+ § 924 (1-5) e-24[1 - (42 + 242)|

-{rl -5N [(4+20+ 42 et+4 e—-’-ﬂ]} O[KT&')

= {2et-@+421422 23 4 O(E}-I} (20)

Thus, we see that, while the mean E[Ci[N. E}] of the relative
measure C,(N. 6) of the interval covered tends to the constant 1 - e-4

1/2
as N — e [see (11])]. the standard deviation {‘I/ﬂr[C;LtN. B}]] ; tends
to zero like O(N"1/2) as N = oo,

- -
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LEMMA 1. If a random variable X,. with parameter N. has a
mean value uy — K and a standard deviation oy — 0, as N — =, then
Xy — K in quadratic mean and in probability, as N — =.

Progf. We have that

Xy - K2] = E[{0xy - uy) + bay - K}?]

E[{xj.,, - uNF] + 2{uy - K) 'E[x,,-pN] + (uy - K)?

= 02 +uy-K2 >0, as N e (21)
Thus, by definition,

Xy — K (in quadratic mean) as N — oo (22)
and therefore [see, e.g., (1), p. 176, or (2), p. 160],
Xy — K (in probability) as N — e, (23)

QED.

We recall that (23) means that

(ve>0) Probf|Xy-K|ze] » 0 as Noew  (24)

An immediate consequence of this lemma is:

THEOREM 1. The random variable C,;(N, 6) tends to 1 - e~* in
quadratic mean, and hence in probability, as N — .

Proof. We have shown [see (11) and (20]] that, if

Xy = C,N. ), (25)

i

then by = E[Xy] = E[CJ_{N. 8]] - 1-e* (26)

and o = Var{xy] = Var[c,wv. @] = o. (27)
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as N — <. Thus. Lemma 1 applies to C,(N, €) and so the theorem
holds. QED.

For small 4. (20) becomes [compare (12)]

Var[c,n. )] = oz + 0l3 + 9(?1’} (28)

If our principal concern is for the asymptotic forms, such as
(11). (12), (20), and (28). then we can considerably streamline our
derivations. First, we observe that, by (9) and the third line of (10),

Elcwv. o] = 1-0 -2V f_j:dz [(1-p-2V¥-0 -20V]

1
- J‘l-;. dz [(z - WV - (1 - 2.7,

and, if [with 2u = A/N, by (4)] we write z = (u - 1/2)/N in the first
integral, and z = 1 - (u - A1/2)/N in the second, we get, by (A7), that

rlewn o] - 1-(1- 3] - iflaonl-#) (-]
e [l . %]NH N :!2 duesfi+ o)

1 -e-l[l —-j.lgtui-ﬂ.ﬂl] - %te"-“ = k. O(ﬁr)

Hn

1]

' |
1-et+sm[a+2204 22 et -qed/2] + O[ﬁr) (29)

in agreement, of course, with (11).

Secondly. we similarly use (14) - (18) to simplify the variance
computation even more markedly.

e Y
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H{1-cmv. o) = j; dzf; dz I(z, 2/ )N
.-_J'; dz ; dz' (1 - 4V + I3(N)

2 N
=[1 ; FA] + (N, (30)

where 0 < Iy(N) = J dzJ‘ dz' {Iplz. z' )N - (1 - 4;11N]

Complement of reglons
11" and "12

< [1-(1 =421 =N -1 -4p)N)

S 8u = %’1: (31)
that is, ryN = 0(%} (32)

Therefore, by (A7),

E{[l - C;(N, 9]}2] = ety C(f—t.-}
whie  {1-E[c,v. @]} = et + O 1}2 = ek Ol

by (11); which, with (13), shows that

Var[c,v. @] = O. (33)

This, in tum, suffices to prove Theorem 1.
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3. THE k-DIMENSIONAL PROBLEM,
WITH HYPER-RECTANGLES

The most direct generalisation of the foregoing problem
replaces the interval [0, a] by a hyper-rectangular interval.

I k
X [0, ajl. of k-dimensional volume A =[] a (34)
J=1 J=1

and replaces the segment [c -r, ¢ + r] by the hyper-rectangular
interval,

k 'y
X [C_j ~ T}, Cj + r}I. of k-dimensional volume v = 2K [] ry. (8 5)
Jtl J:I_
When there are N such “bricks”, we denote their centres by ¢, ¢,,
.+ €y, with c = {Cu- Boyv it +ia cylo fori=1.2, ..., N, and write
B [ ¢y €1 -on O ]
C €3y Cgp -+ O
C = = . [361
L. Cry L Cn1 SN2 - v+ Ciied

The bricks are supposed to be congruent and similarly oriented; so
the dimension, parallel to the j-th coordinate axis, of every brick is T

and we may write r =[ry, rp, ..., . The indicator function of the
exterior of the i-th brick is then clearly
k
Zlegx = 1-T1 1 = Xrflcy: xJ-]]: (37)
J=1

and the function
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N N k
XAc:ix = T {zhe: 0} = TE{1-T1[1 -z (cp: 5]} (38)
=1 =1 =1

equals 0, if x lies in any of the N bricks, and equals 1 otherwise. If we
scale our variables as in (4) and (8), in the forms

011 B2 -0 B
B f1 2 - B . with (Vi) 8 =¢,/a. (39)
Oy O - - - O
L ¢ BT ) = 2NY/®[r fa,. rafay. . . .. ndal.  (40)
. | dl 8
and (%) z = a and “J‘cﬁ"ﬁb'k_' (41)
k
we see that w = % = I14,. (42)
=1

The generalisation of (7) is then

25 ax [ e 11 -x,0c: %)
1 —‘%J’:1 dx, f:dxz. : .J:dxk XIC:x), (43)

and therefore the analogue of the first line of (10) is

C,(N. ©)

E[c,N. 8] = "ﬁ. dz, J.:}'::z2 . ﬁ dz,

“J':denﬂd*u”'f;dﬂik J‘;dﬁzl.f;ﬂﬂzz"'.l.;da’*

k

1 1 rl 4
S I BT g{i—ﬂ -5, 05: 5.

(44)

— 18—
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which simplifies. much as before, by (9). to

1 1
E[c, . é] = 1-'[0:1:1'[-;&2...‘[{}% ni{m -n B J dé xujwﬂzzjl}

k N
I—Jldzl j;az . _[; az 1 _f.[; (-]}

-3 Hﬁ[ )1’1” dz, (2u)9

[raslont-ue ol [, o lowt-en-1)

I

l-ii-i}q[ﬁ]ﬁ (2407 {1 'EPJ[" - qfl s [q+11ﬂ4}}

x-qg‘.;:-n’*(’;]ﬁ[”j )q{‘ 'ﬁii'?ﬁ[‘ ) qfl g iq+1112"}}
1-§D|-11‘?(’;] [ﬁ)qfll {1 'T.r;’ff[‘ - qf y - tq+11124]}'

Since, for g 2 1,

2 1

0 =< I-Q+1+[q+1]24

< 1
[the expression vanishes for g = 0]. and since, for @ > 0,
N i "
@ (il
0 < E (q][ﬁr = (1+ E}
q=0

- 1 3 [N - 1)(N -2)
@ + N o +

= l+0+

< l+m+%—a12+3:_7w3+... < e,

)

(45)

(46)

(47)
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k

and putting = XA (48
1

we have from (45) that

E[c . 9]
N k
I-EOI-Hq{::) [ﬁ-]q{l -EIE;-’}E[I - qf T+ [q+1112q:]}*({mlﬁ)

-3 e (3) () [-ses- s2r s il i) 1o

Now note that

£ con(M)E) - (1- )" -

g=0

and that, for any p > 0,

N
Nyf@ 1
~119 o L S
qi.{” (q)(NT{Q+1}pq

N
3 (S e

"

[ 5T - La
(el
[E][NT 1){1 -[l i ;:-% H}i (51)

so that, for k 2 2 (whence 1/N 2 1/N?/R), with all 4, fixed, as N — =,
we obtain, using (A7), an asymptotic formula, similar to (11):

— 1 —
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E[C,N. 9] = 1-(1 - ﬁ]‘t WTTE{(‘ 3 %]”* (%) [% [(1 _ %)Nd

(-2 )} g
= e i [ee (10 3) - 2ew] « i)
: l-l:_“*'({.'fll',’ﬁ} (52)

The variance calculation uses [compare (13)]

Var[c,w. 8] = E[{c,w. @ - Ec,iv. &]}]
= g{i-cw. a)’]-(1-Ec,w a2 53
By (43), we get [compare (14)] that
el o [ron [ [ [
T e fo o [

1 1
I xfﬂdq“fﬁd%“‘ﬂdﬂ*w

N k L
xn{1-n[1- [E:z]}{IvH[I- ta:z}}
o S e S Ll )

i=1

oo oo foon oo s foo
N[ &k . k

1
xl—hl*ﬂ[i—j dﬁx{ﬂ:zl]-ﬂ[l-‘l’ de x[ﬂ-:z’}]
g Rl e i b i L] (1 R e B

rl 1 |
+T1 {1 1 dﬂyxjﬁlﬂg; z_'.l _J'D ﬂﬂy I;E,Wyi z}l + .[0 dﬂgzﬁlﬂy: zJJ I‘H[Ey; z} I'ﬂ

(54)

—18 —
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We note that the initial integrand in (54) is always in [0, 1]; whence
the result of integrating over all the unit 8,intervals (the integrand of
the z) is also always in [0, 1].

In the regions ‘11" and ‘12, of total area (1 - 4u)2, defined for
the (z, z')-square in Figure 2

J.HIZ} = Jﬁ[z'] =1-2u and Iu{zf z')=1-4u, (55)
by (9), (15), and (17). Thus, (54), with (9). (15), and (41), vields that

e[ -cone)] = [ o ey [ an [ an, [ ey [ an,

k k k
{ -I1 [1 zJ.]II JI;II [1 "JFJIz:!]] +JI=:11 PJIZ} J {? Y+l {1.1:J z_,]]}
N
k - N
=[1 21l {2;.5.)] erg = (1-29) srm. (56)
=

say: and we see that

k k{ 5 N} k
05 I < T [1-00-4%) - . cElﬂnjk=4k[ﬁ-]. (57)

Hence, Z[[1-cna)?] - (1-22)". ofx) = . 0(3): (58
while {L—E[r:w si]]g { ,.D{—mg} _e'ﬂm,\c{ﬁlﬁ} (59)

so that, by (53), as N — o=,

Var[c,(v. o] = O(El—m) 0. (60)

We now proceed exactly as in obtaining Theorem 1 to get:

PR [f—



The Random Covering Problem

THEOREM 2. The random variable C (N, 6) tends to 1 -e @ in
quadratic mean, and hence in probability, as N — ==,

Progf. We have shown [see (52) and (60)] that, if

Xy = C,(N. 8), (61)
then uy = E[Xy] = E[CA{N. 8}] - 1-e® (62)
and oy = Varjxy] = Var[c,v. @] - o. (63)

as N — . Thus, Lemma 1 applies to C,(N, €) and so the theorem
holds. @ED.
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4. THE k-DIMENSIONAL PROBLEM,
WITH ARBITRARY IDENTICAL OBJECTS

We now consider the k-dimensional problem,. in which the “table”, T
is still an (a; x a5 x , . . x a;) hyper-rectangle, but now the "coins” are
congruent, similarly-oriented objects Q,, @,. .. .. Q. of arbitrary
shape '@’'. which are bounded by (2r, x 2r, ¥ . .. x 2r,) hyper-
rectangles (or "bricks”) with centres at ¢;=[¢;; x cp x ... ¢yl (i= 1,

2, . N), as before. We now denote the k-dimensional volume of
each such object of shape @ by vg: so that, by (34), (35) [writing v,
more explicitly for v], and (40) - (42), we get

w
vg S b = 2K I'IlrJ = A{-ﬁ} (64)
J:

Let ffg[cf, x) denote the indicator function of the exterior of the i{-th
object of shape @; then, clearly, by (37),

Zglep: x) 2 Zleg: x), (65)

in the sense that, since @ lies inside the brick, the function on the left
can only be O if the function on the right is 0. The function

N

Xglc:x = I {Zg(e,: 0} (66)
Bl
then equals O, if x lies in any of the N objects @, and equals 1,
otherwise. Thus, if, analogously to (7) and (43), CQ[N, 8) denotes the

ratio of the total volume covered by the N randomly-placed objects Q
to the volume A of the “table”, (43) immediately generalises to

—21 —
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o ax, [Tag.. [ " dx 1 - Rglc: )
- ax [ ag. [ e Xge . 67)

We can scale the problem with respect to the dimensions of T, as
before, using (39) - (41). If we write ‘S" for the scaled shape
(obtained from @ by dividing the j-th coordinate of every point by a,.

CglN. @)

forf=1, 2.0 k) we observe that [compare (3) and (5)]
Zsl8: 2) = Zgle: x), (68)
where 0= [y, Bysians By (69)

Similarly, if "B’ is the shape of a “brick™ (or hyper-rectangle), whose
projection on the j-th coordinate axis is !z,il' —Hy.Zp+ ,u_,] if= 1.2,
. ... k), and we take the shape S to be B, we see that

(6 2) = Tle: x) = 7(6: 2), (70)

where B =gy oo oo, TR (71)
We now get, as before, that

Cg(N. 6 = CglN, ), (72)
and, therefore, following (44) and (45), that

E[cglN. 8] = HcgN. 8] = 1‘_[1 dz, j; dz,. . f; dz,
X _I:, dﬂll_ﬁ, dﬂlz***j; 6y J.:,dgzlJ-:,dﬂz:-- ﬁ;d’gzk

Kume xj;d%j;dem...j;d% é‘;}sfa};sl

- I-J;dzlj:]dz!...j;dzk f{{j{tdﬁu'ﬁdﬂm...j;dﬂm %siét;z}}.
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so that

"1 N

rlcgn o] = 1=fym [y fom { om0 [ 50

1 1 1 o -
= I-Jﬁdzljudzz...fn dz, Fg(z)™, (73)
where

0 1 -1 1 5
s = | d6,| de,... [ de, %(@ 2. (74)

Because, by (2), the function y,(6: 2) is symmetric, in 6 and z; we
can consider it, not only as the indicator function of the exterior of the
segment with centre at 6, relative to the variable z; but also as the
indicator function of the exterior of the segment with centre at z,

relative to the variable #. Thus, the function J#[z} defined in (9) is
seen to be the proportion of the @-interval [0, 1] not covered by the

segment [z - u, z + y], and therefore the integrand in the second line
of (45) is the N-th power of

Kk
Falz) = 1-T1 [1 - Jy(2)]. (75)
J=1
This gn[z] is clearly the proportion of the “table™ T not covered by a

brick B, say. of shape B. Similarly, we note that ?‘S[z] is the proportion
of T not covered by an object S of shape 8. Thus, since

S o B, (76)

we have 0 < J?‘B[z] = ?‘s{z] ol (77)
and this yields that

0 < E[cgiV. 0)] < E[c,w. o)]. (78)

Further. so long as B remains inside T, the corresponding object S
which it bounds will also be inside T. Thus, just as, by (9), (35), (41),

and (42), for any z such that B¢ T.
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k
u o
Fatz) = 1-TH@u) = 1- & = 1- 5 (79)
=1
so, if we analogously define [compare (42]]
v,
wg = N =, (80)
u ®
then ?‘g:}:l--}:l-%SI-ﬁ, (81)

B will be inside T for z in a region of volume not less than, by (48),
k k
T

1
Hn—zgj}z 1+W£11=1~W. (82)

if N is large enough; and, in the remaining region, of volume not
greater than tN-1/K, we know. by (77), that Fg(z) < 1: so. by (73). (81),

and (82),
(-8 ol

1 —e s 4 O('EHITE) (83)

E[cgv. 0]

Turning to the variance, we see that [compare (54) and (73)]
ef(1-cgm o)) = foen [yom oo foon [yem [
< Joton fq g [ on [ ot gat... [, aoy
x...xj;dﬂmj;dam..._]’;dﬂxtfll%lﬁﬁzl;siﬁgz'n}

= J-:)dzl f;% . f;dzk U; aa,f; dé,. .. ﬂ a8, 7slB: 2) 718 r}}N.
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so that
E[[l—cgm. 5}2] =J; dz, J-;dzl...‘[-;dzkg‘stz. " (84)

where
&y(z. ') = f; dEIJ; a6, . ..f;dek %(8:2) $s(B:2').  (85)

As is noted after (74), the function zg(8: 2) fnfﬁ: z’ ) may be viewed as

the indicator function, relative to the variable vector 8. of the exterior
of the union of two “bricks™, B and B’, whose centres are at z and z°.
Thus, the integrand in the fourth line of (54) is the N-th power of

1 1 1 _ -
8otz 2) = [ a6, [ do,... [ a6, B2 F5@ ). (86)

which is the proportion of the “table” T not covered by the “bricks”

B and B', whose centres are at z and 2", Similarly, we see that &s[z. z')

is the proportion of T not covered by the objects S and S’ with centres
at x and x’. This shows that [compare (77]]

we have 0 < &B[z. 2') € &giz. -2 e (87)
Finally. this vields that

H{1-cav o)) < H{1-cqm. 0} < 1. (88)

As before, so long as B remains inside T, S will also be inside T; and
then, just as

k
2
Gplz.z) = 1-2TT @) = 1- 7. (89)
s
2y 2
so 8glz.2) = 1- =8 = 1- ==, (90)

Now, (89) and (90) will hold for z and 2’ in a region of 2k-dimensional
volume not less than
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k k

4 4t
IMa-au?21-57%Z %= 1-717%. (91)
J=il J=1

if N is large enough; and. in the remaining region. of volume not
greater than 4t N-1/k, &g{z. Z') < 1; so that

‘E.[{I—CQ[N. 91}2] [1-#]2 ﬁﬁ]

= ¢208 4 O(EII?TE} (92)
Now, by (53), with (83) and (92),
Var[cgiN. 6] = O(ml-,—;] - 0. (93)

Proceeding again as in obtaining Theorems 1 and 2, get:

THEOREM 3. The random variable CQIN. ) tends to 1 -e ™8 in
quadratic mean, and hence in probability, as N — .

Precgf. We have shown [see (83) and (93)] that, if

Xy = CgN. 6). (94)
then uy = E[xy] = E[CgiN. @] - 1-eos (95)
and oy = Var{xy] = Var[cgiv. @] - o. (96)

as N — . Thus, Lemma 1 applies to Cg(N, 6) and so the theorem
holds. QED.

Now consider the problem with the objects Q of shape @
randomly oriented. as well as randomly located. It is clear that, in any
orientation, such a @ will be bounded by a hypercube K of side

e R s
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A perusal of the derivations for the problem of similarly-oriented
objects [see (64) — (96)] shows that, if we replace every u; by v.

defined above, add %k (k - 1) rotational parameters to the indicator

function y to specify orientation, and integrate over these to obtain
expected values; we can retrace our steps for the present problem.
The exact formulae will change, somewhat, but the asymptotic results,

embodied in (83). (92) and (93). will remain unchanged. It follows
that we have:

THEOREM 4. The random variable CQEN. O) tends to 1 -e"8 in

quadratic mean. and hence in probability, as N — =, even when the

objects of shape @ are allowed to take random orientations (with an
arbitrary probability distribution of orientations).
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APPENDIX A
An asymptotic expansion

LEMMA. As N — o

{1+%+ﬁ7+q§q]}“”*"

= eﬂ-’fi1+ %[ﬂy-rhx- %ax"-}+C{'ﬁlg'}} (A1)
Proof. If |-§.J'N| < 1. the series expansion
o §) ()38 Y A v
is absolutely convergent. Thus, asymptotically as N — =,
mg{l + -N"'—] - [;f.—] . &[g;;} O(ﬁlg') (A3)
Therefore,
(aN + b) 10414, %) = a¢+ 5 (bé- 3a2) + o(ﬁli-j
= aé + log[ %(bg’- %-.:162]] + O(j-@-}
(A4)
since, by (A3], 10%1 - %) = (Iixf]*' NI’I)
and we may put n=bé- %aiz.

Thus, exponentiating (A4), we get that
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bé- za2) + ﬁg‘)] (A5)

Now, let E=x+ 5+ O(T\?I} (AB)

then (A5) becomes
yaN+b

1+ %+ % + 5o
- exfacs § + o)) [1+ ¥ (be- 709) + O]
= e expf §f + o)) [1+ v (- 302) + ()
= eax[14 F + o5z)|[1+ 5 (- 20¢) + Oz
- cox[1+ & (ay+ - ) + O]

which is (A1), @ED.

COROLLARY, AsN — =,

L5 - eth-k (s 30 o) @

Proof. Puta=1, b=c x=-{, and y =0, in (Al). QED.
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