An Overview of the Architecture for WE 1.0

TR88-031
June 1988

Paulette E. Bush
Gordon J. Ferguson
John B. Smith
Stephen F. Weiss
Jay D. Bolter

Marcy Lansman

The University of North Carolina at Chapel Hill
Department of Computer Science

CB#3175, Sitterson Hall

Chapel Hill, NC 27599-3175 C

A TextLab Report.

Portions of this research were supported by the National Science Foundation,
Grant#IRI-8519517, the Army Research Institute, Contract#MDA903-86-C-0345,
and the International Business Machines Corporation (Contract#SUR-423).

Abstract

WE is a graphics-based Writing Environment. It provides tools to support the entire writing
process - from brainstorming to document revision. Users visually transform their ideas from a
network to a hierarchy defining document structure.

The prototype system is written in Smalltalk-80, an object-oriented interpreted language.
This document presents the architecture of the WE version 1.0 prototype system. Sections cover
the high-level component layout, the class hierarchy, the flow of control, the support framework,
and the database support. Readers should be familiar with object-oriented programming in

general and Smalltalk-80 in particular.

Contents
1 Introduction

2 Overview of the System
2.1:5 ‘Class HierarChy . it an i o o i e
2.2 Flow of Control: the Wrist, Mode, Agent, model

3 The WE prototype Environment Code

3.1 The Controlling Classes
LY S AWWIRSEL Qe e P L e e s A
32 SupportClasses v v v v v v e v e v v
3.2.17 Drawingl.0:C oonh o U S
3:2:25 ToalBox". - sl i e s s
3.2:3: - ToolBox-we: .. .ol L e
3.3 Database Construction
3.3.1 Database vs. Workspace
3.3:2. Databasel0: . i ok G i
3.3.3> Structures: . .. il v i e
334 FileSupport ... 0. s o v e

4 Acknowledgments

5 Appendices
5.1 Roaming: Traversing an Infinite Drawing Space .

5.2 Tracking: Recording and Replaying a WE session

6 Reference List

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

15
17
23
29
33
33
34
45
53

54

55
55
55

55

List of Figures

W N O O s W N

General System . Structure: |0 v i s e e e e e Snlesabasiak . 3
Partial Clasg Hietarchy . L o o o v v i e i i wnre o e e o e i s e e e e e 4
High-level structure of WE: Wrist, Mode, Agent 6
Wik matn program 2.0 L n o L R e TR RS T R A 8
The Dictionariesskept by a NODE . L Ll 2 i o i et e e e s et s ot 4 ae e 39
The Single Dictionary Kept byan ARC 41
The Three Dictionaries Kept by a WDATABASE 44
WE ERNOTEREE = . & o olbis wims doa wiaas b 5 bk v s L& v e 51

ii

1 Introduction

WE is a graphics-based Writing Environment. Unlike many conventional document-preparation
systems, it is more than a word-processor. WE carries the user through the entire writing process;
from initial exploratory idea-generaton, through hierarchical organization, to the expression of ideas
in text, to editing both structure and expression, and, finally, to producing the linear document,
itself. The system is multimodal, providing different working contexts for the different tasks that
comprise the overall writing process. It was designed to conform to an underlying theoretical
perspective [Smith & Lansman, 1987] and to support a specific writing method [Smith & Smith,
1987]. However, it can be used by writers following a number of different strategies.

A key concept on which the system is based is that writers use different “cognitive modes”
to carry out different tasks. A cognitive mode is a particular way of thinking in which different
cognitive processes are used to create or to transform different coginitive (intermediate) products
in order to accomplish a particular goal in accord with a certain set of constraints. Thus, for
example during early exploratory thinking, writers brainstorm, represent ideas, group them into
clusters, denote specific relations between pairs of ideas, and build small conceptual structures.
They frequently do so in a relaxed frame of mind in order to stress flexibility and originality. By
contrast, organization is a much more controlled way of thinking where writers build the actual
structure for the document to be written. WE provides four different system modes to support
four of the major cognitive modes used for writing: network mode for exploration, tree mode
for hierarchical organization, editor mode for writing, and text mode for revision. The system
also provides mechanisms for moving intermediate products created in one mode into another.
For example, writers can move a small hierarchical relation created in network mode into the
hierarchical structure being built in tree mode. Thus, system architecture reflects the underlying
cognitive architecture of the user.

WE is being developed using the software engineering methodology of rapid-prototyping.
Smalltalk-80 was chosen as the prototyping language because of its power as a rapid-prototyping
language: the Smalltalk-80 system code provides a wealth of functionality as an application base

and its pure ob ject-oriented construction and code interpreter capabilities give it much more versa-

tility and flexibility than the common procedural programming languages. WE is currently running
as a version 1.0 Smalltalk prototype. Design will continue in Smalltalk. Version 1.0 has been trans-
lated into Objective-C - a closely related language suited to large, high-performance, end-product
systems. For a description of that translation process, see [Shan, Smith, & Ferguson, 1988].

This document de-emphasizes WE user-interface code in favor of discussing the “main-program”
classes, the tools, and the database components. These classes are relevant to other applications
and will give the new WE programmer a general understanding of the architecture of the system.

The reader of this document should have a general knowledge of Object-Oriented programming
and a working knowledge of the Smalltalk-80 programming language in particular. Some exposure
as a user to the WE prototype system is also helpful. A reference list of background materials
which cover prerequisite areas is included in the Appendices.

Throughout this document, specific smalltalk category names are in sans serif, class names are

in SMALL CAPs, and method patterns are in italics.

2 Overview of the System

The use of an object-oriented programming language reduces the design discussion to one of class
relationships, class knowledge, information hiding, and inheritance — a welcome built-in framework
for expressing design issues and one that lends itself nicely to discussion at varying depths. I will,

then, exploit this fact and present first an overview of the WE structure.

2.1 Class Hierarchy

The bulk of the prototype code breaks down into five main units: the ‘environment code’ including
the ‘controlling’ category, ‘support’ categories, and ‘database’ categories and the user-interface
code including the control panel category (CP-1.0) and mode categories (Network-1.0, Tree-1.0,
Revise-1.0, Paragraph-1.0). A major versionl.0 design decision was to include only four modes
corresponding to four distinct phases of writing: Network Mode which allows a user to construct a
directed graph or clustering of ideas, Tree Mode which imposes constraints in allowing the user to

translate his ideas into a strict hierarchy (tree), Edit Mode which provides an editor for associating

text with single ideas, and Text Mode which allows the user to view and revise his document in its
final linear form. These four modes and the system as a whole are managed through a relatively
trim (compared to version 0) “control panel” Mode.

The environment code controlling classes WRIST1, AGENT1, MODE1 form the ‘main program’.
WE is supported graphically by the drawing and toolbox tools and conceptually by small ‘glue’
classes referred to as utilities (and kept in the Utilities category). A document itself is seen by WE
as a ‘database’ — a large information set whose structure preserves the relationships intended by
the user. WE’s skeletal structure is shown in Figure 1. The strict hierarchy of the classes discussed
in detail in this document (and the four WE mode classes) is shown in Figure 2 where classes are

represented as rectangles whose relationships to one another expose subclass relationships.

4

terminal

Jdi

Tool Box .
Drawing Package

Control Framework
/ Database

System N Application
[Supaerclasse Subclasses

Figure 1: General System Structure

CONTROL module DATABASE module

Object Object
ey DBObject
: WDatabase Arcs
wristh ToolMenuBar l I
Structures I Atioute
Mode1 ToolScrollAgent
wNetwork | Node
CP1Mode
Dimension
- WwPath NumericDimensio
NetMode 1 RaeviseModa 1
WTree
ParaModa 1 TreeMode 1

TOOLBOX module

DRAWING module
Object Object
ToolMenu (WindowingTransformation
I ToolHelpedMenu] I WeTransformationAndClip l
ToolCursor ToolList DrawnObject
DrawnLine Drawing 10
ToolFillTheBlank ToolMouse wing
ToolYesNo ToolNotifiar OrawnRact RootDrawing 14
ToolScroll ToolDelay DrawnText
ToolGhost ToolGetRact

Figure 2: Partial Class Hierarchy

2.2 Flow of Control: the Wrist, Mode, Agent, model

A main goal which motivated the control structure of WE was “vertical integration” - a direct
mapping between the concepts on one level and their implementation on the level below. The
freedom to represent conceptual objects by actual “objects” in smalltalk is one of the foremost
strengths of smalltalk and object-oriented languages in general. Once system design concepts are
stable, one can listen to discussion about the behavior of the desired system and pick out the “ob-
jects” - the nouns. These nouns can and often should then become objects in the implementation.
This mapping of a complete conceptual system into a complete ob ject family (nouns with defined
relationships to each other) is an art - a process for which there is yet no algorithm. The real
system will only be as good as this original mapping which determines its conceptual integrity.

WE is a system of structured pictures - a directional graph of ideas in one window, a strict
hierarchy in another window, a text editor in a third window, and a series of text editors in the
forth. The three big nouns are: Wrist, Mode, Agent. They represent three layers of abstraction.
An “Agent” is any visual object on the screen (e.g. a directional link in the idea graph, a “node”
of the hierarchy picture). A “Mode” is a window. WE has four modes: Network Mode containing
the idea graph, Tree Mode containing the hierarchy, Edit Mode containing a text editor, and Text
Mode containing a series of text editors. The “Wrist” is the environment controller and manages
system-wide communication. These three nouns are mapped directly into superclasses in smalltalk;
each specific mode is a subclass of the MODE1 superclass and each specific visual object within
the modes is a subclass of the AGENT1 superclass. There is only one Wrist instantiation. This
“3 controlling superclasses” structure facilitates code sharing, enforces consistency (tightness of
concept), and lays down specific structure skeletons at a high level. Two other advantages of this
structure, portability and flexibility, are extremely important to a prototype system.

The high-level structure of WE is shown in Figure 3. The arrows indicate the possible directions
of communication.

There are two important features to notice here: 1) Modes cannot directly communicate with
each other and Agents cannot directly communicate with each other. 2) The database (the user’s
document itself) cannot communicate with anything but the external file system - it knows nothing

about who is using it. This second point really becomes an advantage when one considers the future

i T

Structure

< BRobjet 1|
NG

WwDatabase

ER R

Structure

i,
“n,

g

file systam

Figure 3: High-level structure of WE: Wrist, Mode, Agent

goal of parallel multiple-user access to the database. A loose exception to the first point is the fact
that modes can be coupled together on certain messages in the sense that the message is sent to
them both at once.

The main characteristics of the subclasses of the 3 controlling superclasses are as follows:

Wrist - “creates” the environment by initially laying out the modes, does system initialization
and termination tasks, drives the WE session, and uses a single database at any given time. Because
it coordinates the modes, one can think of it as managing a set of structures (which make up a
workspace).

Mode - uses an assigned area of the screen (a window) to present a structure to the user. It
is binary (can be either active or inactive at a given time). Only a single mode can be active at
any given time. A mode maintains a list of its own agents and responds to the agentFor: aPoint
message - given a point in space, it answers its corresponding agent.

Agent - represents a single visible object (typically a node or link). It can be “invoked” which
means that a relevant operation-choice menu appears for the agent. Agents respond to the React-

sTo: aPoint message, giving a boolean answer to the question of whether a given screen coordinate

(mouse position) is in its area.
A WE user successively activates modes, invokes agents, and carries out discrete operations
(presented as agent menu choices) until the end of the WE session. The pseudo-code “main

program” is shown in Figure 4.

WRIST
self use the given database and begin;
self create and display all modes;
self run
[while not at the end of the WE session
poll modes and find one that both contains the mouse and is not hidden;

activate the mode]

self terminate;

(close down each mode and release everything)

MODE (activate)
while not at the end of the session
[do I contain the current mouse point?;
if so, poll my agents;
pass control to my agent containing the mouse point;

(self agentFor: mousePoint) invoke.

if not, is user pressing the mouse bfitton in another mode?
if so, put me to sleep and retyrn control immediately to the wrist
if not, { no button is being pressed, but the mouse point is in the mode }

continue looping]

AGENT (invoke)
Is a mouse button pressed?
If so,

start up my menu on me.

ToolMouse anyButtonPressed ifTrue: [self class menu startUpOn: self]

Figure 4: WE “main program”

3 The WE prototype Environment Code

The “environment code” consists of the controlling classes (WRrIST1, MODE1, AGENT1), support
classes, and database classes. Each of these classes is briefly discussed below with emphasis on
class knowledge and information hiding. The limits of a class’s knowledge space are defined by
its variables which are its “information holders” and its methods - its capabilities. Thus, each
presentation consists of a layout of class variables and instance variables and a short discussion
of the important class and instance methods. In the case of some small, simple classes, variables
and/or operations are not specifically discussed. The remainder of the WE code - the “user-
interface code” - is not covered, although one will be well on his way in understanding the “user-
interface” design when he grasps the environment code which is its foundation. For fine details,
the programmer should read the well-documented smalltalk code itself. Examples are included in

the code for most classes.

3.1 The Controlling Classes

As discussed above, three superclasses embody the main control loop of WE: WRrisT1, MODE1,
and AGENTL. In short, WRIST1 is the driver, instances of MODE1 are the windows, and instances

of AGENT1 are the visual objects which the user sees on the screen.

3.1.1 Wristl.0

The Wrist1.0 category contains WE’s three ‘main’ classes: WRIST1, MODE1 and AGENTI1.
WRIsT1
The WRIST1 class is the driver. Remember, it has only one instantiation per WE session.

Class Variables:

CurrentDatabase - always points to the current database. It is used in “resuming” work (self
startaNewOn: CurrentDatabase empty: false). Because it is a class variable, it holds the

database even through crashes to smalltalk. (WDatabase)

Running - true if WE is running, false if not (i.e. Running is false when one is programming
in the smalltalk environment under WE). The smalltalk Object class uses this variable to
know how to handle smalltalk errors: a non-standard error box is used during a WE session.

(Boolean)

TexOptions - provides TeX equivalents for WE symbols. (Dictionary)

Instance Variables:

database - the object which holds the user’s current document (layout in WE). CurrentDatabase,
the class variable mentioned above, is always the same as this instance variable, but is needed

because the resume message must be sent to a class. (WDatabase)
activeMode - the currently active mode. (Model)
modes - all modes. (OrderedCollection of Model)
nodeStack - holding area stack for copied nodes. (WeStack1)
structureStack - holding area stack for copied trees. (WeStack1)
validModes - all modes which have been refreshed since the last database change. (Set of Model)

inValidModes - all modes which have not been refreshed since the last database change. (Set of

Model)

couples - arecord of menu option commands shared by two or more modes. This record facilitates

communication between modes. (Dictionary of Symbol (selector), Set of Model)

count - helps the wrist to keep track of new names for text files. These unique file names are of
the form wOlxxx where xxx is the current value of count. count is incremented to provide

the next unused file name. (Integer)
promptForWrite - true when the user wants to be asked before text is saved. (Boolean)

dbChanged - true if database has been changed since the last save. (Boolean)

10

traceTree - a pointer to a structure which records the WE session for later analysis. (not used in

this version). (TrackingTreeShell)
laserWriter - the name of the laserwriter to be used (can be set interactively). (String)
linePrinter - the name of the line printer to be used (can be set interactively). (String)

outFileName - If the autoSend toggle is off, the outFileName is used to indicate the TeX file ‘out-
FileName.tex’ or the line printer file ‘outFileName.line’ into which WE will dump a document

sent to a laser or line printer respectively. Its default is ‘WEtoPrint’. (String)

autoSend - true if printouts are to be sent directly to the appropriate printer, false if printouts

are to be held in a file. (Boolean)

Class Operations:

e instance creation. One instance of Wristl exists for an entire WE session (created by star-
taNewOn:empty:). If the user drops back to smalltalk at some point, the wrist must be

“restarted” by the resume message.

e management of the three class variables. There are class methods to create the TexOptions
dictionary, to explicitly release the CurrentDatabase, and to maintain the Running boolean

and its related error catching directives.

Instance Operations

e handling the details of session control. The wrist initiates, runs, and terminates the WE
session (initiate, run, terminate). It also controls the details of allowing the user to stop work

on one document and begin work on another (nowUse:, continue With:).

e management of and access to the instance variables. This includes maintaining lists of the
currently valid and invalid modes, keeping track of the state of the database, managing the

holding area stacks, and keeping the printer specifications.

11

e handling communication between the modes. This includes ‘broadcasting’ messages to coupled

modes and keeping track of the currently active mode.

e redrawing modes when one mode’s size is changed or when the user explicitly requests a

redraw of the entire screen.
o doing the extensive initialization required upon instance creation (startaNewOn:empty:).

e giving out unique file names for text files when requested (newFileName).

MobE1l

Subclasses of MODE1 are “windows” in WE. Each handles a structure and is responsible for its
basic drawing and layout. When modes are “active”, their primary function is to find the agent
responsible for handling the current situation and then to pass control to that agent. MODE1 also
provides the standard mode menu bar for all its subclasses along with the support of the available

standard menu options including the management of size switching.

Class Variables:

LargeWindow - a default size specification for a “large” window (one that fills up most of the
screen). This variable is set in the class initialize method and used as the default when

switching sizes. (Rectangle)

MenuBarHeight - the default height (in pixels) of the standard mode menu bar (see class Tool-
MenuBar). This variable is set in the class initialize method. (Integer)

Instance Variables:

displayArea - the actual complete mode window (including the standard menu bar area) in screen

coordinates. (Rectangle)

agents - a collection of all agents in the mode. The mode polls its agents by searching this list

(agentFor: aPoint). (OrderedCollection)

12

backgroundAgent - the agent representing the background of a mode. It is a “default” agent

which gains control if no other agents in the mode want control. (Agent1)

drawing - the object which represents the visual mode space excluding the standard menu bar

area (a subdrawing of modeDrawing). (Drawing10)

status - the flag which is used in the main WE control loop ((Model) activate, and (Wristl) run).

It can take on a value of #active, #sleep, or #quit depending upon the state of the mode.

(Symbol)

field - an object which holds the generic characteristics which apply to agents in this mode (i.e.
x and y position, title, etc.). Each of these characteristics is itself an object of type Dimen-
sion and is duplicated in a dictionary kept by the database in an instance variable called

“dimensions”. (WField)

prinStructure - the principle structure handled by a mode. For example, the principle structure
of Network Mode is a WNETWORK, and of Tree Mode is a WTREE. These structures are

subclasses of class STRUCTURE. (Structure)
wrist - the Wrist1 instance which controls the WE session and acts as the mode manager. (Wrist1)

currPos - the screen coordinate of the most recent ‘interesting’ event (i.e. the position of the last

mouse click). (Point)

menuBarAgent - the object representing the standard mode menu bar at the top of the mode’s

display area. (ModeMenuBar)

modeDrawing - the object which represents the drawing of the entire mode (including the stan-

dard mode menu bar area). (Drawingl0)

variableTitle - arbitrary string under program control. Currently in WE, it is the user-given

name of the structure being viewed in the mode. (String)

windowControl - a utility object which keeps up with large and small window sizes for ‘switch-

size’ toggling, and manages explicit resizing of the mode. (WeWinPack)

13

viewport - an aid in managing the drawings representing the mode. It represents the entire area
taken up on the screen by the mode (including the standard mode menu bar). viewport is
only used to inform the mode (re)creation method of the change in mode size due to a switch

size or resize command. (Rectangle)

Class Operations:

e instance creation. Model specifies a standard mode creation method (principleStruc-
ture:field:displayArea:) which is used by all of its subclasses either solely or in addition to

a subclass implemented creation method.

e initialization of class variables.

Instance Operations:

e agent polling -passing control along. activate, a method vital to the ‘main-program’ loop,

passes control from the mode to its agent that currently contains the cursor.

e managing the mode’s visual area on the screen. This includes altering the menu bar appear-
ance when the mode is “invalid” and allowing the user to interactively change the mode’s

size.

e sending the mode’s structure contents to a file in a format suitable for a line printer or a

laserwriter.

e access to and management of the instance variables.

AGENT1

Subclasses of AGENT1 represent the visual objects in a structured picture (i.e. nodes in Network
Mode, links in the Network Mode, menu bars, etc.). When the user points at a visual object with
the cursor, the object is selected and the agent is invoked. Most agents ignore the invocation unless
the mouse button is pressed. If the button is pressed, a menu (specified in the particular subclass

of AGENTI1 and held in a class variable of this subclass) specific to the kind of object (subclass of

14

AGENT1) is displayed. The user makes a selection which is communicated to the particular agent.
That agent executes the associated method, then passes control back to the mode which continues

polling (the next agent is invoked - see Figure 4).
Class Variables: none

Instance Variables:
drawing - the object representing the agent graphically form on the screen. (Drawing10)
subject - the database object that the agent represents. (Object)

mode the MODEL1 instance which created the agent and now manages it. (Model)

Class Operations:
e instance creation. AGENT1 specifies a generic creation method which most subclasses use
(for:mode:drawOn:).
Instance Operations:

e starting up a menu on the subject to allow the user to perform operations on it (invoke). This

method is part of the main control loop of WE.

o field requests as to whether the agent is in charge of a certain given screen coordinate (reactsTo:
aPoint). The mode uses this method (part of the main control loop of WE) in polling its

agents.

e access to and maintenance of the instance variables.

3.2 Support Classes

WE must repeat certain small tasks so many times that it becomes advantageous to subdivide,

define, and refine these tasks into “tools” which can be used by the system easily, naturally, and

15

quickly. Thus, WE contains a “drawing package” that provides graphics primitives (i.e. lines,
rectangles, text) and a toolkit that contains both tools which prompt the user for information and
tools which ease and supplement the execution of operations within the system. These “supporting

classes” form a kind of storeroom of functionality available to the WE environment code.

16

3.2.1 Drawingl.0

DRrRAWING10

DRAWING10 is the base class for graphics in WE. A DRAWING10 has two basic components: 1)
a list of DRAWNOBIJECTS - the lines, text, filled rectangles etc. to be displayed and 2) a list
of sub-drawings. A drawing is really a tree of drawings; the root of this tree is an instance of
RooTDRAWING10 and the other nodes are instances of DRAWING10. The parent of a node is also
called its host. Each DRAWING10 has a local coordinate system offset from its host’s. All drawings
are the same scale as their parent. Actual display is done by tree traversal of the drawings’s
contents — lines, text, rectangles etc. Drawings are nested and all display is clipped to the host’s
viewport.

The drawing options (background and foreground color, line style) are handled with special logic
- they are bundled into the WEDRAWINGOPTIONS class. There is a default WEDRAWINGOPTIONS
instance for the DRAWING10 class. Drawings either inherit the options of their parent or use a
local set. If they inherit, then their ‘options’ variable is nil. Inheritance of options (as specified in
the design) saves on space for drawings. Most drawings inherit options and require only the single

nil pointer to record this.

Class Variables:

DefaultOptions - an object that holds the default drawing options for parameters like color,

line style and text style. This default is set up in the DRAWING10 initialize method. (We-
DrawingOptions)

Instance Variables:

parent - the host drawing. (Drawingl0)

offset - the distance from this particular drawing’s origin to its host’s origin. offset is expressed

in terms of x and y distances. (Point)

extent - the size of the drawing expressed as width(x) and height(y). (Point)

17

subords - a collection of all subdrawings of this drawing. (OrderedCollection)

contents - the collection of the actual graphical objects which make up this drawing. (Ordered-
Collection)

outlined - true if the drawing is outlined. (Boolean)

subject - the database object which this drawing represents. Access to this information is neces-
sary because many times drawings are used as ‘indexes’ for deciding whether an agent reacts

to a given point or not - it does react if its drawing contains the given point.

options - a collection of drawing options which can be set to nil to adopt the default options (see
the class variable, DefaultOptions). (WeDrawingOptions)

Class Operations:

e instance creation. Drawingl0 has two methods for creating a new drawing (which must by

definition be a root drawing): createAt:, and displayBoz:viewport:.

e setting up the default drawing options.

Instance Operations:

e instance creation. The method subDrawingAt: creates an instance of DRAWING10 which is

to be a subdrawing of the receiver drawing.
e managing the drawing options (e.g. background color, line style, text style).
e switching the outline toggle and creating graphics primitives (lines, texts, and rectangles).

e erasing and deleting the whole drawing tree or erasing and deleting single elements of the

drawing tree.
e displaying itself on the screen - clipped or unclipped (see display and displaylIn:).

e access and management of the instance variables having to do with the position of the drawing

on the screen.

18

e transforming given points from drawing coordinates to screen coordinates and vice-versa.

e responding to the containsPoint: message — essential to the part of the WE main control loop

which deals with successive agent invocation.
e moving itself to another screen location.
e accessing the tree of drawings.

e “indexing”. association of a database object with the drawing. The database object becomes
the subject (see instance variable, subject) of the drawing. A DRAWING10 can also return

the appropriate drawing and /or subject for a given screen point.

RooTDRAWING10

As a subclass of DRAWING10, a ROOTDRAWING10 is simply a special kind of DRAWING10.
Specifically, it is the DRAWING10 that is at the root of a tree of drawings. Its capabilities are
the same as those of DRAWING10 with the exception of the reimplementation of some methods
because of this drawing’s unique place in a tree of drawings. Its host, for example, is always nil
and it answers in the affirmative when asked if it is a root drawing. It has one instance variable,

displayBox, that holds its viewport in screen coordinates. It has no class variables of its own.
DRAWNOBJECT

Each member of the ‘contents’ orderedCollection of an instance of DRAWING10 is a DRAWNOB-
JECT. A DRAWING10 is displayed by displaying each one of its ‘contents’ in turn. (In the same way,
a DRAWING10 which represents a tree of drawings is displayed by rendering each content of each
DRAWING10 tree node.) Thus, the graphical objects that the user actually sees on the screen are
instances of DRAWNOBIJIECT. All subclasses of DRAWNOBIJECT work with a pair of points. These
points are used in various ways; typically they define the origin and extent of a rectangle specifying
an area for drawing in local coordinates. This rectangle marks the border of a drawn rectangle
or the composition rectangle for text. Alternatively, the two points can mark the endpoints for a
drawn line (contained in a virtual rectangle). All subclasses of DRAWNOBIECT can actually draw

themselves on the screen.

19

Class Variables: none

Instance Variables:

origin - the origin of the rectangle in the coordinate system of its parent drawing (local coordi-

nates). (Point)

extent - the width and height of the rectangle expressed in terms of x and y relative to the origin

point. (Point)
color - the color of the rectangle expressed as a numeric code. (Integer)

lineStyle - the size (thickness expressed in terms of x and y) of the “pen” used to draw the

rectangle. (Point)

Class Operations:

e instance creation. origin:extent:

Instance Operations:

e management of and access to the instance variables.

DRrRAWNLINE

DRAWNLINE is the subclass of DRAWNOBJECT for lines. A DRAWNLINE keeps track of its size

and color and its position in its host drawing. It knows how to draw itself.
Class Variables: none
Instance Variables: none

Class Operations:

e instance creation. Given the two endpoints as parameters, the from:to: method creates an

instance of DRAWNLINE which represents a line connecting the two points.

20

Instance Operations:
e drawing the line on the screen.

e responding to the direction message by answering its direction (north, northeast, west, etc.)

with respect to a standard cartesian coordinate system.

DrAWNRECT

DRAWNRECT is the subclass of DRAWNOBIJECT for rectangles. A DRAWNRECT keeps track of
its dimensions, color, drawing style (outlined or painted with a color), and its position in its host
drawing. It knows how to draw itself. Note that a DRAWNRECT may be outlined or filled, but not
both.

Class Variables: none
Instance Variables:
filled - true if the rectangle is to be filled with color. (Boolean)

DRAWNTEXT

DRAWNTEXT is the subclass of DRAWNOBIECT for text. An instance of DRAWNTEXT is a
rectangular region filled with text. A DRAWNTEXT keeps track of its dimensions, color, text style,

and its position in its host drawing. Unlike the other DRAWNOBIECTS, it cannot be scaled. It

knows how to display itself.
Class Variables: none

Instance Variables:
textStyle - the style of text expressed as a numeric code. (Integer)

text - the string of characters which the DrawnText represents. (String)

21

WETRANSFORMATIONANDCLIP

WETRANSFORMATION ANDCLIP supports translation and scaling for DRAWING10. It is a sub-
class of the Smalltalk class WINDOWING TRANSFORMATION. It adds support for a clipping rectan-

gle.
Class Variables: none

Instance Variables:

clipBox - the rectangle (given in local coordinates) to which the DRAWING10 should be clipped

after transformation. (Rectangle)

22

3.2.2 ToolBox

Classes in the ToolBox category are the tools which support the interface between the user and
the system. Tools exist for monitoring cusor movement and mouse button action as well as for

informing and prompting a user.
TooLCURSOR

TooLCURSOR is a class that manages and provides cursors. All cursors used in WE are held
in class variables of TooLCURSOR. Also, a user may define a cursor not already in the system.
An instance of TOOLCURSOR is a single cursor. The cursor itself is assigned to the instance
variable ‘cursor’. The cursor’s offset - its sensitive point - is kept in the instance variable ‘offset’.
TooLCURSOR is dependent on the smalltalk system class, CURSOR.

There are three ways of obtaining a new cursor: 1) by calling one of the system cursors or 2)
by explicit definition or 3) by creating one from a 16 by 16 FORM. A cursor is (and must ALWAYS
be) a 16 by 16 bitmap.

TooLCURSORs can be used as new “permanent” cursors or they can be shown while a given
code block is executed or while a given code block is true by using the make Permanent, showWhile:
aBlock, and showWhileTrue: aBlock methods respectively.

A class method that returns the current cursor (currentCursor) is provided to facilitate saving

the current cursor so that it can be reinstated later.
TooLMOUSE

TooLMoUsSE allows access to mouse button status and cursor position. It is really just an
interface for WE to the smalltalk system class INPUTSENSOR. Thus, TOOLMOUSE has no instance
methods of its own. The only difference between TOOLMOUSE and INPUTSENSOR is that in ToOL-
MoUSE the three mouse buttons are referred to as left/middle/right, wheras in INPUTSENSOR, they
are referred to as red/green/blue.

”Sensor”, a system global variable, is an instance of class INPUTSENSOR. TOOLMOUSE passes
along all its messages to this object, so the real implementations of the methods are in INPUTSEN-

SOR instance methods.

23

TooLMOUSE capabilities fall into three groups:

1. positioning - mousePoint, mousePoint: A user can find out the current cursor position and

set the current cursor position.

2. testing - anyButtonPressed, noButtonPressed, left ButtonPressed, middleButtonPressed, right-
ButtonPressed. A user can recieve boolean answers as to the specific state of the mouse buttons

at any particular time.

3. waiting - waitButton, waitClickButton, waitClickLeft Button, waitNoButton. A user can direct

the application to wait for certain mouse events to happen before continuing.

These capabilities allow the user to “program” the mouse buttons to affect his application in
prescribed ways. WE, for example, is programmed to make no distinction between the three mouse

buttons - it is essentially a “one-button” application.
ToOLNOTIFIER

A ToOLNOTIFIER can be used to present short pieces of information to an application user.
The information appears as a text string in a white rectangle on the screen. One may easily
specify the position on the screen where the message is to appear. One may create an instance
of TOOLNOTIFIER that will be an object to be reused many times (using message), or one may
request that a certain message be shown only once at the mouse point and then erased (using

show:). Note: TOOLNOTIFIER is dependent on WE class DRAWING10.

Class Operations:

e instance creation. as specified in the above paragraph

Instance Operations:
e displaying. The ToolNotifier can be shown at a particular point on the screen.

e erasing. The ToolNotifier can be erased from the screen.

24

TooLYEsSNoO

A TooLYEsSNoO can be used to ask the application user a yes/no question. It returns a boolean
answer. A ToOLYESNO appears on the screen as a three-part rectangle. It contains a question,
and an actual Yes box and No box. The Yes and No boxes can be activated with a mouse click to

indicate user choice. TOOLYESNO is dependent on WE class DRAWING10.

Class Operations:

e instance creation. The TOOLYESNO only requires the intended question, a string of charac-

ters, for creation (question: aString).

Instance Operations:

e displaying. One may show a TOOLYESNO on the screen at a particular screen coordinate
location (displayAt: aPoint). The TOOLYESNO erases itself and returns the appropriate

boolean answer when the application user responds.

TooLFILLTHEBLANK

TooLFILLTHEBLANK is used to acquire a string from the application user. It is an interface
to the smalltalk system class FILLINTHEBLANK. Thus, it has no instance methods of its own.
A TooLFILLTHEBLANK appears on the screen as a two-part rectangle. It contains a question or
prompt of some kind and a small editor which accepts an input string. The application user’s

response is returned from the tool as a string.

Class Operations:

e instance creation. One can specify up to three parameters for a TOOLFILLTHEBLANK: a
message string, an initial answer, and a screen coordinate at which to display the tool. The
message string is required, but defaults will be used for the initial answer and screen coor-
dinate if they are not specified. So, the most specific form of creation is message: aString

initialAnswer: answerString displayAt: aPoint.

25

Instance Operations: none
TooLMENU

TooLMENU supports the definition and control of pop-up menus. TOOLMENUs hold lists of
application operations. These operations correspond one-to-one with application messages. When
an application user selects an option from the menu, the corresponding message is sent immediately

to the object which the menu was “started up on”.

Class Operations:

e instance creation. One defines a menu with labels, separation lines, and selectors. Labels are
the actual ‘choice words’ (usually each referring to an application operation) which appear
on the visual menu. Separation lines are simply specifications of positions in the menu where
black, horizontal lines should be shown between choice words. Selectors, one per label, must
be the names of existing application messages. Messages from a single menu must belong to
the same class and may not have any arguements. It is not possible to include messages from
different classes in a single menu selector list. The basic instance creation message, then, is

label: aString lines: anArray selectors: selArray.

Instance Operations:

e displaying. startUpOn: anObject displays the menu and sends the message associated with
the user’s selection to anObject. anObject can be anything that understands all the messages

in the menu’s selector list.

TooLLiIsT

TooLLIST is a general tool that presents a list of ob jects, allows the user to select one, and then
pops up a menu from which the user can select an operation to perform on the selected object. The
choice objects are sent to the tool in an ordered collection along with a message that each object
understands (usually one which returns the name of the object). The objects are represented in
the list by the strings which they return upon receiving the message. TOOLLIST also has a title

bar and a menu for operating on the titlebar’s associated object.

26

Class Operations:

e instance creation. One can specify up to eight parameters for a TooLLIsT. The creation mes-
sage is size: aPoint onList: anObjectList mesg: aSymbol menu: aMenu titleObject: anObject
titleMessage: a2Symbol titleMenu: a2Menu. The parameters are (respectively): a screen co-
ordinate at which to place the tool’s upper left-hand corner, a collection of objects to include
in the list, a message to send to each object to get its representation string, a list menu
(optional), an object for the title bar, a message to send to the title bar object to get its

representation string, and a title bar menu (optional).

Instance Operations:

e controlling. One activates a TOOLLIST by passing it control (takeControl). A TooLLIsT
displays itself on the screen, allows the application user to select an object and activate a

menu on that object, and then erases itself from the screen.

TooLLisT is the most adaptable tool in the ToolBox. In WE, for example, it is used both as
a selection tool for changing workspaces and as a visual stack and stack manager for the holding

area stacks.
TOOLSCROLL

TooLSCROLL supports creating, displaying, and reading of vertical scrollbars. A TOOLSCROLL
knows nothing about the window it is associated with. Window content information must be
provided by the application programmer at a higher level. TOOLSCROLL is less powerful than the
smalltalk system scrollbar because the application programmer must handle its control sequence
and the actual moving of the window contents (a specific message is sent to the class to accomplish

this). However, TOOLSCROLL has the advantage of being system independent.

Class Operations:

e instance creation. create (no parameters are required).

27

Instance Operations:

e accessing. Methods exist for getting information from a ToOLSCROLL which may be essential
for the application programmer to manage its control. The position of the window contents

of the window associated with the TOOLSCROLL can be set (top:visible:).

e activating. One can pass control to a ToolScroll.

28

3.2.3 ToolBox-we

The tools discussed above are generic information-retrieving tools which have wide application
in some form in general graphical interactive systems. In contrast, the tools in the ToolBox-we
category are more specific to the Writing Environment. They are dependent on other WE classes.
They are extras that aid in the fine tuning of WE. Still, they may be helpful in general graphical

applications.
TooLMENUBAR

Visually, a TOOLMENUBAR is a strip of titled areas each of which presents a pull down menu
when activated. WE uses subclasses of TOOLMENUBAR both for session control as its Control
Panel and for mode control as a standard in each of its four modes. TOOLMENUBAR is a subclass
of AGENT1; an instance is created in a drawing and associated with a mode. All specific capability

is implemented in subclasses.

Class Operations: There are no class methods - therefore, superclass instance creation methods

are used.

Instance Operations:

e activation. Because it is an AGENT1, a TOOLMENUBAR can be invoked (invoke). Within the
main control flow in WE, this invocation happens when the mouse point is inside the menu
bar’s area. As with any AGENT1, when a TOOLMENUBAR is invoked its associated menus

become available to the user.

TooLHELPEDMENU

TooLHELPEDMENU adds help to its superclass, TOOLMENU. When a WE user selects a menu
option with the system ‘command key’ pressed, a help message specific to the option selected
appears in lieu of the operation execution. In smalltalk on the SUN, the magic key is actually a
combination: both the ‘left’ and the ‘Shift’ keys must be pressed together. A TooLHELPEDMENU
holds an appropriate set of help strings. It overrides the TOOLMENU startUpOn: message to test

for a help request.

29

Class Operations:

e instance creation. TOOLHELPEDMENU uses its superclass’s creation method with one addi-

tional parameter: the array of help strings.

Instance Operations:

e displaying. Like a TooLMENU, a TOOLHELPEDMENU can be ‘started up on’ an object

(startUpOn:).

TooLGHOST

TooLGHOST draws a ‘ghost line’ between two given points. A ‘ghost line’ is a line which is
drawn by reversing each pixel that will be covered by the line. This capability is especially useful
in WE for drawing links in the Network Mode; as the WE user is moving the mouse to select the
end node for the link, the link is successively drawn and erased with TooLGHOST. This gives the

desired effect of a pulsating, faint guideline.

Class Operations:

e instance creation. TOOLGHOST requires at least two parameters: the two line endpoints. A
clipping rectangle is an optional parameter. Thus, the most specific instance creation method
is from: aPoint to: aPoint clip: aRectangle. Extra methods which make stars from ghost
lines are also included. These methods draw lines from a given point p0 to each of the points

in a collection (starFrom: p0 to: aCollection). Here again, a clipping rectangle is optional.

Instance Operations: none
TooLGETRECT

TooLGETRECT is simply an interface between WE and the smalltalk system class RECTANGLE.

30

Class Operations:

e return a rectangle specified by the application user. The get message gives the application
user a chance to delimit a rectangle on the screen. The user is given a corner prompt which
he can use to indicate the top left-hand and lower right-hand corners of a rectangle. The

ToOLGETRECT returns this defined rectangle.

Instance Operations: none
TooLDELAY

ToOLDELAY is simply an interface between WE and the smalltalk system class DELAY.

Class Operations:

o freezing the application flow of control. The seconds: method takes an integer parameter.
Once given this parameter, TOOLDELAY causes all action to freeze for the specified number

of seconds.

Instance Operations: none
TOOLSCROLLAGENT

ToOLSCROLLAGENT packages the vertical scrolling function provided by TOOLSCROLL (see
section 3.2.2). It is a wrapper which makes TOOLSCROLL easy to use within the Wrist/Mode/Agent
paradigm. TOOLSCROLLAGENT is an Agent itself; when it is invoked, it sends a series of scrollTo:
messages to a specified target object representing the contents of the window to which the scroll

bar is attached.

Class Operations:

e instance creation. The creation message is for: aTarget mode: aMode drawOn: aRectangle
imageSize: anlnt. aTarget is the object that will be scrolled. aMode is the associated WE
mode. aRectangle defines the size of the window corresponding to aTarget. anlnt is the

amount (percent) of aTarget’s contents which can fit in its associated window at one time.

31

Instance Operations:

e invocation. Like all AGENT1s, a TOOLSCROLLAGENT responds to an invoke message. Upon
invocation, a TOOLSCROLLAGENT passes control to its scroll bar (a TooLScroLL). A
TOOLSCROLLAGENT is invoked only when the mouse point is within 5 pixels of its target’s

edge (reactsTo:).

32

3.3 Database Construction

Traditionally, the word “database” connotes a large body of information organized in some fashion
that allows fast and specific access. WE’s concept of a database is much the same at a high level,
but its implementation is quite unique and natural to the kind of system that WE is.

WE'’s database provides an organizational struct<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>