
Volume Rendering by Adaptive Refinement 

TR88-030 

June 1988 

Marc Levay 

The University of North Carolina at Chapel Hill 
Department of Computer Science 
CB#3175, Sitterson Hall 
Chapel Hill, NC 27599-3175 

~ / 

,, 
I I I r, 

I~ 

I ti~ ! 

"j' 
I 

~ 
I 

~ 



UNC is an Equal Opportunity f Affirmative Action Institution. 



Abstract 

Volume Rendering by Adaptive Refinement 

Marc Levoy 

June, 1988 

Computer Science Department 
University of North Carolina 
Chapel Hill, NC 27599 

1 

Volume rendering is a technique for visualizing sampled scalar functions of three spatial dimen
sions without fitting geometric primitives to the data. Images are generated by computing 2-D pro
jections of a colored semi-transparent volume, where the color and opacity at each point is derived 
from the data using local operators. This paper presents an image-order volume rendering algo
rithm in which image quality is adaptively refined over time. The first image is generated by cast
ing a small number of rays into the data. The usefulness of these rays is maximized by distributing 
them according to measures of local image complexity. An image is formed from the resulting 
non-uniform distribution of colors by interpolation. Subsequent images are generated by alternately 
casting more rays and interpolating. Examples from two applications are given: molecular graphics 
and medical imaging. 

1. Introduction 

In this paper, we address the problem of interactively visualizing sampled scalar functions of 
three spatial dimensions, henceforth referred to as volume data. We focus on a rapidly growing 
family of visualization methods called volume rendering techniques in which a color and an opacity 
is assigned to each voxel, then a 2-D projection of the resulting colored semi-transparent volume is 
computed [Levoy88a, Drebin88]. The principal advantages of volume rendering over other visuali
zation methods are its superior image quality and the ability to generate images without explicitly 
defining surface geometry. The principal drawback of these techniques is their cost. Since all vox
els participate in the generation of each image, rendering time grows linearly with the size of the 
dataset. 

The complexity of volume rendering can be reduced by taking advantage of object-space 
coherence. Methods based on hierarchical spatial enumeration and adaptive termination of ray trac
ing are presented in [Levoy88b]. Although the amount of time saved depends on the data and the 
viewing angle, savings of more than an order of magnitude have been observed. Nevertheless, the 
time required to render a large dataset using currently available workstation technology is on the 
order of tens of seconds or minutes. To be useful in an interactive setting, reductions of at least 
another order of magnitude are desirable. 

This paper presents an image-order volume rendering algorithm in which image quality is 
adaptively refined over time. A survey of refinement techniques for polygonal environments is 
given in [Bergman86]. These techniques have three principal characteristics: they distribute work 
according to where it makes the most difference, they form intermediate images from partial infor
mation, and they minimize the amount of work discarded after formation of these images. In the 
present paper, an initial level of detail is selected and a number of rays are cast. The usefulness of 



2 

these rays is maximized by distributing them according to measures of local image complexity. In 
classical ray tracing, methods for distributing rays non-uniformly include recursive subdivision of 
image space [Whitted80] and stochastic sampling [Lee85, Dippe85, Cook86, Kajiya86]. Methods 
for measuring local image complexity include color differences [Whitted80] and statistical variance 
[Lee85, Kajiya86]. This paper employs recursive subdivision based on local color differences. 

Typical ray densities for polygonal environments range between one and one hundred rays 
per pixel. Images are formed by adding the contributions from all rays cast in each pixel. Volume 
data, however, is assumed bandlimited before sampling. Additional blurring is often introduced 
during acquisition, as in the case of computed tomography (CT) and electron density maps obtained 
from X-ray diffraction data [Herman80, Glusker85]. Certain amorphous phenomena occurring in 
astronomy and physics are even more bandlimited [Upson86]. As a result, the spacing between 
pixels is typically set equal to the spacing between voxels, and no more than one ray is cast per 
pixel. This leaves us with the problem of forming intermediate images from a non-uniform and 
possibly sparse array of colors. In this paper, images are formed by recursively bi-Iinearly interpo
lating between available colors and resampling at the display resolution. 

Following image formation, interpolated colors are discarded, the level of detail is increased, 
and more rays are cast. Since rays cast in previous steps are not discarded, the cost of computing 
subsequent images is equal to the cost of casting additional rays added to the cost of repeating the 
recursive subdivision and interpolation operations. In the current implementation, these latter costs 
are small compared to the cost of ray tracing. The amount of work discarded after image forma
tion is therefore minimal. 

Using this method, crude images of many datasets can be obtained in few seconds. Gradu
ally better images are obtained at intervals of a few seconds each, culminating in a high quality 
image in less than a minute. 

2. Description of algorithm 

The volume rendering algorithm used in this paper is summarized in figure 1. We begin with 
a 3-D array of scalar values. For simplicity, let us assume that the array forms a cube measuring N 
voxels on a side. In this paper, we treat voxels as point samples of a continuous function rather 
than as volumes of homogeneous value. Voxels are indexed by a vector i = (ij,k) where 
ij,k = 1, ... ,N, and the value of voxel i is denotedfli). Using local operators, a color C(i) and an 
opacity a(i) is derived for each voxel as described in [Levoy88a]. 

Parallel rays are then traced into the data from an observer position as shown in figure 2. Let 
us assume that the image is a square measuring P pixels on a side, and that one ray is cast per 
pixel. Pixels and hence rays are indexed by a vector u = (u,v) where u,v = 1, ... .R. We divide 
the image into square regions measuring romax pixels on a side where 1 ::::; romax ::::; R, then cast rays 
from the four comer pixels of each region. For each ray, a vector of colors and opacities is com
puted by resampling the data at IV evenly spaced locations along the ray and tri-linearly interpolat
ing from the colors and opacities in the eight voxels surrounding each sample location. Samples 
are indexed by a vector U = (u,v,w) where (u,v) identifies the ray, and w = 1, ... ,W corresponds to 
distance along the ray with w = I being closest to the eye. The color and opacity of sample U are 
denoted C(U) and a(U) respectively. A fully opaque background is draped behind the dataset, and 
the resampled colors and opacities are composited with each other and with the background to 
yield a color for the ray. This color is denoted C(u). 

If the range of colors returned by the four rays in a region is less than some e where e > 0, 
no further processing is performed on this region. Otherwise, the region is divided into four subre
gions and more rays are cast. Subdivision continues until the range of colors falls below e or the 
size of the region reaches some romin where 1 ::::; romin ::::; romax· An array of flags F(u) is also main
tained, and rays are traced only from pixels whose flags are clear. Once a ray has been traced, its 



3 

flag is set. This avoids duplication of work when subsequent regions are processed, and also when 
the current region is processed again to compute the next image. 

When ray tracing is complete, an image is formed by bi-linearly interpolating between avail
able colors and resampling. To insure continuity despite the non-uniform distribution of rays, a 
recursive method similar to the algorithm employed during ray tracing is used. The image is 
divided into square regions measuring romax pixels on a side. Pixels are interpolated at the mid
points of the four sides and at the center of each region. The region is then divided into four 
subregions and the process is repeated. Subdivision continues until the region contains a single 
pixel. An array G(u) of flags is maintained, and interpolation is performed only at pixels that have 
neither been ray traced nor interpolated, i.e. pixels whose F and G flags are clear. Once a pixel has 
been interpolated, its G flag is set. 

When interpolation is complete, the image is displayed. To continue the refinement process, 
the image is cleared of all interpolated colors, i.e. pixels whose F flag is clear, the level of detail 
is raised by decreasing romin• romax• or e, and ray tracing is begun anew. The process terminates 
when romax = 1, or when the user stops it. The complete algorithm is summarized as follows: 

procedure Refine() begin 
for v := 1 to R do for u := 1 to R do begin 

C(u,v) := 0; a.(u,v) := 0; F(u,v) := 0; G(u,v) := 0; 

end 

{Initialize level-of-detail parameters} 
(J)max := FirstromaxO; (J)min := FirstrominO; e := FirsteO; 

{Loop until image is fully refined} 
while (J)max > 1 do begin 

end 

end Refine 

{Cast some (more) rays, then form an image by interpolation} 
RayTraceData(romax•(J)min•e); 

Interpolatefmage(romax); 

DisplayfmageO; 

{Clear all interpolated colors} 
for v := 1 to R do for u := 1 to R do begin 

if not F(u,v) then C(u,v) := 0; G(u,v) := 0; 

end 

{Increment level-of-detail parameters} 
romax := NextromaxO; romin := NextrominO; e := Nexte(); 

procedure RayTraceData(romax•(J)min•e) begin 

{Divide image into square regions for ray tracing} 
for v := 1 to R by (J)max do for u := 1 to R by (J)max do 

RayTraceRegion(u,v ,romax ,romin•e ); 

end RayTraceData 



procedure RayTraceRegion(u,v,W,Wmin•E) begin 

{Cast rays from four corners of region} 
for j := 0 to w by w do for i := 0 to w by w do 

if u+i ~ R and v+j ~ R and not F(u+i,v+J) then begin 

RayTrace(u+i,v+j); F(u+i,v+J) := 1; 
end 

{If color difference> threshold and region is larger than wmin by Wmin pixels,} 

{divide into four subregions and continue ray tracing} 
if w > wmin and Difference(u,v,w,e) then 

for j := 0 to w/2 by w/2 do for i := 0 to w/2 by w/2 do 

RayTraceRegion(u+i,v+j,w/2,wmin,epsilon); 

end RayTraceRegion 

procedure Interpolatelmage(Wmax) begin 

{Divide image into square regions for interpolation} 
for v := 1 to R by Wmax do for u := 1 to R by Wmax do 

InterpolateRegion(u,v,wm.J; 

end Interpolate/mage 

procedure InterpolateRegion(u,v,w) begin 

{Interpolate colors at midpoints of sides and at center of region} 
for j := 0 to w by w/2 do for i := 0 to w by w/2 do 

if u+i ~ R and v+j ~ R and not F(u+i,v+J) and not G(u+i,v+J) then begin 

Interpolate(u,v,w,u+i,v+J); G(u+i,v+J) := 1; 

end 

{If region is larger than 2 x 2 pixels,} 

{divide into four subregions and continue interpolation} 
if w/2 > 1 then 

for j := 0 to w/2 by w/2 do for i := 0 to w/2 by w/2 do 

InterpolateRegion(u+i,v+j,w/2); 

end InterpolateRegion. 

4 

The First and Next procedures respectively initialize and increment the level-of-detail param
eters according to some user-selected sequence. The RayTrace procedure traces a ray from pixel 
(u+i,>'+J) into the data and loads the resulting color C(u+i,v+J) into the image array. The Difference 
procedure decides if the range of intensity values for any component (red, green, or blue) of the 
colors at the four comers of the specified region exceed E. The Interpolate procedure computes a 
color C(u+i,v+J) for pixel (u+i,v+J) using linear interpolation (in the case of region boundary mid
points) or bi-linear interpolation (in the case of region centers) and loads it into the image array. 
The Display/mage procedure displays the interpolated image. 



5 

3. Implementation and results 

To demonstrate the performance of this algorithm, two case studies are presented. The first 
is a 123 x 123 x 123 voxel portion of an electron density map of cytochrome B5. Using methods 
described in [Levoy88a], an isovalue surface was selected for display. Using the algorithm 
described in section 2 of this paper, a four-frame adaptive refinement sequence was then generated. 
The resulting images are shown in figure 3, with the sequence running from top-left to bottom
right. While the upper-left image exhibits obvious artifacts,. it is still useful. The other three 
images appear at intervals of approximately five seconds each using an implementation in the C 
language on a Sun 4/280 with 32.r-.1B of main memory. 

Performance statistics for this case study are summarized in table 1. For each image, the 
table gives values for the three level-of-detail parameters, incremental and total ray counts, and 
incremental and total elapsed times. Almost all of the elapsed time is due to ray tracing. Subdivi
sion and interpolation take fractions of a second each. 

A visualization of the F array showing where rays were cast is given in figure 4. Each white 
pixel in this figure corresponds to a single ray. Thus, any pixel in figure 3 whose corresponding 
pixel in figure 4 is white was computed by ray tracing, whereas any pixel in figure 3 whose figure 
4 pixel is black was computed by interpolation. As expected, ray densities are highest along sur
face silhouettes, where color differences are highest. Since romax = 1 in the last frame of the 
sequence (lower-right image), rays are cast from every pixel. The F array for this case is com
pletely white. 

The second dataset is a CT scan of a human head and was acquired as 113 slices of 256 x 
256 samples each. Using methods described in [Levoy88a], the bone surface was selected for 
display. A four-frame adaptive refinement sequence was then generated, the first frame of which is 
shown in figure 5 and the last frame of which is shown in figure 6. Performance statistics for this 
dataset are summarized in table 2. 

4. Conclusions 

A method for interactively visualizing sampled scalar functions of three spatial dimensions has 
been described. Although ray tracing is not generally considered a candidate rendering algorithm 
for interactive systems, it is used here because of the superiority of the images it produces. Assum
ing that rays can be traced efficiently, the incremental nature of ray casting lends itself well to an 
interactive system based on adaptive refinement. 

In this study, values for the three level-of-detail parameters romax• wmin, and e were selected 
manually. Generally speaking, high values of romax cause features to be missed, high values of e 
cause features to be ignored even if they are not missed, and high values of romin causes features to 
be poorly resolved even if they are neither missed nor ignored. Inappropriate values for these 
parameters cause sub-optimal presentation of the data as well as unequal intervals between succes
sive frames in refinement sequences. Algorithms are needed that automatically select an optimum 
sequence of values based on the characteristics of a particular dataset. 

5. Acknowledgements 

The author wishes to thank Profs. Henry Fuchs, Steven M. Pizer, Frederick P. Brooks Jr., 
and Turner Whitted of the Computer Science Department, and Drs. Julian Rosenman and Edward 
L. Chaney of the Radiation Oncology Department, for their encouragement and support. Thanks 
are also due to John Gauch for many enlightening discussions. The electron density map used in 
this study was obtained from Jane and Dave Richardson of Duke University, and the CT scan was 



6 

provided by the Radiation Oncology Department at North Carolina Memorial Hospital. This work 
was supported by ONR grant N00014-86-K-0680 and NIH grant R01-CA39060. 

6. References 

[Bergman86] Bergman, L., Fuchs, H., Grant, E., Spach, S., "Image Rendering by Adaptive 
Refinement," Computer Graphics, Vol. 20, No.4, August, 1986, pp. 29-37. 

[Cook86] Cook, R.L., "Stochastic Sampling in Computer Graphics," ACM Transactions on 
Graphics, Vol. 5, No. 1, January, 1986, pp. 51-72. 

[Dippe85] Dippe, M.A.Z., Wold, E.H., "Antialiasing Through Stoachastic Sampling," Computer 
Graphics, Vol. 19, No.3, July, 1985, pp. 69-78. 

[Drebin88] Drebin, R.A., Carpenter, L., Hanrahan, P., "Volume Rendering," Computer Graphics 
(to appear). 

[Glusker85] Glusker, P.J., Trueblood, K.N., Crystal Structure Analysis, Oxford University Press, 
Oxford, 1985. 

[Herman80] Herman, G.T., Image Reconstruction from Projections, Academic Press, New York, 
1980. 

[Kajiya86] Kajiya, J.T., "The Rendering Equation," Computer Graphics, Vol. 20, No. 4, August, 
1986, pp. 143-150. 

[Lee85] Lee, M.E., Redner, R.A., Uselton, S.P., "Statistically Optimized Samling for Distributed 
Ray Tracing," Computer Graphics, Vol. 19, No.3, July, 1985, pp. 61-67. 

[Levoy88a] Levoy, M., "Display of Surfaces from Volume Data," IEEE Computer Graphics and 
Applications, Vol. 8, No. 3, May, 1988, pp. 29-37. 

[Levoy88b] Levoy, M., "Efficient Ray Tracing of Volume Data," Technical Report 88-029, Com
puter Science Department, University of North Carolina at Chapel Hill, June, 1988. 

[Upson86] Upson, C., "The Visual Simulation of Amorphous Phenomena," The Visual Computer, 
Vol. 2, 1986, pp. 321-326. 

[Whitted80] Whitted, T., "An Improved Illumination Model for Shaded Display," Communica
tions of the ACM, Vol. 23., No. 6, June, 1980, pp. 343-349. 



~ 
voxel values f(i) 

~ 
shading classification 

C(i) 

ray tracing I re-sampling ray tracing Ire-sampling 

pixel colors C(u) 

Figure 1 - Overview of volume rendering algorithm 

pixel u = (u,v) 
with color C(u) 

image space 
containing 

image containing 
P x P pixels 

P x P x W samples 

sample U =- (u,v,w) 
with color C(U) 
and opacity a(U) 

object space 
containing 
N x N x N voxels 

voxel I = (i,j,k) 
with value f(i), 
color C(l), 
and opacity a(l) 

Figure 2 - Relationship between object space and image space 



Figure 3- Adaptively refined volume rendering of cytochrome 

Figure 4- Visualization of where rays were cast to generate figure 3 



Figure 5- Adaptively refined volume rendering of head- first frame 

Figure 6 - Adaptively refined volume rendering of head -fourth frame 



frame image rays total additional % total time 
rom ax rom in fig fig time interval E 

rays rays 

1 3a 4a 3,870 3,870 20 4.6 sees 4.6 sees 16 2 32 

2 3b 4b 9,947 6,077 51 12.1 7.5 8 1 32 

3 3c 4c 14,459 4,512 74 17.1 5.0 4 1 16 

4 3d 4d 19,289 4,830 100 25.7 8.6 1 1 -

Table 1 - Performance statistics for cytochrome 

frame image rays total additional 0/o total time 
rom ax rom in fig fig rays rays time interval E 

1 5 - 5,179 5,179 16 13 sees 13 sees 16 2 16 

2 - - 16,136 10,957 52 41 28 8 1 16 

3 - - 21,625 5,489 70 63 22 2 1 12 

4 6 - 30,603 8,978 100 104 41 1 1 -

Table 2 - Performance statistics for head 



I Figure 6- Volume rendering of Jaw with semi-tranparent skin L ____ _ 

Figure 7- Volume rendering of jaw without skin 



Figure 8- Volume rendering of ribonuclease 

Figure 9- Volume rendering of head 



Figures 1 Oa and 1 Ob- Costs of rendering figure 9 
using brute-force algorithm 

Figures 11 a and 11 b - Costs of rendering figure 9 
using hierarchical enumeration 



\ Figures I 2a and 12b - Costs of rendering figure 9 L u~ir.g hierarchical enumeration and adaptive termination of ray tracing 



name fig acquired scaling size after samples samples 
% 

size factor scaling drawn ~ith a>O 

jaw with skin 6 256x 128 x 59 1x1x2 256 X 128 X 113 3,541,851 594,472 17 

jawwlo skin 7 256 x 128x 59 1 X 1 X 2 256 X 128 X 113 3,541,851 335,751 9 

ribonuclease 8 24 X 20 X 11 12 X 12 X 12 288 X 244 X 132 7,067,842 810,542 11 

ribonuclease - 24 X 20 X 11 6x6x6 144x120x66 825,465 160,747 19 

ribonuclease - 24x 20 x 11 3x3x3 72x 60x33 92,724 25,531 27 

head 9 256x256x 113 1 X 1 X 2 256 X 256 X 226 14,081,917 1,249,458 9 

Table 1 -Characteristics of datasets 

hierarchical enumeration col. 1 col. 2 col. 1 
name fig brute-force 

enumeration 
and adaptive I I I 
termination col. 2 col. 3 col. 3 

jaw with skin 6 293 sees 94sees 57 sees 3.1 1.6 5.1 

jaw wlo skin 7 288 61 39 4.7 1.6 7.4 

ribonuclease 8 571 146 75 3.9 1.9 7.6 

ribonuclease - 68 27 15 2.5 1.8 4.5 

ribonuclease - 8 4 3 2.0 1.9 2.7 

head 9 1183 238 105 5.0 2.2 11.3 

Table 2 - Rendering times 


