
Efficient Ray Tracing of Volume Data 

TR88-029 

June 1988 

Marc Levay 

The University of North Carolina at Chapel Hill 
Department of Computer Science 
CB#3175, Sitterson Hall 
Chapel Hill, NC 27599-3175 



UNC is an Equal Opportunity/ Affirmative Action Institution. 



Abstract 

Efficient Ray Tracing of Volume Data 

Marc Levoy 

June, 1988 

Computer Science Department 
University of North Carolina 
Chapel Hill, NC 27599 

1 

Volume rendering is a technique for visualizing sampled scalar functions of three spatial dimen­
sions without fitting geometric primitives to the data. Images are generated by computing 2-D pro­
jections of a colored semi-transparent volume, where the color and opacity at each point is derived 
from the data using local operators. Since all voxels participate in the generation of each image, 
rendering time grows linearly with the size of the dataset. This paper presents a front-to-back 
image-order volume rendering algorithm and discusses two methods for improving its performance. 
The first method employs a pyramid of binary volumes to encode coherence present in the data, 
and the second method uses an opacity threshold to adaptively terminate ray tracing. These 
methods exhibit a lower complexity than brute-force algorithms, although the actual time saved 
depends on the data. Examples from two applications are given: medical imaging and molecular 
graphics. 

1. Introduction 

The increasing availability of powerful graphics workstations in the scientific and computing 
communities has catalyzed the development of new methods for visualizing discrete multidimen­
sional data. In this paper, we address the problem of visualizing sampled scalar functions of three 
spatial dimensions, henceforth referred to as volume data. We further focus on a family of visuali­
zation methods called volume rendering techniques in which a color and an opacity is assigned to 
each voxel, then a 2-D projection of the resulting colored semi-transparent volume is computed 
[Levoy88a, Drebin88). The principal advantages of volume rendering over other visualization 
methods are its superior image quality and the ability to generate images without explicitly defining 
surface geometry. The principal drawback of these techniques is their cost. Since all voxels parti­
cipate in the generation of each image, rendering time grows linearly with the size of the dataset. 

This paper presents a front-to-back image-order volume rendering algorithm and discusses 
two methods for improving its performance. The first optimization is based on the observation that 
many datasets contain coherent regions of uninteresting voxels. In the context of volume rendering, 
a voxel is defined as uninteresting if its opacity is zero. Methods for encoding coherence in 
volume data include octrees [Meagher82), polygonal representations of bounding surfaces [Pizer86}, 
and octree representations of bounding surfaces [Gargantini86). Methods for taking advantage of 
coherence during ray tracing include cell decompositions (also known as bounding volumes) 
[Rubin80) and spatial occupancy enumerations (also known as space subdivisions) [Glassner84). 
This paper employs a hierarchical enumeration represented by a pyramid of binary volumes 
[Yau83). The pyramid is used to efficiently compute intersections between viewing rays and 
regions of interest in the data. 



2 

The second optimization is based on the observation that once a ray has struck an opaque 
object or has progressed a sufficient distance through a semi-transparent object, opacity accumulates 
to a level where the color of the ray stabilizes and ray tracing can be stopped. The idea of adap­
tively terminating ray tracing was first proposed in [Whitted80]. Many algorithms for displaying 
medical data stop after encountering the first surface or the first opaque voxel. In this guise, the 
idea has been reported in [Goldwasser86, Schlusselberg86, Trousset87] and perhaps elsewhere. In 
volume rendering, surfaces are not explicitly detected. Instead, they appear in the image as a 
natural byproduct of the stepwise accumulation of color and opacity along each ray. Adaptive ter­
mination of ray tracing can thus be implemented by stopping when opacity reaches a user-selected 
threshold level. 

The cost of rendering a volume dataset using a hierarchical enumeration grows linearly with 
the size of the image, logarithmically with the length of each ray, and linearly with the depth com­
plexity of the data. Adaptive termination of ray tracing reduces the dependence on depth complex­
ity, and for the special case of an environment consisting only of opaque surfaces, eliminates this 
dependence entirely. In this case, the cost of generating an image grows nearly linearly with the 
size of the image rather than linearly with the size of the dataset. 

2. Brute-force algorithm 

Let us first consider the brute-force volume rendering algorithm outlined in figure 1. We 
begin with a 3-D array of scalar values. For simplicity, let us assume that the array forms a cube 
measuring N voxels on a side, and that N is an integer power of 2. In this paper, we treat voxels as 
point samples of a continuous function rather than as volumes of homogeneous value. Voxels are 
indexed by a vector i = (iJ,k) where iJ,k = 1, ... ,N, and the value of voxel i is denoted j(i). 
Using local operators, a color C(i) and an opacity a(i) is derived for each voxel. 

Parallel rays are then traced into the data from an observer position as shown in figure 2. Let 
us assume that the image is a square measuring P pixels on a side, and that one ray is cast per 
pixel. Pixels and hence rays are indexed by a vector u = (u,v) where u,v = 1, ... ,P. For each 
ray, a vector of colors and opacities is computed by resampling the data at W evenly spaced loca­
tions along the ray and tri-linearly interpolating from the colors and opacities in the eight voxels 
surrounding each sample location. Samples are indexed by a vector U = (u,v,w) where (u,v) 
identifies the ray, and w = 1, ... ,W corresponds to distance along the ray with w = 1 being closest 
to the eye. The color and opacity of sample U are denoted C(U) and a(U) respectively. Finally, a 
fully opaque background is draped behind the dataset, and the resampled colors and opacities are 
composited with each other and with the background to yield a color for the ray. This color is 
denoted C(u). 

The rendering algorithms in [Levoy88a] and [Drebin88] composite in back-to-front order. 
Specifically, the color C0u1(u;U) of ray u as it leaves sample U on its way toward the eye is related 
to the color Cj,.(u;U) of the ray as it approaches the sample and the color C(U) and opacity a(U) of 
the sample by the transparency formula 

CaucCu;U) = Cj,.(u;U)(1 - a(U)) + C(U)a(U). 

where 0 < a< 1, and a= 1 signifies complete attenuation. 

In this paper, we composite in front-to-back order. As derived in [Wallace81], the color 
Cpos1(u;U) and opacity apos1(u;U) of ray u due to the inclusive interval between sample U and the 
eye is related to the color Cp,.,(u;U) and opacity ap,.,(u;U) due to the same interval but excluding 
the sample by the expression 

Cp,.,(u;U)ap,.,(u;U) + C(U)a(U)(1 - aP,e{u;U)) 
CposcCu;U) = ......:;-----''-----------'---­

apostCu;U) 



3 

where 

aposr(u;U) = apreCu;V) + a(U)(l - apre(u;V)). 

If colors are pre-multiplied by their opacities as suggested in [Porter84], we may replace 
Cposr(u;U)aposr(u;U) by Cposr(u;U), Cpre(u;V)apreCu;V) by Cpre(u;V), and C(U)a(U) by C(U) in the 
above expression, yielding the more efficient form 

(Ia) 

and 

aposr(u;V) = apre(u;V) + a(U)(l - apr•(u;V)). (lb) 

After all samples along a ray have been processed, the color C(u) of the ray is obtained from the 
expression C(u) = Cpos1(u;W) I apos,(u;W) where W = (u,v,W). If a fully opaque background is 
draped behind the dataset at w' = W + 1, and the ray is composited against this background after 
passing through the data, then apos1(u;W') = 1 where W' = (u,v,w') and this normalization step can 
be omitted. 

The complete brute-force algorithm is thus summarized as follows. 

procedure RayTrace1(u) begin 

C(u) := 0; 

a(u) := 0; 

x1 := First(u); 

x2 := Last(u); 

ul := rfmage(xl)l 

u2 := ~mage(xv j; 
{Loop through all samples falling within data) 
for u := ul to u2 do begin 

end 

x := Object(V); 

{Resample color and opacity and composite into ray) 

C(U) := Sample(C,x); 

a(U) := Sample(a,x); 

C(u) := C(u) + C(U)(l - a(u)); 

a(u) := a(u) + a(U)(l - a(u)); 

end RayTrace 1• 

The First and Last procedures accept a ray index and return the object-space coordinates of the 
points where the ray enters and leaves the data respectively. These coordinates are denoted by real 
vectors of the form x = (x,y,z) where 1 :::; x,y,z :::; N. The Object and Image procedures convert 
between object-space coordinates and image-space coordinates. The Sample procedure accepts a 
3-D array of colors or opacities and the object-space coordinates of a point, and returns an approxi­
mation to the color or opacity at that point by tri-linearly interpolating from the eight surrounding 
voxels. 



4 

3. Optimized algorithm 

The first optimization method we consider is hierarchical spatial occupancy enumeration. We 
represent this enumeration by a pyramid of M binary volumes as shown in figure 3 where 
M =log~. Volumes in this pyramid are indexed by a level number m where m = 0, ... ,M, and 
the volume at level m is denoted Vm. Volume V0 measures N cells on a side, volume V1 measures 
N/2 cells on a side, and so on up to volume V m• which is a single cell. Cells are indexed by a level 
number m and a vector i = (ij,k) where ij,k = 1, ... .N. and the value contained in cell i on level 
m is denoted Vm(i). We define the size of cells on level m to be 2m times the spacing betv;een vox­
els. Since voxels are treated as points, whereas cells fill the space between voxels, each volume is 
one cell larger in each direction than the underlying dataset as shown in the figure. We also place 
voxel (1,1,1) at the front-lower-right comer of cell (1,1,1). Thus, for example, cell (1,1,1) on level 
zero encloses the space between voxels (1,1,1) and (2,2,2). 

We construct the pyramid as follows. Cell i in the base volume V0 contains a zero if all 
eight voxels lying at its vertices have opacity equal to zero. Cell i in any volume V m• m > 0, con­
tains a zero if all eight cells on level m - 1 that form its octants contain zeros. In other words, we 
define 

Vo(i) = { 
0
1 if i+ili ~Nand a(i+.1.i) = 1 for any .1.i where .1.i = (.1.i,.1.j,!J.k) and ru,.1.j,M = 0,1 (2a) 

otherwise 

if Vm_1(2i+.1.i) = 1 for any .1.i where .1.i = (.1.i,.1.j,M) and ru,.1.j,M = 0,1 

otherwise. 

form= 1, ... ,M. 

(2b) 

We now reformulate our volume rendering algorithm to use this pyramidal data structure. 
For each ray, we first compute the point where the ray enters the single cell at the top level. We 
then traverse the pyramid in the following manner. When we enter a cell, we test its value. If it 
contains a zero, we advance along the ray to the next cell on the same level. If the parent of the 
new cell differs from the parent of the old cell, we move up to the parent of the new cell. We do 
this because if the parent of the new cell is unoccupied, we can advance the ray further on our next 
iteration than if we had remained on a lower level. This ability to advance quickly across unin­
teresting regions of space is where the algorithm saves its time. If, however, the cell being tested 
contains a one, we move down one level, entering whichever cell encloses our current location. If 
we are already at the lowest level, we know that one or more of the eight voxels lying at the ver­
tices of the cell have opacity greater than zero. We then draw samples at evenly spaced locations 
along that portion of the ray falling within the cell, resample the data at these sample locations, and 
composite the resulting color and opacity into the color and opacity of the ray. 

The second optimization method we consider is adaptive termination of ray tracing. Our goal 
is to quickly identify the last sample location along a ray that significantly changes the color of the 
ray. Returning to equation (1a), we define a significant color change as one in which 
Cpos1(u;U) - Cpre(u;U) > E for some small E > 0. Since apre(u;U) increases monotonically along the 
ray, no significant color changes occur beyond the point where apos1(u;U) first exceeds 1 -e. This 
becomes our termination criterion. Higher values of E reduce rendering time, while lower values 
reduce image artifacts. For the datasets used in this paper, E = .05 usually represents a satisfactory 
compromise. 

Combining both of these optimizations gives us the following algorithm. 



procedure RayTrace2(u) begin 

C(u) := 0; 

cx(u) := 0; 

x := First(u); 

m := mmar, 

{Loop until beyond data or opacity > threshold} 
while InBounds(x) and cx(u) ~ 1 - E do begin 

end 

i := Index(m,x); 

{If high level cell contains a one, drop a level} 
if V m(i) and m > 1n,run then m := m - 1; 

else begin 

end 

{If level zero cell contains a one, render it} 
if Vm(i) then Render2(u;x,Next(m;x)); 

{Advance to next cell and maybe jump to higher level} 
while Parent(mJndex(m,Next(m,x))) 1= Parent(m,i) and m < M do begin 

i := Parent(m,i); 

m := m + 1; 

end 

x := Next(m;x); 

end RayTrace2 

procedure Render2(u,x"x2) begin 

ul := r/mage(xl)l 

Uz := ~mage(xz)J; 
{Loop through all samples falling within cell} 
for U := U1 to U2 do begin 

end 

end Render2. 

x := Object(U); 

{If any of eight surrounding voxels have opacity > 0,} 

{then resample color and opacity and composite into ray} 
if V0(Index(O,x)) then begin 

end 

C(U) := Sample(C;x); 

cx(U) := Sample(a,x); 

C(u) := C(u) + C(U)(1 - cx(u)); 

cx(u) := cx(u) + cx(U)(l - cx(u)); 

5 



6 

The Next procedure accepts a level number and the object-space coordinates of a point along 
a ray, and returns the coordinates of the point where the ray enters the next cell on the same level. 
The Index procedure accepts a level number and the coordinates of a point, and returns the index of 
the cell that contains it. The Parent procedure accepts a level number and cell index, and returns 
the index of the parent cell. The algorithm terminates when the ray leaves the pyramid as detected 
by the InBounds procedure. 

Figure 4 shows in two dimensions how a typical ray might traverse a hierarchical enumera­
tion. The sequence of points computed by the Next procedure are denoted by circular dots in the 
figure. In regions where the level zero cells contain ones, the spacing between these dots is close to 
the spacing between voxels. We are therefore led to ask the question: why not simply resample the 
data at these points? We observe, however, that these points are not evenly spaced along the ray. 
If the data is resampled at such non-uniformly spaced points, a noise component will be added to 
the resulting image [Cook86]. To avoid these artifacts, we superimpose a set of evenly spaced 
sample locations as shown by the rectangular tick marks in the figure, then limit ourselves to 
resampling the data at these locations. 

Assuming that we are rendering a non-empty dataset, most cells on the top levels of the 
pyramid will contain ones. It is therefore inefficient to begin our traversal there. For the datasets 
used in this paper, traversal costs were minimized by setting Tnrnax = M- 2 for all values of M. 
Assuming an orthographic projection, the cost of advancing a ray from one cell to the next by com­
puting ray-cell intersections is higher than the cost of advancing the ray from one sample location 
to the next using differencing. It is therefore inefficient to descend to level zero. Instead, we des­
cend to some higher level, loop through the sample locations falling within that cell, and render 
those for which V0(Index(O;x)) = 1. For the current implementation, Tnrnin = 2 yields the best results. 

4. Discussion 

The number of cells in a pyramid of binary volumes is (8M+l_l)/7, and each cell requires one 
bit of computer memory. The cost of accessing a cell is equal to the cost of computing a subscript 
into a 4-D array. Condensed representations such as octrees or linear octrees [Gargantini82] are 
also possible, although the amount of memory saved would be small compared to the size of the 
color and opacity arrays, and the cost of accessing a cell would generally be higher. Since the 
pyramid depends on the array of opacities rather than on the original data, it must be re-computed 
whenever these opacities change. The pyramid is independent of observer position, however, and 
can be used to efficiently generate multiple views from a single set of colors and opacities. 

The cost of generating an image using this data structure is the sum of the cost of traversing 
the pyramid in search of interesting samples, and the cost of resampling the data and compositing 
at those sample locations. These costs are highly dependent on the data and the viewing angle. In 
this paper, we will consider datasets consisting of a number of opaque or semi-transparent surfaces. 
Using methods described in [Levoy88a], a plot of opacity along a line perpendicular to one of these 
surfaces typically exhibits a bump shape of some finite width T. 

Let us analyze the cost of rendering a volume containing S such surfaces, each parallel to 
each other, parallel to the plane defined by two of the three coordinate axes, and spaced N!S voxels 
apart as shown in figure 5. In this case, we may represent the pyramid by a binary tree containing 
N leaf nodes and horizontal connections on every level. Let us assume that our viewing rays are 
perpendicular to the surfaces and that the spacing between samples along a ray is equal to the spac­
ing between voxels in object space. The cost of finding the first interesting sample on surface 1 
using the algorithm described in section 3 is proportional to the length of path A through the tree. 
This length is clearly O(logiV). The cost of resampling and compositing surface 1 is proportional 
to its width T. The cost of advancing from the last interesting sample on surface 1 to the first 
interesting sample on surface 2 is proportional to the length of path B, which is also O(log2N). The 



7 

total cost of tracing the ray is thus O(Slog~ + S), which is logarithmic in the length of the ray and 
linear in the depth complexity of the data. 

Adaptive termination of ray tracing reduces the dependence on depth complexity by some 
constant that depends on the data. For the special case of an environment consisting only of opaque 
surfaces, rendering cost is proportional to the cost of finding, resampling, and compositing surface 
1, which is logarithmic in the length of the ray but independent of depth complexity. The cost of 
generating an image therefore grows nearly linearly with the size of the image rather than linearly 
with the size of the dataset 

5. Implementation and results 

To understand how the algorithm behaves on real data, let us consider some examples. The 
characteristics of three datasets are given in table 1. The first is a computed tomography (CT) 
study of a human skull mounted in a lucite head cast. To demonstrate the effect of semi­
transparent surfaces on the performance of the algorithm, this dataset was rendered twice, once with 
a semi-transparent air-lucite boundary surface (figure 6), and once with a completely transparent 
boundary surface (figure 7). The second dataset is a portion of an electron density map of Staphy­
lococcus Aureus ribonuclease. A volume rendering of an isovalue surface from this map is shown 
in figure 8. The polymer backbone crosses the image from bottom to top, and two Tyrosine resi­
dues with their characteristic six-atom benzene rings can be seen extending to the left and right 
sides of the backbone. A color-coded stick representation of the molecular structure has been 
superimposed on the image to aid in its interpretation. To study the growth of rendering cost with 
respect to dataset size, this dataset was rendered at three different spatial resolutions, the largest of 
which is shown in the figure. The last dataset is a CT study of a complete human head, a volume 
rendering of which is shown in figure 9. 

Rendering times for these datasets are summarized in table 2. Separate entries are provided 
for the brute-force algorithm, the optimized algorithm with adaptive termination of ray tracing dis­
abled by setting E = 0, and the fully optimized algorithm with E = .05. All algorithms were imple­
mented in the C language on a Sun 4/280 with 32MB of main memory. As the table shows, 
hierarchical enumeration reduced rendering time by a factor of between 2.0 and 5.0 for this data, 
and adaptive termination of ray tracing added another factor of between 1.3 and 2.2. We also 
observe that adding a semi-transparent surface to the rendering of the skull fragment decreased the 
amount of time saved but did not eliminate the savings completely. We finally note that doubling 
the width of the electron density map increased rendering time by roughly a factor of eight for the 
brute-force algorithm and five for the optimized algorithm. These ratios are in close agreement 
with the analysis suggested in section 4. 

To help us interpret these results, the cost of generating figure 9 has been broken down into 
its constituent parts. Using the brute-force rendering algorithm described in section 2, the cost of 
finding all interesting samples along a ray is proportional to the length of the ray clipped to the 
boundaries of the dataset. For the observer position used in figure 9, a visualization of this cost is 
shown in figure lOa. Brighter pixels represent more work. The image is essentially an X-ray of a 
cube of uniform density. The cost of resampling and compositing the interesting samples along a 
ray is proportional to the number found along the ray. For the dataset under consideration, a visual­
ization of this cost is shown in figure lOb. This image is essentially an X-ray of a binary represen­
tation of the data. As expected, it is brightest along silhouettes where rays pass through large 
amounts of bony material. The total cost of rendering figure 9 using the brute-force algorithm is a 
weighted sum of figures lOa and lOb. 

Using hierarchical enumeration, the cost of finding all interesting samples along a ray is pro­
portional to the number of iterations through the outer loop in the RayTrace2 procedure plus the 
number of tests of level zero cells performed in the Render2 procedure. A visualization of this cost 



8 

is shown in figure lla. This image is essentially an X-ray of an octree. The cost of resampling and 
compositing the interesting samples is shown in figure llb. Since the use of enumeration alone 
does not reduce the number of samples composited, figure llb is identical to figure lOb. The total 
cost of rendering figure 9 using a hierarchical enumeration is a weighted sum of figures lla and 
llb. 

Adaptive termination of ray tracing reduces the number of interesting samples which must be 
found. For £ = .05, a visualization of the reduced cost is shown in figure 12a. In regions where 
fewer samples are processed, resampling and compositing costs drop as well, as shown in figure 
12b. The total cost of rendering figure 9 using both of the optimization methods is a weighted sum 
of figures 12a and 12b. 

6. Conclusions 

A method for efficiently visualizing sampled scalar functions of three spatial dimensions has 
been described. The method employs both hierarchical spatial occupancy enumeration and adaptive 
termination of ray tracing to reduce the complexity of the rendering problem. Although the amount 
of time saved depends on the data and the viewing angle, savings of more than an order of magni­
tude have been observed for many datasets. 

If there is coherence present in a dataset, there may also be coherence present in its projec­
tions. This is particularly true for data acquired from sensing devices where the original scene is 
bandlimited prior to digitization. We can take advantage of this bandlimiting by varying the 
number of rays cast as a function of local image complexity [Levoy88b]. In many cases, this 
optimization reduces rendering time by another order of magnitude. 

Any combination of data and opacity assignment operators that partitions a volume dataset 
into coherent regions of opaque and transparent voxels is a candidate for the methods presented in 
this paper. Although we have only explored the visualization of surfaces, these optimization tech­
niques are very general and should find use in many scientific and diagnostic applications. 

7. Ackno·wledgements 

The author wishes to thank Profs. Henr~ Fuchs, Steven M. Pizer, Frederick P. Brooks Jr., 
and Turner Whitted of the Computer Science D·epartment and Drs. Julian Rosenman and Edward 
L. Chaney of the Radiation Oncology Department for their encouragement and support. Thanks are 
also due to John Gauch for many enlightening discussions. The CT scans used in this paper were 
provided by the Radiation Oncology Department at North Carolina Memorial Hospital. The elec­
tron density map was provided by Dr. Chris Hill of the University of York Chemistry Department, 
and was reformatted and brought on-line with the help of Mark Harris of the University of North 
Carolina. This work was supported by ONR grant N00014-86-K-0680 and NIH grant R01-
CA39060. 

8. References 

[Cook86] Cook, R.L., "Stochastic Sampling in Computer Graphics," ACM Transactions on 
Graphics, Vol. 5, No. 1, January, 1986, pp. 51-72. 



9 

[Drebin88] Drebin, R.A., Carpenter, L., Hanrahan, P., "Volume Rendering," Computer Graphics 
(to appear). 

[Gargantini82] Gargantini, 1., "Linear Octtrees for Fast Processing of Three-Dimensional 
Objects," Computer Graphics and Image Processing, Vol. 20, 1982, pp. 365-374. 

[Gargantini86] Gargantini, 1., Walsh, T.R.S., and Wu, O.L., "Displaying a Voxel-Based Object via 
Linear Octtrees," Proceedings SPIE, Vol. 626, 1986, pp. 460-466. 

[Glassner84] Glassner, A.S., "Space Subdivision for Fast Ray Tracing," IEEE Computer Graphics 
and Applications, Vol. 4, No. 10, October, 1984, pp. 15-22. 

[Goldwasser86] Goldwasser, Samuel, "Rapid Techniques for the Display and Manipulation of 3-D 
Biomedical Data," Tutorial presented at 7th Annual Conference of the NCGA, Anaheim, CA, 
May, 1986. 

[Levoy88a] Levoy, M., "Display of Surfaces from Volume Data," IEEE Computer Graphics and 
Applications, Vol. 8, No. 3, May, 1988, pp. 29-37. 

[Levoy88b] Levoy, M., "Volume Rendering by Adaptive Refinement," Technical Report 88-030, 
Computer Science Department, University of North Carolina at Chapel Hill, June, 1988. 

[Meagher82] Meagher, D., "Geometric Modeling Using Octree Encoding," Computer Graphics 
and Image Processing, Vol. 19, 1982, pp. 129-147. 

[Pizer86] Pizer, S.M., Fuchs, H., Mosher, C., Lifshitz, L., Abram, G.D., Ramanathan, S., Whitney, 
B.T., Rosenman, J.G., Staab, E.V., Chaney, E.L. and Sherouse, G., "3-D Shaded Graphics in 
Radiotherapy and Diagnostic Imaging,'' NCGA '86 conference proceedings, Anaheim, CA, 
May, 1986, pp. 107-113. · 

[Porter84] Porter, Thomas and Duff, Tom, "Compositing Digital Images," Computer Graphics, 
Vol. 18, No. 3, July, 1984, pp. 253-259. 

[Rubin80] Rubin, Steven M. and Whitted, Turner, "A 3-Dimensional Representation for Fast 
Rendering of Complex Scenes," Computer Graphics, Vol. 14, No. 3, July 1980, pp. 110-116. 

[Schlusselberg86] Schlusselberg, Daniel S. and Smith, Wade K., "Three-Dimensional Display of 
Medical Image Volumes," Proceedings of the 7th Annual Conference of the NCGA, 
Anaheim, CA, May, 1986, Vol. III, pp. 114-123. 

[Trousset87] Trousset, Yves and Schmitt, Francis, "Active-Ray Tracing for 3D Medical Imaging," 
EUROGRAPHICS '87 conference proceedings, pp. 139-149. 

[Wallace81] Wallace, B.A., "Merging and Transformation of Raster Images for Cartoon Anima­
tion," Computer Graphics, Vol. 15, No. 3, August, 1981, pp. 253-262. 

[Whitted80] Whitted, T., "An Improved Illumination Model for Shaded Display," Communica­
tions of the ACM, Vol. 23., No. 6, June, 1980, pp. 343-349. 

[Yau83] Yau, M., and Srihari, S.N., "A Hierarchical Data Structure for Multidimensional Digital 
Images," Communications of the ACM, Vol. 26., No. 7, July, 1983, pp. 504-515. 



~ 
shading 

C(i) 

ray tracing I re-sampling 

sample Tlors C(U) 

voxel values f(i) 
~ 

classification 

ray tracing I re-sampling 

pixel colors C(u) 

Figure 1 - Overview of volume rendering algorithm 

pixel u = (u,v) 
with color C(u) 

image space 
containing 

image containing 
P x P pixels 

P x P x Wsamples 

sample U = (u,v,w) 
with color C(U) 
and opacity a(U) 

object space 
containing 
N x N x N voxels 

voxel I = (i,j,k) 
with value f(i), 
color C(i}, 
and opacity a(i) 

Figure 2 - Relationship between object space and image space 



level 0 
containing N x N x N cells, 
each 1 x 1 x 1 voxels in size 

voxel (1, 1,1) 

cell I = (i,j,k) 
on level m 

0 0 0 

having value V m(l) 

level M 
containing 1 cell, 
N x N x N voxels in size 

object space 
containing N x N x N voxels 

Figure 3 - Hierarchical enumeration of object space 

level 0 cell 

ray-cell intersection 

Figure 4 - Ray tracing of hierarchical enumeration 



finding 
surface 1 

resampling and 
com positing 
surface 1 

S surfaces, each of thickness T voxels, 
spaced N I S voxels apart 

Figure 5 - Cost of traversing a hierarchical enumeration 


