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Abstract 

FPC: A Translator for FP 

by 
Edoardo S. Biagioni 

FP is the applicative programming language introduced by John Backus in 1978. FPC 
is a translator that accepts programs written in FP and translates them to C programs 
which can be compiled using an ordinary C compiler. This report includes the FPC 
user manual, the reference manual for the FP language accepted by the translator, 
and the installation and maintenance guide for FPC. 
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1 Introduction 

Ten years have passed since the FP programming language was first described by 
John Backus [Ba 78]. FP is a strict functional language with no variables or named 
parameters. Functional languages in general lack assignments and side effects; strict 
languages evaluate the arguments to a function before they are passed (lazy languages 
in contrast evaluate arguments when they are actually used). The absence of named 
parameters is unique to FP. FP puts very few restrictions on evaluation order, and in 
fact encourages the use of constructs that would be executed in parallel on parallel 
machines. FP is also sufficiently abstract that several different implementations are 
possible for any given construct; as a result, an FP program can be efficiently 
implemented on very different architectures. 

Various FP interpreters have become available in the time since 1978; in particular, 
the Berkeley interpreter [Ba 87] runs under the Unix BSD operating systems and is 
available to every Unix BSD site. This interpreter and others like it have several 
disadvantages, chief among which are speed and usefulness for actual programming. 

Speed is a common concern in programming language implementations. As shown by 
the lFP project [Ro 87], a good interpreter can be much faster than the Berkeley FP 
system. Even a straightforward compiler, on the other hand, runs faster than a highly 
optimized interpreter such as IFP; an optimizing compiler could run orders of 
magnitude faster. 

Interpreted programs have to be executed within the interpreter itself, so stand-alone 
programs are unrealistic. Most real-world, useful programs need to be stand-alone, 
that is, to be usable outside the environment in which they were developed. The 
smalltalk programming environment [GR 83] is no exception: in the author's 
experience, it is used mostly for writing prototypes of applications that are later 
ported to other languages. 

An obvious solution to both of the above problems is a compiler for FP. However, 
any compiler that produces native code is by definition not portable among different 
systems. A portable FP compiler needs to compile to some portable intermediate 
language which can then be compiled locally on the desired system. This is the 
approach taken by FPC, which has C as the intermediate language. The advantages of 
C are the wide availability of compilers and the portability of programs written in C. 
Since FPC rewrites an FP program into an equivalent C program we call it a 
translator instead of a compiler. 

The remainder of this report consists of three main parts. The first part (Sections 2 -
5) is the FPC user manual, which shows how to write FP programs and invoke FPC. 
This part also gives suggestions for debugging FP programs. 

The second part (Sections 6 and 7) is a reference manual for the FP programming 
, ) language accepted by FPC. This language has been made as close as possible to the 
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description in [Ba 78], but the several differences are noted and discussed. 

Sections 8 and 9 are the installation and maintenance guide for FPC. They are not 
needed by people who just program in FP, but may be of interest to the dedicated FP 
programmer who needs to know or modify the algorithms used by the translator. 
Maintainers would also be well-advised to read appendix D. 

FP programmers and prospective FP programmers might be interested in Section 10, 
which records my own view of the current state of FP and the direction it's moving 
in. It is my hope that this will motivate people to use FPC and contribute to progress 
in the field of functional programming. 

The appendices are referred to in the text and should be consulted as necessary. 

2 Getting started 

This is a tutorial introduction to FP using FPC. If you are already familiar with FP, 
you may wish to skip this section and the next, or just skim them to make sure you can 
read the syntax. If you are not familiar with FP, this section should help you get to 
know the language so you can at least read simple programs. Section 3 should help 
you learn to write simple programs -- only experience will teach you how to write 
complex programs! 

Let's start with the factorial function as defmed in Backus's Turing award lecture. He 
defined it approximately as follows (the slight difference is due to the different 
syntax): 

Def sub1 - o [id, _1] 
Def eqO eq o [id, _OJ 
Def fac eqO -> _1; * o [id, fac o sub1] 

If the above were the contents of the file fac.fp, you could compile it and run it as 
follows: 

~ fpc -rn fac.fp 
~ cc -o fac fac.c -lfp 
~ fac 
4 

24 
~ 

where the prompts and the result are written differently to show that they are printed 
out by the computer; everything else you had to enter by hand. 

3 



So we have a function that computes the factorial (run it over inputs other than 4, to 
make sure). Let's go over it step by step. 

The factorial function is defmed to return 1 for an inputs of 0, and the product of its 
input and the factorial of one less than the input for larger numbers. In other words, 

factorial (0) = 1 
factorial (n, n > 0) = n *factorial (n- 1) 

What all this means is that factorial returns the product of all the numbers up to and 
including the number it was given as an input. 

Def sub1 - o [id, _1] 
"Def' means we are defining a function, the function subl which subtracts one from 
its argument. The function needs to be read from right to left ("backwards"). The 
first step (the first expression to be reduced) is "[id, _1]" -- remember that we read 
from right to left! When this constructor is applied to any value, it returns <original 
value, 1>, since: "id" represents the argument to an expression; "_1" means the 
number 1 ("_", underscore, tells us that we have a constant expression); and a 
constructor "[fl, f2]" means return the two-element vector (pair) obtained by 
applying each of f1 and f2 to the argument. In other words, if':' means application, 
we have 

[id, _1] : value 
< id: value, 1: value> 
<value, 1> 

rewrites as 
rewrites as 
(final value) 

Value is whatever value was input to the expression. For instance, [id, _1]: 4 rewrites 
to <4, 1>. 

We continue our right-to-left reading of subl. The pair (two-element vector) 
returned by the constructor is then given to the operator'-', which is an expression 
that always returns the difference between the elements of a two element-vector. The 
'o' you see between the minus and the constructor is the composition operator: it says 
"apply the left-hand expression the result of applying the right-hand expression to 
whatever argument is supplied". To put it another way, '(a o b): x' in FP is the same 
as a (b (x)) in other programming languages. 

In short, sub1 takes a number, pairs it with a 1, and takes the difference. Which is the 
same as saying that sub! returns one less than its input. Here is a concrete example: 

subl: 17 
(- 0 [id, 1]) : 17 
- : ( [id, _1] : 17) 
- : ( <id: 17' 1: 1 7>) 

rewrites as 
rewrites as 
rewrites as 
rewrites as 
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- . (<17, 1>) 
16 

Now that you know how sub1 works, we can discuss eqO: 

Def eqO eq o [id, _OJ 

rewrites as 
(final value) 

eqO is structurally very similar to sub1: it compares its argument to 0 and returns 
whether equality holds or not. Unlike sub1, the value returned is a boolean, i.e., one 
ofT or F; sub1 returns a number. 

Def fac eqO -> _1; * o [id, fac o subl] 

fac shows us a new functional form (we have already seen composition, construction, 
and constant): conditional. A conditional has the form predicate -> then-part ; 
else-part. For fac, predicate is eqO; then-part is the constant 1; and else-part is* 
(times) composed with the constructor [id, fac o sub1]. If predicate applied to the 
argument evaluates to true, we return the result of applying then-part to the 
argument; otherwise we return the result of applying else-part to the argument. In 
the case of fac, if 'eqO: value' returns true (which only happens if the value supplied is 
0), we return '_1: value', which returns 1. Otherwise we return the product of the 
value supplied and the factorial of one less than the value. 

The above is a recursive implementation of the factorial function that resembles the · 
function's inductive mathematical defmition. We could re-write fac as follows: 

Def fac /* o iota 

The slash means insert, i.e. insert the following operation (times, in this case) 
between every pair of elements in the vector that is being given as value. For 
instance,'/+: <1, 2, 3, 4>' gives 1 + 2 + 3 + 4, i.e. 10; similarly,'/* <3, 17, 22>' gives 
3 * 17 * 22 or 1122. Iota is a primitive function which takes a positive integer and 
returns a vector of all the numbers from one to its argument, e.g. iota: 6 returns <1, 
2, 3, 4, 5, 6>. It is left as a trivial exercise for the reader to check that this new 
factorial function also works (note that '/f: <el>', i.e. insert applied to a vector of 
length 1, returns el) and produces the same results as the other definition for all n > 
0. 

In the above we have come across two distinct terms: function and functional form. A 
function is a normal function; it takes a single argument and returns a single result. 
The argument, the result, or both, may be structured: the argument to'-' and eq must 
be a pair, the result of iota is a vector. 

A functional form, on the other hand, takes both an argument and one or more 
functional expressions (hereafter called expressions). For instance /, the insert 
functional form, takes '*' as the expression, then takes an argument and inserts its 
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expression between successive elements of the argument. Similarly the constructor 
takes any number of expressions (e.g., 'id', 'fac o subl', etc.) and an argument and 
applies each expression to the argument, building a vector of the results. The 
constant functional form takes a value for an expression and, when given an 
argument, ignores it and returns the expression instead. Conditional takes three 
expression, applies the first one to the argument, then depending on whether that 
evaluation returned true or false, returns the result of applying either the second or 
the third expression on the argument. Finally, compose takes a left and a right 
expression and composes them, returning the value produced by the left-hand 
expression when given the result of applying the right-hand expression to the 
argument. Section 6 contains more detailed descriptions of all the functional forms 
and examples for each of them, should you be confused. 

An important functional form that we have not yet seen is aa (apply to all, written as 
a, the greek letter alpha, in [Ba 78]). The expression 'aa f: <x 1, ... xn> returns a 

vector of length n, where each element of the result is the result of applying f to the 
corresponding xi. For example, the function senior determines, given a vector of 

ages, how many of those ages are 65 or over: 

Def senior /+ o aa (>= o [id, _65] -> 1; _0) 

The vector returned by the first expression (the one in parentheses, on the right) has a 
1 for each element of the original vector that was :2:65, and 0 for all others .. We then 
sum all the values to get the desired result. E.g. 

senior: <47 92 21 48 65 64> 
/+: <0 1 0 0 1 0> 

rewrites to 
which rewrites to 

2 

You now know enough to read simple FP programs. If you want to practice some 
more, Appendix A has some sample programs. Start with the easy ones and refer to 
the comments if you have trouble understanding anything. The next section should 
get you started writing (as opposed to just understanding) FP programs. 

3 Introduction to FP 

Once you are through this section, you should not only be itching to program in FP, 
but hopefully also have enough kilowledge to do so. For this section, I will assume 
that you are seated at a terminal where you can try things out If you aren't, you will 
need to experiment later on. 

We have already seen a sample terminal session using fpc. We reproduce it here: 
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lll fpc -rn fac. fp 
~ cc -o fac fac.c -lfp 
lll fac 
4 
24 
lll 

The first command (fpc -m) translated the file fac.fp to the file fac.c specifying ( -m) 
that the function with the same name as the file (i.e., the function fac) was the one to 
be applied to the argument entered by the user. The second command invoked the C 
compiler cc on the me fac.c producing as output the executable me fac. Notice we 
had to link in the FP runtime system by using the C compiler switch -lfp. The runtime 
system is where all the primitive functions, such as iota or eq (seen in Section 2), are 
defmed. On some systems the runtime system may not be installed, and the second 
line would then look as follows: 

lll cc -o fac fac.c fp.o 

where fp.o is a standard file distributed with FPC. The only difference here is that 
you have to explicitly specify the runtime system, which is file fp.o. You only need 
this form if the earlier command did not work. 

The third line invokes fac. The input could have been any number between 0 and 12 
--the factorial of 13 cannot be represented using 31 bits, so the computation 
overflows (try it). 

The result is printed to the standard output; in this case, to your terminal. 

As a first exercise, you should try compiling and running the alternative version of 
fac shown on page 5. You can put it in facl.fp, if you wish to avoid disturbing the file 
fac.fp, but you must then remember to name the function facl, since FPC tries to call 
the function with the same name as the file it is in. Play around a bit, try, for instance, 
omitting the-m switch or the run-time library. You will get various error messages 
and, next time you forget something, you will be able to tell from the error message 
what the problem is. 

For an easy exercise, try writing a program to compute the fibonacci function, which 
is defmed as follows: 

fib (0) = 0; fib (1) = 1; 
fib (n, n> 1) =fib (n -1) +fib (n- 2) 

The program should closely mirror the inductive defmition of fib. 

We now return to the "senior" program introduced in Section 2. Suppose we wanted 
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to modify the program so it would take as argument not just a vector of ages, but a 
particular (given) age and vector of ages (combined in a pair). This function should 
return how many ages are greater than the given one. The numbers need not be ages, 
of course -- they could be salaries, or scores on a test, or anything else. Here is a first 
defmition for numgreatereq: 

Def nurngreatereq /+ o aa (>= o reverse -> _1; _0) o distl 

The function distl takes a pair of which the second element must be a vector and 
distributes the first element of the pair to each element of the second. In the reduction 
of the above program the first step would be, for instance 

distl: <43, <47, 11, 45, 41>> which reduces to 
<<43, 47>, <43, 11>, <43, 45>, <43, 41>> 

The business with "reverse" is somewhat messy. After we have ditributed the first 
element, we need to reverse the pairs so we can use >=, as we used in the program 
'senior'. So we apply reverse to every one of the pairs we produced. An alternative is 
to switch the position of the two elements in the original argument, and use distr 
instead of distl: 

distr: <<47, 11, 45, 41>, 43> rewrites to 
<<47, 43>, <11, 43>, <45, 43>, <41, 43>> 

This can be achieved simply by reversing the input! So the final function defmition is 

Def nurngreatereq /+ o aa (>= -> _1; _0) o distr o reverse 

What we just went through is an example of program transformation, where a 
program is rewritten but performs exactly the same function. In this case, we moved 
reverse from inside the apply-to-all expression and put it to the right of distl, which 
we changed to distr. The result is exactly the same program, but somehow clearer 
and probably more efficient. If you are really interested in program transformations, 
you should read [Ba 78], since it has many more interesting and thorough examples. 

The example did show us the new primitives distl, distr, and reverse. Reverse, by the 
way, works on vectors of any length and on the empty vector, not just on pairs. Distl 
and distr always take pairs consisting of a vector and an arbitrary object, but 
arranged in the opposite orders: for distl the object is to the left, for distr the object is 
to the right. 

One of the nice things about FP is the symmetry of all its primitive functions that deal 
with vectors. For instance, distl corresponds exactly with distr; we also have the 
vector extension functions apndl and apndr, which work as follows: 

apndl: <ext, <xl, x2, x3>> returns <ext, x1, x2, x3>,and 
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apndr: <<xl, x2, x3>, ext> returns <xl, x2, x3, ext>. 

In addition, we have left and right selectors, as in: 

2 : <xl, x2,, x3, x4, x5, x6> returns x2,arxl 
2r: <xl, x2, x3, x4, x5, x6> returns x5. 

and left and right tail: 

tl : <xl, x2, x3, x4> returns <x2, x3, x4>,arxl 
tlr: <xl, x2, x3, x4> returns <xl x2 x3>. 

You see that, unlike LISP's lists, FP vectors are treated as symmetric structures: 
anything that can happen on the left can happen on the right, and vice versa. 

The next exercise is to write a function that will concatenate two vectors, i.e., such 
that concat: <<a, b, c>, <d, e, f>> will return <a, b, c, d, e, f>. This is the same as 
done by the built-in function append, by the way. To implement concat we will use 
append, (that would be cheating), but rather apndl and apndr. The crucial 
observation is that if we apply either one of the functions to the argument for concat, 
we get an asymmetric result, i.e. <<a, b, c>, d, e, f> for apndl and <a, b, c, <d, e, f>> 
for apndr. But if we take the second form and use /apndl, we can obtain the desired 
result; since /apndl <x, y, <z>> gives <x, (apndl <y, <z>>)>, which works out to <x, 
y, z>, as desired.As you can see from this example, insert is right associative. 

But can such a symmetric language have only a right-associative insert operator? 
Well, you guessed it. We not only have the I form of insert (which we call left insert 
since results keep moving leftward), we also have a right insert, which we write\ So 
our concat program can be written in either of two ways: 

Def concat /apndl o apndr,~ 
Def concat \apndr o apndl, which is equivalent 

In fact, we even have a third way of writing insert: Y. This insert is also known as 
tree, or tree insert. The trick in tree insert is that the pairing of elements (and 
results) is not known to the programmer and may be indeterminate. Tree insert 
should be used at all times when the associativity of the operator doesn't matter (as in, 
for instance Y+ or Y*), since that allows the implementation to pick the best possible 
strategy for implementation; for instance, in a parallel machine Vf might reduce 
much faster than either \f or /f, since more applications of f might be reduced in 
parallel. 

We can observe the effect of the different inserts by inserting the function id (which 
just returns its argument) with any old vector as argument: 

/id : <a, b, c, d, e, f>returns <a, <b, <c, <d, <e, f>>>>>, 
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\/id: <a, b, c, d, e, f>returns <<<a, b>, <c, d>>, <e, f>>, 
\id : <a, b, c, d, e, f>returns <<<<<a, b>, c>, d>, e>, f>. 

These results may not seem obvious at first, but they should become clear after some 
reflection. Try experimenting with different data and operators other than id, e.g. +, 
*, apndl, apndr, append, distl, distr, 2 (selector 2), 2r, and so on. 

We have two more very convenient functinal forms: bu and bur. bu stands for binary 
to unary, and bur for binary to unary on the right. They are used to simplify 
operations such as adding a given value to the input, comparing the input to a given 
value, and so on. Recall that eqO was written as "eq o [id, _0]"; it is easier to write it as 
"(bur eq 0)", which is equivalent. Both bu and bur take a constant value and an 
expression, build a pair which contains both the constant value and the input, then 
apply the expression to the pair. That is, "(bu x ob)" is the same as "x o [_ob, id]", 
while "(bur x ob)" is the same as "x o [id, _ob]". For commutative expressions such as 
eq and +, bu and bur are equivalent; for noncommutative expressions such as -, 
apndl, and distr, only one of the two forms is useful. bu and bur are typically used in 
functions such as sub1, which becomes "(bur- 1)", as opposed to"- o [id, _1]". bu and 
bur are just notational conveniences, but they are used quite often. Here is a new 
version for senior: · 

Def senior /+ o aa ((bur >= 65) -> 1; _0) 

The above completes the discussion of the functional forms. Once again they are: 
apply-to-all (aa), composition (o), conditional(-> ;), constant U, constructor ([ ]), 
insert(/,\ Y), and while (while), which is discussed in section 6.To gain practice in 
programming FP, I recommend that you try and program all of the following, 
sample solutions for which are given in Appendix A: 

An efficient fib, where you start computing fib(O) and fib(1) then pass the results on 
to a recursive invocation of yourself; the previous, inefficient version of fib started 
by requesting the values of fib(n- 1) and fib (n- 2). 

The function flatten, defined such that flatten: <<a, b>, c, <>, <<<d, e>>, f, <>>> 
returns <a, b, c, d, e, f>. You will probably find the function append (which is like 
concat except it merges any number of elements together, not just two) and the 
functional form aa useful. Only use recursion where necessary. 

A function innerproduct, which given a pair of vectors of the same length computes 
the sum of the products of the elements of the vectors. You might find it useful to 
employ the function trans (transpose), which given ann-sized vector with m-sized 
vectors as elements returns an m-sized vector with n-sized vectors as elements, as in 
trans: <<a, b, c, d>, <1, 2, 3, 4>, <w, x, y, z>> returns <<a, 1, w>, <b, 2, x>, <c, 3, 
y>, <d, 4, z>>. Again, do not use recursion. 
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4 Using FPC 

This section is the reference manual for fpc. It tells you all about how to use the 
translator and what you can do with it. To find out more about how FPC works, refer 
to sections 8 and 9 and to Appendix D. 

Fpc is meant to let you write substantial programs in FP. As such, there are lots of 
options to let you say exactly what you want, and facilities for breaking a program 
into several independent files. 

You already know that fpc is a translator: it takes FP source files of the form 
filename.fp and produces equivalent C source files of the form filename.c. 
Equivalent means that the C files, when compiled and linked with the appropriate 
run-time system, give a program that behaves in the same way as your FP source 
program. That is, they accept an input, apply the 'main' function to it, and print the 
result. The only reason FPC is different from a true compiler is that you have to 
manually compile the C files using cc (or any other C compiler). It also means that 
it's a really bad idea to use names such as "int" or "if' for your function names, since 
the C compiler will complain that you are using keywords as function names. 

One advantage of translating to C is that we get to split our FP programs into 
independent files, since C lets you divide programs into separate modules. This lets 
you have libraries, for instance, that can be compiled independently and later linked 
into your program. One such library is the run-time system, normally found in a file 
named fp.o. This file is usually installed as the fp library on your .system, where it can 
be loaded using the option -lfp. If it is not installed, you have to load it explicitly by 
naming it in the 'cc' command. 

In what follows, remember that each switch only affects translation of the next file 
name to follow it on the command line. In other words, "fpc -n x.fp -n y.fp" is 
different from "fpc -n x.fp y.fp", because in the second case only x.fp is affected by 
the -n switch. 

Since the modules can be compiled independently, FPC needs to know whether or not 
to generate code for a C procedure called "main" that will do all necessary input and 
output and will call your program. This procedure may only be defined once in any 
given C program, so FPC needs to know whether you want your file compiled as a 
library (subsidiary) module, or whether you want it to be a main module which 
defmes the function that will be executed at top level when you run the program. The 
switch -m indicates that the file should be a main module; its absence means the file 
should be a subsidiary module. By default, the top-level function is the one named as 
the ftle it's in (without the .fp extension), but if you wish to tell FPC that the top level 
function in module ftle.fp is fun, just say so: · 

% fpc -mfun file.fp 
11 



will do the trick. The more usual call, 

% fpc -m file.fp 

tells FPC that the top level function is a function named file. If none of your 
functions are called file, the loader will complain that it cannot fmd the function. As a 
further example, we translate files a.fp and b.fp, where a.fp has the top level 
function, which is named toplev: 

% fpc -mtoplev a. fp b. fp 

To get more feedback while translating, the -v switch tells you which version of FPC 
you are using, then echoes the names of the functions being translated. 

The -s switch generates code to give you some runtime statistics about the amount of 
storage used. It is incompatible with the -nor -lnfp switches (described later), and 
can only be used in conjunction with the -m switch. 

FPC is meant to be useful for programs that work on arbitrary text, not just FP 
expressions. Admittedly, simple programs work on plain numbers or vectors of 
numbers, but more useful programs have to read and possibly parse their own input 
directly. To support this, FPC provides several options that are only valid if the -m 
switch is also used. Switches -i and -o tell FPC that the FP program should read the 
input directly (without trying to parse it as an FP object) or that it will produce as 
output a string which should be printed directly (without surrounding quotes), 
respectively: -i stands for string Input, -o stands for string Qutput.A string is a vector 
of character values; see also section 6. In fact, if the -o option is used, the output of 
the program need not be a string; it can be a vector of pairs <<filenamel, stringl>, 
<filename2, string2> ... <filenameN, stringN>>. This kind of output means that 
instead of outputting a single string to the standard output (usually the screen), the 
program can direct that the various strings be written to the named files. Notice that 
writing destroys any pre-existing files with the same name. No two file names may be 
the same; an empty vector (nil) in the position of a file name will print the 
corresponding string to the standard output. 

Switch -a is even more complicated. If you've read the Backus Turing Award lecture 
[Ba 78], you may have a vague idea of what an AST (Applicative State Transition) 
system is. Well, -a tells FPC that your main function is the function to be used in an 
arrangement similar to an AST system. The function gets called with the pair <input, 
state>, and must return a pair <output, new-state>. The function gets called over and 
over again until it returns a new-state of nil, the empty vector. On each cycle input is 
read from the standard input (usually the user's terminal), the function is applied to 
the pair, the output part of the result is written to the standard output (usually the 
user's terminal), and the state part of the result is passed on to the new invocation of 
the function. The first time it is called, the state is nil and the input is nil; for all other 
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invocations the state is whatever was returned by the previous call, and the input is 
whatever was read. 

If -a is combined with -i, the input will always be a string of exactly one character, 
the next character found on the standard input. If -a is combined with -o, the function 
may write to files by providing pairs of file names or strings, as described above, or 
do direct output of strings. 

The -p switch can also only be used in conjunction with -m. If it is used, the program 
checks whether any command line arguments or options are present; if they are, the 
program is run immediately using an input value of<>, without waiting for data to 
be given on the standard input. You can use the primitive function arguments, 
described in section 8, to find out what the arguments or options are. If neither 
options nor arguments are used in the call to the program, the program proceeds 
normally by reading the standard input. 

There are several switches for setting the level of debugging and error checking. 
They are -d, -e, -tfunction, -n. These may all be used independently of any -m 
switch. Normally (if none of these switches are given) FPC checks for such things as 
bad argument type in the invocation of a primitive (i.e., passing a pair of symbols to 
>~<, division by 0, passing a non-vector to length) and keeps a stack of function 
invocations so that, should an error be detected, you can find out where the error 
occurred and why it happened. This is covered in more detail in the next section. 

This error checking unfortunately takes time. To speed up production programs, we 
2rovide the option -n.When translating with this option, the compiler does not 
produce code to check that the argument to an apply-to-all or an insert is a vector, 
nor does it keep a stack of function invocations. If a type mismatch occurs, your first 
indication might be a system error; on Unix, this may be a segmentation fault or a bus 
error. You might also get the wrong results, with no notice given. In general, it is a 
good idea to thoroughly debug your programs with the normal settings before 
producing a release version with the -n switch. If you do have a problem, you can 
translate the program again without the switch and run it on the same input -- the 
error should manifest itself in an intellegible fashion. On the other hand, programs 
translated with the -n switch average about 30% faster and 30% smaller than 
programs translated normally. A program translated with -n will normally be linked 
to nocheckfp.o instead of the standard fp.o; this can be achieved by using the -Infp 
switch instead of -lfp. 

If you are still debugging a program, you want more, as opposed to less, information 
when an error occurs, and sometimes even when it doesn't. Translating with the -t 
switch (which has to be used in the form -tfunctionname) tells FPC that the function 
functionname must be traced; that is, it should print out when it is being called and 
when it is returns, the data that it is given and the result that it returns. 

The debug switch, -d, is essentially the same as -t, except it says that every function 
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(not just one or a few) should be traced. Usually-dis impractical for large modules, 
but very useful for small and medium-sized modules. Programs which manipulate 
large data items can use -e (entry/exit) instead of -d. With -e, functions announce 
their start and end but do not print out ther inputs or results. Combining -e with -t can 
be very productive, for large programs. 

If you are determined to see every step of the way, you can link your program to 
debugfp.o (instead of fp.o or the library -lfp), which may be accessible through 
-ldfp. debugfp.o shows you the entry and exit of every single call to a primitive, and 
shows you exactly what happens. Notice that even debugfp.o does not show you every 
invocation of a functional form-- functional forms are compiled in-line, and are not 
displayed under any debugging mode. For instance, if you were debugging the 
expression "aa +"applied to the data <<1, 2> <3, 4>>, you would see something like 
entering plus, object is <1, 2> 
exiting plus, result is 3 
entering plus, object is <3, 4> 
exiting plus, result is 7 

In the above you can see that apply-to-all works front to back along the vector. This is 
very implementation dependent and may change within a given implementation, so 
you would be wise to ignore the order in which things happen. The positive side of 
this is that FP programs do not have side effects, so the result of an expression is the 
same no matter what order the subexpressions are executed in. 

5 Debugging 

In section 4 we described the -d, -t and -e switches and how they can be used for 
debugging. This section will address the issue of debugging in greater detail. 

FPC provides support for debugging FP programs as well as for debugging itself. 
The former include the call stack and the debug/trace modes mentioned above; the 
latter include the reference count summary and the dfp library, and are described in 
section 8. 

A bug in an FP program will generally be discovered when an incorrect output or an 
error condition is produced for a reasonable input. The incorrect output is then due 
to one or more bugs in specification, design, or coding, as in normal programming. 
Bugs in specification or design are not substantially different for FP programs than 
for other programs, though it is true that the functional nature of FP tends to reduce 
design bugs (and improve the localization of coding bugs) by eliminating side effects 
--there is no way procedure X can affect the data managed by module Y, unless the 
two are explicitly connected. In other words, the result of a correct function will be 
correct as long as its input is correct, no matter what other functions are incorrect. 

In addition to the -d, -e and -t switches described above, fpc provides stack dumps and 
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checkpoints. A stack dump occurs whenever a condition is encountered that would 
lead to bottom: for instance, when the wrong type of argument is passed to a 
primitive, e,g. if an atom is given to an apply-to-all expression or a non-numeric 
value is used as the input to iota. The stack dump is interactive if the input to the 
function came from a terminal, and placed in the file core otherwise. Here is a 
sample program and the stack dump it caused: 

Def filter null o 2 -> <>; 
(bu = 0) 0 mod 0 [1 0 2, 1] ->filter 0 [1, tl 0 2]; 

# notice: the bug is in the following line. filter should be 
# composed with [1, tl o 2] instead of [2, tl o 2] 

apndl o [1 o 2, filter o [2, tl o 2] 
Def sieve null -> id; apndl o [1, sieve o filter o [1, tl] 
Def primes sieve o tl o iota 

' primes 
10 
@rror: ~ottoa pro@uc~d ~uriDq @X@CUtioD 
~o~g ~@CODd mr~@nt i~ not a n~~r 
<~. <3u 4u s. s. '· a. 9u 10>> 
~o you viah a etack c~p «ylnl? 
y 
int~ractiv~ etmck ~~p? 
y 
~~pinq th@ r@l@vant portione o~ th~ etack: 
call@~ ~y routin~ filt~r. vith input 
<<3u 4u s. iu '· a. 9u 10>. <~. s. s. '· a. 9u 10>> 
continu@ ~tack d~p? 

ca1l@d hy routin@ ~i1t@ru vith input 
<~. <3u «u s. s. '· a. 9u 10>> 
continu~ etack c~p? 

ca1l@d hy routin@ ~i@V@u vith input 
<2u 3u «u s. s. '· a. 9u 10> 
continu~ etack c~p? 
n 

As before, we use a special script to distinguish what the computer typed from what 
you had to type. As you can see, a stack dump is fairly self-explanatory. Typing 
<return> to most questions will invoke the default option, as in "continue stack 
dump?", where the default option is yes. The error that originally caused bottom 
appears at the very top: the primitive function mod expects a pair of integers as its 
argument, and the second element of the list was a vector intead of a number. The 
listing can be aborted at any time, or it can be made non-interactive by answering the 
first question with 'n<return>'. 

A checkpoint is a use of the primitive function checkpoint. The function prints its 
input onto the error output and lets the user continue the computation, abort the 
computation, or display the current call stack. The checkpoint function then returns 
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its input, so checkpoint may be inserted painlessly anywhere in an existing 
composition to display the flow of data. 

When an incorrect output is produced, the location of the bug can usually be isolated 
by tracing. Compiling with -d or -t, the inputs and outputs of each function called can 
be monitored; at some point in the trace, one of the functions will produce an 
unexpected output for a correct input; that function is the one that contains the bug. 
The trace, or the stack dump, or both, may be used to isolate the function or functions 
that contain the bug, i.e., that produce the wrong output given the correct input. 
Notice how this is much easier than debugging a conventional program -- there is no 
need to examine individual variables or contents of files; the flow of data is entirely 
explicit and visible at all times. 

Once you have identified the function that has the bug, you may still be mystified as to 
just why the function doesn't produce the right result. This is where you should use 
checkpoint. Usually checkpoint is composed between one expression and another to 
view intermediate results. As soon as you see an intermediate result that doesn't 
match your expectations, you have restricted the location of your bug. Once you have 
fixed the bug, remember to take out all checkpoints! They do not belong in 
production programs. 

If you ever get a system error (segmentation fault, bus error, disk overflow, division 
by 0), either you have compiled with -n or linked to nocheckfp or both, or the fault 
lies with FPC. In the first case just recompile without the -n switch and link to fp.o, 
and run your program again to see where the problem lies. You should get an error 
message and be able to get a stack dump. In the second case you need to get in touch 
with your FPC maintainer or notify me (the author of this report), since it should be 
impossible to write an FP program that produces a system error. Bottom as described 
in [Ba 78] is detected and reported to the caller of the program in every case other 
than nontermination, i.e., infmite recursion or endless while loop. 

6 The FP programming language 

This section describes all of the primitives provided by FPC that are not described in 
section 7; section 7 describes the nonfunctional primitives provided by FPC. 

The primitives not described in [Ba 78] are marked by a dot (•); they have been found 
sufficiently useful that they were included in FPC. We first describe the data types of 
FP, then document all the primitive functions, then the functional forms. Note that 
comments extend from any # (hash mark, pound sign) to the end of the line they're 
on; #'s in string or character constants do not mark the beginning of comments. Also 
note that the case (upper/lower) of words is significant: Def, for instance, must 
always be written with an uppercase 'D' and lowercase 'ef. 
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FP data types 

Objects in FP belong in one of the following classes: 

<>: nil is the vector of length 0, is an atom. It is the only object for which null returns 
T. 

T, F: the boolean values are returned by the predicate part of conditionals and while 
loops, are given to boolean operators, are returned by relational and boolean 
operators, and are atoms. 

0, 1, -1, 2, -2, ... : the integers are given to and returned by arithmetic operators and 
iota. Both integer and floating-point numbers are atoms. 

0.001e+5: • the floating-point numbers are treated exactly like integers, except that 
any operation performed on a mixture. of floating-point and integer numbers returns 
a floating point number; trunc returns the integral part of any floating point number. 

symbol: symbolic atoms may be entered as any sequence of letters or digits 
beginning with a letter. The function implode lets you define symbols whose name 
inclu.des arbitrary characters. 

'x: • characters are usually part of some string. Characters are atoms. 

"xyz", or <'x, 'y, 'z>: • strings (the two representations are equivalent; the first 
one is the one used for output) are vectors of characters. Implode takes a string and 
produces the symbolic atom whose name is the given string; explode takes an atom 
and returns the string corresponding to the atom name. Strings are vectors, not 
atomic objects. 

<1, x, "abc", <>, <hello, 1.2>>: vectors are ordered collection of any number 
of objects of any type. Most primitives in FP operate on vectors, particularly on 
vectors of length 2, called pairs. <hello, 1.2> is a pair. Vectors are the only 
mechanism for building complex objects in FP -- they can be used in place of the 
arrays, records, or lists of other languages. Vectors are not atomic objects. 

Primitive functions 

+, -, *, div, mod are the binary arithmetic operators; they accept pairs of numbers 
and return numbers. div applied to two integers always returns the number less than 
or equal to the exact quotient. mod may only be applied to pairs of integers, and 
returns the positive remainder of dividing the first number by the second. Examples: 
+applied to <2, 3> returns 5;- applied to <7.0, 9> returns -2.0; *applied to <7, -1> 
returns -7; div applied to <9, 4> returns 2; mod applied to <9, 4> returns 1; mod 
applied to <-3, 2> returns 1. 
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=, != are the equality operators; they accept pairs and return whether the two 
elements of the pair are equal or unequal, respectively. = and != always return the 
opposite value. Examples: = applied to <<<1>>, <<1>>> returns T, applied to 
<<<1>>, <1>> returns F, != applied to the same examples returns F and T, 
respectively. 

>, <, >=, <= • are the relational operators; they accept pairs of numbers, atoms or 
characters and return their relation. Any number is less than any atom; any atom is 
less than any character. Atoms and characters are ordered in a system-dependent 
way. 

and accepts a pair of boolean values; it returns T if its input is <T, T>, F otherwise. 

apndl, apndr append a new element to the left or to the right of a vector, 
respectively. Examples: apndl applied to <1, <2, 3, 4>> returns <1, 2, 3, 4>; apndr 
applied to <<1, 2, 3>, 4> returns <1, 2, 3, 4>. 

append • concatenates all the vectors that are the elements of its input vector, 
discarding any top-level nils. Example: append applied to <<1, 2> <> <<3, 4> 5>> 
returns <1, 2, <3, 4>, 5>. 

atom returns a boolean value indicating whether the input was atomic or not. Atom 
returns T for nil, booleans, numbers and characters; returns F for vectors and 
strings. 

checkpoint • accepts any input and returns it (like id); in addition, it prints its input 
to the error output (usually the screen) and lets the user do a stack dump or abort the 
computation. It should only be used for debugging purposes. 

distl, distr take a pair consisting of any object and a vector, and return a new vector 
of the same size as the vector in the input, where each element consists of the pair 
made up by the object and the corresponding element of the input vector. The object 
is on the left in distl and on the right for distr, both for the input and output values. 
Examples: distl applied to <a, <1, 2, 3>> returns <<a, 1>, <a, 2>, <a, 3>>, distr 
applied to <<a, b, c> <1, 2>> returns <<a, <1, 2>>, <b, <1, 2>>, <c, <1, 2>>>. 

error • takes any input, prints it on the standard error output (normally the screen) 
and returns bottom, i.e., generates a stack dump. If the program was linked to 
nocheckfp.o, error aborts the program after printing its value. 

explode • accepts as input a symbolic atom and returns the string corresponding to 
the atom's name. Example: explode applied to Any Atom returns "Any Atom". 

id accepts any input and returns it. It is useful as a place-holder for the argument in 
constructors. 
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implode • accepts as input a string and returns the symbolic atom having as name the 
given string. The string may contain arbitrary characters, which could cause 
confusion when the atom is printed out. Implode is not extremely useful; but its 
provided because it is the inverse function of explode and is occasionally useful in 
parsing strings. Example: implode applied to "abc123" returns the atom abc123. 

iota accepts an integer greater than or equal to 0 and returns a vector of integers 
from 1 to that number. Iota returns nil when given 0, <1> when given 1. Example: 
iota applied to 5 returns <1, 2, 3, 4, 5>. 

length accepts a vector or nil and returns the number of elements in that vector. 
Examples: length applied to <> returns 0; length applied to <<a, b>, c, <d, <e, f, 
g>>, h> returns 4. 

neg • accepts any number and returns its negation. Examples: neg applied to -7 
returns 7; neg applied to 3.14 returns -3.14; neg applied to 0 returns 0. 

newline • is a constant function: it accepts any input and returns the string that on the 
current system is used to signal the end of a line of text. This string may be appended 
in any arbitrary string to signal a line break for pretty-printing output. A string is 
returned (as opposed to a single character) since some systems may use a string of 
characters to signal a new line. 

not takes as input a boolean value and returns the other boolean value. 

null takes any input and returns whether it is the empty vector. 

or accepts a pair of boolean values; it returns F if its input is <F, F>, T otherwise. 

reverse accepts a possibly empty vector and returns a vector of the same length 
where the left to right order of the elements has been reversed. Example: reverse 
applied to <<a, b>, 2, 3, 4, <c, d, e>> returns <<c, d, e>, 4, 3, 2, <a, b>>. 

rotl, rotr accept as input a nonempty vector and return the same vector with the 
leftmost element moved to the rightmost position (rotl), or with the rightmost 
element moved to the leftmost position (rotr). Examples: rotl applied to <1, 2, 3, 4> 
returns <2, 3, 4, 1>; rotr applied to <a, b, c, d, e> returns <e, a, b, c, d>; either 
primitive reverses the order of the elements of any pair it is applied to. 

tl, tlr accept a nonempty vector and return the same vector minus its leftmost (for tl) 
or rightmost element (for tlr). Examples: tl applied to <a, b, c> returns <b, c>; tlr 
applied to the same returns <a, b>; either applied to <a> returns<>. 

trans accept a vector of vectors; the elements of the input must be either all nil or all 
the same length. The result is the transpose of the input, a vector with the same length 
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as each element of the input, and where the first element contains all the first elements 
of the vectors in the input, in order, the second element contains all the second 
elements of the vectors in the input, and so on, until the last element contains all the 
last elements of the vectors in the input. The transpose of a vector of nils is nil. 
Example: trans applied to 
<<1, 2, 3, 4 >, 

<a, b, c, d >, 
. <<1>, <1, 2>, <1, 2, 3>, <1, 2, 3, 4>>> 
returns 
<<1, a, <1> >, 
<2, b, <1, 2> >, 
<3, c, <1, 2, 3> >, 
<4, d, <1, 2, 3, 4>>>. 

trunc • takes as input a floating-point number and returns the largest integer less 
than or equal to the input. Example: trunc applied to -5.2 returns -6. 

Primitive functional forms 

o: composition takes as parameters two or more functional expressions; takes as input 
any value, and returns the result of applying the rightmost expression to the value, 
the expression to its left to the result of that, and so on until the leftmost expression 
has been applied to the result of the expression to its right; the result of the leftmost 
expression is the result of the composition. Example iota o length o apndl applied 
to <<a, b, c, d>, e> returns <1, 2, 3, 4, 5>. 

n: a selector (n stands for any positive number greater than 0) takes as input a vector 
of length at least n and returns the nth element of that vector (counting from the left). 
Examples: 2 applied to <a, b, c, d> returns b; 7 applied to <p, q, r, s, t, u, v> returns 
v; 1 applied to <<x, y, z>> returns <x, y, z>. 

nr: a right selector selector (n stands for any positive number greater than 0) takes as 
input a vector of length at least n and returns the nth element of that vector (counting 
from the right). Examples: 2r applied to <a, b, c, d> returns c; 7r applied to <p, q, r, 
s, t, u, v> returns p; lr applied to< <x, y, z>> returns <x, y, z>. 

pred -> then ; else: a conditional takes as parameters three functional expressions; 
it takes as input any value, applies the first functional expression to it, and if the result 
of the application is true, returns the result of applying the second expression to the 
input; if the result is false, conditional returns the result of applying the third 
expression to the input. Note that since every FP expression is required to return 
some value, the else part is must be present, otherwise no value could be returned if 
the predicate returned false. If the else part should never occur, use the primitive 
function error to report any problem to the user of the program. Example: null ·> 
_ 0; atom -> id; length applied to 3 returns 3; applied to <> returns 0; applied to 
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<a, b, c, d> returns 4. 

aa: apply-to-all takes as parameter a functional expression; takes as input a possibly 
empty vector, and produces as output a vector of the same length as the input but in 
which every element has been replaced by the result of applying the functional 
expression to the corresponding element of the input. The elements may be processed 
in any order. Example: aa neg applied to <1, 7, -2, 5, 4, 0> returns <-1, -7, 2, -5, 4, 
0>. 

V: • tree insert (also known as tree) takes as parameter a functional expression; takes 
as input a nonempty vector, and produces as output the result of combining all the 
elements of the vector pairwise using the functional expression. If the input is a 
vector with a single element, that element is returned. Any odd elements of a vector 
will be combined with a previous result instead of with an element; results will then 
be combined pairwise using the functional expression. The odd elements may be 
taken from the beginning of the vector, from the end, or from anywhere else. Tree 
insert is generally faster than either left-insert or right-insert when using functions 
that are both associative and commutative, such as +, *, merge, and is only very 
rarely slower. Note that fpc optimizes the common cases V+, V*, Vand, and Vor to 
be particularly efficient (as long as -d, -e are not used). Examples of tree insert: Vid 
applif!d to <1 2 3 4 56 7> can return <<<1, 2>, <3, 4>>, <<5, 6>, 7>>, but also <<1, 
<2, 3>>, <<4, 5>, <6, 7>>>, or <<<1, 2>, 3>, <<4, 5>, <6, 7>>>. V+ applied to <1, 
2, 3, 4, 5, 6, 7> always returns 28. 

/: insert (also known as left insert or insert-from-left) is the insert described in [Ba 
78]. It takes as parameter a functional expression; it takes as input a nonempty vector 
and for a vector of length one returns the single element of the vector. For a longer 
vector, insert returns the result of applying the functional expression to the pair 
consisting of the leftmost element and the result of applying itself to the tail of the 
vector (this is a recursive definition). Example: /id applied to <1, 2, 3, 4, 5> returns 
id applied to (<1, lid applied to <2, 3, 4, 5>>), which gives <1, <2, <3, <4, 5>>». 

\: • right insert (also known as insert-from-right) takes as parameter a functional 
expression; it takes as input a nonempty vector and for a vector of length one returns 
the single element of the vector. For a longer vector, right insert returns the result of 
applying the functional expression to the pair consisting of the result of applying 
itself to the right tail of the vector and the rightmost element of the vector (this is a 
recursive definition). Example: \id applied to <1, 2, 3, 4, 5> returns id applied to 
<(\id applied to <1, 2, 3, 4>), 5>, or <<«1, 2>, 3>, 4>, 5>. 

[fi, f2, •• , fn]: construct takes as parameters 0 or more functional expressions; 
takes any input; returns nil when no functional expressions are given, as in []; returns 
the vector with elements given by the results of applying the functional expressions to 
the input otherwise. The results are in the same order as the functional expressions; 
however, the functional expressions may be executed in any order. Example: [V+, 
length] applied to <1 2 3 4> returns <10, 4>. 
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_obj: constant takes as parameter an object; takes as input any value and returns the 
parameter. Examples: _3 always returns 3; _<a, b, c> always returns <a, b, c>; 
_ <> always returns nil; _a always returns the atom a; _'a always returns the 
character a; _"abed" always returns the string "abed", which is the same as the 
vector of characters <'a, 'b, 'c, 'd>. 

bu fun obj: bu (binary-to-unary) takes as parameters an expression and an object; 
takes any input, pairs it with the object parameter, and returns the result of applying 
the expression parameter to the pair of the object parameter and the input.Example: 
bu apndr <1, 2, 3> applied to 4 returns <1, 2, 3, 4>. 

bur fun obj: bur (binary-to-unary on the right) takes as parameters an expression 
and an object; takes any input, pairs it with the object parameter, and returns the 
result of applying the expression parameter to the pair of input and the object 
parameter.Examples: bur- 6 applied to 17 returns 11; bur apndr 4 applied to <1, 
2, 3> returns <1, 2, 3, 4>. 

while pred iter: while takes as parameters two expressions; takes any input, and 
applies its first parameter to it. 1f the predicate is false, the input value is returned; 
otherwise it applies its second expression to the input, and starts again using the result 
of that application as its input. Example: while not o atom 1 always returns the 
first atomic element in an arbitrarily nested structure, or its argument if the 
argument is atomic. 

7 FPC specials 

This section describes non-standard routines that allow a limited form of input/output 
in FP programs, above and beyond that provided by the -o, -i and -a switches. These 
functions should be avoided whenever possible and are experimental, in the sense that 
they may be removed from future versions of FPC; I appreciate feedback on their 
usefulness for actual programming. When using these functions, remember that the 
execution order of the subexpressions of many of the functional forms is not defined 
and may change from one implementation to another or even within a given 
implementation. 

arguments ignores its input and always returns the same value in any given 
invocation of a program. Argument returns a vector of strings corresponding to the 
arguments given in the call of the program. 1f any options were given, the option is 
returned as a pair: the first element is the option character, the second one is nil if the 
option did not have a parameter, or a string containing the parameter if a parameter 
was defined. Example: if the progam was called (under unix) as "program arg1 -q 
arg2 -pxyz", a call to arguments would return <"arg1", <'q, <>>, "arg2", <'p, 
"xyz">>. 
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filetype accepts a string representing a file name and returns one of the atoms none, 
empty, data, text, binary. A file is of type none if it does not exist; it is empty if it 
exists but is of size 0; it is of type data if it can be parsed by the FP reader; it is of type 
text if it contains only printable and formatting characters (including line 
separators); it is of type binary otherwise. Notice that files of type data are logically 
also of type text (as long as they don't contain binary data after the end of the FP 
object), but data is returned anyway. 

input accepts a string representing a file name and returns a string containing all the 
characters of the file if the file is a text file; input fails (becomes bottom) if the file 
does not exist or contains non-textual characters. Example: if the file "exl" contains 
the text 

the quick brown fox jumps 
over the lazy dog 

input applied to "exl" would return "the quick brown fox jumps<newline>over the 
lazy dog", where <newline> stands for the system's newline string. 

read is like input, but parses the file and returns the FP object corresponding to the 
string contints, instead of the string of characters found in the file. Example: if the 
file "ex2" contains 

<this, is, a, data, 
file> 
with some comments at the end. 

read applied to "ex2" would return <this, is, a, data, file>, where input would 
return the string "<this, is, a, data,<newline>file><newline>with some comments at 
the end.<newline>". 

trace is functionally equivalent to id. It prints its input, which must be a (possibly 
empty) string, to the stderr output, without surrounding quotes. 

8 How does FPC ? 
•••• 

This section briefly describes how FPC implements the FP language. For more 
details, write short FP programs and look at the resulting C code, or check the 
comments in the source of the FPC translator. 

The basic principle of FPC is that functional forms produce in-line code, 
wheereasprimitives are implemented in the run-time library. The run-time library, 
fp.c, is used to generate (via different compiler switches) all three of fp.o, 
nocheckfp.o and debugfp.o, so should be modified with that in mind. Memory 
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management is by reference counting: FP does not allow the creation of 
self-referential structures, so reference counting is possible. 

For the specific implementations of the functional forms and primitives, go ahead 
and write short FP programs and look at the resulting code, or study fp.c. In 
particular, look at the difference in the generated code when error checking is used 
(the normal case) and when it is turned off (-n); the code will be a lot clearer when 
error checking is turned off. FPC tries to produce C code that is legibly indented; try 
using the Unix indent program if you prefer a different style of indentation. In fp.c 
notice that NOCHECK is defmed when compiling nocheckfp, and DEBUG is defmed 
when compiling debugfp. 

All FP objects are of type fp_data; fp_data is a pointer to a cell in memory containing 
a type (fp_type), a reference count (fp_ref), and the object itself. In the case of 
atomic objects, the value of the object is stored in the cell itself, except for symbolic 
atoms which store a pointer to the atom name; for vectors, the cell stores a pointer to 
the vector's leftmost element (fp_entry) and a pointer to the rest (tl) of the vector 
(fp_next). fp_next of the cell pointing to the last element of a vector is the null 
pointer, i.e. has the value 0. Unlike the definition of FP, this implementation is 
asymmetric, since it allows faster access to the left end of a vector than to the right 
end; hopefully most users will not notice the difference. In several tests, this 
implementation was usually much faster, and never substantially slower, than a 
previous implementation which used dynamically-allocated arrays to implement 
vectors. 

The run-time library exports the memory management functions newconst, newcell, 
newpair, newvect, returnvect. The new .... functions are split since FPC usually 
knows which one to generate and the generated code runs faster if the decision does 
not have to be made at run time. returnvect is called when an object's reference count 
reaches 0, but only on cells which are part of a vector -- constant cells are never 
returned (the assumption being that they are used over and over again, and not 
created very often). 

The reference counting goes as follows: each functional form and primitive assumes 
that the data it is given as input has at least one reference to it (i.e., its own reference 
to it), and that the reference counter reflects that. The reference counter is 
decremented if and only if the input is not part of the result. lf the reference counter 
is 0 and the object is a vector, returnvect is called to deallocate the cell and 
recursively decrement the reference counts of the element and the tail of the vector. 

Notice a slight optimization could be obtained by having primitives such as distl 
check whether their input has only one reference to it and, if so, re-using the existing 
backbone. This is not done at this time. 

Any program compiled with the -s switch and any program for which the allocation 
and deallocation counts are not the same print, after their normal output, the number 
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of cells they allocated to vectors, the number of cells that were returned, and the 
maximum amount of space used. If the number of cells allocated and returned was 
not the same, there was some error in the reference counting. Reference counting is 
very sensitive to changes, so if the error is reported, any recent changes in the code 
generation or fp.c should be scrutinized for possible errors. It is also possible to 
compile fp.c (by defining CHECKREF) so that the print routine will print the 
reference count of all the objects that are printed out. 

9 Installing FPC 

To install fpc, you need to decide what directories the binaries will reside in, and 
make sure you have write permission to them. 

If you're on a Unix system, the only things you should need to do is edit fp.h to adjust 
MAXINT to be your C compiler's maximum integer, adjust the makefile so BIN and 
LIB are the directories in which you want to see the binaries and runtime system, and 
run make. You have to edit the makefile of the directory 'lib' and once again run 
make. Once you are convinced that the program runs correctly, you can run 'make 
release' in both directories. I generally use the file 'prims.fp' to test the primitives: 
any serious problem will often show up when running prims. 

If you are not on a Unix system and make is not available, you may have to do the last 
step by hand. If you have lex and yacc, run them on fpg.l and fpg.y, respectively, to 
produce lex.yy.c and y.tab.c; you may want to increase the size of the yacc stack in 
y.tab.c to 8192 instead of the standard 128, so that large compounded conditional 
expressions do not overflow the yacc stack. If you do not have lex and yacc available, 
use lex.yy.c and y.tab.c as supplied. Compile all the .c files, then compile fp.c to 
nocheckfp.o after defining NOCHECK, and to debugfp.o after defming DEBUG. 
Then link fpc.o, code.o, expr.o, parse.o and y.tab.o together into an executable 
named fpc, and you are done. If you are installing libraries, you can install fp.o in the 
library libfp.a (I'm using the UNIX naming conventions, you will have to translate 
them to your own), nocheckfp.o in libnfp.a, and debugfp.o in libdfp.a. 

10 The outlook for FP 

FP had its moment of glory back in 1978 and is now slowly losing ground to lazy 
functional languages (FP is strict, i.e. each argument to a function must be completely 
evaluated before the function can be evaluated) and to improvements on FP itself. To 
the latter belong extended FP [Ba 81] and the not-yet-completed programming 
language FL [BWW 86]. The former includes a host of languages such as KRC, 
sugar, Miranda. So why should anyone bother to program in FP instead of one of 
these other languages? 

There are several answers. First of all note that a programming language's life cycle 
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is quite long: FORTRAN, APL and LISP are approaching 30 years of age, and show 
no sign of disappearing. Similarly, even though FP is no longer as fashionable as 
when it first came out, more and more implementations are being produced; the 
language is quite popular and possibly becoming more so. In fact, it is just now that 
useful and reasonably efficient implementations (such as FPC) are becoming 
available. This is not (yet) the case for FP's competitors. ill addition, FP is in general 
a subset of its successors, so any program written in FP can usually be converted to 
run in FL or extended FP without too much effort. 

One reason for programming in FP instead of in a lazy language is speed -- FP 
programs can compile to more efficient code than most equivalent lazy programs, 
and can in addition run much faster on any parallel implementation, since all the 
arguments to a function are evaluated at the same time; for a lazy language, the 
arguments would not be evaluated until actually used, which means that very often 
only a few parts of the argument can be evaluated in parallel. 

Finally, FP is, in its own way, a very elegant language-- the lack of variables, which 
makes it somewhat unreadable to beginners, also makes it very compact and clean. 

There are also many reasons for NOT using FP. If your program does interleaved 
reads and writes of files, or if you think you need higher order functions or lazy 
evaluation, or if you need the high uniprocessor efficiency provided by an imperative 
language, you should probably not be using FP. In all other cases, FP is 
recommended! 

Finally, I would like to thank my advisor and the people at UNC who have offered 
help and encouragement throughout this project: Gyula Mago', Brad Bennett, 
Vernon Chi, Lakshmi Dasari, Bill Gibson, Tai-Sook Han, Bharat Jayaraman, David 
Middleton, Will Partain, Raj Singh, Bruce Smith, and Don Stanat. 
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Appendix A: some examples 

Compute the arithmetic average of a vector of numbers: 
Def ave div o [\/+, length] 

An efficient fibonacci program: 
Def fib (bu > 2) -> id; fib2 o (bur apndl <1, 0>) 
Def fib2 (bu = 0) o 1 -> 2; fib2 o [(bur - 1) o 1, + o tl, 2] 

Produce a list consisting of all the atoms in the argument, in order: 
Def flatten null-> id; atom-> [id]; append o aa flatten 

Quicksort in FP: 
Def before append o aa 
Def sarre append o aa 
Def after append o aa 
Def qsort null -> id; 

( > -> tl; <>) 
( = -> tl; _<>) 
( < -> tl; _<>) 

append o [qsort o before, 
distl o [1, id] 

sarre, qsort o after] o 

Generate the list of prime numbers between 1 and the input: 
Def primes sieve o tl b iota 
Def sieve null -> id; 

apndl o [1, sieve o filter o [1, tl]] 
Def filter null o 2 -> id; 

(bu = 0) o modo [1 o 2, 1] ->filter o [1, tl o 2]; 
apndl o [1 o 2, filter o [1, tl o 2]] 

Inner product and matrix multiplication: 
Def IP /+ o aa * o trans 
Def M1 aa aa IP o aa distl o distr o [1, trans o 2] 

Some utilities to implement a stack storage: 
# a stack is accessed through newstack, push, pop, top, isempty 
Def newstack <> 
Def isempty null 
Def top 1 
Def pop tl 
Def push apndl 

A function to convert integers to strings: 
Def inttostr (bur < 0) o 1 -> 

(bu apndl r- ) 0 inttostring 0 neg; 
aa printdigit o reverse o makedigit 
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Def makedigits (bur < 10) -> [id]; 
apndl o 
[(bur mod 10), makedigits o [(bur div 10), 2]] 

Def printdigit 1 o (bur sel_n "0123456789") o [ (bu + 1], _1] 
Def sel_n left_n o [2 o 1, right_n o [- o 1 o 1, _1], 2]] 
Def left_n append o aa (< o [1, 1 o 2] -> _<>; [2 o 2]), o 

distl o [1, pairpos o 2] 
Def right_n append o aa (>= o [1, 1 o 2] -> <>; [2 o 2]), o 

distl o [ 1, pairpos o 2] 
Def pairpos null->_<>; trans o [iota o length, id] 

A library to implement tables (stores): 
# A store is a place to keep objects in and retrieve them by key. 
# A key is an atan or a nurril::Jer. 
# newstore: x => a new (errpty) store 
Def newstore <> 
# store: <<key, value> store> => new store 
Def store apndl o [1, unstore o [1 o 1, 2]] 
# retrieve: <key store> => value if any, <> otherwise 
Def retrieve (null -> id; 1) o append o 

aa (= o [1, 1 o 2] -> tl o 2; _<>) o distl 
# unstore: <key store> => new store 
Def unstore append o aa (= o [1, 1 o 2] -> _ <>; id) o distl 
# storesize: store => number of items in the store 
Def storesize length 
# allstored: store => vector of pairs with all keys and values 
Def allstored id 

An alternate (recursive) implementation of the above routines would use a tree to 
store the values: 
#A tree is either nil or [key value left right], with left 
# and right both being trees. 
Def newstore <> 
Def store nullo 2 -> [1 o 1, 2 o 1, _<>, <>]; 
# at leaf, insert the value. 

< 0 [1 0 1, 1 0 2] -> 
# desired key is less than node key, insert at left 

[1 o 2, 2 o 2, store o [1, 3 o 2], 4 o 2]; 
> 0 [1 0 1, 1 0 2] -> 

# desired key is greater than node key, insert at right. 
[1 o 2, 2 o 2, 3 o 2, store o 1, 4 o 2] 

# else keys are equal, replace the value field 
[1 0 2, 2 0 1, 3 0 2, 4 0 2]; 

Def retrieve null o 2 -> 2; # at leaf, key not found 
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< o [1, 1 o 2] ->retrieve o [1, 3 o 2]; 
> o [1, 1 o 2] ->retrieve o [1, 4 o 2]; 
[1, 2] o 2 # keys =, key found 

Def unstore null o 2 -> id; # at leaf, key not found 
(< o [1, 2] -> [2, 3, unstore o [1, 4], 5]; 
> o [1, 2] -> [2, 3, 4, unstore o [1, 5]]; 
unstorelift o tl] o apndl 

# unstorelift: store => store where the root has been replaced 
# by its left child, recursively. 
Def unstorelift null o 3 -> 4; 

[1 o 3, 2 o 3, unstorelift o 3, 4] 
Def storesize length o allstored 
Def allstored null -> id; 

apndl o [ [1, 2], append o aa allstored o [3, 4] 

A package of set operations on lists: 
# member: <item, vector> => boolean 
Def member null o 2 -> F; \/or o aa = o distl 
# include: <item, vector> => new vector, where item is apndl'd 
# to vector if and only if it was not previously a member. 
Def include member -> 2; apndl 
# exclude: <item, vector> => vector where any· elements that 
# were equal to item have been removed 
Def exclude null o 2 -> 2; append o aa ( != -> tl ; _ <>) o distl 
# index: <item, vector> => (one) position of item in the set, or 0 
Def index null o 2 -> 0; 

\1 ( (bu = 0) o 1 -> 2; 1) o aa (= o 2 -> 1; _0) o 
# for input <q, <xl, .. xn>> we pass up <<1, <q, xl>>, •. <n, <q, xn>>> 

trans o [iota o length, id] o distl 
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Appendix B: library functions 

Besides the primitive functions, fpc comes with a set of library functions which seem 
to be useful for general programming. They are defined in FP, and in fact their 
definition should be on line somewhere on your system. They are loaded 
automatically by specifying -lfp. A synopsis follows. You will recognize some fo the 
functions· from Appendix A. 

Library lib.fp: 

pairpos: <x1, ... xn> => <<1, x1>, ... <n, xn>> 

allpairs: <x1, x2, ... xn> => <<<>, x1>, <x1, x2>, ... <xn_1, xn>, <xn, <>>> 

ntl: <n, <x1, ... xm>> => <xn+1• ... xm> 

nhd: <n, <x1, ... xm>> => <x1, ... xn> 

seln: <<s, 1>, <x1, ... Xn>> => <xs, ... xs+l-1> 

selectl: <i, <x 1, ... xn> > => xi 

selectr: <i, <x1, ... xn>> => Xn-i+1 

breakup: <<1, i2, ... in>, <x1, ... Xm>> => <<x1, ... xi2_1>, .... <xin, ... xm>> 

permute: <<i 1, xu>, ... <in, xin>> => <x1, ... Xn>, as long as the set of ij's forms a 

permutation of the integers between 1 and n. 
rank: <x, <x 1, ... xn>> => m, the number of xi's <= x 

Library store.fp 

Implements a table or store. 
newstore: x => empty store 
store: <<key, value>, store>=> store with the new entry 
retrieve: <key, store>=> <key, value> or<> 
unstore: <key, store>=> store without the given entry 
storesize: store => n, the number of entries in the store 
allstored: store=> <<key1, value1>, ... <keyn, valuen>> (the order is arbitrary) 

haskey: <key, store> => T or F 

Library set.fp 

Defmes set operations on vectors. 
member: <item, vector> => T or F 
include: <item, vector> => member-> apndl; 2 
exclude: <item, vector> => not o member -> 2; "vector - item" 
includem: <<item 1, ... iteiDn>, vector> includes all items 

excludem: <<item1, ... itemn>, vector> excludes all items 

index: <item, vector>=> the (first) selector for item in the vector, or 0 
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Library format.fp 

Defines conversion to and from string (printable) representation. 
fpformat: <obh, ... objn> => string, where each of the objects is a string or any 

atom. 
fpscan: <<form1, ... foiTUn>, string>=> <obh, ... objm>, where form is either one 

of the symbols: symbol, number, integer, float, boolean, character, string, or a 
character or a string which must be matched exactly. m ::; n if not all of the string 
could be matched. 
symbol: x => T if x is any atomic symbol, F otherwise 
number: x => T if x is any number, F otherwise 
character: x => T if x is any character, F otherwise 
boolean: x => T if x is T or F, F otherwise 
vector: x => T if x is nil or any vector, F otherwise 
string: x => T if x is nil or any vector made up of only characters, F otherwise 
inttostring: <number, base>=> "number in base" 
charalpha: char => T if char is an alphanumeric character, F otherwise 
charupper: char => T if char is an uppercase alphanumeric character, F otherwise 
charlower: char => T if char is a lowercase alphanumeric character, F otherwise 
chardigit: char => T if char is a digit ('0 . .'9) character, F otherwise 
charoctdigit: char => T if char is an octal digit ('0 . .'7), F otherwise 
charhexdigit: char => T if char is a hexadicimal digit ('0 . .'9, 'a . .'f, 'A . .'F), F 
otherwise 
charspace: char=> T if char is an alphanumeric character, F otherwise 
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Appendix C: the FP grammar 

FPProgram : := FPDef I FPProgram FPDef. 
FPDef : : = Def Sy.rrbol Top lev 
Toplev : := Corrp -> Then ; Else 

bu Toplev Object I 
bur Toplev Object I 
while Toplev Toplev I 
Carp. 

Corrp : := Expr I Expr o Oarp. 
Expr : := ( Toplev ) I aa Expr I [] I [ToplevList] I 

I Expr I \ Expr I \1 Expr I _Object I Sel I Rsel 
Symbol I + I - I * I = I < I > I >= I < I !=. 

ToplevList ::= Toplev I Toplevlist, Toplev. 
Object ::= T I F I [-] Sel I Symbol I String I Char I Float 

<> I < ObjList >. 
ObjList : := Object I Object , CbjList. 

Comment : : = # Chars EndOfLine. 
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Appendix D: modifying FPC 

FPC is divided into several modules, as shown in figure 1: 

fpc.c 

fpg.y 

fpg.l lex.yy.c parse.c 

code.c 

expr.c 

Figure 1: the module structure of FPC 

The main module, fpc.c, interprets the options (and sets global variables 
accordingly), then calls the parser. The parser calls parse.c, which builds a parse tree 
from the program. Parse.c then calls code.c, which does some program 
transformations and simple optimizations, and generates the stubs for the C 
procedures. Then code.c calls expr.c, which generates the code for the individual 
functional expressions. expr.c does a recursive tree traversal of the tree built up by 
parse.c. 

There are a number of global switches, defined in fpc.h, which indicate whether the 
module being compiled should be debugged, whether error checking should occur, 
and so on. These switches are checked as appropriate when generating code. A good 
strategy for reading the code generator is to assign a given value to all the switches 
and then mask out the parts that are not selected for, then start again with a different 
value (e.g., with check= 1 or check= 0, and so on). · 

Each function is translated independently of all others; it is assumed that any function 
call is of the type fp_data function (), and takes a single argument of type fp_data. 
Two passes are made through (the parse tree of) each function, the first to determine 
which constants and how many variables are used, the second to generate the actual 
code. Variable allocation is frightfully inefficient: a new variable is used for almost 
every intermediate result. For a more efficient method of variable utilization see 
[HHH 86]. This more efficient scheme is not currently implemented in fpc. 
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In general, the only thing to really watch out for when modifying code generators is 
the reference counting. As long as you don't compile with -n or link to nocheckfp, the 
programs will keep track of the number of cells allocated and returned, and let you 
know if any discrepancy is detected. Normally an error in the reference counting will 
lead to a discrepancy. The only reasonable way I know of to fmd errors in the 
reference counting is to double-check any recent changes in fp.c or the code 
generators. Unreasonable ways include binary search in the FP program that causes 
the discrepancy (comment out half the program, run it, see if it has a problem, if not, 
comment out the other half and see what happens), and printing out all the 
intermediate results together with their reference counts ( -d and debugfp.o ). 

fp.h defines the data structures used by the (translated) FP programs and fp.c. It 
includes stdfp.h which is the header generated for each translated FP program. In 
general, modifying a constant value (e.g., VECTOR) in stdfp.h will cause code.c to 
emit the new value in all newly translated programs. 

Building the parse tree, which is defined in parse.h, is a reasonably straightforward 
application of lex and yacc. I have left much of the scaffolding in, so if you make a 
mistake you will probably get a message (when translating) of the form "compiler 
error ##". If you see it, find the error with that number (it should occur only once in 
the source) and you should be able to understand what the problem is from the 
context and any comments. The parse tree should be intuitively clear; if you have 
problems understanding it, check out the tree traversal routines in code.c and expr.c. 
For each function, we build a tree, then output the code for the function before 
parsing the next function. 

The translator itself is also quite simple. fp.c is slightly less straightforward, partly 
due to the desire to have 3 different versions in one file (nocheckfp, fp, and debugfp), 
and partly due to some slight optimizations (such as splitting up the cell allocation 
functions for constants, vectors of length 1, and pairs from the more general case). 
The most complex function is transpose; next more complicated are flletype, the 
comparison routine (used by=, !=, >, <, >=, <=) and the arithmetic checking and 
setup routine. The input routine was written "by hand" and is reasonably 
straightforward. The output routine pretty-prints output and formats it so it (for 
reasonable nesting depths and identifier lengths) fits within an SO-column display. 

In general, I find it fairly easy to modify fpc. If the modification is visible to the 
programmer, I usually document the change in the man page, fpc.l. If you are 
unfamiliar with nroff, just copy examples from elsewhere in the man page to achieve 
the desired effect. Last but not least, this technical report is subject to obsolescence, 
so if you find that something is different from the way it is described here, look for 
documentation (comments) in the code itself. Correspondingly, be sure to document 
any changes you make by adding appropriate comments both in the file headers and 
in-line with the changes. Your successors will be grateful to you. 
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Appendix E: the UNIX man page for FPC 

FPC (1) 

fpc - fp to C corrpiler 

SYNOPSIS 
fpc [ options ] . . . file 

DESCRIPTICN 
FPC is an fp corrpiler. It produces as output C source files 
rather than object files. FPC accepts as arguments the 
names of the files to be corrpiled. Arguments of the fonn 
name.fp are taken to be fp source programs; each is corrpiled 
into the C source file name.c. Programs can be corrpiled as 
nonnal C source files; they must be loaded using one of the 
switches -lfp, -lnfp, -ldfp. 

EXAMPLE 
As an exarrple, we corrpile rrmult.fp and ip.fp. Assume the 
file rrmult declares functions noop and matrixmult. The 
resulting program will execute the function matrixmult. It 
is assumed that ip.fp contains auxiliary functions needed by 
noop or matrixmult or both. To corrpile, do the following: 

fpc -rnmatrixmult rrmult.fp ip.fp 
cc -o mmult rrmult.c ip.c -lfp 

This will produce the file rrmult which 
accepts input from the user, and 
applies matrixmult to it, and 
outputs the result. 

The first command above could have been entered as two 
separate commands: 

fpc -rnmatrixmult rrmult. fp 
fpc ip.fp 

The two commands could have been given in either order. 

OPTICNS 
The following options are recognized by FPC. Notice that 
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options only apply to the first file name following the 
option. 

-v (verbose) prints on the standard output the version 
number of the compiler and the names of the func
tions being compiled. 

-d (debug) produces code to trace all function entries 
and exits and the arguments passed to them as well 
as the data they return. The trace is printed on the 
standard error output (stderr). 

-e (entry/exit) same as -d, except that it does not 
print the arguments or the results of the functions. 

-tfun (trace) like debug, but only for function fun. 

-n (no check) the arguments to functional forms are not 

-m 

checked for correctness, and other optimizations are 
done which should speed up execution but make error 
detection and localization harder. It is expected 
that programs compiled with -n will be loaded with 
the library nfp. 

-mfun The compiler assumes that the first file name fol-
lowing the -m switch (call it file.£p) requires a 
main procedure. The main procedure 

reads data from the standard input; 
calls the 'main' function on that data; 
prints the result of the call. 

If the second form is used, the 'main' function is 
fun; for the first form, it is file. 

-s (space) produces code to print out the maximum 
amount of space used by the program, as well as the 
number of cell allocations and de-allocations. Can 
only be used in conjunction with -m. 

-i (string input) can only be used with -m. Specifies 
that the data obtained from the standard input be 
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passed to the main function as a string (a vector of 
characters) rather than as an ffp object. In other 
words, abc would be given to the 'main' function as 
<'a, 'b, 'c> rather than as the atom abc. 

-o (string output) can only be used with -m. Specifies 
that the data returned by the 'main' function be 
output in raw form. The data may be a string or a 
vector of pairs <filename, string>, (e.g. <<filel, 
"yes, I am here">, <file2, "no, I am not here">>) • 
In both cases, the string or strings are printed 
without surrounding quotes. In the first case the 
string is printed on the standard output; in the 
second case each of the strings is printed to the 
file specified by filename, which must be an fp 
atom. Using nil. as a file name specifies the standard 
output. It is an error for the 'main' function to 
return more than one instance of a given filename. 

-p (parameters and options) specifies that if any com-
mand line options or parameters are present, the 
program should run immediately, with <> as input, 
instead of waiting for input from stdin. The argu
ments can then be opbtained by calling the procedure 
arguments (see later) • If no command line arguments 
are given, input proceeds normally. 

-a (AST system) can only be used with -m, and ignores 
-p. AnAST system is an applicative state transition 
system. This option causes the procedure main to: 

(1) apply the 'main' function to <<>, <>> 
(2) 'main' must return <output, state> 
(3) print the output part of the result 
(4) read the standard input 
(5) create a pair <data-read, state> 
(6) call the 'main' function on the pair 
(7) 'main' must return <output, new-state> 
(8) print the output part of the result 
(9) set state to the second part of the result 
(10) if state is not nil, return to step (4) 

Input and output are done as specified by any of the 
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FIIES 
file.fp 
file.c 
fpc 
libfp.a 
libdfp.a 

libnfp.a 

SEE ALSO 

-i and -o options. If -i is specified, each input 
will J:e a string of exactly one character, returned 
as soon as the character is available. 

input file 
output file 
corrpiler 
=-time library 
run-time library to test implementation of the 
primitives 
run-time library for non-checking primitives 

John Backus, Can Programming Be Liberated from the von 
· Neumann Style? A Functional Style and Its Algebra of 
P~ Turing Award lecture, Communications of the ACM, 
Volume 21, Number 8, August 1978 

M:DIFICATIONS 
·The major syntactic differences J:etween the language 
accepted by FPC and the language described in the Backus 
paper are in the treatment of non-ascii characters. MOre 
~specifically, the define character (three parallel strokes) 
·disapt::ears, the if character (arrow to the right) is entered 
as ->, the apply-to-all symbol (alpha) is entered as aa, the 
compose symbol is entered as o (lowercase 0), and constants 
are preceded by an underscore instead of l:eing overstruck. 
Also, bottom will J:e generated by a call to the primitive 
function ~r, characters are entered as 'c or '\c, and 
strings (vectors of characters) are entered as "string". In 
addition to the nonnal (left) insert functional fom I, FPC 
provides tree insert \/ and right insert \. Tree insert is 
used where the order of application is unimportant and may 
J:e expected to J:e more efficient on some systems or in some 
applications. Unary negation is given by neg and - (minus) 
only accepts pairs of numbers. 

Since there is a one-to-one mapping J:etween fp functions and 
C procedures, characters not allowed in C procedure names 
are not pemitted in fp function names. 

As an exarrple, the function ! (factorial) defined in the 
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paper would be written as 
Def sub1 - o [id, _1] 
Def eqO eq 0 [id, _0] 
Def fac eqO -> 1; * o [id, fac o sub1] 

NEW FUN:TION"S 
FPC provides several functions that do not appear in the 
Backus paper, and several more are planned. The description 
of the currently available ones follows. 

dffEdgi merges any number of vectors into a single vector. 
lmy top-level nils disappear. trunc is the floor function, 
it converts a real to the nearest integer that is less than 
or equal to it. newline is a constant-valued function which 
returns the string that signals a new line on the local sys
tem. The value returned is a string instead of a character 
since the system may require several characters (e.g., <CR, 
LF>) to signal an end of line. implode accepts an input 
string and returns a symbol the name of which is the same as 
the input string. explode is the corresponding function 
which accepts a symbol and returns the string corresponding 
to the symbol's name. 

The function arguments returns the command line arguments, 
if any, in the order given; normal arguments are returned as 
strings, options are returned as the pair <option-char, 
string>, where string is the value of the option, if any, or 
nil otherwise. 

t%aoe is an output function: it is functionally identical to 
id, except that it only accepts strings as input. As a side 
effect, the string is printed on the standard output with no 
quotes around it. The program cannot redirect the output to 
a file. 

The following functions all take as input a string 
representing a file name. filetype returns a symbol from 
the set none, errpty, data, text, binary if the file does not 
exist, has no data, contains a valid FP object, contains 
text, or contains non-textual characters, respectively. All 
data files could be read as text files. 

xeadfile returns the FP object read from the given file. 
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inputfile returns a string holding the text that was read 
from the given file. 

DIAGNJSTICS 
Unless -lnfP is used, programs check that the number of 
storage cells they allocated and returned was the same, and 
complain if that is not the case, i.e. if there was an error 
in the reference counting. 

Whenever bottom is encountered, the stack is durrped to 
stderr (if-nand -lnfP were not used), together with the 
inputs to each of the functions on the stack. This can be a 
large amount of data. 

The function checkpoint is functionally identical to the 
primitive id but outputs its argument to the output stream. 
This is helpful for tracing data flow in functions. 

Please report any bugs to the author. 

AUI'HOR 
Ed Biagioni 
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