
.. 

A Parallel Architecture for k-d Trees 

TR88-026 

May 1988 

Geoffrey A. Frank 
Donald F. Stanat 

The University of North Carolina at Chapel Hill 
Department of Computer Science 
CB#3175, Sitterson Hall 
Chapel Hill, NC 27599-3175 

~~~ 
~ . 

I 

ill- ... 



• 

UNC is an Equal Opportunity/ Affirmative Action Institution. 



• 

• 

• 

• 

A Parallel Architecture for le-d Trees 
Geoffrey A. Frank 

Research Triangle Institute, Research Triangle Park, N.C. 27709 
Donald F. Stanat 

Department of Computer Science, University of North Carolina 
Chapel Hill, N.C. 27514 

ABSTRACT 

We describe a special purpose computer architecture for the parallel processing . of 
queries, including associative searches, in a dynamic file. The architecture is a highly
parallel network of small processors of two types connected in a full binary tree network. 
Records are stored in the leaves of the tree; each leaf processor is. responsible. for records 
occurring within a rectangular solid part of the space. Queries and record updates are fed 
into the root of the tree. Internal nodes selectively direct each query and update to leaves 
so that each leaf sees only the information ~eometrically close to the records for which it 
is responsible. File updates cause a. reorgamzation of the tree, which is accomplished in a 
manner that can accommodate either incremental or massive changes. 

The architecture can be viewed as a. hardware implementation of Bentley's le-d trees. 
The design is extensible and well-suited to implementation in VLSI. 

1. INTRODUCTION 

We address the problem of rapid searches and updates of a dynamic file with mul
tidimensional. keys. Examples of search operations of interest include range queries and 
nearest neighbor searches in multidimensional spaces. File update operations can include 
additions and deletions of records as well as changes of key values. Our approach is ap
propriate for applications in which queries and updates can be hatched, so that the basic 
processing cycle consists of two phases: 

Phase 1: Process queries 
Phase 2: Update the file 
We are interested in applications for which the processing required for each query is 

sufficiently demanding that processing must be done in parallel for many records, a.nd 
where there is limited time available for updating the file. 

We propose a special purpose massively parallel machine architecture whose degree of 
parallelism ca.n be adjusted to a level appropriate to the particular problem instance. The 
architecture can be viewed as a hardware implementation of a dynamic le-d tree [Be75] for 
the appropriate dimension. These trees have been shown to be an excellent data structure 
for dealing with many problems in multidimensional space; Our architecture stores the 
records of a file in the .}eaves of a binary tree network. Queries and updates enter through 
the root and are directed to the proper subset of leaf nodes by the interior nodes of the 
tree network; the processing of queries and updates is performed in the leaves of the tree. 
This organization facilitates pipelining of queries and updates through the tree, and makes 
each leaf node responsible only for processing the information most likely to be relevant 
to its record. 

The remainder of this report consists of the following sections. In Section 2 we describe 
le-d trees as proposed by Bentley [Be75), and a modification in which records are stored 

This research was supported in part by the Office of Naval Research, contract N00014-
86-K-0680. 

1 



• 

• 

• 

.. 

• 

in leaf nodes and the leaf nodes are all the same distance from the root. In Section 3 we 
describe the tree machine design, starting with a hardware implementation of a le-d tree 
for a static data set and culminating with an implementation that permits the tree to be 
dynamically reconfigured. In Section 4 we describe an application of the. machine to the 
problem of tracking objects in 3-space and analyze the performance of the tree machine for 
this application. In Section 5 we discuss related work, and in Section 6 we give conclusions 
and describe future work . 

2. K-D TREES 

Bentley[Be75) proposed le-d trees as a generalization of binary search trees appropriate 
for multidimensional problems. Each record of a file is assumed to include le keys, any 
subset of which can be used.in querying the file. Each record is stored in a (unique) node 
(interior or leaf) of a binary tree. 

We will describe and use a variant of Bentley's design, where the records are stored 
only at the leaves. In this variant, each leaf contains a record R, and each internal node T 
of the le-d tree contains the following: 
a. Pointers T.left to the left child and T.right to the right child of the node T. (Either 

T .left or T .right may be null.) 
b. An integer T.axis in the range ro ... le-1] specifying which of the le keys (axes) is to be 

used to direct queries in a search. 
c. a discriminator T .disc in the key space of the key T .axis. Comparison of a search key 

with T .disc is used to direct queries in a search to the left subtree or the right subtree . 
We will denote the le keys of a record R by R.O ... R.le-1. 
The le-d. tree is. organized to satisfy the following invariant. (Here and elsewhere we 

will not distinguish between a node T, the subtree of which T is the root, and a pointer 
toT.) 
Invariant: For every leaf node Rand interior node T, 
a. if R is in the subtr~ T.left, then R.(T.axis) < T.disc. 
b. if R is in the subtree T.right, then R.(T.axis) > T.disc. 

For the present, we assume that discriminators will be chosen to lie between the relevant 
key values of records; thus, equality cannot hold. 

Although the restrictions are unnecessary, we will assume, as Bentley did, that if T 
is the root, then T.axis = 0 and if an internal node Q is a child of node P then Q.axis 
= P .axis + 1 mod le. This implies that all the nodes at any level in the tree discriminate 
along the same axis, that is, if P and Q are the same distance from the root, then P.a.xis 
= Q.axis. 

Just as ordinary binary search trees effectively associate a segment of the linear key 
space with each subtree, le-d trees associate ale-dimensional rectangular region with each 
subtree. In a 2-dimensional key space, for example, the root node divides the space into 
a right and left part. The left child of the root will then divide the left part into a top 
and a bottom part, and the right child will divide the right part similarly. Note that the 
discriminator value used to divide the right part need not be the same as that used to 
divide the left part. Each of the four grandchildren of the root will then divide each of 
the four parts into two disjoint left and right parts. Thus each subtree in a le-d tree is 
naturally associated with a le-dimensional 'rectangular region' (possibly semi-infinite) of 
the key space. See Figure 1. 

Note that ordinary binary search trees can be viewed as 1-d trees; that is, all nodes 

2 



• 

• 

.. 

have the same value for T.axis. In general, le-d trees share the virtues and vices of binary 
search trees: the expected height of randomly built trees is logarithmic in the number of 
records in the file, so expected search and insertion times are logarithmic. On the other 
hand, deletions are awkward, and building trees that are guaranteed to be well-balanced 
is costly, since it requires determining an approximate median value along the appropriate 
axis for the subfile stored in each subtree. So while a tree structure has many signal virtues, 
it poses a number of problems for dealing with a dynamic file. These problems are handled 
in our machine architecture by devoting a part of each machine cycle to a reorganization 
of the tree; this approach is attractive because much of the reorganization can be done in 
parallel. 

The architecture we propose is a hardware implementation of a special class of le
d trees. We require that all the leaves of the le-d tree be the same distance from the 
root, that each internal node with only one son stores the appropriate key value as its 
discriminator, and that all nodes with only one son occur at the bottom of the tree; these 
requirements are reflected in the following additional invariants: 
Invariant: For every leaf node R and interior node T, 3. The depth of R is equal to the 
height of the tree. 

4. if the subtree T has a single leaf node R, then T.disc = R.(T.axis). 
5. if T has a single child, then every descendant ofT is either a leaf or has a single 

child. 

3. THE TREE MACWNE 
3.1 The Machine Architecture 

The tree machine (TM) is a full binary tree of small processors of only two types; 
see Fig. 2. We will ca'U the interior processors T cells (which we will identify with the 
interior T cells of a le-d tree) and the leaf processors R cells. The TM has the nodes of a 
reconfigurable le-d tree embedded in its nodes. This makes it possible to direct q~eries only 
to a subset of the leaf processors of the machine. Each cell of the TM is associated with a 
rectangular region of the key space; this rectangular region contains all the records stored 
in leaf cell descendants of the cell. Moreover, the cells at each level of the tree partition the 
key space into disjoint rectangular regions. At the leaf level, each cell contains no records 
or a single record. 

Each T cell is a small processor that is capable of receiving packets containing records, 
update information and queries from its parent node and child cells, performing simple 
comparisons and computations involving these packets, and then forwarding the packets 
to its child and parent cells. In addition t being able to send query responses from the R 
cells up into the tree, each T cell must also have the capacity to store two records so that 
records can be· sent up into the tree by the R cells, sorted by the T cells, and arrive at the 
root in either increasing or decreasing order of a specified key. In order to play its role as 
an interior node of a le-d tree, each T cell also has storage for 
a. An integer T.axis in the range ro ... le-1] specifying which of the le keys (axes) is to be 

used to direct queries in a search. 
b. a discriminator T .disc in the key space of the key T .axis. 

Additionally, in order to participate in the balancing of the tree, T cell must contain 
• c. an integer T. balance equal to the difFerence between the number of records in the left 

subtree and the right subtree. 
The embedding of a le-d tree in the tree of processors is done by first building a le-d tree 

of the height of the hardware tree, with all records stored at the leaves and all leaves the 

3 



• 

same distance from the root. The tree is then mapped onto the hardware in the obvious 
way, preserving the left-right and parent-child relationships. In particular, each interior 
node T of the le-d tree is mapped to a T cell of the TM, and each interior node of the TM 
contains the appropriate le-d tree axis index T .axis and key value discriminator T .disc. All 
records that lie below a node T of the le-d tree are stored at R cells that are descendants of 
the corresponding T cell of the TM; those that have key values less than the discriminator 
are left descendants, while those with key values greater than or equal to the discriminator 
are right descendants. 

3.2 Search Algorithms 

The algorithms for searches in the TM are straightforward modifications of the corre
sponding searches in a le-d tree, except that the TM allows a sear~ to proceed in parallel in 
different subtrees. Ex~ matches are easily handled; they cause a query to follow a unique 
path from the root to an R cell (if the search does not fail at aT cell). Partial matches 
are handled similarly except that interior nodes that have key values that are not being 
matched send the query to both sons. A range query (a search for all records with keys 
in specified ranges) requires that a query be sent into each subtree that has a non-empty 
intersection with the rectangular solid that is described by the set of key ranges. Each 
interior node that receives this query from its parent node may forward it to one, both 
or none of its child nodes. All leaf cells that contain records in the space (and possibly 
others) will receive the query; their responses can be pipelined up the tree. 

The partitioning of the space makes it possible for each leaf processor to see only 
those packets that are located in nearby volumes of the partitioned space. If the space is 
partitioned in a fixed way, however, insertions, deletions and key changes of records in the 
space could lead to imbalance in the form of too many records being assigned to a subtree. 
l3y making the partitioning dynamic, it is possible to make each subtree responsible for· 
only a limited number of records, and each R cell responsible for only one. This requires 
that the portion of space assigned to a subtree be able to grow or shrink or move, i.e., that 
the tree be reorganized. ReOrganization of the tree requires changing the discriminator 
values of the interior nodes and moving records to maintain the invariant. 

3.3 Update Algorithms 

The basic pattern for file update processing is first to update the set of records, possibly 
violating the le-d tree invariant or the tree balance. The second step is to reorganize the 
tree so that the resulting tree satisfies the invariants and is balanced. We will treat three 
ways of updating a file: aeletions, insertions, and changes of k~ys. 

Deletions are easily handled at any time. We will call the child of a T cell active if 
that child has one or more R cell descendants· that contain records. Thus, the left (right) 
child of an T cell is active if T . .left (T .right) of the corr~onding node of the le-d tree is 
non-null. When the record in an R cell is deleted, the R cell signals its parent and becomes 
inactive. When anT cell with only one active child receives such a signal, it propagates 
the signal upward; that is, if both children are now inactive, it sends the same signal to 
its parent. In any case, a distinct signal propagates from the R cell in which a record has 
been deleted to the root, modifying the balance factor T.balance of each T cell along the 
path. Note that deletions do not require a reorganization of the tree, although they affect 
the balance of the tree. 

Adding records to a file can be done without reorganizing the tree only when empty R 
cells exist in locations that will permit the addition of the new records using the current 
discriminator values. In general, insertions will be a part of a larger file-update procedure 
that will require the interruption of query processing. . 

When file updates are hatched, the first step of the update is to process deletions as 

4 



• 

' . 
I 

• 

described above. The next step is to process changes of keys of records currently in the 
tree; these changes are made locally, possibly violating the invariant. The last step is to 
insert records to be added into the tree. Each new record is sent to an arbitrary empty R 
cell; this is done by the T cells using their balance factor T. balance so that the ins~ ions 
will not adversely a.:ffect (and may improve) the balance of the tree. The next step is to 
restore the invariant by reorganizing the tree. In general, reorganization can be initiated 
any time the le-d tree invariant is violated or when the imb8J.ance of parts of the tree 
becomes excessive. 

Reorganization proceeds as follows: 
Records in the left subtree are pipelined to the root, queued in decreasing order 
of the key R. 0. Records in the right subtree are sent· up to the root in increasing 
order of R.O. The root cell first re-establishes the balance of the tree by removing 
the proper number of records from one subtree and inserting them into the other, 
where they are then sent to leaf cells. Records are removed from the over-loaded 
subtree in their sorted order; that is, the order in which they arrive at the root. 
Reorganization continues by next re-establishing the property that all records in 
the left subtree have R.O values less than all records in the right subtree. This 
is done by exchanging the two records at the heads of the queues at the root if 
the value R. 0 of the record in the left subtree is greater than that of the record 
in the right subtree. Records that were exchanged are then sent toR cells. Note 
that records are queued at the root in the order in which they will be transferred 
from one subtree to the other; the root exchanges records as long as necessary to 
re-establish that all records in the left subtree of the root have R. 0 values less 
than all records in the right subtree. When the root is finished exchanging records 
between its subtrees it can reset its discriminator to the value midway between the 
largest key value in the left subtree and the smallest key value in the right; this 
re-establishes the invariant for the root cell . 
Finally, the remaining queued up records are sent back down the tree to arbitrary 
R cells, with each T cell directing the records so as to achieve the best balance 
possible. This completes the tree reorganization at the root level. 
The tree reorganization continues by repeating the process (in parallel) for each 
of the sons of the root, except using the key R.1 . This continues untif all levels 
of the le-d tree have been reorganized, using the proper key at each level, and the 
discriminators of all internal nodes have been re-set. 

This completes the machine cycle; a new set of queries can now be processed. 

4. AN APPLICATION 
4.1 Tracking Multiple Objects 

An application of particular importance is multi-tar~et tracking in 3 dimensions. In 
this application, a file of records called traclcs is maint&ned. The file is dynamic, since 
the position of each track will probably change over time, and tracks may be added to or 
deleted from the file. The keys for the records are the predicted positions of the tracks.; for 
a 3 dimensional tracking problem, each record has 3 keys. The tracks are updated at at 
regular intervals (which we shall denote by t, t+1, etc.) with a new set of observations of 
the objects being tracked. Each new set of observations contains update information that 
is used to correct the predicted positions of the tracks and to create predictions for the next 
time interval. The response time for the system is critical; each set of observations must be 
processed and all tracks must be updated before the arrival of a new set of observations. 
This application is most naturally handled by the TM by hatching the updates so that the 
tree is reorganized once for each set of observations. Note that the reorganizations will not 

5 



• 

.. 

• 

be massive because the records will move slowly through the key space. 
We assume that the updating of any track t requires only information about the obser

vation that is nearest the predicted position for t. For the purposes of this paper, we will 
assume that the observation nearest to a predicted track location will lie within a cube of 
size !r centered at the position of the observation. 

We now describe informally the operation of the machine. We assume the tracks from 
time t are stored in the leaves, and that predictions of their position at time t+ 1 have 
been made. The machine cycle proceeds as follows: 

1. Merge observations with the predicted track positions. 
Observations come into the tree through the root and are directed into subtrees by 
means of the discriminators stored in the internal n.odes. Observations within distance 
r of a discriminator T.disc will be directed into both subtrees of a cell T. Under the 
assumptions we have made, merging a track with its associated observation can be done 
by its leaf cell, choosin~ the observation that is closest to the predicted position of its 
track. Although easily Implemented, this criterion will not be sufficiently sophisticated 
in practice, where observations from sensors must be matched with tracks or used to 
create a new track, possibly with some confidence indicator. In a practical situation, 
in which observations may be matched with more than one track, and some tracks 
may not be matched with any observation, there must be some way of detecting and 
resolving conflicts among the local decisions made by the leaf cells, and the resolution 
must be in subtrees rather than leaves. 
2. Update track descriptions. 
The information in each track is updated based on the information from new observa
tions and associated with the track in the previous step. A corrected track position is 
computed, and predictions for the position of the track at the next time interval are 
made. New tracks are created for observations that did not match a track, and tracks 
which no longer represent an object in the field of view are eliminated. 
3. Reorganize the tree. 
This part of the machine cycle is devoted to re-establishing the le-d tree property and 
rebalancing the tree, as described in Section 3.3. 
This completes the machine cycle; a new set of observations can now be processed. 

4.2 Performance Analysis 

The tree machine gets its speed fi:om two sources: the le-d tree organization reduces 
the number of pairs of points that must be compared, and massive parallelism makes it 
possible to perform the many computations without a great time cost. Pipelining of values 
through the tree also plays an important role. 

The following is an informal analysis of the expected time complexity of the machine 
cycle for the tracking application. We assume a ·set of n observations (queries) and a 
hardware tree of height log n; thus the number of tracks is approximately the same as the 
number of observations. But if the number of tracks is twice the· number of observations, 
then the height of the tree increases to log n + 1, which has no effect on the asymptotic 
analysis. 

1. The first part of the machine cycle requires O{n) time to bring in n observations 
through the root of the tree and an additional O(log n) time for the last of these ob
servations to reach the appropriate leaf processors. Thus query input requires O{n+log 
n) time. · 
2. The second part of the cycle updates the tracks with the information in the ob-

6 



... 

• 

servations. Because the k-d tree sends observations only to those leaf processors that 
contain nearby tracks, the expected time for these computations is a function of the 
expected value of the number of observations processed by any leaf processor, which 
we assume is bounded by a constant. Thus, this stage of the computation will require 
an expected time of 0(1}, although the coefficient for this part of the cycle may be 
much larger than that for the first part of the cycle. 
3. The third part of the cycle reorganizes the tree. Full reorganization of tree each 
cycle as described will take place in log n steps, one for each level of the tree. The 
most costly step is likely to occur at the root, where in the worst case n records can be 
moved from one subtree to the other. But at the next level, only n/2 records can be 
moved at the root of each subtree, and in general, at distance t from the root, only n/~ 
exchanges can be made in each subtree. Thus the entire time for exchanges is O(n). 
The time for sending points up to the appropriate tree node and back down is O(log 
n) for the reorganization of each level. Thus reorganizing the entire tree requires O{n) 
time for point exchanges and {log n) * O(log n) or O((logn)2) time for sending points 
up and down the tree. It follows that reorganizing all the levels of the tree requires 
O(n + (logn) 2) time. This cost dominates the asymptotic complexity of the machine 
cycle. 
For the tracking problem, this analysis of the reorganization time is very pessimistic, 

principally because the number of points to be moved between subtrees during any cycle 
is likely to be small. 

5. RELATED WORK 

The architecture we describe owes much of its character to the design of the 
FFP machine, a small-~ain general purpose computer architecture proposed by Mag6 
(Ma79a,Ma79b,MM84]. That machine, like the TM, is a static hardware tree network that 
is reconfigured during each machine cycle into a collection of subtrees appropriate to the 
current computational task. 

Bentley and Kung {BK79J examined tree architectures for associative searching prob
lems. For many applications, due to the cost of file updates, the TM architecture may not 
be better than that proposed by Bentley and Kung. Their approach also stored records in 
leaves and provided for the parallel processing of matched queries and records. In their de
sign, queries are broadcast to all leaves from the root and all leaves process all inputs; thus 
the processors holding the records are responsible both for finding which queries match the 
record, and for processing the matched queries and record. In the TM, the two tasks of 
comparison of keys and processing queries are delegated to different processors. Because 
key comparisons can be pipelined and done in parallel in the TM, this design appears to 
have an advantage in situations in which the time to match a key is substantial in compar
ison to the time required to forward a packet, formulate a response to a query or update 
a record. Also, since the comparison of the keys is pipelined, the query processing rate in 
the TM can be independent of the number of keys. 

6. CONCLUSIONS AND FURTHER WORK 

We have described an implementation of a modification of Bentley's k-d trees with a 
special-purpose parallel processor. This architecture provides for the rapid processing of 
queries and can gracefully accommodate major reorganizations of the tree. A straight
forward analysis of the algorithms indicates that when the number of queries processed 
between file updates is of the order of the number of records in the file, then the expected 
reorganization and the search times are both O(n + (logn)2). 

In the application of multi-target tracking in 3 dimensions, each new set of observations 
usually contains update information for each record (track), and rapid response and up-

7 



dating is crucial. This application is an appropriate candidate for the TM because updates 
(observations) can be hatched and the tree reorganized once for each set of observations, 
but the machine cycle must be fast enough to process the incoming update information on 
the set of records and reorganize the tree before new observations arrive. Note, however, 
that the reorganizations will not be massive because the records will move slowly through 
the key space. 

Future work will explore the design of the TM more carefully as well as variations 
of the machine. This will be done in conjunction with consideration of a more realistic 
version of the tracking problem, where the number of objects changes, objects are endowed 
with clliferent (observable) properties, etc. A matter of particular concern is coordination 
of decisions; in the machine as we described it, identification of new points with old ones 
is done independently by each R cell processof; that is, the global solution is the union 
of many independent local solutions. In practice, of course, this is not acceptable, but 
additional communication can provide the means for processors to cooperate in order to 
arrive at a satisfactory global solution. 

Additionally, serious development would require looking into ways of overlapping vari
ous parts of the machine cycle by providing a network with sufficiently rich communication 
and processing paths. 

There exist a number of variations on the architecture that may merit further inves
tigation. Many of the possible variations would have a substantial effect on a working 
system, but would not affect the asymptotic analysis. For example, input speed could be 
increased by allowing internal nodes at some level in the tree to be input ports for queries. 
This would reduce the time required for the input by reducing the bottleneck at the root; 
it would also change the load balance between internal and leaf node processing. Another 
way of changing. this balance is to increase the number of records stored in each leaf cell. 
Storing additional records in a leaf cell can also alleviate some difficulties associated with 
using this architecture for certain applications; for example, disambiguation of observations 
in a tracking problem requires some communication among nearby tracks. Simulations of 
some of these approaches should provide some insight into some of the tradeoff issues that 
are not addressed by our asymptotic analysis. 

Other questions concern strategies for avoiding reorganizations of the tree. There 
are two possibilities: allowing the discriminators to become inexact (that is, loosen the 
invariant that characterizes the tree), and allowing the tree to become unbalanced. Both 
possibilities would increase the potential cost of matching queries and records, but could 
save time by reducing the frequency of tree reorganization. 

Other application areas might utilize other variants of the architecture. It might be 
of particular interest in applications that involve data bases that are not passive, i.e. 
where the processing of matched queries and records can generate new queries. H the new 
queries involve records in the same locality, then the le-d tree organization could confine 
the processing of the new queries to subtrees, allowing more parallelism. This would be 
an advantage over the Bentley and Kung architecture, which requires that all new queries 
be sent to the root. A detailed treatment of the tracking application would make use of 
this opportunity for exploiting locality in processing, as do object-oriented data bases, and 
frames in AI applications, where a match of a query with a frame may cause a demon to 
be invoked. 

BIBLIOGRAPHY 

Associative 

8 

L - -" • I I 
erne?""' z 



[BK79l Bentley, Jon L. and H.T. Kung: "A Tree Machine for Searching Problems". 
!n Carnegie-Mellon Technical Report CMU-CS-79-149: "Two Papers on a Tree
Structured Parallel Computer." 

[Ma79al Mag6, G.A.: "A Network of Microprocessors to Execute Reduction Languages" 
(Two parts). International Journal of Computer and Information Sciences 8, 5 
(1979), 349-385; 8, 6 (1979), 435-471. 

[MM84] Mag6, G.A. and D. Middleton: "The FFP Machine-- -A Progress Report". Inter
national Workshop on High-Level Computer Architecture 84, Los Angeles, California, 
May 23-25, 1984. 

9 



·it 

'8 

A • • 
II . 

• c. E'e 

~ 

.10 ea 
e'l> 

Fe 

.Si e-r lZ. tl. )<. .l. ' .. •:r 7 

• eN 1\t 
13 

Figure 1: A partitioning of a two dimensional key space by a k-d tree 
The file has fourteen records. Each discriminator of the k-d tree is represented by a 

horizontal or vertical line segment. The boldness of the line segment indicates its depth 
in the k-d tree, with the boldest line being the discrimination made by the root node. 
Discriminator lines are indexed for association with the nodes of the machine shown in the 
following figure. Note that the size of the regions reflects the local density of records in 
the key space. 

Figure 2: A TM (Tree Machine) 
The leaf nodes of the tree are L cells; the non-leaf cells are T cells. The nodes are 

labeled by according to the previous figure, with discriminators being associated with T 
cells and records with L cells. 

10 


