
CLOCS Operating System
RefE~rence Documents

TR88-023

May 1988

Bill 0. Gallweisier

The University of Nor th Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterscn Hall
Chapel Hill , N C 27599-3175

Copynght@ 1988 Bill 0 . Coil moister

I
I f

I ~

UNC is an 1:qual OpporLuJl iiy/tlflirmat.ivc ,\ ct ion Institution.

CLOCS Operating System Reference Documents

Bill 0. Gallmeiste1·

CR # ;rl75, Department of Comp11 ter Science 1

University of North Carolina
Chapel Hill , NC 27 599-3175

May 6, 1988

1T his R.c•card• was suworted by Office of Naval Research Contract NOOOJ4-S6-l<-0680.

Contents

Introd uction 1

1 Au Ov~tview of t he Kemel D E>Sign 2

1.1 The Goals of the C LOCS Kernel ... 2

1.2 Achieving lhe Gon.ls of the C: LOCS Kernel . 7

1.3 Kernel Module Desc ri ptions 10

1.4 Current and J:o~uture \ ·Vol·k 27

2 Kernel Mod ules Specification 28

2.1 Overview 28

2.2 The CLOCS Operating System 30

2.3 Memory Management. 32

2.4 Proce~s .Mana.gemenL , 35

2.5 Communknt.ions ·Management . 40

2.6 Glue Code. 45

3 Scheduliug: Algorithms and Ideas 48

3.1 Req uirements . . 48

3.2 Definition of Process 48

33 Scheduling Data Structmos 50

CT,OCS 0$ Rcferc/lce Documents - Gallrneister

:1.4 The Seheduling Algodthm

:J .~ Interfaces of Scheduling ..

4 Iuterprocess Signals

4,1 Overview

4.2 Signals . .

ii

52

• 54

55

55

55

Introduction

CLOGS (Computer with LOw Con text Switch tim<>) is ~~~ experiment"! computer system
designed ~t ~he University of l\'or~h Caxolina at Chapel Hill by Mark D~vis aud Bill 0.
Callmeister. C LOGS is designed l.o explore the perfocmance issues associated wilh a machine
t.bat can wntcxt switch extremely rapidly by virtue of minimal C P U s tale LO save and reslt'fe
on a context. switch. T his emphasis st.ron!jlY inll~tenecs the design of the operating system ,
which is built to support finely grained scheduling and dynamic extensibility of !.he system.

This document collects tlte papers describing t.be CLOCS operating system. An overv iew
of the kernel design is first prc$cnted, followed by a dct<>ilcd spccificatiou of the entry point~
to the kernel. Chapter 3 is a brief discussion of scheduling in the CLOCS kernel. 1'he final
chn.ptcr is n.n enumeration of the signals used in the opctatiug system.

Chapter 1

An Overview of the Kernel
Design

CLOGS (C0111puler with LOw Context--Switch ing time) is a machine being designed at the
Un iversit.y of Nort h Carolina at Chapel TTill , by Mark Davis and Bill 0 . Gallmcister . CLOCS
is an experimental sysl.em1 both hardware and software, creat.ed to explore the consequences
of '' design that permits extremely rapid context switches. Tbc CLOGS Operating System is
de.signed to exploit the unique fe;>Lures of the CI,OCS hardware to meet. specific performance
a nd qualitative goals : teal-time responsiveness, fair mu ltiprogramming, and dynamic rccon­
figurabilit.y. This paper describes the most basic pal'l. of the machine's operating system -
Lhe CLOGS Kernel.

Whilt> the CLOCS kernel is only the lowest layer of the operating system, it provides
the necessaTy b uilding blocks to meet the design goals of t he system as a whole. T his
document enqlhasi"es the overall couc.epts lltat relate to these goals, deferring more det.ailed
kernel descriptions to [12]. Section 1 discus~ the g,oals of the system. Section 2 provides
an overview of the stra tegies used to meet these goal;. Descriptions of t he modules of the
CLOCS kernel a re gi veri iu section 3.

1.1 The Goals of the CLOCS K ernel

1.1.1 Real-Time Response

A major objective of the CLOCS Operating System is to provide real-time response, meaning
tha.l processes must be able t.o respond to event.s, generated by sofbvare or hardware, willLln
a specified (and assumed small) amount of t.ime.

CLOGS OS Reference Documents - Callmcisier 3

R eal-Time Sys t e ms arc Difficult . Real-time t·espottse is hard to achieve in operating
systems~ because not only must. the answer be right, tt must be delivered on tilnc. Like most
sofLware, typical muiLiprogta.nuning operaling sysLesns run with liLLie regard for external,
wal- world time. lr1 designing a real-ti me system, the software designer mus~ pay dose
aLtendon to the a.mou nt. of time taken in all sections of code- asymptotic order notation
will uot suffice! The designer must assure that int-err upt response t.itncs arc bounded, nt ust
support gua.·antecd scheduling aud con1pletion by ex1.ernal time, and must carefully analyze
the timings of in teracting parts of the ;yst.em to a-ssure tbat the timing constraiuts of the
system are met. ln sum, rea l-lime cons traints make programming ltarder tn gcncr'!l~20) ,
because they add a whole new dim<msion the time dimension - to t he problem s pace being
explored.

1.1.2 Fair Multipl·ogl.'ammin g

R.~:d- tilnc tc-sponse h(IS beeu achieved in oiJaer systems, bul, usuaJly a11 Lhe expense of fairness
- l.he p:roc ... ~ses reqi.Liring rea1-t.ime response are Lrealed preferenLiaHy to other, non-real- t.irne
proce<-•es. The second design goa l of the CLOCS e>perating systent is lhal it provide fair
multiprogromrnin~ for n.ll processes. A schcdttling algorithm is called "fair" if all processes
a re giveu equal consideration by th" schedule•· at all i imes[8) . Fair multiptogramming is
difficult to reroncilc with rca.l- time capability, since real-time processes u'lay have special
requirements - they may need to be scheduled rnore o ften, or perhaps aiJowed to nm longct>
in order to have any va lue whatsoever! B.econciling (<fair'> schcduljng wi~h denlauds (or
real-time rcsr>onse is discussed iu detail iu [10].

1.1.3 Dynamic Ext ensibili ty

Software is a malleable substance, and quite oft-en software systems are a ltered ''on t,hc Ay" as
~bey are being used: functiona l modules arc u.dded to , and s ubt racted from a running system
(!$ ii is rmwiug. This is especially true in real-time programming, where the programming is
often associated wit,h <orne unique data collection device that must be specially driven[l 7) .
Small, frequent changes to soft ware components should not require recompiling and rebooting
the operating system . Tltercfote, the GLOCS operating system rnusl expand and conl.racl,
dynamically as it ruus. T llis allows new drivers or specia1Jy expanded functionality to be
added to Lhe syslem as needed, re rnoved when the maehinc r<~SOlJ rcc is lwtter spent c l,:;cwhcrc.
or changed when it is wroug.

A ~ecor'!d re.<l.oSOn for dynamic exte.n~ibility ito t he i\dvanti:lgc of program rning an ilpplic,at,ion
on the targ•~t machine for t he applicatiou[l 8). Pto~;ramming on the target machine requj res
t.hat iht: machine su pport a full deve)opmenl environment.., but such an environment is only
useful when the system is being developed. ' \'ben a produclion system i~ ruoning, a. full
cl~velopment environment is just b«ggage. It must be possible to link in the capabilil.ies of
a full-fea tured operating system on deman<i, l.hen j ettison them when they are not required .

Cf,OCS OS Reference Documents . Gallwdster 1

1.1.4 The CLOCS Machine

In a mul tiprogramming system, processes arc frequen tly contex't-switcbcd, i.e., the running
proce;;.< is stopped, its state saved and another proces;; started. Machines with large amount~

of state in their proc~.ssors hnve historically achieve-d better rates of throt>gbput, but they
also context-swibcll more s low ly than ma.c.hines with less stale. [n the past, throughput of
a single process has been t he metric for gauging a machine's performance, but as multi pro.
gramming systenis becorne more common, throughpuL of ll1U itiplc, concurren t processes is
increasingly important. Context switching speed is an important component of mul!ipta·
g rammed computer performance.

The CLOGS project is studying tho tradeoff< between single- <nJd multi-proccs• through·
put involved in the design of a system - both hardware and soft ware - which targets fast
conlext swit..ching ash:;; major performance meLric. Since the novel design of t.he hardware
has inOuencec.l the kernel design, a short oven··lew of the hardware is in order.

The CLO CS CPU

'l.b swttch context, a m~chi ne must store all intctnnl Tcgist.cr-s nnd r<;plac·e th~rn with new in­
formatiou. lu orJer to allow fast c.ontext switches, tbe CLOCS rnadtine It as only one register,
called J,he state word: storing it and reloading lts contents takes exactly Lwo iosl,ruct.ions.

Because t here arc no other registers, the CLO.CS operation sci is small - there is no
need for load or store operations, aud the lack of "' ·Sisters also makes for fewer addressing
modes. Th is dram~tie<tlly simplifies l.he inst1·uction set: CLOGS supports only 20 different
operal ious!

This minimal amount of CPU state impacts the programming model for the machine.
The bare minimum information is stored in Lhe staLe word: a process ID, the program
~ountet, and flags, including the current intern1pt mask . A great deal of ptoccss state, such
as ~tack and frame poinlers, i.s normally maintained in a machine's registers . In CLOCS

1

this state is kept in well-known memory locations.

T h e CLO CS MMU

Rcv.l-timc systems, and increasingly~ general-purpose computing system.s must. run hundreds:
if nol t housands, o f processes concurcent.Jy. Virt.ual memory has prc)ven to be au i.mpo:rta.nt.
and useful tool f01· building reliable multiprocess systems, due to the sepnration and pt<r
tection it. ofl'crs. \•Ve feel that virlual memory is vital to tbe reliabilit.y of mult.iprogratnmed
systems. T herefore, CJ.OCS supports segmented. paged virtual memory with its MM U. A
process ID, sl.ored iu tile state word, uniquely determines a set of segment and page mappings
in the ;\•1M U; changing th is hard ware process 10 chnnge.s t he ~~ ~fU as a. side eiTect. Although
most add ressing is assumed to be io one of lwo default segn1ents (one for instructions and
oue for data), processes call address data in a11y segment using extended acl th essing modes.

The MMU is organized as a single large table, s upplying pt-Oeess m, segm ent nu mber,

I

CLOCS OS Reference Documents • Ga/Jmcister

virlllal page, physical page, aod proLecliou bits io a single tuple. The MMU is an associative
memory, ~nd the hardware does nol enforce any ordering of ~he tuples. Siner process 10
does not determine a fixed number of S<lgments, processes can aecess an arbit rary number of
segments , including segments shared with other proce.>ses. The flexible layout of the MMu
aUows easy memory sharing between processes, but also allow$ inconsistency. For instance,
process ID + segment 10 + ''irtual page number do not functioMIIy determine a unique
tuple, making it possible to have two contrad ictory mappin!>,$ in l.he CLOCS MMU! Th<;
memo ry management soCtware must. ('llSure Lhal Lhc MMU remains c:onsisl<:nt.

Instruction
OP2 OPl t
I I \ 12

Status I
\ QSEG

PC l f PlO

Zero
Secment -,

Default Ises:::~~~~r---,~: ~
:>efaulr. Ose<.; I ~EG

INDIRECT l.._..;s;;_:I:,;;D;_~J~o;,;,F;.;E' S;;,;E;;,;T_..J:.

~ t..-q 0

(high order 2~ bits are
igno>=edl

+ lr lr
MMU

! l l i . i
·········-····r············~· ······-·············r ! •••.• _ ••...••••••••••

PID I SID ~li'Li'.GS ~VPAGE iP?AGE -·-···· ... r J.-·-·--·-·-··t-·-·-·-·-··-·1··-·-···--·-··-·
I t 1 ~
I : i ~

I ! I ,
I t i,: \,.
; :

~/
Phy sica]:.!--::"~
Address 1-30

Physical Memory

The CLOCS MMU

CLOGS OS Reference Docurnent.s- Gal/meister 6

Event .tl'andling. Event.s (trap< nnd interrupts) arc !Jandlcd by vedoring; an e'•ent
Vt,ctor is a state word ~Ita~ is loaded into the CP U when l.he associated event. occurs- The
CLOCS machine pi'O\•ides 1024 separate vectors, half for traps and half for interrupts. This
large number of vectored ev.ents speeds event handJing because !.he software doesn>t need LO

\\~Ork as bard Lo figure out which event occurred. Th~t inform~tion is htl'gcly implicit iu the
eve,nc vc~tor it.self.

The arch itecture of the C LOCS machine and its ~·IMU arc described io a number of
papers [tl,4,3,5]. Readers interested in detailed architectural descriptions are rel<med to
these papers.

CLOGS OS Reference Documents - G:tllrneister 7

1-2 Achieving the Goals of the CLOCS Kernel

The CLOCS kernel uses a few simple strategies to meel its goals. The general strategies ru-e
described below; the next section gives more specific details on the kernel ilself. Together,
these strategies prov ide the necessarr building blocks for achieving the goals of the who!~
system.

1.2.1 Obtaining Real-Time Responsiveness

Obl.a.ining rcn.l-t.ime responsiveness is the single largest goal of t.he CLOCS operating syst.cm,
audits reW i01a.t.ion requjres t..he mosb work Each module of a. rea.l- t.ime system must cooperate
in order t.o «chieve the performance goals of the system. The modules of the CLOCS kernel
work together in the following ways.

Uninterruptible Path Leugths Al'e Short

Jf any process requires long uninterruptible periods or time. then rea.l-tilne performance
becomes hard to a.chieve: rapid respo11se to an evc011. caunot be guaranteed because some
process may be jusb starting a long section of un interrupt.ible code. The UNJ X1 system, for
instance, has a hard time doing real-time processing because it is monolithic, and processes
running in the kernel can take nmny milHseconds to complde. fn contrast, t.he CLOCS
operating system consisl.s of s hort, unintcrruptiblc patils thtough t,he kernel, connected by
sections where int.etrupts are aJio, ... 'cd. AL these '·chedq>oints" 1 rescheduling of 1..he processor
cnn occur, allo,-..·ing rtipid ·response to events.

P1·ocesses Can Run To Con1plction

CLOCS allows a proce.ss to indicate when it must run to <:omplet.ion in order to guarantee
that it will finish its real-time work. \Vheu a proc~s is allowed to run to completion, it
cannot be preempted unt.il it, allows itself t.o be.

Mo•·e is Stored; Less is Computed

Alau Jay Swith, of Berkeley, hru; said that any ~rogiam can be made five times as swift to
run, a.t t.he expense of five times the storage space. \¥bile his numbers may be quest.ioned, his
premise may uot: programs can be made faster by precomputing n.nd storing results. Where
lhe lrade<>rfs can be made, the CLOCS Operating System achieves faster execution by using
more elaborate da~a structures. For instance, the data s~ructurcs used by the scheduling
algorithm arc optimized to speed the choice of which ptoccss t.o ru n noxt ..

1 UNIX ts a tt•ademark of AT&T Commw.Ucali.ons

CLOGS OS Reference l)ocnments- G~llmcistcr 8

Small Module$ Speed tbe Ke1·nel

The CLOCS keruel is built from small, effective rno<lules that p rovide simple abstractions:
vidual memory, processes, and interprocess commumcalion. 1'hese smaller, more mode!'t
modules run faster than megaliths because they do less. Since t he kernel can be dynamically
extended ::mcl contracted, enh<>nced function can i>c b uilt on top or the kcnlel as required by
a particular appJka-tion. ~feanwhile, the modest scope of t.he kerneJ allows it to run swi.fily.

1.2.2 Combining Responsiveness ant! Fairness

The second important goal of the C LOCS operat ing system is to combine real-time respon­
siv.,ness with foir llltllti~nogramming. Schcdu l.ing hemist.ic~ typically attempt, to provido
one sort. of bebavior, eilher fa.lrncss or real-lime responsive ness. The CLOCS scheduling
nlgorithm, in contrast , takes both goals int.o account .

New Scheduling Ideas

SchcduJing is often implem~nt.cd using a priority-ba.~ed scheme in which a single number
denotes a. process~s "value}'. 'The priority can be manipulated i\ccording to the process>s
bchavior[S]. Priority-based scheduling provides fair schedu li ng behavior for non-n;a l-t.ime
processes. Unfortunately, the val ue of a real-time pro.cess is not a static quantity, a.nd may
"''fY in a time-dependent, 110 1 procc>ss-bchaviQr-<JeJ)CJl(ltnt fashion. Thus, priority schedu lers
have .a difficu lt time supporting real-time tasks . (n contrast , reaJ-time systems often prac­
tice deadline scheduling, where processe~ are scheduled in order of shortest deadline first.
Variants of the deadline scheduler abound, bu t all of t hem schedule processes st rictly based
on their deadlines. Deadline schedulers do not try to be fair, aud iu fact. wdl not schedule
a process wit.hout a deadline- i.e. a non-teal-time prQcess - un less there are no re-a.l-time
processes ready to run.

Any scheduler that targets on ly a single dimension (time, priorit.y, etc.) will fail a.t
scheduling solne ot.her dass of processes. By providing 1nore informa1,ion pertaining l<> the
schedu li ng problem, t.be scheduler can make more il.1formcd choices about which processes
must run a t any given Lime. Elaborate scheduling algorithms have been designed to more
ac~uratcly model t>roccss vahtes, 8Ud therefore schcd·ulc then a bct.tcr, wbere better is defined
by the objectives of the pa.1·t.icular scheduling algorithm. In some complicated systerno;,
tts many as five mambrrs have been used to denot.e the t imc-va.ryjng v;due of ('I rea l-time
process[l3] .

[u the CLOGS system, a. unified process valu9 model is used, denoting each process's v:tlue
and its dea.c.l li ne~ along with indications. of how long. the process will need to run~ whether
there is a.uy volue iu ruuuiug the process past its deadline, and whether the process should
be allowed to run to completion. T hese attribuces a llow more delicate odaecluling decisions
and a re •ufficieuc for proper scheduling of the ana.iority of processes. Dynamic man ipulat ion
of t he quantit.ies further enhances tbc system's responsiveness.

CL OGS OS Helerence Documents - Gallmcistcr 9

1-2.3 Achieving E xtensib il ity

The third goal, acbieving extensibility, req11ires the ability to add and subtract softwar"
components on a running system, much as fault-tolera.ut compu~er sy~tems allow hard ware
to be added and removed dynamically. 'To solve this problem, the interface b~twcen ~be
pMt$ of the system mnsl be clean and well-defined , fadlitating fast, simple changes that a llow
dynamic interprocess communic-at.ion. Bre:~.k i.ng t.hc connections <uHJ eliminat ing cornponeuts
1nust a.lso be easy. Fiually, calling a module t.hat· is not. presenL tnust. not result in c;\.ta:·~t.rophlr.

failure or the operating system'

Object-Otieuted D esign Provides Cleim Interface

The object-oriented paradigm provides a partial solution to the cxt.cnsibility problem. Jn
the CLOCS kernel1 each objcct.1 or umanagcrll ~ l::ommunicates with the ot.ber managers and
t he user processes th ro ug h a. simple iut.erface. Eacb manager makes specific entry points
available to the entire sys tem; other processes may only call the manager using those entry
points The manager can also remove the entry pocnts. Calls to non-exis tent entry points
are treated "-'errors, whic.h can be treated by loadiug t he required nlodule, init ializing it,
and ~eying again,

Policy-Meehanisnt Separation Allows Funr.tio11al Exte nsion

T he object model is a necessary, hu t not sufficient condit ion for exteusibility. If the semantics
of tbe underlying softwaxc layers do not allow higher layers to function properly, then ex­
lending the kernel becomes impossible. CLOGS supports policy-mtc/10nism scparatio11: the
lower layer>i of the kernel cannot implicitly decide policy for upper layers. For instance, the
'Memory Manager does not make any decisions based on which process is calling it , because
it is up t.o the Process Manager to m<tke process-related decisions.

CLOGS OS Reference Document$- Gallmciswr lO

1.3 Kernel Module D escriptions

The CLOGS sys~em is organized a.. a. set. of fou r modules, earh of which implements au
abst.ract.ion or service. This bierarchical approach to design ofl'ers clean, modular interfaces
and smaller, easy-to-understand software packages{9). Pour modulc:s make up the kernel of
the CLOGS Operating Systolfl, each providing basic services on wh ich higher levels will rely.
The fou1· modules that form t he CLOGS kernel are:

• The Glue Code: The lowest layer of the CLOCS kernel is the Glue Code. It handles
the details of inter-module communication and cxct'!pLion hand ling, allow ing: all other
modules in the system to be integrated into a single machjnc.

• The Memor y Manager: The J\'lemory Manager handles t he CJ,OCS MM(; and
provides t.he abstraction of virtm<l memory. Virtual memory is uccc;;"ary for l.mililing
reliable multiprocess systems becauSf! of lhe pr·otect.ion and separa,tjon it offers.

• The P1·ocess l'v!auag""' The Process Manager encapsulates the schedu.li ng algorithm
and provide• the abstraction of independ•>nt. processe.<. The entire CLOCS system is
structured as rnuh,iple processes, so a. process manager is a basic requirement..

• The Communi~~~tion M an"'ger: The Communication Manager provides the ab­
stra.ction of intcr· f>r<>cess communication. Syst.erns such as real-time applications and
server applicat.Jons are often struct.ured as mui.Liple processes communicating in a va.­
riety of ways. This paradigm is basic enough to merit support at the lowest levels of
t.he operating sy~tem.

The Glue Code providC$ the mos~ basic Je,•el of service, supporting a dean, monitor-like
interface bet.ween soft.ware moduJes. T he other three modules of t.hc kernel communicate
using the Glue Code. The :VIemory and Process Managers are at a s light ly higher level than
t he Glue Code. The Communications Manager is ~t, a still higher level, using t.hc services of
the other two managers.

CLOGS OS Reference Documents- Callmeister

Memory
Manager

Communications
Manager

Glue Code

Interrupts
Traps

The CLOCS Kernel

1.3.l How Does This K ernel M eet t h e Syst.em Goals?

ll

Process
Manager

Extensibilit y of the system is supported by t he C In<: Code, whkh provides calls Lo allow
module.<~ to make thems~l vcs dynamicnlly available to the rest or the syst" '"

The kernel modules run in a request-driven fMhion; a call to one of the managers will
provokr a short, uninterruptible rC$ponse. When modules communicate with each other,
interru pts may occur , allowing for possible resched uling. Thus, the un in tcrruptible paths
through the kernel are only as long as the longest path through ""Y pa rtiouiM manager.
Since each manager performs simple. small tasks. the paths through them Are short. and
each call to a manager can be satisfied qu~ekly.

T he managers arc designed in such n f:t.Shiou th~ L they store more data thnn is necessary

CLOCS OS Reference /)O('ull'll'nt.• • Gallmeister 12

in order Lo avoid tirnc--consuming recomputations. 'This desigH style is most evjdcut iu t.he
Prorcss Manager, clesc ril>ed below. In ~ddiliou, thl!" sd,eJu ler implemented by the Proc·css
.Mannger i~ ctesigucd to JnchJ real-time responsi\'enefis wil h rnh mu ltiprogramming.

1.3.2 A Bottom-Up Description Models Successive Abstractions

Th~ modules of th~ CLOCS kernel are described from the bottom up, parallelins the suc­
cessive abstractions provided by each module. Since the complete operating sysl~m is not
specified, describing the •ystem from the top down is not possible: there is no top!

CLOGS OS Referellce Documents - Gallmci.~tcr 13

1.3.3 The Glue Code

Tbe lowest level of the CLOGS Operating Sptem is called the "Glue Code" because t he
rout ines and data at this level support the ~onneclion of other processes, or modules. Con­
ceptually, this module "glues" t,he otllers togc•her. The glue code handles intermodule
communication as well as int,errupl and trap dispatr~h. T he dynanlic ex tension aud contrac­
tion of the system is handled from the glue code. and proper acc~.ss of user applications to
Lite keruel is en forced here as well .

Intm·mocln\n Communication

To call an en try polnt in another process! the calle r pushes the pr'OC~$ ro ~l)d entry point
number of the called process on its stack t>.nd traps to the Glue Code. T he Glue Code checks
the calling process's right to call the entry point and, if permitted, makes the call. If the
specified entry point does not exist, then an error i~1di cator is returned. Notice that three
processes are involved: a caller, the kernel (in the persona of the Glue Code), and the called,
or server, proc('SS.

The Glue C'-<>de support~ in termodulc communication by enforcing an explicit interface
for module access. A module, or process, makes entry pojnt.s available ~o o~her processes
by calling the Glue Code and specifying the address of t he ent ry point. and t he permissions
associated wilh it , i.e. who may call the entry point. The <:aller asso.ciates an entry point
number wi th the entry point. addressJ insuJating other processes from t.he need t.o knov .. •
specific addresses \vit.hin ~mother process. A process may also remove an entry point it has
previously made available.

A process containing an entry point will be at some point in its execution when the
entry point is cal led . Entry point calls are handled .as if a signal had occurred: the entry is
· ~serviced., by the called proc~S1 which ther~ n~wrns from that. entry to whatever proces.iiug
it was doing prior to the call . Meanwhile, the called mo<inle is blocked. lo addition, while
the server proces~ is :w.rvicing an entry call, new callS to its eniry points al'e blocked. This is
done to prevent simullaneous access to a single process by other processes, possibly resulting
in inc.o nsist.cncics.

ll:aps and Systern Calls

lnter-module <::ommumcatJOll traps at~ one use for tn\ps, bu~ all ot her traps are to the g lue
code. as w·elJ. This includes exceptions, such ac; page fa.u1ts and divides by z~ro, ,;:md sysi,cro
calls , which nrc performed as iuLcrmodule calls fron\ user processes to the kernel process.
For all traps, the Glue Code must save the state of the trapping process before jumping to
t.)Je appropriate servir.e I'Ont.ine.

CLOGS OS Reference Document.; - G<Jimcistcr

luterrupts

lnterrupl8 (external events cnused by things like 1/0 devices or power fajlut<'5) ate also
handled by the Glue Code. Although the main bulk of iot.errupt pror,essing is hand led by
the kemcl proper, t he stat.e of the machine prior to the interrupt must be saved. and this is
lhe job of the Glue Code as well.

Humble Access

"llumble Acce$s" is a t.etm for lim..iliog a process' access to privileged operations. P rocesses
cau ascend to privileged mode only M specified locations in tbe code. At. lhese locations,
the access rights or the calling process a re checked, and its "humble" request for privileged
service is granted or denied. Since the CLOGS Glue Code provides t he only entry n1cthod
to other modules, iL can alld does enforce humble access by checkmg permissions before
pernUtting entry point calls .

Dynamic R eliuking

The abstraction of entry points to other ptoccsscs allows fo:r easy dynamic relinking of
modules, since ~he relinking is handled through a central location, the Glue Code. As
an added adVailLage, calling a nonexistent entry point is treated as au error and not.. a
cat,astrophe, so calling modules can be prograrumed to recover from ill-configured software.
This robust , dy namic relinking capnhilit.y provides l.llc cxtcosibility re(Juired by the CLOCS
Operating System .

CLOCS OS Reference DocumeiJts- GaJimeister 15

1.3.4 The Memory Manager

Vixtual memory is a requ irement for bu ilding reliable multiprocess syste111s becau$e of the
separation , protection and ease-of-use a virtua l me..,ory system ofl'e rs. The CLOCS MM \J
pnwid.es tbe caw material for implementing efficient, protected virtual memory; however}
it must be carefully managed by software to avoid inconsistencies. The Memory ~'lanager
has responsibility for maintaining correctness of the MMU and of physical pages of memory.
It k«eps track of those segments, pbysical and virtual pages, and process identifiers (PIDs)
which are io use.

Inte rface to the MMU

As sole a<:cess to the MM U, the ~kmory ~Ianager must also provide dlicleut , fast access lo
the hardware. The size of t he MMU, 21" words, is too large for the Memory Manager to
search linearly; so the Memory Manager construct.:;. software structu:res atop the MMU to
allow swifter access to specific en1..ries.

Segment Allocation

Two different calls allow a process to allocate and deallocate segments. When allocating,
the memory manager dc~ermines a free segment and assigns i~ to the calling process. but uo
mention of that.. segmenl is rna de in the M i\·1 U 1 because t.her~ is no l'nernory yet nssociatcd
with it. When p~ges of memory arc actually allocated wit hin the segment, then the MMU
is modified. When a. process frMS a segment , the segment ls removed from the MMU for
the process, and if no other process is using Lhe segment, il is returned to Llic free list. ll is
i.\0 error fo:r a process to Lry to free its primary instruction O"r dati\ segments, \\'hich are the
ones it requires to run in.

Page Allocation

Processes allocate and free virtual page" within nn already-allocated segment. The calls
specify the sl,arti..ng page and a. uumber of pages to aJiocaLe or free. f~)r l'ors are returned if
the process tries to allocate a virtnal page that it has already allocated, or if it l.ries to free
pages that a re already free.

Page Slnn·ing

An additional call in tLe memory manager maps pages of memory from ooe process in to
another process. This call does not enforce any sort of prolectiou between processes, but the
call catl only be made by the kernel itself. The mechan ism for sharing memory is required
by the C'A>mrnunication Man~ger, which ~nforces the P.olicy of shar,~d memory by calling t he
Memory Manager in t.he "right wa)''.

CJ,OCS OS Reference Documents - GaJirneister 16

1.3.5 The P rocess Manager

Processes are a basic un it of computation . lncre~ingJy, applications rangin& from database
sys tems lo resource servets to entire oper~ting sysl.ems arc being constructed as multiple
process~ which c.ommu(l icate to achieve the goals of t.he syst.em. This paradigm orrers
conceptual simplicit.y as well as increased reliabi lity ~nd fanlt tolerance. Processes requio·e
support at the lowest levels of the kernel. since the higher levels of the CLOCS system will
themselves be structured as multiple processes. The CLOCS Process Manager provides the
ab•traction of ~rocesses and encapsulate>< the process scheduling a lgorithm. h also manages
process creation, destruction and state changes. Although context switches are done by the
Glue Code, actual processor allocation and dispatch is performed from within the Process
l\·f an ager.

D efin ition of Process

CLOCS defines a (Hoeess as simply '·a schedulahle entity" [S]. A proccs.< is just. a thing t.hat,
co.n be scheduled for execution. A process is named by its P rocess Control Dieck (PCl3), a
data structure wbkb contaius control information about. lhc proCC$$: its l>lst recorded state,
what. memory it has alloca.Led= its priority and urgency, and so forlh.

The oper<•l.ing systems li•erature mentions two sorts of processe.;;: heavyweight and
lightweight processes. The CLOCS MMU supports one kind just as easily as the other,
aud l.he Process Manager makes no disbinct.ion bet..'''eeu Lhe lwo.

f!eavyweight P I'ocesses . Heavyweight. processes are processes which execute in their
own proteet~d ;:tddr<'.SS !;pac¢s. T hey arc s lowr.r to context-switch because Lhey requi re a full
swap of machjne stale , iudud_ing, possibly, some Ml\,(U contents and sornc physi·cal memory.

Ligh t weigh t Pt·ocesses. Tn contrast, lightweight processes have less baggage of t l\eir
own. Multiple lightweight processes inhabit the same shared address space. Lightweight
processes can switch between one another very rapidly because the MMU and memory staLe
required for each is identical and need not be cbnnged.

Diffe rence Detween Heavyweigh t aud Lightwe ight . In the CLOCS machine, there
is little ..:lif[cr~(.C bct.,vecn h.:-<wywcig ht nnd lightweight. proce:s.se~. Becilu:se l.be CL-O CS
MMU contains enough stale to cover aU of physical m~mory, memory-resident heavyweight
processe:; wi.ll be a..;; ea.~y t.0 swi~ch to <l.S lightweight proc.esses. li owever, if lhe memory
required for a heavyweight process is nol present, then the disk must be accessed. and mote>
time will be required fo.r switching conlexl. Since the CLOCS kemel at this stage do"'
nol specify any disk, swapping, or other higher-level concerns, th is distinction will not be
discussed any further. It is sufficien t. to note Lhttt processes ca.n exist in shared or private
addrr.ss spa.ces, or even in some combination of shared und private spa<::e.

CLOGS OS lkfercncc IJocvmc"ts- Gallmeister 17

Creating Proccssos. Processes can create other processes. 'fhe creating process glves
t.wo scgmc.Ht ouJnbers> which become Lhe default instruction tLnd operand segmeut.s of the
new process. Scheduling parameters and starting address a re also specified. The process,
when crealed, is ready t.o run an.;! is scheduled as soou as feasible.

Destroying Processes. A process can destroy itself, and the kernel car1 destroy any
process. Whcu a process is destroyed, its memory is freed and returned to the memory pool
if no other processes are using it, and its PCD is :made available to new processes. The
process is removed from schedu ling consideration.

Changing Process States. B·etwcen the time it is created aud the time it is destroyed ,
a process will repeatedly switch between t.h~ running , ready, and b/Qc):ed states. At any given
ti me, ooly one process is running. Eilher il is using Lhe processor or the kernel is running
on its behalf. Proces.<es that cou ld be running, but. hnve not been allocated thu processor
yel, 3rC called ready. Processes that cannot be run 'because they are waiting for something
arc called blocked processes.

Schr.duling

C hanging process states, and the decision of which ready process becomes the running pro­
cess, is called scheduling. In order lo achieve both real-time performance and fair n11lltipro­
gramming, t he CLOCS kernel s upports at1 ela borate schedu~ng sysler11 .

"Just In Time" Scheduling. '!'he scheduling algorithm exemplifies a concept tba~ bas
become popu lar in manuf~ctuxing and inventory control technology called "Just In Time"
scheduling. In this method, processes tbM have to complete by a certain time MC scheduled
to r.un at the very last minute. In the ''-'archouse, this leads to reduced iuveot.orieti and a
more efficient. operation. ln t.he CLOCS Oper:Lting Systen1, by Att.ing non·real- tiJnc execution
into the cracks not occupied by real-time tasks, "J ust In T ime" scheduling provides better
response times to uou-tea l-time processes at little or no cost l,o tLe real-time processes.

Priority, Urg~ncy, and Qunntu1n. Jn most rnu ltiprogra.mming operating systems,
scheduling is based on priority. P rocesses have a s ingle attribute, their priority, that deter­
mines. their importance relative to all othe.r pro.cesscs. The most important. processc'!s always
go first. Wbile priority-based scbeduliug is coJLcept.ually simple and easy io implement, pri­
oricy alone cannot adequately reflect t he nature of t he seheduling problem. A pr iority does
not. state explidt.ly when a process shou ld nmi that. decision depends on the priorit.y of all
the other processes i.u the system. Thus, it is tricky and unreliable to perform time-based
scheduling ush1g only priority .

For iustancc, a. ptoc.css 1nay not be very important., but may need to run v·cry soon
lest it, lose all value. Should that process's priority suddenly be raised l,o euforce ils rapid
running? If so, how high'! Alld how will it be lowered again? Row low? And whaL if some

CLOGS OS n eference Documents . Gallmeister lS

other process, which doesn 't need to run at any pa.rticular time , C<Ul be run before the other
process absolutely has to he run? These problems can only be expres.<ed clumsily (if al all!)
using a sin.glc priorily number. Because Lhere is no way to state the progrmnrner '~ desire t..hat.
a process run within a certain deadline: systems are .created wit-h process priorities balanc.ed
together like a. house of c~rds to provide proper responsiveness . 'l'he smallest change in the
systent or in t he environment c~.n bring t he house of cards tumbling dowu(l3j.

Another sort of scheduling algorithm is dead]jne sc.heduling in which processes have dead­
lines b)' which lbey must complete. The process with the closest deadline runs soonest.
Dead line schedu li ng hns two significant problems. Firs t . it fail<; lo •chedule non-real-time
processes (that is, any process wit.h no real-time constraints on it,S- scheduling) sine~ they
have no dead lin~ other than "as soon as possible,.,. In many- syste ms, real-t ime processes>
such as data acquisition and physical control tas ks, coexist in a machine with oou-rea.l- time
processes , such as usc1· q1.le ries iuto the d atabase bejng produced by the real-time application.

More important ly, deadline scheduling fail• badly when the processing load exceeds the
pr<>cessor capability s ince it continues to schedule a nd run processe. tba l cannot possibly
tnee~ their deadlines, either because the deadline is tQO close ot already past[l3] . .By wasting
ptOC(ISSOr Lime on processes t hat will have no value, the deadline scheduler alJows more
processes to become too late; these ar.e scheduled i.n turn, causing st.i/1 more processt'S to
become laLe!

'l'he CLOGS Operating System uses t.lnce numbers to schedule its processes. A v•·•odty
reflects the process 's imr>ortance itl the scheme of th ings. Urgency is t he t ime, measured in
clock ticks, by which the process a.bsolut.ely must run. Q·•Jn>ltum is t he estimated time, again
in clock ticks, t.he process will take for the run. Only real-time processes have Urgency,
because real-time cons traints on their operation are made. All otl1er processes are ca lled
non-teal-tiJnC- processe::;. The quantum is used as a lime slice in the case o f non-rea1-timt'
processes; for real-t.ime processes, Lhe quanrum is t aken literally and is u•ed to determine
exactly when the process must run.

Blocking. VVhen the running process executes .a k~rncl call th<.lt requires lt. to wail· for
some event, such a.s an iotcrt\lpt.. or receipt of a message f:rorn another process, il is said to
block. Blocking is t he kernel-b·el mechanism used t o implement •II process waiting in the
C LOCS Operating. System. When the running process blocks, it is removed to the nonrr.ady
•tate and a new running pror.css is chosen . The Process Manager supports call~ to block
proccs.cses in <J.. mu lt itude of ways. but these e nt.ry po int.s are nol callable by user processes.
User processes call other kernel modules, which block 1.1te user processes io co11strained a nd
well-kuowu fashions.

vVhat. Do Pt<1cesse s B lock Ou? Blocked processes are waiting for somellting, but how
is l.he occurrence of t hat somethi ng flagged? How is the something identified? In the jar­
gon of t he operating systems c.onnnuniLy, processes block on roohcs. A particular cookie
correspouds to some event being awaited by one or more process. The cookie can contain
any value, UuL a parlicular va]ue specifies a part icuBar cookie. \\'hen processes b1ock 1 t.hey
block w:Ut.ing for on<~ or more of these cook ies. O tl!ler processes Call signal the occurrence
of a particular cookie, ~nd all processes waiting for that cookie arc notiflad . Any of those

CLOCS OS Rcfcrcn cc Documents - GaJ/meister 19

processes wliicll do noL need to waiL for any more cookies become ready and ca11 contend for
lhe prncessor. Jf such a ptocess i$ a tea J .. t..iJne process

1
ils urgency is m~..asured from the time

it. becomes ready.

Cotnbination~ of Cookies. Processes can wa.it on more t.ha.n one cookie, and they can
\vaiL in different ways. A proce$~ can wa~t on the Bo0olean AND of a uurnber of cookies; in
other words. all Lliose cookies rnusL be unblocked before the process can proceed. In addi~ion,
proces.<es C1Lll block on Llie Boolean on. of multiple cookies.

Scheduling Dat a Structures. The scheduling data strucLmes arc designed Lo speed
scheduling decisions. Much of the work of scheduling is done when a process is pluced iu
the <lata structures, allo,viug, t.he process manager to quickly decide which process should
become run nable next .

The kernel must. be able to dctcmliue rapidly wb.icll processes are waiLing on a given
event because <iJll' application consisting of multiple applications is bound to b~ doing a
great deal of process synchronization, an.d events are the mechanism used for implementing
process synchron.iz.aiion. 'l'hererore, the dcterminfl.tion m\ISL be proportional 1,0 tbe number
of processes waiLing on that event, rather than proportional to all blocked processe.s. In
addit.ion, the data structure. must. be mult.ilinked, because ptocesscs c~n wait 0)1 more than
one cookie at a time. A procest> control block tnay be accessed based on any of the cookies
it. is waiting on.

Wl1en a process is moved into the ready state. it is stored in t he nm queue. U11like
standard run queues, the CLOCS run queue is structu red as L\\o"O priority queues: one queue
for real-t.ime processes and one queue for uon-tca.1-~irne procel:iSOS. Tbe non-real-time process
queue i.s ordered only by priority. The real-time process queue is sort.ed in reverse order of
(w·gency-quantum), so Lhat l.he pro<e<-• which must ru.n soonest is at t he head of the queue.
In addition, tll<: titnc by which each process musL run is stored in a differenlial fashion while
the processes are on t he run queue. E3ch process has a thresh~ltl which is imerptetcJ relative
to the threshold of the process before iL on the queue. This avoids Lhe need t<> update the
whole ruu queue on each timer h1terrupt. Within groups of processes that m ust run by a
certain t.ime, the ptoccsscs fl.re ordered by prioril·)\ tnost iJnporiant first.

CLOG'S OS R~ference Documents • GaJI~,.I~r

processPurgatory

slowQueue
(non-realtime)

fas tQue ue
(realt ime)

Scheduling Data S tructures

20

Scheduling Algorithms. The heart of the scheduling algorithm is~ decision pro<cdure
that determines which process tO run next; the scheduler may ~ISO reorder the sehcduling
data stru.cturcs. The sched uler runs whenever a timer interrupt occurs (signaling quantum
expiration), or when the running process voluntarily <;ives up the processor.

Fi rst, the real-lime queue is examined. The threshold of the first process on the list is

CLOGS OS Referenc~ Documents - Gallmciswr 21

dt'erement.ed hy tlu~. last. f iU:'l lllLlm used, and if the t.llr(.~shold goes to zero1 then Lhe process
becomes the running process. If the threshold of that p rocess has not gone to zero, then the
highest. priority proass is chosen from the non-real-time queue and it becomes the running
process.

To deu:rmine which quantum is u~: if the current process is a real-time process, then
ito quantum is used without change. lf the current process was taken from the non-real-time
queue, then the llrne·&lice given it is either its quantu •n, or the threshold of \he process on
the head of the real-l.ime <1ueue- whichr.vcr is smaller. This p,uarantees t hat the process on
the head of the real-time queue will be scheduled when its threshold goes to zero.

Decrement the threshold of the most urgent proces.f.
head(fastQueue).threshold : = head(fastQueue) .threshold - lastQuantum;

IJetennine whether the most urgem process must be run yer.
if (head(fas tQueue) .threshold == ZERO_THRESHOLD)

The set of all real-time processes with this urgency must be run 110w.

currProcess .- dequeue(fastQueue);
lastQuantum := currProcess.quanturn;
run () ;

else

end.

There is still time umil a real-cime process mlLSt be nuz,
so TIUI a non-real-time process.
currProcess := dequeue (s lowQueue);
lastQuant um : = m.in (currProcess. quan.tum,

head(fastQueue) . t hreshold) ;
run () ;

Scheduling Decision Algorithm

CLOGS OS Reference Documen ts- Gallmeistcr Z2

Real-t ime processes lhat finish their runs before their quantum expires cMt rcliJl((Uish the
processor voluntarily. When t hey do this. they are re-inserted to l.he real-time run queue for
anoLher ru o when t.heir urgency indicates it. Thjs provides for }JCriodic proees.ses.

W hen preempt.ive resched11ling (a timer intcrtu])l,) occurs, the currel)t process must be
re-iuserted in ~he run queue. If the process is a non-real-time pcocess, then its priority is
decreased and quantum is increased. as in a multile vel feedback queue[SJ, and the process
is reinserted to tbe non-real-lime queue. lf the process is a rel\1-time iHOccss, then it did
uol fiuish its run before its quantum expired, a11 d tlnis is an error c.ondit,ion. If the process
should stil1 be ru n, then it is ru n for anotht~r quantum. Otherwise it is destroyed and its
parent is notified . Whether Lo run a process once its deadline has passed is determined by
a switch sct.ta.ble by t.he process i t.~cl.f.

Rw1-T o-Completion . In order to guarantee t imely execution of some critical function ,
a process may indica~e that it is to rur; to complet.w n, or allowed t.o run without possibility
of preen1pt.ion. l f the current process is to be run to complet.ion, then a ll interr uptis are
turned off. including the tituer. \'\1teu ~he process voluntarily relinquishes the processor,
then the scheduler det.ormines how much t.imo has p~sscd and reschedules accordin.gly. U a
process Oagged for run-to-colnplet.iou generates an ex:ception. then the kernel regains control.
II' the process has an error in it resulting irt au infiltitc loop, then tltc Ulachiuc will baug.
R.un-to-comp)etiou mode is not Lo be used liglttly!

CLOGS OS Re ference Oocumcllt$- Gllllme.ister 23

1.3.6 The Communications Manager

Cornmunica.tion is a c.rucial c.omponenl. of mu1tiproce$s syste-ms . It makes uo seusc to
• lrucluce an application as multiple processes if those processes have no way Lo iJILerad .
Therefore, conunuuicatiou must be supported at a basic level in the CL,()CS system. Th•l
Communications rvlanage1· supports t.hc abst.ta<:tion of interprocess communication , handling
the low-level details of mapping p~ges from one pro<:ess to another, blocking processes and
awakening them appropriately\ and copy-ing data to and from pror.es..,'s address spaces.

Three basic communications models are used in nearly all systems: sig.nnls, mailboxes,
~net shared memory. The CLOCS Communications :.\•fanager supports all three.

Signals arc Lhe ch.ea.pesL <:Omrnunication method to implement. and use because a s ignal's
occurrence carries tittle information wlt.h it. However, mote information eaJ) be sent than
with UNIX signals .

Delivering Signals. /1 process signals anolher p rocess by specifying wl1icb signal should
be sen~ and to which process. The process can optionally provide a one word argument wltich
will be passed Lo l.he ~arget process's signal hand ler; this allows signals to be used for p<~.'lsing
short messages . ft. ha.'l been shown that small messages comprise the bulk of rnost interprocess
c.otrununication traffic{2).

Handling Signals. Processes respond to each s ig>tal by invoking /wndlerroutines. De­
fault hand lers exist; t heir actions range from doing nothing to immediate destTudion of
the signaled process, depending on the s ignal. When a process-specified signal handler is
in place and the associated s ignal occurs, the process imnwdintely j~mps to the ha-ndling
rout.inc. Rand1et routine.-; remaiu ill place uJlti l explicitly removed. Most. signals can also be
blocked without in voking a handler a t all. The dcfatllt ;tctions for the s ignals, and t he s ignal
names, ~rc provided in a companion document[ll}.

Masking Signals. Wh ile the t.argc• process is rccdving a signal, "cw or.cnrrcnccs of
that sigual are i!,'llOred, with Lhe exception of the firSL occ urrence of such a signal.

Mailboxes

Mailboxes are t,he second uLility for interproc~ss communication. Messages sent to mailboxes
are of static size, and Lbey must be explicitly retrieved, although multiple processes can share
a single m~ilbox, and a number of messages ca-n he CJ!neued np iJ> the mai lbox. By specifying
different mailbox parameters, various useful communications pa radigms can he reali?.ed.

CLOGS OS Reference Documents- Gallmeistcr 24

Sharing Mailboxes. The discipline for making mailboxes <<vaila.ble ~o other proct'S8Cs
is tricky, so, for Lb~ sake of sill'lplicity and familiarity and because it works, C tOCS uses the
same mecha.nism UNIX uses for connecting sockets(l5 .16].

Connecting to Mailboxes. Fol lowing the UN IX paradigm, a sen•e1· process first cre­
ates the mailbox, and then places it iu a specific systemwide location where ot-her processes
can find it. l·'inally, it waits (blocks) for other processes to connect to the mailbox, at which
Liu1e l.ltere is a circuiL and t.he t wo processes can communicate. '[''he creating process can
also wait for more processes to connect to t he mailbox while still allowing conununication
wilh and between the already-connected processes.

Itnplementing Mailbox es . Ma-ilboxes e.xist in ker nel space and the tnessages stored
in them <«e 1>rotccted by the kerneL When a process cre<•iCS a DHtilbox, it speci!ics all the
altrlbut.es of l ite mall box: message and queue sizes, and two important behavioral parame­
ters:

• Stickiness is a switcll detecmir~ iJtg whetber rnessages relrieved Crocra a mailbox are
removed from the mailbox amomatically or not. If the mailbox is "s~icky" then mes­
sages must be cxplici~ly removed from th,;: mn ilbox; otherwise they are automatically
re 1novecl as Lhey are received.

• Dehavior .. on-Queue-Full is another sw itch which determines how the mailbox re­
sponds if a 1><ocess sends a me.'l$age to it while its m~;.%age queue is full. If the send ing
is allowed, then the oldest message is delet-ed: otherwise, the send opera(ion fails.

Once two processes arc connected through a mai lbox, they c<u> sertd and receive messages.
A process can block unLil a message is sent to it, or il can simply check -whether a message
is in the mailbox without blocking.

Queue and Message Sizes. A mailbox can accepL a number of messag~s, defined
ttL mailbox cr~ation thne a.s the queue size. The mailbox behavior when ~he queue flUs is
determined by t he behavior-on-queue-full a ttribute of the mailbox.

Messages to a particular ma.ilbox are all of the u niform si1.e specified when lhe mail box
is created, The formaL of the message is not dictate-d by the ke rneL

Different Pal'adigms for Mailbox-Dased CoUlDluuication. Mailboxes can be made
with widely varying at~ribut.es: ll'ICSS(tg<: size, queue size, behavior-on-queue-full, and mailbox.
st.lckiness. By varying tltese parameterl::i, tliiTerent. comrnunitations rnodeJs are supported:
these patadign1.'S have been reported to be the comr:nunications methods most used in real­
ti me appUcations{J9,11].

Syuclu·onous Communication Without Data Loss. Synchronous communication
witlwut data loss is implemented by setting qnene si~e eqnal to one, and by disallowing sends

CLOGS OS Ikfcrence Doc.uments. Gallmeisl'er 25

to the ma.ilbo>r when the queue is full. Processes musl therefore retrieve any me~a-ge sent
before a new one can be scu~. If a sy11chronous send-reply discipline is required, then two
mailboxes can be used: one for the sends, :md t.he o<hcl· for replies.

Asynchronous Conln Htn ir..ntion With Data Loss. Asynchronous cOitnl'lunic.a.tion
witb data loss is accornplisbed by seiLing the queue size to one and allowing sends to full
mailboxes. Thus, if a message is no1 retrieved fast enough, it ;,; overwriW:o by the next
rnessagc.

Asynclwonous Comnllmication Witbout Data Loss. When behavior-on-queue­
full disallows sends Lo full mailboxes , but t.be queue size is greater t.han one, t he mailbox
supports asynchronous communicMion without d(•ta loss. This let.• a certain backlog of
messages accumulate in the mailbox, beyond which i,he sends t.o the mailbox- [;til.

Asynchronous Con1nn1n ication! Losing Aged Data. Asynchronous conununica,.
tiou with loss of aged data is supported by making the queue size great.er than one and
allowing sends to full mailboxes. The oldest dat.a will >hen be lost when t he ba.cklog (queue
si0$e) is exceeded.

The third communication p;u·adigm is shared memory. Shared memory pro,•ides Lhe higbeti•
bandwidth of data transfer, since data is written instantly to the address space of the sh(>ring
proces..o;cs. Mem.oty can be shared among an arbiLra,cily lars;e 11\UIIber of processes.

Culls t o Sup,port Shar ed Memory. A proce.ss shares its memory with other processes
by specifring pages of memory that are available to other processes, subject to access per­
missions. 'I'he segment, start ing pagl!., and number of pages to sbarc are givcu in the caU, and
I he process is blocked until another process requesls to share l.he memory. By specifying the
111 of t,he sltaring process, t he correct segment number , s~attiltg page, Humber of t>ages and
access mode (read-only or read-write)! one prQcess requt~ts shared memory from another
process. The fJages of memory c.au lJe mapped into bhe requesliug process':; address space
al any locaLion that. is nol. a.l.re.ady occupied by pages of memory. 'lhe l'equesting process
indicates the access mode it want.s for the pages: read-only or read-write. The request is
granted or denied based on the permissions stated by the sharing process.

Synchronizing Access t o Shared Metnory. Access to shared memory must be sycl­

chronized using some scheme, ::ouch as ~m\lphores o r mon it.ors. CLOCS mailboxes can be
used to implement semaphores. In addition, the blocking behavior of calls through the Glue
Code makes implemcniatiou of moltikors straightforward, using a sepru·•tc process for each
monitor.

C /,()CS OS Refer ell cc Documents • Gal/meisler 26

P ersistence of Sl.nu·ed M emory. Shared memory is persis~enL for the life of all of
Ute $ha.l'ing processes - if the original process frees ~he pages of slmred memory, the shared
tnen1ory still remains. unt.il the last process is done wilh it~

CLOGS OS Reference Documents- Gallmeister 27

1.4 Current and Future Work

This section brieny summarizes ~he current work being done on the CLOGS kernel and
machine , and speculates on future work that may be undertaken.

1.4-1 Kernel Implementation

T he kernel as specified is being implemented by a team of stttdcnts iu a sofl.watc cngint-cring
clnss. The kemel is being bui lt. to 1·un on Sun Microsystemc; workstations under ut.~t rigs't 1

which will allow Lhe function of lhe kernel lo be tested before a s imulator for t he CLOCS
mcu:hiHe is buil~ . \Vflen ~the keru(d aud sirnulator arc fu lly eoost.rttdcd) context-switching
and ot.ber benchmark programs will Ue ruu to u'le~u re the pcrformauce. of the entire system
against commercially-a.vailabJe machines. l fsirnulation studies indicate merit, then a prot.o­
tn>e CLOCS r;ysLern will be built and used for furUlct cxpctirnentation. The kernel will be
extended witb additional functional modules necessary for running actual applio.ttions and
the hypotheses of !.he group will be lest.ed oul under real circumstances.

Chapter 2

Kernel Modules Specification

2.1 Overview

The CI.OCS project is investigating t.he ~radeoffs incurred in Oe$igni11g au architecture whose
major objective is achieving cxtrr.:n1dy low context. switch t.imes. \•Ve have designed an archi·
l.ecture, C LOCS (Computer wi th LOw Context Switch t ime), which ~ .•. n theoretically switch
context.s at. a. rate orders of magniLude great.er tbau a Suu workstatkm or VA X minicomputer.

The CLOGS architecture has made ~radeo!Ts in order to achieve such low context switch
time-s. In parli'cnlnr, all operations are mernory-to--111emory; there is but. one register ~ and
there is no speciali•ed computational capability that would require load ing/unloading of state
information. The CL,O.CS machine will not provide optimal performance for single-threaded,
computationally intensive applications, [t is more suited towards applications where event!>
pro,~oke SU1all, fast responses.

'l'he CLOGS architecture make$ iL possible to drastically reduce the overhead nccess~ry to
run multitasking applications. Many of the tasks usually associated with coutex.t switching
- sav iug aod restoring processor state, saving and restoring MM U state - have been distilled
out of t.he arc:hit.er.ture.

2.1.1 R .,,.)_ 'T'imP. "nd SrervP.r A pplict-ttions

As part of this research ! we are looking at applications wb.ich will benefit from such a machine.

Real-time applications are orten constructed as a large number of communicating pro-.
tesses. If~ real-Lime sysLcn'l of tbjs natt.Jre is run on a uniprocessor tnaehine~ then cont~x•
switching behavior becomes of crilical import..auce .

Real-time applications , though, are only a special case of a more general cl= of problems
which the CLOGS ~rchitecture can benefit. This is the class of systems which:

2&

cr,ocs OS Reference DOCIIJllCiltS - Gallmeistel' 29

• at~ structured as a large number of active ptoeCSS<''>

• require eAe.etive emulation of a multiprocessor

The ,·alue of the '~large nurnbern of active processes is a ftLZZY one; mor~ relevant is
the nwnbcr of processes requiring the processor pcx unit time . The larger the number of
processes requiring t.he proc~ssor in an interval of time1 the higher Lhe frequency of conteXt.
switching will be. The amoun~ of lime occupied by context switeh.ing rises; beyond some
threshold, the processor is spending most of its lime simply moving from one process to
auotller,

Examples of other applicaLions thal might benefit from the cr,ocs archit.ecwre are:

• rcuJ~tiutc systems

• netwot k disk servers

• (ommunir.ntlons sct·vers

2.1.2 Operatin g System Required

The CLOGS architecture is unique in the universe off computer arch itectu res. 'Ibe TMS9900
is the closest th ing to it that we have found.

An operating system provides the abstad.ion of a virtual machine to the programmer. As
such, modern operating systems briug oub and make available th~ features of an archlt.eclure.
Slllce .no modern architecture i.s oriented tQw~rds rapid context switching on a uniprocessor,
we find no existing op•ratiug system that will effectively exploit t.he C LOGS architecture.

We need an operMing system which provides rapid context-switching capability, M well
as providing the programmability that current operAting systems alford.

2.1.3 A Complete Programming System

A programming system is composed of more than a machine and an operating system.
L:tngu\lge compilel's, debuggers, Hnk .editors and a host of ptogr~n'lmi llg nl llidPS ;otr~ ;.tll
required a.s we-ll.

1'he CJ.OCS projecL has a cross-compiler for t.he C language, and work is proceeding on
an assembler/link editor suite. However , these tools a re secondary, as the CLOGS machine
is only a pa per architecture ai present. When it is built, as a s iu1ulator or as metal, a
program development environmen t will he critical. !Jowever, this document addresses only
UJC requirements for the operating system.

CLOGS OS Reference Documents- Callmeister 30

2.2 The CLOCS Operating System

To achieve minimal context switdl t imes, the CLOGS arcltileclure has removed all possible
state from t he proces.<;or.

2.2.1 Mechanisn1s for Achieving R..'lpid Conte>..-t Switch Rates

The CLOCS operating system will provide rapid colltcx"t switch rates in the same way: hy
removing all possible state from the calculations ma de by the operating system . Alan Jay
Smitb ('!), of Berkeley, has said that a.uy vrogram cau be made to ruu five times as fast,
with the side effect of increasing the size of the program by" factor of five. This hyperbolic
claim simply means tha-t algorithms can be made t.o tun faster by sloting previous results,
and il.1 general not computing anything that's been computed before .

'This discipline will hear fruit. ln lhe C LOGS operttting sy$tern. Switching context will
be accomplished by just loading up a new process 10. Stale pertaining to processes will be
stared for ll1e lifetime of t he pror.ess in a readily acc-essible place, with no special movement
of data requjreJ to make anotber process acl.ive.

2 .2.2 Policies for Achieving Rapid Context Switch Rates

Simply by p[oviding a me.ch3nis-m to perform context switched rapidly, we ha\'e not guar­
ant.<:cd that t he opeu•ting system will switch context rapidly. Also requ ired arc policies t.o
support t.he atlainmen l. of rapid conlexL switch rates.

Specifically, pn,th lengths through tf;e kernel, and prcempt~bility of t.he kernel must be
addressed.

uNIX 1 is an extremely popular operating system among the scientific community. A number
of groups have attempted t.o provide UNIX with real-time capabilities to further cater to the
needs of data acquisition and process routrol applica.t,ions (VRTX , RTU, PQSIX R.eal-time).
T he major hurd le encountered by t hese groups is the monolithic nature of tbe UNIX kernel.
'l'his natu.re of operaling syl:items is uol specific to UNIX, and it 1nake-3 rapid response to
events very hard.

The csscutial problem is that. once io the kernel f<:>r any reason," path through the kernel
must be traced without interrupt ion. or else ~he il>tegrit.y of the opcra!.iul) system can be
compromised. T hese paU1 lengths can easily reqnire many milliseconds Lo t raverse . During
tho$C tinu:.s, t.he kernel may not. be pre-empted by a process, no rnaLler what its priority.

1 liNIX i!> a trademnrk o £ AT&.T Communi~;nc ion.~.

C!, OCS OS H.cfcrcncc Documc11ts. Caiiitwi.tei 31

The solution to this ptoblcm, of caU(>O, is to mako pa(.h• through l,u.; kernel sLorL~r.

or aHe rna threly, to segmenl the paths into r,omponen t ;ttomic operation:;, with resr.heduling
checkpoints along the way. State~changiog operations musl be atomic: an operating system
must perform tht"!se nctions swiftly to {Lchicvc retLl-tin)C rcspO.l'I.Siv<mcss.

The CLO CS operat ing system kernel will perform small , rapid changes to t he state ohhe
machine . In between these indivisible operat ions. rescheduling of t.he processor may occur.
The kernel itself will alway$ be ready ~o ruJt, and '"''iH in fact be ruu .. vheu the urgency of
r<!al-time t.asks paSS<"$.

Specific Polidcs for CLOGS

To ob tain rapid atomic operat.ions, we fil-st separate the functionality of the kernel into
modules. Operations within the modules a re atomic; in passing from oue 111odu le to another,
resc heduling may occut·.

This policy, as a side effect , also perruits t he expansion of the operanllg system at a later
date.

The mod ules of the CLOCS kernel each implemen l a specific abs traction which is .,;senti a I
to the operation of the machine. Three nlo<itllc~ ate s pecified t.o comp rise the innerrnost
kernel of the CLOCS operaLiJig system:

• Memory Mnnngcmcnt

• Process Management.

• Communication~ ~·r:m:.gcment..

l.n addit ion, a small a mount of glue is specilicd to hold the pieces of the opcral.ing system
together.

C LOGS OS Tlcferruw: Documents- Gallmeistcr 32

2 .3 Memory Management

(Abstt·action: Vir t ual M em ory)

The Memory manager provide;; the interface to the CLOGS ~D'LU , Gi,-en the physical
memory of t.he mad1ine., i(provides the abstraction <:>f virtu<~ I m•, mory to higher l•ycrs.

Routines are prov ided t.o allocnte and free segments a.nd pages ou a peJ·proces~ b~is; an
A!=iSitional routine aUows changes to the ~D'l U page control bits to support permissions a.nd
to a llow processes to influence tile paging <oJgorithm.

No checking of process access r ights 1s done a t lh is Ia yet - it is strictly mechanism for
playing with the MMU. In fact, the memory manage r does nol know what a process is- it
simp ly a...<:.Sooates memory wit.h process {l)s.

l. a llo c .. t .. P a ges:

• PAR,U.J£TWIS (tlrocessld, scgmcntNumbcr, .<tll?'litlg_pagc, J~.<<tnbe,·.of-IIO!Jcs)

• RETURNS success_or_failu1'<;

• EXECUTiON: May be executed by any process: the PID of the issuin!\ process
becomes the proccssld parameter.

• Allocates the give11 number of pages from the free page pool. Updates l.he ~ I M U
for the proc.ss identified, so (hat virtua l pages, located in the given segment and
s t"rting wit.h l.hc intlicabed starting page are mapped t hrough to t he oJiocated
physical pages.

• J?RROJIS:

p,!f£.BADS£G: The proc.,;.< doesn 't have access to that scg1n<:ut.

- FA !b.PAGSJNCfSE: One or more of the virtual pages .specified are already
mapped through to physical pag<Js.
FAI/,.NOMEMORY: Not enough physical memory to Satisfy lite request.

• P.1R.AMETE!/S (processld. segmeni:Vumher . . <larling.page, 1lurnbe~'-of.page.<)

• RETURNS succes.<.or. fatlure:

• EXECUTTON: t\l ay be exe.cuted by any proress: t he PID of t he issuing process
becomes t be proc.,;~ld parameter.

• t'rees t he given number of pages from use by the process. Updates the MMU ,
in validating t.he appropriate virtual pages in the giv-.u segment. I f no other pro­
cesses are using Lhe pages of phys ic.a1 me;mory1 thr-n they are fr!>ed h~<'.k to the
memory pooL F'reed pages are cleared.

• ERRORS:

f'AJLB;1DSEG: The process doesn 't have access to that segment.

- FAIL.NOPA GES: One or more of the vir tual pages s pecified are a lready free.

~- nllocnceSegmer1t:

Cf.OCS OS .Reference Documents- Gallmeist.er 33

• PA RAMETERS {pr·ocessl d)

• RETURNS segmentNumber:

• EXECUTfOIV: May be executed by any JPfOCCSS: the P ID or l.hc issuing procc;;;;
becomes t h<:: proccssld parameter.

• Allocates a segment t.hat is currently unused aud asslgms it.. l.o the specified process.

• Cse:d in ctcating processc:::.~ among ot..lter chings.

• f:)RIWRS:

- FAIL NOMEMORY: No free segmeuc exists.

1. frecSc gmc nt:

• PARAMF.:TERS {pr'Ocessftl. scgmenfNum.ber)

• 1/ETURNS succc;s_or_fai lure;

• EXECUTI ON: May be executed by a.uy process: the PJD of c.he issuing process
becomes Lh<: processld parameter..

• F'tees up the specified segment - the process can o.O longer use il . A side effecl, is
the freciug of all pages curreutly in the segment.

• ERIWRS:

- FA IL BA DSEG: 1'be process does not have access to thac segn1'nc.
- Fr!ILPflfMJ!ftl'SEG: The process is t rying to frco one of ics primary •cg-

ments.

5. freeAJI:

• PARAMETERS (processld}

• l lE1'Uii NS success.or·-failure;

• EX ECUT!ON: M<ty be issued on ly by <he kernel.

• l•'rees all segmen ts and rages a.~sociawd with the process identified .

• ERRORS:

- F;l!LBADND: No such process.

6. m ap :

• PARAMETERS (fromPtoccssld, jronrStartPage, loProeessfd, loS/arlf'a!Je. num-
ber_of_pages. mode)

• R CTU RNS s-uccess-or. failure ,

• EXECUTION: May be issue<l 011ly by the k;;rnd.

• Takes the number of physical pages, located at. s~arlingPagc in the spcei/1ed seg­
ment of the process named fromProcess JJ 1 and maps tl 1em into Lhe address space
of the proc<>s> Jlamed to Process ld, $taning at t.oStarlPage. The pages are mapped
in with the given access mode.

i. gctPagcSta tus:

• PARAMETERS (processld, segmwtNumber, pageN1tmbcr)

• 1/WJ'lf // NS pageStals:

CLOCS OS Reference I.JocumetJts- G"llwcistcr 34

• t:X !;'CUT/ON: ~l ay be executed by any process: the PID of the issuin~; proces.~
becomes the processld parameter.

• Returns Ll1e penni.ssion and page-control b ils assoda.l..-ecl witb t.hjs virtual page of
the speci fied process.

• ERRORS:

FA! L..BADPID: No such p1·occss.

8. setP ageSt a t u s :

• PARA. J\fETERS (T,nu:cssld, s~gmcntNumbcr1 J'('gtNtwrbcr·, rwycSl(lls)

• RETURNS succcss. M'.failure;

• EXECUTION: May be execut.ed by auy process: the P ID of l.he issuing process
hccomcs the J)ro(.cs<ld par~<mot•;r.

• Set~ the page tont,rol hits for the $pedfied virt,t~:tl pagt'! of t.he process to the
contents of pageStats.

• ERRORS:

FAIJ,.J.IAUPID: No such process.

FAIL.RA DSTATS: Invalid stats structure.

FAIL..J3J\ OPAGE: The specified process docs nol hav•' access to the specified
page.

FAlL.BADSf>G~a;we: The specified process docs not have access to Lhe
specified segment.

CfOCS OS Reference Documen t.s - Ga/Jmeister 35

2.4 Process Management

(Abstraction: Processes as Sch cdu lablc Entities}

The process rnau~rer mau i pulaw.~ virlua.l pages~ assoda.Le<.l wi th proce~:; IDs, anJ pro­
vi,ft>.< t.h•: ab-~tr'let.io\1 of se.hcdulablc processes. The process managc1· has rcspon,ibility for
the scheduling of the processor, as well as for maintaining pro.c.ess permissions.

In rhis module, we cre:\t~ t.he abstraction of a proc.es.o:: ~ and we talk nbout proc:e~ses
doing things to other processes. lJowever: notions o f communicating with o{!her processes
nre avoided . That is the t~sponsibilit.y of t.he Gomr:nunicat.ions).·tanager. K.G., we have a
blocking mechani-sm here 1 but. not. an evenl.--!:iignalliu,g mechani~m.

In tlds module, the not ions of pernussions and Ul Os (user l Os) ate introduced. User IDs
corrcspo!ld :;im()ly to number~ attached to each process. Pennissions •:Lrc granted or den ied
uascd OJ\ >trict matching of UlOs. Two processes with identical UJDs C"ll do Lhiogs to each
orhct. Processes wiU.1 uou-irlent.icaJ UTOs r.annot do things to e:\ch other .

A• in UNIX, process bierarch ics cxisl. A procoess that creates ot.hcr procr.:;scs is the
parc:nL of those proceSS<$. Parcnt..c; can s:end signals1 etc.1 to descendJ.lnt. processes even ir
t hose proces'""' have sw itched offective user lOs.

U a parent process is destroyed , Lhe childreu can continue. They ar.e signall!!cl (:;cc Lbc
coJlllll\lllication• mana.get specification}, but Llu•t signal c~n be ignotcd .

J . c rcatcProccss:

• PARA ;\1/ FJTERS (iSt::gmentNtanber, oSegr't'untNumbe.r. entry Point, a·rgument. pri­
ortlg, Y.rgencg)

• RETURNS procesud

• F;X.BCVTfON: May be executed by ••ny p roce-ss: the created process inherits the
user TO of the cl'eatiug process.

• Creates a new process whose primary 1seg ancl O.seg arc t.lte specified ones . B..c­
turns the 1D of the' new pro(c:;s.

• entry Point may be set to the pseurlovalue J•:NTH.Y YOitK, in which case the
new process is an idenlicaJ copy of t1te ca1ling: process; the caJling pror..-~s..;; is
returned the ideut..ity of t.h(! created process, whil~ the created process is returned
SUCCESS.

• This rout.in c suffices to cre-ate pro<:esses distinct from tl•e creaLiug process (a 1 Ia,
fork/exec), to create identical but distinct processes (a' I~' foJ·k), and to create
identical, uonc.lisduct. prcc~SS<..'S (light.wciglu processes~ for which t.here is no tJNl X
analogue) .

• ERRORS:

FAJL_BADSEG: T.hooe segments aren't availallle.
FA fL..BADFORI<: cntryPoi.ut. was El\'I'RY . FORK. out the segmcnr,s s peci­
fied are not the primary segments of the calliJJg process.

CLOGS OS Reference Documents- Gallmeister 36

2.. destroy Process:

• PARAMETERS (precessld)

• RETURNS success_or_fa!lure

• EXECUTION: May be executed by any process; The process id of Ule calling
proc·ess becom.es the proces:;ld parameter to i.he call.

• Hemoves t.he proeess from scheduling consideration . Frees a11 the memory in use
by the process. Makes il.s segments available . Updates Lhclln•IU, iuvalidatiug I.Lc
approprin:te virtu al entries. If no other processes are using the pages/segments of
memory, then they are freed h•.ck to the m emory pool.

• ERRORS:

- FAJL..BADPID: No such process.

3. sctuid:

• P,1RAMETERS (p•·oassftl, Uid}

• RETURNS succus_or_failure

• EXECUTION: Can ouly be cxccutcJ by the kcrucl.

• Sets l.he eAecl.i ve user lD of the process. Afterwards, the process will have all
access rights of that user.

• F.:RRORS:

- None as yet.

4. s witchUid:

• P!IJIAME7'E/IS (process/d)

• /IETU/1 NS succe.$.$_,r_failure

• EX£C(j1'JON: Ml•Y be executed by any process: the process lD becomes the
proces~ I d param1~t.<:'r .

• After a call to .<etuid(}, two effective us<;r ll)s exist for the process . . nwtch.Uid
allows t he process to switch back and fort h between the two lDs. This allows
setting USer [0 to a privileged lfiOde for -a particular opcratjon, tben setting it
botck nfler t he operal.ion , to decrea..o;;e security holes.

• f:RROJI.S:

FAIL-NOALTE!iNATE: No alternate effecrive user lD exist-" fm the pl'Or.es.,.

5. chauge Priority:

• PARAMETERS (processld, newl'riorily)

• RETURNS oillPnor'ity

• "X ECUT[ON: May be executed by auy process.

• The specified proct:ss' f)rioriiy js changed LO t.hc new value. The old value Js
returned.

• ERRORS:

- FJl{[,..BADP!D: No sucli process.

CJ,OCS OS licfctcucc D<JcwJJents . Gallmeister 37

FAIL.PERMISSION: The sending proces. does no~ have pemu,.ion L<> change
the othe1· process' priority.

6. chaugeQuanttun:

• PilRAMW/'1<;/{S (processld, uc>u{{lltmlum)

• RI:N'URNS old({uantvm

• EXECUTIOJ\: ~'lay be executed l>y any process .

• The spcciJied proccS;S) '-l'HlOl.unl (tim...:: sli<:.c for running the ~>rO<.:C:;S))s chaugcd lO

lhe new value. 'l'he old value is returned.

• EIW0/1S:

- F.4lLJJADPTD: No such process.

- P'Ali-,PRHMJSSJON:The sending process does not have permission to change
the other process' QIJontuln.

7. ch!ulgeUrgency:

• I'll RA Mt:TEI/.S (J>mce.ssfd, newl!rgency)

• REJ'UilNS altlC!rgeflcy

• EXECUTION: May be executed by any proces.•.

• The specified proce!'is' urgency (time within which the process must be run) is
~h-ange(l co the new vt1lu<:. The old val\IC is tctntncd.

• ERRORS:

- Pil!L_RADPIT): No sueh procc-<s.

FA /LYERMISSION: The sending proc- docs uot have pcrmis.ion tO chaugc
t he ot her proce::;s• urgeucy.

8. p roccssStats:

• PARAMETERS (/frocessld)

• RETURNS pr·ocessGon1ro/Biock

• I~XBClJTIOI\': May h~ executed hy any prow;,<.

• St.at.ist.ics about the proces...~ are 1·et.urned, in<::luding: priority, urgency, quan t.um,
scheduling state. memory statistics, and so for th .

• EJIJIOJIS:

FJlJL_fJADPJD: ~o such pron.,;s.

- P'A 1/.,._P};RAfiS'SlON: The sending process does not. have permission to see
the ot.her process' st.at.islics.

9. getProcessid:

• PARAMETERS()

• RETURNS processld

• l{etu rns I. he process I D of the issuing pro c!'Ss.

• 1:: llfl 0 liS:

- Nonc 1 as yet .

CJ,OCS OS Uelerence Documents- Gallmeister 38

10. unBlock:

• PARA M 1-;TEnS (cookie)

• RSTU RNS $ur:ccss_or_foillt1~

• EXECUTION: :\'lay be executed only by the kernel.

• \•Vakes up a.ll process waltmg on the particular cookie.

• ERRORS:
- None, a.~ yet.

11. s leep:

• PARAMETERS (processld, hme)

• RETURNS Sllccqs_or_[llilurc

• EXECUTION: ~1ay be executed by any process. Only the kernel may put other
pro<'CSSCS t,o s lo)Cp. User l~,.o~esso-< c~n only put t hemselves to s leep. For all but
the kernel, t.he I.D of the call iJig proc<:•S IIIUSt both<) proccssld pnram~tcr.

• The process is sent into the blocked slate for the specilkd time. which is a number
of clock Licks. The cl<1psing of this interv.ul is considered an even t like any other
evenL a process may block on ,

• SRRORS:
- F.41L I'ERMISSfON: The process does not have permission to pul another

process w sleep.

12. b lockOt•W is<J :

• PARAM£1'/:JRS (pr•cessld, cookies)

o RETUflN:> success_or_failur·e

• EXECUTION: Ma.y ouly be •~'ecuteJ by tbe kernel.

• Sends the process into the blocked stnte, awaiting unnlock()ing of one or more of
i.he specified eve·nLs.

• Note: if the process is already bloc ked on the OR of some evenl:5, these eveul.::i
will be added Lo l he li..t . If the proc.s~ i,; already blocked 011 t,hc AND of somo)
cvent.s , then t.he call will fail.

• ERRORS:

- FAILBAD!'JD: No such 1>roccss.
FAIL-4NDWISE: Proc.css is waiti• •g on th~ A~[) of some events.

1~ . h lock AndWisc:

• PA !/AM B?'EJ/:> (processi<l. cool:rts)

• R&TIJR.NS $l<cceS$-Or-failure

o F.XECUTJON: ,\'lay only be c>xccu.Lcd by the kerneL

• Sends Lite process into tb~ blo~kcd stat.e, <>wailing un lllock()ing of all of the spec­
ified cook ies.

• 1\'ote: if t be process is a lready blocked on the AN l} of some cookie,;, these events
will be added t.o the l ist. If Lhe process is already blocked on t.he O R of some
r.ookies, then the call will fail.

CLOGS OS Reference Ducumell ts- Gal/meister 39

• ERRORS:

- F.4 f£. RA DPTD: No such prOC'-'<S-

- FAIL. ORWfSE: Process is waitiug ou lbe OR of some cvcms.

CLOGS OS R.elcrenc~ Document.9- Gallmeisl<•r 40

2.5 Communications Management

(Abstractiou: colntuunicating p r occssc!' via a nuu1hcr of cmuJnunicat.ions paradigm s)

There are four means of ioterprocess cornmunicallott which t he CLOCS operating system
suppor ts: intcrptoecss sigtMiling, events~ message p<~ossing1 and shared memory.

fntcrprocess signalling consists of the ability for • process to send a signal to :mother
process. Unlike U.'I IX signals, s ignal handlers are passed a pMameter of type s ignal Message,
which cau couvey ex Lra iuformatiou. Signal!::i may result iu « uuml>cr of outcouu.;:;;

1. Nothiug: a signal C<UI l>c ignored by a process.

2. T~rn1in:)tion: a signal can result in lhe immediate termination of the process.

:L Hn.nd le r n.esponse: a -!=!ignal r.fln result in a part.iculal' action .

The routines supporting this ability are signal(), and handleSigMI().

Mt..~~oge pa.sl:iing allow~ rn.e:;sagcs o(fLxcd size to be p<:~sscd among proccssc.~. McssagC's (Lre

sent by a process executing t he send Message() system call, wh ich results in a message being
deposited in a. mailbox. Processes c~n wait. rot mes~ages to appear in ma.ilboxes by nse or
the awaitMessage() call: they can block awaiting receipt ol' a message, or they can check for
lllcssagcs without blocking. Mailboxes are created by the mailboxCrcatc() call. A nMilbox is
bouud lo a syst,em-wide loca.Lion by the mailbox Ui nd() routine; a process may obtain accet\.S
t.o a lnailhox by using the ma.Hbox..:\cce~() Ctlll. For sueh a call t.n h<: sueees.;;ful, t,h(: r.re!l.tor
and binder ofthe mailbox (a single process). must currently be executing a. mailboxAccept()
call. Comrnunieation is omnidirectional; any proces..<: w3iting on a mailbox may receive any
rnc:;sage deposited in Ltle mailbox. Tiowever, if a maiH.>ox is created sLlcky1 so Lhe messages
temaiu in it UllLil removed, then only oue process can access t he message at a l.ime. Messages
arc 1nadc availi•blc to processes on a first.-comc, first-served basis; maHboxes can b.e r.re<)ted,
os well, so thaL messages remain in th•> mailbox until explicil.ly removed by a process. All
proces~es using a mailbox are peer::;; any process can send to the mailbo.,'\; any c:m 1·e;;Ld from
lt1 aod ttny can remove m~ssag:es from it2 . Message$; of zero length may be specified as we1!;
I his allows. mailboxes l.o he u.sed BS" semaphores.

'fhc finaJ fol'ln of intcrproccss commu nication is shared memory. Ca.lls aJiow a process to
make it.s Jnem.ory available t.o o~hcr processes; an arbitrat y number of processes may share
a l'~nge of m,arnory S)'ll<'hrrmb:il\i.inn of ~C'.rR:~s if-' t.h~ re~pnnsihilit y of i.he f \r()<".4~S~C.:!;. ;uu1 i~il.n

easily be clone using a ma.ilbox as a semaphore: gnarding t he entire range of me-mory.

I. signal:

• PARAMETERS (si.qtw/Numbcr, processfd}

• llE'fUfiNS success_or_fatlurc

2Di~ti•.mn)il,y ~.,r m~~r.ge~ fu ishL be better (or sornc applications, but breaks 1.hc u.:~e of .m.,.mx>>.:es O).S

~~maphl>res.

CLOCS OS Rcfetcncc IJocmnrn<s- Gallmcis!cr 41

• EXECUTTON: M"Y be executed by any proce'~-

• Like the IJI\ IX kill() mechanism , t.his ro11tine s••nds t.he sp<,ciAoo signal to the
specified process.

• ERRORS:

fi'A//.,_BADP/1): No such process.

- FAJ[,_PERkiiSSfON: Permission to s ignal t hat process was denied.

2. s ign a!.PGrou p :

• PARAM5TERS {stgna/Number, proce.~sGroup)

• R E:TU RNS Stt<Cf. .<S_or-failuro

• F:XF:CUTfON: ~·Jay be executed by MY]J r<>cess.

• Like the UN IX killpg() mechanism, this coutine scnJs the spccificJ sigm>l to all
processes in the specifit!d process group.

• &R RORS:

- F'AIL_BADGROUP: No such group .
- FAILPERMISSJON: Pcrmis;;ion to signal nt least one process in t he group

w;tS dcn i~d 1 h11~ed <m UID-hased per r:nissions.

3. luuulleSigual:

• PARAMETERS {proccssld, StgnaiN<trnl•t •·. h<u><llcrRnui.ne)

• RETURNS success_or_failu"·

• EXECUTION: May be ~xocutcd hy fln)" pro<ess. Tho identity of t.he process
executing the call becomes the processlcl parameter.

• Analogous to lhe U I\ IX signal() call, this rout.ine specifies that, upon receip~ of
Lhc named signal , eont.rol silould pass to t.be ro<Hittc hnndlr.r ll.outine.

• 'I"hrec pscudoroutines nre allowed u:; well:

SIG_l)lE specifics th~ signal sho11 ld k.ill lhe pror.~ss.

- SIGJ CN specifies t he signal silould be ignored .
S!CJ)EFAULT specifie. t he sigu~l should be IHutdkd in the dr;fa<ilt way
(eithe1· SIG.DJf; or STGJGN, depending on Lhe signal).

• Signal hand lers , as in 4.2BSD UN IX, a re retained unl.il explicitly changed.

• ERRORS:

FAIL-BA D PI D: No such p rocess.
- FA fL_IlADSIC: No s uch S-ign~·d .

• PARAMETERS (u>essagcSi:e.qucncSi:c.stkkme . .s)

• RETURNS m«ilbudd

• F.XECUTJON: May be executed by any process.

• Creates a milllbox. The maiJbox is not. usnbl.;: until it it is bouHd to a systeln-wide
locat ion using mailboxOind().

• Messages deposited in Lhe mailbox will be of fixed size me,sageSJze.

CLOGS OS Refer<'nce Dowmcnt.s- Gal/meister 42

• Up to lf'U<utSizt messages may be deposiL ed before buffers are exh~usted.

• If t he stickmess parameter is ~'IAILilOX.STJCKY , then messages sent to the
mililbox are retained in t.hc m{tilhox unt.il n ptocc~;s explicitly rernoves lhem. If
the parameter is .\1:\.ILDOX..NO:-IST!CKY, lheu mt>ssages arc rcrnO\'eJ froou l.hc
mailbox as they arc received by processes.

• lf t he rctai11 parameter is TRUE, then sending messages oo t.hal mailbox when
thf! qucu~ is full will not be successful. If the parame ter is PALS E, then sending
messages Lo a. mailbox with a full queue wlU result iu Lhe oldest Jncssa:gc being
delci.NL

• F-RROR.S:

FAfL.S!ZFiTOOHiG: Message <ize specified is l.oo la rge.

FAIL. QUEUETOOBJG: Queue. s ize s pecified is too large.

- FAIL. NOMEMORY: Out of physic.al memory.

• moalog11c of UNIX Md·ct(}.

5. mailboxBind:

• PARA1lfETERS (mailbufd, systemAdilrcss)

• RETURNS success.or.failurc

• EXECUTION: May be execute.d by auy o>roct-ss.

• Binds Lhe mailbox to the specified system address.

• ERRORS:

- FAIL. PERMISSION: :\.uothcr mailbox has<drcady been bol\nd to that system­
wide. l o~:~..t.ion.

FAIL.BADMA fLBOX: Tltc sp~cificd mailbox is invalid.

• analogue of UNIX bi~t<l{).

t). onaiiBoxAccept::

• PA ll.4 M t:1HilS (process/d. mailboxi<l, flags)

• Rb'1'U RNS Sltccess. or. failur·e

• F:Xi::CUTJON: May be executed by any process. The identity of t he proc~ss
executing the ~all becomes the processld parameter.

• Tloe proces& is l, locked uutil som~ other p rocess executes a mailbox Access() cn.ll,
at which point the p1·ocesses both hn.ve access to !.he mailbox.

• II Lhc call spccif\,~s MAfLBOX.UNIQU~, then the mailbox will be duplicated
'\'."hen a connection is made, and communications will proceed lhrOU$,h th:..t rnail­
boxt leaving Lhe original mailbox ft~c to nccept more connections.

• ERRORS:

- FA/LfJAfJPlfJ: No such process.

FA I L.P ERM ISS TON: A noLher mai lbox has already been bound to t.hat sy•tem­
wide locaLiou.

FA I£.BADM A I [,B OX: The specified mailbox is invalid.

• "''afoguc <t/ UNIX lister>(}jaccept().

CLOCS OS Reference Documents - Gal/mei.,tcr 43

7. rnailboxA ccess:

• PARAMETERS (processld, systcmAddress)

• JIE1'URNS mailbox!d

• EXECU7'!0N: ~·lay be executed by any process. The identity of lhe process
~xccutiug the call becomes the processld parameter.

• AHows the specified proc~B: accc...-c;s lO Lt1c J:nailbox which i~ a~c(~siblc through tllc
specified system add rcss.

• E:RR.OJIS:

- FAJLJJADPID: No such process.

- FA I '-.Till OMA I f,EOX: Xo mailbox is currently bound to l.he system add ress.
FAILCONNREFUSED: Conncctio11 <Cfuscd by the creator of Lhe mailbox.

• analog"e of UNIX catrn cct().

S. scn<.lMessage:

• PARlu~fETERS (ptoccssld, mailborld, message)

• RETURNS succcss_c~r_furiiJJ'C

• F:X/!CUTION: ~lay br. executed by any process. T hr. ident.ity of the process
execut ing the call becomes Lhe processld pa rameter.

• Sends the included message from the nrlmed proces~ Lo Lhe mailbox. The process
nmst have bomrd the mailbox to a system location carliet·.

• ERRORS:
- f'A/L_BilDMAILBOX: The speciHed pro<.ess hM not plac.ed the mailbox in

a connected sl,a\c by either the ma.ilboxAcccpt() or the maillroxAcccss() c1rll.

- F.<l/LBAJJPIJJ: :'>io such process.

• anaJogu< of (!NIX send().

-9 . awaitMessage:

• PA RAMETER.S (1>roce.<sfd, mailbodtf, m~.~S09t11uffer, limem<t)

• RETURNS .$ttcr.ess_or_Ja.iltl1Y..

• EX f;CIJ1'10N: May be executed by any process.

• The specified process is hlocked until a message is senl 1.<> one or the speciiied
mailboxes, or unt.iJ ~he Litrteout period is .exceeded. All specified rn<tilboxes must
have heen bound lo system-wide locations ear lier.

• ERRORS:
- FATLBADMAILBOX: The specified process ha.• not bound some of t he mail­

boxes tosyst.em-wide JocMions by either the bind Mailbox() or the atta.chMail­
box() call.

- FA 1/:_BA DPID: No sucb process.
- F.4JLTIMEOUT: No message was received within the timeout period.

• a»a logue of UNIX rr.cu(GlOCI<).

I 0. r.hP.ckMcssagc:

CLOGS OS R.efercnca DocumclltS- Gallwcistcr

• PA R A MF.:TERS (p•·ocessfll , mail&o:r:Jd, mt$Sa?cBujJcT)

• RETURNS Buccess_or_failun;

• EXECUTION: i\lay bo executed by any process.

• The specified process retrieves a lncssage if one is pre:;cnL in any of the maill>o.xe1:;;
the process does not block, though. All spec1fied mailboxes nn,.t, have been bound
LO system .. wide locations earlier.

• ERRORS:

- FA f£_BADMAJ LBOJ\: The specified p ro<:eSS has IIOL b0u11d some of the mail­
boxes to system-wide locations by .:ithcr the bindMailbox() or the attachMail­
box() call

- FAILBADPID: l'io sucb process.

FA {[,_NO MESSA G SS: No "'''"'"g~s wore pro'S<'IIL.

• analog•'" of li:V!X nctJ(NON.HGOCf<).

11. sh~reMemory :

• P;LRAMETERS (Ju-occssJd. scgment/'iumlicr. pagcNumbcr·. '"""bcrO[Pages, pcr­
m-,$sious)

• RR'/'U JtNS .sttcce.ss.or_fadure

• EXECUTION: Can be executed by any t>ro<.css : the TD of th<: process excmting
the c.~ It provid(s the proces.<ld parameter.

• ~lakes a range of memory available for shar ing by other processes. The process
<los not block, buL rather, is sent a signal whClt the memory is actur;Uy shared
with anothe1· prO<'e$S.

• Permissions ind ude read, write1 and sha.re, ror each of processes in I. he sam e group,
and for all other proccss.s.

• If a page of memory is being suarcd by multipk processes, t hen the page is 11ot
released until the I<ISt procc.s.~ sharing the memory relenses the page.

• T'hc p1·ocess bloeks nntil nnoLhcr process l'Cquests access to tltc shared .:rrc:L

• .ERRORS:

- FAJ&. IJ,L D P/fJ: Ko such process.

FAJL_A T,REA DY' Some of the pages s pecified are already being shared.
- FAJLJJA DSEGMENT: The process does not have access to that segrneul ..

J·i \ 1 L_IJ A D J>i\ G E: 'I" he process does. not have access to one or more of t.bose
rages.
FAILINVJ!UlJ: The perrruSS!OOS gtvcn are bogus.

12. maplnMewory:

• P.4RAMETBRS {r>roces.<ld, S01lrceProcess. sourceScg, sourcePagc, la~qctSeg. lar­
gelPage. ~tumbet·OfPages. <>cccssMode)

• RETURNS succes.<_ot·-fa:lure

• EXECUTION: Cnn be executed by any process: lhe ID of the ptO<'f'SS c"xecnting
t he call provides the processld paratnctei'.

CLOGS OS Re ference Documents- Gallmeister 45

• Th,, process requests to m~p I he memory of the target prooess, in the specified
segment and page, in to its own add ress spac.e at the specified location. Permission
)s requt!sted lo read or write.

• Once a process has mapped iu another page's memory, it cau rclcMe tho memory
hy freeing it a.~ if 1 ho memory belonged to the process.

• ERRORS:

FAILPERMISSJON: Pcrrnission denied .

FAl/,-4LREADY:ThO!;c pages arc al ready pce"'"'t iu t.hc procc-s<.

2.6 Glue Code

Ab$h'tu:Jion: ObJet1s

T ho glue code is the lowest. level of the kernel coJe. It. is the rnem1s by which the different
modules comrnuuicaie wit h each other. The glue code pcrfol·ms tlu~ ((.){low in-g func~ions:

• Handle in l.ermodule calls and lraps

• Support process use of •mt.ry points

• Determine, at ea,c.h inlennodule call. whet her tltc calling process can mak~ th~ pn.rtie­
ulac call.

• Allow rescheduling a.ncl preemption.

2 .6.1 Intcrmodule Communication

lntermodulc communication is done Lhrough traps (system calLs}. The ~ailing pro~.ess spec.
ifics Lhc t~rget rro~ess a·nd the o'ntry point and traps into the glue code. The glue code
dclermines whether the call can be made by thai process. [f iL can, then the glue code
~icnply coutext ... S\~t'itdtcs to that plac<:. If tltc call camlot be made, t.hen the glue code ret.urns
an error to the c;Jiting proce~s.

Pro<:ess<'s make their ent1·y points avaiable to all processes by notifying the glue code via
tho entr'J call t.o l.be glue code.

2.6.2 T 1·aps and I nterrupts

The glue code handles some traps (its own system call traps and intctmodule communication
traps): but the majority of tmps and inle rrup t.s will vector directly to t.he. appropriate ban·
d lcr. For insta nce, t imer interru pts vector directly jnt.o t he process Jni:tna.ger for reschedu ling
service.

CC,OCS OS Reference Docull1euts • Gal/weister 46

'l'he glue code permits kernel preemption impliciLiy because iL oflen runs with iCilerrupls
enabled. lntcrrtlf)ts arc disabled when tile glue code i,; processing its owu service c<Llls (entry,
1mEntr-y1 tm.Process); ill aH olher times inte.nupts ca.n occu1' . Spec.ific;\Hy, on calls from one
kernel ltiOdule t.o a.not.her, interrupt~ can occur. l<ernel modules t.hems-clves always run wil.h
interrupts disabled.

\Vhen i.\n int~trnpt is to ve<:tor di1·ecLiy to" user r-outine, l,he glue code may well note the
fact and adjust schedu ling parameters accordingly- especiaUy if the dat.a. structures perm.it
coni::itant .. tilnc update::;.

as well. a specia l calling paradigm should be adopted, wherein the process ID of the
culling process is made an implicit pararnct.cr Lo each e xtetn:tlly available call. 'I'Itis fadlilates
interp ror..ess commun ication by makiog suie Lilal Llle information i~ a lway:; 1>r~cut ,

2.6.3 Gl ue Code Calls

• entry:

- l'AiiAME'l'EJIS {entrgl-'oml, enlryNumbcr, permrssion}

RETURNS S<~cctss.or.fail"r'

- EXECUTION: May be cxccut~d l>y uny process.

-
1[be entryPoinl , an address in the text space of the proce.ss, ~made a valid entry
r'oinl1 for inlermodulc cornrnunication. It is a.dd rc:;sed wit.h entry:\umber. '!'he
permission parameter is used t.o specify wllether a.uy procc~s <.:au call this rouliHC-!
or whether it is limited to just the kernel. Only t-he kernel cau limit il<; enl,ry
points.

l?RROIIS:

* FAILPER:\IISSJON: The ptocess tried t.o limit <•<cess to the entry point
illega lly.

w fi\ JD.A 1.-Ri'JA /J \':This is an entry point already (the entry Number is already
in usc}.

• unEntry:

PARA M E'f'ERS (enlr·yN umber)

RETURNS succes.-:.<ir'.foilure

EXECUTION: \lay be executed by any procc••·

- Tht! sp~cificd <mLry poi.ut. is rTH\<.l~ ln v(llid fiJi. n.n entry point ror this process.

t:;RROIIS:

• F.4IL.ALREADY: Tbc entry point i.• alren.dy invalid.

• unrl'OCess:

PARAMETERS {J>rqcessld)

- RETURNS SIICCe.<s .. or.failure

r::a:CUTfON: May be executed by any process. If the process is not a keruel
proce-..!;S. theu its fD 1nust match t,he proces.~ld parameter.

CLOCS OS fwlcrcncc DociJWCtJts • Callweister 47

- Removes all ~ulry poiuls for Lbe specified process.

• l·il!L_Pf:RMISSION: A non-kcrnd proc•~s tried ~o iuvulidaLe another pr<>­
ccss1 en~ry points.

Chapter 3

Scheduling: Algorithms and
Ideas

3.1 Requirements

The scheduling algorithm must meet slip;htly differen t requirements from other. more stnn·
dard scheduling algorithms.

3.1.1 Fine Granularity of Scheduling

One objective of the scheduling algorithm is to allow process ..scheduling t.o occur with a finer
grauulnrity tiHtn normal.

3.1.2 Fait· M ult iprogramming

Pctrt of til<' re:(l.$011 for desiring finer grarmlnrity of scheduling is to allow reallime processes t.o
run at t he appropriate ti me, while still Jetting IIOil·realti•lle vroccsscs get to the processor.

3.2 Definition of Process

Many definitions of processes have heen proposed. We do uol heed to get in volved in the
pllilosophical issues of what a process exactly is.

Lu this docurncnt, the terms "process:1' anti ''task'• ct.te used int(""!rchangeably.

48

CI.OCS OS Reference Dowrnents- Gallmristcr 49

:3.2.1 T he "Schedulable Entity"

For the purposes of this document., we refe.r lo a process as ~<~he scheduh\ble enlily1
', after

Deitel[7J. A process is defined simply as one of the lh ings we are scheduling. Specifically,
pr.oc<.'SS is deuoted by a dala st ruct.u re caJled a prot(::i'~ coutrol b lock 1 or prb.

Processes, <'S sche(lul~hle en I ities~ have a numher of ruLI.r ibuies that control exactly bow Lhey
ore scheduled .

• Pt·iority: Ea.cb process hW> a priorll,y, rcftcctillg its im!)Ottancc tl~la1,h•c tool her pro­
cesses,

• Urgmu~y: Each process also has an urgency~ which determines l•ow quickly it. lUU:>t.

be ruu 3fter becoming ready. A realtime process is denoted by l,he facl t.ha1. it has a
urgen-cy thai l$ g.r~(l.t er lhan 1-ero. Non-renkin1e tasks have urgency zero.

• Interaction of f>riority and Urgency: Priofity and nrgeHcy arc not trcat~O exartly
o rtbogOHal}y. Urgcucy ~a.kes prctedt:JlCC. P1·ocesst""~ requiring urgent execution simply
musl be run. \Vheu no process' urgeucy denltmds running, then Lhe priorities ~re
examined to see which t.a.sk is. the most imporbant.

1t i~ not de<'r wlv:J.hcr non-r('l\ltimc tasks shou ld recelve prererentia.l t,reat.rnent when
~cheduling by priorily. Thjs schedul ing algor ith m will srhedule non-reaJtime tasks
preiCrentially; the reaJtime processes will be scheduled by priod ty (l Jl)y wbell no non­
realti me tasks <ttC ready to run.

• Quanta: Bach process also has a quantum associated wit!t it. Thi>; determines how
long the 1noc.css m<L,Y be rmt fot, before lhc opc:r at, ing syst.em will in Lctru pt aocl re:;ched­
ule.

A non-realt.i rne task's quantum is varied according to its scheduling behavior , as de­
scribed below. A realtime task's quantum is va.ried as well, but cu a di!f~rent way. T lo<:
.schcd~Jlcr w~ntl1 t<> provide ~s m uch Lime as t.he realtime process needs to do its job.
T he quaot urn is interprel.etl as tbe esLimateJ nm. l,ime of a realt.imc ~)toc.:ss .

• Thresltold : Uq)<:Hcy and qua.ntun"' are v:ilucs l.ha l. don ' t chnnge as the process mo\~es
towards ~cheduling. A rcalUnLc procc:-;s, when it bctomcs rcady1 should be run in
(urgenc.y- quantum) clock ticks. This v11.lne 1s stored as tbe process' threshold. The
tbreshold is the value t hat is actually varied whil" the process is enqueued for the
processor. \Vhen t he threshold goes 1,o zero, then the process must run.

All LilllC·rdcLtt::d <Lllantitlcs1 induding urgency~ quan Lum, and lbresho ld 1 are slored iu
unit.s of dock t ic ks fOr ease of computalion.

• n.unToComple tion: A re>dtimc process may need to be run to completion whenever
i~ is run. If so, t heu tile runToComplel.ion attribute should be set. lf it is set, then tLc
proc.css will bt! run wit.h a.ll interrupts ma.sked.

CLOGS OS Reference Documeut.s- Gallrneister 50

3.2.2 N on-R ealt ime P 1·ocesses

Non .. rea.ltirne processes proceed with no particular urgency. or deadline; Lhey a re scheduled
solely on the basis of their priority a nd lheir qunntun1.

3 .2.3 R ea ltin1e Processes

Re\~ltilnc processes pwcss urgency as well as]Jtiority; they a.rc scheduled fhst by their Ul~­

gency. and second by their priority.

3 .3 Scheduling Data Structures

T he s~hed11lin:; lime musl. be made a.< small as possible to meet C LOCS goal of rapid conlexl­
switching time. The time to det.ermine whicb p roceS!; should run next can be reduced by
some cJcvc.r usc of data structures.

3.3.1 Plll'gatory

Processes that arc not runnablc ar•~ stored in ''data structure called purgatory. Pro~CSS<)S in
purgatory <\re blocked on some ~ombination of event.s, either the AN I) of events or the OR
of events. One of thcs.e evenbs cau be a clock time cveut: v.:hcu the specified awot1at of time
passe..;;, Lhe time ~vent h&.;; or.<'.urred .

Access Re<(uirelt.leiLtS for Purgatory

Gi,•en lhe occunence of a partic.ular e,·cnt, finding aud topdating all processes in purgaooty
awaiting that event must happen rapjdly. Because~ desi<:!eratum of realtime systems is that
they respond swiftly Lo evenls, Lhis update Lime is more es:;eulial Ll1au the time t'or adding
A proces.." t.o rhe strn<'.f.tlr~ . Al::;o, l'emo\ring" proct:ss rrom 1he: strucl.ure rnusl be fast.

A c t.:t::-;s l\1cUw ds IUr P u r gu tot·y

A mu lti linked structure of some sort. seems i..udica.led. Perhaps multiple hash t,ilhles or
multipJe trees will pro,·e <:!ffect.ive.

CLOGS OS Refo-rence Dowrn~nM - G'allmeister 51

3.3.2 Queues

llunnab le processes are stored on Lwo priorit.y queues. One queue. called ~he S low Queue,
stores non-realtirne proct'!s:;cs. 'The other queue i::; used for realt.irne processes, and it is c.nlled
the Fasl Queue.

Slow quon<>

1o the slow queue, processes 3re soJ'ted by pciorit.y into levels. Deitell7] calls thi$ schcJl'c a.
~~muJtilcvcl f<:edback (JUC\1<''1

• Quanta. should he adjustable as p1·ocess priority dec.rea&.">S.

Fast Que ue

In lhe fast queue. processes are sorted fir•t by urg~ncy, !.hm by t.hreshold, t hen hy priority.
Since urgency i.s a number of clock licks that decreases wh ich each timer interrupt, iL would
he e...xpensive to go lhrough this entire list adjusting each urgeucy by (I. cOtlSt.a.nt V(lluc.
lnslea<.l. urgency is used as a difff3rernial quantity: each proccss1 urgt;ncy is t.reaLed as a
relative number of ticks, not as an abso1ule. 'Ihus, if lhe firsL vro<:t">&i has an •ltgency of 5,
il 1nu.sc. be ruu iu 5 ticks; if the second prof.CSS has nn urgcnc.y of 2, Lhen it must be run in
7 ticks.

Ac<:c.ss Rcquit•e.tn~nts for tl1c Queues

The slow q-ueue is accessed on the basis o f a process' pnonLy. The [a.:-.t queue is more
complicated. Processes oo ,,he fast queue are accC$Sed in order of tlneshold, then pr iority.
As well , the fast qtte\>C is a diffcrcmial quc\>C, meaning t hat the t hreshold of the process at
t he head of t.he queue can be modified. In addition, there can be a. number of J>rocesoes all at
a given thr~shold. The Lotal of tbe quanta for aU these processes must. bo readily t•va.ilable,
in order Lo determine when that set of processes musl be run. In addition, the fast queue
CluJ be <<Cccsscd by priority. fot n()n.dcadlulC-$chedulcd Lasks (see below).

Pt·iol'ity and Diffe r entin l Queue~

:\Ito, IlopcrofL and Ullma11[1] dis(.nss priorit.y queues, but nol, di fferential queue• . An CJ<<o.Lllptt
of a ptiority queue use can be found in tl1e 4.:/BSD tJNIX code for the l'Olltines softclock()
and t.imw•t{), which manage the lis• of tasks to be performed in real time. Tht'St> can be
foun d in the file sysjkern_c/ock.c; the queue iLsclf is called CQ/It()da.

CJ;OCS OS Rcfer<'nr.c DocumcJ!t.<- G~llrrwistcr

3.3.3 Cun en t Process

The current proces" must be kep• track of by some mean>, either by PID, by pointer, Or
ex_plicit copying of the process control block.

3.4 The Scheduling Algorithm

Given tbc above da•a s tructuJ·cs, the scheduling algorit hm;, <implc.

3.4.1 U se of t he Timer

All stltcduliug breaks (ore invoked b)' t.loc timer int.crrnp•. The timer doo.s not interrupL with
a predefined Hertz; rather, by seLting Lite timer •o go off in a "pccificd nurul.lcr of lick;, t lw
oobeduler allow" vari<oblc <J\"I.nta and snppott for deadline schednling.

3 .4.2 Moving Processes Around

PrOCt.'S:SCS (IX¢ JJlQVCd from Pl.lrg.atory onto one of l.hc two q ueue::; when conditions ror lheir
awakeuing have been ~atisfied. lf a proce~ is wailing on t.hc AND of son1c events, it b~com~s
runnable when th<:y <tJI occur. 1f a process is wa1ting on the OH. of some events. it. is made
ruonabJe when one of those e-vents occurs.

3.4.3 When a Timer Interrupt OccUJ·s

\Vllen a t.l.ner interrupt. occurs, resclieduJing may occur. Th~ algorHiun keeps track of ho"•'
long il. has been since Lhe last timer interrupt.. frhis allows Lhe algorithn1 Lo update the fast
()Ut!UC.

If lite cucrcul process is uo1. a r<.~ll .imc proccSS 1 then it i~ lnserted hack into the Slow
Queue. If it h.as used its ctHir" quant,ll'l'l 1 thrn hs prio1·ity is reduced and its quant um
increas.ed . If ll has not. used its e11lire quantu1n, then !Withe-r it.$ priority nor lt.s quantum
~ce duwg,ed.

If the currenL process is a realtime process, then its priodLy is decremented, aud the Fast
Que.u<;!' ls examined t.o SCt! if there is now a. proccs..'i 1nore urgenl and more in-qJOrtant. If thcr~o:
is~ Lhen thai. process is run .

This strategy lmplie~ t.hat there are t.irnes aL wltkh a realtirne task may not compleLe by
lts deadline. 'fhis is acceptable in sOIIIC circumstanc-es und will b~ d1scussed below.

C/,OCS OS Reference /)ow men!$- G~llmcistor

3.4.4 Decid ing W ho Gets to Run, and For How Long

F'igudng oul, exact ly when a realt ime l;)Sk must he run gets n hit tricky.

3.4.5 Urgent Tasks Go F irst

'The whole idea behind tll'gcnc.y is t ha t the process absolutely has t.o run 'Therefore, when
a. process' t.hrcshold goes to zero (meo.n ing lhat. zero time remains before lhe process has t.o
run), t.hcu t. IJe process is rwl. Non·r<:aHi.Jnc ta.iks arc not even consid<:rcd !Or running . .. rasks
cho.;cn to run ba•cd on t.hcir t.hrc•ltolds arc called <lc~dltne-scAc<ft<led ptocessos.

Within a given urgency, there can be rnultip lc])tOC<•SScs. They al l m ust. linish nt. the
sam e l,ime. Tho s~.hcduling algol'it,IHn m ust maintain a total of the estimated Lime (quanta)
for all of these processes, and schedu l.e so l,hat aU l,he prottSSCti fiuish on t ime.

3.4.6 "Just In Time" Schedu ling

IIowcvcr, ,.,..hen a rcalt.ime proces-s> ur.g.:ney and t hreshold indicates that il does noL need to
be run just. yet, Lhere may be no benefit 1.<> running jL yet. lu thai. ease, the highest priority
task is takeu from t.he Slow Quctl C: and rnn for the m inirnum of e.ilher ils q uantum , o r Lbe
tirne rcmvining tmtil the most urgent prQcess must be run.

If there are no processes on the Slow Queue, Lhen Lhe highe:;t priority proc;~;ss 011 the Fas~
QueM is chosen. Whether tbc process is chosen from t.hc F'n..t or Slow Queues, it is. referred
to itS a ntm-dcB.d/in.e-scheduled proces:; ln this context .

Missiug D e uc.lli nes

\VIum a rca.ltimc proccs::: is n.1lining as t he currf'nt process and .a. timer inte rrupt occurs,
:;igntllling rhe end of that pro<'.R.ss' quantu m, it rnea.us lhat t.he process did not finish its work
be fore its deadline . This is a happening of va..rhthlc importnnce. Some l ... 'ls).;s may not care
about t his. Some may require special action . Some lllay simply die.

The best nct.ion in the C LOCS openu.jug .sy~l.c:nn i1; t.o stnd the process a signal whose
default action i~ lo kill Lhe process. Tht:: process can change t.hat. actiou to be whatever It
decn1s ucccssa.ry.

3.4 .7 Setting R u n T imes - I nteract ioll of Quantum and Deadli ne

Once t he next process to run has been chosen, the scheduler musl uc~cmtiuc how long l.he
process can ruu for. If I he new process is a realtime (LE. li ealllil>f·.•cftedu/e<l) proces•, the.u
it ;. r UI J for its @t.irc 'l"~nlum, whiclt has hopefully been nrljusted t.o allow it I<> complct<).

Cl.OCS OS Reference Documents- GAllmaisrcr 54

Jf t.he new process is not a reaJtime process, then iL is. run for its en lire quanlum onl!J if rt
tau be ,.un jq,· tllut long ·wttlwul excccdirl.9 so rut rt(~liunc TJrocess· dtMlllnt. In oth(·r \\'<.'lrds>
non-dcndlinc-scheduled p rocesses are itllowed to run for tbe minlmun1 of their qua-ntum and
lhe t hresltold of t he 1110st urgent process.

3 .5 Interfaces of Scheduling

The scheduling system is \'isib1e ouly from within Ll1e JHOCCS:> manager. Titncr interrupts
vector d ir<:ctly irrl.o the process manager. \\'ho cxamin..es the sc:het.luling st.at.e, determine-S who
should run next, and perfo r ms the con Lex I. switch Lo lltat. pr<>ccs.s.

Chapter 4

Interprocess Signals

4.1 Overview

Signals in the CLOGS Operating Sys~cm opcrat.c Oll ly slil)htly ditfcrcmly from the signals
pmvided by 4.2DSO lJN IX 1 As en UNIX, signals can be caught, iguored, or dealt with iu
the dcf:m lt. mannt:r, w hich ma.y he e ither- ignornn<'~ or proc:i~!1:;. tt~rminM.ion . Unlike UNIX.
signnls can carry commuu icatiou through a pa ramete r wlticlt is passed to t.ltc signal-handling
rou~ine. 'rhe parameter is passed lo Lhe s ignal system call, and appears aL the s ignalled
rouUnc. ns if it wcxc a patamc::ltr ~o a. procedure a d I.

Signals fll'C hlocl\ed w-hile a p1·occss is executing a systt:~m call; nlsoJ while a fiignaf is h·~ing

handkd by a process, otbet signals of the same type are blocked.

The bigrJa1 uarues, descrlpLion.s1 and 1uany of lhe default behaviors are dedvecl frb!l l UNIX.
signals More signals can he added as required ;,, t he future.

4.2 Signals

L SIGHUP:

• (l••"!l"P)

• Def;mlt. action: te1·mination.

• Pa.rame:t.er: none.

2. SlG l N'l':

• (internwt)

• Default action: termination.
1 CNlX i!t ~ t.J•tt.demark or AT&T Conunun.ic..,ti<ms.

55

CLOCS OS llefer.,Ilce D<Kuments- Gallmcistu

• Patanl("ler: I 0 or interrupting rrocn

3 STCQUIT:

• (qutt}

• Del'a.u1L acLion: termination.

• Para rnel.er: none~

~ . SIGILL:

• {illcglll wstructionj

• TH-fttu lt arti01't: tcrrninru.ion.

• P:uamrt{"r: ctddres.i of fauh.

;,, SJGl\!ATH:

• (onthmd•c trctpt•on)

• IX-f(lnh. action: termination.

• Pnri\m~t~r: i\ddro"" of filull.

6 SJCI<ILL:

• (ktll {cannot be caught, blocketl. or •gnor·cd)}

• Dcfaulll action: tcrmlnl\t.lon .

• r{\t(\ll1f'tcr: none.

7 SICtlUS:

• (ltu< en'Or)

• ~fault action: terminal ion .

• Parameter: none.

R. SIGSEGV:

• (~t!fmt nlalio11 o()/irl,on)

• Defau lt action: ~ermina~ion.

• I'Arnmeter : i\rl<h•ss of Yiolntion (off,,ntfin~; nddress).

0 SrCPACE:

• (TJOgmg vtolal!on)

• 1)..-fauh .. action: Lerm.inatlou.

• l'ar~rne(er: address of violation (off<·nding nddrc<s).

10 SJGSTOP:

• (<lop (cannot be caught. 6/ockcJ, or tgllol<d})

• Default achon: process is block<:d un1il SIG(;Oi\ I recetved.

• l'aramf'ter: none.

II SICCONT:

CLOGS OS Rcfer<•nre Dor•Hilt'nts. G~tllmeist.N 57

• (ront"'"' tr/ll'r <lot• {ra11110l br blacked)}

• 1){-f:\IJh attion: proct·~iot bf•rom<·~ ready again.

• P:namNf"r: nnn,...

12 SIGC IILD:

• (rh1/d >laiU$ Ita> <hange<l)

• Default action: igno,.!<l.

• Parameter: 10 or cJ.ango·d child pro<"'*·

13. SlGDEADLTNE:

• (dead/in< o/"<all•mc procco. trcc<dcJ)

• J)(-fault ad ion: trrminntirm.

• Pat;tmf"l-<"r: nont~.

J.1 SICUSitl:

• {u>fl'·<l••finul $1!J""' J)
• Dt,:f~-\U II tt.cc ion: ignort•d.

• Parnmcrcr: prO<.:<'f'~·dl"'pc.'ndcuL .

15. SICUSil.2:

• (uscr-defi, cd SI!J»fll 2)

• Default. action: iguort•tl.

• PHrntn(:t,er: prol'CI')lH.h.•p(.'t•<.h;nt.

16. Sl GUSit3:

• {t~ur.dt/intd ,, ignnl 3)

• l),>f~ult nrtion: ignored.

• l'•r3m<>(~r: procc<<-d•ptndtnt.

17 SICUSil.4:

• r~s<r-dt/intd srgnol n
• Default action· ignored.

• l'aramc~r: proc.:.,~dcpcndcnt.

IS. SlG USH.S:

• {user-dc/i11ed •rgnal .5)

• Oefnult action: ignoro·•l

• Pararn~tcr: procr~~ drprnrltnt .

19. SIGU Sil.G:

• (u,vr.i/t[wfli stgnnl 6)

• Default (Inion ~ ignored.

CT.OCS OS Reference Documents- Gallmdstcr

• Parameter; process--dependent.

20. SICUSit7:

• (u.-tr-tl•finrd .<ig11trl 7)

• O..:fault actiou: ignored

• J.,anu11eler; proccss .. dependent .

21. STGUSftS:

• (u.n-defined stgnal 8}

• J)cf au h actjon: ignored,

• ParamPler: process--dependenL.

22. SlC USft!l:

• (u•u.Jefirml srgnal 9)

• i.)efault action : ignored.

• l'nra~Ler: pror:ess-dependent.

n SlC USlUO:

• (ll.ff.l'-tl <fin ed • ignal JIJ)

• Defaull action: ignored.

• Parameter: process-dependen t.

Bibliography

[l) Alfred V. Aho, .John 8. Hopcroft . and .Jeffrey Jl . Ullman. Vat11 Slructur·es and Algo­
nlhms. Addison- Wesley Pul>lishing Company, Reading, ~lassachuseits, 1983

{2] David R. Cheriton and Willy 7.waenepoel. The Dislribut~d V 1\eru~l aud its Perfor­
mance for Diskless V\ro1·kstations. In 9th Sympo . ..;ium 011 Operatirlg Systems fJrincitJlts:
Oclober 1983.

[3] ~·lark Davis. CLOCS Asseml>ly Languag< Dcscriptiou. l9S8. In preparation.

[1] Mark Davis. The CLOCS M~!LI. !987. (u prepan•tion.

[fij Mark Davis <tlid 13ill 0 . Gallmeistcr. CLOCS A:rclailectrLI'f Reference Documents. Tech­
uica.l Report Tll.SS-02 J, Umvcr•iLy of NorLL Caiolina, Chapel Hill, ~I lly lOSS.

[<l] Mark Davis alld Dill 0 . Callmcister CLOCS Cxoss Compiler and .-"sserublcr L~ngu"gc
Description. 1987. lu prep:tr-at ion.

[7] Harvey M. Deilel. .An Introduction to Operat~ng Systems. Addison-Wesley Publishi.ug
Compa.ny, Reading, Mass:u:huselts, 19i\<l.

IS] Harvey M . Deilcl. ,,,. lntroductio11 to Opcr<lfllt!J s.vstcms. Addison-Wesley Publishing
CompmlY1 Rcadiug-, Ma~sachusetts. 198·'·

[9] f::{lsg(or W , Dijk~W\. The Structure of tho 'Tlf!:;' ,\1ult.iprogromming Syst.em. Comm.u ­
nrcalions of II>< ACM, 11(5):311-3·16, May 1968.

[10] Bill 0. Galhncister . Reconclliug Re<d-Timc aud "Fair'' Schedu ling. April 1988. rn
pr-ep:tration.

[ll] Bill 0 . Galluleisier. Siguals in the CLOGS Opcr~ting Syst'"" · l9SS . fn preparation.

[L2j Bill 0. Callmet.\cr. T lv; CLOGS Opera tin& System - Overview and Specitlcalion. l988 .
In preparation.

(L3] E. DO\tgl~·s Jensen, C. Douglass Locke, and l!ideyuki 'l'okuda. A Tiwe-Dtiven Schedul­
ing Model for Real-Time Operating Sys~eJfl .. <;. In Real-'f'im.c Sy$1ttrns Symposucm,
pages 11 :1-· 12:1, Dec(:mbcr 1985.

(lil) l.nsup Lee and Vijay Gehlo~. Langu~gc Consl.t·uc!s for Distributed R eal-Time Program­
ming. ln 11••1-Time Systems Syrnpostum, 1>agcs .57- 66 , December 1985.

[L5) Samuel J . f.,cfHcr. A 4.2HSD Jnterprocess Cou:ummicaiion P~imcr. fn UNIX 4.28SD
Manual, Volume2C, January 19$3.

59

CLOGS OS Reference Documents- Gal/meister GO

(16} Samuel J. Lenler , William 1\. Joy, and Hoberl S. E'abry. 1.2BS D Networki ng Implemen-
ta tion 1\otcs. In UNIX 4.2BSD Ma11t<ai, Volume2C, January 1983.

[II} Mike ~·Ianley. Pl'ivate cornmunir.ation . ~1arch 1988.

[18) Phil Miller. V~·fS for Realtime'? HAR DC;OPY, 76 SO, October 1987.

[19] Karsten Schwan, Tom Dihari , Bruce \V, Weide, and Gregor Taulbee, Uigh- l"erformance
Oporating System Primi tives for RobNics and Real-Tim~ Control Systems. ,[CM
Transactions on c·omp~J1er Sysiems. 5(3): 189-231. August l987.

{20] Niklaus Wirth. Toward 11 Discipline of Rc~I-TiHtc Programmit\g. Commcuucalions •!
tkc A OM. 20(S):f>77- 583, Augusl 1977.

