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Introduction 

CLOGS (Computer with LOw Con text Switch tim<>) is ~~~ experiment"! computer system 
designed ~t ~he University of l\'or~h Caxolina at Chapel Hill by Mark D~vis aud Bill 0. 
Callmeister. C LOGS is designed l.o explore the perfocmance issues associated wilh a machine 
t.bat can wntcxt switch extremely rapidly by virtue of minimal C P U s tale LO save and reslt'fe 
on a context. switch. T his emphasis st.ron!jlY inll~tenecs the design of the operating system , 
which is built to support finely grained scheduling and dynamic extensibility of !.he system. 

This document collects tlte papers describing t.be CLOCS operating system. An overv iew 
of the kernel design is first prc$cnted, followed by a dct<>ilcd spccificatiou of the entry point~ 
to the kernel. Chapter 3 is a brief discussion of scheduling in the CLOCS kernel. 1'he final 
chn.ptcr is n.n enumeration of the signals used in the opctatiug system. 



Chapter 1 

An Overview of the Kernel 
Design 

CLOGS (C0111puler with LOw Context--Switch ing time) is a machine being designed at the 
Un iversit.y of Nort h Carolina at Chapel TTill , by Mark Davis and Bill 0 . Gallmcister . CLOCS 
is an experimental sysl.em1 both hardware and software, creat.ed to explore the consequences 
of '' design that permits extremely rapid context switches. Tbc CLOGS Operating System is 
de.signed to exploit the unique fe;>Lures of the CI,OCS hardware to meet. specific performance 
a nd qualitative goals : teal-time responsiveness, fair mu ltiprogramming, and dynamic rccon­
figurabilit.y. This paper describes the most basic pal'l. of the machine's operating system -
Lhe CLOGS Kernel. 

Whilt> the CLOCS kernel is only the lowest layer of the operating system, it provides 
the necessaTy b uilding blocks to meet the design goals of t he system as a whole. T his 
document enqlhasi"es the overall couc.epts lltat relate to these goals, deferring more det.ailed 
kernel descriptions to [12]. Section 1 discus~ the g,oals of the system. Section 2 provides 
an overview of the stra tegies used to meet these goal;. Descriptions of t he modules of the 
CLOCS kernel a re gi veri iu section 3. 

1.1 The Goals of the CLOCS K ernel 

1.1.1 Real-Time Response 

A major objective of the CLOCS Operating System is to provide real-time response, meaning 
tha.l processes must be able t.o respond to event.s, generated by sofbvare or hardware, willLln 
a specified (and assumed small) amount of t.ime. 
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R eal-Time Sys t e ms arc Difficult . Real-time t·espottse is hard to achieve in operating 
systems~ because not only must. the answer be right, tt must be delivered on tilnc. Like most 
sofLware, typical muiLiprogta.nuning operaling sysLesns run with liLLie regard for external, 
wal- world time. lr1 designing a real-ti me system, the software designer mus~ pay dose 
aLtendon to the a.mou nt. of time taken in all sections of code- asymptotic order notation 
will uot suffice! The designer must assure that int-err upt response t.itncs arc bounded, nt ust 
support gua.·antecd scheduling aud con1pletion by ex1.ernal time, and must carefully analyze 
the timings of in teracting parts of the ;yst.em to a-ssure tbat the timing constraiuts of the 
system are met. ln sum, rea l-lime cons traints make programming ltarder tn gcncr'!l~20) , 
because they add a whole new dim<msion the time dimension - to t he problem s pace being 
explored. 

1.1.2 Fair Multipl·ogl.'ammin g 

R.~:d- tilnc tc-sponse h(IS beeu achieved in oiJaer systems, bul, usuaJly a11 Lhe expense of fairness 
- l.he p:roc ... ~ses reqi.Liring rea1-t.ime response are Lrealed preferenLiaHy to other, non-real- t.irne 
proce<-•es. The second design goa l of the CLOCS e>perating systent is lhal it provide fair 
multiprogromrnin~ for n.ll processes. A schcdttling algorithm is called "fair" if all processes 
a re giveu equal consideration by th" schedule•· at all i imes[8) . Fair multiptogramming is 
difficult to reroncilc with rca.l- time capability, since real-time processes u'lay have special 
requirements - they may need to be scheduled rnore o ften, or perhaps aiJowed to nm longct> 
in order to have any va lue whatsoever! B.econciling (<fair'> schcduljng wi~h denlauds (or 
real-time rcsr>onse is discussed iu detail iu [10]. 

1.1.3 Dynamic Ext ensibili ty 

Software is a malleable substance, and quite oft-en software systems are a ltered ''on t,hc Ay" as 
~bey are being used: functiona l modules arc u.dded to , and s ubt racted from a running system 
(!$ ii is rmwiug. This is especially true in real-time programming, where the programming is 
often associated wit,h <orne unique data collection device that must be specially driven[l 7) . 
Small, frequent changes to soft ware components should not require recompiling and rebooting 
the operating system . Tltercfote, the GLOCS operating system rnusl expand and conl.racl, 
dynamically as it ruus. T llis allows new drivers or specia1Jy expanded functionality to be 
added to Lhe syslem as needed, re rnoved when the maehinc r<~SOlJ rcc is lwtter spent c l,:;cwhcrc. 
or changed when it is wroug. 

A ~ecor'!d re.<l.oSOn for dynamic exte.n~ibility ito t he i\dvanti:lgc of program rning an ilpplic,at,ion 
on the targ•~t machine for t he applicatiou[l 8). Pto~;ramming on the target machine requj res 
t.hat iht: machine su pport a full deve)opmenl environment.., but such an environment is only 
useful when the system is being developed. ' \'ben a produclion system i~ ruoning, a. full 
cl~velopment environment is just b«ggage. It must be possible to link in the capabilil.ies of 
a full-fea tured operating system on deman<i, l.hen j ettison them when they are not required . 
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1.1.4 The CLOCS Machine 

In a mul tiprogramming system, processes arc frequen tly contex't-switcbcd, i.e., the running 
proce;;.< is stopped, its state saved and another proces;; started. Machines with large amount~ 

of state in their proc~.ssors hnve historically achieve-d better rates of throt>gbput, but they 
also context-swibcll more s low ly than ma.c.hines with less stale. [n the past, throughput of 
a single process has been t he metric for gauging a machine's performance, but as multi pro. 
gramming systenis becorne more common, throughpuL of ll1U itiplc, concurren t processes is 
increasingly important. Context switching speed is an important component of mul!ipta· 
g rammed computer performance. 

The CLOGS project is studying tho tradeoff< between single- <nJd multi-proccs• through· 
put involved in the design of a system - both hardware and soft ware - which targets fast 
conlext swit..ching ash:;; major performance meLric. Since the novel design of t.he hardware 
has inOuencec.l the kernel design, a short oven··lew of the hardware is in order. 

The CLO CS CPU 

'l.b swttch context, a m~chi ne must store all intctnnl Tcgist.cr-s nnd r<;plac·e th~rn with new in­
formatiou. lu orJer to allow fast c.ontext switches, tbe CLOCS rnadtine It as only one register, 
called J,he state word: storing it and reloading lts contents takes exactly Lwo iosl,ruct.ions. 

Because t here arc no other registers, the CLO.CS operation sci is small - there is no 
need for load or store operations, aud the lack of "' ·Sisters also makes for fewer addressing 
modes. Th is dram~tie<tlly simplifies l.he inst1·uction set: CLOGS supports only 20 different 
operal ious! 

This minimal amount of CPU state impacts the programming model for the machine. 
The bare minimum information is stored in Lhe staLe word: a process ID, the program 
~ountet, and flags, including the current intern1pt mask . A great deal of ptoccss state, such 
as ~tack and frame poinlers, i.s normally maintained in a machine's registers . In CLOCS

1 

this state is kept in well-known memory locations. 

T h e CLO CS MMU 

Rcv.l-timc systems, and increasingly~ general-purpose computing system.s must. run hundreds: 
if nol t housands, o f processes concurcent.Jy. Virt.ual memory has prc)ven to be au i.mpo:rta.nt. 
and useful tool f01· building reliable multiprocess systems, due to the sepnration and pt<r 
tection it. ofl'crs. \•Ve feel that virlual memory is vital to tbe reliabilit.y of mult.iprogratnmed 
systems. T herefore, CJ.OCS supports segmented. paged virtual memory with its MM U. A 
process ID, sl.ored iu tile state word, uniquely determines a set of segment and page mappings 
in the ;\•1M U; changing th is hard ware process 10 chnnge.s t he ~~ ~fU as a. side eiTect. Although 
most add ressing is assumed to be io one of lwo default segn1ents (one for instructions and 
oue for data), processes call address data in a11y segment using extended acl th essing modes. 

The MMU is organized as a single large table, s upplying pt-Oeess m, segm ent nu mber, 
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virlllal page, physical page, aod proLecliou bits io a single tuple. The MMU is an associative 
memory, ~nd the hardware does nol enforce any ordering of ~he tuples. Siner process 10 
does not determine a fixed number of S<lgments, processes can aecess an arbit rary number of 
segments , including segments shared with other proce.>ses. The flexible layout of the MMu 
aUows easy memory sharing between processes, but also allow$ inconsistency. For instance, 
process ID + segment 10 + ''irtual page number do not functioMIIy determine a unique 
tuple, making it possible to have two contrad ictory mappin!>,$ in l.he CLOCS MMU! Th<; 
memo ry management soCtware must. ('llSure Lhal Lhc MMU remains c:onsisl<:nt. 

Instruction 
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I I \ 12 

Status I .... 
\ QSEG 

PC l f PlO 

Zero 
Secment -, 

Default Ises:::~~~~r---,~: ~ 
:>efaulr. Ose<.; I ~EG 

INDIRECT l.._..;s;;_:I:,;;D;_~J~o;,;,F;.;E' S;;,;E;;,;T_..J:. 

~ t..-q 0 

(high order 2~ bits are 
igno>=edl 

+ lr lr 
MMU 

! l l i . i 
·········-····r············~· ······-·············r ...................... ! •••.• _ ••...•••••••••• 

PID I SID ~li'Li'.GS ~VPAGE iP?AGE -·-···· ... r ............ J.-·-·--·-·-··t-·-·-·-·-··-·1··-·-···--·-··-· 
I t 1 ~ 
I : i ~ 

I ! I , 
I t i,: \,. 
; : 

~/ 
Phy sica]:.!--::"~ 
Address 1-30 

Physical Memory 

The CLOCS MMU 



CLOGS OS Reference Docurnent.s- Gal/meister 6 

Event .tl'andling. Event.s (trap< nnd interrupts) arc !Jandlcd by vedoring; an e'•ent 
Vt,ctor is a state word ~Ita~ is loaded into the CP U when l.he associated event. occurs- The 
CLOCS machine pi'O\•ides 1024 separate vectors, half for traps and half for interrupts. This 
large number of vectored ev.ents speeds event handJing because !.he software doesn>t need LO 

\\~Ork as bard Lo figure out which event occurred. Th~t inform~tion is htl'gcly implicit iu the 
eve,nc vc~tor it.self. 

The arch itecture of the C LOCS machine and its ~·IMU arc described io a number of 
papers [tl,4,3,5]. Readers interested in detailed architectural descriptions are rel<med to 
these papers. 
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1-2 Achieving the Goals of the CLOCS Kernel 

The CLOCS kernel uses a few simple strategies to meel its goals. The general strategies ru-e 
described below; the next section gives more specific details on the kernel ilself. Together, 
these strategies prov ide the necessarr building blocks for achieving the goals of the who!~ 
system. 

1.2.1 Obtaining Real-Time Responsiveness 

Obl.a.ining rcn.l-t.ime responsiveness is the single largest goal of t.he CLOCS operating syst.cm, 
audits reW i01a.t.ion requjres t..he mosb work Each module of a. rea.l- t.ime system must cooperate 
in order t.o «chieve the performance goals of the system. The modules of the CLOCS kernel 
work together in the following ways. 

Uninterruptible Path Leugths Al'e Short 

Jf any process requires long uninterruptible periods or time. then rea.l-tilne performance 
becomes hard to a.chieve: rapid respo11se to an evc011. caunot be guaranteed because some 
process may be jusb starting a long section of un interrupt.ible code. The UNJ X1 system, for 
instance, has a hard time doing real-time processing because it is monolithic, and processes 
running in the kernel can take nmny milHseconds to complde. fn contrast, t.he CLOCS 
operating system consisl.s of s hort, unintcrruptiblc patils thtough t,he kernel, connected by 
sections where int.etrupts are aJio, ... 'cd. AL these '·chedq>oints" 1 rescheduling of 1..he processor 
cnn occur, allo,-..·ing rtipid ·response to events. 

P1·ocesses Can Run To Con1plction 

CLOCS allows a proce.ss to indicate when it must run to <:omplet.ion in order to guarantee 
that it will finish its real-time work. \Vheu a proc~s is allowed to run to completion, it 
cannot be preempted unt.il it, allows itself t.o be. 

Mo•·e is Stored; Less is Computed 

Alau Jay Swith, of Berkeley, hru; said that any ~rogiam can be made five times as swift to 
run, a.t t.he expense of five times the storage space. \¥bile his numbers may be quest.ioned, his 
premise may uot: programs can be made faster by precomputing n.nd storing results. Where 
lhe lrade<>rfs can be made, the CLOCS Operating System achieves faster execution by using 
more elaborate da~a structures. For instance, the data s~ructurcs used by the scheduling 
algorithm arc optimized to speed the choice of which ptoccss t.o ru n noxt .. 

1 UNIX ts a tt•ademark of AT&T Commw.Ucali.ons 
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Small Module$ Speed tbe Ke1·nel 

The CLOCS keruel is built from small, effective rno<lules that p rovide simple abstractions: 
vidual memory, processes, and interprocess commumcalion. 1'hese smaller, more mode!'t 
modules run faster than megaliths because they do less. Since t he kernel can be dynamically 
extended ::mcl contracted, enh<>nced function can i>c b uilt on top or the kcnlel as required by 
a particular appJka-tion. ~feanwhile, the modest scope of t.he kerneJ allows it to run swi.fily. 

1.2.2 Combining Responsiveness ant! Fairness 

The second important goal of the C LOCS operat ing system is to combine real-time respon­
siv.,ness with foir llltllti~nogramming. Schcdu l.ing hemist.ic~ typically attempt, to provido 
one sort. of bebavior, eilher fa.lrncss or real-lime responsive ness. The CLOCS scheduling 
nlgorithm, in contrast , takes both goals int.o account . 

New Scheduling Ideas 

SchcduJing is often implem~nt.cd using a priority-ba.~ed scheme in which a single number 
denotes a. process~s "value}'. 'The priority can be manipulated i\ccording to the process>s 
bchavior[S]. Priority-based scheduling provides fair schedu li ng behavior for non-n;a l-t.ime 
processes. Unfortunately, the val ue of a real-time pro.cess is not a static quantity, a.nd may 
"''fY in a time-dependent, 110 1 procc>ss-bchaviQr-<JeJ)CJl(ltnt fashion. Thus, priority schedu lers 
have .a difficu lt time supporting real-time tasks . (n contrast , reaJ-time systems often prac­
tice deadline scheduling, where processe~ are scheduled in order of shortest deadline first. 
Variants of the deadline scheduler abound, bu t all of t hem schedule processes st rictly based 
on their deadlines. Deadline schedulers do not try to be fair, aud iu fact. wdl not schedule 
a process wit.hout a deadline- i.e. a non-teal-time prQcess - un less there are no re-a.l-time 
processes ready to run. 

Any scheduler that targets on ly a single dimension (time, priorit.y, etc.) will fail a.t 
scheduling solne ot.her dass of processes. By providing 1nore informa1,ion pertaining l<> the 
schedu li ng problem, t.be scheduler can make more il.1formcd choices about which processes 
must run a t any given Lime. Elaborate scheduling algorithms have been designed to more 
ac~uratcly model t>roccss vahtes, 8Ud therefore schcd·ulc then a bct.tcr, wbere better is defined 
by the objectives of the pa.1·t.icular scheduling algorithm. In some complicated systerno;, 
tts many as five mambrrs have been used to denot.e the t imc-va.ryjng v;due of ('I rea l-time 
process[l3] . 

[u the CLOGS system, a. unified process valu9 model is used, denoting each process's v:tlue 
and its dea.c.l li ne~ along with indications. of how long. the process will need to run~ whether 
there is a.uy volue iu ruuuiug the process past its deadline, and whether the process should 
be allowed to run to completion. T hese attribuces a llow more delicate odaecluling decisions 
and a re •ufficieuc for proper scheduling of the ana.iority of processes. Dynamic man ipulat ion 
of t he quantit.ies further enhances tbc system's responsiveness. 
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1-2.3 Achieving E xtensib il ity 

The third goal, acbieving extensibility, req11ires the ability to add and subtract softwar" 
components on a running system, much as fault-tolera.ut compu~er sy~tems allow hard ware 
to be added and removed dynamically. 'To solve this problem, the interface b~twcen ~be 
pMt$ of the system mnsl be clean and well-defined , fadlitating fast, simple changes that a llow 
dynamic interprocess communic-at.ion. Bre:~.k i.ng t.hc connections <uHJ eliminat ing cornponeuts 
1nust a.lso be easy. Fiually, calling a module t.hat· is not. presenL tnust. not result in c;\.ta:·~t.rophlr. 

failure or the operating system' 

Object-Otieuted D esign Provides Cleim Interface 

The object-oriented paradigm provides a partial solution to the cxt.cnsibility problem. Jn 
the CLOCS kernel1 each objcct.1 or umanagcrll ~ l::ommunicates with the ot.ber managers and 
t he user processes th ro ug h a. simple iut.erface. Eacb manager makes specific entry points 
available to the entire sys tem; other processes may only call the manager using those entry 
points The manager can also remove the entry pocnts. Calls to non-exis tent entry points 
are treated "-'errors, whic.h can be treated by loadiug t he required nlodule, init ializing it, 
and ~eying again, 

Policy-Meehanisnt Separation Allows Funr.tio11al Exte nsion 

T he object model is a necessary, hu t not sufficient condit ion for exteusibility. If the semantics 
of tbe underlying softwaxc layers do not allow higher layers to function properly, then ex­
lending the kernel becomes impossible. CLOGS supports policy-mtc/10nism scparatio11: the 
lower layer>i of the kernel cannot implicitly decide policy for upper layers. For instance, the 
'Memory Manager does not make any decisions based on which process is calling it , because 
it is up t.o the Process Manager to m<tke process-related decisions. 
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1.3 Kernel Module D escriptions 

The CLOGS sys~em is organized a.. a. set. of fou r modules, earh of which implements au 
abst.ract.ion or service. This bierarchical approach to design ofl'ers clean, modular interfaces 
and smaller, easy-to-understand software packages{9). Pour modulc:s make up the kernel of 
the CLOGS Operating Systolfl, each providing basic services on wh ich higher levels will rely. 
The fou1· modules that form t he CLOGS kernel are: 

• The Glue Code: The lowest layer of the CLOCS kernel is the Glue Code. It handles 
the details of inter-module communication and cxct'!pLion hand ling, allow ing: all other 
modules in the system to be integrated into a single machjnc. 

• The Memor y Manager: The J\'lemory Manager handles t he CJ,OCS MM(; and 
provides t.he abstraction of virtm<l memory. Virtual memory is uccc;;"ary for l.mililing 
reliable multiprocess systems becauSf! of lhe pr·otect.ion and separa,tjon it offers. 

• The P1·ocess l'v!auag""' The Process Manager encapsulates the schedu.li ng algorithm 
and provide• the abstraction of independ•>nt. processe.<. The entire CLOCS system is 
structured as rnuh,iple processes, so a. process manager is a basic requirement.. 

• The Communi~~~tion M an"'ger: The Communication Manager provides the ab­
stra.ction of intcr· f>r<>cess communication. Syst.erns such as real-time applications and 
server applicat.Jons are often struct.ured as mui.Liple processes communicating in a va.­
riety of ways. This paradigm is basic enough to merit support at the lowest levels of 
t.he operating sy~tem. 

The Glue Code providC$ the mos~ basic Je,•el of service, supporting a dean, monitor-like 
interface bet.ween soft.ware moduJes. T he other three modules of t.hc kernel communicate 
using the Glue Code. The :VIemory and Process Managers are at a s light ly higher level than 
t he Glue Code. The Communications Manager is ~t, a still higher level, using t.hc services of 
the other two managers. 
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Memory 
Manager 

Communications 
Manager 

Glue Code 

Interrupts 
Traps 

The CLOCS Kernel 

1.3.l How Does This K ernel M eet t h e Syst.em Goals? 

ll 

Process 
Manager 

Extensibilit y of the system is supported by t he C In<: Code, whkh provides calls Lo allow 
module.<~ to make thems~l vcs dynamicnlly available to the rest or the syst" '" 

The kernel modules run in a request-driven fMhion; a call to one of the managers will 
provokr a short, uninterruptible rC$ponse. When modules communicate with each other, 
interru pts may occur , allowing for possible resched uling. Thus, the un in tcrruptible paths 
through the kernel are only as long as the longest path through ""Y pa rtiouiM manager. 
Since each manager performs simple. small tasks. the paths through them Are short. and 
each call to a manager can be satisfied qu~ekly. 

T he managers arc designed in such n f:t.Shiou th~ L they store more data thnn is necessary 
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in order Lo avoid tirnc--consuming recomputations. 'This desigH style is most evjdcut iu t.he 
Prorcss Manager, clesc ril>ed below. In ~ddiliou, thl!" sd,eJu ler implemented by the Proc·css 
.Mannger i~ ctesigucd to JnchJ real-time responsi\'enefis wil h rnh mu ltiprogramming. 

1.3.2 A Bottom-Up Description Models Successive Abstractions 

Th~ modules of th~ CLOCS kernel are described from the bottom up, parallelins the suc­
cessive abstractions provided by each module. Since the complete operating sysl~m is not 
specified, describing the •ystem from the top down is not possible: there is no top! 
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1.3.3 The Glue Code 

Tbe lowest level of the CLOGS Operating Sptem is called the "Glue Code" because t he 
rout ines and data at this level support the ~onneclion of other processes, or modules. Con­
ceptually, this module "glues" t,he otllers togc•her. The glue code handles intermodule 
communication as well as int,errupl and trap dispatr~h. T he dynanlic ex tension aud contrac­
tion of the system is handled from the glue code. and proper acc~.ss of user applications to 
Lite keruel is en forced here as well . 

Intm·mocln\n Communication 

To call an en try polnt in another process! the calle r pushes the pr'OC~$ ro ~l)d entry point 
number of the called process on its stack t>.nd traps to the Glue Code. T he Glue Code checks 
the calling process's right to call the entry point and, if permitted, makes the call. If the 
specified entry point does not exist, then an error i~1di cator is returned. Notice that three 
processes are involved: a caller, the kernel (in the persona of the Glue Code), and the called, 
or server, proc('SS. 

The Glue C'-<>de support~ in termodulc communication by enforcing an explicit interface 
for module access. A module, or process, makes entry pojnt.s available ~o o~her processes 
by calling the Glue Code and specifying the address of t he ent ry point. and t he permissions 
associated wilh it , i.e. who may call the entry point. The <:aller asso.ciates an entry point 
number wi th the entry point. addressJ insuJating other processes from t.he need t.o knov .. • 
specific addresses \vit.hin ~mother process. A process may also remove an entry point it has 
previously made available. 

A process containing an entry point will be at some point in its execution when the 
entry point is cal led . Entry point calls are handled .as if a signal had occurred: the entry is 
· ~serviced., by the called proc~S1 which ther~ n~wrns from that. entry to whatever proces.iiug 
it was doing prior to the call . Meanwhile, the called mo<inle is blocked. lo addition, while 
the server proces~ is :w.rvicing an entry call, new callS to its eniry points al'e blocked. This is 
done to prevent simullaneous access to a single process by other processes, possibly resulting 
in inc.o nsist.cncics. 

ll:aps and Systern Calls 

lnter-module <::ommumcatJOll traps at~ one use for tn\ps, bu~ all ot her traps are to the g lue 
code. as w·elJ. This includes exceptions, such ac; page fa.u1ts and divides by z~ro, ,;:md sysi,cro 
calls , which nrc performed as iuLcrmodule calls fron\ user processes to the kernel process. 
For all traps, the Glue Code must save the state of the trapping process before jumping to 
t.)Je appropriate servir.e I'Ont.ine. 
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luterrupts 

lnterrupl8 (external events cnused by things like 1/0 devices or power fajlut<'5) ate also 
handled by the Glue Code. Although the main bulk of iot.errupt pror,essing is hand led by 
the kemcl proper, t he stat.e of the machine prior to the interrupt must be saved. and this is 
lhe job of the Glue Code as well. 

Humble Access 

"llumble Acce$s" is a t.etm for lim..iliog a process' access to privileged operations. P rocesses 
cau ascend to privileged mode only M specified locations in tbe code. At. lhese locations, 
the access rights or the calling process a re checked, and its "humble" request for privileged 
service is granted or denied. Since the CLOGS Glue Code provides t he only entry n1cthod 
to other modules, iL can alld does enforce humble access by checkmg permissions before 
pernUtting entry point calls . 

Dynamic R eliuking 

The abstraction of entry points to other ptoccsscs allows fo:r easy dynamic relinking of 
modules, since ~he relinking is handled through a central location, the Glue Code. As 
an added adVailLage, calling a nonexistent entry point is treated as au error and not.. a 
cat,astrophe, so calling modules can be prograrumed to recover from ill-configured software. 
This robust , dy namic relinking capnhilit.y provides l.llc cxtcosibility re(Juired by the CLOCS 
Operating System . 
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1.3.4 The Memory Manager 

Vixtual memory is a requ irement for bu ilding reliable multiprocess syste111s becau$e of the 
separation , protection and ease-of-use a virtua l me..,ory system ofl'e rs. The CLOCS MM \J 
pnwid.es tbe caw material for implementing efficient, protected virtual memory; however} 
it must be carefully managed by software to avoid inconsistencies. The Memory ~'lanager 
has responsibility for maintaining correctness of the MMU and of physical pages of memory. 
It k«eps track of those segments, pbysical and virtual pages, and process identifiers (PIDs) 
which are io use. 

Inte rface to the MMU 

As sole a<:cess to the MM U, the ~kmory ~Ianager must also provide dlicleut , fast access lo 
the hardware. The size of t he MMU, 21" words, is too large for the Memory Manager to 
search linearly; so the Memory Manager construct.:;. software structu:res atop the MMU to 
allow swifter access to specific en1..ries. 

Segment Allocation 

Two different calls allow a process to allocate and deallocate segments. When allocating, 
the memory manager dc~ermines a free segment and assigns i~ to the calling process. but uo 
mention of that.. segmenl is rna de in the M i\·1 U 1 because t.her~ is no l'nernory yet nssociatcd 
with it. When p~ges of memory arc actually allocated wit hin the segment, then the MMU 
is modified. When a. process frMS a segment , the segment ls removed from the MMU for 
the process, and if no other process is using Lhe segment, il is returned to Llic free list. ll is 
i.\0 error fo:r a process to Lry to free its primary instruction O"r dati\ segments, \\'hich are the 
ones it requires to run in. 

Page Allocation 

Processes allocate and free virtual page" within nn already-allocated segment. The calls 
specify the sl,arti..ng page and a. uumber of pages to aJiocaLe or free. f~)r l'ors are returned if 
the process tries to allocate a virtnal page that it has already allocated, or if it l.ries to free 
pages that a re already free. 

Page Slnn·ing 

An additional call in tLe memory manager maps pages of memory from ooe process in to 
another process. This call does not enforce any sort of prolectiou between processes, but the 
call catl only be made by the kernel itself. The mechan ism for sharing memory is required 
by the C'A>mrnunication Man~ger, which ~nforces the P.olicy of shar,~d memory by calling t he 
Memory Manager in t.he "right wa)''. 
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1.3.5 The P rocess Manager 

Processes are a basic un it of computation . lncre~ingJy, applications rangin& from database 
sys tems lo resource servets to entire oper~ting sysl.ems arc being constructed as multiple 
process~ which c.ommu(l icate to achieve the goals of t.he syst.em. This paradigm orrers 
conceptual simplicit.y as well as increased reliabi lity ~nd fanlt tolerance. Processes requio·e 
support at the lowest levels of the kernel. since the higher levels of the CLOCS system will 
themselves be structured as multiple processes. The CLOCS Process Manager provides the 
ab•traction of ~rocesses and encapsulate>< the process scheduling a lgorithm. h also manages 
process creation, destruction and state changes. Although context switches are done by the 
Glue Code, actual processor allocation and dispatch is performed from within the Process 
l\·f an ager. 

D efin ition of Process 

CLOCS defines a (Hoeess as simply '·a schedulahle entity" [S]. A proccs.< is just. a thing t.hat, 
co.n be scheduled for execution. A process is named by its P rocess Control Dieck (PCl3), a 
data structure wbkb contaius control information about. lhc proCC$$: its l>lst recorded state, 
what. memory it has alloca.Led= its priority and urgency, and so forlh. 

The oper<•l.ing systems li•erature mentions two sorts of processe.;;: heavyweight and 
lightweight processes. The CLOCS MMU supports one kind just as easily as the other, 
aud l.he Process Manager makes no disbinct.ion bet..'''eeu Lhe lwo. 

f!eavyweight P I'ocesses . Heavyweight. processes are processes which execute in their 
own proteet~d ;:tddr<'.SS !;pac¢s. T hey arc s lowr.r to context-switch because Lhey requi re a full 
swap of machjne stale , iudud_ing, possibly, some Ml\,(U contents and sornc physi·cal memory. 

Ligh t weigh t Pt·ocesses. Tn contrast, lightweight processes have less baggage of t l\eir 
own. Multiple lightweight processes inhabit the same shared address space. Lightweight 
processes can switch between one another very rapidly because the MMU and memory staLe 
required for each is identical and need not be cbnnged. 

Diffe rence Detween Heavyweigh t aud Lightwe ight . In the CLOCS machine, there 
is little ..:lif[cr~(.C bct.,vecn h.:-<wywcig ht nnd lightweight. proce:s.se~. Becilu:se l.be CL-O CS 
MMU contains enough stale to cover aU of physical m~mory, memory-resident heavyweight 
processe:; wi.ll be a..;; ea.~y t.0 swi~ch to <l.S lightweight proc.esses. li owever, if lhe memory 
required for a heavyweight process is nol present, then the disk must be accessed. and mote> 
time will be required fo.r switching conlexl. Since the CLOCS kemel at this stage do"' 
nol specify any disk, swapping, or other higher-level concerns, th is distinction will not be 
discussed any further. It is sufficien t. to note Lhttt processes ca.n exist in shared or private 
addrr.ss spa.ces, or even in some combination of shared und private spa<::e. 
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Creating Proccssos. Processes can create other processes. 'fhe creating process glves 
t.wo scgmc.Ht ouJnbers> which become Lhe default instruction tLnd operand segmeut.s of the 
new process. Scheduling parameters and starting address a re also specified. The process, 
when crealed, is ready t.o run an.;! is scheduled as soou as feasible. 

Destroying Processes. A process can destroy itself, and the kernel car1 destroy any 
process. Whcu a process is destroyed, its memory is freed and returned to the memory pool 
if no other processes are using it, and its PCD is :made available to new processes. The 
process is removed from schedu ling consideration. 

Changing Process States. B·etwcen the time it is created aud the time it is destroyed , 
a process will repeatedly switch between t.h~ running , ready, and b/Qc):ed states. At any given 
ti me, ooly one process is running. Eilher il is using Lhe processor or the kernel is running 
on its behalf. Proces.<es that cou ld be running, but. hnve not been allocated thu processor 
yel, 3rC called ready. Processes that cannot be run 'because they are waiting for something 
arc called blocked processes. 

Schr.duling 

C hanging process states, and the decision of which ready process becomes the running pro­
cess, is called scheduling. In order lo achieve both real-time performance and fair n11lltipro­
gramming, t he CLOCS kernel s upports at1 ela borate schedu~ng sysler11 . 

"Just In Time" Scheduling. '!'he scheduling algorithm exemplifies a concept tba~ bas 
become popu lar in manuf~ctuxing and inventory control technology called "Just In Time" 
scheduling. In this method, processes tbM have to complete by a certain time MC scheduled 
to r.un at the very last minute. In the ''-'archouse, this leads to reduced iuveot.orieti and a 
more efficient. operation. ln t.he CLOCS Oper:Lting Systen1, by Att.ing non·real- tiJnc execution 
into the cracks not occupied by real-time tasks, "J ust In T ime" scheduling provides better 
response times to uou-tea l-time processes at little or no cost l,o tLe real-time processes. 

Priority, Urg~ncy, and Qunntu1n. Jn most rnu ltiprogra.mming operating systems, 
scheduling is based on priority. P rocesses have a s ingle attribute, their priority, that deter­
mines. their importance relative to all othe.r pro.cesscs. The most important. processc'!s always 
go first. Wbile priority-based scbeduliug is coJLcept.ually simple and easy io implement, pri­
oricy alone cannot adequately reflect t he nature of t he seheduling problem. A pr iority does 
not. state explidt.ly when a process shou ld nmi that. decision depends on the priorit.y of all 
the other processes i.u the system. Thus, it is tricky and unreliable to perform time-based 
scheduling ush1g only priority . 

For iustancc, a. ptoc.css 1nay not be very important., but may need to run v·cry soon 
lest it, lose all value. Should that process's priority suddenly be raised l,o euforce ils rapid 
running? If so, how high'! Alld how will it be lowered again? Row low? And whaL if some 
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other process, which doesn 't need to run at any pa.rticular time , C<Ul be run before the other 
process absolutely has to he run? These problems can only be expres.<ed clumsily (if al all!) 
using a sin.glc priorily number. Because Lhere is no way to state the progrmnrner '~ desire t..hat. 
a process run within a certain deadline: systems are .created wit-h process priorities balanc.ed 
together like a. house of c~rds to provide proper responsiveness . 'l'he smallest change in the 
systent or in t he environment c~.n bring t he house of cards tumbling dowu(l3j. 

Another sort of scheduling algorithm is dead]jne sc.heduling in which processes have dead­
lines b)' which lbey must complete. The process with the closest deadline runs soonest. 
Dead line schedu li ng hns two significant problems. Firs t . it fail<; lo •chedule non-real-time 
processes (that is, any process wit.h no real-time constraints on it,S- scheduling) sine~ they 
have no dead lin~ other than "as soon as possible,.,. In many- syste ms, real-t ime processes> 
such as data acquisition and physical control tas ks, coexist in a machine with oou-rea.l- time 
processes , such as usc1· q1.le ries iuto the d atabase bejng produced by the real-time application. 

More important ly, deadline scheduling fail• badly when the processing load exceeds the 
pr<>cessor capability s ince it continues to schedule a nd run processe. tba l cannot possibly 
tnee~ their deadlines, either because the deadline is tQO close ot already past[l3] . .By wasting 
ptOC(ISSOr Lime on processes t hat will have no value, the deadline scheduler alJows more 
processes to become too late; these ar.e scheduled i.n turn, causing st.i/1 more processt'S to 
become laLe! 

'l'he CLOGS Operating System uses t.lnce numbers to schedule its processes. A v•·•odty 
reflects the process 's imr>ortance itl the scheme of th ings. Urgency is t he t ime, measured in 
clock ticks, by which the process a.bsolut.ely must run. Q·•Jn>ltum is t he estimated time, again 
in clock ticks, t.he process will take for the run. Only real-time processes have Urgency, 
because real-time cons traints on their operation are made. All otl1er processes are ca lled 
non-teal-tiJnC- processe::;. The quantum is used as a lime slice in the case o f non-rea1-timt' 
processes; for real-t.ime processes, Lhe quanrum is t aken literally and is u•ed to determine 
exactly when the process must run. 

Blocking. VVhen the running process executes .a k~rncl call th<.lt requires lt. to wail· for 
some event, such a.s an iotcrt\lpt.. or receipt of a message f:rorn another process, il is said to 
block. Blocking is t he kernel-b·el mechanism used t o implement •II process waiting in the 
C LOCS Operating. System. When the running process blocks, it is removed to the nonrr.ady 
•tate and a new running pror.css is chosen . The Process Manager supports call~ to block 
proccs.cses in <J.. mu lt itude of ways. but these e nt.ry po int.s are nol callable by user processes. 
User processes call other kernel modules, which block 1.1te user processes io co11strained a nd 
well-kuowu fashions. 

vVhat. Do Pt<1cesse s B lock Ou? Blocked processes are waiting for somellting, but how 
is l.he occurrence of t hat somethi ng flagged? How is the something identified? In the jar­
gon of t he operating systems c.onnnuniLy, processes block on roohcs. A particular cookie 
correspouds to some event being awaited by one or more process. The cookie can contain 
any value, UuL a parlicular va]ue specifies a part icuBar cookie. \\'hen processes b1ock 1 t.hey 
block w:Ut.ing for on<~ or more of these cook ies. O tl!ler processes Call signal the occurrence 
of a particular cookie, ~nd all processes waiting for that cookie arc notiflad . Any of those 
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processes wliicll do noL need to waiL for any more cookies become ready and ca11 contend for 
lhe prncessor. Jf such a ptocess i$ a tea J .. t..iJne process

1 
ils urgency is m~..asured from the time 

it. becomes ready. 

Cotnbination~ of Cookies. Processes can wa.it on more t.ha.n one cookie, and they can 
\vaiL in different ways. A proce$~ can wa~t on the Bo0olean AND of a uurnber of cookies; in 
other words. all Lliose cookies rnusL be unblocked before the process can proceed. In addi~ion, 
proces.<es C1Lll block on Llie Boolean on. of multiple cookies. 

Scheduling Dat a Structures. The scheduling data strucLmes arc designed Lo speed 
scheduling decisions. Much of the work of scheduling is done when a process is pluced iu 
the <lata structures, allo,viug, t.he process manager to quickly decide which process should 
become run nable next . 

The kernel must. be able to dctcmliue rapidly wb.icll processes are waiLing on a given 
event because <iJll' application consisting of multiple applications is bound to b~ doing a 
great deal of process synchronization, an.d events are the mechanism used for implementing 
process synchron.iz.aiion. 'l'hererore, the dcterminfl.tion m\ISL be proportional 1,0 tbe number 
of processes waiLing on that event, rather than proportional to all blocked processe.s. In 
addit.ion, the data structure. must. be mult.ilinked, because ptocesscs c~n wait 0)1 more than 
one cookie at a time. A procest> control block tnay be accessed based on any of the cookies 
it. is waiting on. 

Wl1en a process is moved into the ready state. it is stored in t he nm queue. U11like 
standard run queues, the CLOCS run queue is structu red as L\\o"O priority queues: one queue 
for real-t.ime processes and one queue for uon-tca.1-~irne procel:iSOS. Tbe non-real-time process 
queue i.s ordered only by priority. The real-time process queue is sort.ed in reverse order of 
(w·gency-quantum), so Lhat l.he pro<e<-• which must ru.n soonest is at t he head of the queue. 
In addition, tll<: titnc by which each process musL run is stored in a differenlial fashion while 
the processes are on t he run queue. E3ch process has a thresh~ltl which is imerptetcJ relative 
to the threshold of the process before iL on the queue. This avoids Lhe need t<> update the 
whole ruu queue on each timer h1terrupt. Within groups of processes that m ust run by a 
certain t.ime, the ptoccsscs fl.re ordered by prioril·)\ tnost iJnporiant first. 
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processPurgatory 

slowQueue 
(non-realtime) 

fas tQue ue 
(realt ime) 

Scheduling Data S tructures 

20 

Scheduling Algorithms. The heart of the scheduling algorithm is~ decision pro<cdure 
that determines which process tO run next; the scheduler may ~ISO reorder the sehcduling 
data stru.cturcs. The sched uler runs whenever a timer interrupt occurs (signaling quantum 
expiration), or when the running process voluntarily <;ives up the processor. 

Fi rst, the real-lime queue is examined. The threshold of the first process on the list is 
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dt'erement.ed hy tlu~. last. f iU:'l lllLlm used, and if the t.llr(.~shold goes to zero1 then Lhe process 
becomes the running process. If the threshold of that p rocess has not gone to zero, then the 
highest. priority proass is chosen from the non-real-time queue and it becomes the running 
process. 

To deu:rmine which quantum is u~: if the current process is a real-time process, then 
ito quantum is used without change. lf the current process was taken from the non-real-time 
queue, then the llrne·&lice given it is either its quantu •n, or the threshold of \he process on 
the head of the real-l.ime <1ueue- whichr.vcr is smaller. This p,uarantees t hat the process on 
the head of the real-time queue will be scheduled when its threshold goes to zero. 

Decrement the threshold of the most urgent proces.f. 
head(fastQueue).threshold : = head(fastQueue) .threshold - lastQuantum; 

IJetennine whether the most urgem process must be run yer. 
if (head(fas tQueue) .threshold == ZERO_THRESHOLD) 

The set of all real-time processes with this urgency must be run 110w. 

currProcess .- dequeue(fastQueue); 
lastQuantum := currProcess.quanturn; 
run () ; 

else 

end. 

There is still time umil a real-cime process mlLSt be nuz, 
so TIUI a non-real-time process. 
currProcess := dequeue (s lowQueue ); 
lastQuant um : = m.in ( currProcess. quan.tum, 

head(fastQueue) . t hreshold) ; 
run () ; 

Scheduling Decision Algorithm 
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Real-t ime processes lhat finish their runs before their quantum expires cMt rcliJl((Uish the 
processor voluntarily. When t hey do this. they are re-inserted to l.he real-time run queue for 
anoLher ru o when t.heir urgency indicates it. Thjs provides for }JCriodic proees.ses. 

W hen preempt.ive resched11ling (a timer intcrtu])l,) occurs, the currel)t process must be 
re-iuserted in ~he run queue. If the process is a non-real-time pcocess, then its priority is 
decreased and quantum is increased. as in a multile vel feedback queue[SJ, and the process 
is reinserted to tbe non-real-lime queue. lf the process is a rel\1-time iHOccss, then it did 
uol fiuish its run before its quantum expired, a11 d tlnis is an error c.ondit,ion. If the process 
should stil1 be ru n, then it is ru n for anotht~r quantum. Otherwise it is destroyed and its 
parent is notified . Whether Lo run a process once its deadline has passed is determined by 
a switch sct.ta.ble by t.he process i t.~cl.f. 

Rw1-T o-Completion . In order to guarantee t imely execution of some critical function , 
a process may indica~e that it is to rur; to complet.w n, or allowed t.o run without possibility 
of preen1pt.ion. l f the current process is to be run to complet.ion, then a ll interr uptis are 
turned off. including the tituer. \'\1teu ~he process voluntarily relinquishes the processor, 
then the scheduler det.ormines how much t.imo has p~sscd and reschedules accordin.gly. U a 
process Oagged for run-to-colnplet.iou generates an ex:ception. then the kernel regains control. 
II' the process has an error in it resulting irt au infiltitc loop, then tltc Ulachiuc will baug. 
R.un-to-comp)etiou mode is not Lo be used liglttly! 
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1.3.6 The Communications Manager 

Cornmunica.tion is a c.rucial c.omponenl. of mu1tiproce$s syste-ms . It makes uo seusc to 
• lrucluce an application as multiple processes if those processes have no way Lo iJILerad . 
Therefore, conunuuicatiou must be supported at a basic level in the CL,()CS system. Th•l 
Communications rvlanage1· supports t.hc abst.ta<:tion of interprocess communication , handling 
the low-level details of mapping p~ges from one pro<:ess to another, blocking processes and 
awakening them appropriately\ and copy-ing data to and from pror.es..,'s address spaces. 

Three basic communications models are used in nearly all systems: sig.nnls, mailboxes, 
~net shared memory. The CLOCS Communications :.\•fanager supports all three. 

Signals arc Lhe ch.ea.pesL <:Omrnunication method to implement. and use because a s ignal's 
occurrence carries tittle information wlt.h it. However, mote information eaJ) be sent than 
with UNIX signals . 

Delivering Signals. /1 process signals anolher p rocess by specifying wl1icb signal should 
be sen~ and to which process. The process can optionally provide a one word argument wltich 
will be passed Lo l.he ~arget process's signal hand ler; this allows signals to be used for p<~.'lsing 
short messages . ft. ha.'l been shown that small messages comprise the bulk of rnost interprocess 
c.otrununication traffic{2). 

Handling Signals. Processes respond to each s ig>tal by invoking /wndlerroutines. De­
fault hand lers exist; t heir actions range from doing nothing to immediate destTudion of 
the signaled process, depending on the s ignal. When a process-specified signal handler is 
in place and the associated s ignal occurs, the process imnwdintely j~mps to the ha-ndling 
rout.inc. Rand1et routine.-; remaiu ill place uJlti l explicitly removed. Most. signals can also be 
blocked without in voking a handler a t all. The dcfatllt ;tctions for the s ignals, and t he s ignal 
names, ~rc provided in a companion document[ll}. 

Masking Signals. Wh ile the t.argc• process is rccdving a signal, "cw or.cnrrcnccs of 
that sigual are i!,'llOred, with Lhe exception of the firSL occ urrence of such a signal. 

Mailboxes 

Mailboxes are t,he second uLility for interproc~ss communication. Messages sent to mailboxes 
are of static size, and Lbey must be explicitly retrieved, although multiple processes can share 
a single m~ilbox, and a number of messages ca-n he CJ!neued np iJ> the mai lbox. By specifying 
different mailbox parameters, various useful communications pa radigms can he reali?.ed. 



CLOGS OS Reference Documents- Gallmeistcr 24 

Sharing Mailboxes. The discipline for making mailboxes <<vaila.ble ~o other proct'S8Cs 
is tricky, so, for Lb~ sake of sill'lplicity and familiarity and because it works, C tOCS uses the 
same mecha.nism UNIX uses for connecting sockets(l5 .16]. 

Connecting to Mailboxes. Fol lowing the UN IX paradigm, a sen•e1· process first cre­
ates the mailbox, and then places it iu a specific systemwide location where ot-her processes 
can find it. l·'inally, it waits (blocks) for other processes to connect to the mailbox, at which 
Liu1e l.ltere is a circuiL and t.he t wo processes can communicate. '[''he creating process can 
also wait for more processes to connect to t he mailbox while still allowing conununication 
wilh and between the already-connected processes. 

Itnplementing Mailbox es . Ma-ilboxes e.xist in ker nel space and the tnessages stored 
in them <«e 1>rotccted by the kerneL When a process cre<•iCS a DHtilbox, it speci!ics all the 
altrlbut.es of l ite mall box: message and queue sizes, and two important behavioral parame­
ters: 

• Stickiness is a switcll detecmir~ iJtg whetber rnessages relrieved Crocra a mailbox are 
removed from the mailbox amomatically or not. If the mailbox is "s~icky" then mes­
sages must be cxplici~ly removed from th,;: mn ilbox; otherwise they are automatically 
re 1novecl as Lhey are received. 

• Dehavior .. on-Queue-Full is another sw itch which determines how the mailbox re­
sponds if a 1><ocess sends a me.'l$age to it while its m~;.%age queue is full. If the send ing 
is allowed, then the oldest message is delet-ed: otherwise, the send opera(ion fails. 

Once two processes arc connected through a mai lbox, they c<u> sertd and receive messages. 
A process can block unLil a message is sent to it, or il can simply check -whether a message 
is in the mailbox without blocking. 

Queue and Message Sizes. A mailbox can accepL a number of messag~s, defined 
ttL mailbox cr~ation thne a.s the queue size. The mailbox behavior when ~he queue flUs is 
determined by t he behavior-on-queue-full a ttribute of the mailbox. 

Messages to a particular ma.ilbox are all of the u niform si1.e specified when lhe mail box 
is created, The formaL of the message is not dictate-d by the ke rneL 

Different Pal'adigms for Mailbox-Dased CoUlDluuication. Mailboxes can be made 
with widely varying at~ribut.es: ll'ICSS(tg<: size, queue size, behavior-on-queue-full, and mailbox. 
st.lckiness. By varying tltese parameterl::i, tliiTerent. comrnunitations rnodeJs are supported: 
these patadign1.'S have been reported to be the comr:nunications methods most used in real­
ti me appUcations{J9,11]. 

Syuclu·onous Communication Without Data Loss. Synchronous communication 
witlwut data loss is implemented by setting qnene si~e eqnal to one, and by disallowing sends 
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to the ma.ilbo>r when the queue is full. Processes musl therefore retrieve any me~a-ge sent 
before a new one can be scu~. If a sy11chronous send-reply discipline is required, then two 
mailboxes can be used: one for the sends, :md t.he o<hcl· for replies. 

Asynchronous Conln Htn ir..ntion With Data Loss. Asynchronous cOitnl'lunic.a.tion 
witb data loss is accornplisbed by seiLing the queue size to one and allowing sends to full 
mailboxes. Thus, if a message is no1 retrieved fast enough, it ;,; overwriW:o by the next 
rnessagc. 

Asynclwonous Comnllmication Witbout Data Loss. When behavior-on-queue­
full disallows sends Lo full mailboxes , but t.be queue size is greater t.han one, t he mailbox 
supports asynchronous communicMion without d(•ta loss. This let.• a certain backlog of 
messages accumulate in the mailbox, beyond which i,he sends t.o the mailbox- [;til. 

Asynchronous Con1nn1n ication! Losing Aged Data. Asynchronous conununica,. 
tiou with loss of aged data is supported by making the queue size great.er than one and 
allowing sends to full mailboxes. The oldest dat.a will >hen be lost when t he ba.cklog (queue 
si0$e) is exceeded. 

The third communication p;u·adigm is shared memory. Shared memory pro,•ides Lhe higbeti• 
bandwidth of data transfer, since data is written instantly to the address space of the sh(>ring 
proces..o;cs. Mem.oty can be shared among an arbiLra,cily lars;e 11\UIIber of processes. 

Culls t o Sup,port Shar ed Memory. A proce.ss shares its memory with other processes 
by specifring pages of memory that are available to other processes, subject to access per­
missions. 'I'he segment, start ing pagl!., and number of pages to sbarc are givcu in the caU, and 
I he process is blocked until another process requesls to share l.he memory. By specifying the 
111 of t,he sltaring process, t he correct segment number , s~attiltg page, Humber of t>ages and 
access mode (read-only or read-write)! one prQcess requt~ts shared memory from another 
process. The fJages of memory c.au lJe mapped into bhe requesliug process':; address space 
al any locaLion that. is nol. a.l.re.ady occupied by pages of memory. 'lhe l'equesting process 
indicates the access mode it want.s for the pages: read-only or read-write. The request is 
granted or denied based on the permissions stated by the sharing process. 

Synchronizing Access t o Shared Metnory. Access to shared memory must be sycl­

chronized using some scheme, ::ouch as ~m\lphores o r mon it.ors. CLOCS mailboxes can be 
used to implement semaphores. In addition, the blocking behavior of calls through the Glue 
Code makes implemcniatiou of moltikors straightforward, using a sepru·•tc process for each 
monitor. 
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P ersistence of Sl.nu·ed M emory. Shared memory is persis~enL for the life of all of 
Ute $ha.l'ing processes - if the original process frees ~he pages of slmred memory, the shared 
tnen1ory still remains. unt.il the last process is done wilh it~ 
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1.4 Current and Future Work 

This section brieny summarizes ~he current work being done on the CLOGS kernel and 
machine , and speculates on future work that may be undertaken. 

1.4-1 Kernel Implementation 

T he kernel as specified is being implemented by a team of stttdcnts iu a sofl.watc cngint-cring 
clnss. The kemel is being bui lt. to 1·un on Sun Microsystemc; workstations under ut.~t rigs't 1 

which will allow Lhe function of lhe kernel lo be tested before a s imulator for t he CLOCS 
mcu:hiHe is buil~ . \Vflen ~the keru(d aud sirnulator arc fu lly eoost.rttdcd) context-switching 
and ot.ber benchmark programs will Ue ruu to u'le~u re the pcrformauce. of the entire system 
against commercially-a.vailabJe machines. l fsirnulation studies indicate merit, then a prot.o­
tn>e CLOCS r;ysLern will be built and used for furUlct cxpctirnentation. The kernel will be 
extended witb additional functional modules necessary for running actual applio.ttions and 
the hypotheses of !.he group will be lest.ed oul under real circumstances. 



Chapter 2 

Kernel Modules Specification 

2.1 Overview 

The CI.OCS project is investigating t.he ~radeoffs incurred in Oe$igni11g au architecture whose 
major objective is achieving cxtrr.:n1dy low context. switch t.imes. \•Ve have designed an archi· 
l.ecture, C LOCS (Computer wi th LOw Context Switch t ime), which ~ .•. n theoretically switch 
context.s at. a. rate orders of magniLude great.er tbau a Suu workstatkm or VA X minicomputer. 

The CLOGS architecture has made ~radeo!Ts in order to achieve such low context switch 
time-s. In parli'cnlnr, all operations are mernory-to--111emory; there is but. one register ~ and 
there is no speciali•ed computational capability that would require load ing/unloading of state 
information. The CL,O.CS machine will not provide optimal performance for single-threaded, 
computationally intensive applications, [t is more suited towards applications where event!> 
pro,~oke SU1all, fast responses. 

'l'he CLOGS architecture make$ iL possible to drastically reduce the overhead nccess~ry to 
run multitasking applications. Many of the tasks usually associated with coutex.t switching 
- sav iug aod restoring processor state, saving and restoring MM U state - have been distilled 
out of t.he arc:hit.er.ture. 

2.1.1 R .,,.)_ 'T'imP. "nd SrervP.r A pplict-ttions 

As part of this research ! we are looking at applications wb.ich will benefit from such a machine. 

Real-time applications are orten constructed as a large number of communicating pro-. 
tesses. If~ real-Lime sysLcn'l of tbjs natt.Jre is run on a uniprocessor tnaehine~ then cont~x• 
switching behavior becomes of crilical import..auce . 

Real-time applications , though, are only a special case of a more general cl= of problems 
which the CLOGS ~rchitecture can benefit. This is the class of systems which: 

2& 
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• at~ structured as a large number of active ptoeCSS<''> 

• require eAe.etive emulation of a multiprocessor 

The ,·alue of the '~large nurnbern of active processes is a ftLZZY one; mor~ relevant is 
the nwnbcr of processes requiring the processor pcx unit time . The larger the number of 
processes requiring t.he proc~ssor in an interval of time1 the higher Lhe frequency of conteXt. 
switching will be. The amoun~ of lime occupied by context switeh.ing rises; beyond some 
threshold, the processor is spending most of its lime simply moving from one process to 
auotller, 

Examples of other applicaLions thal might benefit from the cr,ocs archit.ecwre are: 

• rcuJ~tiutc systems 

• netwot k disk servers 

• (ommunir.ntlons sct·vers 

2.1.2 Operatin g System Required 

The CLOGS architecture is unique in the universe off computer arch itectu res. 'Ibe TMS9900 
is the closest th ing to it that we have found. 

An operating system provides the abstad.ion of a virtual machine to the programmer. As 
such, modern operating systems briug oub and make available th~ features of an archlt.eclure. 
Slllce .no modern architecture i.s oriented tQw~rds rapid context switching on a uniprocessor, 
we find no existing op•ratiug system that will effectively exploit t.he C LOGS architecture. 

We need an operMing system which provides rapid context-switching capability, M well 
as providing the programmability that current operAting systems alford. 

2.1.3 A Complete Programming System 

A programming system is composed of more than a machine and an operating system. 
L:tngu\lge compilel's, debuggers, Hnk .editors and a host of ptogr~n'lmi llg nl llidPS ;otr~ ;.tll 
required a.s we-ll. 

1'he CJ.OCS projecL has a cross-compiler for t.he C language, and work is proceeding on 
an assembler/link editor suite. However , these tools a re secondary, as the CLOGS machine 
is only a pa per architecture ai present. When it is built, as a s iu1ulator or as metal, a 
program development environmen t will he critical. !Jowever, this document addresses only 
UJC requirements for the operating system. 
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2.2 The CLOCS Operating System 

To achieve minimal context switdl t imes, the CLOGS arcltileclure has removed all possible 
state from t he proces.<;or. 

2.2.1 Mechanisn1s for Achieving R..'lpid Conte>..-t Switch Rates 

The CLOCS operating system will provide rapid colltcx"t switch rates in the same way: hy 
removing all possible state from the calculations ma de by the operating system . Alan Jay 
Smitb ('!), of Berkeley, has said that a.uy vrogram cau be made to ruu five times as fast, 
with the side effect of increasing the size of the program by" factor of five. This hyperbolic 
claim simply means tha-t algorithms can be made t.o tun faster by sloting previous results, 
and il.1 general not computing anything that's been computed before . 

'This discipline will hear fruit. ln lhe C LOGS operttting sy$tern. Switching context will 
be accomplished by just loading up a new process 10. Stale pertaining to processes will be 
stared for ll1e lifetime of t he pror.ess in a readily acc-essible place, with no special movement 
of data requjreJ to make anotber process acl.ive. 

2 .2.2 Policies for Achieving Rapid Context Switch Rates 

Simply by p[oviding a me.ch3nis-m to perform context switched rapidly, we ha\'e not guar­
ant.<:cd that t he opeu•ting system will switch context rapidly. Also requ ired arc policies t.o 
support t.he atlainmen l. of rapid conlexL switch rates. 

Specifically, pn,th lengths through tf;e kernel, and prcempt~bility of t.he kernel must be 
addressed. 

uNIX 1 is an extremely popular operating system among the scientific community. A number 
of groups have attempted t.o provide UNIX with real-time capabilities to further cater to the 
needs of data acquisition and process routrol applica.t,ions (VRTX , RTU, PQSIX R.eal-time). 
T he major hurd le encountered by t hese groups is the monolithic nature of tbe UNIX kernel. 
'l'his natu.re of operaling syl:items is uol specific to UNIX, and it 1nake-3 rapid response to 
events very hard. 

The csscutial problem is that. once io the kernel f<:>r any reason," path through the kernel 
must be traced without interrupt ion. or else ~he il>tegrit.y of the opcra!.iul) system can be 
compromised. T hese paU1 lengths can easily reqnire many milliseconds Lo t raverse . During 
tho$C tinu:.s, t.he kernel may not. be pre-empted by a process, no rnaLler what its priority. 

1 liNIX i!> a trademnrk o £ AT&.T Communi~;nc ion.~. 
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The solution to this ptoblcm, of caU(>O, is to mako pa(.h• through l,u.; kernel sLorL~r. 

or aHe rna threly, to segmenl the paths into r,omponen t ;ttomic operation:;, with resr.heduling 
checkpoints along the way. State~changiog operations musl be atomic: an operating system 
must perform tht"!se nctions swiftly to {Lchicvc retLl-tin)C rcspO.l'I.Siv<mcss. 

The CLO CS operat ing system kernel will perform small , rapid changes to t he state ohhe 
machine . In between these indivisible operat ions. rescheduling of t.he processor may occur. 
The kernel itself will alway$ be ready ~o ruJt, and '"''iH in fact be ruu .. vheu the urgency of 
r<!al-time t.asks paSS<"$. 

Specific Polidcs for CLOGS 

To ob tain rapid atomic operat.ions, we fil-st separate the functionality of the kernel into 
modules. Operations within the modules a re atomic; in passing from oue 111odu le to another, 
resc heduling may occut·. 

This policy, as a side effect , also perruits t he expansion of the operanllg system at a later 
date. 

The mod ules of the CLOCS kernel each implemen l a specific abs traction which is .,;senti a I 
to the operation of the machine. Three nlo<itllc~ ate s pecified t.o comp rise the innerrnost 
kernel of the CLOCS operaLiJig system: 

• Memory Mnnngcmcnt 

• Process Management. 

• Communication~ ~·r:m:.gcment.. 

l.n addit ion, a small a mount of glue is specilicd to hold the pieces of the opcral.ing system 
together. 
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2 .3 Memory Management 

(Abstt·action: Vir t ual M em ory) 

The Memory manager provide;; the interface to the CLOGS ~D'LU , Gi,-en the physical 
memory of t.he mad1ine., i( provides the abstraction <:>f virtu<~ I m•, mory to higher l•ycrs. 

Routines are prov ided t.o allocnte and free segments a.nd pages ou a peJ·proces~ b~is; an 
A!=iSitional routine aUows changes to the ~D'l U page control bits to support permissions a.nd 
to a llow processes to influence tile paging <oJgorithm. 

No checking of process access r ights 1s done a t lh is Ia yet - it is strictly mechanism for 
playing with the MMU. In fact, the memory manage r does nol know what a process is- it 
simp ly a...<:.Sooates memory wit.h process {l)s. 

l. a llo c .. t .. P a ges: 

• PAR,U.J£TWIS (tlrocessld, scgmcntNumbcr, .<tll?'litlg_pagc, J~.<<tnbe,·.of-IIO!Jcs) 

• RETURNS success_or_failu1'<; 

• EXECUTiON: May be executed by any process: the PID of the issuin!\ process 
becomes the proccssld parameter. 

• Allocates the give11 number of pages from the free page pool. Updates l.he ~ I M U 
for the proc.ss identified, so (hat virtua l pages, located in the given segment and 
s t"rting wit.h l.hc intlicabed starting page are mapped t hrough to t he oJiocated 
physical pages. 

• J?RROJIS: 

p,!f£.BADS£G: The proc.,;.< doesn 't have access to that scg1n<:ut. 

- FA !b.PAGSJNCfSE: One or more of the virtual pages .specified are already 
mapped through to physical pag<Js. 
FAI/,.NOMEMORY: Not enough physical memory to Satisfy lite request. 

• P.1R.AMETE!/S (processld. segmeni:Vumher . . <larling.page, 1lurnbe~'-of.page.<) 

• RETURNS succes.<.or. fatlure: 

• EXECUTTON: t\l ay be exe.cuted by any proress: t he PID of t he issuing process 
becomes t be proc.,;~ld parameter. 

• t'rees t he given number of pages from use by the process. Updates the MMU , 
in validating t.he appropriate virtual pages in the giv-.u segment. I f no other pro­
cesses are using Lhe pages of phys ic.a1 me;mory1 thr-n they are fr!>ed h~<'.k to the 
memory pooL F'reed pages are cleared. 

• ERRORS: 

f'AJLB;1DSEG: The process doesn 't have access to that segment. 

- FAIL.NOPA GES: One or more of the vir tual pages s pecified are a lready free. 

~- nllocnceSegmer1t: 
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• PA RAMETERS {pr·ocessl d) 

• RETURNS segmentNumber: 

• EXECUTfOIV: May be executed by any JPfOCCSS: the P ID or l.hc issuing procc;;;; 
becomes t h<:: proccssld parameter. 

• Allocates a segment t.hat is currently unused aud asslgms it.. l.o the specified process. 

• Cse:d in ctcating processc:::.~ among ot..lter chings. 

• f:)RIWRS: 

- FAIL NOMEMORY: No free segmeuc exists. 

1. frecSc gmc nt: 

• PARAMF.:TERS {pr'Ocessftl. scgmenfNum.ber) 

• 1/ETURNS succc;s_or_fai lure; 

• EXECUTI ON: May be executed by a.uy process: the PJD of c.he issuing process 
becomes Lh<: processld parameter.. 

• F'tees up the specified segment - the process can o.O longer use il . A side effecl, is 
the freciug of all pages curreutly in the segment. 

• ERIWRS: 

- FA IL BA DSEG: 1'be process does not have access to thac segn1'nc. 
- Fr!ILPflfMJ!ftl'SEG: The process is t rying to frco one of ics primary •cg-

ments. 

5. freeAJI: 

• PARAMETERS ( processld} 

• l lE1'Uii NS success.or·-failure; 

• EX ECUT!ON: M<ty be issued on ly by <he kernel. 

• l•'rees all segmen ts and rages a.~sociawd with the process identified . 

• ERRORS: 

- F;l!LBADND: No such process. 

6. m ap : 

• PARAMETERS (fromPtoccssld, jronrStartPage, loProeessfd, loS/arlf'a!Je. num-
ber_of_pages. mode) 

• R CTU RNS s-uccess-or. failure , 

• EXECUTION: May be issue<l 011ly by the k;;rnd. 

• Takes the number of physical pages, located at. s~arlingPagc in the spcei/1ed seg­
ment of the process named fromProcess JJ 1 and maps tl 1em into Lhe address space 
of the proc<>s> Jlamed to Process ld, $taning at t.oStarlPage. The pages are mapped 
in with the given access mode. 

i. gctPagcSta tus: 

• PARAMETERS ( processld, segmwtNumber, pageN1tmbcr) 

• 1/WJ'lf // NS pageStals: 
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• t:X !;'CUT/ON: ~l ay be executed by any process: the PID of the issuin~; proces.~ 
becomes the processld parameter. 

• Returns Ll1e penni.ssion and page-control b ils assoda.l..-ecl witb t.hjs virtual page of 
the speci fied process. 

• ERRORS: 

FA! L..BADPID: No such p1·occss. 

8. setP ageSt a t u s : 

• PARA. J\fETERS (T,nu:cssld, s~gmcntNumbcr1 J'('gtNtwrbcr·, rwycSl(lls) 

• RETURNS succcss. M'.failure; 

• EXECUTION: May be execut.ed by auy process: the P ID of l.he issuing process 
hccomcs the J)ro(.cs<ld par~<mot•;r. 

• Set~ the page tont,rol hits for the $pedfied virt,t~:tl pagt'! of t.he process to the 
contents of pageStats. 

• ERRORS: 

FAIJ,.J.IAUPID: No such process. 

FAIL.RA DSTATS: Invalid stats structure. 

FAIL..J3J\ OPAGE: The specified process docs nol hav•' access to the specified 
page. 

FAlL.BADSf>G~a;we: The specified process docs not have access to Lhe 
specified segment. 
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2.4 Process Management 

(Abstraction: Processes as Sch cdu lablc Entities} 

The process rnau~rer mau i pulaw.~ virlua.l pages~ assoda.Le<.l wi th proce~:; IDs, anJ pro­
vi,ft>.< t.h•: ab-~tr'let.io\1 of se.hcdulablc processes. The process managc1· has rcspon,ibility for 
the scheduling of the processor, as well as for maintaining pro.c.ess permissions. 

In rhis module, we cre:\t~ t.he abstraction of a proc.es.o:: ~ and we talk nbout proc:e~ses 
doing things to other processes. lJowever: notions o f communicating with o{!her processes 
nre avoided . That is the t~sponsibilit.y of t.he Gomr:nunicat.ions ).·tanager. K.G., we have a 
blocking mechani-sm here 1 but. not. an evenl.--!:iignalliu,g mechani~m. 

In tlds module, the not ions of pernussions and Ul Os (user l Os) ate introduced. User IDs 
corrcspo!ld :;im()ly to number~ attached to each process. Pennissions •:Lrc granted or den ied 
uascd OJ\ >trict matching of UlOs. Two processes with identical UJDs C"ll do Lhiogs to each 
orhct. Processes wiU.1 uou-irlent.icaJ UTOs r.annot do things to e:\ch other . 

A• in UNIX, process bierarch ics cxisl. A procoess that creates ot.hcr procr.:;scs is the 
parc:nL of those proceSS<$. Parcnt..c; can s:end signals1 etc.1 to descendJ.lnt. processes even ir 
t hose proces'""' have sw itched offective user lOs. 

U a parent process is destroyed , Lhe childreu can continue. They ar.e signall!!cl (:;cc Lbc 
coJlllll\lllication• mana.get specification}, but Llu•t signal c~n be ignotcd . 

J . c rcatcProccss: 

• PARA ;\1/ FJTERS (iSt::gmentNtanber, oSegr't'untNumbe.r. entry Point, a·rgument. pri­
ortlg, Y.rgencg) 

• RETURNS procesud 

• F;X.BCVTfON: May be executed by ••ny p roce-ss: the created process inherits the 
user TO of the cl'eatiug process. 

• Creates a new process whose primary 1seg ancl O.seg arc t.lte specified ones . B..c­
turns the 1D of the' new pro(c:;s. 

• entry Point may be set to the pseurlovalue J•:NTH.Y YOitK, in which case the 
new process is an idenlicaJ copy of t1te ca1ling: process; the caJling pror..-~s..;; is 
returned the ideut..ity of t.h(! created process, whil~ the created process is returned 
SUCCESS. 

• This rout.in c suffices to cre-ate pro<:esses distinct from tl•e creaLiug process (a 1 Ia, 
fork/exec), to create identical but distinct processes (a' I~' foJ·k), and to create 
identical, uonc.lisduct. prcc~SS<..'S (light.wciglu processes~ for which t.here is no tJNl X 
analogue) . 

• ERRORS: 

FAJL_BADSEG: T.hooe segments aren't availallle. 
FA fL..BADFORI<: cntryPoi.ut. was El\'I'RY . FORK. out the segmcnr,s s peci­
fied are not the primary segments of the calliJJg process. 
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2.. destroy Process: 

• PARAMETERS (precessld) 

• RETURNS success_or_fa!lure 

• EXECUTION: May be executed by any process; The process id of Ule calling 
proc·ess becom.es the proces:;ld parameter to i.he call. 

• Hemoves t.he proeess from scheduling consideration . Frees a11 the memory in use 
by the process. Makes il.s segments available . Updates Lhclln•IU, iuvalidatiug I.Lc 
approprin:te virtu al entries. If no other processes are using the pages/segments of 
memory, then they are freed h•.ck to the m emory pool. 

• ERRORS: 

- FAJL..BADPID: No such process. 

3. sctuid: 

• P,1RAMETERS (p•·oassftl, Uid} 

• RETURNS succus_or_failure 

• EXECUTION: Can ouly be cxccutcJ by the kcrucl. 

• Sets l.he eAecl.i ve user lD of the process. Afterwards, the process will have all 
access rights of that user. 

• F.:RRORS: 

- None as yet. 

4. s witchUid: 

• P!IJIAME7'E/IS (process/d) 

• /IETU/1 NS succe.$.$_,r_failure 

• EX£C(j1'JON: Ml•Y be executed by any process: the process lD becomes the 
proces~ I d param1~t.<:'r . 

• After a call to .<etuid(}, two effective us<;r ll)s exist for the process . . nwtch.Uid 
allows t he process to switch back and fort h between the two lDs. This allows 
setting USer [0 to a privileged lfiOde for -a particular opcratjon, tben setting it 
botck nfler t he operal.ion , to decrea..o;;e security holes. 

• f:RROJI.S: 

FAIL-NOALTE!iNATE: No alternate effecrive user lD exist-" fm the pl'Or.es.,. 

5. chauge Priority: 

• PARAMETERS (processld, newl'riorily) 

• RETURNS oillPnor'ity 

• "X ECUT[ON: May be executed by auy process. 

• The specified proct:ss' f)rioriiy js changed LO t.hc new value. The old value Js 
returned. 

• ERRORS: 

- FJl{[,..BADP!D: No sucli process. 
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FAIL.PERMISSION: The sending proces. does no~ have pemu,.ion L<> change 
the othe1· process' priority. 

6. chaugeQuanttun: 

• PilRAMW/'1<;/{S (processld, uc>u{{lltmlum) 

• RI:N'URNS old({uantvm 

• EXECUTIOJ\: ~'lay be executed l>y any process . 

• The spcciJied proccS;S) '-l'HlOl.unl (tim...:: sli<:.c for running the ~>rO<.:C:;S) )s chaugcd lO 

lhe new value. 'l'he old value is returned. 

• EIW0/1S: 

- F.4lLJJADPTD: No such process. 

- P'Ali-,PRHMJSSJON:The sending process does not have permission to change 
the other process' QIJontuln. 

7. ch!ulgeUrgency: 

• I'll RA Mt:TEI/.S (J>mce.ssfd, newl!rgency) 

• REJ'UilNS altlC!rgeflcy 

• EXECUTION: May be executed by any proces.•. 

• The specified proce!'is' urgency ( time within which the process must be run) is 
~h-ange(l co the new vt1lu<:. The old val\IC is tctntncd. 

• ERRORS: 

- Pil!L_RADPIT): No sueh procc-<s. 

FA /LYERMISSION: The sending proc- docs uot have pcrmis.ion tO chaugc 
t he ot her proce::;s• urgeucy. 

8. p roccssStats: 

• PARAMETERS (/frocessld) 

• RETURNS pr·ocessGon1ro/Biock 

• I~XBClJTIOI\': May h~ executed hy any prow;,<. 

• St.at.ist.ics about the proces...~ are 1·et.urned, in<::luding: priority, urgency, quan t.um, 
scheduling state. memory statistics, and so for th . 

• EJIJIOJIS: 

FJlJL_fJADPJD: ~o such pron.,;s. 

- P'A 1/.,._P};RAfiS'SlON: The sending process does not. have permission to see 
the ot.her process' st.at.islics. 

9. getProcessid: 

• PARAMETERS() 

• RETURNS processld 

• l{etu rns I. he process I D of the issuing pro c!'Ss. 

• 1:: llfl 0 liS: 

- Nonc 1 as yet . 
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10. unBlock: 

• PARA M 1-;TEnS (cookie) 

• RSTU RNS $ur:ccss_or_foillt1~ 

• EXECUTION: :\'lay be executed only by the kernel. 

• \•Vakes up a.ll process waltmg on the particular cookie. 

• ERRORS: 
- None, a.~ yet. 

11. s leep: 

• PARAMETERS (processld, hme) 

• RETURNS Sllccqs_or_[llilurc 

• EXECUTION: ~1ay be executed by any process. Only the kernel may put other 
pro<'CSSCS t,o s lo)Cp. User l~,.o~esso-< c~n only put t hemselves to s leep. For all but 
the kernel, t.he I.D of the call iJig proc<:•S IIIUSt both<) proccssld pnram~tcr. 

• The process is sent into the blocked slate for the specilkd time. which is a number 
of clock Licks. The cl<1psing of this interv.ul is considered an even t like any other 
evenL a process may block on , 

• SRRORS: 
- F.41L I'ERMISSfON: The process does not have permission to pul another 

process w sleep. 

12. b lockOt•W is<J : 

• PARAM£1'/:JRS (pr•cessld, cookies) 

o RETUflN:> success_or_failur·e 

• EXECUTION: Ma.y ouly be •~'ecuteJ by tbe kernel. 

• Sends the process into the blocked stnte, awaiting unnlock()ing of one or more of 
i.he specified eve·nLs. 

• Note: if the process is already bloc ked on the OR of some evenl:5, these eveul.::i 
will be added Lo l he li..t . If the proc.s~ i,; already blocked 011 t,hc AND of somo) 
cvent.s , then t.he call will fail. 

• ERRORS: 

- FAILBAD!'JD: No such 1>roccss. 
FAIL-4NDWISE: Proc.css is waiti• •g on th~ A~[) of some events. 

1~ . h lock AndWisc: 

• PA !/AM B?'EJ/:> (processi<l. cool:rts) 

• R&TIJR.NS $l<cceS$-Or-failure 

o F.XECUTJON: ,\'lay only be c>xccu.Lcd by the kerneL 

• Sends Lite process into tb~ blo~kcd stat.e, <>wailing un lllock()ing of all of the spec­
ified cook ies. 

• 1\'ote: if t be process is a lready blocked on the AN l} of some cookie,;, these events 
will be added t.o the l ist. If Lhe process is already blocked on t.he O R of some 
r.ookies, then the call will fail. 
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• ERRORS: 

- F.4 f£. RA DPTD: No such prOC'-'<S-

- FAIL. ORWfSE: Process is waitiug ou lbe OR of some cvcms. 
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2.5 Communications Management 

(Abstractiou: colntuunicating p r occssc!' via a nuu1hcr of cmuJnunicat.ions paradigm s) 

There are four means of ioterprocess cornmunicallott which t he CLOCS operating system 
suppor ts: intcrptoecss sigtMiling, events~ message p<~ossing1 and shared memory. 

fntcrprocess signalling consists of the ability for • process to send a signal to :mother 
process. Unlike U.'I IX signals, s ignal handlers are passed a pMameter of type s ignal Message, 
which cau couvey ex Lra iuformatiou. Signal!::i may result iu « uuml>cr of outcouu.;:;; 

1. Nothiug: a signal C<UI l>c ignored by a process. 

2. T~rn1in:)tion: a signal can result in lhe immediate termination of the process. 

:L Hn.nd le r n.esponse: a -!=!ignal r.fln result in a part.iculal' action . 

The routines supporting this ability are signal(), and handleSigMI(). 

Mt..~~oge pa.sl:iing allow~ rn.e:;sagcs o( fLxcd size to be p<:~sscd among proccssc.~. McssagC's (Lre 

sent by a process executing t he send Message() system call, wh ich results in a message being 
deposited in a. mailbox. Processes c~n wait. rot mes~ages to appear in ma.ilboxes by nse or 
the awaitMessage() call: they can block awaiting receipt ol' a message, or they can check for 
lllcssagcs without blocking. Mailboxes are created by the mailboxCrcatc() call. A nMilbox is 
bouud lo a syst,em-wide loca.Lion by the mailbox Ui nd() routine; a process may obtain accet\.S 
t.o a lnailhox by using the ma.Hbox..:\cce~() Ctlll. For sueh a call t.n h<: sueees.;;ful, t,h(: r.re!l.tor 
and binder ofthe mailbox (a single process). must currently be executing a. mailboxAccept() 
call. Comrnunieation is omnidirectional; any proces..<: w3iting on a mailbox may receive any 
rnc:;sage deposited in Ltle mailbox. Tiowever, if a maiH.>ox is created sLlcky1 so Lhe messages 
temaiu in it UllLil removed, then only oue process can access t he message at a l.ime. Messages 
arc 1nadc availi•blc to processes on a first.-comc, first-served basis; maHboxes can b.e r.re<)ted, 
os well, so thaL messages remain in th•> mailbox until explicil.ly removed by a process. All 
proces~es using a mailbox are peer::;; any process can send to the mailbo.,'\; any c:m 1·e;;Ld from 
lt1 aod ttny can remove m~ssag:es from it2 . Message$; of zero length may be specified as we1!; 
I his allows. mailboxes l.o he u.sed BS" semaphores. 

'fhc finaJ fol'ln of intcrproccss commu nication is shared memory. Ca.lls aJiow a process to 
make it.s Jnem.ory available t.o o~hcr processes; an arbitrat y number of processes may share 
a l'~nge of m,arnory S)'ll<'hrrmb:il\i.inn of ~C'.rR:~s if-' t.h~ re~pnnsihilit y of i.he f \r()<".4~S~C.:!;. ;uu1 i~il.n 

easily be clone using a ma.ilbox as a semaphore: gnarding t he entire range of me-mory. 

I. signal: 

• PARAMETERS (si.qtw/Numbcr, processfd} 

• llE'fUfiNS success_or_fatlurc 

2Di~ti•.mn)il,y ~.,r m~~r.ge~ fu ishL be better (or sornc applications, but breaks 1.hc u.:~e of .m.,.mx>>.:es O).S 

~~maphl>res. 
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• EXECUTTON: M"Y be executed by any proce'~-

• Like the IJI\ IX kill() mechanism , t.his ro11tine s••nds t.he sp<,ciAoo signal to the 
specified process. 

• ERRORS: 

fi'A//.,_BADP/1): No such process. 

- FAJ[,_PERkiiSSfON: Permission to s ignal t hat process was denied. 

2. s ign a!.PGrou p : 

• PARAM5TERS {stgna/Number, proce.~sGroup) 

• R E:TU RNS Stt<Cf. .<S_or-failuro 

• F:XF:CUTfON: ~·Jay be executed by MY ]J r<>cess. 

• Like the UN IX killpg() mechanism, this coutine scnJs the spccificJ sigm>l to all 
processes in the specifit!d process group. 

• &R RORS: 

- F'AIL_BADGROUP: No such group . 
- FAILPERMISSJON: Pcrmis;;ion to signal nt least one process in t he group 

w;tS dcn i~d 1 h11~ed <m UID-hased per r:nissions. 

3. luuulleSigual: 

• PARAMETERS {proccssld, StgnaiN<trnl•t •·. h<u><llcrRnui.ne) 

• RETURNS success_or_failu"· 

• EXECUTION: May be ~xocutcd hy fln)" pro<ess. Tho identity of t.he process 
executing the call becomes the processlcl parameter. 

• Analogous to lhe U I\ IX signal() call, this rout.ine specifies that, upon receip~ of 
Lhc named signal , eont.rol silould pass to t.be ro<Hittc hnndlr.r ll.outine. 

• 'I"hrec pscudoroutines nre allowed u:; well: 

SIG_l)lE specifics th~ signal sho11 ld k.ill lhe pror.~ss. 

- SIGJ CN specifies t he signal silould be ignored . 
S!CJ)EFAULT specifie. t he sigu~l should be IHutdkd in the dr;fa<ilt way 
(eithe1· SIG.DJf; or STGJGN, depending on Lhe signal). 

• Signal hand lers , as in 4.2BSD UN IX, a re retained unl.il explicitly changed. 

• ERRORS: 

FAIL-BA D PI D: No such p rocess. 
- FA fL_IlADSIC: No s uch S-ign~·d . 

• PARAMETERS (u>essagcSi:e.qucncSi:c.stkkme . .s) 

• RETURNS m«ilbudd 

• F.XECUTJON: May be executed by any process. 

• Creates a milllbox. The maiJbox is not. usnbl.;: until it it is bouHd to a systeln-wide 
locat ion using mailboxOind(). 

• Messages deposited in Lhe mailbox will be of fixed size me,sageSJze. 
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• Up to lf'U<utSizt messages may be deposiL ed before buffers are exh~usted. 

• If t he stickmess parameter is ~'IAILilOX.STJCKY , then messages sent to the 
mililbox are retained in t.hc m{tilhox unt.il n ptocc~;s explicitly rernoves lhem. If 
the parameter is .\1:\.ILDOX..NO:-IST!CKY, lheu mt>ssages arc rcrnO\'eJ froou l.hc 
mailbox as they arc received by processes. 

• lf t he rctai11 parameter is TRUE, then sending messages oo t.hal mailbox when 
thf! qucu~ is full will not be successful. If the parame ter is PALS E, then sending 
messages Lo a. mailbox with a full queue wlU result iu Lhe oldest Jncssa:gc being 
delci.NL 

• F-RROR.S: 

FAfL.S!ZFiTOOHiG: Message <ize specified is l.oo la rge. 

FAIL. QUEUETOOBJG: Queue. s ize s pecified is too large. 

- FAIL. NOMEMORY: Out of physic.al memory. 

• moalog11c of UNIX Md·ct(}. 

5. mailboxBind: 

• PARA1lfETERS (mailbufd, systemAdilrcss) 

• RETURNS success.or.failurc 

• EXECUTION: May be execute.d by auy o>roct-ss. 

• Binds Lhe mailbox to the specified system address. 

• ERRORS: 

- FAIL. PERMISSION: :\.uothcr mailbox has<drcady been bol\nd to that system­
wide. l o~:~..t.ion. 

FAIL.BADMA fLBOX: Tltc sp~cificd mailbox is invalid. 

• analogue of UNIX bi~t<l{). 

t). onaiiBoxAccept:: 

• PA ll.4 M t:1HilS (process/d. mailboxi<l, flags) 

• Rb'1'U RNS Sltccess. or. failur·e 

• F:Xi::CUTJON: May be executed by any process. The identity of t he proc~ss 
executing the ~all becomes the processld parameter. 

• Tloe proces& is l, locked uutil som~ other p rocess executes a mailbox Access() cn.ll, 
at which point the p1·ocesses both hn.ve access to !.he mailbox. 

• II Lhc call spccif\,~s MAfLBOX.UNIQU~, then the mailbox will be duplicated 
'\'."hen a connection is made, and communications will proceed lhrOU$,h th:..t rnail­
boxt leaving Lhe original mailbox ft~c to nccept more connections. 

• ERRORS: 

- FA/LfJAfJPlfJ: No such process. 

FA I L.P ERM ISS TON: A noLher mai lbox has already been bound to t.hat sy•tem­
wide locaLiou. 

FA I£.BADM A I [,B OX: The specified mailbox is invalid. 

• "''afoguc <t/ UNIX lister>(}jaccept(). 
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7. rnailboxA ccess: 

• PARAMETERS (processld, systcmAddress) 

• JIE1'URNS mailbox!d 

• EXECU7'!0N: ~·lay be executed by any process. The identity of lhe process 
~xccutiug the call becomes the processld parameter. 

• AHows the specified proc~B: accc...-c;s lO Lt1c J:nailbox which i~ a~c(~siblc through tllc 
specified system add rcss. 

• E:RR.OJIS: 

- FAJLJJADPID: No such process. 

- FA I '-.Till OMA I f,EOX: Xo mailbox is currently bound to l.he system add ress. 
FAILCONNREFUSED: Conncctio11 <Cfuscd by the creator of Lhe mailbox. 

• analog"e of UNIX catrn cct(). 

S. scn<.lMessage: 

• PARlu~fETERS (ptoccssld, mailborld, message) 

• RETURNS succcss_c~r_furiiJJ'C 

• F:X/!CUTION: ~lay br. executed by any process. T hr. ident.ity of the process 
execut ing the call becomes Lhe processld pa rameter. 

• Sends the included message from the nrlmed proces~ Lo Lhe mailbox. The process 
nmst have bomrd the mailbox to a system location carliet·. 

• ERRORS: 
- f'A/L_BilDMAILBOX: The speciHed pro<.ess hM not plac.ed the mailbox in 

a connected sl,a\c by either the ma.ilboxAcccpt() or the maillroxAcccss() c1rll. 

- F.<l/LBAJJPIJJ: :'>io such process. 

• anaJogu< of (!NIX send(). 

-9 . awaitMessage: 

• PA RAMETER.S (1>roce.<sfd, mailbodtf, m~.~S09t11uffer, limem<t) 

• RETURNS .$ttcr.ess_or_Ja.iltl1Y.. 

• EX f;CIJ1'10N: May be executed by any process. 

• The specified process is hlocked until a message is senl 1.<> one or the speciiied 
mailboxes, or unt.iJ ~he Litrteout period is .exceeded. All specified rn<tilboxes must 
have heen bound lo system-wide locations ear lier. 

• ERRORS: 
- FATLBADMAILBOX: The specified process ha.• not bound some of t he mail­

boxes tosyst.em-wide JocMions by either the bind Mailbox() or the atta.chMail­
box() call. 

- FA 1/:_BA DPID: No sucb process. 
- F.4JLTIMEOUT: No message was received within the timeout period. 

• a»a logue of UNIX rr.cu(GlOCI<). 

I 0. r.hP.ckMcssagc: 
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• PA R A MF.:TERS (p•·ocessfll , mail&o:r:Jd, mt$Sa?cBujJcT) 

• RETURNS Buccess_or_failun; 

• EXECUTION: i\lay bo executed by any process. 

• The specified process retrieves a lncssage if one is pre:;cnL in any of the maill>o.xe1:;; 
the process does not block, though. All spec1fied mailboxes nn,.t, have been bound 
LO system .. wide locations earlier. 

• ERRORS: 

- FA f£_BADMAJ LBOJ\: The specified p ro<:eSS has IIOL b0u11d some of the mail­
boxes to system-wide locations by .:ithcr the bindMailbox() or the attachMail­
box() call 

- FAILBADPID: l'io sucb process. 

FA {[,_NO MESSA G SS: No "'''"'"g~s wore pro'S<'IIL. 

• analog•'" of li:V!X nctJ(NON.HGOCf<). 

11. sh~reMemory : 

• P;LRAMETERS (Ju-occssJd. scgment/'iumlicr. pagcNumbcr·. '"""bcrO[Pages, pcr­
m-,$sious) 

• RR'/'U JtNS .sttcce.ss.or_fadure 

• EXECUTION: Can be executed by any t>ro<.css : the TD of th<: process excmting 
the c.~ It provid(s the proces.<ld parameter. 

• ~lakes a range of memory available for shar ing by other processes. The process 
<los not block, buL rather, is sent a signal whClt the memory is actur;Uy shared 
with anothe1· prO<'e$S. 

• Permissions ind ude read, write1 and sha.re, ror each of processes in I. he sam e group, 
and for all other proccss.s. 

• If a page of memory is being suarcd by multipk processes, t hen the page is 11ot 
released until the I<ISt procc.s.~ sharing the memory relenses the page. 

• T'hc p1·ocess bloeks nntil nnoLhcr process l'Cquests access to tltc shared .:rrc:L 

• .ERRORS: 

- FAJ&. IJ,L D P/fJ: Ko such process. 

FAJL_A T,REA DY' Some of the pages s pecified are already being shared. 
- FAJLJJA DSEGMENT: The process does not have access to that segrneul .. 

J·i \ 1 L_IJ A D J>i\ G E: 'I" he process does. not have access to one or more of t.bose 
rages. 
FAILINVJ!UlJ: The perrruSS!OOS gtvcn are bogus. 

12. maplnMewory: 

• P.4RAMETBRS {r>roces.<ld, S01lrceProcess. sourceScg, sourcePagc, la~qctSeg. lar­
gelPage. ~tumbet·OfPages. <>cccssMode) 

• RETURNS succes.<_ot·-fa:lure 

• EXECUTION: Cnn be executed by any process: lhe ID of the ptO<'f'SS c"xecnting 
t he call provides the processld paratnctei'. 
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• Th,, process requests to m~p I he memory of the target prooess, in the specified 
segment and page, in to its own add ress spac.e at the specified location. Permission 
)s requt!sted lo read or write. 

• Once a process has mapped iu another page's memory, it cau rclcMe tho memory 
hy freeing it a.~ if 1 ho memory belonged to the process. 

• ERRORS: 

FAILPERMISSJON: Pcrrnission denied . 

FAl/,-4LREADY:ThO!;c pages arc al ready pce"'"'t iu t.hc procc-s<. 

2.6 Glue Code 

Ab$h'tu:Jion: ObJet1s 

T ho glue code is the lowest. level of the kernel coJe. It. is the rnem1s by which the different 
modules comrnuuicaie wit h each other. The glue code pcrfol·ms tlu~ ((.){low in-g func~ions: 

• Handle in l.ermodule calls and lraps 

• Support process use of •mt.ry points 

• Determine, at ea,c.h inlennodule call. whet her tltc calling process can mak~ th~ pn.rtie­
ulac call. 

• Allow rescheduling a.ncl preemption. 

2 .6.1 Intcrmodule Communication 

lntermodulc communication is done Lhrough traps (system calLs}. The ~ailing pro~.ess spec. 
ifics Lhc t~rget rro~ess a·nd the o'ntry point and traps into the glue code. The glue code 
dclermines whether the call can be made by thai process. [ f iL can, then the glue code 
~icnply coutext ... S\~t'itdtcs to that plac<:. If tltc call camlot be made, t.hen the glue code ret.urns 
an error to the c;Jiting proce~s. 

Pro<:ess<'s make their ent1·y points avaiable to all processes by notifying the glue code via 
tho entr'J call t.o l.be glue code. 

2.6.2 T 1·aps and I nterrupts 

The glue code handles some traps (its own system call traps and intctmodule communication 
traps): but the majority of tmps and inle rrup t.s will vector directly to t.he. appropriate ban· 
d lcr. For insta nce, t imer interru pts vector directly jnt.o t he process Jni:tna.ger for reschedu ling 
service. 
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'l'he glue code permits kernel preemption impliciLiy because iL oflen runs with iCilerrupls 
enabled. lntcrrtlf)ts arc disabled when tile glue code i,; processing its owu service c<Llls (entry, 
1mEntr-y1 tm.Process); ill aH olher times inte.nupts ca.n occu1' . Spec.ific;\Hy, on calls from one 
kernel ltiOdule t.o a.not.her, interrupt~ can occur. l<ernel modules t.hems-clves always run wil.h 
interrupts disabled. 

\Vhen i.\n int~trnpt is to ve<:tor di1·ecLiy to" user r-outine, l,he glue code may well note the 
fact and adjust schedu ling parameters accordingly- especiaUy if the dat.a. structures perm.it 
coni::itant .. tilnc update::;. 

as well. a specia l calling paradigm should be adopted, wherein the process ID of the 
culling process is made an implicit pararnct.cr Lo each e xtetn:tlly available call. 'I'Itis fadlilates 
interp ror..ess commun ication by makiog suie Lilal Llle information i~ a lway:; 1>r~cut , 

2.6.3 Gl ue Code Calls 

• entry: 

- l'AiiAME'l'EJIS {entrgl-'oml, enlryNumbcr, permrssion} 

RETURNS S<~cctss.or.fail"r' 

- EXECUTION: May be cxccut~d l>y uny process. 

-
1[be entryPoinl , an address in the text space of the proce.ss, ~made a valid entry 
r'oinl1 for inlermodulc cornrnunication. It is a.dd rc:;sed wit.h entry:\umber. '!'he 
permission parameter is used t.o specify wllether a.uy procc~s <.:au call this rouliHC-! 
or whether it is limited to just the kernel. Only t-he kernel cau limit il<; enl,ry 
points. 

l?RROIIS: 

* FAILPER:\IISSJON: The ptocess tried t.o limit <•<cess to the entry point 
illega lly. 

w fi\ JD.A 1.-Ri'JA /J \':This is an entry point already (the entry Number is already 
in usc}. 

• unEntry: 

PARA M E'f'ERS (enlr·yN umber) 

RETURNS succes.-:.<ir'.foilure 

EXECUTION: \lay be executed by any procc••· 

- Tht! sp~cificd <mLry poi.ut. is rTH\<.l~ ln v(llid fiJi. n.n entry point ror this process. 

t:;RROIIS: 

• F.4IL.ALREADY: Tbc entry point i.• alren.dy invalid. 

• unrl'OCess: 

PARAMETERS {J>rqcessld) 

- RETURNS SIICCe.<s .. or.failure 

r::a:CUTfON: May be executed by any process. If the process is not a keruel 
proce-..!;S. theu its fD 1nust match t,he proces.~ld parameter. 
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- Removes all ~ulry poiuls for Lbe specified process. 

• l·il!L_Pf:RMISSION: A non-kcrnd proc•~s tried ~o iuvulidaLe another pr<>­
ccss1 en~ry points. 



Chapter 3 

Scheduling: Algorithms and 
Ideas 

3.1 Requirements 

The scheduling algorithm must meet slip;htly differen t requirements from other. more stnn· 
dard scheduling algorithms. 

3.1.1 Fine Granularity of Scheduling 

One objective of the scheduling algorithm is to allow process ..scheduling t.o occur with a finer 
grauulnrity tiHtn normal. 

3.1.2 Fait· M ult iprogramming 

Pctrt of til<' re:(l.$011 for desiring finer grarmlnrity of scheduling is to allow reallime processes t.o 
run at t he appropriate ti me, while still Jetting IIOil·realti•lle vroccsscs get to the processor. 

3.2 Definition of Process 

Many definitions of processes have heen proposed. We do uol heed to get in volved in the 
pllilosophical issues of what a process exactly is. 

Lu this docurncnt, the terms "process:1' anti ''task'• ct.te used int(""!rchangeably. 

48 
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:3.2.1 T he "Schedulable Entity" 

For the purposes of this document., we refe.r lo a process as ~<~he scheduh\ble enlily1
', after 

Deitel[7J. A process is defined simply as one of the lh ings we are scheduling. Specifically, 
pr.oc<.'SS is deuoted by a dala st ruct.u re caJled a prot(::i'~ coutrol b lock 1 or prb. 

Processes, <'S sche(lul~hle en I ities~ have a numher of ruLI.r ibuies that control exactly bow Lhey 
ore scheduled . 

• Pt·iority: Ea.cb process hW> a priorll,y, rcftcctillg its im!)Ottancc tl~la1,h•c tool her pro­
cesses, 

• Urgmu~y: Each process also has an urgency~ which determines l•ow quickly it. lUU:>t. 

be ruu 3fter becoming ready. A realtime process is denoted by l,he facl t.ha1. it has a 
urgen-cy thai l$ g.r~(l.t er lhan 1-ero. Non-renkin1e tasks have urgency zero. 

• Interaction of f>riority and Urgency: Priofity and nrgeHcy arc not trcat~O exartly 
o rtbogOHal}y. Urgcucy ~a.kes prctedt:JlCC. P1·ocesst""~ requiring urgent execution simply 
musl be run. \Vheu no process' urgeucy denltmds running, then Lhe priorities ~re 
examined to see which t.a.sk is. the most imporbant. 

1t i~ not de<'r wlv:J.hcr non-r('l\ltimc tasks shou ld recelve prererentia.l t,reat.rnent when 
~cheduling by priorily. Thjs schedul ing algor ith m will srhedule non-reaJtime tasks 
preiCrentially; the reaJtime processes will be scheduled by priod ty (l Jl)y wbell no non­
realti me tasks <ttC ready to run. 

• Quanta: Bach process also has a quantum associated wit!t it. Thi>; determines how 
long the 1noc.css m<L,Y be rmt fot, before lhc opc:r at, ing syst.em will in Lctru pt aocl re:;ched­
ule. 

A non-realt.i rne task's quantum is varied according to its scheduling behavior , as de­
scribed below. A realtime task's quantum is va.ried as well, but cu a di!f~rent way. T lo<: 
.schcd~Jlcr w~ntl1 t<> provide ~s m uch Lime as t.he realtime process needs to do its job. 
T he quaot urn is interprel.etl as tbe esLimateJ nm. l,ime of a realt.imc ~)toc.:ss . 

• Thresltold : Uq)<:Hcy and qua.ntun"' are v:ilucs l.ha l. don ' t chnnge as the process mo\~es 
towards ~cheduling. A rcalUnLc procc:-;s, when it bctomcs rcady1 should be run in 
(urgenc.y- quantum) clock ticks. This v11.lne 1s stored as tbe process' threshold. The 
tbreshold is the value t hat is actually varied whil" the process is enqueued for the 
processor. \Vhen t he threshold goes 1,o zero, then the process must run. 

All LilllC·rdcLtt::d <Lllantitlcs1 induding urgency~ quan Lum, and lbresho ld 1 are slored iu 
unit.s of dock t ic ks fOr ease of computalion. 

• n.unToComple tion: A re>dtimc process may need to be run to completion whenever 
i~ is run. If so, t heu tile runToComplel.ion attribute should be set. lf it is set, then tLc 
proc.css will bt! run wit.h a.ll interrupts ma.sked. 
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3.2.2 N on-R ealt ime P 1·ocesses 

Non .. rea.ltirne processes proceed with no particular urgency. or deadline; Lhey a re scheduled 
solely on the basis of their priority a nd lheir qunntun1. 

3 .2.3 R ea ltin1e Processes 

Re\~ltilnc processes pwcss urgency as well as ]Jtiority; they a.rc scheduled fhst by their Ul~­

gency. and second by their priority. 

3 .3 Scheduling Data Structures 

T he s~hed11lin:; lime musl. be made a.< small as possible to meet C LOCS goal of rapid conlexl­
switching time. The time to det.ermine whicb p roceS!; should run next can be reduced by 
some cJcvc.r usc of data structures. 

3.3.1 Plll'gatory 

Processes that arc not runnablc ar•~ stored in ''data structure called purgatory. Pro~CSS<)S in 
purgatory <\re blocked on some ~ombination of event.s, either the AN I) of events or the OR 
of events. One of thcs.e evenbs cau be a clock time cveut: v.:hcu the specified awot1at of time 
passe..;;, Lhe time ~vent h&.;; or.<'.urred . 

Access Re<(uirelt.leiLtS for Purgatory 

Gi,•en lhe occunence of a partic.ular e,·cnt, finding aud topdating all processes in purgaooty 
awaiting that event must happen rapjdly. Because~ desi<:!eratum of realtime systems is that 
they respond swiftly Lo evenls, Lhis update Lime is more es:;eulial Ll1au the time t'or adding 
A proces.." t.o rhe strn<'.f.tlr~ . Al::;o, l'emo\ring" proct:ss rrom 1he: strucl.ure rnusl be fast. 

A c t.:t::-;s l\1cUw ds IUr P u r gu tot·y 

A mu lti linked structure of some sort. seems i..udica.led. Perhaps multiple hash t,ilhles or 
multipJe trees will pro,·e <:!ffect.ive. 
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3.3.2 Queues 

llunnab le processes are stored on Lwo priorit.y queues. One queue. called ~he S low Queue, 
stores non-realtirne proct'!s:;cs. 'The other queue i::; used for realt.irne processes, and it is c.nlled 
the Fasl Queue. 

Slow quon<> 

1o the slow queue, processes 3re soJ'ted by pciorit.y into levels. Deitell7] calls thi$ schcJl'c a. 
~~muJtilcvcl f<:edback (JUC\1<''1

• Quanta. should he adjustable as p1·ocess priority dec.rea&.">S. 

Fast Que ue 

In lhe fast queue. processes are sorted fir•t by urg~ncy, !.hm by t.hreshold, t hen hy priority. 
Since urgency i.s a number of clock licks that decreases wh ich each timer interrupt, iL would 
he e...xpensive to go lhrough this entire list adjusting each urgeucy by (I. cOtlSt.a.nt V(lluc. 
lnslea<.l. urgency is used as a difff3rernial quantity: each proccss1 urgt;ncy is t.reaLed as a 
relative number of ticks, not as an abso1ule. 'Ihus, if lhe firsL vro<:t">&i has an •ltgency of 5, 
il 1nu.sc. be ruu iu 5 ticks; if the second prof.CSS has nn urgcnc.y of 2, Lhen it must be run in 
7 ticks. 

Ac<:c.ss Rcquit•e.tn~nts for tl1c Queues 

The slow q-ueue is accessed on the basis o f a process' pnonLy. The [a.:-.t queue is more 
complicated. Processes oo ,,he fast queue are accC$Sed in order of tlneshold, then pr iority. 
As well , the fast qtte\>C is a diffcrcmial quc\>C, meaning t hat the t hreshold of the process at 
t he head of t.he queue can be modified. In addition, there can be a. number of J>rocesoes all at 
a given thr~shold. The Lotal of tbe quanta for aU these processes must. bo readily t•va.ilable, 
in order Lo determine when that set of processes musl be run. In addition, the fast queue 
CluJ be <<Cccsscd by priority. fot n()n.dcadlulC-$chedulcd Lasks (see below). 

Pt·iol'ity and Diffe r entin l Queue~ 

:\Ito, IlopcrofL and Ullma11[1] dis(.nss priorit.y queues, but nol, di fferential queue• . An CJ<<o.Lllptt 
of a ptiority queue use can be found in tl1e 4.:/BSD tJNIX code for the l'Olltines softclock() 
and t.imw•t{), which manage the lis• of tasks to be performed in real time. Tht'St> can be 
foun d in the file sysjkern_c/ock.c; the queue iLsclf is called CQ/It()da. 
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3.3.3 Cun en t Process 

The current proces" must be kep• track of by some mean>, either by PID, by pointer, Or 
ex_plicit copying of the process control block. 

3.4 The Scheduling Algorithm 

Given tbc above da•a s tructuJ·cs, the scheduling algorit hm;, <implc. 

3.4.1 U se of t he Timer 

All stltcduliug breaks (ore invoked b)' t.loc timer int.crrnp•. The timer doo.s not interrupL with 
a predefined Hertz; rather, by seLting Lite timer •o go off in a "pccificd nurul.lcr of lick;, t lw 
oobeduler allow" vari<oblc <J\"I.nta and snppott for deadline schednling. 

3 .4.2 Moving Processes Around 

PrOCt.'S:SCS (IX¢ JJlQVCd from Pl.lrg.atory onto one of l.hc two q ueue::; when conditions ror lheir 
awakeuing have been ~atisfied. lf a proce~ is wailing on t.hc AND of son1c events, it b~com~s 
runnable when th<:y <tJI occur. 1f a process is wa1ting on the OH. of some events. it. is made 
ruonabJe when one of those e-vents occurs. 

3.4.3 When a Timer Interrupt OccUJ·s 

\Vllen a t.l.ner interrupt. occurs, resclieduJing may occur. Th~ algorHiun keeps track of ho"•' 
long il. has been since Lhe last timer interrupt.. frhis allows Lhe algorithn1 Lo update the fast 
()Ut!UC. 

If lite cucrcul process is uo1. a r<.~ll .imc proccSS 1 then it i~ lnserted hack into the Slow 
Queue. If it h.as used its ctHir" quant,ll'l'l 1 thrn hs prio1·ity is reduced and its quant um 
increas.ed . If ll has not. used its e11lire quantu1n, then !Withe-r it.$ priority nor lt.s quantum 
~ce duwg,ed. 

If the currenL process is a realtime process, then its priodLy is decremented, aud the Fast 
Que.u<;!' ls examined t.o SCt! if there is now a. proccs..'i 1nore urgenl and more in-qJOrtant. If thcr~o: 
is~ Lhen thai. process is run . 

This strategy lmplie~ t.hat there are t.irnes aL wltkh a realtirne task may not compleLe by 
lts deadline. 'fhis is acceptable in sOIIIC circumstanc-es und will b~ d1scussed below. 
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3.4.4 Decid ing W ho Gets to Run, and For How Long 

F'igudng oul, exact ly when a realt ime l;)Sk must he run gets n hit tricky. 

3.4.5 Urgent Tasks Go F irst 

'The whole idea behind tll'gcnc.y is t ha t the process absolutely has t.o run 'Therefore, when 
a. process' t.hrcshold goes to zero (meo.n ing lhat. zero time remains before lhe process has t.o 
run), t.hcu t. IJe process is rwl. Non·r<:aHi.Jnc ta.iks arc not even consid<:rcd !Or running . .. rasks 
cho.;cn to run ba•cd on t.hcir t.hrc•ltolds arc called <lc~dltne-scAc<ft<led ptocessos. 

Within a given urgency, there can be rnultip lc ])tOC<•SScs. They al l m ust. linish nt. the 
sam e l,ime. Tho s~.hcduling algol'it,IHn m ust maintain a total of the estimated Lime (quanta) 
for all of these processes, and schedu l.e so l,hat aU l,he prottSSCti fiuish on t ime. 

3.4.6 "Just In Time" Schedu ling 

IIowcvcr, ,.,..hen a rcalt.ime proces-s> ur.g.:ney and t hreshold indicates that il does noL need to 
be run just. yet, Lhere may be no benefit 1.<> running jL yet. lu thai. ease, the highest priority 
task is takeu from t.he Slow Quctl C: and rnn for the m inirnum of e.ilher ils q uantum , o r Lbe 
tirne rcmvining tmtil the most urgent prQcess must be run. 

If there are no processes on the Slow Queue, Lhen Lhe highe:;t priority proc;~;ss 011 the Fas~ 
QueM is chosen. Whether tbc process is chosen from t.hc F'n..t or Slow Queues, it is. referred 
to itS a ntm-dcB.d/in.e-scheduled proces:; ln this context . 

Missiug D e uc.lli nes 

\VIum a rca.ltimc proccs::: is n.1lining as t he currf'nt process and .a. timer inte rrupt occurs, 
:;igntllling rhe end of that pro<'.R.ss' quantu m, it rnea.us lhat t.he process did not finish its work 
be fore its deadline . This is a happening of va..rhthlc importnnce. Some l ... 'ls).;s may not care 
about t his. Some may require special action . Some lllay simply die. 

The best nct.ion in the C LOCS openu.jug .sy~l.c:nn i1; t.o stnd the process a signal whose 
default action i~ lo kill Lhe process. Tht:: process can change t.hat. actiou to be whatever It 
decn1s ucccssa.ry. 

3.4 .7 Setting R u n T imes - I nteract ioll of Quantum and Deadli ne 

Once t he next process to run has been chosen, the scheduler musl uc~cmtiuc how long l.he 
process can ruu for. If I he new process is a realtime ( LE. li ealllil>f·.•cftedu/e<l) proces•, the.u 
it ;. r UI J for its @t.irc 'l"~nlum, whiclt has hopefully been nrljusted t.o allow it I<> complct<). 
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Jf t.he new process is not a reaJtime process, then iL is. run for its en lire quanlum onl!J if rt 
tau be ,.un jq,· tllut long ·wttlwul excccdirl.9 so rut rt(~liunc TJrocess· dtMlllnt. In oth(·r \\'<.'lrds> 
non-dcndlinc-scheduled p rocesses are itllowed to run for tbe minlmun1 of their qua-ntum and 
lhe t hresltold of t he 1110st urgent process. 

3 .5 Interfaces of Scheduling 

The scheduling system is \'isib1e ouly from within Ll1e JHOCCS:> manager. Titncr interrupts 
vector d ir<:ctly irrl.o the process manager. \\'ho cxamin..es the sc:het.luling st.at.e, determine-S who 
should run next, and perfo r ms the con Lex I. switch Lo lltat. pr<>ccs.s. 



Chapter 4 

Interprocess Signals 

4.1 Overview 

Signals in the CLOGS Operating Sys~cm opcrat.c Oll ly slil)htly ditfcrcmly from the signals 
pmvided by 4.2DSO lJN IX 1 As en UNIX, signals can be caught, iguored, or dealt with iu 
the dcf:m lt. mannt:r, w hich ma.y he e ither- ignornn<'~ or proc:i~!1:;. tt~rminM.ion . Unlike UNIX. 
signnls can carry commuu icatiou through a pa ramete r wlticlt is passed to t.ltc signal-handling 
rou~ine. 'rhe parameter is passed lo Lhe s ignal system call, and appears aL the s ignalled 
rouUnc. ns if it wcxc a patamc::ltr ~o a. procedure a d I. 

Signals fll'C hlocl\ed w-hile a p1·occss is executing a systt:~m call; nlsoJ while a fiignaf is h·~ing 

handkd by a process, otbet signals of the same type are blocked. 

The bigrJa1 uarues, descrlpLion.s1 and 1uany of lhe default behaviors are dedvecl frb!l l UNIX. 
signals More signals can he added as required ;,, t he future. 

4.2 Signals 

L SIGHUP: 

• (l••"!l"P) 

• Def;mlt. action: te1·mination. 

• Pa.rame:t.er: none. 

2. SlG l N'l': 

• (internwt) 

• Default action: termination. 
1 CNlX i!t ~ t.J•tt.demark or AT&T Conunun.ic..,ti<ms. 
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• Patanl("ler: I 0 or interrupting rrocn ...... 

3 STCQUIT: 

• (qutt} 

• Del'a.u1L acLion: termination. 

• Para rnel.er: none~ 

~ . SIGILL: 

• {illcglll wstructionj 

• TH-fttu lt arti01't: tcrrninru.ion. 

• P:uamrt{"r: ctddres.i of fauh. 

;,, SJGl\!ATH: 

• (onthmd•c trctpt•on) 

• IX-f(lnh. action: termination. 

• Pnri\m~t~r: i\ddro"" of filull. 

6 SJCI<ILL: 

• (ktll {cannot be caught, blocketl. or •gnor·cd)} 

• Dcfaulll action: tcrmlnl\t.lon . 

• r{\t(\ll1f'tcr: none. 

7 SICtlUS: 

• (ltu< en'Or) 

• ~fault action: terminal ion . 

• Parameter: none. 

R. SIGSEGV: 

• (~t!fmt nlalio11 o()/irl,on) 

• Defau lt action: ~ermina~ion. 

• I'Arnmeter : i\rl<h•ss of Yiolntion (off,,ntfin~; nddress). 

0 SrCPACE: 

• (TJOgmg vtolal!on) 

• 1)..-fauh .. action: Lerm.inatlou. 

• l'ar~rne(er: address of violation (off<·nding nddrc<s). 

10 SJGSTOP: 

• (<lop (cannot be caught. 6/ockcJ, or tgllol<d}) 

• Default achon: process is block<:d un1il SIG(;Oi\ I recetved. 

• l'aramf'ter: none. 

II SICCONT: 
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• (ront"'"' tr/ll'r <lot• {ra11110l br blacked)} 

• 1){-f:\IJh attion: proct·~iot bf•rom<·~ ready again. 

• P:namNf"r: nnn,... 

12 SIGC IILD: 

• (rh1/d >laiU$ Ita> <hange<l) 

• Default action: igno,.!<l. 

• Parameter: 10 or cJ.ango·d child pro<"'*· 

13. SlGDEADLTNE: 

• (dead/in< o/"<all•mc procco. trcc<dcJ) 

• J)(-fault ad ion: trrminntirm. 

• Pat;tmf"l-<"r: nont~. 

J.1 SICUSitl: 

• {u>fl'·<l••finul $1!J""' J) 
• Dt,:f~-\U II tt.cc ion: ignort•d. 

• Parnmcrcr: prO<.:<'f'~·dl"'pc.'ndcuL . 

15. SICUSil.2: 

• (uscr-defi, cd SI!J»fll 2) 

• Default. action: iguort•tl. 

• PHrntn(:t,er: prol'CI')lH.h.•p(.'t•<.h;nt. 

16. Sl GUSit3: 

• {t~ur.dt/intd ,, ignnl 3) 

• l),>f~ult nrtion: ignored. 

• l'•r3m<>(~r: procc<<-d•ptndtnt. 

17 SICUSil.4: 

• r~s<r-dt/intd srgnol n 
• Default action· ignored. 

• l'aramc~r: proc.:.,~dcpcndcnt. 

IS. SlG USH.S: 

• {user-dc/i11ed •rgnal .5) 

• Oefnult action: ignoro·•l 

• Pararn~tcr: procr~~ drprnrltnt . 

19. SIGU Sil.G: 

• (u,vr.i/t[wfli stgnnl 6) 

• Default (Inion ~ ignored. 
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• Parameter; process--dependent. 

20. SICUSit7: 

• (u.-tr-tl•finrd .<ig11trl 7) 

• O..:fault actiou: ignored 

• J.,anu11eler; proccss .. dependent . 

21. STGUSftS: 

• (u.n-defined stgnal 8} 

• J)cf au h actjon: ignored, 

• ParamPler: process--dependenL. 

22. SlC USft!l: 

• (u•u.Jefirml srgnal 9) 

• i.)efault action : ignored. 

• l'nra~Ler: pror:ess-dependent. 

n SlC USlUO: 

• (ll.ff.l'-tl <fin ed • ignal JIJ) 

• Defaull action: ignored. 

• Parameter: process-dependen t. 
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