CLOCS Operating Systemn
Referenice Documents

TRES-023
May 1088

Bill O, Gallneister

The University of North Carolina at Chapel Hill
Department of Computer Science

CB#3175, Sittersen Hall

Chapel Hill, NC 27599-3175

Copyeight 1988 Bill (. Gallmesler

UNC 15 an Equal Opportunity/ Affiemative Action Institution,

CLOCS Operating System Reference Documents

Bill O, Gallmeister

CB # 3175, Department of Computer Science !

University of North Carolina
Chapel Hill, NC 27599-3175

May 6, 1988

YT'his Research was supported by Office of Naval Research Cantract N00014-86-K-0680,

Contents

Introduction 1

1 An Overview of the Kernel Design 2

Fl CThe Giealyel d4heBDOES Ternal: 00 00000 i @b O sl wlina e 2

1.2 Achieving the Goals of the CLOCS Kernel - . . . 0 . L .. .00 ... T
L3 Kernel Module Deseriptions . o _ . _ o . C . L . 0 oot s s e e 10
L4 Current and Foture Work 0 00 0 o v e s v e e e e e 27
2 HKernel Modules Specification 28
Bl CIVHOIEN o e iy oy Emin SRR SONEECHRAEOS IENE LT LR R 28
2.2 Th CLOGHEDPEErabmESveter «ow cos novaommgeois side i sis. s 3
Fe Mimay MErarefenlh o5 ooy mes 0 WEEeEiDn SENT S9RE RIS 32
24 Process Management : :: - 05 855 o5 s oononm s 5 § EREEERSrTosEaEs a5
%5 Eommunications Mensgements Dz s95 w9 L9 LT SE EEY BTN 40

X6 ERINSEEdE S AT A SN RRST AR LU DR DA Y ST i Tner e s

3 Scheduling: Algorithms and Ideas 48

1 Boeqeivensente ol DT D0 B WS NGRS WD S S a8

32 Definition of Process . . ., . 0 0 cn e on i oo b v e PR A IR T -
33 Scheduling Data Stractures _ e e e 51)

CLOCS 08 Reference Documents - Gallmesster

4.4 The Scheduling Algorithm

Interfaces of Scheduling

Interprocess Signals

4.2 Bignals

ii

Introduction

CLOCS (Computer with LOw Context Switch {ime) is an experimental computer system
designed at the University of North Caralina at Chapel Hill by Mark Davis and Bill O,
Gallmeister, CLOCS is designéd to explore the performance issues associated with a machine
that can context switch extremely rapidly by virtue of minimal CPU state to save and restore
on a context switch, This emphasis strongly influences the design of the operating system,
which 1s built to suppaort finely grained scheduling and dynamic extensibility of the system;

This document collects the papers describing the €LOCS operating system. An overview
of the kernel design is first presented, followed by a detailed specification of the entry points
to the kernel, Chapter 3 is 4 brief dizeussion of scheduling in the CLOCS kernel. The final
chapter is an emmeration of the signals used in the operating system,

Chapter 1

An Overview of the Kernel
Design

CLOCS (COmpuler with LOw Context-Switching time) iz a machine being designed at the
University of North Carolina at Chapel Hill, by Mark Davis and Bill O. Gallmeister, CLOCS
is an experimental system, both hardware and software, created to explore the consequences
of & design that permits extremely rapid context switches, The CLOCS Operating System is
designed to exploit the unigue features of the CLOCS hardware to meet specific performance
and qualitative goals: real-time responsiveness, fair multiprogramming, and dynamic recon-
figurability. This paper describes the most basie part of the machine’s operating svstem —
the CLOCS Kernel

While the CLOCS kernel is only the lowest layer of the operating system. it provides
the necessary building blocks to meet the design goals of the system as a whole, This
docurnent emplasizes the overall concepis that relate Lo these goals, deferring more detailed
kernel descriptions to [12]. Section 1 distusses the goals of the system. Section 2 provides
an overview of Lhe strategies used to meet these goals, Descriptions of the modules of the
CLOCS kernel are given in seclion 3.

1.1 The Goals of the CLOCS Kernel

1.1.1 Real-Time Response

A major objective of the CLOCS Operating System is to provide real-time response, meaning
that processes must be able to respond to events, generated by sofltware or hardware, within
a specified (and assumed small) amount of time.

CLOCS OF Relerence Documents - Gallmeister]

Real-Time Systems are Difficult, Real-time response is ard to achieve in operating
systems, because not only must the answer be right, it must be delivered on time. Like most
software, typical multiprogramming operating systems run with liltle regard for external,
teal-world time, In designing a real-time system, the software designer must pay close
attention to the amount of time taken in all sections of code — asymptotic order notation
will not suffice! The designer must assure that intercupt response times are bounded, must
support guaranteed scheduling and completion by external time, and must carefully analyze
the timings of interacting parts of the system to assure that the timing constraints of the
system are met, In sum, realtime constraints make programming harder m general]20],
because they add a whole new dimension - the time dimension — to the problem space being
explored.

1.1.2 Fair Multiprogramming

Real-time response has bheen achieved in ather systers, bul usually at Lhe expense of fairness
- the processes requiring real-time response are treated preferentially to other, non-real-time
processes, The second design goal of the CLOCS operating system is that it provide fair
multiprogramming for all processes. A scheduling algorithm is ealled “fair” if all processes
are given equal consideration by the scheduler at all times[8]. Fair multiprogramming is
difficult to recemcile with real-time capability, since real-time processes may have special
requirements — they may need to be scheduled more often, or perhaps allowed to run longer,
in crder to have any value whatsoever! Reconeiling “fair™ scheduling with demands for
real-time response is discussed i detail i [10]

1.1.3 Dynamic Extensibility

Software is a malleable substance. and quite often software systems are altered “on the fly” as
they are being used: functional modules are added to, and subtracted from a running system
as 1t is running. This is especially teue in real-time programming, where the programming is
often asscciated with some unigue data collection device that must be specially driven[17].
Small, frequent changes to software components should not require recompiling and rebooting
the operating system. Therefore, the CLOCS operating system must expand and conlracl
dynamically as it runs. This allows new drivers or specially expanded functionality to be
added to the system as needed | removed when the machine resonree is hetter spent elsewhere,
or changed when it is wrong, '

A second reasan for dynamic extensibility is the advantage of programming an application
on the target machine for the application[18]. Programming on the target machine reguires
that the machine suppart a full development environment, but such an environment is only
useful when the system is being developed. When a production system is running, a full
development environment is just baggage. Tt must be possible to link in the capabilities of
a full-featured operating system on demand, then jettison them when they are not required.

CLOCS S Reference Documents - Gallmeister 4

1.1.4 The CLOCS Machine

In a multiprogramming systen, processes are frequently context-switched, ie., the running
process is stopped, its state saved and another process started. Machines with large amounts
of stale in their processors have historically achieved better rates of throughput, but they
also context-swilch more slowly than machines with less state. In the past, throughput of
a single process has been the metric for gauging a machine's performance, but as multipro-
gramming systems become more commen, throughpat of multiple, concurrent processes is
increasingly important. Context switching speed is an important component of multipro-
grammed computer performance.

The CLOCS project is studying the tradecfls between single- and mulli-process through-
pul involved in the design of a system — both hardware and soltware — which targets fasi
context switching as its major performance metric. Since the novel design of the hardware
has influenced the kernel design, a short overview of the hardware is in order.

The CLOCS CPU

To switch context, & machine must store all internal vegisters and replace them with new in-
formation. In order Lo allow fast context switches, the CLOCS machine has only one register,
called the state waord; storing it and reloading its contents takes exactly two instructions,

Because there are no other registers, the CLOCS operation set is small - there is no
need for load or store operations. and the lack of registers also makes for fewer addressing
modes. This dramatically simplifies the instruction set; CLOCS supports anly 20 different
operations!

This minimal amount of CPU state impacts the programming model for the machine.
The bare minimum information is stored in the state word: a process LD, the program
counter, and Hags, including the current interrupt mask, A great deal of process state, such
as stack and frame pointers, 18 normally maintained in a machine’s registers: [n CLOCS,
this gtate is kept in well-known memoary locations.

The CLOCS MMU

Real-time systems, and increasingly, gencral-purpose computing systems must run hundreds,
if not thousands, of processes concurrently. Virtual memory has proven to be an important
and useful tool for building reliable multiprocess systems. due to the separation and pro-
tection it offers. We feel that virtual memory is vital to the reliability of multiprogrammed
systems. Therefore, CLOCS supports segmented, paged virtual memory with its MMU. A
process 1D, stored in the state word, uniquely determines a set of segment and page mappings
in the MMU; ehanging this hardware process 11D changes the MMU as a side effect. Although
most addressing is assamed to be in one of two defaull segments {one for instructions and
one for data), processes can address data in any segment using extended addressing modes.

The MMU is erganized as a single large table, supplying process 1D, segment number,

CLOCS QS Reference Documnents - Gallmeister 5

virtual page, physical page, and protection hits in a single tuple. The MM is an associative
memory, and the hardware does not enforee any ordering of the tuples. Since process 1D
does not determine a fixed number of segments, processes can access an arbitrary number of
segments, including segments shared with other processes. The flexible layout of the MMU
allows easy memory sharing between processes, but also allows inconsisiency. For instance,
process ID 4 segment 1D + virtual page number do not funclionally determine a unique
tuple, making it possible to have two contradictery mappings in the CLOCS MMU! The
memory management software must ensure that the MMU remains consistent,

Instruction

R O . T 50 o S, :]_ji:}_ \12
Status

| | p10 [pc
‘ MMU
Zera * f
Segment I ;
- ’ | . | PID SID IFLAGS [VPAGE IPPAGE |
oafault IEEC_T F Jemininnia S e, .-g it et N :. il
§ _— ‘;2 :I ; -._ i
Default Ose it il i i i
S 9 SEG |
fe
INDIRECT | sip

iy Physical

ignored)

Physical Memory

The CLOCS MMU

CLOCS 08 Heference Documents - Gallmeister 6

Event Handling, Events (traps and interrupts) are handled by vectoring; an evenl
vector is a state word thal is loaded into the CPU when the associated event occurs. The
CLOCS machine provides 1024 separate vectors, half for traps and half for interrupts, This
large number of vectored eventls speeds event handling because the software doesn’t need to
work as hard to figure out which event oceurred. That information is largely implicit in the
event vectar itself,

The architecture of the CLOCS machine and s MMU are described in a number of
papers [6,4,3,5], Readers interested in detailed architectural descriplions are referred 1o
these papers.

CLOCS 08 Reference Documents - Gallmeister

' |

1.2 Achieving the Goals of the CLOCS Kernel

The CLOCS kernel uses a few simple sirategies to meet its goals. The general strategies are
described below; the next seetion gives more specific details on the kernel itgelll Together,
these sirategies provide the necessary building blocks for achieving the goals of the whole
system,

1.2.1 Obtaining Real-Time Responsiveness

Ohtaining real-time responsiveness is the single largest goal of the CLOCS operating system,
and ils realization requires the most work. Each module of a real-time system must cooperate
in order to achieve the performance goals of the system. The modules of the CLOCS kernel
work together in the following ways.

Uninterruptible Path Lengths Arve Short

If any process requires long uninterruptible periods of time, then real-time performance
becomes hard to achieve: rapld response to an evenl cannot be guaranteed hecawse some
process may be just starting a long section of uninterruptible code. The UNIX? system, for
instance, has a hard time doing real-time processing because it is monolithic, and processes
running in the kernel ean take many milliseconds to complete. In contrast, the CLOCS
operating system consists of short, uninterruptible paths through the kernel, connected by
sections where interrupts are allowed. At these “checkpoints” | rescheduling of the priocessor
can ooour, allewing rapid response to events.

Processes Can Run To Completion

CLOCS allows a process to mndicate when it must run to completion in order to guarantes
that it will finish its real-time work, When a process is allowed to run to completion, it
cannot be presmpted until il allows itself ta be:

More is Stored; Less is Computed

Alan Jay Smith, of Berkeley, has said that any program can be made five times as swift to
run, at the expense of five times the storage space. While his numbers may be questioned, his
premise may not: programs can be made faster by precomputing and storing results. Where
the tradeofls can be made, the CLOCS Operating System achieves faster execution by using
more elaborate data structures, For instance, the data structures used by the scheduling
algorithin are optimized to speed the choice of which process to run next.

VONTY §5 a trademark of ATLT Communications

CLOCS O8 Reference Documents - Gallmeister 8

Small Modules Speed the Kernel

The CLOCS kernel is built from small, effective modules that provide simple abstractions:
virtual memory, processes, and interprocess communication. These smaller, more modest
modules run faster than megaliths because they do less. Since the kernel can be dynamically
extended and contracted, enhanced function can he built on top of the kernel as required by
a particular application. Meanwhile, the modest scope of the kernel allows it to run swiftly.

1.2.2 Combining Responsiveness and Fairness

The second bnportant goal of the CLOCS operating system 15 to combing real-time respon-
siveness with fair multiprogramming, Scheduling heuristics typically attempt to provide
one sort of hehavior, either fairness or real-time responsiveness. The CLOCS scheduling
algorithm, in contrast, takes both goals into account.

New Scheduling Ideas

Scheduling 18 often implemented using a priority-based scheme in which a single number
denotes a process’s “value”. The priority can be manipulated according to the process’s
behavior[8], Priority-based scheduling provides fair scheduling behavior for non-real-time
processes. Unfortunately, the value of a real-time process is not a static quantity, and may
vary in a time-dependent, #ot process-hehavior-dependent Tashion. Thus, priority schedulers
have a difficull fime supporting real-time tasks. In contrast, real-time systems oflen prac-
tice deadline scheduling, where processes are scheduled in order of shortest deadline first.
Variants of the deadline scheduler abound, but all of them schedule processes strictly based
on their deadlines. Deadline schedulers do not try to be fair, and o fact wll nol schedule
a process without a deadline — i:2. a non-real-time preeess — unless there are no real-time
processes ready to run.

Any scheduler that targets only a single dimension (time, priority, ete.) will fail at
scheduling some other class of processes. By providing more information pertaining to the
scheduling prablem, the scheduler can make more informed choices about which processes
musl run at any ziven time. Flaborate scheduling algorithms have been designed to more
aceurately model process values, and therefore schedule them better, where better is defined
by the objectives of the particular scheduling algorithm. In some complicated svstems,
as many as five numbers have been used to denote the time-varying value of a real-time
process[13].

In the CLOCS system, a unified process value model is used, denoting each process’s value
and its deadline, along with indications of how long the process will need to run, whether
there is any value in running the process past its deadline, and whether the process should
be allowed to run to completion. These attributes allow more delicate scheduling decisions
and are sufficient for proper scheduling of the majority of precesses, Dynamic manipulation
of the guantities further enhances the system’s responsiveness.

CLOCS 08 Reference Documents - Gallmeister 9
1.2.3 Achieving Extensibility

The third goal, achieving extensibility, requires the ability to add and subtract software
components on a running system, much as fault-tolerant compuler systems allow hardware
to be added and removed dynamically, To solve this problem; the mterface between the
parts of the system must be clean and well-defined, facilitating fast, simple changes that allow
dynamic iInterprocess communication. Breaking the connections and eliminating components
must also be easy. Finally, calling a module that is not present must not result in catastrophic
failure of thie operating system!

Ohject-Oriented Design Provides Clean Interface

The object-oriented paradigm provides a partial solution to the extensibility problem. In
the CLOCS kernel, each object, or “manager”, communicates with the other managers and
the user processes through a simple interface. Each manager makes specific enfry points
available to the entire system; other processes may only call the manager using those entry
points. The manager can also remove the entry poinls. Calls to non-existent entry points
are treated as errors, which can be treated by loading the required module, initializing it
and trying sgain,

Policy-Mechanism Separation Allows Functional Extension

The ohject model is a necessary, but not sufficient condition for extensibility. If the semantics
af the undetlying software lavers do not allew higher layers to function properly, then ex-
tending the kernel hecomes impossible, CLOCS supports policy-mechanism separalion: the
lower layerd of the kernel cannot implicitly decide policy for upper lavers. For instance, the
Memory Manager does not make any decisions based on which process is calling it, because
it is up to the Process Manager to make procéss-related decisions,

CLOCS O8 Relerence Documents - Gallmeister Lo
1.3 Kernel Module Descriptions

The CLOCS system is organized as a set of four modules, each of which implements an
ahatraction or service. This hierarchical approach to design offers clean, modular interfaces
and smaller, easy-to-understand software packages][®]. Four modules make up the kernel of
the CLOCS Operating System, each providing basic services on which higher levels will rely,
The four modules that form the CLOCS kernel are:

s The Glue Code: The lowest layer of the CLOCS kernel is the Glue Code. 1t handles
the details of inter-module communication and exception handling, allowing all other
modules in the systém Lo be integrated into a single maching,

e The Memory Manager: The Memory Manager handles the CLOCS MMU and
provides the abstraction of virtual memory, Virtual memory is necessary for building
reliable multiprocess systems because of the protection and separation it offers.

o The Process Manager: The Process Manager encapsulates the scheduling algorithm
and provides the abstraction of independent processes. The entite CLOCS system is
structured as multiple processes, so a process manager is a basic requirement.

s The Communication Manager: The Communication Manager provides the ab-
straction of Inter-process communication. Systems such as real-time applications and
server applications are oflen structured as multiple processes communicating in a va-
riety of ways, This paradigm is basic enough to meril support at the lowesl levels of
the operating system.

The Glue Code provides the most basic level of service, supporting a clean, monitor-like
interface between software modules. The other three modules of the kernel communicate
using the Glue Cede, The Memory and Process Managers are at a slightly higher level than
the Glue Code. The Communications Manager is at a still higher level, using the services of
the other two managers,

CLOCS (8 Reference Documents - Gallmeistar 11

Communications

Process

Intarrupts'
Traps

The CLOCS Kernel

1.3.1 How Does This Kernel Meet the System Goals?

Extensibility of the system is supported by the Glue Code, which provides calls to allow
modules to make themselves dynamically available ter the rest of the system

The kernel modules run in a request-driven fashion; a call to one of the managers will
provoke a short, uninterruptible response. When modules communicate with each other,
interrupts may occur, allowing for possible rescheduling. Thus, the uninterruptible paths
through the kernel are only as long as the lengest path threugh any particular manager.
Since each manager performs simple, small tasks, the paths through them are short, and
each call to a manager can be satisfied quickly.

The managers are designed in such a fashion that they store more data than is necessary

CLOCS OS Reference Documents - Gallmeister 12

in order to avoid time-consuming recomputations. This design style is most evident in the
Process Manager, described helow, In addition, the scheduler implemented by the Process
Mannger is designed to meld real-time responsiveness with fair multiprogramming.

1.3.2 A Bottom-Up Description Models Successive Abstractions

The modules of the CLOCS kernel are described from the bottom up, paralleling the suc-
cessive abstractions provided by each module. Since the complete operating system is not
specified, describing Lthe system from the top down is not possible; there is no top!

CLOCS OF Reference Documents - Gallmeister]

1.3.3 The Glue Code

The lowest level of the CLOCS Operating System is called the “Glue Code” because the
routines and data at this level support the connection of other processes, or modules, Con-
ceptually, this module “glues” the others together. The glue code handles intermadule
communication as well as interrupt and trap dispatch. The dynamic extension and contrac-
ticn of the svstem is handled from the glue code, and proper access of user applications to
the kernel is enfloreed here as well,

Intermodule Communication

Tocall an entry point in anotler process, the caller pushes the process D and entry point
numnber of the called process on its stack and traps to the Glue Code, The Glue Code checks
the calling process’s right to zall the entry point and, il permitted, makes the call. If the
specified entry point does not exist, then an error indicator is returned, Notice that three
processes are involved: a caller, the kernel (in the persona of the Glue Code), and the ealled,
Or SeTVer, Proccss,

The Glue Code supports intermodule communication by enforcing an explicit interface
for module access. A module, or process, makes entry points available to other processes
by calling the Glue Code and specifying the address of the entry point and the permissions
associated with i, e, who may call the entry point. The ealler associates an entry point
numhber with the entry point address, insulating other processes from the need to know
specific addresses within another process. A process may alse remove an entry point it has
previously made available.

A process contalning an entry point will be at some point in its execution when the
entry point is called. Entry point calls are handled as if a signal had occurred: the entry is
“serviced” by the called process, which then returns from that entry to whatever processing
it was doing prior to the call. Meanwhile, the called module is blocked. In addition, while
the server process isservicingan entry ¢all, new calls to its entry points are hlocked, This is
done to prevent simulianeous access to a single process by othier processes, possibly resulting
in inconsistencies.

Traps and System Calls

Inter-module communication traps are one use for traps, bul all other traps are to the glus
code, as well, This includes exceptions, such as page faults and divides hy gero, and system
calls, which are performed as intermodule calls from user processes o the kernel process.
For all iraps, the Glue Code must save the state of the trapping procesz before jumping to
the appropriate service routine,

CLOCS OF Referéence Documents - Gallmeisier 14

Interrupts

Interrupts (external events caused by things like 1/0 devices or power failures) are also
handled by the Glue Code. Although the main bulk of interrupt processing is handled by
the kernel proper, the state of the machine prior to the interrupt must be saved, and this is
the job of the Glue Code as well,

Humhble Access

“Humble Access” is a term for limiting a process’ access to privileged operations. Processes
can ascend to privileged mode only at specified locations in the code, At these locations,
the access rights of the calling process are checked, and its "humble” request for privileged
service ls granted or denied. Since the CLOCS Glue Code provides the enly entry method
to other modules, it can and does enforce humble access by checking permissions before
permitting entry point calls.

Dynamic [Relinking

The abstraction of entry points to other processes allows for easy dynamic relinking of
madules, since the relinking is handled through a central location, the Glue Code. As
-an added advantage, calling a nonexistent entry peoint is treated as an error and not a
catastrophe, so calling modules can be programmed to recover from ill-configured software,
This robust, dynamic relinking capability provides the extensibility required by the CLOCS
Operating Systen,

CLOCS 085 Reference Documents - Gallmeister 15

1.3.4 The Memory Manager

Virtual memory is a requirement for building reliable multiprocess systems because of the
separation, protection and ease-of-use a virtual memory system offers; The CLOCS MMU
provides the raw material for implementing efficient, protected virtual memeory; however,
it must be carefully managed by software to avoid inconsistencies. The Memory Manager
has responsibility for maintaining correciness of the MMU and of physical pages of memory.

It keeps track of those segments, physical and virtual pages, and process identifiers (P1Ds)
which are in use.

Interface to the MMU

As soleaccess to the MMU, the Memory Manager must also provide ellicient, fast access to
the hardware. The size of the MMU, 2!% words, is too large for the Memory Manager to
search linearly; so the Memory Manager constructs software structures atop the MMU to
allow swifter access to specific entries.

Segment Allocation

Twa different calls allow a process to allocate and deallocate segments. When allocating,
the memory manager determines a free segment and assigns it to the calling process, but no
mention of that segment is made in the MMU, because there iz no memory yet associated
with it. When pages of memory are actually allocated within the segment, then the MMU
is modified. When a process frees a segment, the segment s removed [rom the MMU for
the process, and if no other process is using the segment, it is returned to the free list, Tt is
an error for & process to try to free its primary instruction or data segments, which are the
ones it requires to run in,

Page Allocation

Processes allocate and free virtusl pages within an already-allocated segment, The calls
specify the slarting page and 4 number of pages to allocate or free. FErrors are returned if
the process tries to allocate a virtual page that it has already allocated, or if it tries to free
pages that are already free.

Page Sharing

An additional call in the memory manager maps pages of memory from one process inta
another process. This call does not enforee any sorl af protection belween processes, but the
call can only be made by the kernel itself, The mechanism for sharing memeory is required
by the Communication Manager, which enforees the poliey of shared memary by calling the
Memory Manager in the “right way™.

CLOCS O8 Reference Documents - Gallmeister 16

1.3.5 The Process Manager

Processes are a basic unit of computation, Increasingly, applications ranging from database
systems to resource servers to entire operating svstems are being constructed as multiple
processes which communicate to achieve the goals of the system. This paradigm offers
conceptual simplicity as well as increased reliability and fault tolerance. Processes require
support at the lowest levels of the kernel, since the higher levels of the CLOCS system will
themselves be structured as multiple processes. The CLOCS Process Manager provides the
abstraction of processes and éncapsulates the process scheduling algorithm. 1 also'manages
process creation, destruction and state changes. Although context switches are done by the
Glue Code, actual processor alloeation and dispately is performied from within the Process
Manager.

Definition of Process

CLOCS defines a process as simply “a schedulable entity”[8]. A process is just a thing that
can be scheduled for execution, A process is named by its Process Control Block (PCB), a
data structure which contains control information aboul the process: its last recorded state,
what memory 1t has allocated, its priority and urgency, and so forth.

The operating systems literature mentions twa sorts of processes: heavyweight and
lightweight processes. The CLOCS MMU supports one kind just as easily as the other,
and the Process Manager makes no distinction between the twa,

Heavyweight Processes, Heavyweight processes are processes which execute in their
own protected address spaces. They are slower to context-switch becanse they require a full
awap of macline stale, including, possibly, some MMU contents and some plysical memory,

Lightweight Processes. In contrast, lightweight processes have less baggage of their
own. Multiple lightweight processes inhabil the same shared address space. Lightweight
processes can switch between one another very rapidly because the MMU and memory state
required for each is identical and need not be changed.

Difference Detween Heavyweight and Lightweight, In the CLOCS machine, there
is little difference beotween heavyweight and lightweight processes. Because the CLOCS
MMU contains enoush stale Lo cover all of physical memory, memory-resident heavyweight
processes will be as easy to switch to as lightweight processes. However, if the memory
required for a heavyweight process is not present, then the disk must be accessed, and more
time will be required for switching context., Since the CLOCS kernel at this stage does
not specify any disk, swapping, or other higher-level concerns, this distinetion will not be
discussed any further. It is sufficient to note that processes can exist in shared or private
address spaces, or even in some combination of shared and private space.

CLOCS 08 Reference Documents - Gallmeister 17

Creating Processes, Processes can create olher processes, The creating process gives
two segment nuwmbers, which become the default instruction and operand segments of the
new process. Scheduling parameters and starting address are also specified. The process,
when created, i1s ready to run and is scheduled as soon as feasible,

Destroying Procossos., A process can destroy itsell, and the kernel can destroy any
process, When a process is destroyed, its memory is freed and returned to the memory pool
il no other processes are using it, and its PCB is made available to new processes. The
process is removed fram scheduling consideration,

Changing Process States. Between the thme it is ereated and the time it is destroyed,
a process will repeatedly switch between the running, ready, and Mocked states. At any given
time, only one process is runnmg, Either it is using the processor or the kernel is running
on its behall. Processes that could be rumning, but have not been allocated the processor
vet, are called ready, Processes thal cannot be run because they are waiting for something
are called Mocked processes.

Scheduling

Changing process states, and the decision of which ready process becomes the running pro-
cess, s called sclieduling. In order to achieve both real-time performance and fair multipro-
grammming, the CLOCS kernel supporis an elaborate scheduling system.

“Just In Time" Scheduling. The scheduling algorithm exemplifics a concept that has
become popular in manufacturing and inventory contral technology called “Just In Time”
scheduling. In this method, processes that have to complete by a certain time are scheduled
to run at the very last minute: In the warchouse, this leads to reduced inventories and a
more eflicient operation. In the CLOCS Operating System, by fitting non-real-time execution
inte the eracks not occupied by real-time tasks, “Just In Time” scheduling provides hetter
response times to non-real-time processes at little or no cost o the real-lime processes.

Priority, Urgency, and Quantum. In mest multiprogramming operating systems,
scheduling is based on priority. Processes have a single attribute, their priority, that deter-
mines their importance relative to all other processes. The most important processes always
go first. While priority-based scheduling s conceptually simple and easy to implement, pri-
arity alone cannot adequately reflect the nature of the scheduling problem. A pricrity does
not state explicitly when a process should run: that decision depends on the priority of all
the other processes in the svstem. Thus, it is tricky and unreliable to perform time-based
seheduling using only priority.

For instance, & process may net be very important, but may need to run very soon
lest 1t lose all value, Should that process’s priority suddenly be raized Lo enforce ils rapid
running? If so, how high? And how will it be lowered again? How low? And what if some

CLOCS O8 Reference Documents - Gallmeister 13

other process, which doesn't need to run at any particular time, can be run before the other
process absolutely fasto be run? These problems can only be expressed clumsily (if at all!)
using a single priority number. Because there is no way to state the programmer’s desire that
a process tun within a certain deadline, systems are created with process priorities balanced
logether like a house of cards to provide proper responsiveness. The smallest change in the
system or in the environment can bring the house of cards tumbling down[13].

Another sort of scheduling algorithm is deadline seheduling in which processes have dead-
lines by which they must complete. The process with the closest deadline runs soonest,
Deadline scheduling has two significant problems. First, it fails to schedule non-real-time
processes (thiat is, any proeess with no real-time constraints on its scheduling) sinee they
have no deadline other than “as soon as possible”. In many systems, real-time processes,
such as data acquisition and physical contrel tasks, coexist in a machine with nop-real-time
processes, such as uger queries into the database being produced by the real-time application.

More importantly, deadline scheduling fails badly when the processing load excesds the
processor capahility since it continues to schedule and run processes that cannot possibly
meet their deadlines, either because the deadline is too close ar-already past[13]. By wasting
processor time on processes that will have no value, the deadline scheduler allows more
processes to become too late; these are scheduled in turn; causing sidll more processes to
become late!

The CLOCS Operating System uses three numbers to schedule ils processes, A prioriy
reflects the process's importance in the scheme of things. Urgency is the time, measured in
elock ticks, by which the process absolutely must run. Quantum is the estimated time, again
in clock ticks, the process will take for the run. Ounly real-time processes have Urgency,
because real-time constraints on their operation are made. All other processes are called
non-real-time processes. The quanium is vsed as a time slice in the case of non-real-time
processes; for real-time processes, the quantum is taken literally and is used 1o determine
exactly when the process nuist run.

Blocking. When the running process executes-a kernel gall that requires it to wait for
some event, such as an interrupt or receipt of & message from another process, it is said to
bleck: Blocking is the kernel-level mechanism used to implement all process waiting in the
CLOCS Operating System. When the running process blocks, it is removed to the nonready
stale and a new running proceéss is chosen, The Process Manager supports calls to block
processes in & multitude of ways, bul these entry points are not callable by user processes.
User processes call other kernel maodules, which block the user processes in constrained and
well-known fashions.

What Do Processes Block On? Blocked processes are waiting lor semething, but how
is the occurrence of that something flagged? How is the samething identified? In the jar-
gon of the operating systems community, processes block on eookics. A partieular cookie
corcesponds lo some event being awaited by one or more process. The cockie can contain
any value, bul a particular value specifies a particular cookie. When processes block, they
block waiting for one or more of these cookies. Otlier processes can signal the occurrence
of a particular cookie, and all processes waiting for that cookie are notified. Any of those

CLOCS OF Reference Documents - Gallmeister 19

processes which do nol need to wait for any more cookies become ready and can contend for
the processor, If such a process is a real-time process, its urgency is measured from the time
it-becomes ready.

Combinations of Cookies. TProcesses can wall on more than one eookie, and they can
wail in different ways. A process can wait on the Boolean AND of a number of cookies; in
other words, all those cookies must be unblocked before the process can pracesd, In addition,
pracesses can hlock on the Baolean OR of multiple cookies.

Scheduling Data Structures, The scheduling data structures are designed to speed
scheduling decisions. Much of the work of scheduling is done when a process is placed in
the data structures, allowing the process manager to quickly decide which process should
become runnable next.

The kernel must be able to determine rapidly which processes are wailing on a given
evenl bécause any application consisting of multiple applications is bound to be doing a
great deal of process synchronization, and events are the mechanism used for implementing
proceéss synchronization, Therefore, the determination must be proportional to the number
of processes walting on thal event, rather than proportional to all blacked processes. In
addition, the data structure must be multilinked, heeause processes ¢an wait on more than
one cookie at a time. A process contral block may be accessed based on any of the cookies
it is waiting on,

When a process is moved into the ready state, it is stored in the run guene. Unlike
standard run quenes, the CLOCS run queus is structured as two priority queues: one quene
for real-time processes and one quene lor non-real-time processes. The non-real-time process
quene is ordered only by priority, The real-time process queue is sorted in reverse order of
(urgency—gquantum), so that the process which must ron soonest is at the head of the queue,
Tn addition, the time by which each process must run is stored in a differential fashion while
the processes are on the run queus, Each process has a threshold which is mterpreted relative
to the threshold of the process before it on the queue, This avoids the need to update the
whole run queue on each timer interrupt, Within groups of processes that must run hy a
certain time, the processes are ordered by priority, most imporlant fiest, '

CLOCS OS Reference Documents - Gallmeister 20

processPurgatory

fastQueue
(realtime)

==
(e

slowQueune
(non-realtime)

currProcess

Scheduling Data Structures

Scheduling Algorithms. The heart of the scheduling algorithm is a decision procedure
that determines which process to run next; the scheduler may also reorder the scheduling
data structures. The scheduler runs whenever a timer interrupt occurs (signaling quantum
expiration), or when the running process voluntarily gives up the processor.

First, the real-time queue is examined. The threshold of the first process on the list is

CLOCS OS5 Reference Documents - Gallmeister 21

decremented by the last quantum used, and il the threshald goes to zero, then the process
becomes the running process. If the threshold of that process has not gone to zero, then the
highest priority process is chosen from the non-real-time queue and it becomes the running
Process.

To determine which quantum is used: il the current process is a real-lime process, then
its quantum is used without change. 1f the current process was laken from the non-real-time
queus, then the time-slice given it is either its quantum, or the threshold of the process on
the head of the real-time queue — whichever is smaller. This guarantiees that the process on
the head of the real-time queue will be scheduled when its threshold goes to 2ero.

Decrement the threshold of the most urgent process.
head (fastQueue) .threshold := head(fastQueue) .threshold - lastQuantum;

Determine whether the most wrgent process must be run vet.
if (head(fastQueue).thresheld == ZERO_THRESHOLD)

The set of all real-time processes with this urgency must be run now.
currProcess = degqueue(fastQueue);
lastQuantum := currFrocess,quantum;

run () ;
else

There is still time until a real-time process must be run,
S0 run a non-real-time process.
currProcess := degueue(slowQueue);
lastQuantum := min(currProcess.quantum,
head (fastQueue) threshold) ;

runi);
and .

Scheduling Decision Algorithm

CLOCS O8S Reference Documents - Gallmeister 22

Real-time processes that finish their runs before their quantum expices can relinguish the
processor voluntarily, When they do this, they are re-inserted to the real-time run queus for
another run when their uegency indicates it. This provides for periodic processes,

When preemptive rescheduling (a timer interrupt) oceurs, the current process must be
re-inserted in the run queue; I[the process 15 a non-real-time process, then its priority 15
decreased and gquantum is increased, as in a multilevel feedback queue[8], and the process
iz remnserted to the non-real-time queue. If the process is a real-time process, then it did
not finish its run before its gquantum expired, and this is an error condition. If the process
should still be run, then it is run for another quantum. Otherwise it is destroved and its
parent 1s notified, Whether to run a process once its deadline has passed is determined by
a switch settabile by the process itsélf

Run-To-Completion. In-arder to guarantee timely execution of some eritical function,
a process may indicate that it 15 to run o complelion, or allowed to run without possibility
of preemption. I the current process 1= to be run to completion, then all interrupts are
turned off, including the timer. When the process voluntarily relinquishes the processor,
then the scheduler determines how much time has passed and reschedules accordingly. T a
process Qagred for run-to-completion generates an exceplion, then the kernel regains control,
Il the process has an error in it resulting in an infinite loop, then the machine will hang.
Run-to-complétion maode is not to be used lightly!

CLOCS 8 Heference IDocuments - Gallmeister 23

1.3.6 The Communications Manager

Communication s a crucial component of multiprocess syvstems, It makes no sense to
structure an application as multiple processes if those processes have no way to interact,
Therefore, communication must be supported at a basic level in the CLOCS svstem. The
Communications Manager supports the abstraction of interprocess communieation, handling
the low-level details of mapping pages from one process to another, blocking processes and
awakening then approprialely, and copying data to and from process’s address spaces.

Three basic communications models are used in nearly all systems: signals, mailboxes,
and shared memory, The CLOCS Communications Manager supports all threes.

Signals

Signals are the cheapest communication method to implement and use because a signal’s
oceurrence carries little information with it. However, more information can be sent than
with UNIX signals:

Delivering Signals. A process signals another process by specifying which signal shouled
be sent and to which process. The process can optionally provide a one word argument which
will be passed Lo the target process’s signal handler; this allows signals to be used for passing
short messages. [t has been shown that small messages comprise the bulk of most interprocess
communication traffic{2].

Handling Signals. Processes respond to each signal by invoking fandler routines, De-
fault handlers exist; their actions range from doing nothing to immediate destruction of
the signaled process, depending on the signal. When a process-specified signal handler is
i place and the associated signal occurs, the process immediately jumps to the handling
routine. Handler routines remain in place until explicitly removed. Most signals can also be
blocked without invoking a handler at all. The defanlt actions for the signals, and the signal
names, are provided in a companion decument{11].

Masking Signals, While the target process is receiving a signal, new occurrences of
that signal are ignored, with Lhe exception of the first occurrence of such a signal.

Mailboxes

Mailboxes are the second utility for interprocess communication. Messages sent to mailboxes
are of static size. and they must be explicitly retrieved, althaugh multiple processes can share
a single mailbox, and a number of messages can be queued up in the mailbox. By specifying
different mailbox parameters, various useful communications paradigms can be realized.

CLOCS O8 Reference Documents - (Gallmeister 24

Sharing Mailboxes. The discipline for making mailboxes available Lo other processes
is tricky, so, for the sake of simplicity and familiarity and because it works, CLOCS uses the
same mechanism UNTX uses for connecting sockets[15,16],

Connecting to Mailboxes. Following the UNIX paradigm, a server process first cre-
ates the mailbox, and then places it in a specific systemwide location where other processes
van find it. Finally, it waits (blocks) for other processes to connect to the mailbox, at which
time there is a eircuit and the two processes can communicate. The creating pracess can
also wait for more processes to connect to the mailbox while still allowing communication
with and between the already-connected processes.

Implementing Mailboxes. Mailboxes exist in kernel space and the messages stored
in them are protected by the kernel, When a process creates a mailbox, it specifies all the
attributes of the mailbox: message and queue sizes, and two important behavioral parame-
ters:

o Stickiness is a swilch determining whether messages retrieved from a mailbox are
removed from the mailbox automatically or not, If the mailbox is “sticky” then mes-
sapes must be explicitly removed from the mailbox: otherwise they are automatically
removed as Lhey are received,

+ Behavior-on-Queue-Full 15 ancther switch which delermines how the mailbox re-
sponds if a process sends a message to it while its message queue is full. If the sending
is allowed, then the oldest message is deleted; olherwise, the send operation fails.

Onee two processes are connected through a mailbox, they can send and receive messages,
A process can block until a message is'sent Lo it, or it can simply check whether a message
is in the mailbox without blocking,

Cuene and Message Sizes, A mailbox can accept a number of messages, defined
at mailbox creation time as the queue size. The mailbox behavior when the queuns fills is
determined by the behavior-on-queue-full attribute of the mailbox.

Messages to a particular mailhox are all of the uniform size specified when the mailhox
is-ereated. The format of the message is not dictated by the kernel,

Different Paradigms for Mailbox-Based Communication. Mailboxes can be made
with widely varying attributes: message sizge, queus size, behavior-on-queve-full, and mailbox
stickiness, By varying these parameters, differeni communications models are supported:
these paradigms have been teported to be the communications methods most used in real-
time applications[19,14].

Synchronous Commmunication Without Data Loss, Synchronous communication
without data loss is implemented by setting quene size equal to one, and by disallowing sends

CLOCS 5 Reference Documents - Gallmeister 25

to the mailbox when the queue is full. Processes must therefore retricve any message sent
hefore a new one can be sent. If a synchronous send-reply discipline is required, then two
mailboxes can be used: one for the sends, and the other for replies,

Asynchronous Communication With Data Loss. Asvnehronous cemumuanication
with data loss is accomplished by setting the queue size to one and allowing sends to full
mailboxes. Thus, if & message is not retrieved fast enough, it is overwritten by the next
rressage,

Asynchronous Communication Without Data Loss. When behavior-on-queue-
full disallows sends to full mailboxes, but the queue size is greater than one, the mailbox
supports asynchronots communication without data less: This lets a certain backlog of
messages accumulate in the mailbox, bevend which the sends to the mailbox fail.

Asynchronous Commmunication, Losing Aged Data, Asynchronous communica-
tion with loss of aged data is supported by making the queue size greater than one and
allowing sends to full mailboxes: The oldest data will then be lost when the backlog (queue
size) 15 exceeded,

Sharing Memory

The third communication paradigm is shared memory, Shared memory provides the highest
bandwidth of data transfer, since data is written instantly to the address space of the sharing
processes. Memory can be shared among an arbitrarily large number of processes.

Calls to Support Shared Memory. A process shares its memory with other processes
by specifying pages of memory that are available to other processes, subject to access per-
missions. The segment, starting page, and number of pages to share are given in the call, and
the process is blocked until another process requests o share the memary. By specifying the
1) of the sharing process, the correct segment number, starting page, number of pages and
access mode (read-only or read-write), one process requests shared memory from another
process. The pages of memory can be mapped into Lhe requesting process's address space
al any location that 1z not already occupied by pages of memary. The requesting process
indicates the access mode it wants for the pages: read-only or read-write, The request is
granted or denied based on the permissions stated by the sharing process.

Synchronizing Access to Shared Memory. Access to shared memory must be syn-
chronized using some scheme, such as semaphores or monitors. CLOCS mailboxes can be
used to implement semaphores. In addition, the blocking behavior of calls through the Glue
Code makes implementation of monitors straightforward, using a separate process for each
monitor.

CLOCS Q8 Relerence Documents - Gallmetsier 26

Persistence of Shared Memory. Shared memaory is persistent for the life of all of
the sharing processes — if the original process frees the pages of shared memory, the shared
mernory still remains, until the last process is done with it.

CLOCS OF Reference Documents - Gallmeister a7
1.4 Current and Future Work

This seciion briefly summarizes the current work being done on the CLOCS kernel and
machine; and speculates on future work that may be undertaken.

1.4.1 Kernel Implementation

The kernel as specified is being implemented by a team of students in a software engineering
class. The kernel is heing built to run on Sun Microsvstems waorkstations under “fest rigs™,
which will allow the function of the kernel to be tested belore a simulator for the CLOCS
machine s built. When the kernel and simulator are fully constructed, context-switching
and other benchmark programs will be run to measure the performance of the entire system
against commercially-available machines: If simulation studies indicate merit, then a proto-
type CLOCS system will be built and used for further experimentation. The kernel will be
extended with additional functional modules neeessary for running actual applications and
the hypotheses of the group will be tested out under real circumstances,

Chapter 2

Kernel Modules Specification

2.1 Overview

The CLOOCS praject is investigating the tradecls incurred in designing an architecturs whose
major objective is achieving extremely low context switch times, We have designed an archi-
tecture, CLOCS (Computer with LOw Context Switch time), which can theoretically switch
contexts at a rate orders of magnitude greater than a Sun workstation or YAX minicomputer.

The CLOCS architecture has made tradeoffs in arder to achieve such low context switch
times. In partienlar, all operations are memory-to-memory; there is but one register, and
there is no specialized computalional capability that would require loading funloading of state
information. The CLOCS machine will not provide sptimal performance for single-threaded,
computationally intensive applications, [t is more suited towards applications where events
provoke simall, fast responses.

The CLOCS architecture makes it possible to drastically reduce the overhead necessary to
run multitasking applications. Many of the tasks usually associated with context switching

— saving and restoring processor state, saving and restoring MMU state — have been distilled
out of the architecture.

2.1.1 Real-Time and Server Applications

Aspart of this researcl, weare looking at applications which will benefit from such a machine.
Real-time applications are often constructed as a large number of communicating pro-
cesses, If a real-time sysiem of this nature 1s run on a uniprocessor machine, then context

switching behavior hecomes of eritical importance,

Real-time applications, though, are only a special case of a more general class of prohlems
which the CLOCS architecture can benefit, This is the class of systems which;

28

CLOCS OF8 Reference Documents - Gallmeister 29

o are structured as a large number of active proeesses

s require effective emulation of a multiprocessor

The value of the "large number” of aclive processes is a fugzy one; more relevant is
the number of processes requiring the processor per unit time. The larger the number of
processes requiring the processor in an interval of time, the higher the frequency of context
switching will be;, The amount of time cccupied by context switching rises: bevond some
threshold, the processor is spending most of its tirne simply moving from one process to
another,

Examples of other applications that might benefit from the CLOCS architecture are:

e real-lime systems
o network disk servers

e colmimunications servers

2.1.2 Operating System Required

The CLOCS architecture is unigue in the universe of computer architectures, The TMSG900
is the closest thing to it that we hiave found,

An operating system provides the abstaction of a virtual machine to the programmer. As
such, modern operating systems bring out and make available the features of an architecture,
Sinee no modern architecture is oriented towards rapid context switching on a uniprocessor,
we find no existing operating svstem that will effectively exploit the CLOCS architecture,

We need an operating system which provides rapid context-switching capability, as well
as providing the programmability that current operating systems afford.

2.1.3 A Complete Programming System

A programming system is composed of more than a machine and an operating system.
Language compilers, debuggers, link editers and a hast of programming otilities are all
required as well,

The CLOCS praject has a cross-compiler for the C langnage, and work 15 proceeding oh
an assemblerflink editor suite. However, these tools are secondary, as the CLOCS machine
is only a paper architecture at present, When it is built, as a shnulator or as metal, a
pragram development environment will be critical. However, this document addresses only
the requirements far the operating system,

CLOCS 08 Reference Documents - Gallmewster a0
2.2 The CLOCS Operating System

To achieve minimal conlext switch times, the CLOCS architecture lias removed all possible
state from the processor.

2.2.1 Mechanisms for Achieving Rapid Context Switch Rates

The CLOCS operating system will provide rapid context switch rates in the same way: by
removing all possible state from the calculations made by the operating system. Alan Jay
Smith {7), of Berkeley, has said thal any program can be made to run five times as fast,
with the side effect of increasing the size of the program by a factor of five:. This hyperbolic
claim simply means that algorithms can be made to run faster by storing previous results,
and in general not computing anything that's been computed before,

This discipline will bear fruit in the CLOCS operating system. Switching context will
be accomplished by just loading up a new process 1D, State pertaining lo processes will be
stared for the lifetime of the process in a readily accessible place, with no apecial movement
of data required 1o make anolher process aclive,

2.2.2 Policies for Achieving Rapid Context Switch Rates

Simply by providing a mechanism to perform context switched rapidly, we have not guar-
anteed that the operating system will switeh context rapidly, Also required are policies to
support the attainment of rapid context switch rates.

Specifically, path lengths through the kernel, and preemptability of the kernel must be
addressed.,

Preempting the Kernel

UNIX! is an extremely popular operating system among the scientific community, A number
of groups have attempted to provide UNIX with real-lime capabilities to further cater lo the
needs of data acquisition and process control applications (VRETX, RTU, PGSIX Real-time).
The mazor hurdle encountered by these groups is the monolithic nature of the UNIX kernel,
This nature of operating systems is not specific to UNIX, and it makes rapid response to
events very hard.

The essential problem is that, once in the kernel for any reason, a path through the kernel
must be traced without interruption, or else the integrity of the operating system can he
compromised, These path lengths can easily require many milliseconds to traverse. During
those times, the kernel may not be pre-empted by a process, no maller what its priority.

LUNIX is a trademark of AT&T Communicatinns.

CLOCS GF Keference Documents - Gallmeister a1

The solution to this problem, of course, is to make paths through the kernel shorter,
or allernatively, to segment the paths into component atomic operations, with rescheduling
checkpoints along the way, State-changing operations must be atomic; an operating system
must perform these actions swiftly to achieve real-time responsiveness,

The CLOCS operating system kernel will performy small, rapid changes to the state of the
machine. In between these ndivisible operations, rescheduling of the processor may accur.
The keenel tscll will always be ready to run, and will n fact be run when the urgency of
real-time tasks passes.

Specific Policies for CLOCS

Teo oblain rapid atomic operations, we first separate the functionality of the kernel into
modules. Operations within the modules are atomic; in passing from one module to ansther,
rescheduling may oceur:

This policy, as a side effect, also permits the expansion of the operating system at a later
date.

The modules of the CLOCS kernel each implement a specific abstraction whicl is essential
to the operation of the machine. Three modules are specified to comprise the innermost
kernel of the CLOCS operating systeny;

s Memory Management
o Process Management

s Communications Management

In addition; a small. amount of ghie is specificd to hold the pieces of the operating system
together.

CLONTS O8 Reference Documents - Gallmelster 32
2.3 Memory Management

(Abstraction: Virtual Memaory)

The Memory manager provides the interface to the CLOOCS MMU, Given the physical
memory of the machine, it provides the abstraction of virlual memory to higher layers,

[oulines are provided to allocate and free segments and pages on a peér-process basis; an
assitional routine allows changes to the MM U page control bits to support permissions and
te allow processes to influence the paging algorithin,

No checking of process access rights s done at thiz layer — it iz strietly mechanism for
piaying with the MMU: In fact, the memory manager does not know what a process 15 — it
simnply associates memory with process 1Ds

1. allocatePages:

o PARAMETERS (processld, segmentNumber, slaviing_page, numberoofpuges)

o RETURNS success_or_failure;

o BNECUTION: May be executed by any process: the PID of the issuing process
becomes the processld parameter.

s Allocates the given number of pages from the free page pool, Updates the MMU
fur Ahe process identified, so that virtual pages, located in the given segment and
starting with the indicated starting page are mapped through to the allocated
physical pages.

s FRRORS:
— FAIL_BADSEG: The process doesn’t have aceess to that segment,

— FATL.PAGEINTUSE: Ong or more of the virtual pages specified are alrendy
mapped through to physical pages.

— FAILNOMEMORY: Not enough physical memory o satisly the request.
2, freePages:

o PARAMETERS (processld, segmentNumber, starting_page, number_af_pages)

o RETURNS success_or_furlure;

s EXECUTION: May be executed by any process: the PID of the issuing process
becomes the processld parameter,

o Frees the given number of pages {rom use by the process. Updates the MMU,

invalidating the appropriate vittual pages in the given segment. IF ne other pro-

cesses are nsing the pages of physical memory, then they are freed back to the

memory pool. Freed pages are cleared.

ERRORS:

— FPATL.BADSEG: The process doesn’t have access to that segmeit.
- FPAIL.NQPAGES: Cine or more of the virtual pages specilied are already free.

3. allocateSegment:

LTS 08 Reference Documents - Gallmelster 33

PARAMETERS (processid)
RETURNS seqgmentNumber,

EXECUTION: May be executed by any process: the PID of the issuing process
becomes the processld parameter.

Allocates a segment that isenrrently unused and assigns it fo the specified process.
o Used in creating processes, among other things.
ERRORS:

FAIL NOMEMORY: No free segment exists

4. freeSegment:

o PARAMETERS (processId, segmentNumdber)
e NETIUTRNS success_or_fatlure;
o EXECUTION: May be execated by any process: the PLD of the issuing process
becomes the processld parameter.
s Frees up the specified segment - the process can no longer use it A side effect is
the [frecing of all pages currently in the segment.
o FRIORS:
— FAML BADSEG: The process does not have access to that sesment,
— FALL PRIMARYSEG: The process is trying to free one of its primary seig-
ments,

3. freeAll:

PARAMETERS (processid)
RETURNS sucecess_or_failure;
EXECUTION; May be issued only by the kernel,
Frees all segments and pages associated with the process identified.
ERRORS:
~ FAIL_BADPID: Nosuch process,

L]

G, map:
o PARAMETERS (fromProcessld, fromStartPage, loProcessid, loStariPage, num-
bereof_pages, mode)
o HETURNE suceess_or_fatlure;
o EXNECUTION: May be issued only by the kernel.

o Takes the number of physical pages, located at startinglPage in the specified seg-
ment of the process named lromProcessld | and maps them inta the address space
of the process named toProcessld, starting at toStartPage, The pages are mapped
in with the given access mode.

7. petPageStatus:

o PARAMETENRS [processid, scgmentNumber, pageNumber)
o HETIIRNS pageSlats;

CLOCS 08 Reference Documents - Gallmeister 3

o EXECUTION: May be executed by any process: the PID of the issuing process
Liecomes the processld parameter.

o Returns the permission and page-control bits dssociated wilth this virtoal page of
the specified process.

e FREORS!
FAIL_BADPID: No such process,

2. setPageStatus:
o PARAMETERS (processld, segmentNumber, page Number, pageStats)

RETURNS success_or_fuilure,

EXECUTION: May be exdculed by any process: the PID of the issuing process
hecomes the processld parameter,

s Sets the page control hits for the specified virtual page of the process to the
contents of pageStats.

ERRORS:
— FAIL BADPID; No such process.
— FATL_BADSTATS: Invalid stats structure;
FAILBADPAGE: The specificd process does not have access to the specified
page.
— FAIL BADSEGMENT: The specificd process does not have access ta the
specified segment,

CLOCS 08 Reference Documents - Gallmeister 35
2.4 Process Management

{ Abstraction: Processes as Schedulable Entities)

The process manager manipulates virtual pages, associated with process TDs, and pro-
vides the abstraction of schedulable processes. The process manager has responsibility for
the scheduling of the processor, as well as for maintaining process permissions.

[n this module, we create the abstraction of a process, and we talk about processes
doing things to other processes, However, notions of communicating with other processes
are avolded. 'That is the responsibility of the Communications Manager. KA., we have a
blocking mechanism here, but not an event-signalling mechanism.

In this module, the notions of permissions and ULDs (user 1Ds) are introduced, User 1Ds
correspond simply to numbers attached to each process. Permissions are granted or denied
based on strict matching of UlDs, Two processes with identical UIDs can do things to each
other. Processes with nen-identical UTDs cannot da things to each other:

As in UNIX, process hierarchies exist, A process that credtes ofher processes s the
parent of those processes. Parents can send signals, ete., to descendant processes even if
those processes have swilched effective user 1Ds,

If a parent process is destroved, (he children can continue, They are signalled {see Lhe
comminications manager specification), but that signal can be ignoted.

1. createProcess:

o PARAMETERS (iSegment Number, oSegment Number, entryPoint, argument, pri-
erily, urgency)

o HETURNS process_ad

o EXECUTION: May be executed by any process: the created process inherids the
user 1D of the creating process,

s Creates a new process whose primary lseg and Osep are (he specified ones. Re-
turns the ID of the new pracess.

o cutryPoint may be set to the pgeudovalue ENTRY PORK, m which casze the
new process is an identical copy of the ealling process: the ealling process is
returned the identity of the created process, while the created process is returned
SUCOESS.

o This routine suffices to create processes distinet from the crealing process (a' la'
forkfexec), to create identical but distinct processes (a' la® fork), and to create
identical, nondistinet processes (lightweight processes, for which there 15 no UNIX
analogue],

o« ERRORS:
— FAIL_BADSEG: Those segments aren’l available,

— FAIL_BADFORK: entryPoint was ENTRY_FORK, but the segments speci-
fied are not the primary segments-of the calling process.

CLOCS 08 Reference Documents - Gallmesister 36

2. destroyProcess:

PARAMETERS (processld)
RETURNS success_or_farlure
EXECUTION: May be executed by any process: The process id of the calling

process hecomes the processld parameter to the call

Removes the process from scheduling consideration. PFreesg all the memory in use
Ly the process, Makes Hs segments available, Updates the MM, invalidating the
appropriate virtual entries. I no other processes are using the pages/segments of
memory, then they are freed back to the memory pool,

ERRORS:
— FAIL BADPID: Nosuch process.

3. setuid:

PARAMETERS (processfd, Uid}

RETURNS success_or_fatlure

EXECUTION: Can only be éxecutled by Lhe kemnel.

Sets the effective user 1D ol the process. Aflerwards, the process will have all
access rights of that user,

ERRORS:

— None as yet.

4, switehUid:

PARAMETERS (processid)
RETURNS suceess.or_failure

EXECUTION: May be exceuted by any process: the process 1D becomes the
processld parameter.

After a call to setuid(), two effective user 1Ds exist for the proeess. suwalchlVid
allows the process to switch back and forth between the two 1Ds. This allows
setting user ID to @ privileged mode for a particular operation, then setiing it
back after the operation, to decrease security holes

KRERORS:
FATL.NOALTERNATE, No alternate effective user 11D exists for the process.

5. changePriority:

PARAMETERS (processld, newPriorily)
RETURNS old Priorily
EXECUTION: May be executed by any process,

The specificd process’ priority is changed to the new wvalue. The old value is
returned,

ERRORS:
— FAIL BADPID: Nosueh process.

CLOCS OF Reference Docuwments - Gallmeister ar

FAIL_PERMISSION: The sending process does nol have permission Lo chiange
the other process’ priority.

8. chanpgeQuantum:

o PARAMETERS (processld, newtlnantem)
o QETURNS old@Quantim
o EXECUTION: May be executed by any process,
The specified process’ quantum (time slice for running the process) is changed to
the new value; The old value is returned.
ERECORE:
— FAIL_BADPID:; Nosuch process,

— FALL PERMISSION: The sending process does not have permission to change
the other process’ guantum,

7. changeUrgency:

o PARAMETERS (processld, newUrgency)
a RETURNS oldUrgency
o EXECUTION: May be éxecuted by any process,

¢ The specified process' urgency (time within which the process must be run) is
changed to the new value, The old value is returned.

e ERRORS,
— FAIL_BADPID: Nosuch process.

FAIL PERMISSEION: The sending process does not have permission to change
the other process’ urgency.

5. processStats:

» PARAMETERS (processld)
e AETIRNS processControl Block
s EXECUTION: May be executed by any process.

o Statistics about the process are returned, including: priority, urgency, quantum,
scheduling state, memory statistics, and so forth:
ERRORS:
— FALL BADPID: No such process,
— FPAIL_PERMISSEION: The sending process does not have permission to see
the other process' statistics.

9. getProcessld;

o PARAMETERS ()

s RETURNS processld

o leturns the process 1D of the issuing process,
o MRRORS:

— Nene, as yet.

CLOCS OF Reference Documents - Gallmeister a8

10, unBlock:

o PARAMETERS {cookie)

o RETURNS success_or_failure

FEXECUTION: May be execuled only by the kérnel,
Wakes up all process waiting on the particular cockis.
ERRORS:

— Nomne, as yet,

11. sleep:

o PARAMETERS (processid, {ime)
o RETURNE success_ar_farlure

s DXECUTION: May be executed by any proecess. Only the kernel may put other
processes Lo sleep, User processes can only put themselves to sleep, For all but
the kernel, the ID of the calling process mest be the processTd parameter.

The process is sent into the blocked state for the specified time, which is a number
of elack ticks: The clapsing of this interval is considersd an event like any other
evell a process may block on,

ERRORS:

FAIL_PERMISSION: The process does not have permission to put ancther
process Lo sleep,

12. blockOrwWise:

o PARAMETERS (processid, cookies)
o RETURANS success_or_farlure
EXECUTION: May ouly be execuled by the kérnel,

o Sends the process into the blocked state, awaiting un Block()ing of one or more of
the specified events,

Note: if the process is already blocked on the O of some events, these evenls
will Le added Lo the list, I[the process is already blocked on the AND of some
events, then the call will fail:
ERRORS:
— FAIL BADPID: Nosuch process,
FATL.ANDWISE: Process is waiting on the AND of some events.

13, blockAndWise:

o PARAMETERS (processid, covkies)

o AETURNS success—or_failure

s EXECUTION: May only be executed by the kernel.

s Sends the process into the blocked state, awaiting unBlock()ing of all of the spec-
ifiad conkies,

s Note: if the process s already blocked on the ANL) of some cookies, these events
will be added to the list. If the process is already blocked on the QR of some
cookies, then the call will fail.

CLOCS 08 Reference Documents - Gallmester

s ERROAS:

- FATI_LBADPID; Nasuch process.
— FATL-ORWISE: Process 13 waiting on the OR of some events.

33

CLOCE 08 Referenée Documents - Gallmeister 40
2.5 Communications Management

(Abstraction: communicating processes via & number of communications parvadigms)

There are four meanz of interprocess communication which the CLOCS operating syslem
supports: interprocess signalling, evenls, message passing, and shared memory.

Interprocess signalling consists of the ability for a process to send a signal 1o another
process. Unlike UNIX signals, signal handlers are passed a parameter of type signalMessage,
which can convey extra information, Sigoals may result in a number of eutcormes:

1. Nothing: asignal can be ignored by 4 process,
2. Termination: a signal can result in the immediate termination of the process.

3. Handler Response: a signal can result in a particular action.

The reutines supporting this ability are signal{), and handleSignal{).

Message passing allows messages of fixed slge Lo be passed among processes. Messages are
sent hy a process executing the sendMessage() systern call, which results in a message being
deposited in a mailbox. DProcesses can wait for messages to appear in mailboxes by use of
the awarthlessage() call: they can block awaiting receipt of a message, or they can check for
mesgages without blocking, Mailboxes are created by the mailboxCreate() call: A mailbox is
bound to aaystem-wide location by the mailboxBind() routine; a process may obtain access
toa mailbex by using the mailboxAccess() call. For such a call to be sucesssful, the creator
and binder of the mailbox (a single process), must currently be executing a mailboxAccept()
eall, Communication is omnidirectional; any process waiting on a mailbox may receive any
message deposited in the mailbox, However, if & mailbox is créated sticky, so Lhe messages
remain in it until removed, then only one process can aceess the message at a time. Messages
are made available to processes on a first-come, first-served basis; mailboxes can be created,
as well, so that messages remain in the mailbox until explicitly removed by a process. All
processes using a mailbox are peers; any process can send to the mailbhox; any can read from
it, and any can remove messages from it*. Messages of zero length may be specified as well;
this allows mailboxes to be used as semaphores.

The final form of interprocess communication is shared memory, Calls allow a process to
make its memory available to other processes; -an arbitrary number of processes may share
a range of mamory, Synchromization of access s the responsibalivy of the processes, and can
easily be done using a mailbox as a semaphore gnarding the entive range of memory,

. signal:

o PARAMETERS (siynalNutaber, processid)
o HETURNS suecess_or_farlure

FDirectionality of messages might be better for some applications, but breaks the use of mailboxes as
semapliores,

CLOCS Q5 Reference Documents - Gallmerster 41

s EXECUTION: May be executed by any process.

o Like the UNIX kill{}) mechanism, this routine sends the specified signal ta the
specified process,

s FRRORS:
— FAIL_BADPID: No such process,
— PATL_PERMISSION: Permission to signal that process was denied.

2, signalP Group:

o PARAMETERS (signalNumber, processGroup)
s RETURNS success_or_failure
s EXECUTION: May be executed by any process,
s Like the UNIX killpg() mechanism, this routine sends the specified signal to-all
processes in the specified process group.
FRRORS:
— FATL.BADGROUP: No such group.

FAIL_PERMISSION: Permission tosignal at least one process in the group
was denied, hased on UlTk-based permissions.

L]

3, handleS8ignal:

o PARAMETERS (processid, stgnalNumber, handlerRoutine)
o RETURNS successor_failury
s EXECUTION: May be eéxecuted by any process, The identity of the process
executing the call becomes the processld parameter.
s Anaiogous to the UNLIX signal() call, this routine specifies that, upon receipt of
the named signal, control should pass to the routing handlerRoutine.
o Three psendoroutines are allowed as well:
SIG_DIE specifies the signal should kill the process.
— SIG IGN specifies the signal should be ignored.
— SIG_DEFAULT specifies the signal should be handled in the defauli way
(either SIG.DIE ar SIGIGN, depending on the signal),
s Signal handlers, as in 4.2B5D UNIX, are refained unlil éxplicitly changed,
ERRORS:
FAIL.BADPIN: Nosuch process.
— AL BADSIG: Noguely signal.

4, mailboxCreate:

s PARAMETERS (messageSize, quoncSize, stickiness)
o RETURNS muailbozid
o ENECUTION: May be exccuted by any process.

o Creates a mailbox. The mailbox is not usable until 16 1t 15 bound to a system-wide
location using mailboxBind().

s Messages deposited in the mailbox will be of fixed size messageSize.

CLOCS 08 Reference Documents - Gallmeister 42

Up to queneSize messages may be deposited before buffers are exhausted.

If the stickiness parameter 18 MAILBOX STICKY, then messages sent to the
mailbox are retained in the mailbox until a process explicitly rémoves them. [If
the parameter is MAILBOX NONSTICKY, then messages are removed {rom (he
mailbox as they are received by processes,

If the retain parameter is TRUE, then sending messages to that mailbox when
the quene is-full will not be successful, If the parameter iz PALSE then sending
messages Lo a mailbox with a full queue will result in the oldest message being

deleted.
ERRORS:
— FATL_SIZETOOBRIG: Message size specified s too large.
FAIL_ QUEUETOOBIG: Queus size specified is too large,
— FAILNOMEMGRY: Out of physical huemor}'.
analague of UNIX socket(),

5. mailboxBind:

PARAMETERS (mailborld, systemAddress)
RETURNS suceess_or_fatlure

EXECUTION: May be executed by any process.
Binds the mailbox to the specified system address,
ERRORS:

— FATL_PERMISSION: Another mailliox hag already been bound to that system-
wide location.

FAIL BADMAILBOX: The specified mailbox is invalid,
analogue of UNIX bind{).

fi. mailBoxAccept:

PARAMETERS (processid, mailborld, flags)

RETURNS success_or_fatlure

EXECUTION: May be executed by any process, The identity of the process
executing the call becomes the processld parameter.

The process is blocked until some sther process executes a maitbos Access() all,
at which point the processes both have access to the mailhox.

If the call specifies MATLBOX. UNIQUE, then the mailbox will be duplicated
when a connection is made, and communications will praceed through that mail-
box, leaving Lhe original maillhiox free to accept more connections.

FRRORS:
— FAIL_BADPHE: Nosuch process.
FAIL.PERMISSTON: Another mailbex has already been bound to that system-
wide location,

FATE_BADMATLBOX: The specified mailbox is invalid,
analogue of UNIX listen()/aceepii).

CLOCS O8 Reference Documents - Gallmetster 43

Y

7, mailboxAceess:

o PARAMETERS (processid, syslemAddress)

o HETURNS mailboxld

o EXECUTION: May be executed by any process. The identity of the process
executing the call becomes the processld parameter,

L]

Allows the specilied process access 1o Lhe mailbox which is accessible through the
specified svstem address,

« ERRORS:
— FAIL BADPID: No such process,
— FAIL_BADMAILBOX: No mailbox is currently bound to Lhe system address,
FAIL CONNREFUSED: Connection refused by the creator of the mailbox.
o analogue af DNIX connect(),

8, sendMaessage:
s PARAMETERS (processid, mailbozld, message)
RETURNE suceess_or_failure

EXECUTION: May be executed by any process. The 'i.'l']l:‘:'lﬂ.jf.}' of the process
executing the call becomes the processld parameter.

» Sends the included message from the named process to the mailbox. The processz
must have bound the maithox to a system location earlier,

FRREORS:
— FAIL_.BADMAILBOX: The specified process has not placed the mailbox in

a connected state by either the mailboxAceepl() or the mailboxAccess() call,
— FAIL_BADPIND: Nosuch process.

o analogue af UNLY send()

9. await Message:

o PARAMETERS (processhd, mailbazld, message Buffer, timeout)
o AETURNS success_or_fatlure

EXECUTION: May be executed by any process:

s The specified process is blocked until a message is sent to one of the specified
mailboxes, or until the timeoutl periad is exceeded, All specified mailboxes must
have heen bound to svstem-wide locations earlier,

ERRORS:

— FAIL_BADMAILBOX: The specified process has not bound some of the mail-

hesees to system-wide locations by either the bindMailbos() or the attachMail-
box(} eall.

FAITL.BADPID: No such process,
— FAIL_TIMEOUT: No message was received within the timeout period.
o analogue af UNIX reco/BLOGK).

L]

10, checkMessage:

CLOCS OS Reference Documents - Gallmeister 4l

o PARAMETERS (processid, mailbozld, messageBuffer)

RETURNS sucecess_or_farlure

EXECUTION: May be executed by any process.

The specified process retrieves a message if one is present in any of the mailboxes;

the process does not block, though. All specified mailboxes must have been hound
to systemewide locations earlier,

FRREORS:

— FAIL_BADMAILBOX, The specified process has not bound some of the mail-
beomxes tosyatem-wide lositions by cither the bindMailbox() ar the attachdail-
Lo) eall

— FATL_BADPIY: No such process.

FATL.NOMESSAGES: No messages were present,

s analegue of UNTX rectif NON.BLOCK).

11, shareMemory:
o PARAMETERS (processid, segment Nwmdber, pageNwmber, numberOfPages, per-
missions)
o RETURNS success_or_failure

EXECUTION: Can be executed by any process: the D of the process excenting
the call provides the processld parameter.

o Makes a range of memory available for sharing by other processes. The process
tos not block, but rather, is sent a signal when the memory is actually shared
with another process.

e Permissions include read, write, and share, [or each of processes in the same group,
and for all other processes,

Il a page of memory is being shared by multiple processes, then the page is not
released until the last process sharing the memory releases the page.

o The process blocks until anather process requests access to the shared aren.
ERRORS:

— FATL.BADPID: Nosuch process:

— FAILLALREADY: Some of the pages specified are aleeady being shared.
FAIL BADSEGMENT: The process does not have aceess Lo Lhat segment,
FALL _BADPAGE: The process does not have access to one or more of those
praLgaes.

FATLAINVALID: The permissions given are bogus,

12, mapInMemory:
o PARAMETERS (processfd, source Process, sourceSeg, souwrcePage, laryelSeg, far-
getPage, numberQffages; accessMode)
o RETURNS success_ar_farlure

o FXECUTION: Can be executed by any process: the 1D of the process execufing
the call provides the processld parameter,

CLOGCS 08 Reference Documents - Gallmeister 45

e The process requests to map the memory of the target process, in the specified
segment and page, into its own address space at the specified location, Permission
is requested bo read or write,

e Once a process has mapped in another page’s momory, it can release the memory
by freeing it as if the memory helonged to the process.

o BRRORS:

— FAIL_PERMISSTON: Permission denied.
— FAIL ALREADY: Those pages are alrcady present in Ahe process.

2.6 Glue Code

Abstraction: Objecis

The glue cade is the lowest level of the kernel code. 1L is the means by which the different
modules communicale with each other. The glue code performs the following functions:

e Handle mtermodule calls and traps
e Support process use of entry points

» Determine, at each intermodule call, whether the calling process can make the partic-
wlar call,

e Allow rescheduling and precmption,

2.6.1 Intermodule Communication

Intermodule communicstion is done through traps (system calls). The calling process spec-
ifies the target process and the entry point and traps into the glue code. The glue code
determines whether the call can be made by that process. I it can, then the glie code
simply context-switches to that place. If the call cannot be made, then the glue code returns
an error to the calling process.

Processes make their entry points avaiable to all processes by notifying the glue cade via
the entry eall to the glie code,

2.6.2 Traps and Interrupts

The glue code handles some traps (its own system call traps and intermodule communication
traps}; but the majority of traps and interrupts will vector directly to the appropriate han-
dler. For instance, timer interrupts vector directly into the process manager for rescheduling
gETVIES.

CLOCE Q8 Reference Documents - Gallmeister 44

The glue code permits kernel preemption implicitly because il often runs with inlerrupts
enabled, Tnterrupts are disabled when the glue code {8 processing its own service calls (entry,
unEntry, unProcess): at all other times interrupts can oecur, Specifically, on calls from one

kernel module to another, interrupts can oceur, Kernel modules themselves always ron with
interrupts dizabled.

When an interrupt 15 to vector directly to a user routine, the glue code may well note the
fact and adjust scheduling parameters accordingly — especially if the data structures permit
constant-time updates.

ag well, a special calling paradigm should Le adopted, wherein the process TD of the
calling process i made an mplicit parameter to each externally available eall. This facilitates
inlerprocess communication by making sure that the information is always present,

2.6.3 Glue Code Calls

s cutry:

— PARAMETERS {entryPoinl, endrgNumber, permission)
~ RETURNE suceess_or-fatlure
- EXECUTION: May be executed by -any process.

— 'T'he entryPoint, an address in the text space of the process, is made a valid entry
point for intermodule communication. It 15 addressed with enteyNumber. The
permission parameter is used to specily whether any process can call this routine,
or whether it is limited to just the kernel. Ounly the kernel can limmil its entry
points.

— ERRORS:

¥ FAIL_ PERMISSION: The process tried to Hmit access to the entry point
illegally.

FANLLALREADY:This is an entry point already (the entryNumber is already
in usel.

s unEntry:

— PARAMETERS {enlryNumber)
~ RETURNS suceessor_failure
— EXECUTION: May be executed Ly any process.
— The speeificd entey point is made invelid 05 an entry peint for this proccss.
- ERRORS:
+ FAIL ALREADY: The entry point is alrerdy inwalid,

e unlrocess:
— PARAMETERS (processid}
~ RETURNS successoor_failure

— EXECUTION: May be executed by any process. |f the process 15 not a kernel
process, then its ID must match the processld parameter.

CLOCS 95 Reference Documents - Gallmeister 47

— Removes all entry points for Lhe specified process.

= PALL PERMISSION: A non-kernel process tried to invalidate another pro-
cess’ entey points,

Chapter 3

Scheduling: Algorithms and
Ideas

3.1 Requirements

The scheduling algosithm must meet slightly different regquirements from other, more scan-
dard scheduling algorithms,

3.1.1 Fine Granularity of Scheduling

One objective of the scheduoling algorithmis to allow process scheduling to ocour with a finer
rranularity than normal,

3.1.2 Fair Multiprogramming

Fart of the reason for desiving finer granularity of scheduling is to allow realtime processes to
run at the appropriate time, while still letting non-realtime processes get to the processor,

3.2 Definition of Process

Many definitions of processes have been proposed. We do not need to get involved in the
philosophical issues of what a process cxactly is.

In this document, the terms “process” and “task™ are used interchangeably.

48

CLOCS 08 Reference Documents - Gallmeister 49

3.2.1 The “Schedulable Entity”

For the purposes of this document, we refer to a process as “the schedulable entity™ | aller
Deitel[7T]. A process is defined simply as one of the things we are scheduling. Specifically,
process 15 denoted by a dala structure called a process control block, or peb.

Attribnutes of Procosses

Processes, as schedulable entities; have a number of attributes that control exactly how they
are scheduled.

s Priority: Each process has a priotity, reflecting its importance relative to other pro-
TEES0S,

o Urgemcy: Fach process also has an urgency, which determines how quickly 1t must
Le run alter becoming veady, A realtime process is denoted by the fact that it has a
urgeney that is greater than gero. Non-realtime tasks have urgency zera.

s Interaction of Priority and Urgency: Priority and urgency are not treated exactly
orthogonally, Urgency takes precedence, Processes requiring urgent execution simply
must be run: When no process’ urgency demands running, then the priovities are
examined tosee which task iz the most important,

It is not clear whetlier non-realtime tasks should receive preferential treatment when
seheduling: by priority. This scheduling algorithm will schedule non-realtime tasks
preferentially; the realtime processes will be scheduled by priority only when no non-
realtime tasks are ready to run,

s Quanta:; Bach process also has a quantum associated with it This determines how
long the process may be run for, before the operating system will interrupt and resched-
ule,

A non-realtime task’s quantum s varied according to its scheduling behavior, as de-
scribed below, A realtime task's quantum is varied as well, but in a different way. The
scheduler wants to provide as much time as the realtime process needs to do its job.
The quantum is inferpreted as the estimated run-lime of a realtime process.

s Threshold; Urgency and quantum are values that den’t change as the process moves
towards scheduling, A realtime process, when it becomes ready, should be run in
{urgency - guantum] clock ticks. This value 15 stored as the process’ threshold., The
threshold is the wvalue that is actually varied while the process is enguened for the
processar. When the threshold goes to gero, then the process must run.

Al time-related quantitics, ineluding urgency, quantum, and threshold, are stored in
units of clock ticks for ease of computation,

s RunToCompletion: A reallime process may need to be run to completion whenever
it is run. If so, then the runToCompletion attribute should beset. I7 il i set, then the
process will be run with all interrupts masked,

CLOCS OF Reference Documents - Gallmeister 50

3.2.2 Non-Realtime Processes

Naop-realtime processes proceed with no particular urgency, or deadline; they are scheduled
solely on the basis of their priority and their quantum.

3.2.3 Realtime Processes

Realtime processes posess urgency as well as prioeity; they are scheduled first by their v
geney. and second by their priority.

3.3 Scheduling Data Structures

Thescheduling time must be made as small as possible to meat CLOCS goal of rapid context-
switching time, The time to determine which process should run next can be reduced by
some clever use of data structures,

3.3.1 Purgatory

Processes that are not runnable are stored in a data structure called purgatory. Processes in
purgatory are blocked on gome combination of events, either the ANI} of events or the (1
of events, One of these evenls can be a clock fime event: when the specified amount of time
passes, the time event las occurred.

Access Requirements for Pargatory

Given the oceurrence of a particular event, finding and uwpdating all processes’in purgatory
awaiting that event must happen rapidly. Because a desideratum of realtime systems is that
they respond swiltly to events, this update time 15 more essential than the thne for adding
a process to the structure. Also, removing a process from the structure must he fast.

Access Melhods fur Purgalocy

A multilinked structure of some sort seems indicated, Perhaps multiple hash tables or
multiple trees will prove effective.

CLOCE 08 Reference Documents - Gallmesster 5l

3.3.2 Queues

Runnable processes are stored on two priority queues. One gueue, called the Slow Queue,
stares non-realtime procesass. The other queue iz used for realtime processes, and it is called
the Fast Queue.

Slow Queone

In the slow queue, processes are sorted by priority into levels, Deitel[7] calls this scheme a
“rltilevel foedback quene” . Quanta shiould be adjustable as process priority decreases.

Fast Quene

lu the fast queue, processes are sorted first by urgency, then by threshold, then by priarity,
Since urgency is & number of clock ticks that decreases which each timer interrupt, it would
he expensive 1o go through this entire list adjusting each urgency by a constant value,
Instead, urgency is used as a differential guantity: each process’ urgency is treated as a
relative number of ticks, not as an absolute. Thus, if the Arst process has an urgency of 5,
it st be run in 5 ticks; if the second process has an urgeney of 2, then it must be run in
T ticks.

Accoss Requirements for the Quencs

The slow quede is accessed on the basis of a process’ priority. The [ast queuwe &5 more
complicated. Processes on the fast quene are accessed in order of thresheld, then priority.
As well, the fast quene is-a differential queue, meaning that the threshold of the process at
the head of the queue can be modified. In addition, there can be a number of processes all at
a given threshold. The total of the quanta for all these processes must be readily available,
in order to determine when that set of processes must be run. In addition, the fast queue
can be accessed by priority, for nen-deadfine-scheduded vasks (see below).

Priovity and Differential Quenes

Aho, Hoperoft and Ulhman[1] discuss priority queues, but nol differential queues, An example
of & priority queue use can be found in the 4.2BSD UNIX code for the routines softclock()
and trmeoalf), which manage the list of tasks to be performed in real time. These can he
found in the file sys/kernsclock.o; the quene itselfl is called calltodo.

CLOCE (38 Reference Documents - Gallmeister 52

3.3.3 Current Process

The current process must be kept lrack of by some means, either by PID, by pointer, or
explicit copying of the process control block.

3.4 The Scheduling Algorithm

Given the aliove data structures, the scheduling algorithm s simple,

3.4.1 Use of the Timer

All scheduling breaks are invoked by the timer interrupt. The timer does not interrupt with
a predefined Hertz: rather, by setting the timer to go off in & specified number of ticks, the
scheduler allows variable quanta and support for deadline scheduling.

3.4.2 Moving Processes Around

Processes are moved from Porgatory onto one of the two queues when conditions for their
awakening have been satisfied, 1 a process is waiting on the AND of some events, it becomes
runnahle when they all occur. 1f a process is waiting on the OR of some evenls; it is made
runnable when one of those events oecurs,

3.4.3 When a Timer Interrupt Ocecurs

When a timer intercupt occurs, rescheduling may occur. The algorithm keeps track of how
long il has been sinece the last timer interrupt. This allows the algorithm to update the fase
UL,

If the current process i3 not a realtioe process, then it s inserted back into the Slow
Quene. IF it has nsed its entire guantum, then s priority i= reduced and its gquantum
increased. If it has not used ils entire quantum, then neither its priority nor its quantum
are changed,

If the current pracess is a realtime process, then its priority is decremented, and the Fasi
Crueue is exanined toosee if there is now a process more urgent and more important. If there
i, then that process is run,

This strategy implies that there are times al which a realtime task may not complete by
its deadline: This 15 acceptable in some cireumstances and will be discussed below,

CLOCS OF Reference Documents - Gallmeister 53

3.4.4 Deciding Who Gets to Run, and For How Long

Figuring out exactly when a realtime task must be run gets a bit tricky.

3.4.5 Urgent Tasks Go First

The whole idea behind urgeney is that the process absolutely has to run. Therefore, when
a process” threshold goes to gero (meaning that zero time remans before the process has to
run), then the process is run, Non-realtime tasks are not even censidered for running. Tasks
chosen to run based an their thresholds are called deadlme-schedulod processes.

Within a given utgency, there can be multiple processes, They all must finish at the
same time, The scheduling algorithm most maintain a total of the estimated time {quanta)
for all of Lthese processes, and schedule so that all the processes finish on time,

3.4.6 “Just In Time” Scheduling

However, when a realtime process™ urgeney and threshold indicates that it does not need to
be ron just yet, there may be no benefit to tunning il yet. In that case, the highest priority
task is taken from the Slow Queue and run for the minimum of either ils guantum, ar Lhe
time remaining until the most urgent process must be run.

If there are no processes on the Slow Queue, then the lighest priority process on the Fast
Quens is chosen, Whether the process is chosen frem the Fast or Slow Queues, it 18 referred
to as o nen-deadline-scheduled process in this context;

Missing Deadlines

When a reallime process is running as the current process and a timer interrupt occurs,
signalling the end of that process’ quantum, it means that the process did not finish its work
before its deadline. This is & happening of variable importance. Some tasks may not care
about this. Some may require special action. Some may simply dis.

The best action in the CLOCS operating systemn 15 to send the process a signal whose
default action s to kill the process: The process can change that action to be whatever it
deems necessary.

3.4.7 Setting Run Times — Interaction of Quantum and Deadline

(Jnee the nexi process to run has been chosen, the scheduler must determing how long the
process can run for. If the new process is a realtime (1LE. deadline-scheduled) process, then
it is run for its entire quantum, which has hopefully been adjusted to allow it to complete.

CLOCS OF Reference Dacumenis - Gallmeister %!

If the new process is not a realtime process, then it is run for its entire quantum enly of o
can be run for thel long withow! exceeding some reallime process’ deadlime. In ether waords,
non-deadiine-scheduled processes are allowed to run for the minimum of their quantum and
the threshald of the most urgent process

3.5 Interfaces of Scheduling

The scheduling system i visible only from within the process manager. Timer interrupts
vector directly into the process manager, who examines the scheduling state, determines who
should run next, and perfarms the context switch to that process,

Chapter 4

Interprocess Signals

4.1 Overview

Signals in the CLOCS Operating System operate only slightly differently from the signals
provided by 4:2B8D UNIXY As in UNIX, signals can be caught, ignored, or dealt with in
the default manner, which may be cither ignorance ar process termination. Unlike UNTX,
signals can earry commurization through a parameter which is passed to the signal-handling
routine. The parameter iz passed to the siznal system eall, and appears at the signalled
roitine as il it were a parameter o & procedure call,

Signals are blocked while & process is executing a system call; also, while a signal is being
handled by a process, other signals of the same type are blocked,

The signal names, deseriplions, and many of the defaull behaviors are derived [rom UNIX
signals. More signals can be added as required in the futuee,

4.2 Signals

1. SIGHUDP:

e (hangup)
o Defanlt action: termination:

s Parameter: none,
2. 51IGINT:

e (interrupt)

e Defanlt action: termination.

TURTY iz a trademark of ATET Communications.

(=}
&n

CLOCS 08 Reference Documents - Gallmeister

10,

Il.

o Parameter: 1D of interrupting process,
SIGQUIT:

o (quit)

o Default action: terminztion,

s Parameler: none:

. BIGILL:

o (illegal instruction)
o [Default action: termination.
& Parameter: address of fault.

SIGMATH:

s (arithmetic exceplion)
o Pefault action: termination.

o Parameter: address of fault.
SIGKILL:
o (kall (cannol be caught, blocked, or wnored))

o Defanlt action: termination,
o Parameter: none,

. SIGRUS:

o (bus error)
o Defanlt action: termination.

e Parameter: none.

. SIGSEGYV:

o [(segmentation violation)
o Default action: termination,
s Parameter: address of violation (affending address).

. SIGPAGE:

o (paging violation)
o Delault action: terminalion,

o Parameter: address of violation (offending address).
SIGSTO:

o (stop (cannol be caught, blocked, or ignored})

s Default action: process 15 blocked until SIGCON'T received.

¢ Parameler: none.

SIGCONT:

56

CLOCS O8 Reference Documents - Gallmeister

e (continue after stop (cannot be blacked))

o Default action: process becomes ready again.

» Parameter: none
12. SIGCHLD:
o (chilil status has changed)

o Default action: ignored,
o Parameter: 1D of changed child process,

13. SIGDEADLINE:

o (deadline of realtime process exceeded)
e Default action: termination,
= Parameter: none,

I4. SIGUSI:

o (user-defined signal 1)

o Defanll action: ignored,

o Parameter: process-dependent.
13, SIGUSzZ:

o (user-defined signal 2)

o Default action: ighored,

o Parameler; process-dependent,
16, SIGUSR3:

o (user-defined signal 3)

o Default action: ignored.

s Parameter: process-dependent,
17. SIGUSH4:

o (user-defined signal §)

o Default aclion: ignored.

e Parameter: process-dependent.
I18. SIGUSRS:

o (user-defined signal §)

o Defaull action: ignored,

s Parametor: process-dependent.

19, SIGUSRE:
o (user-defined signal §}

s Default action: ignored.

a7

CLOCS O8 Reference Documents - Gallmeister

e Parameter: process-dependent.

20, SIGUSRYT:
o (user-defined signal 7}

o Default action: ignored.
o Parameter: process-dependent.

21, SIGUSLS;

o (user-defined signal 3}
o Defaull action: ignored,

o Parameter: process-dependent,
22, SIGUSRS:
o (user-defined signal 9)

s Default action: ignored.

o Parameter: process-dependent.
23 SIGUSR10:
o (user-defined signal 10)

e Default action: ignored.

o Parnmeter: process-dependent,

o8

Bibliography

[6]
(10]

[11]
(12]

[13]

[14]

(18]

Alfred V. Aho, John . Hoperoft, and Jeffrey 10 Ullman. Data Strectures and Algo-
rifhomes, Addison-Wesley Publishing Company, Heading, Massachuseits, 1953

Dayvid R, Chertton and Willy Zwaenepaoel. The Distributed ¥ Kernel and its Perfor-
mance for Diskless Workstations. In §th Symposium an Operating Systems Frinciples,
Oclober 1984,

Mark Davis. CLOCS Assembly Language Description. 1988, In preparation,
Marck Davis, The CLOCS MMU, 1987, In preparation,

Mark Davis and Bill Q. Gallmeister. CLOGS Architecture Reference Documents. "Lech-
nical Reporl TR38-021, Umiversity of North Carolina, Chapel Hill, May 1988

Mark Davis and Bill O. Gallmeister. CLOCS Cross Compiler and Assembler Language
Bescription. 1987, In preparation.

Harvey M. Deitel. An Iniroduction to Operating Systems. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1581,

Harvey M. Deitel. An Indreduciion to Operating Systems. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1984,

Edsger W, Dijkstra. The Structure of the "THE' Multiprograrmming System. Camma-
atcations of the ACM, 1H5}:341-346, May 19685,

Bill . Gallmeister. Reconciling Real-Time and “Fait” Scheduling: Apsil 1988, In
preparation.

Bill O, Gallmeister, Signals in the CLOCS QOperating System. 1988, In preparation.

Bill ©, Gallmeister, The CLOCS Operating System — Overview and Specification, 1988,
In preparation.

E. Douglas Jensen, €. Donglass Locke, and Hideyuki Tokuda, A Time-Briven Schedul-
ing Madel for Real-Time Operating Systems, In Real-Time Sysiems Symposium,
pages 112-122, Decermnber 1985.

Insup Lee and Vijay Gellot. Language Constructs for Distributed Real-Time Program-
ming. In Real-Time Systems Symposium, pages 537-66, Decermnber 1985,

Samuel 3. Lefler, A 4.2B5D Interprocess Communication Primer. In UNIN 4 285D
Manual, Volume2C, January 1983,

CLOES 08 Reference Documents - Gallmeister G

[168] Samuel J. LefMer, William N, Joy, and Bobert 5. Falry, 4.2B5D Nevwarking Implemen-
tation Notes. In UNIX 285D Manual, Volume2C, January 18983,

[17] Mike Manley. Private comvmunication: March 1958,
[18] Phil Miller. VMS for Realtime? HARDCOPY, T6-80, October 1987,

[18] Kassten Schwan, Torn Bihari, Bruce W, Weids, and Gregor Taulbee, High-Performance
Operating System Primitives for Robotics and Real-Time Control Systems. ACH
Transactions on Computer Systems, 5{3):185-231, August 1987,

[20] Niklaus Wirth. Toward a Discipline of Real-Time Programming. Communications of
the ACM, 20(8):577-583, August 1977,

