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TERESA ANNE THOMAS. The Semantics of an FP Language with Infinite Ob

jects (Under the direction of DONALD F. STAN AT.) 

Abstract 

We describe an extension of Backus's FP (Functional Programming) languages 

to include infinite objects and discuss the semantic and mathematical issues sur

rounding the change. The extended languages, called SFP (Stream Functional 

Programming) languages, satisfy the following desiderata: 

• The domain for FP is "embedded" in the new domain. 

• The new domain contains infinite objects, both those infinite in length and those 

infinitely nested. 

• The new language is not substantially different in syntax from Backus's lan

guage. 

• The primitive functions of an FP language extend in an intuitively satisfying 

way to continuous functions on the new domain. 

• The functional style of FP programming is preserved. 

• The algebra of FP programs survives with few changes. 

SFP differs from FP in that the domain for SFP contains infinite objects, ap

proximations to complete objects, and T (top), used to denote an error. Approx

imations to complete objects include .L (bottom) and prefixes, where a prefix is a 

sequence that can be extended on the right. SFP uses a parallel outermost evalua

tion rule. 

Any monotonic function on the FP domain can be extended to a continuous 

function on the SFP domain. We describe a domain of objects, a collection of 

functions, and two semantics, one denotational and one operational, for SFP. We 

show that the two semantics define nearly the same language. The definitions of 

the primitive functions and functional forms, according to both the operational and 

denotational semantics, are given, as well as example programs. 
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Motivation 

Chapter 1 

Introduction 

Many computer scientists, including John Backus and David Turner [Backus 

1978, Turner 1982], have argued that traditional programming languages are no 

longer adequate to meet the programming demands of today because they model 

too closely the operation of a von Neumann machine architecture. What is needed is 

a language which provides a powerful, tractable medium for fashioning algorithms. 

Functional programming languages are popular alternatives to traditional Pascal

like languages because they provide a better medium for reasoning about algorithms. 

Moreover, the advent of VLSI technology has freed architecture from the single

processor, separate large memory mold, and may make efficient implementation of 

non-von Neumann languages possible. 

Backus's FP (Functional Programming) language described in his Turing Award 

Lecture [Backus 1978] has been a significant force in the increasing popularity of 

functional languages. The FP language enjoys a number of strengths. Its expressive. 

power allows the programmer to manipulate a large number of objects with little 

code. Because it has sequences as a basic data type, the programmer is relieved 

of a lot of house-keeping details, such as setting and controlling loop limits. The 

language also uses powerful functional forms, or "program forming operations," 

which facilitate combining several small programs into a larger one. Because each 

FP program denotes a function in the mathematical sense, the collection of programs 

has nice mathematical properties. There is an algebra associated with the collection 

of programs that, in addition to facilitating proofs of correctness or equivalence, also 

makes possible automatic program transformation and optimization. Finally, FP 
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expresses parallelism in a natural way, and facilitates the investigation of equivalent 

but distinct forms of parallelism. 

The FP language does have some deficiencies. The deficiencies of the language 

include the inability of programs to use the results of previous programs, no facilities 

for I/0, and the inability of programs to manipulate "infinite" data objects. Ex

panding the language to incorporate infinite objects is a first step towards making 

FP a viable language. This work describes an alteration of FP to include infi

nite objects and the semantic and mathematical issues surrounding such a change. 

The new extended language is called SFP for Stream Functional Programming. It 

retains the mathematical properties of FP. 

A description of FP 

In order to understand the SFP language, it is necessary to have some knowledge 

of FP. Although there are many FP languages, we shall be concerned only with the 

FP language given by Backus in the Turing Award Lecture. Any reference herein 

to "FP" shall refer to precisely Backus's language. However, the methods described 

here to extend Backus's FP language can be used to extend any FP language. 

A complete description of FP can be found in the Turing Award Lecture. A 

brief description is presented here. 

There are many FP languages, but a particular one is specified by a particular 

choice of atoms, primitive functions and functional form operators. In this section 

we will describe the properties common to all FP languages. The examples we use 

to illustrate the properties will be drawn from the particular FP language defined 

by Backus. 

An FP language is a language of expressions of two types. Object expressions 

denote objects, or data. Function expressions denote functions defined on the set 

of objects. An object expression is either 

a . .L, (denoting an undefined result, etc.) 
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b. an atom, 

c. a sequence< x,, x2 , ••• , Xn >,where each x; is an FP expression, or 

d. an application I: x, where 1 is a function expression and x is an object expres

sion. 

An function expression is either 

a. a primitive function, 

b. a functional form, where a functional form consists of a functional form operator 

with function expression and object expression operands, or 

c. an identifier denoting a defined function, where a function definition is an ex

pression of the form Def I = e, where I is a distinct identifier and e is a function 

expressiOn. 

An object is an object expression without any subexpressions that contain ap

plications; thus an object does not contain any unevaluated subexpressions. Objects 

can be built inductively from..!., the set of atoms, and the sequence constructor. The 

sequence constructor is ..!.-preserving; that is, if any entry of a sequence is ..!., then 

the sequence is equal to ..!.. In the sequel, we use the phrases "object expression" 

and "FP expression" interchangeably. 

An FP program is a function expression. To apply a program 1 to input data 

x, we form the FP expression 1: x and evaluate it. 

In Backus's FP language, the set of primitive functions includes functions for 

re-arranging data, performing arithmetic, and testing for various conditions. An 

example of a function that re-arranges data is distl, distribute from left, which when 

applied to the sequence < 5, < 2, 7, 9 >> results in the sequence << 5, 2 >, < 

5, 7 >, < 5, 9 >>. The usual arithmetic and boolean operations, such as addition, 

subtraction, and, or, not, etc., are included as primitive functions. Finally, some 

primitive functions allow testing for conditions, such as whether a sequence is empty 

(the primitive function null), whether two objects are equal (the primitive function 
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eq), and so on. More complicated conditions can be checked by combining these 

primitive functions by means of functional form operators. 

Backus gave a number of functional form operators, which he calls program 

forming operators. For example, the functional form 1 o g is built from two func

tions, 1 and g, and the composition operator, and it denotes the function whose 

effect is the same as applying g to the argument, then applying I to that result. As 

another example, 'the functional form x, where x is an object, denotes the function 

that returns _!_if the argument is _!_and the object x otherwise. The construction of 

a sequence of functions, denoted by [!I, j,, ... , In], applies each of its operands to a 

single argument and produces a sequence consisting of the results. The functional 

form condition, denoted p __, l;g, allows the programmer to choose what compu

tation, 1 or g, will be performed on the argument based on the condition checked 

by the predicate, p. A complete list of primitive functions and functional form 

operators for FP can be found in Appendix A. 

The semantics of an FP language can be given denotationally, as Backus did for 

the FFP language [Backus 1978], or operationally, as we do here. An FP expression 

is _!_, an atom, a sequence, or an application. The meaning of_!_ is _!_; the meaning of 

an atom is itself. The meaning of a sequence < x1 , x 2 , ... , xn > is _!_ if the meaning of 

any x; ( 1 ::; i ::; n) is _]_ and is the sequence of the meanings of its entries, otherwise. 

The meaning of an application 1: x for any function 1 and any object x is found by 

replacing I: x with another expression, as described below, and finding the meaning 

of the new expression. The new expression used to replace I : x depends on 1 as 

follows: 

1. If there is a definition Def I = e, then I is replaced by e. 

2. If 1 is a primitive function, then I: x is rewritten according to the definition of 

the primitive function. 

3. If 1 is a functional form, then I : x is rewritten according to the definition of the 

functional form. 
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4. If none of the above classes apply, then the meaning of f : x is .l.. 

If the process of rewriting an expression terminates, then the final expression 

is an object, which is the meaning of the expression. If the process of rewriting an 

expression does not terminate, then the meaning of the expression is defined to be 

.L 

Thus, l. is used to denote the meanmg of a non-terminating computation. 

Backus also used l. to denote an error, such as when the function + (denoting 

addition) is applied to an operand that is a sequence of characters. Rules to reduce 

such inappropriate applications to l. are included in the definitions of the primitive 

functions and functional form operators. 

Goal of this work 

This work has its goal the specification of an FP-like language that is applicable 

to both finite and infinite objects. A complete specification of a language requires 

defining the syntax and semantics of the language. BNF provides a uniform method 

for specifying the syntax of a language and is well understood. Specifying the 

semantics of a language is a much more difficult task, and there is not a standard 

method, such as using BNF to specify the grammar. When high-levellanguages first 

began to be developed, designers specified the meanings of the constructs of their 

languages informally, usually with a natural language. It became apparent that 

the use of a natural language to specify the meaning of a programming language is 

woefully unsatisfactory and inadequate. Thus language designers have increasingly 

turned to formal methods to specify the semantics of their languages. 

Formal semantics come in a variety of flavors, and no one kind has been ac

cepted as clearly superior to the others. The choice of which kind of formal method 

to employ is often dependent on the intended use of the semantics. Varieties of 

formal semantics include denotational, operational, axiomatic, and algebraic. In 

the specification of SFP, we have chosen to give two semantics, denotational and 

operational. The denotational semantics is mathematically precise and provides 
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a tractable medium for proving formal properties of the language and programs 

written in the language. It is easier to show, for example, that any program is 

continuous; proofs of correctness and equivalence of programs, where possible, will 

generally be easier. The operational semantics will show primarily how SFP could, 

in fact, be used as a basis for a machine implementation. It therefore gives much 

better guidance than the denotational semantics on implementation issues. 

Often in mathematics a concept will have two (or more) characterizations that 

completely specify it, and since a concept can have only one definition, one of the 

characterizations is chosen for the definition and the other is shown to be equivalent 

to the definition. Similarly, the definition of SFP is its denotational semantics. 

The operational semantics is shown to be equivalent in some substantial sense to 

the denotational semantics. Thus the two semantics are reconciled by means of a 

consistency theorem. 

The syntax chosen for SFP is a simple augmentation of that used for FP. Since 

syntax is easy to specify completely and unambiguously, it will receive little atten

tion here. This work is devoted principally to the semantics of SFP. 

The goal of this work is to show that FP can be extended to a new language, 

SFP, that has infinite objects and preserves the useful properties of FP. The work 

presented here satisfies the following desiderata: 

• The domain for FP is "embedded" in the new domain. 

• The new domain contains infinite objects, both those infinite in length and those 

infinitely nested. 

• The new language is not substantially different in syntax from Backus's lan

guage. 

• The primitive functions of an FP language extend in an intuitively satisfying 

way to continuous functions on the new domain. For example, 

(distl: <4,<1,2,3, ... >>) = <<4,1>,<4,2>,<4,3>, ... >. 
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• The functional style of progranuning available with FP is preserved. 

• The algebra of programs for FP survives with few changes. 

• The language is suitable for use in an environment where an argument may be 

acquired over a long period of time, and the programs produce as much of the 

output as possible for any state of incomplete input. 

This dissertation represents an extension of FP to a language that can be used to 

create progranuning environments. The work has focused heavily on the mathemat

ical issues and given less attention to implementation details. Future work could 

include an implementation, such as incorporation of SFP into the FFP (Formal 

Functional Programming) machine [Mag6 1979, 1980, Mag6 & Middleton 1984]. 

A characterization of the kind of solution being sought 

The design of a programming language involves both mathematical and compu

tational concerns. These concerns sometimes pull a solution in opposite directions, 

such as when the mathematically elegant solution is impossible or impractical to 

implement, or when the efficient solution is mathematically untractable. But which 

concerns should be pre-eminent? 

Historically, language designs have been compromised to accommodate practical 

concerns. The semantics of most languages have originally been given in English, 

and formal semantics have been imposed only after language definition. These 

formal semantics are quite cumbersome, partly because they are "add-ons" and 

largely because they are coupled to the notion of a machine state. 

The design of SFP focuses on mathematical issues and restricts the influence 

of implementation issues to what is possible rather than the narrower notion of 

efficiency. SFP is not put forth as a language to be used in a real environment. 

Rather, SFP should be regarded as a first step. 
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Previous work 

The fundamental concepts used in the definition of SFP come from a number 

of sources. The FP language was described by Backus [Backus 1978]. The subject 

of denotational semantics was introduced by Scott [Scott 1971, 1972, 1976] and 

Strachey [Scott & Strachey 1971, Strachey 1966]. Stoy's text on the subject [Stoy 

1977] gives a detailed treatment of the ideas of Scott and Strachey and shows how 

denotational semantics can be used as a tool for programming language definition. 

The ideas regarding fixed points for recursive equations, which are used to find 

solutions to those equations, are due to Tarski [Tarski 1955], who showed that such 

a solution always exists, and Kleene [Kleene 1952], who gave a constructive solution 

to these recursive equations. 

Seminal work in streams was done by Burge [Burge 1975] and Kahn [Kahn 

1974]. Burge defined functions, which he called streams, that allow efficient imple

mentation of list processing yet are conceptually easy to program. It is often the 

case that one wishes to produce a list and then process each element of the list. 

If the list is completely produced in one phase and then processed later in a sepa

rate phase, then the intermediate result may require enormous storage. However, 

requiring the programmer to think at the same time about both producing the list 

and processing it increases the complexity of the problem with which he must deaL 

Burge's streams allow the programmer to program as if an intermediate list were 

produced, yet the implementation suppresses the creation of the intermediate list. 

The technique is essentially lazy evaluation, though Burge does not use that term. 

Kahn [Kahn 1974] developed a simple language for parallel programming. His 

purpose was to illustrate a more formal, that is, mathematical, approach to design

ing languages. His system provides a facility for describing a parallel computation as 

a system of processors connected together by communication links, with an Algol

like program for each processor. Processors communicate with each other by means 

of FIFO queues, whose histories can be viewed as streams. His language controls 

the order of production and consumption of intermediate lists by means of two 
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functions, send and wait. Properties of the streams can be proved by using fixpoint 

equations, where the history of each of the communication lines is specified as one 

of the equations. One of the great strengths of his characterization of the behavior 

of the system is that it does not need to describe some immense, complex state. An 

example from this paper is used as the basis for an SFP example in Chapter 6. 

More recently, a number of workers have addressed the problem of extending 

functional languages, including Backus's FP and FFP languages, to streams. Ida 

and Tanaka [Tanaka & Ida 1981 and Ida & Tanaka 1983] describe an extension of 

FP and FFP languages that includes streams. They are concerned primarily with 

programs they wish to write in their language, and so they offer a wide variety 

of programming examples. However, their description of the language is sketchy 

and informal, and they do not address such issues as whether their functions are 

continuous, how errors are handled, and the effect of the changes to the FP language 

on the algebra of programs. 

Halpern et al. [Halpern et al. 1985] developed a semantics for a specific func

tional language with streams; their domain is similar to ours except that whereas we 

restrict extension of a sequence to its right end, their incomplete sequences are ex

tensible at some single point which can be at the left end, the right end, or anywhere 

in the middle. The symbol w denotes the point in the sequence where extension can 

be done and is interpreted as a list of zero or more items yet to be computed. In 

order to simplify proofs, they do not allow w to occur in more than one place in 

the sequence. If .L appears in a sequence, it represents exactly one item yet to be 

computed, and more than one .L may appear in a sequence. Thus .L represents an 

item about which nothing more than its existence is known. 

Their work also uses .L to represent "error." As a consequence, they are re

stricted operationally to withholding all output until enough of the argument has 

been revealed to ascertain that its structure is appropriate for the function being 

applied. 
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Their work treats functions as objects ("first-class citizens"), making it possible 

to create functions at run-time, whereas the SFP language presented here does not 

have that capability. Since functions can be higher-order, they make no distinction 

between primitive functions and functional forms. 

The aim of Halpern et al. is to present a method of defining a semantics that is 

sound and complete. Their use of FP is incidental, since the method can be used 

in other language definitions. By soundness, they mean that any two expressions 

that are intended to be distinct are assigned different meanings. They show this by 

proving that the reduction rules preserve meaning, that is, if x - y is a reduction 

rule, then JJ(x) = JJ(Y) ("JJ" is the meaning function). The proof consists of a case-by

case examination of each reduction rule. Completeness means that all expressions 

of the language can be reduced to their correct meanings. The proof is lengthy, 

involving a number of steps proving lemmas and propositions to get the main result, 

and it requires some case-by-case analysis of the reduction rules, though induction 

on the structure of the expressions is the main proof technique used. 

The work of Halpern et al. in 1986 [Halpern et al. 1986] extends and modifies 

their earlier work [Halpern et al. 1985]. They give two new completeness criteria and 

suggest three rewrite strategies that correspond to the three types of completeness. 

As with the first paper, their set of primitive functions is sparse, including only a! 

(append left), ar (append right), first (the FP selector 1 ), last (the FP selector lr ), 

ti (tail), tr (right tail), null, cons (the FP functional form Construction), cond 

(the FP functional form Condition), comp (the FP functional form Composition), 

apply, K (the FP functional form Constant), and id. Again, as with the first 

paper, their results apply only to the specific language they describe, although the 

results presumably could be extended. As before, they offer no example programs. 

The algebra of programs is not discussed in either paper. 

Backus et al. [Backus et al. 1986, Williams & Wimmers 1988] describe a new 

functional language, FL (Functional Level), which is also based on FP. The aim 

of this work is to introduce I/0 into FP in a restricted way. They contrast their 
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method with the unrestricted "convenient approach," as used in ML [Milner 1984] 

and the "pure approach," as used by Turner in SASL [Turner 1982]. The convenient 

approach is easy to use in programming, but it violates the property of functionality 

and hence complicates the underlying semantics. The pure approach maintains a 

simple semantics, but it requires more effort on the part of the programmer to 

manipulate the streams that are used to implement the I/0 devices and history 

system. The authors argue that by restricting the way in which I/0 is available 

to the program, they maintain a simple semantics while providing an easy to use 

system. 

The FL language compromises these approaches. FL's principal component 

is functional; actual computation is performed using only functional operations. 

But FL is not functional, since any computation also involves an underlying state 

which can be changed (only) by I/0 operations. Their approach differs from the 

convenient approach of ML largely in that FL does not have an assignment operator; 

the designers of FL argue that inclusion of the assignment operator would greatly 

complicate the semantics of the language. Their approach differs from the pure 

approach in the the I/0 operations are, in fact, not functional, as they are in SASL 

[Turner 1982]. 

The FL Language Manual [Backus et al. 1986] describes the FL language in 

detail. It contains twelve examples, none of which involve (useful) non-terminating 

computations. The focus of the subsequent paper [Williams & Wimmers 1988] is 

the question of how to properly handle I/0, particularly interactive I/0. They do 

not present any examples of non-terminating computations here, either, and to do 

so would have sidetracked them from their main objective. Apparently, streams can 

only be accessed implicitly through the history mechanism. 

Dosch and Moller [Dosch & Moller 1984] present an extension of FP whose 

domain is based on term algebras. They exhibit a confluent and Noetherian term

rewriting system that is consistent and sufficiently complete with respect to the 

initial algebra. 
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Like ours, their domain includes all of the finite objects in FP, as well as infinite 

sequences and infinitely nested objects. These infinite objects are specified as solu

tions to recursive equations, whereas ours are specified as limits of chains of finite 

objects. 

Like Halpern et al., Dosch and Moller use bottom, denoted by l.obi"' as the 

result when an error occurs. However, their work avoids the problem of having to 

withhold output until sufficient input has been acquired by using only a subset of 

the primitive functions; their examples involve only those primitive functions for 

which the problem does not arise. 

Also used in their syntactic description of objects, as well as in the specification 

of complex functions, is an infix concatenation operator "&" that allows them to 

avoid the use of the prefix style apndl, which requires that the argument be a pair. 

Because & is infix, the problem of knowing that the argument of apnd/ or apndr is a 

pair does not occur; the syntax of & allows nothing else. 

Explicit rules are given for hd (head, the same as the FP selector 1 ), tl (tail), 

last (the same as the FP selector lr), and tlr (right tail). They briefly mention other 

FP primitive functions, and they state that rewrite rules could be given for them, 

but these other primitive functions are not used in their program examples. 

They give a syntactic description of a functional program. A functional program 

consists of a finite list of definitions of the form Def f = e, where f is an identifier 

and e is a functional form, and a single application e:x, where e is a functional 

form and x is an object. 

Regarding the algebra of programs, they observe that laws in Backus's algebra 

hold in their system; some can be strengthened from inequality in Backus's system 

to equivalence in theirs. 

Two evaluation schemes are discussed. A four step busy evaluation scheme and 

a five step lazy evaluation scheme are given informally, and they give an example 

of rewriting using each scheme. They also present a few trivial example programs. 
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Nicki [Nicki 1985] attempted to give a denotational semantics for the work of 

Dosch and Moller, but discovered that no consistently complete domain could be 

built for their term rewriting system. The difficultly apparently stems from the 

fact that sequences are extensible at both the right and left end. By requiring the 

left end of the sequence to be finite, that is, non-extensible, she produced a more 

restricted domain that is consistently complete. 

Novel aspects of this work 

The present work differs from Burge and Kahn [Burge 1975, Kahn 1974] in that 

it extends the FP language, whereas the work of Burge and Kahn predates FP. The 

work of Ida and Tanaka [Tanaka & Ida 1981, Ida & Tanaka 1983] does not address 

any of the mathematical issues and does not attempt to give a formal semantics, as 

is done here. 

The work of Halpern et al. [Halpern et al. 1985, 1986], Dosch and Moller [Dosch 

& Moller 1984], and Nicki [Nickl1985] is much closer to this work than any other. 

This work differs from theirs in that it introduces a greatest element T (top) to 

represent error. The use of T makes it possible to produce better approximations 

to the output, given an approximation to the input, than can be done in the other 

systems. Another novel feature of the approach taken here is the use of a single 

mechanism to extend all primitive functions on the FP domain to primitive functions 

on the SFP domain. None of the other works offers a uniform mechanism; they must 

extend each primitive function individually. This mechanism also allows proofs of 

properties of the primitive functions to be handled generally, rather than on a case

by-case basis. 

Summary of remaining chapters 

Chapter 2 gives the semantic domains of SFP. Chapter 3 describes the SFP 

functions and the denotational semantics of SFP expressions. Chapter 4 gives the 

operational semantics and shows how it is related to the denotational semantics. 

Chapter 5 discusses the changes to the algebra of programs. Chapter 6 presents 
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several program examples. Chapter 7 gives the conclusions and directions for future 

research. Throughout the document, definitions, lemmas, corollaries, and theorems 

are indexed in a common sequence; thus Definition X precedes Lemma X + K if K 

is a positive integer. 
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Chapter 2 

The SFP Semantic Domains 

An FP language is specified by a set of atoms, a set of primitive functions, a 

set of functional forms, and a meaning function. The goal in creating SFP is to 

change the definition of "object" so that infinite objects are also generated. This 

change will necessitate changes to the primitive functions, functional forms, and the 

meaning function. This chapter describes the changes to the object domain that 

results when infinite objects are added. The changes to the primitive functions, 

functional forms, and meaning function are the subject of Chapter 3. 

Giving the denotational semantics of the SFP language requires defining the 

objects, the functions, and the meanings of all expressions of the language. For SFP, 

the set of objects will contain a least element .L, a greatest element T, atoms, finite 

sequences, infinite sequences, and approximations to sequences (called prefixes). 

The collection of functions will be specified by a set of primitive functions, a set of 

functional forms, and a mechanism for defining functions beyond the primitive ones. 

An expression in the SFP language is .L, T, an atom, a prefix, a finite sequence, an 

infinite sequence, or an application, denoted f(x), where f is a function expression 

(that is, a primitive function, a functional form, or an identifier), and xis an object 

expression (that is, .L, T, an atom, a prefix, a finite sequence, or an infinite sequence). 

The meaning function p. will specify the meaning of each SFP expression. 

Along with the definition of the set of objects, we define a partial order!;;;, which 

provides the ability to compare the information content of various objects. Eventu

ally, we will want to be able to distinguish between various states of the output of 

a computation as a function of time. For example, if a particular computation pro

duces the natural numbers one at a time as a stream, that is, an infinite sequence, 
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we can denote the output after the first three have been produced as < 0, I, 2:j> and 

later, assuming two more entries have been computed, as < 0, 1, 2, 3, 4:j>. We wish 

to express the fact that the output state < 0, 1, 2:j> contains less information than 

the output state < 0, I, 2, 3, 4:j>, and the partial order gives us the means to do so 

by the expression < 0, I, 2:j> !;;; < 0, I, 2, 3, 4:j>. 

Backus's domain is partially ordered by a trivial order under which each element 

except l_ is preceded only by itself and 1_, and l_ is preceded only by itself. (No 

other relationships exist.) The new SFP domains contain additional objects and 

the partial order is extended in a non-trivial way, as illustrated by the example of 

the preceding paragraph, to relate the new objects. The resulting structures are not 

flat, as Backus's domain is. (A flat domain is one in which the objects are unrelated 

to one another, except possibly to a least and/or a greatest element.) Furthermore, 

the new domains are complete lattices. (Backus's domain fails to be a complete 

lattice in that it lacks a greatest element.) 

Overview of the domains 0, B, C and D 

We wish to define the domain D for SFP so that it is a superset of Backus's 

domain, which he called 0, and which we also call the FP domain. In order to give 

a uniform mechanism for translating Backus's primitive functions on his domain to 

primitive functions on D, we break the translation into three phases by creating 

two domains, B and C, which in complexity lie between the FP domain 0 and our 

target domain D. We have the following relationships: 

0 c B c C cD, 

where all containments are proper. 

Conceptually we begin with a set of atoms A to construct a domain 0 whose 

objects include a least element bottom, denoted by 1_, the atoms, and the set of 

all finite sequences of objects from 0. l_ is used in this domain to represent error 
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and the result of non-terminating computations. Sequences in 0 are _1_-preserving, 

that is, any sequence containing _]_ is equal to _1_. 

We next construct the domain B, which is similar to 0 except that we add a 

greatest element, top, denoted by T, which represents error. In the domain B, _]_ 

no longer represents error as it does in 0. It is the least defined element; as such, 

it is used to denote a value about which we have no information, such as a non

terminating computation. Sequences in B are T-preserving, that is, if Tis an entry 

in the sequence, then the sequence is equal toT. If a sequence does not contain T, 

then it is _1_-preserving. 

Each element in the domain 0 is related by the partial order ::; only to itself 

and _1_. Each element in the domain B is related by the partial order [:;; only to itself, 

_]_and T. Both of these domains are flat, since all elements apart from_]_ and Tare 

incomparable with each other. 

We next construct an intermediate domain C that contains, in addition to all 

the elements of B, finite incomplete objects. These incomplete objects are approxi

mations both to sequences, such as < 1, 2, 3 >, and streams, such as < 1, 2, 3, ... >. 

As with B, _]_ in C is used to denote a value about which we have no information 

and T is used to represent error. Sequences and incomplete objects in C are T

preserving, but in contrast to B, they are not _1_-preserving. The partial order [:;; 

on B is extended to C so that incomplete objects precede the objects that they 

approximate. 

The set of objects D, which is the domain of SFP, contains finite and infinite 

objects and is constructed by forming the completion of the intermediate set C, 

that is, by adding limit points to it. Thus, for each object in D, the set C contains 

approximations arbitrarily close to that object. The definition of the semantic 

domain D is analogous to the definition of the real numbers by Cauchy sequences; 

a computational object in D is defined as an equivalence class of infinite sequences 

of finite objects. 
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As a result of this definition of D, sequences (both finite and infinite) and 

incomplete (both finite and infinite) objects are T-preserving but not ..l-preserving. 

The partial order t; is extended so that limit points are preceded by all objects that 

approximate them. 

The choice of C as an extension of B is novel and ensures the properties we seek; 

the completion of C to get D is a standard construction. Specifically, C satisfies all 

our desiderata for an SFP domain except that it does not have infinite objects, and 

its completion, D, satisfies all the desiderata. For each of the semantic domains B, 

C, and D, we define a partial order and show that it is a complete lattice. 

Terminology and notation 

We first introduce some terminology and notation. An atom is a symbol used to 

represent an elementary datum; the set of atoms is nonempty and does not include 

the special elements ..l and T. 

For each of our domains, the term object denotes any element of the domain. 

These include ..l, T, atoms, and finite sequences for all the domains, as well as 

prefixes in C and D, and streams and infinitely nested sequences in D. Sequences 

and streams are objects comprising a collection of objects (called entries), indexed 

by an initial segment of the natural numbers. A sequence has a finite number of 

entries, whereas the number of entries of a stream is equal to the cardinality of the 

integers. We denote sequences and streams with angle brackets; e.g., 

<1,2,3> 

and 

< 1, 2, 3, ... >. 

A prefix consists of a finite sequence of entries, but differs from a sequence in 

that it is an incomplete datum. Intuitively, a prefix can be closed to form a sequence 
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or it can be extended by adding another entry to its right end, giving a longer prefix. 

Prefixes serve the role of approximations to sequences or streams; in particular, each 

prefix is an approximation to a class of sequences and streams. When a prefix is 

extended by adding an additional element to its right end, the corresponding set of 

sequences and streams for which the resulting prefix is an approximation is reduced. 

Prefixes are denoted similarly to sequences, except that the right bracket is ":j>". 

The prefix 

< 1, 2, 3:j> 

is an approximation to any sequence or stream whose first three entries are 1, 2, 

and 3, including the sequences< 1,2,3 >, < 1,2,3,4 > < 1,2,3,4,5 >and< 1,2,3,3,3 > 

and the streams < 1, 2, 3, 4, 5, 6 ... > and < 1, 2, 3, 3, 3, 3 ... >. 

Prefixes are one kind of approximation. We are primarily interested in prefixes 

as approximations because they approximate streams. Other approximations are 

J. and sequences that contain J. or a prefix as a subexpression. For example, the 

sequence<< 1,3:j>,J. >is an approximation to the sequence<< 1,3 >,< 2,4 >>.Note 

that every incomplete object qualifies as an approximation. 

Some of the objects are complete. Every atom is complete; a sequence (finite 

or infinite) is complete if each of its entries is complete; T is complete; nothing 

else is complete. For example, the elements of D <>, < 1 >, < 1,< 2,< 3, ... >>>, 

< 2, 4, 6, ... >, and Tare complete and J., <:j>, < 1, J. >, and < J., < 1, < 1, ... >>> are 

not complete. Equivalently, an object is incomplete if it contains J. or a prefix as a 

subexpression; otherwise, it is complete. 

Finally, some notation employed here is new. Specifically, 

n 'f :<> ll:'j =< ll:'m, .•. ll:'n > 1 m::; n, 
z=m 

n 
<:j>a; =< O<m, ... O<n:j> if m:::; n, 
i=m 

<\a;=<> if m > n (the empty sequence), and 
i=m 

n 

<:j>a; = <:j> if m > n (the empty prefix). 
i::::m 
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The domains 0 and B 

A set of atoms A forms the basis for defining the domains 0, B, C, and D. The 

set A might be any non-empty set, but for concreteness we assume that it contains 

integers, characters, and the boolean values true and false. 

The following is Backus's definition of the domain 0 based on the set of atoms 

A. 

Definition 0: Let A be a set of atoms. The domain 0 based on A is defined by 

the following: 

0) 1. is in 0. 

1) Every element of A is in 0. 

2) If 0:::; n < oo and a; E 0 for 1:::; i:::; n, then <:">a; E 0. 
s=l 

Any sequence containing 1. is equal to 1.. 

3) 0 has no elements other than those finitely constructible by the above. 

The definition of B adds the element T to the domain of 0. 

Definition 1: Let A be a set of atoms. The domain B based on A is defined by 

the following: 

0) 1., T are in B. 

1) Every element of A is in B. 

2) If 0 :::; n < oo and a; E B for 1:::; i:::; n, then <!>a; E B. (We call these sequences.) 
1:;;;1 

Any sequence containing Tis equal toT, and, if it does not contain T, a sequence 

containing 1. is equal to .l. 

3) B has no elements other than those finitely constructible by the above. 

Note that B = 0 u {T}. 

A partial order is a relation that is reflexive, anti-symmetric and transitive. If 

a set is partially ordered, and if every subset has a greatest lower bound (glb) and 
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least upper bound (lub) in the partially ordered set, then the partially ordered set 

is a complete lattice. 

Backus gave a trivial partial order for 0. For every x E 0, ..L :<::: x and x :<::: x. 

That is, an element of 0 is related only to itself and ..L. (0, :<:::) is not a complete 

lattice; most of its subsets do not have upper bounds. 

The domain B can be partially ordered by extending the order on 0 so that 

every object lies below T, giving a domain that is fiat and is similar to 0 except 

for the additional element T. The addition ofT is sufficient to produce a complete 

lattice. 

Definition 2: Let B be based on a set of atoms A. Then the relation ~ is defined 

on B as follows: For all a, (3 E B, " ~ (3 iff 01 = (3, "= ..L, or (3 = T. 

Theorem 3: ~ is a partial order on B and (B, ~) is a complete lattice. 

We omit the proofs, which are trivial, and proceed with the definition of C and 

its partial order. 

The domain C 

The domain C can be thought of as the set of all finite approximations, including 

all finite complete objects, to the elements of the domain D. Definition 4 formalizes 

this concept. 

Definition 4: Let A be a set of atoms. The domain C based on A is defined by 

the following: 

0) ..L, T are in C. 

1) Every element of A is in C. 

2) If 0 :<::: n <co and <>; E C for 1 :<::: i :<::: n, then 

a) <"> 01; E C. (We call these sequences.) 
t=:l 

n 
b) <:}a; E C. (We call these prefixes.) 

i=l 
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Furthermore, any sequence or prefix containing Tis equal toT. 

(Note that sequences and prefixes are not l_-preserving.) 

3) C has no elements other than those finitely constructible by the above. 

Examples of elements from C include -4, H, < < :} >, < :} , < j_:}, < H, M :} , and 

<< :}, < :}:}. Note that if A is a countable set, then 0, B and C are countably 

infinite, but each element of these domains is itself finite. 

Upon the set C we impose a partial order relation, [;;. As with the partial orders 

on 0 and B, the order can be thought of as "contains no more information than," 

or "is an approximation to." For the domain C this order is very nearly the same 

as "is a prefix of;" this interpretation only fails for assertions involving j_ and T. 

Definition 5: Let C be the set of objects based on A. Then !;; is an order defined 

on C by the following: 

0) For every" E C, j_ [;;"and"[;; T. 

1) For every " E A and {3 E C, " [;; {3 iff " = {3 or {3 = T 

2) If 0:::; n:::; m < oo, and a;, {3; E C and <>; [;; {3; for 1:::; i:::; n, then 

) 
n n 

a <> "' [;; <> {3; 
i=l i=l 

n m 
c) < :}<>; [;; < :}{3; 

i=l i:;;;l 

3) For all a, {3 E C, "[;; {3 only if it is implied by the above. 

From Definition 5 we can conclude < 1 < 2 :} > [;; < 1 < 2 3 :} >, < j_ X:} [;; < 

j_ X >, and < 1 2 :} [;; < 1 2 3 :}. If"[;; {3, we will say " precedes {3. 

We present without proof several propositions that describe some of the prop

erties of the order [;; on C. 

Proposition 6: Nothing precedes j_ except itself. T precedes nothing except itself. 

Proposition 7: An atom is related only to itself, j_, and T. 
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Proposition 8: If" is a prefix and"~ j3, then j3 is a prefix, a sequence, or T. 

Proposition 9: If j3 is a prefix and " ~ j3, then " is a prefix or .l. 

Proposition 10: An element" can be reilned to j3 if j3 f. T, "~ j3, and" is distinct 

from j3. In this case, " can be refined (transformed) to j3 by applying a sequence of 

elementary refinements, where an elementary refinement is one of the following: 

0) An occurrence of .lin" is replaced by an atom or <::f. 

1) An occurrence of ;j> in " is replaced by >. 

2) An occurrence of ;j> in " is replaced by .l;j>. 

Note that no elementary refinement can be expressed as as sequence of other 

elementary refinements. 

Proposition 11: If j3 is obtained from "by a single elementary refinement, then 

"~ j3 and for all -y, if"~ 1' and 1' ~ j3, then either "= 1' or 1' = j3. 

We next define what we mean by the length of an element of C and by its 

nesting level. In the following definitions, let 0 ::; n < oo and "' E C for 1 ::; i ::; n. 

Definition 12: The length of an element of C is defined as follows: 

0) The length of .l and all atoms is 0. 

n n 
1) The length of <:> "' and <;j>a; is n. 

s=l i=l 

The length of T is undefined. 

Definition 13: The nesting level of an element of C is defined as follows: 

0) The nesting level of .l and atoms is 0. 

1) The nesting level of <> and < ;j> is 1. 

2) For n > 0, the nesting level of <n> "' and ;';j>a, is 1 +max {nesting level of<>;}. 
1::;:1 i:;;l ' 

The nesting level of T is undefined. 
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Proposition 14: If a is a sequence of length n and a !;; /3, then /3 is T or a sequence 

of length n. 

Proposition 15: If a and /3 are sequences or prefixes and a!;; {3, then the length of 

a is less than or equal to the length of {3. 

Proposition 16: If a and /3 are not T and a!;; {3, then the nesting level of a is less 

than or equal to the nesting level of /3. 

Theorem 17: !;; is a partial order on C. 

Proof: We must show that !;; is reflexive, anti-symmetric, and transitive. 

Let a 1 , ... an, f3~o ... /3m, "Y!o ···"Yp, a, {3, and-y be elements of C. 

Reflexive: (For all a E C, a!;; a.) 

Case 1: a= j_ or T. Then a!;; a by part 0 of Definition 5. 

Case 2: a is an atom. Then a !;; a by part 1. 

Case 3: a=<> or < :}. Then a!;; a by parts 2a or 2c of Definition 5. 

Case 4: a = <.n> a; or ;:}a;. We will use induction on the nesting level of 
;:;;:::1 i=l 

a to establish that a; !;; a; for 1 ::; i ::; n, and hence, a !;; a. Suppose that 

the nesting level of a is 1. Then a 1 through an are each j_ or an atom, 

and by Cases 1 & 3 above we have that "' !;; a; for each i. Hence a !;; a 

by parts 2a or 2c of Definition 5. For the induction hypothesis, assume 

that all sequences or prefixes with nesting level less than or equal to k 

precede themselves. If a has nesting level of k + 1, then for each i, a; 

has nesting level less than or equal to k. By the induction hypothesis, 

a;!;; a;. Hence, a!;; a by 2a or 2c of Definition 5. 

Anti-symmetric: ([a[;; /3 and /3 [;;a] -a= {3.) 

Case 1: a= J_. /3!;; j_ implies a= /3 by Proposition 6. 

Case 2: a= T. T!;; /3 implies a= /3 by Proposition 6. 
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Case 3: a is an atom. a= (3 by Propositions 6 and 7. 

Case 4: 
n n n n 

a = <:>a; or <:f>a;. Then (3 = <:> (3; or <;j-(3;, and a; ~ (3; and 
1=1 i=l 1=1 i=l 

By induction on the nesting levels of a; and (3; we have that 

a;= (3;. Hence a= (3. 

Transitive: (a ~ (3 and (3 ~ 1' --> a ~ 1'.) 

Case 1: a= .L Then a[;; 1' by part 0 of Definition 5. 

Case 2: a= T. a[;; (3 implies (3 = T, and (3 [;; 1' implies 1' = T. Therefore 

Case 3: a is an atom. Then a= (3 = 1', or a= (3 # 1' = T, or a# (3 = 1' = T 

by Proposition 7, and hence a~ -y. 

Case 4: a = <n> a;. Then (3 = <:n> (3; and -y = <:n> l'i such that <>; [;; (3; and 
t=l t=l t=l 

(3; ~ -y;. By induction on the nesting level it can be shown that <>; [;; J'; 

and hence, a [;; -y. 

n 
Case 5: a= <;j-a;. Then (3 and-y are prefixes or sequences such that<>; [;; (3; 

i:;;;l 

and (3; ~ -y;. In particular, the following combinations are possible, where 

n :S m :S p: 

m p 

(3 = <;j-(3; and -y = <:l'J'; 
i=l i=l 

n P 
(3 = <;j-{3; and -y = <>1'; 

i=l i;;:;l 

For each of these cases, it can be shown by induction on the nesting level 

that <>; ~ l'i and hence a [;; 1'· I 

( C, !;;) is a complete lattice 

We now establish that C is a complete lattice. It will suffice to show that C has 

a lub (least upper bound) and that every nonempty subset of C has a glb (greatest 
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lower bound) in C (Jacobson 1974]. The next senes of lemmas and corollaries 

provides the basis for proving that C is a complete lattice. 

Lemma 18: For every a, (3 E C, an (3 exists (an (3 denotes the glb of a and f3). 

Proof: By symmetry, we will only consider the cases on a, and we will treat 

the cases sequentially, assuming that no previous case applies. 

Case 1: "= L Then "n (3 = ..L. 

Case 2: "'= T. Then" n (3 = (3. 

Case 3: "' = (3. Then "n (3 = a. 

Case 4: " is an atom. Then "n (3 = ..L by Proposition 7. 

Case 5: a, (3 are prefixes or sequences. Only the following combinations 

will be considered. The rest follow from symmetry. 

n n 
a = <> <>; and (3 = <> (3; 

i=l i=l 

n m 
a=<><>; and (3 = <>f3;,n oft m 

i=l i=l 

n m 
a= <>a; and (3 = <::}(3; 

1=1 i=l 

n m 
a = <;}a; and (3 = <::}(3; 

i=l i=l 

For the first combination, (where"' and (3 are sequences of the same length), 

let -y = ·s:">a; n(J;. For the other three combinations, let p = min{n,m}, and 
t=l 

p 
-y =<;}a; n (3;. (To be a lower bound, -y must be a prefix if either a or (3 is a 

i=l 

prefix, or if a and (3 are sequences of different lengths. If they are sequences 

of the same length, -y must be a sequence to be the glb.) We will first show 

(by induction on the nesting level) that -y exists and then show that -y = an(J. 

Suppose that the nesting level of the a; 's and (3; 's is bounded by zero. Then 

all of the a;'s and (3;'s are ..L or atoms, and we have shown above that <>; n (3; 

exists. Hence -y exists. For the induction hypothesis, assume that for any 

sequences or prefixes a and (3, if the nesting levels of " and (3 are bounded 

by k, then a n (3 exists. Now suppose that " and (3 are sequences or prefixes 
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and that their nesting levels are bounded by k + 1. Then by the definition of 

nesting level, each entry a;, j3, (for a;, j3, prefixes or sequences) has nesting 

level bounded by k. Hence each a; n /3; exists by the· induction hypothesis, 

and hence 'Y exists. Finally, to see that 'Y is the glb, observe that it is a lower 

bound, and suppose that 6 is any lower bound. If 6 = 1., then 6 ~ 'Y· Else, 6 

is a prefix or sequence, and its ;th entry precedes a; n /3;. Hence, 6 ~ 'Y· I 

Corollary 19: Every finite set S <;;: C has a glb. 

Proof: The proof is by induction on the size of the finite set. I 

The next two lemmas exhibit properties of C that are used to establish that 

every nonempty subset of C has a glb. 

Lemma 20: Any element of C not equal to T is preceded by only a finite number 

of elements of C. 

Proof: We will use induction on the nesting level to establish the proposi

tion. From the definition of ~' it is clear that 1. is preceded only by itself, 

and atoms are preceded only by themselves and 1.. Thus the assertion holds 

for objects of nesting level 0. <>and <:}are preceded only by themselves, 

<:}, and 1.. An element with nesting level equal to 1 is of the form < x 1 ... xn > 

or< x 1 .•• xn:}, where each x; is 1. or an atom. These elements are each pre

ceded by only a finite number of things, the prefixes of these elements and 

themselves. Suppose that any element with nesting level ::; k is preceded by 

only a finite number of things. We must show that an element with nesting 

level k + 1 is preceded by only a finite number of things. An element with 

nesting level k + 1 is of the form < x 1 .•• xn > or < x1 .•. xn:} where each x; 

has nesting level ::; k. < x 1 ... xn > is preceded only by elements of the set 

{< Yt ... ym:} I 0::; m::; n andy;~ xi} U {< y, ... yn > IY; ~ x;} U {1.}. For each 

i, there are only a finite number of possibilities for y;, since, by the induc

tion hypothesis, x; is preceded by only a finite number of elements. Thus 

the set is finite. Similarly, < x 1 .•• xn:} is preceded only by the elements of 

{< y, ... ym:} I 0 :Sm::; nand y; ~x;}U{l.}, a finite set. I 
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Lemma 21: Let S be a non-empty subset of C not containing T. Then there exists 

a finite subset T of S such that the set of lower bounds of S is equal to the set of 

lower bounds of T. 

Proof: The proof is by construction of T. S is not empty, so choose any 

element of S, call it a. By Lemma 20, a is preceded by no more than a 

finite number of things; let these be {/3,,/32 , •.• /3n}· Thus /3;!;; a. Then letT 

= {<>,'Yt,'Y2 , .. ·'Ym} such that for each /3; that is not a lower bound of S, there 

exists a 'Y; E S such that /3; does not precede 'Y;. (We have that 0 :; m :; n.) 

We now show that the set of lower bounds ofT, call it LT, is equal to the 

set of lower bounds of S, Ls. Since T ~ S, we have that Ls ~LT. LT ~ Ls is 

true if u rfo Ls => 0' rfo LT. Suppose 0' rfo L8 . If 0' does not precede a, then 0' rfo LT. 

Otherwise, 0' !;; a. Since 0' is not a lower bound of S, there exists 'Y; E T such 

that 0' does not precede 'Y;. Therefore, 0' rfo LT. I 

Corollary 22: Every non-empty subset S of C not containing T has a glb. 

Proof: By Lemma 21, there exists a finite subset T of S such that the set 

of lower bounds of T is equal to the set of lower bounds of S. By Corollary 

19, T has a glb. The glb ofT is therefore the glb of S, since S and T have 

the same lower bounds. I 

Lemma 23: Let S be a subset of C containing T. Then the glb of S is equal to the 

glb of S\ {T}. 

Proof: If S = {T}, then T = glb {T} = glb { } = glb S\{T}. Otherwise, 

S\{T} is not empty and by Corollary 22 has a glb, call it a. To show that a 

is the glb of S, we must show that a is a lower bound of S and that for any 

other lower bound J3 of S, J3 !;; a. a is a lower bound of S, since a precedes 

every element of S\{T} and a !;; T. Let J3 be a lower bound of S. Then J3 is 

a lower bound of S\ {T}, and hence, J3 !;; a. I 

Corollary 24: Every non-empty subset S of C has a glb. 

Proof: Immediate from Corollary 22 and Lemma 23. I 

Theorem 25: (C, !::::) is a complete lattice. 

28 



Proof: Since we have shown that ~;; is a partial order, it suffices to show 

that C has a lub and that every non-empty subset of C has a glb. T is 

clearly the lub of C, and Corollary 24 established that every non-empty 

subset of C has a glb. I 

The domain D 

The next step in defining the set of objects of the SFP domain D is construction 

of the set of all chains of elements of C. The expression {a;} denotes a sequence 

{adi EN & a; E C}. The set of chains D' is defined formally as: 

D' = { { <>;} I <>; !;; "H• for every j}. 

Each element of D' is called a chain (of elements of C). A chain is a sequence 

of approximations, where each approximation is at least as good as the preceding 

one. 

Some examples of elements of D' are: 

{ .L, .L, .L, ... }, 

{< 1:j>,< 12 :j>,< 12 3:j>, ... },and 

{.L,< 1:j>,< 1 >,< 1 >,< 1 >, ... }. 

We associate with each chain the (unique) element that is approximated arbi

trarily well by the infinite sequence of approximations. The set D' contains all of 

the kinds of objects we want, but the representations are not unique. For example, 

consider the following family of elements of D': 

{.L, 1, 1, 1, ... }, 

{.L,.L,1,1,1, ... }, 

{.L, .L, .L, 1, 1, 1, ... }, 

where the ellipses in each case denote an unending sequence of 1 's. We wish to con

sider each of these to be an infinite representation of the finite object 1. To eliminate 

the problem of non-unique representation, we define an equivalence relation that 

groups together elements of D' to reflect the desired notion of equality. 

Definition 26: Let {a;} and {,8;} be elements of D'. Then {a;}~ {,8;} if for each k E 

N, there exists n E N such that ak!;; ,8n and ,a.!;; an· 
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Theorem 27: - is an equivalence relation. 

Proof: Reflexive: If {a;} E D', we must find n for k such that "'• [;;; an· 

Choose n = k. Then by reflexivity of[;;;,- is reflexive. 

Symmetric: This is an immediate consequence of the definition of -. 

Transitive: Suppose {a;} - {,8;} and {,8;} - {-y;}. We want to show that 

{a;}- {'Y;}. Given kEN, we must find n EN such that ak!;; 'Yn and "Yk [;;;an. 

Since {a;} - {,8;} there exists p E N such that ak [;;; ,8p. Also, since {,8;} - {r;} 

there exists q, r EN such that ,8p [;;; 'Yq and 'Y< [;;; ,8r· Again, because {a;}- {,8;} 

there exists sEN such ,Br [;;;a,. Let n =max {q,s}. Then ,8p [;;; r, =} ,8p [;;; rn 

and ,Br [;;;a, =} ,Br [;;;an. Hence we have that a< [;;; ,Bp, and ,8p [;;; 'Yn, which implies 

that ak [;;; 'Yn by transitivity of [;;;. Similarly, 'Y< [;;; ,8. and ,Br [;;; an implies that 

'Y< !;; an. Hence, - is transitive. I 

The quotient set D = D' /- is the desired domain. The order [;;; defined on C 

induces a relation< on D' and a partial order!;; on D. The relation< is a quasi-order 

(i.e., reflexive and transitive), but it is not anti-symmetric. In fact, the equivalence 

relation- is the link between< on D' and[;;; on D, being the minimum equivalence 

relation that produces anti-symmetry. 

Definition 28: Let a; and ,8; be elements of D'. Then {a;}< {,8;} iffor each kEN, 

there exists n E N such that "< [;;; ,Bn. 

From the definition of <, it is apparent that if a; and ,8; are elements of the same 

equivalence class, then "' [;;; ,8;. Also, note that < is transitive. 

Definition 29: Let r and Ll. be elements of D, that is, they are equivalence classes. 

Then r [;;; Ll. if for every pair of chains {'Y;} E r and {5;} ELl., {'Y;} < {5;}. 

The next result establishes that in order to show r [;;; Ll., we need not compare all 

the chains of r with all those of Ll.; it suffices to compare any pair of representatives 

from the equivalence classes. 

Theorem 30: Let r, Ll. be elements of D. Then r [;;; Ll. iff there exist {-r;} E r, {5;} ELl. 

such that {'Y;} < {6;}. 
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Proof: r and ~ are non-empty; choose any chains {'y;} E r and {5;} E ~

That r ~~implies {'y;} < {6;} follows immediately from Definition 29. 

Now suppose that {'y;} E r, {6;} E ~, and {'y;} < {6;}. We must show that for 

any {17;} E r, {0;} E ~'it is true that {17;} < {0;}. {'y;} and {17;} are both elements 

of the same equivalence class, so, by Definitions 26 and 28, {17;} < {'y;}. 

Similarly, {5;} < {0;}. Since {'y;} < {6;}, by transitivity, {17;} < {0;}. I 

Theorem 31: The relation ~ on D is a partial order. 

Proof: The proof is straightforward. I 

Theorem 32: If A is a countable set, then (D, !;;) is a complete lattice. 

Proof: It suffices to show that D has a glb and that any subset of D has 

a lub. Consider the equivalence class of the chain {a; I a; = .i}. (In fact, 

this chain is the only element of its equivalence class.) Clearly this object 

precedes everything, and the glb must precede this object, so this is the glb. 

To show that any subset of D has a lub, let S be a subset of D. Choose one 

chain from each object inS. From these chains, we will construct a chain V 

whose equivalence class will be the lub of S. To show that the equivalence 

class of V is the lub of S, by Theorem 30 it will suffice to show that for each 

chosen chain {a;}, {a;} < V, and that if for any other chain W such that 

{a;}< W for all chosen chains {a;}, then V < W. 

We will construct V by first constructing an infinite series of sets whose 

elements come from the chosen chains. Then we will form a chain of lub's 

of elements of these sets by diagonalization. 

Let X k be the set of k'h elements of all of the chosen chains in S. Formally, 

Xk = {ak I the chain {a;} is one of the chosen chains}. 

Each x. is a subset of C and therefore is countable, since A is countable. 

Enumerate the x. 's: 
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Construct the following sequence (to be shown a chain) V as a candidate 

for the lub of the chosen chains: 

Vn = X1n U X2(n-1) U ... U Xnl U Vn-1 

All of these lub's exist, since C is a lattice. Vis a chain, since each element· 

of V is the lub of the previous element and other elements, implying that 

the previous element certainly is a predecessor. 

To show that V is the lub of the chosen chains, we can show that it is 

an upper bound and that it precedes all other upper bounds. V is an 

upper bound for the chosen chains if for all {a;} where {a;} is a chosen 

chain, {a;} < V. {a;} < V if for each a., there exists vn such that ak [;;; vn. 

Consider a •. Since ak Ex., ak = xk(i) for some i. Choose n = k + i -1. Then 

V(k+i-1) = x1(Hi-1)ux,(Hi-2)U .. . Uxk(k+i-k) .. . Ux(k+i-1)1 Uvk+i-2· The k'h element 

forming vc•+i- 1) is recognized as a •. (xk(k+i-k) = xk(i) = a •• ) Clearly, then, 

a• [;;; vc•+•- 1). Hence, Vis an upper bound. 

Now suppose that W = {w;} is also an upper bound for the chosen chains, 

i.e., for every chosen chain {a;}, {a;}< W. We must show that V < W, which 

will be true if for each k E N, there exists n E N such that Vk [;;; wn. Observe 

that vk = x,. u x2c•- 1J u ... u x., u vk-1· Each x;; making up v• comes from 

some chosen chain. Since W is an upper bound for the chosen chains, each 
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x;;(i,j:::; k) precedes some element wm in W. Choose such a wm for each x;;. 

The resulting set of k wm 's is totally ordered, since it is a subset of the chain 

W, and also is finite. Thus it has a maximum element, call it wn. Since wn 

is the maximum of the wm's, each of the x;;'s precedes it. Therefore, vk G wn, 

since Vk is the lub of the x;;'s. I 

Thus we have established that the set D under G is a complete lattice, and this 

lattice will serve as the domain of a collection of continuous functions. 

The definition of D as a set of equivalence classes of chains gives us the ability 

to distinguish between finite and infinite objects. If an element of D contains a 

chain{<>;} such that<>;= "'• for all j,k EN, then that element is finite. Otherwise, 

the element is infinite. There is an obvious isomorphism between the finite objects 

and the set C. Hence, we shall refer to the set of finite objects as C. 

Summary 

The SFP semantic domains B, C, and D have been defined based on a set of 

atoms A. These domains are supersets of Backus's domain 0: 

A c 0 c B c C cD, 

0 contains the atoms of A, finite (complete) sequences, and .L. B contains all of 

the objects of 0 and T. C contains all of the objects of B and finite approximations. 

D contains all of the objects of C and infinite objects. 

The partial order of 0 has been extended to each of the new domains. Under 

the extended partial order, prefixes precede sequences and everything precedes T. 

Finally, the partially ordered sets (B, G), (C, G), and (D, G) have been shown 

to be complete lattices. That (D, G) is a complete lattice will be particularly 

important in proving continuity of functions in the next chapter. 
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Chapter 3 

The Semantic Functions 

This chapter describes a way to alter the FP functions, which are defined on 0, 

to operate on all of the elements of the domain D. The functions on D will not, in 

general, be extensions of the functions on 0, since it is possible for a function on 

0 to map an element of 0 to _!_, whereas the corresponding function on D (as well 

as Band C) maps that element toT. This difference results from the fact that _]_ 

represents error in 0, whereas T represents error in D (as well as Band C). 

In order to describe the functions on D, we first specify a set of primitive 

functions and functional forms. We will establish that these functions have the 

desired properties of monotonicity and continuity. Once the primitive functions and 

functional forms have been given, the set of functions can be defined by describing 

the ways that the primitive functions and functional forms can be combined. We 

show that all of the functions thus defined are monotonic and continuous. Given the 

set of functions and using the objects of D as defined in the previous chapter, we 

can finally give the meaning of any SFP expression using denotational semantics. 

This will complete our denotational description of the language. 

In Chapter 2 the partial order !;;; was defined to describe the relationship between 

two objects, one of which approximates the other. This relative information content 

of various objects should be preserved by function application. Suppose we have 

two objects x 0 and x1 such that x 0 !;;; x,, that is, xo contains no more information 
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than x1 • For any computationally useful function/, it is reasonable to expect that 

f(x 0 ) [;;;; f(x,). For example, in the case that x0 and x1 are both approximations 

to some input argument x, this ensures that f(x 1) will contain at least as much 

information about f(x) as does f(x 0). This property, called monotonicity, is true of 

all SFP functions, as we will show. 

We defined infinite SFP objects as the limits of infinite chains of SFP objects; 

therefore, it is also necessary that all SFP functions be continuous. Continuity is the 

property that the image under f of the limit of a chain of approximations is equal 

to the limit of the images under f of the approximations in the chain. Continuity of 

functions is necessary to ensure that finite outputs produced by a computation from 

finite approximations to the input approximate the result of applying the function 

to the entire (possibly infinite) input. 

One final.property of SFP primitive functions ensures that the approximate re

sults are as informative as possible. We want the result of applying an SFP primitive 

function to an approximate object to be as defined as possible, constrained only by 

the requirement that the primitive function be monotonic. This is accomplished by 

defining maximal monotonic extensions. For each approximate object, the prim

itive function is defined on that approximate object by taking the greatest lower 

bound of the images under that primitive function of the complete objects that are 

preceded by the approximate object in question. This formula is chosen because we 

want the image of the approximate object to precede the image of each complete 

object that is approximated. Using the set of lower bounds ensures monotonicity, 

and choosing the greatest of those ensures maximality. 
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Primitive functions on D 

In this section we exhibit two related mechanisms for producing useful contin

uous functions over D from monotonic functions on B. A standard mechanism is 

used to extend any monotonic function over C to a continuous function over D. 

We introduce a second mechanism to extend any monotonic function over B to a 

monotonic function over C, which can then be extended by the first mechanism to 

a continuous function over D. In order to use the original FP primitive functions 

given by Backus as a basis for the primitive functions on D, we also need a defini

tion that describes how any monotonic function on 0 can be altered to a monotonic 

function on B. 

The combination of the definition for altering functions on 0 to functions on B 

and the two mechanisms is important because it provides a uniform way of creating 

a continuous function on D from any monotonic primitive function on Backus's 

domain 0. This makes it feasible to define initially the primitive functions on 0 

and use the mechanisms to produce a corresponding continuous primitive function 

on D. One only need ensure that the primitive function on 0 is monotonic. That 

is not difficult; if the primitive function applied to 1. results in 1. (that is, if the 

function is bottom-preserving), then the function on 0 is monotonic. 

Earlier in this chapter, informal explanations of the concepts of monotonicity 

and continuity illustrated the need for all SFP functions to have these two proper

ties. Here we formalize their definitions. 

In Definitions 33, 34, and 35, let X, Y and Z be partially ordered sets under 

the partial order [;;. 
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Definition 33: A function f from Y to Z is monotonic if for a, (3 elements of Y, 

a r; f3- f(a) r; !((3). 

Definition 34: A set X is directed if every finite subset of X has an upper bound 

in X. 

Definition 35: A function f from Y to Z is continuous if for any directed set X 

<;; Y, f(lub X) = lub{!(x)l x EX }. 

Because we are particularly interested in the primitive functions of Backus, 

we first show how, for any primitive monotonic function on 0, to produce a corre

sponding function on B. This is done simply by modifying those primitive functions 

to reflect that T represents error in the domain B, a role played by .!. in 0; this 

modification results in a primitive function on B. 

Definition 36: Let p be a monotonic function over 0 (as is every Backus primitive 

function). The function p from B to B is defined as follows: 

p(x) := T, if x =Tor [P(x) =.!.and x 7'.!. J 

p( x) otherwise. 

In effect, p is the same function as p except that p uses T for error rather than 

.!.. Note that if p is monotonic on 0 (as is each Backus primitive function), then 

the resulting function p on the flat lattice B is also monotonic. 

We now define extension and maximal monotonic extension. 

Definition 37: Let (X, r;), (Y, [;;) be partially ordered sets such that X <;; Y and let 

f be a monotonic function on X and g a function on Y. Then g is an extension toY 

off on X if f(x) = g(x) for every x EX. Furthermore, g is the maximal monotonic 

extension of f if g is monotonic, and for every other monotonic function h that is 

an extension toY of/, h(x) r; g(x) for every x E Y. 
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Proposition 38: Let X, Y, f, and g be as in Definition 37. If g is the maximal 

monotonic extension off, then g is unique. 

Proof: To show that the maximal monotonic extension is unique, we must 

show that for any other maximal monotonic extension h, g = h. Let h 

be a maximal monotonic extension of f. Since both g and h are maximal 

monotonic extensions off, we have that for every x E Y, h(x) !;; g(x) and 

g(x)!;; h(x). Therefore, g = h. I 

When it is clear which domains are involved, we shall refer to g as simply the 

extension off or the maximal monotonic extension of f. 

Note that in general p will not be an extension to B of p on 0, since it is 

possible for p(x) = j_ and p(x) = T for some values of x E 0. However, it is nearly 

an extension, the equality p(x) = p(x) failing only for those elements that result in 

an error when p is applied to them. As noted before, the need for this modification 

arises from the fact that T represents error in B and 1_ represents error in 0. Though 

not a true extension, we shall refer to ji as a modified extension or m-extension of p. 

We next show how to extend a monotonic function on B to a monotonic function 

on C. 

Definition 39: Let f be a monotonic function from B to B. Then f' is defined 

from C to C as: 

f'(x) := glb {f(y)ix!;; y & y E B}. 

Theorem 40: Let f be a monotonic function from B to B. Then f' (as defined 

above) is a monotonic extension to C of f. 
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Proof: We first show that f' is an extension off by showing that for x E B, 

f(x) = f'(x). If x =.Lor x = T, then it is clear that f(x) = f'(x). Otherwise, if 

x E B, then the only values of y E B satisfying x [;yare x and T. Thus 

f'(x) = glb{f(x),f(T)} 

and since f is monotonic, f(x) [; f(T), so 

= glb{f(x)} 

= f(x). 

Therefore, f' is an extension of f. 

To show that f' is monotonic, suppose that a, b E C such that a [; b. Then 

{f(y) I a[; Y & Y E B} 2 {f(y) I b [; Y & Y E B}. 

Therefore 

glb{f(y) I a[; y & y E B} [; glb{f(y) I b [; y & y E B}. 

Hence 

f'(a) [; f'(b). 

I 

The primitive functions as defined on C are not usually extensions of the FP 

primitive functions on 0 because when an error occurs, the FP primitive func

tion produces .L, whereas the primitive function on C produces T. If we restrict 

the domain to only those arguments that do not produce an error when used as 

an argument to the primitive function, then the primitive functions on C will be 
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extensions of the FP primitive functions on these restricted domains. Note that 

different primitive functions may have different restricted domains because whether 

an error occurs for a particular argument depends on the primitive function being 

applied. For any monotonic function p on B, we denote this restricted domain by 

Bp. ( BP <;; 0 c B.) In other words, BP is simply the set of objects in Backus's 

domain that do not produce an error when used as arguments to the FP primitive 

function p. Bp contains exactly those elements for which jl produces the same result 

as p. The excluded elements are those that cause an error to occur when p or jl is 

applied to them. 

Lemma 41: For any monotonic FP primitive function p, let Bp be the subset of 0 

such that x E Bp if x = ..l or p( x) # ..l. Then jj is an extension to B of p on BP and 

p' is the maximal monotonic extension to C of p on BP. 

Proof: We first show that pis an extension of p by showing that for every 

x E Bp, p(x) = jj(x). Let x E Bp. According to the definition of Bp, x = ..l 

or p(x) # ..l. If x = ..L, then jj(x) = p(x) by Definition 36. If p(x) # J., then 

jj(x) = p(x), again by Definition 36. Thus jj is an extension to B of p on Bp. 

We have left to show that p' is the maximal monotonic extension to C of p 

on BP. We must show that jl is monotonic, that fl is an extension to C of 

p on Bp, and that for any other such extension h of p, h( x) ~ p' ( x) for every 

X E C. 

We have seen that jj is monotonic, since pis monotonic. Furthermore, by 

Theorem 40, fl is monotonic. According to Theorem 40, fl is an extension 

to C of jj on B, which implies that fl(x) = jj(x) for every x E B and thus for 

every x E Bp. (Recall that Bp <;; 0 c B.) Therefore, p'(x) = p(x) for every 

X E Bp. 
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We have only to show that f/ is maximal. Suppose a monotonic function 

h is an extension to C of p on BP. We must show that if x E C, then 

h(x) [; p(x). 

For every y E Bp such that x [; y, we have that h(x) [; h(y) because h 

is monotonic. Also, since both h and p are extensions of p, we know that 

p(y) = h(y) and p(y) = f/(y). Also, for y E BP we have that p(y) = p(y) by 

Definition 36. So h(y) = p(y) for every y E Bp· Thus we can substitute p(y) 

for h(y) in the relation h(x) [; h(y) to get h(x) [; p(y) for every y E Bp such that 

x [; y. Thus h(x) is a lower bound for the set {p(y) I x [; y & y E Bp}, which 

means that h(z) precedes the glb of that set. 

Since Bp <:;; B, we have that 

{p(y) I X[; y & y E B} = {p(y) I "'[; y & y E Bp} u {p(y) I X[; y & y E B\Bp}. 

Suppose y E B\BP. Then y ,p .L and p(y) = .L From Definition 36 we have 

that p(y) = T. Therefore, {p(y) 1 "' [; y & y E B\Bp} = {T} or {}. In either 

case, we have that glb{p(y) I x [; y & y E B} = glb{p(y) I x [; y & y E Bp} 

From the discussion concerning h(x) we have that h(x) [; glb{p(y) I x [; 

y & y E Bp}· Thus, h(x) [; glb{p(y) I x [; y & y E B} = p'(x), the result that 

we needed. 

I 

We have shown that p' is the maximal monotonic extension to C of p on Bp. The 

use ofT as the error object, in conjunction with maximal monotonic extensions, 

permits results in some cases that are more defined than those achieved by similar 

languages described by others. Dosch & Moller [Dosch & Moller 1984] and Halpern 
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et al. [Halpern et al. 1985, 1986] use _]_ to represent error. In order to ensure 

that functions are monotonic, the result of applying one of their functions to an 

input is _]_ unless enough is known about the input to ascertain that no error can 

occur by further refinement of the input. To be more specific, consider the result 

of apndl applied to < 2 < 45 lO:j>:j>. Since < 2 < 45 lO:j>:j> I; < 2 < 45 10 > 33 >, if 

apndl( < 2 < 45 10 > 33 >) = _]_ (denoting an error) in their systems, they have no 

choice but to define apndl( < 2 < 45 lO:j> :j>) = _!_ (denoting "no information"). 

By contrast, since errors in SFP are denoted by T, the SFP m-extension of apnd/ 

applied to < 2 < 45 lO:j> :j> is able to produce the more informative result < 2 45 lO:j> 

without sacrificing monotonicity. 

We now use the fact that a monotonic function applied to a chain produces a 

chain to show that any monotonic function f on C can be mapped to a continuous 

function f* on D. 

Definition 42: Let f be monotonic on C. Then the function f' from D to D 

is defined as follows: If [{a;}] is the equivalence class of {a;}, and [{!(a;)}] is the 

equivalence class of {!(a;)}, then f*([{a;}]) =[{!(a;)}]. 

Theorem 43: Let f be a monotonic function on C. Then f* is well-defined. 

Proof: To show that f* is well-defined, we must show that if {a;} and {P;} 

are members of the same equivalence class, then f'([{a;}]) = f'(({;J;}]), i.e., 

[{!(a;)}]= [{f(;J;)}]. This will be true if {!(a;)}~ {f(P;)}. 

For each kEN, we must find n EN such that the k'h element of {!(a;)},/( a.), 

precedes the n'h element of {f(;J;)},/(Pn) and vice versa. Since {a;} ~ {;J;}, 

for each k E N there is n E N such that a• I; Pn and P. I; "". Because f is 

monotonic, we have that f(ak) I; f(Pn) and f(P•) I; /(frn)· 
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We want to ensure that all primitive functions are monotonic and continuous 

on D. Continuity implies monotonicity, so it will suffice to show that each function 

is continuous. However, the next theorem establishes that if a function f on C is 

monotonic, then the corresponding function f' is continuous on D. We have seen 

earlier that for the FP primitive functions on 0, the corresponding functions on 

C are monotonic if they are monotonic on 0. Therefore, any monotonic function 

on 0 can be extended to a continuous function on D. The only way a function on 

0 can fail to be monotonic is if it maps some non-bottom element to .l and .l to 

something other than .l. Clearly any function on 0 that maps .l to .l is monotonic; 

every FP primitive function is defined on 0 and maps .l to .l. Therefore, every FP 

primitive function can be extended by Definitions 36, 39, and 42 to a continuous 

function on D. 

Theorem 44: Let f oe a monotonic function on C. Then f' is continuous on D. 

Proof: f' is continuous on D if for every directed set X <;; D, f*(lub X) = 

lub !*(X). The proof consists of establishing that f'(lub X) ~ lub f'(X) and 

that lub f*(X) ~ f'(lub X). 

X and f'(X) are sets of equivalence classes of chains, and lub X, f'(lub X) 

and lub /'(X) are equivalence classes of chains. In view of the results of 

Theorem 30, we shall treat every equivalence class of chains as though it 

were a single (arbitrarily chosen) chain. Thus we shall treat X and f'(X) 

as though they were sets of chains and lub X, f'(lub X) and lub !*(X) as 

though they were simply chains. In the new denotations, the proof consists 

of showing that f*(lub X) < lub !*(X) and that lub !*(X) < f*(lub X). 
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It will be true that f*(lub X) < lub f*(X) if for each point p on the chain 

f'(lub X) there is a point q on the chain lub f'(X) such that p!;:;; q. If p is a 

point on f*(lub X), then there exists z on lub X such that p = f(z). Since z 

n 

is a point on the least upper bound of X, z = ,~1 z;, where each z, is a point 

on some chain in X. Let Z; be the chain containing z;. (In fact, there may be 

several containing z;, but we choose the one which causes z; to participate 

in the lub at this point.) Since X is directed, the set {Z;Il:::; i:::; n} has an 

upper bound in X, call it {a;}. Since {a;} is an upper bound for {Z;Il:::; i:::; n}, 

for each i, there exists j EN such that z;!;:;; ai. Let m = max{j E Nlz;!;:;; aj}· 

n 
For every i, 1 :::; i :::; n, z; !;:;; am. Therefore, ,~1 z; !;:;; am. Since f is monotonic, 

f(;Q
1 

z;)!;:;; f(am), which implies that f(z)!;:;; f(am), which implies that p!;:;; f(am)· 

f(am) is a point on the chain /({am}), which is a chain in /'(X). There is a 

q in the chain lub f'(X) such that f(am)!;:;; q. This is the desired point, since 

p!;:;; f(am) and /(am)!;:;; q imply that p!;:;; q. 

It will be true that lub /'(X) < /(lub X) if for each point z on lub !*(X) 

there is a point f(q) on /(lub X) such that z !;:;; f(q). Since z is a point on 

a least upper bound, it can be written as z = f(z!) U !(z2) u ... f(zn)· Each 

f(z;) is a point on some chain in !*(X), so each z; is a point on some chain 

in X. Each z; precedes some y; where y; is a point on lub X, since lub X is 

an upper bound for X. Choose the largest such y;, call it q. Now z;!;:;; q for 

n 
every i, which implies that ,~1 z; !;:;; q. Because f is monotonic, we have that 

f(Uz;)!;:;; f(q). Therefore, z!;:;; f(q), and we have shown that f(q) is the desired 

point. I 
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We have now completed the description of how primitive functions over 0 can 

be used to construct primitive functions over D. Complete definitions of all of the 

SFP primitive functions are given in Appendix B. 

Not all functions on C can be extended by Definition 42 to functions on D. If 

a function f is not monotonic on C, the definition of f' fails to produce a function 

on D because the image of some chain under f fails to be a chain itself. Consider 

some such f. Since f is not monotonic, there exist x, y E C such that x ~ y and 

f(x) g f(y). Therefore, the image of any chain containing x and y is not a chain. 

Each of the following functions on C are not monotonic and therefore cannot be 

extended by Definition 42 to functions on D: 

a function that closes a prefix (converts a prefix into a sequence), 

a function that measures the .length of a prefix, 

a function that tests whether an argument is a prefix, 

a function that tests whether an argument is the null prefix. 

We are only interested in monotonic functions, however, so the fact that not all 

functions are extendable by Definition 42 is of little consequence. Every monotonic 

function on C can be extended by Definition 42 to a monotonic function on D. 

Functional forms 

In order to combine primitives into usefu.l programs, we need a set of combining, 

or functional, forms. We restrict ourselves here to extensions of the functional 

forms found in the Turing Lecture [Backus 1978], plus one variation, to operate on 

functions on D. The definitions of some of those forms, such as composition and 

construction, hold in D without modification. The definitions of others, such as 
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insert and apply-to-all, depend on the structure of the argument, and thus need to be 

modified to define their action on the elements of D that are not in Backus's domain 

(i.e., approximations, T, and streams), but the new definitions are straightforward 

modifications. 

The definition of the functional form condition does not depend on the structure 

of the argument, but the definition must be modified, anyway, primarily because 

"error" has changed from .L toT. The functional form constant must also be altered 

slightly for the same reason. 

Finally, we include another insert functional form, sometimes referred to else-

where as left insert. 

The definitions given for insert and apply-to-all are for the functional forms 

on C. Using these functional forms on elements of D merely requires applying the 

functional expression to each element of each chain of the elements of D, the stan-

dard method for extending functions on C to functions on D. The other definitions 

work for both the domains C and D. 

Composition 

(fog)(x) = f(g(x)) 

Construction 

[j,, ... , fn](x) = < !t(x), ... , fn(x) > 

Condition 
(p-+ f;g)(x) = p(x) = T ---> f(x); 

p(x) = F ---> g(x); 

p(x) = .L-+ .L; 

T 
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Constant 
x(y) = y = T---+ T; 

X 

Insert 

Right Insert (from the originalFP Insert) 
/f(x) = x = _L---+ _L; 

X=< X!, ... , Xn > & n ::0:2 ---+ f(< XJ,/f(< X2, ... , Xn >) >); 

T 

Left Insert 
\f(x)= x=_l---+_L; 

X=< X!, ... , Xn > & n ::0:2 ---+ f(< \f(< X!, ... , Xn-1 >), Xn >); 

X=< X1 1 ••• , Xn~ & n ~ 0 - ..lj 

T 

Apply to all 
af(x) = x = j_---+ <:!-; 

X = </J ---+ </J; 

X=< X!, ... , Xn:j> ---+ < f(x,), ... , f(xnH ; 

X=< X!, ... , Xn > ---+ < f(x,), ... , f(xn) >; 

T 

Binary to unary 

(bufx)(y)= f(<x, y>) 
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While 
(while p f)(x) = p(x) = T---> (while p f)(f(x)); 

p(x)=F->x; 

T 

The collection of SFP functions 

A function of the SFP language is denoted by a function expression, which is a 

primitive function, a functional form, or an identifier f denoting a defined function. 

A defined function is declared by a defining equation of the form Def f := exp, 

where f is a function variable name and exp is a function expression. The grammar 

below generates F, the set of all possible function expressions for SFP. We do not 

allow any function variable name to be used as the left-hand side of more than one 

defining equation. 

PRIMITIVE ::= primitive function 

OBJ ::=object 

FUN-VAR ::=fIg I h 1 ... (non-subscripted character strings not already used as 

atoms or primitive function names) 

F-LIST ::= F IF, F-LIST 
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F ::= PRIMITIVE 

FUN-VAR I 

(FoF)I 

(F ___, F; F ) I 

[ F-LIST] I 

(/F) I 

(\F) I 

OBJ I 

(aF) I 

while(F F) 

bu(F OBJ) 

An environment is a collection of defining equations and the set of primitive 

functions. We say that f calls g if Def f := exp is in the environment and g occurs 

in exp or if some function h occurring in exp calls g. If f calls f, then f is said to 

be recursively defined. Otherwise, f is said to have a closed form defining equation. 

Informally, we will say that f is either recursive or closed form. It is easy to see 

that if f calls g and g calls f, then g is recursive. In this case, f and g are said to be 

mutually recursive. 

A function given by a closed form defining equation is defined uniquely by the 

function expression of the defining equation, but a recursively defined function is 

not, in general. That is, given a defining equation of the form Def f := Ef, where Ef 

is a function expression involving f, there may be any number of functions satisfying 

the equation. Each function that satisfies the equation is called a fixed point of that 

equation. We choose from among those fixed points one function, the least fixed 
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point, as the sole function denoted by the definition Def I:= El. The least fixed 

point always exists in this case [Tarski 1955] and can be constructed as given in 

Kleene's Theorem [Kleene 1952]. 

It may also be the case that a function 1 is recursive in some environment, but 

1 does not occur in the function expression of its own defining equation. The set of 

functions that 1 calls and that also call 1 form a set of mutually recursive equations 

and are "solved simultaneously" to obtain the set of functions defined by the set of 

equations. Kleene's Theorem gives the solutions to recursive equations, that is, the 

least fixed points of the equations. 

In the following theorem, the expression "exp[di, d~, ... , d~/d1 , d2 , ••• , dn]" denotes the 

expression identical to exp where d~ has been substituted for all occurrences of d1 in 

exp, cl2 has been substituted for all occurrences of d2 in exp, etc. 

Kleene's Theorem: Given an environment with a finite collection of defining 

equations Def I := exph Def g := exp9 , ••• , Def h := exph, each recursively defined 

function is equal to the least upper bound of a sequence of functions: 

I is the least upper bound of the functions lo, !J, j,, ... 

g is the least upper bound of the functions g0 , g1 , g2 , ••• 

h is the least upper bound of the functions h0 , h, h2 , ••• 

where 

Ia := _!_; Uo := _!_; ••• ho := _!_; 

/i+l := exPJ[I;,g;, ... ,h;fl,g, ... ,hJ; 
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Yi+! := e:z:pg[/;, g;, ... , h;j /, g, ... , h]; 

h;+' := ezph[f;,g;, ... ,h;ff,g, ... ,h]. 

The meanings of SFP expressions 

When the semantics of a language is given denotationally, the syntactic expres-

sions of the language are mapped by a semantic function to abstract mathematical 

objects, such as numbers, truth values, and functions. Frequently, common map-

pings are suppressed, such as mapping the numerals to numbers. We can suppress 

this mapping because it has been done so many times before that we are content 

to think of the numerals themselves as the numbers. But we must know that the 

symbols we use model correctly the abstract entities, or else we have not given 

the proper meaning to the symbols. The symbols that we use to denote the natu-

ral numbers, for example, constitute a faithful model because they satisfy Peano's 

Axioms for the natural numbers. 

An expression of the SFP language is ..L, an atom, a prefix, a finite sequence, an 

infinite sequence, or an application of the form f(z), where f is a function expression 

and z is an object. The meaning function I' is defined on expressions as follows: 

f.'(..l) = ..L 

I'( a) =a if a is an atom 

n n 
I'( <;j>z;) = <:i>Jl(z;) 

i;;;l i=l 
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p(T) = T 

p(f(x)) = p(f)(p(x)) 

p(f) is the abstract function denoted by I. 

The previous section showed how to determine which abstract function is denoted 

by 1, depending upon whether 1 is a primitive function, a functional form, or a 

defined function, and the environment in which the expression I occurs. 

We have described all of the objects and all of the functions in the SFP language, 

. and we have defined the meaning of any of the functions applied to any of the 

objects. Our description of the SFP language is now complete. 

Continuity of SFP functions 

We have left to show that every SFP function is continuous. First, we establish 

that the functional form operators preserve continuity. A functional form operator 

E of arity n preserves continuity if, given that J,, /2, ... , and In are continuous 

functions, then the function denoted by E(J,, h, ... , In) is also continuous. 

To show that the functional form operators preserve continuity on the func

tions over D, we note the following. The functional form operators are defined for 

functions on C and then extended to functional form operators for functions on 

D by applying the resulting functional expression to each element of each chain of 

the elements of D, as described in Definition 42. According to Theorem 44, it is 

sufficient to show that the functional form operators preserve monotonicity of the 

functions on the domain C. 

Theorem 45: The functional form operators preserve continuity. 
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Proof: We must show that for x, y E C, if x [;;; y and the function arguments 

to some functional form operator are monotonic, then the result of applying 

to x the the function that results when the functional form operator is 

applied to its arguments precedes the result of applying that function to y. 

The proofs are by cases, and we shall assume henceforth that y # T to reduce 

the number of cases. (Examination of the definitions of the functional form 

operators shows that y = T implies that the theorem is true no matter what 

the value of xis.) We will show the the functional form operators Condition 

and Left Insert preserve monotonicity; proofs for the other operators are 

similar. 

Condition: (If p, f, g are monotonic, then p-+ /; g is monotonic.) 

Case 1: p(x) = .L. Then (p-+ f;g)(x) = J., which precedes everything, and 

thus precedes (p .... !; g )(y). 

Case 2: p(x) = T. Then (p-+ f;g)(x) = f(x) and p(y) =TorT, so (p-+ 

f;g)(y) = f(y) or T. Since f is monotonic and since everything precedes 

T, we have that f(x) [;;; f(y) in either case. 

Case 3: p(x) =F. Similar to Case 2. 

Case 4: p(x) # T, F, or J.. Since pis monotonic, it follows that p(y) # T, F, 

or J.. Therefore, (p-+ /; g)(x) = (p .... f; g)(y) = T. 

Left Insert: (If f is monotonic, then \f is monotonic.) 

Case 1: x =< x1 , ... ,xn:j> & n;::: 0. Then \f(x) = J., and hence precedes 

\f(y). 

Case 2: x =< x1 >. Then y =< y1 > such that x1 [;;; y1 • Also, \f(x) = x1 

and \f(y) = y,, so \f(x) [;;; \f(y). 
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Case 3: x =< x 1 , x 2 , .•• Xn > & n 2: 2. Then y =< y,, 1J2, ... Yn > such that 

x; I; y; for 1 :S i :S n, and \f(x) = f( < \!( < x,, x2, ... Xn-1 > ), Xn >) and 

\f(y) = !( < \!( < y,, Y2, ···Yn-t > ), Yn > ). By induction on the length of 

the sequence, we have that \f(x) I; \f(y). 

Case 4: xis an atom or T. In this case, x = y, and the theorem is trivially 

true. I 

Since the SFP primitive functions are continuous and the functional form op

erators preserve continuity, it is easy to see that if f := exp is a closed form such 

that all function variable names in exp represent continuous functions, then f is 

continuous. In order to establish that recursively defined functions (the rest of the 

SFP functions) are continuous, we must first appeal to Kleene's Theorem. 

If f is a recursively defined function, then Kleene's Theorem gives a sequence 

of approximating functions fo, ft, f,, ... such that f is the least upper bound of this 

sequence. It is clear that each of the approximating functions is denoted by a closed 

form defining equation and is therefore continuous. Then f must be continuous, 

since it is the least upper bound of a sequence of continuous functions. Therefore, 

all recursively defined SFP functions are continuous. Since all SFP functions are 

either closed form or recursively defined, we have shown that: 

Theorem 46: All SFP functions are continuous. 

Finally, since continuity implies monotonicity, we also have that: 

Corollary 47: All SFP functions are monotonic. 
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Summary 

This chapter has been devoted to the denotational description of SFP and dis

cussion of some of the important properties of the language and its programs (which 

are the functions). The section on primitive functions showed how any monotonic 

primitive function on Backus's FP domain 0 can be m-extended to a continuous 

primitive function on C, and therefore on D, and that the extension mechanism 

given in Definition 39 produces the maximal monotonic extension. The functional 

forms for SFP are straightforward extensions of the functional forms for FP. The col

lection of SFP functions is constructed from the primitive functions, the functional 

forms and a defining mechanism, and it was shown that all of the SFP functions are 

continuous. The meanings of all SFP expressions has been denotationally described. 
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Chapter 4 

Operational Semantics of SFP 

In this chapter we describe an operational semantics for SFP and show that 

computations carried out using the operational semantics produce results equiva

lent to the denotationally defined results except in certain cases. The reason for 

differences between the denotational and operational results will be discussed. 

The need for an operational semantics 

One of the goals in the design of a programming language is an implementation 

such that programs written in the language may be executed correctly and with 

acceptable efficiency. The denotational semantics of SFP describes the results of 

functions applied to possibly infinite objects. To determine the result of applying 

a function to an object, the function, or an approximation to it in the case of 

recursively defined functions, is applied to a finite approximation of the input to 

produce an approximation to the output. To get a better approximation to the 

output, one need only choose (sufficiently) better approximations to the function 

and input. (The notion of "better" is captured by the partial order, that is, a is 

better than b if b I;; a.) The actual result is the limit of these approximate results. 

As a concrete example, consider the meaning, as described by the denotational 

semantics, of f( < 1, 1 >) where Def f := apndl o [1 ,j o [+, 2] ]. Since f is given 

recursively, its meaning is the limit of a sequence of functions fo, ft, j,, ... as defined 

by Kleene's theorem. The first four functions of this sequence are: 

fo .l 

fr apndl o [1, .l] 
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12 = apndl o [1, apndl o [+, ..LJJ 

fa = apnd/ o [1, apndl o [+, apndl o [+, [+, 2], I]]] 

Applying each of fo, ft, J,, and fa to< 1,1 >produces ..L, < 1:}, < 1, 2:[-, and< 1, 2, 3:[-, 

respectively. The meaning of f( < 1, 1 >) is the limit of a sequence whose first four 

entries are ..L, < 1:[-, < 1, 2:[-, and < 1, 2, 3:[-. Informally, we describe this limit by 

the expression < 1, 2, 3 ... >. 

We wish to avoid a direct implementation of the algorithm implied by Kleene's 

Theorem for producing the results. As seen in the example of the previous para

graph, that algorithm involves recomputing the entries of the previous approxima

tion to the result each time a new approximation to the result is computed. The 

operational semantics will avoid such recomputation, for once an entry in the result 

has been computed, it will not be subsequently recomputed. 

The goal of an operational semantics 

In general, an operational semantics will define computations that can be carried 

out by a machine and that will produce either the value specified by the denotational 

semantics or approximations, in the case of infinite results, to the denotationally de

fined result. We shall have to content ourselves with approximations, for a machine 

is not generally capable of processing or producing infinite objects. If applying a 

function f to an argument x produces an infinite result f(x), then it is not possible 

to produce that result exactly; the most we can ask is that the system be capable of 

producing an arbitrarily good finite approximation to the value of f(x). Moreover, 

if the argument x is itself infinite, then it is not generally possible to apply f to the 

argument. In that case, the most we can ask is the ability of the system to process 

any finite value x, where x is an approximation to x, and that the result produced 

be an approximation to f(x). Note that in general, x will be an approximation to 

many objects, both finite and infinite. Thus, the result of applying f to x must 

be an approximation not only of f(x), but also of any f(x'), where x' is one of the 
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objects distinct from x, but approximated by x. We cannot even require the system 

to produce !( x), because even if x is finite, !( i) might be infinite. 

We shall not be content with an operational semantics whose only guarantee 

is that it produces an approximation to the result, because the trivial operational 

semantics that produces .l for any program and argument satisfies this guarantee. 

We shall see, however, that the operational semantics defined here satisfies a more 

substantial requirement. If the computation specified by the operational semantics 

halts, then either it produces the correct (finite) result or it produces something 

other than the correct result of T. If the computation specified by the operational 

semantics does not halt, then either one of the subexpressions has a value of .l 

or else the correct result is infinite (or both). In the former case, we can expect 

no more of an operational semantics than a non-terminating computation, and in 

the latter case, we will see that the result being produced by the computation is 

satisfactory. 

Definition of the operational semantics for SFP 

We have used f(x) to refer to the denotational semantics of f applied to an 

argument x in D. We will also want to refer to the result computed by use of the 

operational semantics, given f and an argument x, an element of C. We will denote 

this result by f : x. 

The denotational semantics for the SFP language described in the prevwus 

chapters consists of a set of expressions constructed from a domain, and a collection 

of functions over D, together with a semantic function which maps expressions to 

their meanings, which are elements of D. This abstract semantics admits a number 

of operational semantics. The one presented here consists of the domain C, a 

collection of rewrite rules, and a parallel outermost evaluation or computation rule. 

The domain C is used instead of D because C contains all the finite objects of D 

and no infinite objects (although it does contain arbitrarily good approximations 

to objects in D). 
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Rewrite rules 

A rewrite rule consists of a left hand side and a right hand side. The left hand 

side is an expression possibly with conditions that govern its use. Together, these 

characterize the class of expressions to which the rewrite rule can be applied. The 

right hand side is an expression that describes a new expression that replaces the 

subexpression identified by the left hand side when the SFP expression is rewritten. 

Consider the SFP expression <length:<+ :< 4, 3 >, 5 >, 1 >. One of the rewrite 

rules in the operational semantics is 

length:< x1, ... Xn >, n ;;::: 1 ~ n. 

Here, the left hand side is the expression length :< "'" ···"'n > with the condition that 

n :;:: 1. This left hand side matches the subexpression length:<+:< 4,3 >, 5 >,where 

n = 2, z1 = + :< 4, 3 >, and z2 = 5. When the SFP expression < length :< + :< 4, 3 > 

, 5 >, 1 > is rewritten by application of this rewrite rule, the result is the expression 

< 2, 1 >; the subexpression length:<+ :< 4, 3 >, 5 > has been replaced by 2. 

The collection of rewrite rules used here includes rules obtained by augmenting 

the definitions of the primitive functions given in Backus's Turing A ward Lecture. 

The augmentations specify how primitive functions operate on prefixes, _l_, and T. 

Since the evaluation rule is non-innermost, rewriting is not restricted to those ap

plications whose subexpressions are constants. (This is in contrast to Backus's FP, 

where only applications whose proper subexpnissions are constants can be rewrit

ten.) 

Additional reductions permit outermost occurrences of apndl to be rewritten in 

certain important cases. Consider the simple program of Example 2 in Chapter 6, 

flat := apndl o [1, flat o 2], and apply flat to an argument z, where x is an infinite 

object. Below are several steps in the evaluation, not using the additional rules for 

apndl. The expressions x,, x 2 , and x21 represent the first entry of x (i.e., 1'(1: x)), the 

second entry of x (i.e., 1'(2: x)), and the first entry of the second entry of x (i.e., 

1'(1: 2: x)), respectively. 

59 



flat : x -> apndl o [1, flat o 2] : x 

-> apndl: [1, flat o 2] : x 

_, apndl :< 1: x, flat o 2 : x > 

-> apndl :< x,, flat: 2 : x > 

--. apndl :< x 1, apndl o [1, flat o 2] : 2: x > 

-> apndl :< x1, apndl: [1, flat o 2] : 2: x > 

_, apndl :< x 1, apndl :< 1:2: x, flat o 2:2: x >> 

-> apndl :< x 1, apndl :< 1 : x2, flat: 2: 2: x >> 

_, apndl :< x1 , apndl :< x21, apndl o [1, flat o 2]: 2:2: x >> 

Notice that with Backus's set of rewrite rules, the outermost occurrence of apndl 

cannot be reduced until the second entry of its argument is a sequence or a prefix, 

as required by the rewrite rules for apndl. But the second entry of the argument has 

apndl as its outermost operator, which cannot be reduced until the second entry of 

its argument is a sequence or a prefix, and so forth. This expression could continue 

to grow without bounds, with an occurrence of apndl for each new element of the 

result. The additional rewrite rules for apndl solve the problem; they allow the same 

initial expression to be rewritten to 

<x1, x21, ~ apndl o [1, flat o 2]:2:2:x> 

where x1, x21 is an unbracketed list ·to be appended to the left of the sequence that 

is the value of the expression apndl o [1, flat o 2] : 2 : 2 : x 

The rewrite rules fall into four categories, which are described below. The first 

category contains rules for primitive functions, the second for functional forms, the 

third for defined functions, and the last for sequences or prefixes containing T. 

1. For applications whose operators are primitive functions, the rewrite rules 

are formulated by 'extending' Backus's primitive functions to functions on C. Note 

that unlike the rewrite rules for FP, the variables on the left hand side of an SFP 

rewrite rule can represent arbitrary well-formed expressions. Also included in this 
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category are the special rules, mentioned above, for apndl. A complete list of all the 

rules of this category appear in Appendix C. 

Example: The application 

distl :< 1 :< A,B >,< A,C,D >> 

is rewritten using one of the rewrite rules for distl, giving 

<< 1 :<A,B >,A>,< 1 :<A,B >,C>, < 1 :<A,B >,D >>. 

Example: The application 

apndl :< 1, f : x > 

is rewritten using one of the special rules for apndl as 

<1 ~ f:x>. 

2. Applications involving an operator built from a functional form are handled 

similarly in that the operational semantics is based on reductions for arguments in 

the domain of finite elements. A complete list of all the rules of this category also 

appear in Appendix C. 

Example: The application 

is rewritten using the rule for construction as 

< !J :< 3,4,[g,,g2]: 5 >,f, :< 3,4,[g,,g2]: 5 >,fa:< 3,4,[g,g2]: 5 >>. 
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3. Applications whose operators are names of defined functions are rewritten 

by replacing the function symbol by its definition. 

Example: Let Def f := apndl o [I, j]. Then the expression 

<1 ~ f:x> 

is rewritten as 

< 1 ~ apndl o [I, f] : x > . 

4. The fourth category contains rules to rewrite sequences or prefixes containing 

T as an entry to T. For the two rules in this category, given below, let x; = T for 

some i, 1 :5 i :5 n, in< x1 , ... Xn > and < x1 , ... xn::P. 

< X'l ··· Xn >-+ T 

< X! •.• Xn :1- -+ T 

Example: The expression 

< 10, + :< 4, 3 >, T, 1233 > 

is rewritten to 

T. 

Computation rule 

A computation is carried out as a sequence of steps, where each step rewrites an 

expression. At each step, a set of subexpressions to be rewritten is chosen and the 

subexpressions are rewritten to produce a new expression. Succeeding steps repeat 

this until no subexpressions can be rewritten. A computation rule specifies which 
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subexpressions are to be rewritten at each step. The choice of computation rule can 

affect the result. 

Because sequences are T-preserving, the denotational semantics of SFP corre

sponds to an innermost evaluation strategy. The semantics of FP is based on an in

nermost evaluation strategy for a similar reason, that is, sequences are .L-preserving. 

When reducing an application by use of an innermost computation rule, the outer

most level may remain an application until the reduction of all enclosed expressions 

is complete. That the outermost level may remain an application until completing 

the reduction of enclosed expressions presents no problem as long as the reduction 

of every expression not having a value of .L is guaranteed to terminate, as is the case 

with FP. But when dealing with streams, many non-terminating computations have 

values other than .L, and so an innermost evaluation strategy is not feasible. (This 

problem is discussed more fully in the next section, which addresses the reasons for 

the differences between the denotational semantics and the operational semantics 

of SFP.) Therefore, the computation rule for SFP must not be innermost. 

We have chosen parallel outermost as the computation rule. Outermost is chosen 

so that non-terminating subcomputations do not necessarily prevent termination, 

as described above. "Parallel" is chosen to ensure, for example, that the reduction 

of a sequence containing two non-terminating computations as its entries makes 

progress on the evaluation of each of them, rather than just the left one, as with 

leftmost outermost, or the right one, as with rightmost outermost. 

Parallel outermost evaluation is an iterative process; a single iteration involves 

determining a set of subexpressions to be rewritten and then rewriting them. An 

expression can be rewritten if and only if it matches the left hand side of a rewrite 

rule. A disjoint set of subexpressions to be rewritten is selected as follows. If the 

outermost level can be rewritten, then the entire expression is the only one selected 

for rewriting. If not, then each son (corresponding to each maximal proper subex

pression) of the root is recursively searched in parallel for a subexpression to be 

rewritten. In searching any son, the search continues inward until one (maximal) 
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subexpression that can be rewritten is found or until it is determined that no subex

pression can be rewritten. When the set of subexpressions to be rewritten has been 

determined, all are rewritten. Since they are disjoint, they may be rewritten in 

parallel or in any order. (They may even be rewritten when found.) Evaluation 

halts if the entire expression is searched and no subexpression that can be rewritten 

is found. 

Suppose that a parse tree of the expression to be evaluated has been constructed. 

The following pseudo-code alorithm describes how to evaluate that tree according 

to a parallel outermost computation rule. The root of the tree corresponds to the 

outermost level. Initially, the root of the tree will be ':'; the left son will be a 

function expression, and the right son will be a data object. For brevity, if the root 

of a tree is named root, we denote the entire tree by {root}; that is, {root} denotes 

the tree whose root is root. 

repeat 

eval(root) 

until eval(root) = {root}. 

function eval(root); 

case root of 

Left insert, Right insert~ Apply-to-all, primitive functioni atom: nulli 

defined function name: replace name with the definition; 

<>, <* : if any son equals T then rewrite {root} as T 

else if any son equals ~ and a rewrite rule involving ~ 

applies to {root}, then apply it 

else apply eval simultaneously to each son; 

':' if a rewrite rule applies to {root}, then apply it 

else apply eval simultaneously to both sons; 

end; (* case *) 

return; {root} 

end; (* function eval *) 

The algorithm calls for the tree to be evaluated until no futher rewrites can be 

done. Each. call to 'eval' will result in a set of rewrites, each occurring at a single 

point at most along the path from a leaf to the root. Any time a set of parallel 
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rewrites is complete, the call to eval is finished, and the tree must be evaluated 

again from the root of the entire tree. 

Note that some functional forms, such as composition and construction do not 

depend on the structure ofthe argument; they can always be rewritten, so that when 

one of them is the left son of the tree whose root is ':' and that is being evaluated, 

the tree is rewrittable. Hence, only the functional forms, such as apply- to- all, 

that depend on the structure of the operand can ever become the root of a tree 

being evaluated. Therefore, they are the only ones included in the line of the case 

statement whose action is null. 

An example of how the algorithm proceeds is given below. Assume the following 

definitions: 

Def h .- I o g 

Def g .- [+, -] 

Def I * 

and suppose the expression h :< 5, 12 > is to be evaluated. 

/"\ 
h =< 5, 12 > h < > 

1\ 
5 12 

These are the initial expression and the corresponding parse tree. The root of 

the tree is examined to see if it can be rewritten. Since the set of rewrite rules does 

not contain a rule involving h, a search is made in both the left son (h) and the 

right son ( < 5, 12 > ). A complete search of the right son finds no rewrites, but h 

can be rewritten: 
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• 

f 0 g :< 5, 12 > 

Starting at the root agam, since the left son is composition, a rewrite can be 

performed and no further searching is necessary: 

/"~ 
f • 

f: g :< 5, 12 > /"~ 
g < > 

/~ 
5 12 

Again from the root, there is no rewrite rule involving !, so both the left son 

(!) and the right son (g :< 5, 12 >) are searched. The left son can be replaced by its 

definition. In the right son, there is no rewrite rule involving g, so both of the right 

son's sons (g and < 5, 12 >) are searched. g can be replaced by its definition, and 

no rewriting can be done in < 5, 12 >. Therefore, there are a total of two rewrites 

to be done in this step: 

* : [+, -] :< 5, 12 > 

• 

/"~ 

/"~ 
* 

[ l < > 

1\ 1\ 
+ 5 12 

As always, beginning at the root, none of the rules for * can be applied here, so 

both sons (*and[+, -] :< 5, 12 >)are searched in parallel. • is a primitive function, 
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so nothing is done. The left son of[+, -] :< 5, 12 > is construction, which means that 

[+, -] :< 5, 12 > can be rewritten: 

• 

/'\ 
"' < > 

/~ 
* :< + :< 5, 12 >, - :< 5, 12 >> . . 

/'\ /"\ 
+ < > < > 

/\ 1\ 
5 12 5 12 

It is still not possible to apply any of the rules for *• so both sons ( * and 

< + :< 5, 12 >, - :< 5, 12 > >) are searched. * is a primitive function, so nothing is 

done. The root of<+:< 5, 12 >, - :< 5, 12 >> is <>, so each of its sons ( + :< 5, 12 > 

and - :< 5, 12 >) is searched. Both are rewrittable: 

* :< 17, -7 > 

17 -7 

At last, we can rewrite the root, since a rewrite rule for * finally applies: 

-119 -119 

Evaluation now terminates because eva!( -119) is equal to -119. 
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Connection of the operational and de notational semantics 

The operational semantics does not define quite the same language as that 

defined by the denotational semantics. The differences stem from two sources. 

First, the operational semantics cannot produce an infinite result. Second, the 

operational semantics may 'throw away' a subcomputation. 

The first difference arises when the result according to the denotational seman

tics is infinite. In this case, the operational semantics cannot produce the correct 

result, since it is infinite, but it will result in a non-terminating computation that 

is related to the infinite result. Specifically, if the computation is halted after any 

rewriting step and all applications are replaced by .l, then the resulting expression 

is an approximation to the infinite result. 

The second difference arises because non-innermost reduction will sometimes 

evaluate an expression without evaluating all its subexpressions; if one of the un

evaluated subsexpressions has a value ofT, then the operational semantics may fail 

to give the same result as the denotational semantics. In this case, the denota

tional semantics defines T as the result, but the operational semantics may produce 

something other than T. (Note that whenever T is the result of the operational 

computation, T is the denotational result, as well.) 

The differences of the two semantics result from two features of SFP. One feature 

is that SFP has infinite objects, none of which are in the domain of the operational 

semantics; as a consequence, the domain of the denotational semantic function 

properly includes that of the operational semantic function. 

The second difference between the two semantics results from the use of T as 

the error object and the choice to make sequences and prefixes T-preserving. If 

sequences preserve T, then innermost evaluation is necessary to make the opera

tional semantics correspond to the denotational semantics. But innermost evalua

tion would often prevent non-terminating computations from producing useful out

put. For example, suppose we have a program f o g in which g produces a stream 
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(from some seed) and f consumes it. Innermost evaluation would not rewrite any 

expression involving f until the output of g is completely computed. Since the out

put of the program g is infinite, innermost evaluation is totally unacceptable in this 

case. Consequently we have chosen to give up innermost evaluation, realizing that 

some computations will produce non-T objects when they should produce T. 

The discussion of the differences between the denotational semantics and the 

operational semantics so far has centered on why the operational semantics cannot 

be designed to match the denotational semantics. But it is also fair to ask why a 

denotational semantics that matches the operational semantics has not been given. 

Recall the first difference that the denotational semantics has infinite objects 

while the operational semantics does not. A major goal in the design of SFP was to 

make possible meaningful non-terminating computations. Infinite objects form the 

basis for non-terminating computations. Thus, though the operational semantics 

cannot include infinite objects, it can approximate them arbitrarily well. Hence it 

is appropriate for the denotational semantics to include infinite objects which are 

approximated by the finite objects of the operational semantics. 

The second difference was that the operational semantics sometimes fails to 

give T when that is the denotational result. The reason can be traced to the 

decision to make sequences and prefixes T-preserving. Now the question is, why 

should sequences and prefixes be T-preserving? The answer lies in the constraints 

accepted for this research. 

We purposed to describe streams that could be extended on the right but 

not anywhere else. When the argument to a function becomes better defined, or 

"grows," such as when it is extended on the right, the value produced by that func

tion may grow. A constraint we accepted was that the functions should be able to 

produce partial results. However, one possibility is that the argument to a function 

may grow into something unsuitable for that function; in this case, the result must 

be able to indicate than an error has occurred. An easy and elegant way to handle 
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errors is to choose a single error value at the top of the lattice. (Another way to 

handle it would be with many error elements; the disadvantages of that choice will 

be discussed shortly.) 

Even with all these constraints, it still might be possible to change the deno

tational semantics so that it gives the same results as the operational semantics 

(except for infinite objects) by ignoring some occurrences ofT when evaluating ex

pressions. But consider how T is introduced into an expression. It occurs when 

the argument to a function is inappropriate (having the wrong "shape" or type). 

This occurs when the programmer has written a program that does not match the 

argument to the function. We choose not to ignore There because we consider the 

information provided by these error messages to be of substantial import. There

fore, the denotational semantics is chosen as the semantics we really want, and 

the operational semantics is the best possible approximation to the denotational 

semantics. 

Returning to the discussion of the possible ways to denote error, an alternative 

we have not selected is that of having many error elements. Although this seems 

like a worthy idea, it is not clear how it could be made to work in some cases. 

Consider the expression trans:<< 1,2:j>, < 3,4:j>:j>. One of the constraints is that we 

must put out partial results. Thus the value of this expression is<< 1,3:j>, < 2,4:j>:j>. 

The argument < < 1, 2:j>, < 3, 4:j> :j> could grow into a number of elements, including 

<< 1,2 >, < 3,4,5 > :j> and<< 1,2 >, < 3,4:j>, 5 >(both of which could grow into 

<< 1,2 >, < 3,4,5 >, 5 >). Both of these intermediate elements are inappropriate 

arguments for trans; thus some error objects must be defined to be the result of 

trans:<< 1,2 >, < 3,4,5:j> >and trans:<< 1,2 >, < 3,4:j>, 5 >. These error objects 

must be preceded by<< 1,3:j>, < 2,4:j>:j> and both must precede whatever is chosen 

as the value of trans :<< 1, 2 >, < 3,4, 5 >, 5 >. Clearly any error scheme capable 

of handling these myriad cases will be complex, and we have not addressed the 

problem in this research. 
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The remainder of this chapter is devoted to proving our claim that the opera

tional semantics is equivalent to the denotational semantics except as noted. We 

classify rewrite rules as application-preserving, and show that a rewrite rule that is 

application-preserving may be applied at any level (to any subexpression) of an ex

pression, and hence outermost, without changing the meaning of the expression. If 

a rewrite rule that is not application-preserving is applied at some level other than 

innermost, we show that the meaning of the resulting expression may be changed 

as the result of some subexpressions containing applications having been discarded, 

possibly eliminating T. 

Let the expression J'(e 1, e2, ... en) -> 9(e1, e2, ... em), where m $ n, represent a 

rewrite rule; .1' and g are syntactic expressions and e,, e2, ... en are the parameters 

( subexpressions) of the expressions .1' and g. Substitution instances of the param

eters will be denoted by capital letters: E1 , E2 , •..• Thus (£, {J'(E1 , E2, ... En)}) 

represents an expression £ that contains an instance of a rewrite rule's left hand 

side .F(E1 , E2, ... En) that can be reduced to 9(E1 , E2, ... Em) giving a new expression 

denoted by (£, {Q(E,, E2, ... Em)}). 

We wish to discuss the meanings of the rewrite rule expressions, and so we 

observe that the meaning function I' defined in Chapter 3 implies that the meaning 

of an expression is equal to the meaning of that expression whose subexpressions 

have been replaced by their meanings. That is, 

!'(J'(e,, e2, ... en))= !'(.1'(1-'(e,), !'(e2), ... !'(en))), 

!'(9(e,, e2, ... en))= 1'(9(1-'(e,), !'(e2), ... !'(en))), 

1'(£, {J'(E,, E2, ... En)})= 1'(£, !'({J'(E,, E2, ... En)})), 

and so forth. 

Definition 48: A rewrite rule is application-preserving if every expression param

eter on the left appears on the right, that is, 
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This property ensures that no application is discarded when the rewrite rule 

is applied. An example of an application-preserving rewrite rule is distl :< x, < 

y,, ... , Yn >> ---> << x, y1 >, ... , < x, Yn >>. An example of a rewrite rule that is not 

application-preserving is tail:< x1 , x2 , ••• , Xn > ___, < x 2 , ... , xn >. Here the parameter 

x1 appears on the left hand side but not on the right hand side. 

A function definition is application-preserving if it consists only of application

preserving rewrite rules. Informally, we will refer to the function itself as being 

application-preserving if its definition is application-preserving. 

Theorem 51 asserts that an application-preserving rewrite rule can be applied 

to an expression resulting in a new expression whose meaning is the same as the 

original expression. Before proving that, we will need to show that each rewrite rule 

correctly implements the denotational semantics when the parameters are constants, 

that is, when the subexpression being rewritten contains no applications. This must 

be done on a case-by-case basis for each primitive function. 

We begin in Lemma 49 with a proof that the denotational definitions of the 

primitive functions are given in Appendix B. We then show in Corollary 50 that the 

rewrite rules in Appendix C implement the definitions in Appendix B for constant 

arguments. This connects the two semantics for any rewriting done at the innermost 

level. Following that, a series of theorems finishes the connection between the two 

semantics by describing what happens when a rewrite rule is applied non-innermost. 

Lemma 49: The definitions given in Appendix B are the SFP primitive functions 

given by the denotational semantics. 

Proof: The proof consists of showing that each of the functions defined 

in Appendix B is the same as them-extension, as specified by Definitions 

36, 39, and 42, of the Turing Award Lecture primitive function of the same 

name. The domain of all of the functions given in Appendix B is D; though 
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each of the elements of D is an equivalence class of chains, we will not treat 

them as such except when necessary, and even then we will examine a single 

chain rather than the whole class. This is possible in light of the result of 

Theorem 30, which says that it suffices to consider the characteristics of a 

single chain. Furthermore, by observing that for each finite element x, one 

of the elements of the equivalence class is x ~ x ~ x ... , it is clear that 

it suffices to examine the properties of x alone in order to draw conclusions 

about the entire equivalence class. Hence it is correct to think of finite 

elements as elements of C rather than as equivalence classes of chains. 

Below we give the proof required for the primitive function tail. Proofs 

for other primitive functions are similar. Some of the proofs are tedious; 

indeed, construction of the definitions in Appendix B is a non-trivial task. 

To show that the definition of tail given in Appendix B is the denota

tional defined function tail, we will show that for each element x of D, the 

given definition of tail matches x to the proper object. The proof is by cases 

of the elements of D. 

For convenience, in each case, we will denote the denotationally defined 

result by tail'(x) and the result specified by the definition in Appendix B by 

tl(x). Recall that tail' is the extension to C of the function tail defined on B. 

Case 1: x = j_. Then 

tail'(j_) = glb{tail(y) I j_ ~ y & y E B} 

= glb{tail(y) I y E B} 

= j_, since j_ E B & tail(j_) = j_ 

= t/(j_) 

Case 2: x is an atom. Then 
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tail'(x) = glb{tail(y) I x [;;; y & y E B} 

= glb{tail(y) I y = x or y = T} 

= glb{tail(x), taii(T)} 

= glb{T} 

=T 

= ti(T) 

Case 3: x = <;t. Then 

tail'(<;j-) = glb{tail(y) I <;j- [;;; y & y E B} 

= glb{ tail(y) I y is a sequence } 

= glb{tail(<>), tail(< 1,5 >), tail(< 4,2,3, 7,2 >), ... } 

= glb{T, < 5 >, < 2,3, 7,2 >, ... } 

=<:t 

= tl(<;t) 

Case 4: x =<>. Then 

tail'(<>)= glb{tail(y) I<>[;;; y & y E B} 

= glb{tail(y) I y =<> or y = T} 

= glb{tail(<>), taii(T)} 

= glb{T} 

=T 

= tl( <>) 

Case 5: x =< x1 , ... xn;j-, x; E D, 1:::; n < oo. 
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tail'(< z,, ... xn}) = glb{tail(y) I< z,, ... xn} ~ Y & y E B} 

= glb{tail(y) I y is a sequence of length n 

or greater and has as its first n entries y1 , ... yn 

where for each i z; ~ y;} 

= glb{ z 1 z is a sequence of length n - 1 or 

greater and has as its first n - 1 entries 

yz, ... yn} 

= tl( < "''' "'"'" :j> ) 

Case 6: x =< x1, ... xn >, x; E D, 1 :5 n :5 oo. 

tail'(< z,, ... Zn >) = glb{tail(y) I< z,, ... Zn >~ y & y E B} 

= glb{tail(y) I y =< y,, ... yn >, x; ~ y;, or y = T} 

= glb{tail( < y,, ... yn > ), taii(T)} 

= glb{ < y,, ... yn >, T} 

=tl(<z,, ... Zn >) 

Case 7: z = T. Then 

taii'(T) = glb{tail(y) IT~ y & y E B} 

= glb{tail(y) I y = T} 

= glb{taii(T)} 

= glb{T} 

=T 

= ti(T) 

I 

Corollary 50: The rewrite rules in Appendix C implement the definitions in Ap

pendix B for all constant arguments in the rules of Appendix C. 
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Proof: The proof consists of examining the rewrite rules for each func

tion, noting that except for the special rules associated with apndl, they are 

syntatically identical to the semantic functions given in Appendix B except 

that the infinite objects are missing from Appendix C and that the last line 

has been changed to map only constant expressions toT. 

The infinite objects are removed because the domain of the denotational 

semantics is D, but the domain of the operational semantics is C. Infinite 

objects are the only objects in D that are not in C. 

The reason for changing the last line is a bit more subtle. The last line 

in the definition of the denotational semantic function maps any argument 

not matched by a previous line to T. In the operational semantics, we 

do not wish to map everything that does not match a previous line to T, 

only those expressions that are constants and do not match a previous line. 

If we mapped everything else to T, then each time a primitive function 

was encountered during evaluation, some rewrite rule would always match, 

since the last one would by default. This would cause some expressions 

to be mapped inappropriately to T. This is the case, for example, with 

distl :< 1, [+,-] :< 2,4 >>, where we are attempting to rewrite distl. We do 

not want to map the entire expression to T; none of the regular rules for 

distl match yet because the argument is not sufficiently developed to have 

the proper structure, a pair whose second entry is a sequence or prefix, for 

distl. However, when the inner expression[+,-]:< 2,4 >is evaluated, we will 

have the proper structure so that one of the regular rules for distl will then 

match the expression. 

The preceding discussion takes care of all the rewrite rules except for 

the special rules associated with apndl. Two of the rules, apnd/ :< x, y > __, < 

x ~ y > and apndl :< x,y:f> __, < x ~ y;f>, replace apndl with an infix 

operator '~.' Examination of the other rules suffices to show that '~' is 

equivalent in function to the prefix form of apndl. The parameter y may 
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eventually be revealed to be _!_, a sequence or prefix, an atom, or T. Each 

one of these cases is covered, and the proper thing is done. For example, 

suppose apndl :< x, y > is replaced by < x ~ y > and through evaluation, 

y is determined to have a value ofT. Then replacing < x ~ T > with T 

is the right thing to do, since we would also replace apndl :< x, T > with T. 

Thus the meaning of the expression apndl < x,y >has not been changed by 

replacing it with < x ~ y >, as long as there is a suitable rule for < x y > 

regardless of what y evaluates to. I 

To review, Lemma 49 and Corollary 50 have shown that the rewrite rules in Ap

pendix C correctly implement the denotational semantics for constant arguments. 

Therefore, the rules correctly implement the denotational semantics for innermost 

evaluation of terminating computations. But we are interested in non-innermost 

evaluation and non-terminating computations. Theorem 51 and Lemma 52 show 

that application-preserving rewrite rules can be applied at any level without chang

ing the meaning of the expression. 

Theorem 51: Let :F(e1 , e2 , ... en) - 9(e1 , e2 , ... en) be an application-preserving 

rewrite rule. Then 

p.(:F(E,, E,, ... En))= p.(Q(E,, E,, ... En)). 

Proof: If the rewrite rule :F(e., · e2 , ... en)- 9(e1 , e2, ... en) correctly imple

ments the denotational semantics, then 

p.(:F(p.(Ei), p.(E,), ... p.(En))) = p.(Q(p.(E,), p.(E,), ... p.(En))), 

since each p.(E;) is a constant. From this equation we can conclude that 

p.(:F(E,, E,, ... En))= p.(Q(E,, E,, ... En)). 

I 
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The next lemma states that the level at which the reduction of an application-

preserving function within an expression is done does not change the expression's 

value. 

Lemma 52: Suppose f is application-preserving and F(e1 , e2 , ... en)--+ 9(e1 , e2 , ... en) 

is a rewrite rule for f. Then 

fl(e, {F(Et, E2, ... En)})= fl(e, {9(Et, E2, ... En)}). 

Proof: 
fl(e, {F(Et, E2, ... En)})= fl(e, (fl{F(E,, E2, ... En)})) 

= fl(e, (f1{9(E1 , E2, ... En)})) by Theorem 51 

= fl(e, {9(E,, E2, ... En)}). 

I 

It is clear from Lemma 52 that if e has multiple, non-intersecting applications 

that can be rewritten by application preserving rules, then the meaning of e does 

not change when all of these have been rewritten simultaneously, since they do not 

intersect and could be rewritten sequentially in any order without changing the 

meaning of the expression. 

Theorem 53 states that if a non-application-preserving rewrite rule is applied, 

then the meaning of the expression may be changed from T to something else because 

some subexpression whose meaning is T has been discarded by application of that 

rewrite rule. 

Theorem 53: Suppose f is not application-preserving, that is, one of the 

rewrite rules for f is F(e,, e2 , ... , en) --+ 9(e1 , e2, ... , ek) where k < n. Then 

[fl(F(E1 , E2, ... En)) oft f1(9(E,, E2, ... , Ek))J implies [fl(E;)= T for some j, k+l<:;j <:;nj, 

and fl(F(E,, E2, ... En))= T. 

Proof: 

fl(F(E,, E2, ... En))= fl(F(fl(E,), 11(E2), ... fl(En))) 
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and 

1-'(Q(E,, E2, ... , Ek)) = i-!(9(1-!(E!), i-!(E2), ... 1-'(Ek))). 

If 1-'(E;) # T for 1 :::; i :::; n, then 

since 1-'(E;) is a constant and the rewrite rules correctly implement the de

notational semantics for constants by Lemma 49. 

So, if 1-'(E;) # T for all i, 1 :::; i :::; n, it follows that 

i-!(:F(E,, E2, ... En))= 1-'(Q(E,, E2, ... , E.)). 

But by hypothesis, 

1-'(:F(E,, E2, ... En))# 1-'(Q(E,, E2, ... , E•)). 

So, 1-'(E;) = T for some j, 1 :::; j :::; n. We argue that j cannot be 

between 1 and k, inclusive, or else both expressions would have the value 

T and thus be equal. Therefore, we must have that 1-'(E;) = T for some j, 

where k + 1 :::; j :::; n. Furthermore, since one of the subexpressions of 

(:F(Er, E 2 , ••• En)) is T, then 

1-'(:F(E,, E2, ... En))= T. 

I 

Finally, Theorem 54 states the connection between the denotational semantics 

and the operational semantics. The meaning, 1-'( e0 ), as described by the denotational 

semantics, of an expression e0 is produced as a constant, em, by the operational 

semantics if the computation terminates and I-'( eo)# T. 

Theorem 54: If e0 can be reduced in m parallel outermost steps to a constant 

expression em, that is, 
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and if J.t(Eo) # T, then J.t(Eo) =Em. 

Proof: By induction. Basis step: m = 1. Then there is only one level at 

which rewriting can be done, that is, all proper subexpressions of all ap

plications are constants. Hence, parallel outermost rewrites all applications 

and produces an expression with no applications, which is the correct value. 

By the induction hypothesis, if J.l( E1 ) # T, then J.l( E,) = Em. 

If J.t(Eo) ,p J.t(E,), then by Theorem 53 a non-application-preserving func

tion was applied in the step E0 _. E1o and J.l( E0) = T. This contradicts the 

hypothesis, so we must have that J.t(Eo) = J.t(E1 ), and so J.t(Eo) =Em. I 

We have shown that for functions applied to finite arguments and having finite 

results, the operational semantics either produces the correct result or fails to pro

duce T when that is the correct result. Our quest is a set of computations that 

consume or produce infinite objects. Since we have not given a finite representation 

to all infinite objects, such computations may be non-terminating. Theorem 54 

does not address the validity of the results of non-terminating computations. 

Let us consider the result of a non-terminating computation. By definition, a 

non-terminating computation never produces a constant expression; at any point 

the expression still contains applications. Our goal is to show that the expression 

approximates the correct result in some way. One way to obtain a constant that 

is an approximation to the result is to replace all unfinished computations by L 

However, it is not always possible to simply replace the applications by _1_, since 

some expressions contain occurrences of'~.' These expressions require some addi

tional rewriting. We do not choose to replace the minimal well-formed expression 

containing '~' with _1_, since that would result in some computations being replace 

with _]_ regardless of how many steps of the evaluation had already occurred. In 

other words, we desire an approximation that retains any constants already com

puted but does not contain any applications. The following alogrithm describes 
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a way in which the expression being evaluated can be altered to produce a finite 

approximation to the correct result. 

while applications remain 

replace all innermost applications with JL; 

evaluate; 

until expression is a constant. 

procedure evaluate; 

while outermost rewrittable subexpressions remain 

perform one step of parallel outermost evaluation except 

that no defined functions are replaced by their definitions 

and no while loops are rewritten; 

return; 

end; (* procedure evaluate *) 

Demonstrating that the algorithm produces the desired result requires showing 

that the algorithm always terminates and that the result is an approximation to 

the correct result. 

To see that the algorithm always terminates, we observe that the outer while loop 

terminates if the nesting level of applications always decreases each time through 

and if the procedure evaluate always terminates. Initially, the nesting level of ap

plications may increase, since rewriting occurrences of either form of insert may 

increase the nesting level. However, since the expression is composed of a finite 

number of symbols, we know that it contains a finite number of occurrences of 

insert. No new occurrences of insert can be introduced, because defined functions 

·cannot be replaced with their definitions. Therefore, when all occurences of insert 

have either been rewritten or replaced by bot, the nesting level of applications will 

decrease each time through, since the innermost applications are replaced by ..L, 

reducing the nesting level by 1. 

The procedure evaluate always terminates if the number of rewrittable subex

pressions decreases each time through. Only the following actions increase the 

number of applications in an expression: rewriting insert, construction, apply-to- all, 
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or while or replacing a defined function with its definition. As with nesting levels and 

insert, the total number of applications than can be introduced by rewriting insert, 

construction, and apply -to- all is finite; once all existing occurrences are rewritten 

no new ones can be introduced. The other application-increasing actions, rewriting 

while and replacing a defined function with its definition, are not allowed. 

We have left to show that the result produced by the algorithm is an approxima

tion to the denotationally defined value. Replacing a subexpression by _]_ produces 

an approximation to the entire expression. Otherwise, applications are rewritten to 

according to their rewrite rules. 

Summary 

An operational semantics for SFP consisting of a set of rewrite rules and an 

computation rule has been described. We have shown that it produces the same 

result as the denotational semantics, with some exceptions. One exception arises 

because machines, and therefore operational semantics, cannot produce the entire 

result if that result is infinite. However, in this case the operational semantics 

describes a non-terminating sequence of rewrites that produces an expression that 

can be viewed at any point in time as an approximation to an infinite result. The 

other exception occurs when a non-application-preserving function is applied at 

some level other than innermost. In this case, it is possible (though not inevitable) 

that the operational semantics may fail to produce the correct result ofT. 
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Chapter 5 

Algebra 

An algebraic law relates two algebraic expressions. A program in FP is an alge

braic expression, and it is sometimes desirable to replace a program with another 

that is equivalent to it. For example, one use of algebra is to give a proof of equiv

alence of two programs. In the Turing Award Lecture [Backus 1978], Backus gives 

a proof that two different matrix multiplication programs are equivalent. Algebra 

can also be used to improve efficiency. Kieburtz and Shultis [Kieburtz & Shultis 

1981 J show how to transform some inefficient FP programs to more efficient ones 

through an algebraic system. Finally, algebra can be used to demonstrate that a 

particular program has a particular property. Example 8 of Chapter 6 illustrates 

this use of algebra. 

The algebra associated with FP programs is one of the language's great 

strengths. Traditional languages have no such algebras associated with them, and 

consequently, the important concerns of program equivalence, program optimiza

tion, and program verification are much more difficult to address. These concerns 

have become increasingly more important and difficult to handle as software has 

become more complex and more crucial to modern technology. It is clear that the 

software of the future, indeed, that of today, needs much more powerful tools for 

reasoning about programs. The FP algebra exhibits the kind of strength that is 

needed. 

Because of the importance of the algebra of FP, any modification of the language 

should preserve the algebra. The algebra survives the extension of FP to SFP with 
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only minor changes. Since the denotational semantics and the operational seman

tics of SFP define two slightly different languages, the laws are slightly different, 

depending on which semantics is used. 

Below we give algebraic laws without proof for the denotational semantics of 

SFP, and when they differ from either of the other two, both the corresponding 

law for the operational semantics of SFP and the original FP law. The primes and 

stars, indicating the extension of functions, have been omitted. The laws given are 

taken from the Turing A ward Lecture, and the same numbering system is used here 

as there. The list of laws is illustrative of the kinds of laws that might be used in 

practice and is not exhaustive. 

In the following, the notation f & g is equivalent to and o [/, g], and the function 

"pair" is defined as atom ---+ F; eq o [length, 2 ]. 

Algebraic Laws 

I Composition and construction 

I.l [j,, ... ,/n]og= [j, og, ... ,/n og] 

I.2 <xf o [g,, . · · , Yn] = [/ o 91, ... ,/ o Yn] 

I.3 If 0 [g,, .. · ,gn] 

=fo[g,,lfo[g2,···•Ynll when n~ 2 

= /0 [gl,/ 0 [g2, ... ,/ 0 [gn-!>Yn]· . . ]] 

I I a [g] = g 

L4 fo[x,g]=(bufx)og 

I.5 1 o [/,, ... .fn] ~ j, 

sa [j,, ... ,/, ... .fn] ~ f, for any selector s, s :::; n 

defined of; (for all i oF s, 1:::; i:::; n) ___,.___,. sa [j,, ... .!n] = f, 

Operational semantics: 

I.5 1 o [J,, ... Jn] = j, 
sa [j,, ... ,/, ... ,/n] = f, for any selector s, s :::; n 
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Original: 

!.5 1o[J,, ... ,/n]:5h 

sa [h, ... , f, ... , In] :5 f, for any selector s, s :5 n 

defined of; (for all i of s, 1:5 i :5 n) -+-+so [J,, ... , In]= f, 

!.5.1 [J, o 1, ... ,/non]o(gl,···,gn] = [J, ogJ, ... ,/n agn] 

!.6 tl a [h] 2: 7ft and 

tl o [h, ... , fn]2: [h, ... Jn] for n 2:2 

defined a h --+--+ tl a [Ill = 7ft 

and tl o [J,, ... ,/n] = [h, ... Jn] for n 2: 2 

Operational Semantics: 

!.6 tl o (!J] =7ft and 

tl o [/J, ... , fn] = [h, ... , In] for n 2: 2 

Original: 

I.6 t1 o [!J] :57ft and 

tl o [/J, ... , fn] :5 [h ... , In] for n 2: 2 

defined o h --+--+ tl o [Ill = 7ft 

and tl o [J,, ... Jn] =[h ... ,/n] for n 2: 2 

I. 7 distl o [!, (gl, ... , 9n]] = [[/, gJ], · · ·, [!, 9nlJ 

defined of --+--+ distl o [/,7ft] = 7ft 

The analogous law holds for distr. 

Operational semantics: 

I.7 distl o [/, (gl, ... , 9nlJ = [[j,gl], · · · , [/, 9nlJ 

distl o (!,7ft] = 7ft 

The analogous law holds for distr. 

Original: 

I. 7 distl o [/, (gl, ... , 9n]] = [[/, gJ], ... , [/, 9n]] 

defined a f --+--+ distl a [/,7ft] = 7ft 

The analogous law holds for distr. 
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1.8 apnd/ o [/, fgl, ... , UnlJ = [!, Ul, · · ·, Yn] 

nul]og -+-+ apndl o [/, g J = [!] 
And so on for apndr, reverse, rot!, etc. 

!.9 [ ... ,T, ... ]::T 

Operational Semantics: 

!.9 no corresponding law 

Original: 

!.9 ( ... ,..L, ... ] = j_ 

!.10 apndlo[fog,afoh]::afo apndlo[g,h] 

I.ll pair & notonull ol --+-+ 

apndl o [[1 o 1, 2], distr o [tl o 1, 2]] = distr 

II Composition and condition (right associated parentheses omitted) 

ILl (p-+f;g)oh::(poh)-+foh;goh 

II.2 h o (p _, f; g)= p ..... h o !; hog 

II.3 or o [q, not o q] _,__. and o [p, q]--> f; 

ando[p,notoq]-"g;h = P-"(q-+f;g);h 

1!.3.1 P-"(P-"f;g);h::p-+f;h 

III Composition and miscellaneous 

III.l xof~x 

defined of__._, x of= x 

Operational semantics: 

III.l xof ::x 
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Original: 

III.l X 0 I :5 X 

defined of--->---> x of= x 

III.l.l Tof:=foT::T 

Operational Semantics: 

III.l.l (Same as denotational) 

Original: 

III.l.l l_of:=fol_:=l_ 

III.2 fo id = id o I = I 
III.3 pair & not o eq o [I, 2] & not o eq o [<:}, 2] ___,___, 1 o distr = [1 o 1, 2] also: 

pair--->---> 1 otl = 2 etc. 

Operational Semantics: 

III.3 (Same as denotational) 

Original: 

III.3 pair ___,___, 1 o distr = [1 o 1, 2] also: 

pair ___,___, 1 o t1 = 2 etc. 

III.4 a(! o g)= af o ag 

III.5 null og ___,__, af o g = ~ 

IV Condition and construction 

IV.l [/J, .. . ,(p_, g;h), ... ,fn] 

:=p--+ [!J, ... ,g, ... .fn];[!J, ... ,h, ... ,/n] 

IV.l.l [!J, ... , (P! ___, g1; ... :Pn ___, Yn: h), ... .fm] 

:pi-> [/J, ... ,gJ, ... .fm]; 

· .. ;pn ---> [!J, · · ·, 9no .. · .fm]; [!J, · · ·, h, · · · .fm] 
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Discussion 

Very few changes to the laws occur, and the changes are minor. The laws that 

are changed are I.5, I.6, I.7, !.9, III.l, III.l.l, and III.3. Sometimes the changes are 

different for the two semantics (1.5, !.6, I.7, 1.9, and III.l). The majority of the laws 

are unchanged. 

For the denotational semantics, most of the laws are the same as the original 

laws, although in some cases, the proofs must be changed slightly (for example, 

with I.lO: apndl o [! o g, o:f o h] = o:f o apndl o [g, h]). Laws containing an inequality, such 

as 1.5 ( 1 o [It, ... , In] S It), are the same except that the direction of the inequality 

is reversed. Law !.9 differs in that T appears in the new laws where _!_ appears in 

the old law. Finally, some laws, such as 1.6 (defined o It _,_,tail o [It] = ¢), contain 

as part of a pre-condition a function named "defined" which is equivalent to true. 

Although these laws are the same in the SFP algebra, it is perhaps misleading here 

to use the name "defined," since _]_ is the totally undefined element but defined:_!_ = 

true. Perhaps a better name would be "not.top". 

The laws for the operational semantics differ from the laws of the denotational 

semantics because the operational semantics specifies outermost evaluation. Thus 

the inequalities in laws !.5, !.6, I. 7 and III.l are strengthened to equality when an 

outermost computation rule is used. This kind of difference between the denota

tional semantics law and the operational semantics law accounts for every differ

ence between the two save one, law I.9. Here, the denotational semantics law is 

[ ... , T, ... ] = T, but there is no corresponding operational semantics law. The op

erational semantics of SFP does not reduce an expression containing T to T unless 

the outermost expression is a sequence and has T as one of its entries. Therefore 

it would not be generally appropriate to replace [ ... , T, ... ] with T. Note, too, that 

such a law would be incompatable with law I.6, for then we could replace 1 o [!I, T] 

with either ft or T. 

Law III.3 (pair _,_, 1 o distr = [1 o 1, 2]) is the only law that does not extend 

gracefully to the SFP domain. The law fails for objects that are pairs whose first 
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entry is _1_ or <:!-for either semantics. The part of the domain for which the law does 

not hold is very small, so not much has been affected, but the increased complexity 

of the hypothesis makes it more difficult to understand. 

The gap in this law uncovers a property of the functional forms with respect to 

the extension mechanism for primitive functions given in Chapter 3. Some of the 

functional forms, such as construction, preserve the extension of functions, while 

others, such as composition, do not. That is, for all monotonic functions f and g 

on B, ([! g])' = [!' g'J where for any monotonic function h on B, h' is the extension 

of h to C as given in Definition 39 in Chapter 3. However, for some monotonic 

functions f and g on B, it is not true that (! o g)' = f' o g'. For example, 

(1 o distr)' # 1' o distr', since they do not agree on<<:}, x >: 

(1 o distr)'( < <:h x >) = glb{(1 o distr)(y) I< <:h x > [;; y & y E B} 

n 
= glb{(1 o distr)(y) I y =< <> w;, z >, 0::::; n < oo, 

1=1 

w;,z E B & x[;;z} 

= glb{1(v) I v = distr(<<>, z >), x [;; z or 

v=distr(< <:">w;,z >), n 2': 1, w;,z E B & x[;; z} 
l=l 

= glb{1(v) I v = T or 

n 
v=<><wi, z>, n~l, Wi,Z E B&x!;z} 

i=l 

= glb{u I u = 1(T) or 

n 
u = 1( <> < w;, z > ), n 2': 1, w;, z E B & x [;; z} 

i=l 

= glb{ t I t = T or 

t=<wt, z>, w,,z E B & x[;;z} 

=< _1_, X> 
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(1' odistr')(< <::}, x >) = 1': g!b{distr(y) I<<::}, x >!;;; y & y E B} 

= 1': g!b{distr(y) I y =< <:"> w;, z >, 0:5 n < oo, 
1=1 

w;,zEB&x!;;;z} 

= 1' : glb{ v I v = T or 

n 
v=<><w;, z>, n?:l, w;,zEB& x!;z} 

i=l 

= 1'( <:"> < 1_, x > ), where n?: 1 
t=l 

n 
= glb{1(y) 12 < l_, x >!;;; y, n 2': 1, & y E B} 

n 
=glb{1(y) lv=<:><w, z>, n?: 1, w,zEB & x!;;;z} 

t=l 

= glb{u I u = w & wEB} 

=l_ 

However, it is true that f' o g' :::; (! o g)'. 

Theorem 55: For all monotonic functions f, g on B, ([/ g])' = [!' g'], and 

!' 0 g' ::::; (! 0 g)'. 

Proof: To show: ([/ g])' = [!' g']. 

For x E C, 

[/' g'](x) = < /'(x) g'(x) > 

= < glb{f(y) I X !;;; y & y E B} glb{g(y) I X !;;; y & y E B} > 

= glb{ < f(y) g(y) > I X!;;; y & y E B} 

= glb{(f g](y) I X!;;; y & y E B} 

= ([! g])'(x). 

To show: f' o g' ::::; (! o g)'. 

For x E C, 

(!' o g')(x) = f'(g'(x)) 

= glb{f(z)l g'(x)!;;; z & z E B} 

::::; glb{f(g(y)) I g'(x)!;;; g(y), x!;;; y & y E B} 

= gib{f(g(y)) I X!;;; y & y E B} 

= (! o g)'(x). 
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Here we note that for ally E B such that" !;;; y, g'(x) !;;; g(y), though there 

may be other elements that satisfy the conditions on z. 

I 

We would like to have that, for any functional form F with operands f,, .. .fn, 

(F(J,, ... fn)l' = F(fi, ... f~), for then it would be simple to extend all the functions on 

B to functions on C by Definition 39. But since it is the case that some functional 

forms, such as composition, do not obey this law, we must content ourselves with 

extending the primitive functions by Definition 39, writing new definitions for the 

functional forms, and describing a set offunctions on C from the extended primitive 

functions and the modified functional forms. 

One law for FP not mentioned in the Turing A ward Lecture is trans o trans :<::: id. 

The corresponding SFP law (for either semantics) is trans o trans 2: id. The reversal 

of the inequality is not quite as simple as with the previously discussed laws. It 

is true that when transpose fails on an operand, the SFP result is T. But there 

is more to the inequality than just those cases for which transpose produces T. 

Consider the element<< 1;f>, < 2, 4:f> >. Applying trans to this element produces<< 

1, 2;f>, < 1_, 4:f> >,and applying trans to that result produces<< 1, _L:f>, < 2, 4:f> >,an 

element greater than the original argument. This is a consequence of the extension 

mechanism. The extension mechanism attempts to anticipate what will happen next 

in the development of an argument by considering all of the complete objects that 

are suitable operands to the primitive function, which the approximation can grow 

in to. In the case above, for the argument to trans to be suitable, all entry sequences 

must be of the same length. Thus the extension supplies _L where arguments are 

expected to develop if all goes well. 

Another FP law not mentioned in the Turing Award Lecture is rev o rev< id. 

This particular law has no corresponding SFP law. If reverse is applied to an 

inappropriate argument, such as an atom, then it produces T, just as the FP version 

produces _L. We might, therefore, expect the law rev o rev 2: id to hold, but it does 
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not. The peculiar behavior noted with transpose appears in another form here. If 

reverse is applied to a prefix, such as < 1, 2:}, then the result is < 1., .L:j>, since we 

cannot know what the first and second entries of the result will be, only that there 

are at least two of them. Hence rev o rev:< 1, 2:} = < 1., 1.:} ::; id :< 1, 2:}. The 

fact that this FP law has no corresponding SFP law is not particularly disturbing, 

since SFP has streams, and it is not meaningful to reverse a stream or even a prefix, 

since a prefix approximates a stream. 

The law trans o trans 2: id illustrates a property of the primitive function trans. 

There are many such laws, that is, laws involving properties of particular primitive 

functions. Furthermore, defining new functions creates new laws. Backus did not 

include such laws in his list, presumably because he was interested primarily in the 

properties of functional forms. The list below contains a few of these laws that will 

be used in the last example of Chapter 6. 

Def union:= apndl o [1 o 1, apndl o [2 o 1, union o tail]] 

Def group2 := apndl o [[1 2], group2 o tail o tail] 

union takes a stream of pairs and impairs them, that is, it removes one level 

of sequence brackets from each item in the stream. group2 changes a stream into a 

stream of pairs. 

V Primitive and defined functions 

V .1 trans o trans 2: id 

V.2 trans o apndl o [apndl o [t., / 2], apndl o [91, gz]] = apndl [[11 , gJ], trans [fz, gz]] 

V.3 union o group2 = id for streams 

Conclusion 

The algebra that Backus gave for FP carries over to SFP with very few changes. 

Most of the changes arise from the fact that 1. represents error in FP, whereas T is 

the error object in SFP. The laws for SFP also depend on whether the denotational 

semantics or the operational semantics is used. All of these differences occur because 

the operational semantics uses an outermost evaluation rule, defining a slightly 

different language from that given by the denotational semantics. 
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Chapter 6 

Examples 

SFP is an extension ofFP that allows meaningful non-terminating computations 

with arbitrarily good approximations to infinite objects. We have chosen to extend 

FP because of its useful mathematical properties. In this chapter we exhibit several 

examples that demonstrate the use of the language for non-terminating computation 

and how the algebra can be used to prove properties of programs. 

The reader who has programmed in FP will immediately notice how close the 

SFP programs axe to FP programs. The main difference is the lack of conditionals 

in recursively defined SFP programs. 

At the time of this writing, there is no implementation for SFP. The program 

examples given here have not been written with efficiency as a major consideration, 

since more efficient versions of these programs may be too obscure for the purposes 

of illustration. 

Example 1: Many problems require the generation of a simple stream from which 

the output will be computed. Frequently, the desired stream is an arithmetic pro

gression, such as a stream whose only value is 1, or the stream of integers. (A 

geometric progression can be produced by a straightforward modification of the 

program given for arithmetic progressions.) Given below is a program arith.prog to 

generate an axi thmetic progression: 

< X, < X + k, < X+ 2 * k, ... < X+ n * k, ... > ... > > > 

from an input argument of the form < initiaLva/ue, increment > = < x, k >. Note 

that the output is a pair, the second element of which is infinitely nested. 

Def arith.prog := [ 1, arith.prog o [+, 2] J 
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Example 2: Streams are often defined to be pairs of the form< first, rest>, where 

first is the head of the stream and rest is a sequence that is the tail. (Example 1 

illustrated this definition of stream.) There is an obvious correspondence between 

such a 'tree' representation of a stream and the 'fiat', or sequence, representation. 

Either representation, however, can be used in the domain D. The following pro

grams convert streams of the form< first, rest> to the 'fiat' form and back again: 

Def flat := apndl o [ 1, flat o 2 ] (tree to fiat) 

Def tree := [ 1 , tree o tail ] (fiat to tree) 

Example 3: The Sieve of Eratosthenes. This example uses the function arith.prog 

defined in Example 1 and the flat function defined in Example 2. It also uses two 

primitive functions not given in the Turing Award Lecture [Backus 1978]. The 

function eqO returns l. if the argument is 1., T if the argument is T, 'true' if the 

argument is the number zero, and 'false' if it is anything else. The function mod 

expects a pair of numbers as its argument and returns the remainder of the integer 

division of the first number by the second number. The input to the program primes 

should be the pair <2,1>, which will cause arith.prog to produce the nested stream 

<2,<3, ... >>. 

Def primes .- sieve o flat o arith.prog 

sieve IS the function that actually produces the primes from its input, and flat is 

used to flatten the nested stream (tree) of primes to a non-nested stream. 

Def sieve := [ 1 ,sieve o filter J 

The input to sieve is a nested stream of natural numbers, the first of which is the 

next prime and the tail of which is to be filtered to remove multiples of that prime. 

Each time sieve is invoked via a recursive call, a new prime is generated as output 

and a new filter is established. 

Def filter := eqO omod o [1 o 2, 1] ~ filtero [1, 2 o 2]; [1 o 2,filter o [1, 2 o 2 ]] 
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The input to filter is a nested stream of integers. filter removes from this stream 

all multiples of the first element and returns the filtered stream as output. The 

program filter is equal to p -> f; g, where p is a predicate that tests whether the 

second item in the stream is multiple of the first item. If it is a multiple, then f 

removes the second item and filters the rest of the stream for the first item. If the 

second item is not a multiple, then g removes the second item from the input, puts 

it as the first element of the output stream, and then filters the rest of the stream 

for the first item. The expression [1, 2 o 2] takes a stream and removes the second 

item, leaving the first and other items in place. 

Example 4: A 'history-sensitive' stream function. This approach is being de

veloped in order to embed schemes similar to Backus's AST system in this lan

guage framework. We describe a function that accepts an input of the form 

< s,, x,, x 2 , x3 , ••• >, where s, is an initial system state and the sequence x1 , x 2 , x3 , ••• is 

a sequence of inputs to the system, and whose output is a sequence< o1 , o2 , o3 , ... >. 

Mathematically the function will map one infinite object to another, but it can be 

viewed as a system with functions that, for each i, use the current state s; and the 

current input x; to compute the next output o; and the next state s;+1 • 

A simple example of a program that might be written with this function is a 

screen editor. The value of the edited file at any point would be the state at that 

point. The sequence of inputs x1 , x 2 , x3 , ••• would be a stream of commands to edit or 

move about in the file. The output at each point would be the part of the updated 

file to be written to the screen. 

We define a functional form, denoted by braces, that reqmres two function 

arguments, a 'next state' function S• and an 'output' function 0•. The function S• 

maps the domainS x 0 (where Sis the set of states and 0 is the set of objects) 

into S, and 0• maps the same domain into 0. (The set S can be chosen to be any 

subset of the set of objects 0.) The effect of applying a function constructed with 

this functional form applied to a stream argument can be described as follows: 
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(apnd/ :< (0• :< s1 ,x1 >), ({O•,S•} oapndl :< (S• :< s,,x, >),< x2,x3, ... > >)) 

Thus, the value of S• :< s;,x; >is the next state ••+' and the value of 0• :< s;,x; >is 

o;, the result of processing input x; when in state s;. The definition of the functional 

form denoted by {} can be given entirely within FP: 

{f, g} := apndl o [ f o [ 1, 2 ], {f, g} o apnd/ o [ go [ 1, 2 ], tail o tail ]] 

Here f computes the next output and g computes the next state. 

There are other ways of describing similar functions based on extensions of FP 

functions; in particular, a functional form can be described such that the system 

state is an object parameter of the functional form rather than the first entry 

of a stream input. The function described above produces one entry o; for each 

input entry x;, but other functions can be defined that produce different or varying 

numbers of output entries o;,oi+1, ... o;+k for a single input entry x;. 

Example 5: A program to generate the cartesian product of a pair of streams. 

Def cp := zip o [ f, g J 

The input to cp is a pair of streams. The output is the cartesian product of that 

prur. 

Def f := distl o [ 1 o 1, 2 ] 

The input to f is a pair of streams. The output is a stream of pairs. f takes the first 

element of the first stream and pairs it with every element of the second stream. 

Def g := cp o [ tail o 1, 2 J 

The input to g is a pair of streams. The output is a stream of pairs. g generates 

the cartesian product of two streams, the first being the tail of the first stream in 

the input and the second being the second stream in the input. 

Def zip := apnd/ o [ 1 o 1, apndl o [ 1 o 2, zip o o:tail ]] 
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If the input to zip is a pair of streams of pairs then the output is a stream of pairs. 

zip creates a stream of pairs by alternately choosing the next pair from the two 

input streams. 

Example 6: The algebra can be used to show the equivalence of two programs. 

For example, the program flat o arith.prog from Examples 1 and 2 first produces an 

arithmetic progression in tree form and then flattens it into a stream form. This 

can be shown to be equivalent to the following program: 

Def a.p2 .- apndl o [1, a.p2 o [+, 2]] 

Proof: 

By definition of arith.prog, 

flat o arith.prog = flat o [1, arith.prog o [+, 2]] 

(by definition of flat) 

= apndl o [1, flat o 2] o [1, arith.prog o [+, 2]] 

(by law I.l) 

= apndl o [1 o [1, arith.prog o [+, 2]], flat o 2 o [1, arith.prog o [+, 2]]] 

(by law !.5) 

= apndl o [1, flat o arith.prog o [+, 2]] 

Example 7: This example traces a few steps in the execution of the program 

given in Example 6. Applying a.p2 to the initial input < 1,2 > should produce 

the odd positive integers as a stream. We show a few steps in the reduction of 

(a.p2 :< 1,2 >)to illustrate the re-writing rules: 

(Parentheses, indicating application, are omitted.) 

a.p2 :< 1, 2 > --> apndl o [1, a.p2 o [+, 2]] :< 1, 2 > 

--> apndl: [1, a.p2 o [+, 2]] :< 1, 2 > 

--> apndl :< 1 :< 1, 2 >, a.p2 o [+, 2] :< 1, 2 >> 

-->< 1 :< 1,2 > ~ a.p2o[+,2] :< 1,2 >> 

-->< 1 ~ a.p2: [+, 2] :< 1, 2 >> 
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-+< 1 ~ apndl o [ 1, a.p2 o [+, 2]] : [+, 2] :< 1, 2 > > 

-+< 1 ~ apndl: [1 ,a.p2 o [+, 2]]: [+, 2] :< 1, 2 > > 

-+< 1 ~ apndl :< 1 : [+, 2] :< 1,2 >, a.p2 o [+, 2]: [+, 2] :< 1, 2 >>> 

->< 1 ~< 1 : [+, 2] :< 1, 2 >~ a.p2 o [+, 2] : [+, 2] :< 1, 2 >> > 

-+< 1,1 : [+, 2] :< 1, 2 >~ a.p2 o [+, 2]: [+, 2] :< 1, 2 >> 

--+< 1, 1 :< + :< 1, 2 >, 2 :< 1, 2 > >~ a.p2 : [+, 2] : [+, 2] :< 1, 2 > > 

--+< 1,+ :< 1,2 >~ apndl o [1 ,a.p2 o [+, 2]]: [+, 2]: [+, 2] :< 1,2 >> 

-+< 1,3~apndl: [1,a.p2o[+,2]]: [+,2] :[+,2] :< 1,2 >> 

etc. 

Example 8: Finally, we give an example of a proof of a property of a program. 

The example is due to Kahn [Kahn 1974]. Kahn defines four functions operating on 

and producing steams, interconnected as shown by the directed graph of Figure 1. 

Names are assigned to the I/0 interconnection arcs, which he calls channels. The 

function f has two inputs, Y and Z, which f merges into an output stream, X. The 

function g takes the stream X as input and separates it into two output streams 

T1 and T2 by alternately directing the next element of the stream to first T1 and 

then T2. The function h has two instantiations, which Kahn labels h0 and h1 • The 

function h sends out an initial value, which is 0 for h 0 and 1 for h 1, then receives 

its input, T1 for h0 and T2 for h1 , and passes it through unchanged as output. Y 

is the output of h0 and Z is the output of h1 • Kahn then shows (using structural 

induction) that the history of X is an alternating stream of Os and 1s. 

For the same program graph, SFP programs can be defined with the same 

functions as the corresponding Kahn functions. Each arc will be realized as an 

application of one of the SFP programs to the input(s) of that program. We define 

the funtions f, g, and h, describe the arcs X, Y, Z, T1, and T2 and then show that 

X=< 0, 1 ~ X>. 
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Figure 1: Kahn's Example. 

Definition of the functions: 

Def f :=union o trans 

Def union:= apndl o [1 o 1, apndl o [2 o 1, union o tail]] 

Def group2 := apndl o [[1 2], group2 o tail o tail] 

Def g := trans o group2 

Def ho := apndl o [0, id] and h1 := apndl o [I, id] 

union takes a stream of pairs and unpairs them, that is, it removes one level 

of sequence brackets from each item in the stream. group2 changes a stream into a 

stream of pairs. g changes a stream into a pair of streams. ho appends a 0 to the 

beginning of its input stream; h1 appends a 1 to the beginning of its input stream. 

Definition of the channels: 

Y= h0 : T1 

Z = h1 : T2 

X= f :< Y, Z> 

< T1, T2 >= g : X 
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Proof that X = < 0, 1 ~ X>: 

X =f:< Y, Z> 

(by definition of f) 

= union o trans :< Y Z > 

(by definition of Y and z) 

= union o trans :< h0 : T1 ht : T2 > 

(by substitution of equivalent expressions) 

=union o trans o [ho o 1, h1 o 2] :< T1, T2 > 

(by definition of h0 and h1 ) 

=union o trans o [apnd/ o [0, id] o 1, apnd/ o [1, id] o 2] :< T1, T2 > 

(by laws I.l, III.l, and III.2) 

=union o trans o [apnd/ o [0, 1], apnd/ o [1, 2]] :< Tl, T2 > 

(by law V.l) 

=union o apnd/ o [[0, I], trans o [1, 2]] :< Tl, T2 > 

(by evaluation) 

=union o apnd/ :<< 0,1 >, trans:< T1, T2 >> 

(by definition of the pair of streams < T1 T2 >) 

=union o apnd/ :<< 0,1 >, trans o g: X> 

(by definition of g) 

=union o apndl :<< 0,1 >, transo trans o group2: X> 

(by the algebraic law that trans o trans 2: id) 

2: union o apnd/ :< < 0 1 >, group2 : X > 

(by definition of union) 

= apnd/ o [1 o 1, apndl o [2 o 1, union o tail]] o apndl :<< 0,1 >,group2: X> 

(by evaluation) 

= apnd/ :< 0, apnd/ :< 1, union o group2 : X > > 

(because union o group2 = id) 

= apnd/ :< 0, apnd/ :< 1, X >> 

(by evaluation) 

=< 0, 1, ~ X > 
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Chapter 7 

Conclusions and Future Work 

The computer industry is facing a software crisis. Code that has been and is 

being written is often unreliable, difficult to maintain, and impossible to verify. The 

past two decades have produced three generations of hardware. But languages have 

lagged behind in spite of the recognized deficiencies of those currently used. A new 

generation of languages is long overdue. 

Several properties appear to be attractive in the design of new languages. More 

powerful features, such as higher order functions and more powerful primitive com

mands would free the programmer from some of the tedious detail with which he 

must currently cope. Another desirable aspect is found in languages that facilitate 

proofs of properties of programs or even of the languages themselves. The ability to 

do automatic optimization needs to be improved so that it can be done at a higher 

level than is currently feasible. 

It is difficult to imagine modifying procedural languages, such as ALGOL, to 

incorporate gracefully these new properties. A new breed of languages is required. 

The ultimate goal is a new kind of programming environment. This environment 

will certainly encompass new languages, more powerful tools, and perhaps hard~ 

ware designed specifically for the new languages. One of the best hopes lies with 

functional and logic languages. These languages would provide a useful tool. In 

order to compete with existing languages, they need an efficient implementation, 

which may require radical changes to computer architecture. 

FP is a functional language that meets many of the criteria described above 

for language design extremely well, but it has a number of deficiencies that prevent 
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it from being used to develop a new programmmg environment. One of these 

deficiencies is the inability to write (useful) non-terminating programs. 

The research presented here has demonstrated that FP can be extended to in

clude infinite objects in such a way that the mathematical properties of the language 

are preserved. The new language, SFP, has a syntax nearly identical to that of FP. 

The FP language is a subset of SFP, and most FP expressions have the same values 

as the corresponding SFP expressions. The algebra has been carried over with only 

minor changes. Furthermore, we have shown that any SFP program is monotonic 

and continuous, which makes it an acceptable computing language. 

The extension mechanism given in Chapter 3 greatly facilitated the proof that 

all programs in SFP are continuous in that it provided a uniform way to extend any 

monotonic primitive function, and thus the proof of continuity was general rather 

than specific to each primitive function. Though the extension mechanism from C 

to D is a standard construction, the mechanism for extending functions from B to 

C is new and is a substantial result of this research. In addition to facilitating the 

proof of continuity, the extension mechanism has another important property: it 

produces maximal monotonic extensions. 

Further improvements to the SFP language are needed for it to provide a basis 

for a programming environment with useful tools. 

An obvious deficiency is the lack of higher-order functions. This might be 

approached by extending SFP to something like FFP, a formal version of FP with 

higher-order functions. An alternative approach would be to extend FP 1.5 [Arvind 

et al. 1982] to streams using mechanisms similar to those given here. 

Another need of the SFP language is some way to accommodate non

determinism. One property of streams in actual practice is that the elements are 

generally produced sequentially, and an arbitrary amount of time may elapse be

tween two successive elements. Consider the zip function of Example 5 of the pre

vious chapter. The input to zip consists of two streams, and the output is a merge 
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of the two input streams so that the next output item is chosen alternately from 

the two input streams. In many cases, it may not be important that the out

put alternate. If so, it is not necessary to wait on the next item of one stream if 

items are already available in the other stream. The SFP language does not permit 

the programmer to specify a non-deterministic choice between two things. A non

deterministic merge would be more useful than zip in many cases, and it warrants 

investigation. 

A substantial problem with the operational semantics we describe occurs with 

SFP functions that map (potentially) infinite inputs to (potentially) infinite out

puts. One envisions that potentially infinite inputs may be acquired incrementally 

over a period of time. In this case, it is desirable to begin producing output before 

all of the input has arrived. Using the operational semantics given here, any im

provement to the input would require that a new approximation to the output be 

computed entirely anew; all parts of the previous approximation are recomputed. 

This method, though quite straighforward, is unacceptably inefficient. What is 

needed is an implementation that is capable of modifying the output based on new 

information about the input without recomputing what has already been computed. 

An infinite set in SFP can be specified algorithmically. It is sometimes more 

convenient to specify a set by the properties of its elements, as is done in Zermelo

Frankel set abstraction, rather than by specifying an algorithm to generate the set. 

The KRC language [Turner 1982] uses this specification method, and it would be 

an attractive feature to add to SFP. 

One of the problems of the FP language is that programmers find it difficult 

to understand the FP programs. Because the syntax of SFP is nearly identical, 

the same problem occurs with SFP programs. Part of the solution may be better 

programming habits, but improvements can also be made to make the syntax more 

palatable. An investigation of solutions to the problem can start by integrating 

Backus's extended definitions [Backus 1981] with streams. 
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The use of T as the sole error element is mathematically elegant but somewhat 

restrictive. Another approach to error representation that has been considered is 

to have a number of error objects, one at the end of each "branch" in the lattice. 

Though some research has been done in this area, it is not yet clear whether or not 

such an approach can be made to work cleanly. 

The most obvious requirement for a real environment containing SFP is an im

plementation of the language. Since SFP is a parallel language, a parallel processor 

would take best advantage of the language's parallelism. The UNC tree machine, a 

fine grain multi-processor designed by Mag6 [Mag6 1979, 1980, 1984], is a hardware 

interpreter for the FFP language. The similarities of SFP to FFP suggest that 

it would be worthwhile to investigate modifying the tree machine to execute SFP. 

Direct hardware implementations of SFP appear to be some years into the future, 

and since the issues involve much more than parallelism, it is also worthwhile to 

implement SFP in software on a conventional machine. Such an implementation 

would provide an opportunity to investigate the feasibility of other features of the 

language, such as automatic program transformation. 

Along with an implementation of the language, tools, such as editors and de

buggers, are needed to create a real programming environment. Adding types to the 

language or having an automatic type inference system available would assist the 

SFP programmer in keeping track of his data structures. Another tool to investi

gate is a translator from another language, such as KRC, to SFP (with higher order 

functions). This would allow the programmer to program in a different language 

but would still give him access to the powerful SFP algebra, which could be used 

to transform or verify the program. 

Finally, the algebra needs to be developed. New laws need to be added, and 

software making use of the laws needs to be written. The algebra could be used for a 

number of applications, including automatic program transformation for optimiza

tion, proving properties of programs, or analyzing time and space requirements. 
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Appendix A 

The FP Primitive Functions and Functional Form Operators 

This appendix contains the definitions of the primitive functions and functional 

forms as given by Backus in his Turing A ward Lecture. 

Selector 

1 : X = X =< X1 ... Xn > -+ Xl; 

and for any positive integer s 

S: X= X =< Xl ... Xn > & n ~ S _,. X 3 j 

Tail 

tl : "' = "' =< "'1 >-> 1>; 

X=< X1 .. , Xn > & n :2::: 2 -+ < X2 ... Xn >; 

Identity 

id: X= X 

Atom 

atom : x = x is an atom -+ T; 

X # .L -> F; 
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Equals 

eq : x :::;: x =< y, z > & y = z---+ T; 

X =< y, z > & y "' z- F; 

.L 

Null 

null : x = x = ¢> ---> T; 

Reverse 

X "' .L ---> F; 

_j_ 

reverse : x = x = ¢J ---+ </>; 

X=< X1 ... Xn > ---+ < Xn ... X1 >; 

Distribute from left; distribute from right 

dist/ : X :: X =< y, <jJ >---> </>; 

x =< y,< Zt ... Zn >>---+ << y,zr > ... < y,zn >>; 

distr: x = x =< ¢>,y >--->1>; 

x=<< Yl ... Yn >,z>---+ <<Yr,z> ... < Yn,Z >>; 

_j_ 

Length 

length : x =: x =< Xr ... Xn > -+ n; 

X= cjJ---+ 0; 

Add, subtract, multiply and divide 

+ : x = x =< y, z > & y, z are numbers -+ y + z; 

- : x =: x =< y, z > & y, z are numbers ---+ y- z; 
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x : x = x =< y, z > & y, z are numbers -+ y x z; 

j_ 

~ : x = x =< y, z > & y, z are numbers _,. y ~ z; 

j_ 

Transpose 

trans : x = x =< ¢>, ... , ¢> > -> ¢>; 

X=< X1 ... Xn > -+ < Yt ··· Ym >; 

j_ 

where Xi =< xil ..• Xim > & Yi = < Xtj ... Xnj >, for 1 :5 i ::=; n, 1 ::=; j :5 m 

And, or, not 

and : x = x =< T, T > -+ T; 

etc. 

X =< T, F > v < F, T > v < F, F >-> F; 

j_ 

Append left; append right 

apndl: x = x =< y,¢> >->< y >; 

X=< y, < Zt ... Zn >> _,. < y, Zt ... Zn >; 

j_ 

apndr:x= x=<¢,z>-+<z>; 

x=<<Yt ··· Yn>,z>-+ <Y1 ... Yn,z>; 

.1. 

Right selectors; right tail 

1 r : X = X =< X1 •.• Xn > _,. Xn i 

.1. 

2r : X = X =< X1 ... Xn > & n 2:: 2 --+ Xn-1 i 

.1. 

etc. 
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tfr : X: X =< Xr > --+ </>; 

X=< Xl ... Xn > & n 2:: 2 ~ < Xl .•. Xn-1 >; 

j_ 

Rotate left; rotate right 

rot/ : x = x = ¢> --+ ¢>; 

X=< Xt > .......,. < Xt >; 

X =< Xt ••• Xn > & n ~ 2 -+ < X2 •• , Xn, Xt >; 

j_ 

etc. 

Composition 

(fog)(x) = f(g(x)) 

Construction 

[!J, ... , fn](x) = < fr(x), ... , fn(x) > 

Condition 
(p--+ f;g)(x) = p(x) = T --+ f(x); 

Constant 

p(x) = F --+ g(x); 

j_ 

x(y) = Y = J.. __, J..; 

X 

Insert 
/f(x) = X=< X!>--+ Xt; 

X=< X[, ... , Xn > & n ~ 2 --+ f(< Xt,/f(< X2, ... , Xn >) >); 

j_ 

Apply to all 
af(x) = x = ¢>--+ ¢>; 

X=< Xt, ... , Xn > --+ < f(xt), ... , f(xn) >; 

j_ 
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Binary to unary 

(bufx)(y): f(<x, y>) 

While 
(while p f)(x) = p(x) = T- (while p f)(f(x)); 

p(x)=F-x; 
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Appendix B 

The SFP Primitive Functions and Functional Form Operators 

Denotational Semantics 

This appendix contains a list of the SFP primitive functions and functional 

forms as defined by the denotational semantics of SFP. 

Selector 

l(x)= x=J..or<:}->J..; 
n 

x = <:f..xi & 1 s;: n < oo ~ x1; 
i:;;;;l 

n 
X = <> Xi & 1 < n < CO __,. Xt j 

i~l . -. -

T 

and for any positive integer s 

Tail 

s(x): x=J.. ->1.; 
n 

x = <:;txi & s :5 n < oo __,. x,; 
i;;;;l 

n 

x = <:}x; & 0 ~ n < s -> J..; 
i:::;l 

n 
x=<>xi&s<n<oo __,.x,; 

i=l - -

T 

tl(x): x=J..-> J..; 
n n 

x = <:}x; & 0 ~ n < oo---> <:}x;; 
i::;l i=2 

n n 
x =<>Xi & 1 < n < oo- <>xi; 

i=l - - i::::2 

T 
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Identity 

id(x)=: x 

Atom 

atom(x) = x is an atom -+ T; 

X= T ---+ T; 

X = j_ ___,. ..lj 

F 

Equals 

eq(x)=: x=<y,z>, y, zinB&y=z-+T; 

x=<y,z>, y, zinB&y:f:z-+F; 

[x =< y, z > or x =< y, z:j>] & y !l z & z !l y-+ F; 

[x =< y, z > or x =< y, z:j>] & [y [; z or z [; y-+ ..L; 

x = ..L, <:h or < y:j> -+ ..L; 

T 

Null 

null(x) = x = ¢-+ T; 

x = ..L or <:J> -+ ..L; 

X= T ........ T; 

F 

Reverse 

reverse( x) = n 
X = <>X; & 0 $ n < CO 

i=l 
n 

x = <:J>x; & 0 ::; n < co 
i=l 
= = 

X = <>Xi --7 <> ..l; 
i:;;:;l i=l 

x=..L -+..L; 

T 

n 
---+ <> Xn-ii 

i:;;:;l 
n 

-+ <:J>..L; 
i=l 

Distribute from left; distribute from right 

distl : x = x = ..L, <:!>, or < y:} -+ <:!>; 

x =< y,..L > or < y,..L:} -+ <:!>; 
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x =< y,<;j-> or < y,<;j-;j- - <;j-; 

x=<y,<>;j- or <y,<>> -<>; 
n 

X =<y, <;j-z;;j-
i=l 

X=< y, <'>z;;j-
i=I 

T 

n 
or < y, <;j-z; > -.. 

i=! 

n 
<>< y, z;;j-; 
i:;::;:l 

n n 
or < y, <> Zi > -7 <> < y, zi >; 

i:;;:l i=l 

distr: x = x = 1., <:h < ..L;j-, < <;j-;j-, or <<> ;j- - <:k 

Length 

n n 
X=< <;j-y;;j- -<;j-<y;,l.>; 

i:;;;l i=l 
n 

x=< <>y;;j
i=! 

n 
~ ->> < Yi,..L >; 

~=1 

x=<l.,z;j-, <<:l;z;j-, <l.,z>, or <<:hz> -<;t 
n n n 

x=<<;j-y,,z;j-or <<;j-y;,z> &l:Sn<oo -<:><y;,z> 
i=l i=l t=l 

n n n 
x=<<>y;,z;j-or <<>y;,z> &l<n<oo -<><y;,z> 

i:=.l t::;l - - i=l 

T 

n 
length : x = x = <;j-x; & 0 :::; n < oo - 1.; 

i:;;;;! 
n 

x = <> x; & 0 :::; n < oo - n; 
i=l 
00 

x =<>xi ~ l.; 
i::;! 

X= .i-+ _l; 

T 

Add, subtract, multiply and divide 

+ : x = x = 1. or <;j- - 1.; 

x =< y ;j- & y is a number or 1. - 1.; 

x =< y, z;j- or < y, z > & y, z are numbers - y + z; 

x=<y,z;j-or <y,z> &y,zarenumbersor..L- 1.; 

T 

- : x = x = 1. or <;j- - 1.; 

x =< y ;j- & y is a number or 1. - 1.; 

x=<y,z;j-or <y,z> &y,zarenumbers- y-z; 

x =< y, z;j- or < y, z > & y, z are numbers or 1. - 1.; 

T 
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X : X = X = ..[_ Or <:j- --+ ..l; 

x =< y :j- & y is a number or ..L --+ ..L; 

x =< y,z:j- or < y,z > & y,z are numbers --+ y x z; 

x =< y, z:j- or < y, z > & y, z are numbers or ..L --+ ..L; 

T 

7 : x = x = ..L or <:!- --+ ..L; 

x =< y :j- & y is a number or ..L - ..L; 

x =< y, z:j- or < y, z > & y, z are numbers - y 7 z; 

x =< y, z:j- or < y, z > & y, z are numbers or ..L __. ..L; 

T 

Transpose 

trans : x ::: x = ..l ~ ..l; 

n 
x =~>xi, 0::; n :5 oo, and for some m, 0 :5 m :5 oo, 

t:l 
m p 

x; E {..L, <:> x;;} U { <:j-x;; I 0 ::; p::; m} 
;=1 j=l . . 

~ <'> <n> . . where i. = { Xij, 1f xii eJ~:Ists; 
i=l i=l Yt;' Y 3 ..L, otherwise. 

n 
x = <:j-x;, 0 ::; n < oo, and for some m, 0 ::; m ::; oo, 

i=l 
m p 

x;E {..L, <>x;;} u {<:j-x;; I o::;p::;m} 
J=l j-1 

_ <'> ,;;-~. . . wher~ .. = { x;;, if x;; e~ists; 
J=I i='[Y'3 ' Ya; ..l, otherwise. 

x = 0, Xi, 0 :5 n :5 oo, and for some m, 0 :5 m < oo, 
p 

x; E {..L} U { <;l>x;; I 0::; p::; m} 
J=l 

m 
and if n 2: 1 there exists k, 1 ::; k ::; n such that xk = <;l>x;; 

m n 
- <:l-<>y;;, where 

i=l z::=l 

n 

{ 
x·· y··- 1Jl 

I]- j_l 
if x;; exists; 
otherwise. 

x = <:j-x;, 0::; n < oo, and for some m, 0::; m < oo, 
i=l 

p 

x; E {..L} U { <:j-x;; I 0::; p::; m} 
j;:;;.l 

j=l 

m 
and if n 2: 1 there exists k, 1 ::; k::; n such that xk = <:j-x;; 

m-l n-l where { Xij if Xij exists; j=l 
---+ <.-r<.-rYiJ' Yii = ..L, ' otherwt'se. 

i=li:;;;l 

T 
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And, or, not 

and: x = x = .L, <:h < T;j> or < F;j> --> .L; 

x =< T, F;j>, < F, T;j>, or < F, F;j> __, F; 

x=<T,F>, <F,T>, or <F,F>->F; 

x =< T, T;j> or < T, T > __, T; 

x =< y,z;j> or < y,z > & y,z E {.L,T,F} --> .L; 

T 

etc. 

Append left; append right 

apndl: x = x =.Lor <::} -->< .L;j>; 

X=< y;j> -->< y;j>; 

x =< y, .L;j> or < y, .L > -->< y;j>; 

x =< y, <:I> :I> or < y, <:I>> -->< y;j>; 

x =< y,<> ;j> or < y,<>> --->< y >; 
n n 

x =< y, <:}z;;j> or < y, <:}z; > & 1 5 n < oo -->< y, z, ... zn:l>; 
i:::l i=l 

n n 
x =< y,-;:=:>zi:} or < y,<>zi > & 1 < n < oo -+< y,zr ... Zn >; 

1=1 i=l -
co co 

x =< y,<>zi:} or < y,<>zi > ---+< y,z1,z2 ... >; 
j;;:;l i=l 

T 

apndr: x = x = .L, <:h < .L;j>, << ;j>;j>, or <<> ;j> --->< .L;j>; 

x =< .L, z;j> or < .L, z > -+< .L;j>; 

x =< <:h z;j> or < <:h z > --->< .L;j>; 

x=<<>,z:}or <<>,z>-+<z>; 
n 

x =< <;j>y;;j> & 1 S n < oo ---> < Yl ... Yn,.L;j>; 
i=l 

n 
x =< <> y;;j> & 1 ::; n < oo --> < y, ... y., .L >; 

J;:;;l 
n n 

x =< <;j>y;,z;j> or < <:}y;,z > & 15 n < oo ---> < y, ... Yn,.L;j>; 
i:::l i=l 

n n 
x =< <>Yi,z} or < <>yi,z > & 1 :::;_ n < oo --+ < Yt ... Yn,z >; 

i=l i=l 
co co 

X=<<> y;;j> --> <> y;; 
i=l i=l 
co 00 00 

x =< -:=:>Yi,z:j> or < <>yi,z >- <>Yii 
1=1 i=l i=l 

T 
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Right selectors; right tail 

etc. 

lr : X :;::: X = j_ -+ l_; 

n 

x = <:}x; & 0 ::; n < oo - J.; 
i;::;l 

n 
X=<> Xi & 1 ,:5 n < 00 -+ Xnj 

i=l 
00 

X = <>Xi -+ J.; 
i=l 

T 

2r : X ::: X = l_ -+ j_; 

n 

x = <:}x; & 0 ::; n < oo - J.; 
i=l 

n 
X = <>Xi & 2 :5 n < 00 -+ Xn-1 j 

i=l 
00 

x =<>xi - .l; 
i::::l 

T 

t/r : X ;: X= _j_ ---> <~ 
n 

x = <:}x; & 0 ::; n < oo 
i;::;l 

n 
X = <>X; & 0 $ n < 00 

i;;;;l 
00 

x =<>xi 
i=l 

T 

00 

-+.<>x;; 
i:;l 

n-1 
-+ <:}xi; 

i=l 
n-1 

-+ <>Xi" 
i=l ' 

Rotate left; rotate right 

rot/ : x = x = J. or <:} - <:t, 

x=<> _,. <>; 

x =< x1 :} --+ < J.:}; 

X=< Xt > -+ < Xt >; 
n 

x = <:}x; & 2::; n < oo -< X2 .•• Xn,J.:}; 
i=l 

n 
X=<> Xi & 2 :5 n < 00 -+< X2 ... Xn, Xt >; 

i=l 
00 00 

X=<> Xi -+<>Xi" 
i=l i:;::2 ' 

T 

rotr: x = x = J. or <:} - <:t, 

X=<>-+ <>i 

x =< x,::j> --+ < J.:}; 
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Composition 

X=< X1 > ---+ < Xl >; 
n 

x = <:}x; & 2 :S n < oo -+< .L,x1 ... Xn-!:}; 
i:;;l 

n 
X= <>xi & 2 < n < oo ---+< Xn,Xl ••• Xn-1 >; 

i:;;l -
00 

X=<> Xi ---+< ..l, X1 1 X2, ... >; 
i:;;l 

T 

(fog)(x) = f(g(x)) 

Construction 

[!1, ... , fn](x) = < /1(x), ... , fn(x) > 

Condition 
(p--+ f; g)(x) = p(x) = T -+ f(x); 

Constant 

p(x) = F -+ g(x); 

p(x) = .L--+ 1.; 

T 

x(y): . y = T--+ T; 

X 

Insert 

Right Insert (from the original FP Insert) 
/f(x): x=l.--+1.; 

x=<x1, ... , xn} & n;:::o ---+1..; 

T 

Left Insert 
\f(x) = x = .L--+ 1.; 

X=< X1, ... , Xn > & n 2:2 --+ f(< \f(< X1, ... , Xn-! >), Xn >); 

T 
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Apply to all 
af(x) = x = ..L---> <;j>; 

X = 1> ---> 1>; 

X = <;j>-> <:}; 

X=< x,, ... , Xn:} ---> < f(x!), ... , f(xn);j> ; 

X=< X!, ... , Xn > ---> < f(x!), ... , f(xn) >; 

T 

Binary to unary 

(bu f x)(y) = f(< x, y >) 

While 
(while p f)(x) = p(x) = T---> (while p f)(f(x)); 

p(x)=F->x; 

T 
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Appendix C 

The SFP Primitive Functions and Functional Form Operators 

Operational Semantics 

This appendix contains the rewrite rules for the operational semantics of SFP. 

For each primitive function or functional form, a list of rules is given. In addition 

to the stated restrictions, each rule carries an implicit restriction that none of the 

previous rules for that primitive function or functional form apply. 

Selector 

l(x) = x =.Lor <:}-+ .L; 
n 

x = <:}x; & 1 :0: n < oo -+ x,; 
i=l 

n 
X=<> Xi & 1 < n < 00 -+ X1; 

i=l - -

x is a constant -+ T 

and for any positive integer s 

Tail 

s(x) = x = .L -+ .L; 
n 

x =<:}xi & s :5 n < oo -+ x.,.; 
i=l 

n 

x = <:}x; & 0 :0: n < s -+ .L; 
i:;l 

n 
x=<>xi&s<n<oo -+x_,; 

i=l - -

x is a constant -+ T 

tl(x) = x = .L -+ .L; 
n n 

x = <:}x; & 0::; n < oo-> <:}x;; 
i=l i=2 

n n 
X=-:=:> Xi & 1 :$ n _::; 00-+ '>> Xjj 

t=l 1=2 

x is a constant -+ T 
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Identity 

id(x) = x 

Atom 

atom(x) = x is an atom - T; 

x=T ~T; 

X = .i --+ ..l; 

x is a constant --> F 

Equals 

eq(x) = x =< y, z >, y, z in B & y = z--+ T; 

x =< y, z >, y, z in B & y # z--+ F; 

[x =< y, z > or x =< y, z:j>] & y !l z & z !l y- F; 

[x =< y, z > or x =< y, z:j>] & [y !;;; z or z !;;; y --+ .l; 

x = .l, <:j>, or < y:j> - .l; 

x is a constant --. T 

Null 

null(x) = x = </>--+ T; 

x = .l or <:J. --+ .l; 

X= T --+ T; 

x is a constant - F 

Reverse 

reverse(x) = n n 
X=<> Xi & 0 < n < 00 ___,. <> Xn-i; 

i:::::l - i=l 
n n 

x = <:J.x; & 0 $ n < oo --+ <;j-.l; 
i=l i=l 

00 00 

X = <>Xi --+ <> ..l; 
i:::::l i;;;;l 

X= j_ --+ .l; 

x is a constant --. T 

Distribute from left; distribute from right 

distl : x = x = .l, <:J., or < y:j> - <:J.; 

x =< y, .l > or < y, .l:j> --. <:J.; 
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x =< y,<:}> or < y,<:}:} ..... <:}; 

x =< y,<>:} or < y,<>> --><>; 

x=< y, 

X=< y, 

n 
<:}z;:} 
i=l 

n 
<>z;:} 
i::l 

n 
or < y, <:}z; > ---> 

i=l 

n 
<> < y, z;:}; 
i=l 

n n 
or < y, <> Zi > -... <> < y, Zi >; 

i=l j:;;;l 

x is a constant ___, T 

distr: x = x = ..L, <:}; < ..L:}, < <:}:}, or <<>:} ___, <:k 

Length 

n 

X=< <::j>y;:} 
i=l 

n 
x=< <:> y;:} 

1:::;1 

n 

..... <:}< y;, ..L >; 
i=l 

n 
..... <> < y; ..L >· 

i=l J ' 

X=< ..l,z::j>, < <:};z::j>, < ..l,z >, Or < <:};z >--> <:} 
n n n 

x =< <:}y;,z:} or < <:}y;,z > &1 :5 n < oo __, <> < y;,z > 
i=l i=l ~:;;;1 

n n n 
x=< <>y;,z:} or < <>y;,z> &1 :5 n:S oo -<>< y;,z > 

i=l i::l i=l 

x is a constant __, T 

n 

length : x = x = <:}x; & 0 :0: n < oo --> ..L; 
i=l 

n 
x = <> Xi & 0 ::; n < oo ---+ n; 

i=l 
= 

X = <>Xi ---+ .lj 
i=l 

X = ..i ---+ .l; 

x is a constant __, T 

Add, subtract, multiply and divide 

+ : x = x = ..L or <:} __, ..L; 

x =< y :} & y is a number or ..L __, ..L; 

x =< y, z:} or < y, z > & y, z are numbers ..... y + z; 

x =< y, z:} or < y, z > & y, z are numbers or ..L ..... ..L; 

x is a constant __, T 

- : x = x = ..L or <:} __, ..L; 

x =< y :} & y is a number or ..L ___, ..L; 

x=< y,z:} or < y,z > & y,z are numbers --> y-z; 

x =< y, z:} or < y, z > & y, z are numbers or ..L ..... ..L; 

x is a constant ..... T 
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X : X = X = _L Or <:I- --> ..l; 

x =< y :1- & y is a number or ..L _, ..L; 

x =< y,z:l- or < y,z > & y,z are numbers _, y x z; 

x =< y, z:l- or < y, z > & y, z are numbers or ..L _, ..L; 

x is a constant _, T 

7 : x = x = ..L or <:!- _, ..L; 

Transpose 

x =< y :1- & y is a number or ..L _, ..L; 

x =< y, z:l- or < y, z > & y, z are numbers _, y 7 z; 

x =< y, z:l- or < y, z > & y, z are numbers or ..L _, ..L; 

x is a constant _, T 

trans : x ;:;;;; x = ..l ---+ ..1.; 

n 
x = <> x;, 0 < n < oo, and for some m, 0 < m < oo, 

i:::l - - - -
m p 

x; E {..L, <:> x;;} U { <:1-x;; I 0:5 p :5 m} 
J=l i=l . . 

--+ --:::.m> ->"> Yii' where Yii = { Xij' If xii e~Ists; 
1 :::1 t=l .l, otherwise. 

n 

x = <:1-x;, 0::; n < oo, and for some m, 0::; m::; oo, 
i=l 

m p 
x; E {..L, <:>x;;} U {<:1-x;; I 0:5p:5m} 

J=l j-1 

___,. ->"> ;:}Yii, wher; Yii = { XiJ, if XiJ e~ists; 
'=' '=' ..L, otherwise. 

n 
X=~Xi, O:::;n:::;oo, andforsomem, 0::5m<oo, 

p 

x; E {..L} U {<:1-x;; I 0:5 P:5 m} 
i=l 

m 
and if n ~ 1 there exists k, 1 ::; k::; n such that xk = <:1-x;; 

m n 
_, <:!-<> Y;;, where 

j=l z=l 

n 

{ 
x·· 

Yii = 11
' ..L, 

if x;; exists; 
otherwise . 

x = <:1-x;, 0::; n < oo, and for some m, 0::; m < oo, 
i:;;;l 

p 

x; E {..L} U {<:1-x;; I 0:5 p:5 m} 
i=l 

i=l 

m 
and if n ~ 1 there exists k, 1::; k::; n such that xk = <:1-x;; 

m n 

_, <:1-<:1-Y;;' 
i=l i=l 

where 

x is a constant _, T 

{
x·· 

Yii = ''' ..L, 
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And, or, not 

and: x = x = _l_, <:II < T:j> or < F:j> - _l_; 

etc. 

x =< T, F:j>, < F, T:j>, or < F, F:j> - F; 

x=<T,F>, <F,T>, or <F,F>-+F; 

x =< T, T:j> or < T, T > -+ T; 

x =< y,z:j> or < y,z > & y,z E {_l_,T,F} --> _l_; 

x is a constant -+ T 

Append left; append right 

apndl : x = x = _j_ or <:I> -+< _l_:j>; 

X =< y:j> -+< y:j>; 

x =< y, _l_:j> or < y, _j_ > -+< y:j>; 

x =< y, <:1>:1> or < y, <:I>> -+< y:j>; 

x =< y,<> :j> or < y,<>> -+< y >; 
n n 

x =< y,<:j>z;:j> or < y,<:j>z; > & 1 ::=; n < oo -+< y,z[ ... Zn:j>; 
i=l i=l 

n n 
x =< y,<>zi:f> or < y,<>zi > & 1 < n< oo ~< y,z1 ... Zn >; 

i=l i::::l -
00 00 

X=< y, <> Zi:j> Or < y, -::::> Zi > ---+< y, Z!, Z2··· >; 
i=l J;;;;l 

x is a constant -+ T 

In addition, the following rules are used with apndl: 

apndl :< x, y > -+ < x ~ y > 

apndl :< x, y:j> -+ < x ~ y:j> 

< list 1 ~ < list2 >> -+ < list1 , list2 > 

< list! ~ < list2 > :j> -+ < list1 , listz > 

< list 1 ~ < list2 :j> > --> < list 1 , /ist2:j> 

<list! ~ < /ist2:j>:j> -+<list!, list2:j> 

<list _j_ > -+ < list :j> 

<list _l_:j> -+ < list :j> 
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<list ~ a > __. T, where a is an atom 

< list ~ a :f> __. T, where a is an atom 

< list ~ T > --> T 

< list ~ T :f> __. T 

apndr: x = x = -L, <:f>, < -L:f>, << :f>:f>, or <<> :f> --+< -L:f>; 

x =< -L, z:f> or < -L, z > --+< -L:f>; 

x =< < :f; z:f> or < <:f; z > --+< -L:f>; 

x =<<>,z:f> or <<>,z > --+< z >; 
n 

x =< <:f>y;:f> & 1 :'0 n < oo --+ < Yl ... Yn,-L:f>; 
i=l 

n 
X=< <>y;;f> & 1 :'0 n < 00 --+ < Yl ... Yn,-L >; 

,;::1 
n n 

x=< <:f>y;,z;f> or< <:f>y;,z > & 1 :o; n< oo -... <y1 ... y.,-L;f>; 
i::;:l i=l 

n n 
x =< <>y;,z:f> or < <.>y;,z > & 1 :'0 n < oo --+ < Y1 ... Yn,z >; 

J::;;l t=l 
00 00 

X=< <> y;;f> __. <> y;; 
i=l i::=l 
00 00 00 

X=< <> Yi, z:}- or < <> Yi, z >---+ <> Yii 
i=l i=l i:=l 

xis a constant __. T 

Right selectors; right tail 

lr: x := X = j_ ---+ .l; 
n 

x = <:f>x; &O:<On<oo -J_· 
' i=l n 

X=<> Xi 
i;;;l 

& 1:<0n<oo - Xni 

00 

x =<>xi 
i=l - J_· 

' 
x is a constant --+T 

2r: x = X= ..l-+ .l; 
n 

x = <:f>x; & 0 :'0 n < oo __. J_· 
' i=l 

n 
x =<>xi &2:<0n<oo --> Xn-li 

i;;::l 
00 

X=<> Xi __. J_· 
i=l ' 

x is a constant --+T 

tlr: x = X= J___. <::}: 
n n-1 

x = <:f>x; &O:<On<oo __. <:}xi; 
i=l i;:;;l 
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etc. 

n 
X=<> Xi & 0 :5 n < 00 

i;:;l 
00 00 

x=<>xi--+ <>xi; 
i:;;:l i=l 

x is a constant __, T 

Rotate left; rotate right 

rot/ : x = x = .L or <:t __, <:}; 

X=<> --+ <>; 

x =< x1:j> --> < .L:j>; 

X=< Xt > - < Xt >i 
n 

n-1 
--+ <>x·· 

i;;;;l l' 

x = <:j>x; & 2$ n < oo -->< x2 ... Xn,.L;J>; 
i:=l 

n 
x=<>xi & 2:::=;n<oo -+<x2 ... Xn,Xl >; 

i=l 
00 00 

X= <>Xi ---+ <> Xii 
i;::l i=2 

x is a constant __, T 

rotr : x = x = .L or <:j> --> <:}; 

X=<>-+<>; 

x =< x1:j> --> < .L:j>; 

X=< Xt > -+ < X! >; 
n 

x = <;J>x; & 2 $ n < oo -->< .L, x1 ... Xn-1 :j>; 
i=l 

n 
X= <>Xi & 2 ::5 n < 00 --+< Xn, X! ... Xn-1 >; 

i::;:l 
00 

X= <>Xi -+< .l.,Xt,X2,··· >; 
i::l 

x is a constant __, T 

Miscellaneous Rules 

In the following, let x; = T for some i, 1$ i $ n, in< x1, ... xn >and< x,, ... x":j> 

< Xt .•• Xn > -+ T 

< "'1 ... xn;J> __, T 

Composition 

(fog)(x) = f(g(x)) 

124 



Construction 

[/r, ... , fn](x) = < fr(x), ... , fn(x) > 

Condition 
(p--> /;g)(x) = p(x) = T - f(x); 

Constant 

p(x) = F --> g(x); 

p(x) = .L __. .L; 

T 

x(y) = y = T --> T; 

X 

Insert 

Right Insert (from the original FP Insert) 
/f(x) = x =.L ->.L; 

X=< Xt, ... , Xn > & n;::: 2 --> /(< Xr,/f(< x2, ... , Xn >) >); 

X=< X1, ... , Xn} &, n ~ 0 -+ ..l; 

T 

Left Insert 
\f(x)= x=.L->.L; 

X=< Xt, ... , Xn > & n;::: 2 --> /(< \!(< Xt, ... , Xn-1 >), Xn >); 

x=<x1, ... , xn:l> &n;:::O-+ 1.; 

T 

Apply to all 
"f(x) = x = .L--> <;j-; 

x=</;-><f;; 

X = <;j--> <;j-; 

X=< Xt, ... , Xn;j- --> < f(x,), ... , f(xn):J- ; 

X=< Xt, ... , Xn > --> < f(x,), ... , f(xn) >; 

T 
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Binary to unary 

(bufx)(y)= f(<x, y>) 

While 
(while p f)(x) = p(x) = T- (while p f)(f(x)); 

p(x) = F ___,. x; 

T 
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