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Introduction 

This technical report combines seve ra l CLOCS archi tecture papers from the academic year 
1987-88. It contaill8 an overview, a d etailed discussion of the memory management unit, a 
description of an assembler language and specifications for compiler writers. Oecausc of the 
nature of each of the four chapters, some areas are re peated in several chapters. 



Chapter 1 

Overview 

The CLOCS architecture is an attempt to remove the highest layers of memory hierarchy to 
reduce the effort or switching execution £rom one l.aSk to another. AJ; a result, the CLOCS 
architecture is a very simple one, with only m.ernory to memory instructions. 

1.1 Highlights 

The major design consideration of this machine is 1.0 switch context in as short a time as 
possible. All instructions are memory to memory. The cpu implements only one data type, a 
61 bit two's complement fixed point number. Instructions are one 64 bit word. The program 
context lncludes a. status register containing a program counter, a process identification 
number and various Ra&S. 

1.1.1 Noteworthy 

The machine ean switch context 1n less than one proeessor cycle. The overhead to switch 
from one process to another is approximately equal to one third processor cyc le. Tbis feature 
results in much higher performance when many context switches nre occurring and satisfies 
the requireme-nts of many applications requiring very fast context switching. 

1.1.2 Peculiarities 

The only state inside the central processing unit( CPU) is a program status word. AU data 
operations are ~mory to memory. One result of this is that all parameter passing must b• 
through memory. 

All memory access<!ll are 61 bits long. All instru.ctions are 64 bits long and the only 

2 



CLOGS Arcltitecture Overview- Davis, M.1y .5, 1988 3 

5 5 6 21 

OP AM I Flags Operand 2 

OP Operation Code 

AM Address Mode for Operand I and Operand 2 

Figure 1.1: CLOCS Instruction Format 

numerical data type is 64 bits long. 

1.1.3 History 

This architecture 1\'as conceived by Mark Davis in response to the challenge "if I where to 
design RlSC, this is bow I would do it.• The architecture was designed by Mark Da,•is and 
Dill Gallmeister. 

1.2 Instruction Formats 

There is one instruction format, a one word formal. Figure l shows the instruction formal. 

1.2.1 Structure 

Each instruction contains an operation code, a standard set of addressing mode Rags, a 
operation dependent flag field and speeification for two operands. 

1.2.2 Address specification 

The 24 bit operand in the instruction may be u~ as immediate data or may be combined 
with a 16 bit segment identifier (SID) to form a 40 bit virtual address. Each processes has 
a primary instruction sro (PSID) and a primary Operand SID (OSlO) assigned. Indirect 
addressing is also supported and during indirect addressing, the OSlO or !SID may be 
overridden to access any word in the teraword (240) address sp~ce. 
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1.2.3 Formats 

The instruction consists of 

• (5 bits) operation code 

• (5 bita) addressing Oags, described in se-ct 3.4. 

• (6 bits) operation flags, described in section 3.3.2 to 3.3.5 below 

• (24 bits) oper<Lnd l speeification 

• (24 bits) operand 2 specification 

Branch and Trap Operations 

For the trap operation, the flags are used to determine whether the trap will occur by 
evaluation of operand 2. Addressing mode for operand I is not used. For the Branch 
operation, the flags determine whether the branch will be taken by evaluation or operand 2. 

Arithmetic Operations 

In arithmetic operations, the Rags determine whether to skip the next instruction by e\'alu­
a.tion of the result of the operation. 

Shift Operntions 

For shift operal.ioll!!, the flags eonstitu~ the number of biLs to shift operand 1 before st<>ring 
it in operand 2. 

Logical Operations 

During logical operations, the Rags determine whether to skip the next operation and whether 
to perform the operation on the entire word or on just one byte. 

1.2.4 Spaces and Addressing 

The only numbered address space is to main memory. The cpu deals with virtual address 
and t hese Me converted to physical addresses by the Memory Management Unit (M~ofU). 
There are 40 bits io a virtual address for an nddress space of l leraword. There are 30 bits 
in a physical address for a space of 1 gigaword . 
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1.3 Programming Model 

The programming model is pretty simple. All oper»tions are memory to memory. Any 
special devices added should be memory mapped. The program counter is even memory 
mapped . 

1.3.1 Working storage 

There is no working storage. Everytbmg is kept in main memory. 

1.3.2 Memory Name Space 

The memory name space is a ~near sequence of one word (64 bit) entries. The instructions 
address the memory using virtual addresses that are 40 bits long. These virtual nddress¢8 
are changed into a 30 bit physical address by the MMU. The formation of these addresses is 
discussed at the end of the next section. 

1.3.3 Addressing Modes and Address Calculation 

CLOCS SUpports seven addressing modes, all of which are available for use with operand 
one, and four of which are available for operand two. All mode.~ used for oper..od 2 have 
a high order bit of 0, so only the 2 lowest order bits appear i11 the instruction. ln these 
descriptions,"+" means catenate tbe two values. Before describing each of the addrcs.ing 
modes, address formation will be discussed. 

Virtual Address Formation 

A virtual address is forty bits long, and it may formed in two ways. A 16 bit segment 
identifier (SID) and a 24 bit offset may be combintd to form the address. Each process ho.s 
a default segment assigned for both instructions 3nd data. The MMU stores these segmertt 
identifiers and uses tbc process identifier to fiud lhe corred segment identifier. The 24 bit 
offsets appear in the instructions or may be obtai nod from rn.'>in memory. A second method 
of providing the 40 bit virtual addreas is to get it from the 40 low order bits of a memory 
location . 

Physico) Address Formation 

The~~ ~1U can calculate a physical address in one of t wo ways. In the first case, the CPU 
provides a process identification number and a 21 bit offset. The MMU associntrvely looks 
up the physical page corresponding to the default segment for the given process and the 12 
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high order bits of the offset. In the second case, the CPU provides the entire 40 bit address. 
Then M~l U then associatively looks up the physical page corresponding t.o the 28 high order 
biLS (16 SlD + 12 from offset), Afl.er the physical page has been identified by either method, 
the MM U verifys that the requested operation (read or write) is a uthorized for this process. 
l f it is, the 30 bit physical address is form•'<~ from 18 bits of the physical page and the 12 
low order bits from the virtual address. 

Opnd 

(Opnd l , Opnd2) 

Operand := FETCH (OSID + Opod) 

OSID, the operand SID, is catenated to the high-order end of Opnd l.o provide a. full 
40-bit virtual operand address from which the operand is fetched. T his is CLOCS' "direct, 
mode" of addressing. 

@Opnd 

(Opndl, Opnd2) 

Operand := FETCD (OSlO+ FETCU(OSID + Opnd}) 

OSlO is catenated t.o Opnd t.o form on virtual address. From this addr·ess is fetched a 
24-bit offset. This offset is catenated with OSlO to form the virtual operand address. This 
is CLOCS' "indirect mode" addressing. 

%0pnd 

(Opndl, Opnd2) 

Operand := FETCH (0 Segment+ Opnd) 

The operand is catenated t.o a SID or zero LO arrive at the virtual operand address. This 
provides rapid zero-page addressing, but otherw1se is identical to Direc~ AddreAAing. 

%@Opnd 

(Opnd I , Opnd2) 

Operand := FETCJJ(FETCH (OSlO + Opnd)) 

OSlO is Cl\tenated to Opnd to form an virtual address; from this addreM a word coo-
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taining a 40-bit address 1s fetched to form a virtual address intO any page. This is indirect 
addressing FROM the process' page, INTO any page. 

%@%0pnd 

(Opnd l ONLY) 

Operand := FETCH(FETCII (0 Segment+ Opnd)) 

Opnd is catenated with the >ero page SID to form a virtual address; from this addJ:ess in 
the .ero page a word containing a ·10-bit address is fetched. This virtual add ress is used tO 

fetch data in any page. This is indirect addressing FROM the zero page, INTO any pase . 

@%0pnd 

(Opndl ONLY) 

Operand := FETCH(OSTD + FETCH (0 Segment + Opn4)) 

Opnd is catenated with the zero page sro to form an virtual add ress. trom that address, 
a 24-bit offset is fetched . This offset is catenated with the OSlO to form the virtual operand 
address. This is indirect addressing FROM the uro page, INTO the process' page. (We do 
not see a great ~~ted ror this instruction, however we put it in ror symmetry. The compiler 
(and the compiler writers) can tell us if it is useful.) 

<Opod 

(Opndl OKLY) 

Operand := Opnd 

Opnd is a 24-bit immediate operand. 

1.4 Data Formats 

We claim to have only one data format, but actually the architecture supports two formats: 
61 bit fl xed poin~ and 64 bit floating poin~. 
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1.4.1 Fixed Point 

The normal data format is a two's complement 64 bit fixed point number. 

1.4.2 Floating Point 

The floating point data format is IEEE 754 64 bit format. 

1.4.3 Character 

A word may also be considered as an array of 8 characters. The logical operations have tlte 
ability to address each byte separately. 

1 .5 Operations 

The GLOCS architecture ba. 18 operations defined. There areS fixed arithmetic, 4 floating 
point arithmetic, 6 logical, l sequencing and 2 supervisory. 

1.5.1 Decision 

CLOCS bas no specific decision operations. Instead, a condiLional branclt ill provided and 
aU arithmetic and boolean logical operations incorporate conditional skip. The behavior of 
this sequencing will be discussed with each other cat<ogory of operation. 

1.5.2 Data Operations 

Data operations are partitioned into fixed and floating point ~~rithmetic, boolean logic oper­
ations, and shifts. 

Arithmet ic Opcratiou.s 

CLOCS supports 64 bit fixed point arithmetic . For operations resulting in moce that 64 bits, 
such as multiply, tbe bigh order bits are 106t. Similarly, the fractional result of a divide is 
losl. Indication of multiply overflow is available to the programmer. The program may use 
the remainder instruc~ion to detect and manipulat-e fractiona l divide results. 

Operation codes ltave been set aside in CLOCS for floating point arithmetic. We plan 
that early implementations of CLOCS would not include Aoating point hardware. and these 
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instructions would cause "unknown operMion" faul ts, so the operating system could tbon 
perform the floating point operations. 

for both types of arithmetic, the following instruction is skipped if any of six conditions 
are !lagged in the instruction and are true. These condilions are: 

LT result of operation less than zero. 

GT result of operation greater than zero. 

EQ reau lt of operation equal to zero. 

NO result of operation did NOT o\•erflow. 

NU result of operation did NOT underflow. 

NZ result of operation was 1'\0T a divide-by-zero. 

Note that these conditions (or theu nega tion) cannot be true for some operations. for in· 
stance. it is not possible to get underflow unless a floating point operation is being performed . 

Boolean Logic Operations 

CLOCS provides AND, OR and XOR logical operatiOns, These o~ratioos may apply wan 
entire word or to one 8 bit byte within that word. 

Skip• for boolean logical operations occur for two possible conditions: 

EQ result of operation equal to zero. 

NZ resu lt of oper~tion is not zero. 

Shifts 

CLOCS provides shiflleft. shift right, and shift nght anthmetk (extends two's complement 
sign). The number of bits to be shifted (from 0 to 63) is specified in tbe instruction. Please 
note that a zero bit shill may be used as a move. The shift instrucLions have 110 conditional 
skip. 

1.5.3 Sequencing 

The sequence of Instructions is controlled by the branch instruction, supervisor call5 and 
interrupts. 
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Dranches 

The branch instruction is conditional, based on the contents of the second operand (evaluated 
either as a Rxed or floating point number): 

Interrupt and Supervisor Call 

CLOCS has &.large number of interrupt vectors. On a Supervisor Call (Trap) or "n interrupt, 
the old status word is sa.ved and the new status word for that supervisor call or interrupt is 
loaded. Interrupts are grouped into maskable levels, and presumably, each interrupt status 
word would mask that level of interrupt long enough to move the save status word out of 
the way (to make interrupts reentrant). 

The Supervisor call instruction has a conditional execution. If a flag is set and the 
corresponding condit ion is true, then execution continues at the address specified in the 
instruction. Otherwise, the following instruction is executed. 

LT result of operation less than zero. 

GT result of operation greater than zero. 

EQ resuH of operation equal to 1.ero. 

1.5.4 Supervisory 

Two supervisory instructions are provided. T he trap instruction conditionally causes the 
execution of a supervisor t(>ll a~ a trap vector location. This qualifies as a supervisory 
instruction because the status word is directly loaded from the trap vector, allowing the 
m~bine to change to operating system process identification number. Condition flags for 
this instruction are the same as for the branch. 

The load operand segment instruction allows a program to use a different defaull data 
segmen t. If the identified segment is not avai lable to the procc8/l, the cpu wiU cause a fault. 

Although, not specifically allocated as a supervisory instruction, moving data to the 
certain addresses from f!lf.fll)()()() to f!lf.f!lf/T causes changes to the cpu. f'or example, writing 
to f!lf./Tfflf changes lhe status word. That memory location is owned by the operating system 
process and cannot be written by any other process. 

1.5.5 Input and Output 

Input and output devices are memory mapped, so no- special operations are provided to 
manage them. The memory mapping is down in the memory address range O'fT.fmOOO to 
ffff./Tefff. A special set of nddresscs is provided so virtual memory and cache algorithms will 
not interfere with proper device opemtion. 
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1.6 Implement Notes 

The architecture leaves two major books to permit single chip implementations with a reason­
able numbers of transators. Firs~. operMion.s are defined for Ooating point, but no hardware 
support is required . Under normal circumstances, ftoating point will be emula~ b)• oper­
ating system routines. The second hook concerns the si.ze of the mmu. Although provision 
bas been made for a very large number of rnmu regist-ers, a machine could be built with 
very few registers, perhaps with only four registers. Although scrimping on the mmu 'viU 
save chip area~ it. will have a major lmpa.c.t on context swit-ching performance; lherefore, we 
recommend having at least one rnmu register for each page of physical memory instaUed in 
the machine. 

Hopefully, the implementations of CLOCS wiU be he.avily pipelined. A 4 s tage pipeline 
with interlocks or about a 7 stage pipeline without inter locks seems reasonable. Note, that 
pipelining will increase contat swit,eh latency, wbicb may be significant if a realtime task 
has to be serviced in less than 20 cycles (it is not clear how you can write a scheduler 
for that, but it is a consideration). Also, caching inside the cpu may effectively improve 
performance. Caching intermediate results to avoid memory references and short circuiting 
pipeline latency may both be major average performance improvers. 



Chapter 2 

Memory Management Unit 

2 .1 Or ganization of the Memory Management Unit 

T heCLOCS Memory ~fanagement Unit(MMU) must support virtual memory with as many 
contexts as possible. We used this guiding principle: " If information for a process is in main 
memory, it must be accessed with no context s witch. penalty." Another design requirement 
was that the MM U support lightweight processes, becauS<l an important application, real 
time operating systems, frequently use ligbtweigbl processes [2]. This meant lhat the MMU 
would provide a sharable add cess space with protection for the space owned by a each process. 
Provisions for protected sharing of memory between two processes was also an important 
requiremen ~ for real time. 

2.1.1 What the MMU Does 

The purp06e of the MMU is to support virtual memory for the CLOCS computer system. 
It does tha t by taking an address specification from the cpu, determining the corresponding 
physical address, checking that the current process has permission for the rcquc.Jted memory 
operation, and maintaining information of use to the operating system. The real work of 
address translation is done to the physical page level; the low order 12 bits of the virtual 
address are used as the low order bits of the physical address. Permission is granted for 
three p06sible categories of operations to be applied to three types of pages: rend only, read 
or write, and execute only. T he MMU nlso keeps records of ~ccess and writiug to physical 
pages. It records when a physical page has been read or written, USED, so the operating 
system can later determine the beos~ page Lo swap out using the a common algorithm for 
virtual memory. The M M U also records when a "read or wnte" type phys•ca.l page has been 
changed, DIRTY, so the operating system can avoid unnecessary saving of pages to backing 
store. 

12 
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2.1.2 External Appearance of the MMU 

All of the information to determine physical addresses, cheek permission, and remember 
physical memory statut is kept in 64 bit registers in tbe MMU. These MMU registers are 
memory mapped at beginning at lcxation lflf.IUOOOO, and are protected from user processes. 
Only the superuser, PIO = 0, may change them. Since each of the registers cont~ins infor· 
mation about one pbysical page, the MMU shou ld contain at leMt as many registers as the 
computer system ha.s physical pages. In order tO meet the design guiding principle concern· 
ing memory access time, an excess of M MU registers should be provided for shared pages . 
.Memory address ffff.fctrtr is reserved for the number of M~1U registers mstaUed . The MMU 
intercepts references to this location and provides the number. This same memory location 
is also used as a command register. CLOCS can address up to 262,144 pages (218), but since 
this corresponds to 1,073,741,824 words (8 gigabytes) of memory, most machines will have 
less physical memory and need much fewer than 263,144 MM U registers. In the absence of 
data, we estimate that an additional 10% of MMU registers over the maximum number of 
expected physical pages wiU be adequate. 

2.1.3 Physical Page Status 

Part of each MMU register are some bit.s to indicate the status or the referenced virtual and 
physical page. The use status and written or DIRTY status is m.Untaincd for the physical 
page. More than one MM U register may refer to a physical page; this is the way that memory 
would be ebared. The Ml>iU must provide the torrect status for a physical page when an 
~i:\W register is read . For example, M~IU register mf.ioOOOl and ffff.f00009 both point to 
physical page 4. A write is made using the entry at trff.f00009 . If the register at fffi.fOOOOI 
is subsequently read, its status will indicate that the page is DIRTY even though no write 
was made using that MMU entry. 

Implementor may accomplish this magical updating of physical page status in any man· 
ner, but one solution is suggested . An auxiliary memory with a two bit word for each physical 
page stores the correct status of each physical pasc. During routine memory operations, the 
s tatus of a page would be updated in parallel with the memory operation. When an MM U 
register is read, the physical page address in the MMU register is used to access the au:Qiiary 
memory. Tbe use and DffiTY bits from the auxiliary memory are used to update the M~IU 
register before it is provided Lo the CPU. As long as the page status could be fetched and tbe 
MMU register status upd~ted in the time of a main memory fetch, the organization would 
not effect performance. 

2.2 Contents of the MMU Word 

The MMU register$ are divided into six fields. Before we examine lhe MMU registers, a 
qukk review of terms. Each abbreviation is followed by the number of bits. 

PID ( 14) Process identifier. 
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SID (16) Segment identifier. 

OSID (16) the default operand SID. 

!SID (16) the default instruction SID. 

V O (24) Virtual OffS<!L. 

PC (24) Program CouJILet, a VO. 

O PND (24) Operand of in an instruction, a VO. 

VP ( 12) Virtua l page. 

P P (18) Physical page. 

P O (12) Physical Offset, the low order bits of VO. 

VA (40) Virtual address, STO+VO. 

PA (30) Physical addrei!S, PP+PO. 

14 

Eaeb M M U register (or entry} is a 64 bit word. The M M U may si.Ore the information 
for each entry in any convenient format, but it must appear as a 64 bit memory add ress to 
the cpu with the following format: 

PID 14 bits- Process Identification Number 

F lags 4 bits- Permissions and Physical Page State 

SID 16 bits · Segment Identifier 

VP 12 bit.s- Virtual Page 

P P 18 bits- Physical Page 

2 . .2.1 Field Sizing Considerat ions 

The sizing of fields foUowed from the portions of the architecture which was defined before 
~IMU de$ign was completed The SID was set at 16 b its. We wanted at least I gigaword of 
physical storage, so the physical address required 30 bits. Flags required about 4 bits. We 
wanted to have 16 bits for PID and physical pages of 1021 words. Since the operand add ress 
size was 24 bits, this physical page size would have required the VP to be 14 bits a nd the 
PP to be 20 bits. The 34 bits for VP and PP plus the 16 bits for SID leaves only 14 bits for 
Bags and PIO. A 10 bi~ P£0, allowing only 1024 active processes was deemed too resHicth·e, 
so we settled on a 4096 word physical page. This final page size required 12 bits, reducing 
VP to 12 bits and PP to 18 bits. With t!W design, the combination of VP, PP, STO requires 
only 46 bits, leaving 18 bits to be divided between 4 bits of FLAGS and a 14 bit PJO. Tbis 
compromise raised the irnport.ance of maintnining the FLAGS field no larger t han 4 bits, so 
the assignments of the flag field bits is discussed below. 
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2.2.2 Mapping of Word use to Flags 

The MMO has to maintain much permission information and 8tatus for each physical page. 
A prcx:ess may have data access or rei'<~ permission Lo a page. A prcx:ess may have write 
pernussion to a page. The page may contain code executable by the specified process. The 
SID may be the primary SID for the PID. The page may be DlRTY, that is it is a writable 
page and hM been changed since it was paged in. The page may have been o.ccessed sinco 
accessed information was updated. If eac h of these catesor ies of information were to be 
represented by one bit, the flag field would require 6 bits instei'd of the allotted 4. 

For the discussion of how we saved the two needed bits. I will use the follov.•ing abbrevi· 
atioos: 

R The page is rei'dable by the prcx:ess 

W The page may be written by the process 

X The page may bc executed by t he process 

P The SID is the primary SID for this type of page for this prcx:ess 

U ThiS page has been USED 

D This page has been written, DtRTY 

~!any of the combinations do not make sense. To see these nonsensical combinations, 
we constructed a truth table. A bullet(•) in this table indicates that this is not a viable 
alt.ernative. A number indica\"" that t his combination of attributes is useful and s hould be 
represented in t he M M U registers. 

p p I' p Reason 
D D D D for 

u u u u Elimina tion 
I • • • • • • • Unallocated can't be P,D,U 

X 2 3 • • 4 5 • • Executable can't be DIRTY 
w • • • • • • • • No Write on!~· pages 
w X • • • • • • • • No X and Ror W 

R 6 7 • • • • • • No D, P without W 
R w 8 9 10 11 12 13 14 IS 
R X • • • • • • • • NoXandRorW 
R w X • • • • • • • • No X and Rot W 

With only 15 usable s~ates t.o represent, only 4 bits of state will be required. We reorga• 
nized t he states as shown below. The numbers at the r ight of tho table are the 2 high order 
bits of the flag field in the MMU word. The numbers at tbe bottom of the table are the low 
ordtr bits of the llag field. Tbe numbers inside the table correspond to numbers in the first 
table. 
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Primary Prunary 
USED USED 

Executable 2 3 4 5 00 
Read Only 6 7 I 01 

Read and Write 8 9 12 13 10 
Read and Writ.e Dirty 10 11 14 15 11 

00 01 10 11 

With this bit assignment, the third bit becomes the USED bit, the fourih bit is the 
Primary bit, the 6rst and second bit must be taken together to int.erpret the permissions. 
The comb~nation 0110 represents an unassigned physical page. 

2.3 MMU Operations 

The M :VI U must perform several operations. 

2.3.1 Normal Read and Write 

The MMU registers c~n be read and written by the superuser process, PID = 0. The MMU 
registers are addte88ed as normal memory, so the MMI.J must reconize addresses starting at 
ffff.fOOOOO and respond io them rather than trying to calculate a physical address. 

P068ible e.-.:ceptions: 

• Memory not present 
addressing MM U register not installed 

• Memory Permiuions I.ncorrect 
PlD 'f. 0 

• Flag 1101 not permitted 
Unassigned Flag combination 

2.3.2 From PID,VP get PP and Check Permissions 

When presented with a PID, a VP, and a signal that this fetch is for an operand, the ~IM U 
must deterrnine the correct PP and check permL~sions. 

P06Sible exceptions: 

• PID, SID, VP not in MMU 

• Memory Permissions Incorrect 
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2.3.3 From PID,VP get PP and Check Permissions 

When presented with a PfD, a VP, and a signal that this fetch ill for an instruction, the 
M~U must determine the correct PP and check permissions. 

PO$Sible exceptions: 

• PI D. SID, VP not in MMU 

• Memory Permissions Incorrect 

2.3.4 From OSID,VP get PP and Check Permissions 

When presen!A:d with a PIO. an SID, a VP and a signal that this i.• an operand fe~Gb, the 
M~1U must determine the correct PP and check permissions. 

Possible exceptions: 

• PJD, SID, VP not in .MMU 

• Memory PctmiSilions Incorrect 

2.3.5 From ISID,VP get PP and Check Permissions 

When preaented with a PID, ao SID, a VP and a signal that this is an instruction fetch, the 
M.\IU must determine the correct PP and check permissions. 

Possible exceptions: 

• PID, SID, vP not in I\L\1U 

• Memory Permissions Incorrect 

2.3.6 Change Primary OSID 

When directed by t.he cpu, change the prima.ry OSlO to the SID provided on the low order 
16 bits on the data bus. This update requires setting t he Primary Rag on all entries with 
the PIO and new OSlO and resetting the Primary Rag in all MMU registers wHb the PID 
and tht• old OSlO. 

Possible exceptions: 
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• PID. SID not in MMU 
An authorized page is ba.s been paged out 
This PID iAI not authorized to sl>t.re this page 

• Memory Permissions Incorrect 
The new segment identified by SID is not writable 

2.3.7 Change Primary ISID 
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When an instruction fetch is made and the instruction is loeate<l in a segment different from 
the current proee~<s' primary !SID, the MMU must store the new SID. When the cpu signals 
"last branch taken," the MMU must update the stored SID to be the new primary !SID 
for this process. T his update requires setting the Primary flag on all entries with the PID 
and new SID and resetting the Primary ftag in all MMU registers with the P lD and t he 
old !SID. The cpu must signal "branch oot taken" if n conditional branch is to taken. Tbe 
M M U may stall if more than one instruction fetch specifies t. new !SID before it receives a 
"last branch taken" signal. 

Possible exceptions: 

• None 

The exception PID, SID, VP not 10 MMU can fi6t occur for this operation because the 
:II:IIU must lint fetch the new inslruction using one of the t.bove operations. If there is an 
intenupt, the branch innruction wiiJ be restsrted, so we will always know that the physical 
pt.ge is available. Additionally, the mstruction fetch operation will verify that this page 
contains executable code, so no Memory Permissions Incorrect exception may occur. 

2.3.8 Reset USED for All Physical Pages 

When the operating system selects a page 1<> swap out of main memory it may use I he USED 
bit. Frequently, the operating system will want all USED bits set to zero. To S<!t the USED 
bit for all physical pages to zero, write 3 word with the low order bit of I to the memory 
locat ion ffif.feffff. That location when read contains the number ofMMU registers ingtalled. 

Possible exceptions: 

• 1\one 

2.4 MMU Exceptions 

Exceptions ba ve been described a!l.er each operation. 



CLOGS M M U Description - Davis and Callmeister, May 5, 1988 !9 

2.5 Implementing Common Virtual Memory Opera­
tions 

ln tbis section, l wiU d...:ribed how to implement some common vortual memory operations 
using the primitives provided by the CLOCS MMU. 

2.5.1 Write Back Virtual Memory 

Before a page may be removed from physical memory, the DIRTY status should be check for 
any MMU register referring to that physical page. Saving the page on disk before reusing 
the page is only required when the DIRTY status is set . This method significantly reduces 
memory traffic because m11ch data memory is read, but not changed before it is paged out. 

2.5.2 Copy on Write 

Copy on write is an algorithm frequently used by UNIX operating systems and VAX com· 
puters. A process is assigned a block of memory containing information or code. As long 
as it does not change this memory, it shares the memory with another process. As soon as 
t he process attempts to change t he memory, the operat ing system must intervene to make 
a separate copy for this process, and then allow the change to happen. Tbis facility is very 
useful for the vfork system call in UNIX. Copy on write may be simulated by assigning lhe 
page as a shared, read only page. Shared simply means that tbe page has more than one 
MMU register pointing to it. When the process t ries to write to the "copy on write" page, 
~he MMU causes an exception. The operating system exception handler then copies the page 
to an unused physical page. It then corrects the MMU register to point to the new physical 
page and restarts t he user process with the instructiOn t.bat caused the fault. 

2.5.3 Not-Used-Recently Page Replacement 

One popular page replaeement algorithm is Noc-.Used-R.ecently. This technique is described 
in detail in Deitel [1]. Deitel points out thau liSt:O bit aod a DIRTY bit must be maintained 
for each page, and t his informat ion Is available from the CLOCS MMU. 

2.6 The MMU Designs We Discarded 

During MMU design, we considered oevcral schemes: the one described a bove and anothers. 
Some of the alt.ernat.e design were interesting to us or inn>lved important design decisions, 
so the ones we threw away are described here. 
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2.6.1 The Second Design - Virtual and Physical Tables 

The second design differed in that the MMU contained two tables instead of one. One table, 
Table!, contained PID, FLAGS, artd SID. T he other table. Table2, held a Dirty bit, SID 
and VP, The second table had one entry for each physical memory page, so the PP did not 
have to be included in the table. The advantage of the second scheme was that it wa.• more 
proper for support of lightweight processes. The PID, SID, FLAGS relationship was unique. 
The primary scheme was better in that it could support heavyweight as well M lightweight 
processes and also could resolve the permissions down to the physical page level. With 
that scheme, one segment could hold both code and data space on separate pages, so small 
processes need not take up two segments of address space. The other difference between the 
scbemes was the simplicity of the data structure and duplication of PIO's for the primary 
scheme and duplication of SID's in the secondary scheme. 

The final decision of which scheme louse was based on the projecl.ed silicon area of the two 
schemes. We assumed field sizes the same for the two schemes except the secondary scheme 
needed oue extra DIRTY bit. PID, FI,AGS, SID and Virtual Page were all associative. This 
distinction was made because associative bits would require at least 25 % more silicon area 
to implement. Most a.ssociative bit implementations would require about 50 % more area 
than a nonassociative bit. 

To compare the two schemes, we specified a computer system with 4000 pages of physical 
memory and capable of running lOOO processes. This machine is a typical system to utilize 
the power of the CLOCS a rchitecture and support large applications. For a machine of 
this s ize, tbe primary scheme required 4500 table entries (one for e~h physical page plus 
500 for memory sharing). ~ch entry was 64 bii.S long, 44 of which were a.sso<:iative. The 
sewndary scheme required Table! with 2500 entries, two for each processes {one data, one 
code) and 500 extra for memory sharing. Each entry in this table was 34 bits long and aU 
were associative. T he second table, Thble2, contained 4000 entries, one for eaeb physical 
page. Each entry was 29 bits long and 28 of them wltere assoc iative. The table below shows 
t he bits and relative area for the two schemes. The column labeled "Total Relative Area" is 
the total area of the table in nonassociative bii.S, assuming that associate bits are 50% larger 
than non8.880Giat.ive ones. 

MMU Scheme Associatlve Total Total Relnt•ve 
and Table Dits Dits Area 

Second My Table! 80,000 85.000 125,000 
Secondary Table2 ll2,000 116,000 172,000 
Secondary Total 192,000 201,000 297,000 

' Pnrnary Total J9S,ooo 1 288,000 1 0 3~7,000 

'rhe small additional cost of associative bits and the increased function of the pr imary 
scheme, particularly since the primary scheme supported heavyweight processes, a concept 
used by many available operating systems. settled the decision in favor of the primary scheme. 
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2.6.2 The T hird D esign - Some R egisters Permanently Mapped 

The third MMU design attempted to reduce the number of bits of memory in the MMU and 
to make some operating system task more efficient by permanently assigning some of the 
~ntu registers to physical pages. In this ~berne, memory locations ffif.IOOOOO to ffif.f.lfi1T 
were assigned to physical pages 0 to 262,144, respectively. These memory loc~tious always 
returned the corresponding physical page number wllen read. and the physical page was 
ignored during writes to these MMU registers. The memory from ffff.f40000 to fllf.fclffe 
could be assigned to any physical page. 

The advantages of this third scheme were fewer memory bits in the MMU and a possible 
improvement in operating system speed. l.f a computer system had N physical pages and 
allow for and addition M pages to be shared, t hen N+M MMU registers would be required. 
We estimate The third scheme would then save N* l8 bit s of memory over the primary 
scheme. Another ad vantAge for this aeheme wa.s impro,·ed performance during a naive search 
for a page to swap out. With the tb~rd scheme, a search for a potentially shared page would 
only require O(M) while the primary scheme would take O(N+M). A.s estimated above, M 
would only be 10% of N, so this new scheme would yield an order of magnitude performance 
Improvement. This advantage disappeared, though, wben a O(log M) software algorithm was 
suggested. The data structures and algorilhm to attain this superior level of performance 
are well understood. 

With one major advantage of this scheme eliminR.ted, the disadvantages beeame more 
persuasive. This scheme of two classes of MMU registexs lacks propriety. Although the same 
operations may be performed on the two types of M.\!U registers, different aetions result. 
If the systems programmer makes an error, and tries to set the physical page number of 
one of the permanently assigned MMU registers, the a.ction is •gnored and the programmer 
receives no warning of his error. An additional disadvantage of the third scheme is that the 
number of shared pages is limited to .\1. With the primary scheme, all .\1MU's registers may 
be used for shared pages, with only the disadvantage t hat some physical pages may not be 
accessible, a much more graceful degradation of performance. 

Since the only advantage to this scheme was the saving of some memory in the .\1M U 
and it introduced such serious impropriety, we ll<llected the primary scheme over it. 



Chapter 3 

Assembler Language 

3.1 Memory Architecture 

The CLOCS memory space is all mapped in to one address space. The working store (pro­
gram counter), Memory Management Unit (MM U) registers and ~II [nput Outpot devices 
share the address space with main memory. Refer to t he CLOCS Compiler and Assembly 
Language Description for a more detailed treatment of the architedure. 

3.1.1 Memory Scheme 

A quick review of terms pertinent to the memory: 

PID (14) Proce.s identifier. 

SID (16) Segment identifier. 

OSID (16) the default ope.rand SID 

ISID (16) the default instruction SID. 

YO (24) Virtual Offset. 

PC (24) Program Counter, a YO. 

OPND (24) Operand of in an instruction, a YO. 

VP ( 12) Virtual page. 

PP (18) Physical page. 

PO (12) Physical Offset, the low order bits of YO. 

VA ('10) Virtual address, SID+ YO 

22 
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PA (30) Physical address, PP+PO. 

T he MMU t ranslates ~he combination of PID, SID, VP to PP and checks t he PID's permis­
sion on that SID+ VP combination. The 30 bit Physi<:al Address gives tbat machine a real 
memory capability or 1,073,741,824 words (or 8 gigabytes). AU accesses to memory are by 
64-bit word access only. 

3.1.2 Memory-Mapped Access 

CLOCS reduces the variety of its instructions by mapping a ll state information orthe machine 
into the memory space of the p rocessor. T hus, the State Word, consisting of the PC, PID, 
and Flags, may be found a t location ffff.ffffff (This is segment ffff, address ffffff). The 
M~fU registers begin at ffff.IOOOOO. Location trff.feiTlr contains the number of MMU registers 
installed on this CPU. Input-output devices are mappe<l into the memory from trff.f!OOOO 
to ffff.ffefTf. T he t rap and interrupt vectors, likewise, can be found in the this segment, at 
add re!l8es mr.trrooo to mr.rrrrre. 

3 .2 Data Types 

CLOCS supports a single arithmetic data type: the &4-bit signed integer represente<l as a 
2's complement. There is provision for an optional data type, a 64 bit IEEE 754 Boating 
point number. 

3.3 I nstr uction Syntax 

The input to the assembler is an Mcii text fi le. E:a,;h line in the te;<t file contains (1) a 
mac hine instruction (2) a assembler directive (3) a l~bel or (4) :!o comment. 

3.3.1 Machine Instructions 

A machine instruction consista of •ero or more spaces, an operation code abbreviation fol­
lowed by one or more spaces followe<l by the operands of the instruelioo.s. Operands are 
separate<! by commas and must not contain spaces. Operands may be decimal integers, 
hexadecimal numbers ind ica ted by "OX" as t he fi rst ~wo characters, or a lnbel which is n 
word starting with A·Z, "#", or underscore and containing t hose characterS or digits 0-9. 
Anything on the line aner the opernnds is considere<l to be a comment and is ignored. 

Sub 123 , 1oc22 ~his is a comment 
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3.3.2 Assembler Direct ives 

Assembler directives instruct the assembler for actions that do not result in generation of 
an executable machine instruction. Some of the assembler directives are followed by a single 
operand. The assembler directives are as follows: 

.sect section command, begins .text, .df\ttl., .rom, or .bss sections 

.data2 data command, reserves I word of storage. May be followed by a decimal integer or 
by a character string . 

. ex t specifies the operand is an external label. 

3.4 Instruction Lis t 

In this instruction format, the 5 bits of operation code are followed by 5 b•ts of flags which 
determine addressing modes for the two operands. The ocxt6 bits specify fta&S or a count. 
The operand, 24 bits long, follows. A number of addressmg modes, as described elsewhere 
in this document, can be applied to the opera nd(s) by ~be judicious setting of lhe addressing 
mode flags. 

3 .5 Addressing Modes 

CLOCS supports seven addressing modes, all of which are available for use with operand 
one, a nd fou r of which a re a vailable for operand two. In each subsec tion below, the title of 
t he addressing mode appears as the header . After each add ressing mode identification is the 
bit pattern appearing in the instruction to identify that mode. All modes used for operand 2 
have a high order bit of 0, so only the 2 lowest order biu appear in the in.slruclion. In these 
descriptions, "+" means catenate the two values. !'\ext is listed the operands for which it 
may be used. An example is given of the operand. In these examples, 123 refens to location 
123 decimal, and loc22 is a label associated with some storage definition statement m the 
program. A formal and textual definition of the operand locat•on ends each section . 

3.5.1 O pnd - 000 

(Opndl , Opnd2) 

Sub 123 , loc22 

Operand :=: FETCH (OSlO+ Opnd) 
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OSIU, ~he operand SID. is catenated ~o the high-order end of Opnd to provide a full 
40-bit virtual operand address from which the operand is fetched. This is CLOCS' "d irect 
mode" of add ressing. 

3.5.2 @Opnd - 001 

( Opnd I. Opnd2) 

Sub 0123,Gloc22 

Operand := FETCH (OSID + FETCH( OSlO+ Opnd)) 

OSID ls catenated ~ Opnd ~ form an virtual address. From this address is fetched a 
24-bit offset. This offset •• catena~d wit h OSID to form the virtual operand address. This 
is CLOCS' "indirect mode" addressing. 

3.5.3 %Opnd - 010 

(Opodl, Opnd2) 

Sub Y.t23,%loc22 

Operand := FETC H (0 Segment + Opnd) 

The operand is catenated to a SID of zero to arrive a.t the vutual operand address. Tllis 
pro,~des rapid zero-page addressing, but otherwise is identical to Direct Addressing. 

3.5.4 %@0pnd - 011 

(Opndl, Opnd2) 

Sub Y.0123,Y.Oloc22 

Ope rand := FETC II(FETCH (OSlO + O pnd)) 

OSlO is catenated to Opnd to form an ,;rtual address; from this address a word coo· 
taining a 40-bit address is fetched ~form a ''irtual address into any page. This is indirect 
addressing FROM the process' page, INTO any page. 

• 
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3.5.5 %@%0pnd - 101 

(Opodl ONLY) 

Sub XOX123,loc22 

Operand := FETCH( FETCH (0 Segment + Opnd)) 

Opnd is catenated with the zero page SID to form a virtual address; from this address in 
the zero page a word containing a 40-bit address is fetched. This virtual address is used to 
fetch data in any 1>age. T his is indirect add ressing FROM the zero page, INTO any page. 

3.5.6 @%Opnd - 110 

(Opodl ONLY) 

Sub OY.1 23, loc22 

Operand := FETCll(OSID + FETCH (0 Scsment + Opnd)) 

Opnd is eatenaLed with the zero page SID to form an virtual address. From that address, 
a 2+bit offset is fetched. This offset is catenated Wllh the OS!D to Conn tbe virtual opero.nd 
addresa. This is indirect addressing FROM the zero page, INTO the process' page. (We do 
not see a great need for t his instruct•on, however we put it in for symmetry. The compiler 
(and tho compiler writers) can tell ll8 if it is useful.) 

3.5.7 < Opnd - 100 

(Opndl ONLY) 

Sub <123,1oc22 

Operand := Opnd 

11 note that 1'23 ia subtracted from 
'•the contents ot loc22 

Opnd is a 24-bit immediate operand. 

3.6 Conditional Skip 

Certain CLOGS instruction include a cond itional skip or the next instruction. These iu•truc­
tions nre: Add, Sub, Mult. Oiv. Rern, And, Or, Xor. 
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For the Add, Sub, Mult. Div, and Rem instructions, the conditions are: 

LT result of operation less tl1an ze ro. 

GT result of operation greater than tero. 

EQ result of operation equal to 1-ero. 

NO result of operation did NOT overflow. 

NU result of operdion did 1\0T underflow. 

NZ result of operation was NOT a divide-by-zero. 

For the And, Or, and XOR instructions, tbe condit ions are: 

EQ result of operation equal to zero. 

NZ result of operation is not zero. 

27 

Eacb of the conditions correspond to a bit in the instruction. If the bit is set and the 
condition is true, then the next instruction is not executed . Of course, if no cond ition is 
specified, the following instruction will never be skipped. 

For eau of gentr•tion by the compiler and to ease hand coding assembler, the appropri­
at~ possibilities of condition skip have been ineorpora\ ed into the operation abbreviation. 
Conditional skips may also be specified by adding the abbreviations above after the required 
operands. These end of line conditionals override any conditionals specified in the operation 
code abbreviation, so should be used with care. Following are some example ins~ructions 
and descrip~ions of the interpret.ation and use. 

SUDGT Opndl , Opnd2 
Subtract the fi rst ope rand and from the second opern11d, placing the result in the second 
operand, and skip the following instruction if the result was greater than zero. Note that 
this inatruction, when Opnd2 is an immediate one. followed by a trap or branch. pro,-ides a 
p() operation on the semaphore addressed by Opndl . 

OIVNZ Opndl , 0pud2 
Divide operand I by operand 2. plac ing the result in operand 2, and skip the following 
instruction if the result was NOT a divide-by-zero. If the next instruction is a branch to an 
error handling routine, this combmation allows easy handling of arithmetic exceptions by 
the user program. 

The trap and branch instructions use the same Oags. but Me conditionally executed 
instead of conditionally skipping the next instruction. 
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3. 7 Instruction List 

In the list of instruction below, t he beading identifies the operation and operands for the 
instruction. In typewrite r type, a list of the instru.ction abbreviations ill given, including 
all abbreviations addressing conditional skips or byte logical operations. In these descrip­
tions Opnd I and Opnd2 refer to the operand definitions above. The optional conditional 
description appears at the end of the required operands. 

3.7.1 Add Opndl, Opnd2 

ADD Opndl • Opnc12 (, Condi tiona.JJ 
ADDCT Opndl, Opnd2 (,Conditional) 
ADDCE Opnd!,Opnd2(,Conditional) 
ADDEQ Opndl,Opnd2(,Conditional) 
AODLT Opndi,Opnci2(,Conditional) 
ADDLE Opndl, Opncl2 (, Condi ti.onal] 
ADDI O Opndl,Opnc12(,Conditional) 
ADDIU Opndi , Opnci2(,Conditional) 
ADDF Opndi,Opnd2 ( ,Conditional) 

Operand one and operand two are added in full 6~bit two's complement arithmetic; the 
resu lt is placed in operand two. (conditional skips: I..T, GT, EQ, NO, NU) 

3.7.2 Sub Opndl, Opnd2 

SUB Opndl,Opnci2( ,Conditional ) 
SUBCT Opnd1,0pnd2(,Conditional) 
SUBC£ Opndl,Opnc12(,Conditional) 
SUBEQ Opndl,Opnd2(,Conditional] 
SUBLT Opndl,Opnci2(.Conditional) 
SUBLE Opndl,Opnd2(,Conditional] 
SUBJO Opndl,Opnd2(,Conditional) 
SUBNU Opndl,Opnd2(,Conditional) 
SUBF Opndl ,Opnd2( ,Conditional) 

Operand one is subtmcted from operand t wo; t he result is placed in operMd two. Arith· 
metic is full 61-biL two's complement. (conditional skips: LT, C'f, EQ, NO. NU) 
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3.7.3 Mult Opndl, Opnd2 

KUL Ophdl,Opnd2[,Conditional] 
IIVLGT Ophdl,Opnd2(.Conditlonal) 
IIVLGE Ophdl,Opnd2(,Condit1onal) 
KULLT Opnd!,Opnd2[,Conditional] 
MULLE Opndl,Opnd2[,Conditional] 
MULEQ Ophdl,Opnd2[.Cond>tional] 
IIIILIO Ophdl,Opnd2(.Conditional] 
KULJO Opndi,Opnd2[ ,Conditional] 
KULF Opnd1 ,0pnd2[,Conditional) 
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The low-order 64 bits of operand one are multiplied by \he low-order 64 bils of operand 
two, producing a 64-bit result which is stored in operand two. If the opera~ion results in a 
number thn< catUlot be represented in 64 bits, an overOow exception will occur. (conditional 
skips. LT, GT, EQ, NO, NU) 

3.7.4 Div Opndl, Opnd2 

DIV Opndl, Opnd2[,Conditlonal] 
DIVGT Opndl ,Opnd2[,Conditional] 
DIVGE Opndl,Opnd2[,Conditional] 
DIVEQ Opnd1,0pnd2[,Conditional] 
DIVLT Opnd!,Opnd2[.Conditional] 
DIVLE Opnd1,0pnd2[,Conditional] 
DIVHO Ophd1,0pnd2(.Condit ional] 
DIVHU Opndl,Opnd2[,Conditional] 
DIVHZ Opndl,Opnd2[,Conditional] 
DIVF Opndl,Opnd2(,Condit1onal] 

Operand two is divided by operand one, and the result is placed in operand two. The 
operands are 64-bit quantities; the result is a 64-bit quantity. Division is in two's comple· 
ment mteger arithmetic. Division by a divisor greater than the quotient will result in zero. 
(conditional skips: I,T, GT, EQ, NO, NU, NZ) 

3.7.5 Rem Opndl, Opnd2 
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REM Opnd1,Dpnd2(,Conditional) 

Operand ~wo is divided by operand one. and ~be Iemainder of tlus division ;., placed 111 

operand two. Division is as in the Div instruction. (conditional skips: LT, GT, EQ, NO, 
NU, NZ) 

3.7.6 And Opndl, Opnd2 

AID Dpndl,Opnd2(,Conditional) 
AIDEQ Opnd1 ,Opnd2(,Conditional) 
AIDIZ Opnd1,0pnd2[,Conditional) 
AIDBYT Conatant,Opndi,Opnd2[,Condition~l) 
ANDBYTEQ Conotant,Opndl,Opnd2(,Conditional] 
AJDBYTJZ Conotant,Opndl,Opnd2[,Condit ional) 

Operand two and operand one a re ANOed ~gether in bitwise fashion: the result is 
placed in operand ~wo. fashion, and the result is placed in oper~nd \ wo, Tbese operations 
are normally bit wise for all bita, but may be applied to only an 8 bit byte selected by a 
Constant. (conditional skips: EQ, NZ) 

3.7.7 Or Opndl, Opnd2 

OR Opnd1,0pnd2(,Conditional] 
OREQ Opndl,Opnd2(,Conditional] 
ORIZ Opndl,Opnd2[ ,Conditional) 
ORBYT Conatant,Opnd1,0pnd2(,Conditional) 
ORBYTEQ Conotant,Opnd1,0pnd2(,Condit ional) 
ORBYTHZ Conetant ,Opndl,Opnd2(,Condit ional) 

Operand two and operand one nre ORed together in bit wise fashion, and the result is 
placed in operand two. These opera tions are norma lly bit wise for llll bits, but may be 
applied to only an 8 bit byte selected by a Constant. (condiuonal skips: EQ, NZ) 
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3.7.8 Xor Opndl, Opnd2 

lOR Opndl,Opnd2[,Condi~ional) 
IOREQ Opnd1,0pnd2(,Condl~ioDAl] 
101\J"Z Opndl,Opnd2[.CondltioDAl) 
XORBYT Cona~ant,Opnd!,Opnd2[,Condi~ional) 
XORBYTEQ Conatant,Opnd!,Opnd2(,Conditional] 
XORBYTIZ Conatant,Opnd!,Opnd2(,Condition&l] 
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Operand one and operand ~wo are exclusive-ORed together in bitwise fashion, and the 
result is placed in operand ~wo. These operations are normally bit wise for all bit.s, but may 
be applied to only an 8 bit byte selected by a Constan~. (eonditional skips: EQ, NZ) 

3.7.9 Left N, Opndl, Opnd2 

LEFT Constant,Opndl,Opnd2 

Operand one is shifted left N bits (N is supplied in the flags field of the instruction -it 
is not a true operand); the result of the shift is placed in operand ~wo. A move is affected 
by setting N equal to zero. The low-order bits of the result are cleared to zero. 

3.7.10 Right N, Opndl, Opnd2 

RCBT Constant,Opndl,Opnd2 

Operand one is shifted right logically (sign bilts ignored) :'1 bit.s. The high N bit.s of the 
result are cleared to tero. The resuJt ts placed in operand two. 

3.7.11 RightArith N, Opndl, Opnd2 

RGHTA Constant,Opndl,Opnd2 

' 
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Operand one is right shifted arithmetically (sign extension is performed) )I bits. The 
result is plaeed in operand L"'O. 

3.7.12 Branch Opndl, Opnd2 

BRH Opnd1,0pnd2(,Conditional) 
BEQ Opnd1,0pnd2(,Conditional) 
BLE Opnd1,0pnd2(,Conditiona1) 
BCE Opnd1,0pnd2[,Conditional ) 
BJE Opnd1,0pnd2[,Condit ional) 
BGT Opnd1,0pnd2[ ,Condit i onal) 
BLT Opnd1,0pnd2[,Conditional) 

The program counter is conditionally lo.'de<.l from operand one, based o n the result of 
comp&risons with operand 2 (LT . GT , EQ, NE, Uncond itional, l.E, GE). If t he addressing 
mode of operand I is such that a new ISEG is fetched, that new !SEC is stored into the 
MM U. This allows for the changing of instruction contexts. (Operand context is changed 
via the LoadOSID instruction) 

3.7.13 Trap Opnd1, Opnd2 

TRP Opndl,Opnd2( ,Condit i onal) 

Control switcht>s to t.he context ind icated by the trap vector indexed by Opnd I (a number, 
not ao address), based on t he result of comparisons done with operand 2. Comparison 
conditions are the same as for the branch instruction. 

3.7.14 LoadOSID Opndl 

LOB Opndl 
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The OSID from Opndl is loaded into the ~t:\IU as the primary OSID for this process. If 
no loaded physical page assigned to the current process has this OSlD, the CPU will trap. 
The operating syst.crn may t hen decide if this is an authorized OSrD for lhe current process. 

3. 7.15 Floating Point Instructions 

Floati ng point in3truetions codea are not yet aseigned 

Floating poin t instructions are important enough to this machine that we will reserve 
operation codes for add, subtract, multiply and divide. The instructioru~ will operate on 
IEEE standard 64 bit floating point numbers with the round to closest rounding option. If 
not implemented in hardware, the instructions will be executed by the kernel as it handles the 
unassigned operation eode exception. This easily allow.s addition of floating point hardware 
later, and the software handling will take maximum advantage of the fast context change.' 
available. Conditional skips shall be handled in the same manner as for fixed poont a rithmetic 



Chapter 4 

Compiler Description 

As support for research into issues of architecture and operating systems, a cross compi ler for 
a hypothetical reduced instruction set computer is required. The language to be compiled is 
C, and the architecture targeted is the CLOGS arcb.itedure being designed by ~lark Davis 
and Bill 0. Gallmeister. 

4.1 Class Project 

The CLOGS cross compiler to be built must be a modular system wbicb can be easily mod· 
ified to output CLOGS assembly language, object code, or high-level simulator constructs. 
Note that all of these output formats should be roughly isomorphic to one another; producing 
one from another is mainly a lexieal matter. 

Tbe CLOGS team has no illusions that the compiler produced by the 240 team will be the 
final solution to CLOGS' compiler needs; therefore, it is essential that the CLOCS team be 
able to do work on the compiler after completion of the 240 projed. For these reasons, the 
compiler should be built to output code statistics, and the compiler must be well-structured, 
well-documented and moderately easy to maint&in 1\nd modify. 

4.2 Fast Context Switch 

The Cl-OCS project is to design " computer architecture to handle real t ime applications 
while support ing a full-featured, general purpose operati ng system. This computer has the 
ability to change context rapidly. 

34 
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4.3 CLOCS Architecture 

The CLOCS architecture ;. a simple one. All operattons are memory to memory, and the 
processor has minimal internal state. There are few data types and instructions. Several 
addressing modC8 are provided to compensate for the lack of index register•. 

4.3.1 Simple Architecture 

Because the research is aumd at answering questions regarding the performance of simple 
machines, and also because this IS a ~arch project, tbe CLOCS architecture is simple. 

RISC 

In keeping with the RISC philosophy, CLOCS has few instructions (about twe nty), few data 
types (the word, interpre ted as a logical, arithmetic, or addressing entity), and a minimal 
amount of state. CLOGS has exactly one register, the Status Word . 

Resonreh GoMiderations 

Since this is a research machine, a simple archie«ture was decided upon; this allows us to 
concentrate more on tbe central issues of the research. 

In addition, to facilitate comparison of GLOCS and currently available designs, it is 
desired that GLOCS hear some outward resemblance to other existing R!SG machines. 'The 
ma<:hine tbe CLOGS is designed to resemble tbe most closely is Sun Microeystems' SPA RC 
processor. 

4.3.2 Memory Address Space Organization 

16 Meg Directly Addressable 

Operand addresses in mstruet.ions, as well as the program count.er itself, are 24 bits long. 
This gives a derault addre.~Sing range or 16 mega words. 

Oue Teraword Total Virturu Add l'C$S Space 

For eAch process running on the CLOCS cpu, a deraull segment identafier is supplied for 
instruction and operands. The segment identifier is prepended to the 24 hit operand or 
program counter address, to deterntine the desired add ress. These segmeut identifiers are ](} 
bits long, providing a totnl of ·10 bits of address. Some addressing modes allow altering the 
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segmen t identifier,so that all of the virtual address s;pace may be addressed. The address 
space is 64K segments of 16 megaword each, for 2-to-th~40th (1,099.511,627,776 or one 
teraword) total virtual address space. 

PIDs, P r ocessor Levels and P ermissions 

CLOCS supports in hard ware the notion of distinct p r~esses. In the program nat us word 
is the Pr~ess Identifier (PID), a 14 bit field that identifies the running pr~ess. Associated 
with each process is a default instruction segment, a default operand (or data) segment and 
memory access permission for segments being used by the process. 

A superuser, PID 0, may access the Memory Management Unit (MMU) registers to 
establish this information. Any process may read Ol" execute segment 0, and the process 
with PID 0 may read, write or execute in any segment, but all other memory access must be 
approved by the MMU. A user process (PLD # 0) may l>ave permission to read only, read 
or write, execute only, or read and execute a segment. Segments may be default segments 
(used when no sro is specified like during instruction fetch or fetching operands using the 
24 bit virtual offset in the instruction "'ord}. 

Memory Scheme 

A quick review of terms: 

PID (14) Procees identifier. 

SID (16) Segment. identifier. 

OSID ( 16) the default operand SID. 

ISID (16) the default instruction SID. 

VO (24) Virtual Offset. 

PC (24) Program Counter, a VO. 

OPND (24) Operand of in an instruction, a VO. 

VP ( 12) Virtual page. 

PP (18) Physical page. 

PO (12) Physical Offset, the low order bits of VO. 

VA ( 40) Virtual address, SID+ VO. 

I" A (30) Physical address, PP+PO. 

The MMU t ranslates the combination of PIO, SID, VP to PP and checks the PI D's permis­
sion ou that SID+ VP combination. The 30 bit Physical Address gives t.bat machine a real 
memory capability of I,073,741,82•1 words (or 8 gigabytes). All accesses to memory are by 
64-bit word access only. 



CLOCS Compiler •nd Assembly Language - Davis a nd Gallmcister, May 5, 1!188 37 

Memory-Mapped Access 

C LOGS reduces tbc variety of its instructions by mapping aU state information of the machine 
into the memory space of the proce880r. Thus, the State Word, consisting of the PC, PtD, 
and Fla&a, may be found aL loca\lon ffff.fflfff (This is segment ffff, address ftlTff). The 
M M U regiSters begin M fflf.tllOOOO. Location fflf.fefflf contains the number of M M U registers 
installed on this cpu. Input-output devices are mapped into the memory from ffflffOOOO 
to ffff.ffcfff. The trap ~nd interrupt vectors, likewise, can be found in t he this segment, at 
addresses fflf.fftllOO to trrr.fflffe. 

4.3.3 Minimal Processor State 

4.3.4 Data Types 

CLOGS supports a single arithmetic data type: the 64-bit sigued integer represented as a 
2's complement. There is provision for an optional data type, a 64 bit lEE!:: 784 floating 
point number. 

4.3.5 Instruction Format 

In this instruction form~\, \he S bits of opera\ion code are followed by 5 bits of ftags whieb 
determine a.ddressing modes for the two operands. Th<> next 6 bits specify flag~~ or a count. 
The operand , 24 bits long, follows. A number of addressing modes, as described elsewhere 
in this doc ument, can be applied lo the operand(s) by the judicious setting of the addressing 
mode flngs. 

4.3.6 Addressing Modes 

CLOGS supports seven addressing modes. aU o£ which a.ce available for use w1th operand one, 
a.nd four of which are &\'8ilahle for operand two. Alter each a.ddressmg mode identification 
is the bit pattern appearing in the instruction to ident ify that mode. All modes used for 
operand 2 have a high order bit ofO. so only the 2 lowest order bits appear in the instruction. 
[n t.hese dC'scriptions, "+'J means catenate Lhe two values. 

Opnd- 000 

(Opnd L. Opnd2) 

Operand := FETCH (OSID + Opnd) 

OSlO, the operand SID, is catenated to the high-o rder end of Opnd to provide a full 
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40-bil virtual operand address from which ibe operand is iclchecl. This is CLOCS' "direct 
mode" of addressing. 

@Opnd • 001 

{Opndl, Opnd2) 

Operand := FETCH (OSID + FETCU(OSIU + Opnd)) 

OSID is cal.ena~ to Opnd to form an virtual address. From this add<ess 15 felched a 
24-bit offset. This offset is catenated with OSID to fo~m the v~rtual operand address. This 
as CLOCS' "indirect mode" adruessing. 

zOpnd - 010 

(Opndl, Opnd2) 

Operand := FETCH (0 Segment+ Opnd) 

The operand is catenated to a SID of >.ero to arrive at the virtual opernnd address. T his 
provides rapid zer<rpage add ressing, but otherwise is identical to Direct Addressing. 

z@Opnd- 011 

(Opndl, Opnd2) 

Operand := FETCH(FETCH (OSlO + Opnd)) 

OSID is catenated to Opnd to form an virtual address; from this address a word con­
t.aining a 40-bit address is fetched to form a virtual address into any page. This is indirect 
addressing FROM the process' page, INTO any page. 

z@>,Opnd • 101 

(Opndt ONLY) 

Operand:= FETCH(FETCB {0 Segment+ Opnd)) 

Opnd is catenated with the zero page SID to form a virtual address; from this address in 
the zero page a word containing a 40-bit address is fetched. This virtual add rest~ is used to 
felch data in any page. This is indir~'<:t add ressing FROM the zero page, INTO any page. 
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@zOpnd - 110 

(Opndl ON LY) 

Operand •= FETCB(OSJO + FETCfl (0 Segment + Opnd)) 

Opnd i~ catenated with the zero page SID to form an virtual address. From that address, 
a 24-bit offset is fetched . Tbis offset is catenated with the OSID to form the virtual operand 
address. This is indirect add ressing FROM the ~ero page, INTO the process' page. (We do 
not see a great need for this instruction, however we pu t it in for symmetry. The compiler 
(and tbe compiler writers) can tell us if it is useful.) 

<Opnd - 100 

(Opndl ONLY) 

Operand •= Opnd 

Opnd is a 24-bit trnmediate operand. 

4.3.7 Conditional Skip 

Certain CLOCS instruction include a conditional skip of the next instruction. These instruc· 
tions are: Add, Sub, Mult, Oiv. Rem, And, Or, Xor. 

For the Add, Sub, ~lult. Div, and Rem instructions, the conditions are: 

LT result of operation less than zero. 

GT rl!<lult of operation greater than zero. 

EQ result of operation equal to zero. 

NO result nf operation did NOT ovtrflow. 

NU result of operation d id NOT underOow. 

NZ result of operation was :-lOT a divide-by-zero. 

for t he And, Or, and XOR instructions, the conditions are: 

EQ result of operation equal to uro. 

NZ result. of operation is no~ zero. 
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Each of the conditions correspond to a bit in the instruction. If the bit is set and the 
condition is true, then the next instruction is not executed. Of course. tf no condition is 
specified, the following instruction will never be skipped. 

Following are some example instructions a nd descriptions of the interpretation and use. 

SUD GT Opndl, Opnd2 
Subtract the first operand and from the second operand, pla<:ing tbe result in the second 
operand, and skip the following instruction if tbe result was greater than •ero. Note that 
this instruction, when Opnd2 is an immediate one, followed by a trap or branch, provides a 
p() operation on the semaphore addressed by Opndl. 

DIV NZ Opndl, Opnd2 
Divide operand I by operand 2, placiD& the result in operand 2, and skip the following 
instruction if the result wat NOT a divide-by-zero. If the next instTuction is a branch to an 
error handling routine, this combination ollows easy handling of arithmetic exceptions by 
t he u.ser program. 

The trap and branch instructions use the same 8ags, but are conditionally executed 
instead of conditionally skipping the next instruction. 

4.3.8 Instruction List 

Add Opodl, Opod2 

Operand one and operand two are added in full 64-bit two's complement arithmetic; the 
result is pl .. ced in operand two. (conditional skips) 

Sub Opndl, Opnd2 

Operand one is •ubtracted from operand two; the result is pl$-ctd in operand two, Arithmetic 
is full 64-bit two's complement. (conditional skips) 

Mult Opndl, Opnd2 

The low-order 64 bits of operand one are multiplied by the low-order 64 bits of operand 
t wo, producing a 64-bit result which is stored in operand two. If the operation results in a 
number thM cannot be represented in 64 bits, an overllow exctption will occur. (conditional 
skips) 
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Div Opudl, Opnd2 

Operand two is divided by operand one, and the resuh is placed in operand two. The 
operands a re 64-bit quantities; the result is a 64-bit quantity. Division is in two's comple­
ment integer arilhrnet~. Division by a divisor greater than the quotient will result in ~ero 
(conditional skips) 

Rem Opudl, Opnd2 

Operand two is divided by operand one, and the remainder of this divisiou is placed ln 
operand two. Division is as in the Div instruction. (conditional skips) 

And Opndl, Opud2 

Operand two and operand one are ANDed together in bitwise fashion; the result is plaeed 
in operaud two. (conditional skips) 

Or Opndl, Opnd2 

Operand two and operand one are ORed together in bitwise fashton, and the result is placed 
in operand t wo. (conditional skips) 

Xor Opndl. Opnd2 

Operand one and operand two are uelusive-ORed together in bitwtse fashion , and the result 
is placed in operand two. (conditiona l •k ips) 

Len N, Opndl. Opnd2 

Operand one is shifted left N bits (N is suppli~d in lb.e flags field of the instructioo - it is 
nola true operand): the result of the shirt is plac.ed i1t operand two. A move is affected by 
setting N equal to zero. The low-order bits of the result are cleared to zero. 

Right N, Opndl, Opnd2 

Operand one is shift...! right logically (sign bit is ir;nored) ~ bits The high N bitS of the 
result are cleared to zero. The result is placed in operand two. 
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RightArith N, Opndl, 0pnd2 

Operand one is rigbi shifted arithmetically (sign extension is performed) N bits. T he result 
is placed in operand 1wo. 

Branch Opndl, Opnd2 

The program counter is conditionally loaded from operand one, based on the result of eom· 
parisons with operand 2 (T,T, GT, EQ, NE, Uncond il.ionnl, LE, GE) . U the addres~ing mode 
of operand lis such that a new ISEG is fetched, that new !SEC is stored into the MM U. 
This a llows for the changing of instruction contexl.s. (Operand context is changed vin the 
LoadOBase instruction) 

Trap Opndl , Opnd2 

Control swit.ches to the context indicated by the trap vector indexed by Opndl (a number, 
not an address}, based on the result of comparisons done with operand 2. Comparison 
conditions a.re the same as for the branch instruction. 

LoadOSID Opndl 

The OSlO from Opndl is loaded into the MMU as the primary OSlO for this process Ir no 
loaded physical page assigned to the current process hu this 0510, the cpu will trap. The 
operating system may then decide if this is an author ized 0510 for tbe current process. 

Flooting Point Instructions 

F'loating point instructions are impor tant enough to this mac hine that we will reserve oper­
ation codes for add, subtract, multiply and divide The instructions will operate on IEEE 
standard 64 bit Ooating point numbers with the round to closest rounding option If not 
implemented in hardware, the instrudions witl be executed by the kernel a.s it bandies the 
unassigned operation code except ton. This easily allows addition of 6oating potnt hardware 
later, and the software handling will take maximum advantage of the fast context ch~nges 
available. 
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