
CLOCS Architecture Reference Documents

TR88-021

May 1988

M.a.rk C. Davis
Bill 0. Gallmeister

The University of North Carolina at Chapel Hi ll
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hil l, NC 27599-3175

Copyright @1988 Mark C. Davis and Bill 0 Callmeister
UNC is an Equal Opportunity/AfflrmAti•·e Action Institution.

CLOGS Architecture Reference Documents

Mark C. Davis
Bill 0. Gallmeister

CB # 3175, Department of Computer Science 1

University of North Carolina
Chapel Hill, NC 27599-3175

May 6, 1988

1Thi• Research wu supported by OfliC<O of ~a val Research Contr•ct N00014-S6-K~680.

Contents

Introduction

1 Overvi ew

1.1 Highlights - .

1.2 Instruction Formats

1.3 Programming Model

1.4 Data Formats .

u; Operations ..

1.6 Implement Notes

2 Memory Management Unit

2.1 Organization of the Memory Management Uni~

2.2 ContentS of the W\IU Word .

2.3 MM U Operations . .

2.4 MM U Exceptions ..

2.5 Implementing Common Virtual Memory Operations

2.6 The M M U Designs We Discarded .

3 Assernbler Lnnguage

..

1

2

2

3

5

7

s

11

12

12

13

16

IS

19

19

22

3.1 Memory Architecture . . • • • . . 22

ii

3.2 Data Types 23

3.3 Instruction Syntax 23

3.4 Instruction List 24

3.5 Addr=ing Modes . - - .. 24

3.6 Conditional Skip . . . - 26

3.7 Instruction List . 28

4 Compiler Description 34

4.1 Class Project ... ' .. - - 34

4.2 Fast Context Switch . . . - . 34

4.3 CLOCS Architec~ure 35

Introduction

This technical report combines seve ra l CLOCS archi tecture papers from the academic year
1987-88. It contaill8 an overview, a d etailed discussion of the memory management unit, a
description of an assembler language and specifications for compiler writers. Oecausc of the
nature of each of the four chapters, some areas are re peated in several chapters.

Chapter 1

Overview

The CLOCS architecture is an attempt to remove the highest layers of memory hierarchy to
reduce the effort or switching execution £rom one l.aSk to another. AJ; a result, the CLOCS
architecture is a very simple one, with only m.ernory to memory instructions.

1.1 Highlights

The major design consideration of this machine is 1.0 switch context in as short a time as
possible. All instructions are memory to memory. The cpu implements only one data type, a
61 bit two's complement fixed point number. Instructions are one 64 bit word. The program
context lncludes a. status register containing a program counter, a process identification
number and various Ra&S.

1.1.1 Noteworthy

The machine ean switch context 1n less than one proeessor cycle. The overhead to switch
from one process to another is approximately equal to one third processor cyc le. Tbis feature
results in much higher performance when many context switches nre occurring and satisfies
the requireme-nts of many applications requiring very fast context switching.

1.1.2 Peculiarities

The only state inside the central processing unit(CPU) is a program status word. AU data
operations are ~mory to memory. One result of this is that all parameter passing must b•
through memory.

All memory access<!ll are 61 bits long. All instru.ctions are 64 bits long and the only

2

CLOGS Arcltitecture Overview- Davis, M.1y .5, 1988 3

5 5 6 21

OP AM I Flags Operand 2

OP Operation Code

AM Address Mode for Operand I and Operand 2

Figure 1.1: CLOCS Instruction Format

numerical data type is 64 bits long.

1.1.3 History

This architecture 1\'as conceived by Mark Davis in response to the challenge "if I where to
design RlSC, this is bow I would do it.• The architecture was designed by Mark Da,•is and
Dill Gallmeister.

1.2 Instruction Formats

There is one instruction format, a one word formal. Figure l shows the instruction formal.

1.2.1 Structure

Each instruction contains an operation code, a standard set of addressing mode Rags, a
operation dependent flag field and speeification for two operands.

1.2.2 Address specification

The 24 bit operand in the instruction may be u~ as immediate data or may be combined
with a 16 bit segment identifier (SID) to form a 40 bit virtual address. Each processes has
a primary instruction sro (PSID) and a primary Operand SID (OSlO) assigned. Indirect
addressing is also supported and during indirect addressing, the OSlO or !SID may be
overridden to access any word in the teraword (240) address sp~ce.

CLOGS Arcl•itccture Overview - Davis, May 5, 1988 4

1.2.3 Formats

The instruction consists of

• (5 bits) operation code

• (5 bita) addressing Oags, described in se-ct 3.4.

• (6 bits) operation flags, described in section 3.3.2 to 3.3.5 below

• (24 bits) oper<Lnd l speeification

• (24 bits) operand 2 specification

Branch and Trap Operations

For the trap operation, the flags are used to determine whether the trap will occur by
evaluation of operand 2. Addressing mode for operand I is not used. For the Branch
operation, the flags determine whether the branch will be taken by evaluation or operand 2.

Arithmetic Operations

In arithmetic operations, the Rags determine whether to skip the next instruction by e\'alu­
a.tion of the result of the operation.

Shift Operntions

For shift operal.ioll!!, the flags eonstitu~ the number of biLs to shift operand 1 before st<>ring
it in operand 2.

Logical Operations

During logical operations, the Rags determine whether to skip the next operation and whether
to perform the operation on the entire word or on just one byte.

1.2.4 Spaces and Addressing

The only numbered address space is to main memory. The cpu deals with virtual address
and t hese Me converted to physical addresses by the Memory Management Unit (M~ofU).
There are 40 bits io a virtual address for an nddress space of l leraword. There are 30 bits
in a physical address for a space of 1 gigaword .

CLOCS Architecture O vcrv1ew - Dnvis, May 5, 1988

1.3 Programming Model

The programming model is pretty simple. All oper»tions are memory to memory. Any
special devices added should be memory mapped. The program counter is even memory
mapped .

1.3.1 Working storage

There is no working storage. Everytbmg is kept in main memory.

1.3.2 Memory Name Space

The memory name space is a ~near sequence of one word (64 bit) entries. The instructions
address the memory using virtual addresses that are 40 bits long. These virtual nddress¢8
are changed into a 30 bit physical address by the MMU. The formation of these addresses is
discussed at the end of the next section.

1.3.3 Addressing Modes and Address Calculation

CLOCS SUpports seven addressing modes, all of which are available for use with operand
one, and four of which are available for operand two. All mode.~ used for oper..od 2 have
a high order bit of 0, so only the 2 lowest order bits appear i11 the instruction. ln these
descriptions,"+" means catenate tbe two values. Before describing each of the addrcs.ing
modes, address formation will be discussed.

Virtual Address Formation

A virtual address is forty bits long, and it may formed in two ways. A 16 bit segment
identifier (SID) and a 24 bit offset may be combintd to form the address. Each process ho.s
a default segment assigned for both instructions 3nd data. The MMU stores these segmertt
identifiers and uses tbc process identifier to fiud lhe corred segment identifier. The 24 bit
offsets appear in the instructions or may be obtai nod from rn.'>in memory. A second method
of providing the 40 bit virtual addreas is to get it from the 40 low order bits of a memory
location .

Physico) Address Formation

The~~ ~1U can calculate a physical address in one of t wo ways. In the first case, the CPU
provides a process identification number and a 21 bit offset. The MMU associntrvely looks
up the physical page corresponding to the default segment for the given process and the 12

CLOCS Arcl>itec!ure Overview- Davis, M~y 5, 1988 6

high order bits of the offset. In the second case, the CPU provides the entire 40 bit address.
Then M~l U then associatively looks up the physical page corresponding t.o the 28 high order
biLS (16 SlD + 12 from offset), Afl.er the physical page has been identified by either method,
the MM U verifys that the requested operation (read or write) is a uthorized for this process.
l f it is, the 30 bit physical address is form•'<~ from 18 bits of the physical page and the 12
low order bits from the virtual address.

Opnd

(Opnd l , Opnd2)

Operand := FETCH (OSID + Opod)

OSID, the operand SID, is catenated to the high-order end of Opnd l.o provide a. full
40-bit virtual operand address from which the operand is fetched. T his is CLOCS' "direct,
mode" of addressing.

@Opnd

(Opndl, Opnd2)

Operand := FETCD (OSlO+ FETCU(OSID + Opnd})

OSlO is catenated t.o Opnd t.o form on virtual address. From this addr·ess is fetched a
24-bit offset. This offset is catenated with OSlO to form the virtual operand address. This
is CLOCS' "indirect mode" addressing.

%0pnd

(Opndl, Opnd2)

Operand := FETCH (0 Segment+ Opnd)

The operand is catenated t.o a SID or zero LO arrive at the virtual operand address. This
provides rapid zero-page addressing, but otherw1se is identical to Direc~ AddreAAing.

%@Opnd

(Opnd I , Opnd2)

Operand := FETCJJ(FETCH (OSlO + Opnd))

OSlO is Cl\tenated to Opnd to form an virtual address; from this addreM a word coo-

CLOCS Architecture Overview- Davis, MayS, 1088 7

taining a 40-bit address 1s fetched to form a virtual address intO any page. This is indirect
addressing FROM the process' page, INTO any page.

%@%0pnd

(Opnd l ONLY)

Operand := FETCH(FETCII (0 Segment+ Opnd))

Opnd is catenated with the >ero page SID to form a virtual address; from this addJ:ess in
the .ero page a word containing a ·10-bit address is fetched. This virtual add ress is used tO

fetch data in any page. This is indirect addressing FROM the zero page, INTO any pase .

@%0pnd

(Opndl ONLY)

Operand := FETCH(OSTD + FETCH (0 Segment + Opn4))

Opnd is catenated with the zero page sro to form an virtual add ress. trom that address,
a 24-bit offset is fetched . This offset is catenated with the OSlO to form the virtual operand
address. This is indirect addressing FROM the uro page, INTO the process' page. (We do
not see a great ~~ted ror this instruction, however we put it in ror symmetry. The compiler
(and the compiler writers) can tell us if it is useful.)

<Opod

(Opndl OKLY)

Operand := Opnd

Opnd is a 24-bit immediate operand.

1.4 Data Formats

We claim to have only one data format, but actually the architecture supports two formats:
61 bit fl xed poin~ and 64 bit floating poin~.

CLOGS Architect-ure Overview- Davis, MayS, 1988 8

1.4.1 Fixed Point

The normal data format is a two's complement 64 bit fixed point number.

1.4.2 Floating Point

The floating point data format is IEEE 754 64 bit format.

1.4.3 Character

A word may also be considered as an array of 8 characters. The logical operations have tlte
ability to address each byte separately.

1 .5 Operations

The GLOCS architecture ba. 18 operations defined. There areS fixed arithmetic, 4 floating
point arithmetic, 6 logical, l sequencing and 2 supervisory.

1.5.1 Decision

CLOCS bas no specific decision operations. Instead, a condiLional branclt ill provided and
aU arithmetic and boolean logical operations incorporate conditional skip. The behavior of
this sequencing will be discussed with each other cat<ogory of operation.

1.5.2 Data Operations

Data operations are partitioned into fixed and floating point ~~rithmetic, boolean logic oper­
ations, and shifts.

Arithmet ic Opcratiou.s

CLOCS supports 64 bit fixed point arithmetic . For operations resulting in moce that 64 bits,
such as multiply, tbe bigh order bits are 106t. Similarly, the fractional result of a divide is
losl. Indication of multiply overflow is available to the programmer. The program may use
the remainder instruc~ion to detect and manipulat-e fractiona l divide results.

Operation codes ltave been set aside in CLOCS for floating point arithmetic. We plan
that early implementations of CLOCS would not include Aoating point hardware. and these

CLOCS Architecture OvervJew -Davis, ~lay 5, 1!188 9

instructions would cause "unknown operMion" faul ts, so the operating system could tbon
perform the floating point operations.

for both types of arithmetic, the following instruction is skipped if any of six conditions
are !lagged in the instruction and are true. These condilions are:

LT result of operation less than zero.

GT result of operation greater than zero.

EQ reau lt of operation equal to zero.

NO result of operation did NOT o\•erflow.

NU result of operation did NOT underflow.

NZ result of operation was 1'\0T a divide-by-zero.

Note that these conditions (or theu nega tion) cannot be true for some operations. for in·
stance. it is not possible to get underflow unless a floating point operation is being performed .

Boolean Logic Operations

CLOCS provides AND, OR and XOR logical operatiOns, These o~ratioos may apply wan
entire word or to one 8 bit byte within that word.

Skip• for boolean logical operations occur for two possible conditions:

EQ result of operation equal to zero.

NZ resu lt of oper~tion is not zero.

Shifts

CLOCS provides shiflleft. shift right, and shift nght anthmetk (extends two's complement
sign). The number of bits to be shifted (from 0 to 63) is specified in tbe instruction. Please
note that a zero bit shill may be used as a move. The shift instrucLions have 110 conditional
skip.

1.5.3 Sequencing

The sequence of Instructions is controlled by the branch instruction, supervisor call5 and
interrupts.

CLOGS Architecture Overview - Davis, May 5, 1988 10

Dranches

The branch instruction is conditional, based on the contents of the second operand (evaluated
either as a Rxed or floating point number):

Interrupt and Supervisor Call

CLOCS has &.large number of interrupt vectors. On a Supervisor Call (Trap) or "n interrupt,
the old status word is sa.ved and the new status word for that supervisor call or interrupt is
loaded. Interrupts are grouped into maskable levels, and presumably, each interrupt status
word would mask that level of interrupt long enough to move the save status word out of
the way (to make interrupts reentrant).

The Supervisor call instruction has a conditional execution. If a flag is set and the
corresponding condit ion is true, then execution continues at the address specified in the
instruction. Otherwise, the following instruction is executed.

LT result of operation less than zero.

GT result of operation greater than zero.

EQ resuH of operation equal to 1.ero.

1.5.4 Supervisory

Two supervisory instructions are provided. T he trap instruction conditionally causes the
execution of a supervisor t(>ll a~ a trap vector location. This qualifies as a supervisory
instruction because the status word is directly loaded from the trap vector, allowing the
m~bine to change to operating system process identification number. Condition flags for
this instruction are the same as for the branch.

The load operand segment instruction allows a program to use a different defaull data
segmen t. If the identified segment is not avai lable to the procc8/l, the cpu wiU cause a fault.

Although, not specifically allocated as a supervisory instruction, moving data to the
certain addresses from f!lf.fll)()()() to f!lf.f!lf/T causes changes to the cpu. f'or example, writing
to f!lf./Tfflf changes lhe status word. That memory location is owned by the operating system
process and cannot be written by any other process.

1.5.5 Input and Output

Input and output devices are memory mapped, so no- special operations are provided to
manage them. The memory mapping is down in the memory address range O'fT.fmOOO to
ffff./Tefff. A special set of nddresscs is provided so virtual memory and cache algorithms will
not interfere with proper device opemtion.

CLOGS ,\rchitecture OvervieiV- DaviB, May 5, 1088 11

1.6 Implement Notes

The architecture leaves two major books to permit single chip implementations with a reason­
able numbers of transators. Firs~. operMion.s are defined for Ooating point, but no hardware
support is required . Under normal circumstances, ftoating point will be emula~ b)• oper­
ating system routines. The second hook concerns the si.ze of the mmu. Although provision
bas been made for a very large number of rnmu regist-ers, a machine could be built with
very few registers, perhaps with only four registers. Although scrimping on the mmu 'viU
save chip area~ it. will have a major lmpa.c.t on context swit-ching performance; lherefore, we
recommend having at least one rnmu register for each page of physical memory instaUed in
the machine.

Hopefully, the implementations of CLOCS wiU be he.avily pipelined. A 4 s tage pipeline
with interlocks or about a 7 stage pipeline without inter locks seems reasonable. Note, that
pipelining will increase contat swit,eh latency, wbicb may be significant if a realtime task
has to be serviced in less than 20 cycles (it is not clear how you can write a scheduler
for that, but it is a consideration). Also, caching inside the cpu may effectively improve
performance. Caching intermediate results to avoid memory references and short circuiting
pipeline latency may both be major average performance improvers.

Chapter 2

Memory Management Unit

2 .1 Or ganization of the Memory Management Unit

T heCLOCS Memory ~fanagement Unit(MMU) must support virtual memory with as many
contexts as possible. We used this guiding principle: " If information for a process is in main
memory, it must be accessed with no context s witch. penalty." Another design requirement
was that the MM U support lightweight processes, becauS<l an important application, real
time operating systems, frequently use ligbtweigbl processes [2]. This meant lhat the MMU
would provide a sharable add cess space with protection for the space owned by a each process.
Provisions for protected sharing of memory between two processes was also an important
requiremen ~ for real time.

2.1.1 What the MMU Does

The purp06e of the MMU is to support virtual memory for the CLOCS computer system.
It does tha t by taking an address specification from the cpu, determining the corresponding
physical address, checking that the current process has permission for the rcquc.Jted memory
operation, and maintaining information of use to the operating system. The real work of
address translation is done to the physical page level; the low order 12 bits of the virtual
address are used as the low order bits of the physical address. Permission is granted for
three p06sible categories of operations to be applied to three types of pages: rend only, read
or write, and execute only. T he MMU nlso keeps records of ~ccess and writiug to physical
pages. It records when a physical page has been read or written, USED, so the operating
system can later determine the beos~ page Lo swap out using the a common algorithm for
virtual memory. The M M U also records when a "read or wnte" type phys•ca.l page has been
changed, DIRTY, so the operating system can avoid unnecessary saving of pages to backing
store.

12

CLOCS MMU Description - DavJs and Gallm elstcr, May 5, 1988 13

2.1.2 External Appearance of the MMU

All of the information to determine physical addresses, cheek permission, and remember
physical memory statut is kept in 64 bit registers in tbe MMU. These MMU registers are
memory mapped at beginning at lcxation lflf.IUOOOO, and are protected from user processes.
Only the superuser, PIO = 0, may change them. Since each of the registers cont~ins infor·
mation about one pbysical page, the MMU shou ld contain at leMt as many registers as the
computer system ha.s physical pages. In order tO meet the design guiding principle concern·
ing memory access time, an excess of M MU registers should be provided for shared pages .
.Memory address ffff.fctrtr is reserved for the number of M~1U registers mstaUed . The MMU
intercepts references to this location and provides the number. This same memory location
is also used as a command register. CLOCS can address up to 262,144 pages (218), but since
this corresponds to 1,073,741,824 words (8 gigabytes) of memory, most machines will have
less physical memory and need much fewer than 263,144 MM U registers. In the absence of
data, we estimate that an additional 10% of MMU registers over the maximum number of
expected physical pages wiU be adequate.

2.1.3 Physical Page Status

Part of each MMU register are some bit.s to indicate the status or the referenced virtual and
physical page. The use status and written or DIRTY status is m.Untaincd for the physical
page. More than one MM U register may refer to a physical page; this is the way that memory
would be ebared. The Ml>iU must provide the torrect status for a physical page when an
~i:\W register is read . For example, M~IU register mf.ioOOOl and ffff.f00009 both point to
physical page 4. A write is made using the entry at trff.f00009 . If the register at fffi.fOOOOI
is subsequently read, its status will indicate that the page is DIRTY even though no write
was made using that MMU entry.

Implementor may accomplish this magical updating of physical page status in any man·
ner, but one solution is suggested . An auxiliary memory with a two bit word for each physical
page stores the correct status of each physical pasc. During routine memory operations, the
s tatus of a page would be updated in parallel with the memory operation. When an MM U
register is read, the physical page address in the MMU register is used to access the au:Qiiary
memory. Tbe use and DffiTY bits from the auxiliary memory are used to update the M~IU
register before it is provided Lo the CPU. As long as the page status could be fetched and tbe
MMU register status upd~ted in the time of a main memory fetch, the organization would
not effect performance.

2.2 Contents of the MMU Word

The MMU register$ are divided into six fields. Before we examine lhe MMU registers, a
qukk review of terms. Each abbreviation is followed by the number of bits.

PID (14) Process identifier.

CLOGS MMU Description /)a vis ~nd Ga/lmeister, MayS. 7988

SID (16) Segment identifier.

OSID (16) the default operand SID.

!SID (16) the default instruction SID.

V O (24) Virtual OffS<!L.

PC (24) Program CouJILet, a VO.

O PND (24) Operand of in an instruction, a VO.

VP (12) Virtua l page.

P P (18) Physical page.

P O (12) Physical Offset, the low order bits of VO.

VA (40) Virtual address, STO+VO.

PA (30) Physical addrei!S, PP+PO.

14

Eaeb M M U register (or entry} is a 64 bit word. The M M U may si.Ore the information
for each entry in any convenient format, but it must appear as a 64 bit memory add ress to
the cpu with the following format:

PID 14 bits- Process Identification Number

F lags 4 bits- Permissions and Physical Page State

SID 16 bits · Segment Identifier

VP 12 bit.s- Virtual Page

P P 18 bits- Physical Page

2 . .2.1 Field Sizing Considerat ions

The sizing of fields foUowed from the portions of the architecture which was defined before
~IMU de$ign was completed The SID was set at 16 b its. We wanted at least I gigaword of
physical storage, so the physical address required 30 bits. Flags required about 4 bits. We
wanted to have 16 bits for PID and physical pages of 1021 words. Since the operand add ress
size was 24 bits, this physical page size would have required the VP to be 14 bits a nd the
PP to be 20 bits. The 34 bits for VP and PP plus the 16 bits for SID leaves only 14 bits for
Bags and PIO. A 10 bi~ P£0, allowing only 1024 active processes was deemed too resHicth·e,
so we settled on a 4096 word physical page. This final page size required 12 bits, reducing
VP to 12 bits and PP to 18 bits. With t!W design, the combination of VP, PP, STO requires
only 46 bits, leaving 18 bits to be divided between 4 bits of FLAGS and a 14 bit PJO. Tbis
compromise raised the irnport.ance of maintnining the FLAGS field no larger t han 4 bits, so
the assignments of the flag field bits is discussed below.

CC.OCS MMU DeS<:riptioTJ - Davis nnd Gallmeister, May 5, HJ88 15

2.2.2 Mapping of Word use to Flags

The MMO has to maintain much permission information and 8tatus for each physical page.
A prcx:ess may have data access or rei'<~ permission Lo a page. A prcx:ess may have write
pernussion to a page. The page may contain code executable by the specified process. The
SID may be the primary SID for the PID. The page may be DlRTY, that is it is a writable
page and hM been changed since it was paged in. The page may have been o.ccessed sinco
accessed information was updated. If eac h of these catesor ies of information were to be
represented by one bit, the flag field would require 6 bits instei'd of the allotted 4.

For the discussion of how we saved the two needed bits. I will use the follov.•ing abbrevi·
atioos:

R The page is rei'dable by the prcx:ess

W The page may be written by the process

X The page may bc executed by t he process

P The SID is the primary SID for this type of page for this prcx:ess

U ThiS page has been USED

D This page has been written, DtRTY

~!any of the combinations do not make sense. To see these nonsensical combinations,
we constructed a truth table. A bullet(•) in this table indicates that this is not a viable
alt.ernative. A number indica\"" that t his combination of attributes is useful and s hould be
represented in t he M M U registers.

p p I' p Reason
D D D D for

u u u u Elimina tion
I • • • • • • • Unallocated can't be P,D,U

X 2 3 • • 4 5 • • Executable can't be DIRTY
w • • • • • • • • No Write on!~· pages
w X • • • • • • • • No X and Ror W

R 6 7 • • • • • • No D, P without W
R w 8 9 10 11 12 13 14 IS
R X • • • • • • • • NoXandRorW
R w X • • • • • • • • No X and Rot W

With only 15 usable s~ates t.o represent, only 4 bits of state will be required. We reorga•
nized t he states as shown below. The numbers at the r ight of tho table are the 2 high order
bits of the flag field in the MMU word. The numbers at tbe bottom of the table are the low
ordtr bits of the llag field. Tbe numbers inside the table correspond to numbers in the first
table.

CLOCS MMU DescriplioiJ- Davis and Gallmcistcr, May 5, 19$8 16

Primary Prunary
USED USED

Executable 2 3 4 5 00
Read Only 6 7 I 01

Read and Write 8 9 12 13 10
Read and Writ.e Dirty 10 11 14 15 11

00 01 10 11

With this bit assignment, the third bit becomes the USED bit, the fourih bit is the
Primary bit, the 6rst and second bit must be taken together to int.erpret the permissions.
The comb~nation 0110 represents an unassigned physical page.

2.3 MMU Operations

The M :VI U must perform several operations.

2.3.1 Normal Read and Write

The MMU registers c~n be read and written by the superuser process, PID = 0. The MMU
registers are addte88ed as normal memory, so the MMI.J must reconize addresses starting at
ffff.fOOOOO and respond io them rather than trying to calculate a physical address.

P068ible e.-.:ceptions:

• Memory not present
addressing MM U register not installed

• Memory Permiuions I.ncorrect
PlD 'f. 0

• Flag 1101 not permitted
Unassigned Flag combination

2.3.2 From PID,VP get PP and Check Permissions

When presented with a PID, a VP, and a signal that this fetch is for an operand, the ~IM U
must deterrnine the correct PP and check permL~sions.

P06Sible exceptions:

• PID, SID, VP not in MMU

• Memory Permissions Incorrect

CLOCS MMU Description- D:tvis and Gallmeister, May 5, 1988 17

2.3.3 From PID,VP get PP and Check Permissions

When presented with a PfD, a VP, and a signal that this fetch ill for an instruction, the
M~U must determine the correct PP and check permissions.

PO$Sible exceptions:

• PI D. SID, VP not in MMU

• Memory Permissions Incorrect

2.3.4 From OSID,VP get PP and Check Permissions

When presen!A:d with a PIO. an SID, a VP and a signal that this i.• an operand fe~Gb, the
M~1U must determine the correct PP and check permissions.

Possible exceptions:

• PJD, SID, VP not in .MMU

• Memory PctmiSilions Incorrect

2.3.5 From ISID,VP get PP and Check Permissions

When preaented with a PID, ao SID, a VP and a signal that this is an instruction fetch, the
M.\IU must determine the correct PP and check permissions.

Possible exceptions:

• PID, SID, vP not in I\L\1U

• Memory Permissions Incorrect

2.3.6 Change Primary OSID

When directed by t.he cpu, change the prima.ry OSlO to the SID provided on the low order
16 bits on the data bus. This update requires setting t he Primary Rag on all entries with
the PIO and new OSlO and resetting the Primary Rag in all MMU registers wHb the PID
and tht• old OSlO.

Possible exceptions:

CLOCS MMU Descripdou- Davis and GaJJmeister, May 5. 1988

• PID. SID not in MMU
An authorized page is ba.s been paged out
This PID iAI not authorized to sl>t.re this page

• Memory Permissions Incorrect
The new segment identified by SID is not writable

2.3.7 Change Primary ISID

18

When an instruction fetch is made and the instruction is loeate<l in a segment different from
the current proee~<s' primary !SID, the MMU must store the new SID. When the cpu signals
"last branch taken," the MMU must update the stored SID to be the new primary !SID
for this process. T his update requires setting the Primary flag on all entries with the PID
and new SID and resetting the Primary ftag in all MMU registers with the P lD and t he
old !SID. The cpu must signal "branch oot taken" if n conditional branch is to taken. Tbe
M M U may stall if more than one instruction fetch specifies t. new !SID before it receives a
"last branch taken" signal.

Possible exceptions:

• None

The exception PID, SID, VP not 10 MMU can fi6t occur for this operation because the
:II:IIU must lint fetch the new inslruction using one of the t.bove operations. If there is an
intenupt, the branch innruction wiiJ be restsrted, so we will always know that the physical
pt.ge is available. Additionally, the mstruction fetch operation will verify that this page
contains executable code, so no Memory Permissions Incorrect exception may occur.

2.3.8 Reset USED for All Physical Pages

When the operating system selects a page 1<> swap out of main memory it may use I he USED
bit. Frequently, the operating system will want all USED bits set to zero. To S<!t the USED
bit for all physical pages to zero, write 3 word with the low order bit of I to the memory
locat ion ffif.feffff. That location when read contains the number ofMMU registers ingtalled.

Possible exceptions:

• 1\one

2.4 MMU Exceptions

Exceptions ba ve been described a!l.er each operation.

CLOGS M M U Description - Davis and Callmeister, May 5, 1988 !9

2.5 Implementing Common Virtual Memory Opera­
tions

ln tbis section, l wiU d...:ribed how to implement some common vortual memory operations
using the primitives provided by the CLOCS MMU.

2.5.1 Write Back Virtual Memory

Before a page may be removed from physical memory, the DIRTY status should be check for
any MMU register referring to that physical page. Saving the page on disk before reusing
the page is only required when the DIRTY status is set . This method significantly reduces
memory traffic because m11ch data memory is read, but not changed before it is paged out.

2.5.2 Copy on Write

Copy on write is an algorithm frequently used by UNIX operating systems and VAX com·
puters. A process is assigned a block of memory containing information or code. As long
as it does not change this memory, it shares the memory with another process. As soon as
t he process attempts to change t he memory, the operat ing system must intervene to make
a separate copy for this process, and then allow the change to happen. Tbis facility is very
useful for the vfork system call in UNIX. Copy on write may be simulated by assigning lhe
page as a shared, read only page. Shared simply means that tbe page has more than one
MMU register pointing to it. When the process t ries to write to the "copy on write" page,
~he MMU causes an exception. The operating system exception handler then copies the page
to an unused physical page. It then corrects the MMU register to point to the new physical
page and restarts t he user process with the instructiOn t.bat caused the fault.

2.5.3 Not-Used-Recently Page Replacement

One popular page replaeement algorithm is Noc-.Used-R.ecently. This technique is described
in detail in Deitel [1]. Deitel points out thau liSt:O bit aod a DIRTY bit must be maintained
for each page, and t his informat ion Is available from the CLOCS MMU.

2.6 The MMU Designs We Discarded

During MMU design, we considered oevcral schemes: the one described a bove and anothers.
Some of the alt.ernat.e design were interesting to us or inn>lved important design decisions,
so the ones we threw away are described here.

CLOGS MMU Descript ion -Davis and Gallmeister, May 5, 1988 20

2.6.1 The Second Design - Virtual and Physical Tables

The second design differed in that the MMU contained two tables instead of one. One table,
Table!, contained PID, FLAGS, artd SID. T he other table. Table2, held a Dirty bit, SID
and VP, The second table had one entry for each physical memory page, so the PP did not
have to be included in the table. The advantage of the second scheme was that it wa.• more
proper for support of lightweight processes. The PID, SID, FLAGS relationship was unique.
The primary scheme was better in that it could support heavyweight as well M lightweight
processes and also could resolve the permissions down to the physical page level. With
that scheme, one segment could hold both code and data space on separate pages, so small
processes need not take up two segments of address space. The other difference between the
scbemes was the simplicity of the data structure and duplication of PIO's for the primary
scheme and duplication of SID's in the secondary scheme.

The final decision of which scheme louse was based on the projecl.ed silicon area of the two
schemes. We assumed field sizes the same for the two schemes except the secondary scheme
needed oue extra DIRTY bit. PID, FI,AGS, SID and Virtual Page were all associative. This
distinction was made because associative bits would require at least 25 % more silicon area
to implement. Most a.ssociative bit implementations would require about 50 % more area
than a nonassociative bit.

To compare the two schemes, we specified a computer system with 4000 pages of physical
memory and capable of running lOOO processes. This machine is a typical system to utilize
the power of the CLOCS a rchitecture and support large applications. For a machine of
this s ize, tbe primary scheme required 4500 table entries (one for e~h physical page plus
500 for memory sharing). ~ch entry was 64 bii.S long, 44 of which were a.sso<:iative. The
sewndary scheme required Table! with 2500 entries, two for each processes {one data, one
code) and 500 extra for memory sharing. Each entry in this table was 34 bits long and aU
were associative. T he second table, Thble2, contained 4000 entries, one for eaeb physical
page. Each entry was 29 bits long and 28 of them wltere assoc iative. The table below shows
t he bits and relative area for the two schemes. The column labeled "Total Relative Area" is
the total area of the table in nonassociative bii.S, assuming that associate bits are 50% larger
than non8.880Giat.ive ones.

MMU Scheme Associatlve Total Total Relnt•ve
and Table Dits Dits Area

Second My Table! 80,000 85.000 125,000
Secondary Table2 ll2,000 116,000 172,000
Secondary Total 192,000 201,000 297,000

' Pnrnary Total J9S,ooo 1 288,000 1 0 3~7,000

'rhe small additional cost of associative bits and the increased function of the pr imary
scheme, particularly since the primary scheme supported heavyweight processes, a concept
used by many available operating systems. settled the decision in favor of the primary scheme.

CLOGS MMU Description -Davis and G10J/meister, May 5, 1988 21

2.6.2 The T hird D esign - Some R egisters Permanently Mapped

The third MMU design attempted to reduce the number of bits of memory in the MMU and
to make some operating system task more efficient by permanently assigning some of the
~ntu registers to physical pages. In this ~berne, memory locations ffif.IOOOOO to ffif.f.lfi1T
were assigned to physical pages 0 to 262,144, respectively. These memory loc~tious always
returned the corresponding physical page number wllen read. and the physical page was
ignored during writes to these MMU registers. The memory from ffff.f40000 to fllf.fclffe
could be assigned to any physical page.

The advantages of this third scheme were fewer memory bits in the MMU and a possible
improvement in operating system speed. l.f a computer system had N physical pages and
allow for and addition M pages to be shared, t hen N+M MMU registers would be required.
We estimate The third scheme would then save N* l8 bit s of memory over the primary
scheme. Another ad vantAge for this aeheme wa.s impro,·ed performance during a naive search
for a page to swap out. With the tb~rd scheme, a search for a potentially shared page would
only require O(M) while the primary scheme would take O(N+M). A.s estimated above, M
would only be 10% of N, so this new scheme would yield an order of magnitude performance
Improvement. This advantage disappeared, though, wben a O(log M) software algorithm was
suggested. The data structures and algorilhm to attain this superior level of performance
are well understood.

With one major advantage of this scheme eliminR.ted, the disadvantages beeame more
persuasive. This scheme of two classes of MMU registexs lacks propriety. Although the same
operations may be performed on the two types of M.\!U registers, different aetions result.
If the systems programmer makes an error, and tries to set the physical page number of
one of the permanently assigned MMU registers, the a.ction is •gnored and the programmer
receives no warning of his error. An additional disadvantage of the third scheme is that the
number of shared pages is limited to .\1. With the primary scheme, all .\1MU's registers may
be used for shared pages, with only the disadvantage t hat some physical pages may not be
accessible, a much more graceful degradation of performance.

Since the only advantage to this scheme was the saving of some memory in the .\1M U
and it introduced such serious impropriety, we ll<llected the primary scheme over it.

Chapter 3

Assembler Language

3.1 Memory Architecture

The CLOCS memory space is all mapped in to one address space. The working store (pro­
gram counter), Memory Management Unit (MM U) registers and ~II [nput Outpot devices
share the address space with main memory. Refer to t he CLOCS Compiler and Assembly
Language Description for a more detailed treatment of the architedure.

3.1.1 Memory Scheme

A quick review of terms pertinent to the memory:

PID (14) Proce.s identifier.

SID (16) Segment identifier.

OSID (16) the default ope.rand SID

ISID (16) the default instruction SID.

YO (24) Virtual Offset.

PC (24) Program Counter, a YO.

OPND (24) Operand of in an instruction, a YO.

VP (12) Virtual page.

PP (18) Physical page.

PO (12) Physical Offset, the low order bits of YO.

VA ('10) Virtual address, SID+ YO

22

,\ sscmbler Language Definition - Davis, May 5, /988 23

PA (30) Physical address, PP+PO.

T he MMU t ranslates ~he combination of PID, SID, VP to PP and checks t he PID's permis­
sion on that SID+ VP combination. The 30 bit Physi<:al Address gives tbat machine a real
memory capability or 1,073,741,824 words (or 8 gigabytes). AU accesses to memory are by
64-bit word access only.

3.1.2 Memory-Mapped Access

CLOCS reduces the variety of its instructions by mapping a ll state information orthe machine
into the memory space of the p rocessor. T hus, the State Word, consisting of the PC, PID,
and Flags, may be found a t location ffff.ffffff (This is segment ffff, address ffffff). The
M~fU registers begin at ffff.IOOOOO. Location trff.feiTlr contains the number of MMU registers
installed on this CPU. Input-output devices are mappe<l into the memory from trff.f!OOOO
to ffff.ffefTf. T he t rap and interrupt vectors, likewise, can be found in the this segment, at
add re!l8es mr.trrooo to mr.rrrrre.

3 .2 Data Types

CLOCS supports a single arithmetic data type: the &4-bit signed integer represente<l as a
2's complement. There is provision for an optional data type, a 64 bit IEEE 754 Boating
point number.

3.3 I nstr uction Syntax

The input to the assembler is an Mcii text fi le. E:a,;h line in the te;<t file contains (1) a
mac hine instruction (2) a assembler directive (3) a l~bel or (4) :!o comment.

3.3.1 Machine Instructions

A machine instruction consista of •ero or more spaces, an operation code abbreviation fol­
lowed by one or more spaces followe<l by the operands of the instruelioo.s. Operands are
separate<! by commas and must not contain spaces. Operands may be decimal integers,
hexadecimal numbers ind ica ted by "OX" as t he fi rst ~wo characters, or a lnbel which is n
word starting with A·Z, "#", or underscore and containing t hose characterS or digits 0-9.
Anything on the line aner the opernnds is considere<l to be a comment and is ignored.

Sub 123 , 1oc22 ~his is a comment

Assembler Language Definition- Davis, May 5, 1988 24

3.3.2 Assembler Direct ives

Assembler directives instruct the assembler for actions that do not result in generation of
an executable machine instruction. Some of the assembler directives are followed by a single
operand. The assembler directives are as follows:

.sect section command, begins .text, .df\ttl., .rom, or .bss sections

.data2 data command, reserves I word of storage. May be followed by a decimal integer or
by a character string .

. ex t specifies the operand is an external label.

3.4 Instruction Lis t

In this instruction format, the 5 bits of operation code are followed by 5 b•ts of flags which
determine addressing modes for the two operands. The ocxt6 bits specify fta&S or a count.
The operand, 24 bits long, follows. A number of addressmg modes, as described elsewhere
in this document, can be applied to the opera nd(s) by ~be judicious setting of lhe addressing
mode flags.

3 .5 Addressing Modes

CLOCS supports seven addressing modes, all of which are available for use with operand
one, a nd fou r of which a re a vailable for operand two. In each subsec tion below, the title of
t he addressing mode appears as the header . After each add ressing mode identification is the
bit pattern appearing in the instruction to identify that mode. All modes used for operand 2
have a high order bit of 0, so only the 2 lowest order biu appear in the in.slruclion. In these
descriptions, "+" means catenate the two values. !'\ext is listed the operands for which it
may be used. An example is given of the operand. In these examples, 123 refens to location
123 decimal, and loc22 is a label associated with some storage definition statement m the
program. A formal and textual definition of the operand locat•on ends each section .

3.5.1 O pnd - 000

(Opndl , Opnd2)

Sub 123 , loc22

Operand :=: FETCH (OSlO+ Opnd)

Assembler Language Definition- Davis, May 5, 1988 25

OSIU, ~he operand SID. is catenated ~o the high-order end of Opnd to provide a full
40-bit virtual operand address from which the operand is fetched. This is CLOCS' "d irect
mode" of add ressing.

3.5.2 @Opnd - 001

(Opnd I. Opnd2)

Sub 0123,Gloc22

Operand := FETCH (OSID + FETCH(OSlO+ Opnd))

OSID ls catenated ~ Opnd ~ form an virtual address. From this address is fetched a
24-bit offset. This offset •• catena~d wit h OSID to form the virtual operand address. This
is CLOCS' "indirect mode" addressing.

3.5.3 %Opnd - 010

(Opodl, Opnd2)

Sub Y.t23,%loc22

Operand := FETC H (0 Segment + Opnd)

The operand is catenated to a SID of zero to arrive a.t the vutual operand address. Tllis
pro,~des rapid zero-page addressing, but otherwise is identical to Direct Addressing.

3.5.4 %@0pnd - 011

(Opndl, Opnd2)

Sub Y.0123,Y.Oloc22

Ope rand := FETC II(FETCH (OSlO + O pnd))

OSlO is catenated to Opnd to form an ,;rtual address; from this address a word coo·
taining a 40-bit address is fetched ~form a ''irtual address into any page. This is indirect
addressing FROM the process' page, INTO any page.

•

Assembler Language Definition - Dllvis, May 5, 1088 26

3.5.5 %@%0pnd - 101

(Opodl ONLY)

Sub XOX123,loc22

Operand := FETCH(FETCH (0 Segment + Opnd))

Opnd is catenated with the zero page SID to form a virtual address; from this address in
the zero page a word containing a 40-bit address is fetched. This virtual address is used to
fetch data in any 1>age. T his is indirect add ressing FROM the zero page, INTO any page.

3.5.6 @%Opnd - 110

(Opodl ONLY)

Sub OY.1 23, loc22

Operand := FETCll(OSID + FETCH (0 Scsment + Opnd))

Opnd is eatenaLed with the zero page SID to form an virtual address. From that address,
a 2+bit offset is fetched. This offset is catenated Wllh the OS!D to Conn tbe virtual opero.nd
addresa. This is indirect addressing FROM the zero page, INTO the process' page. (We do
not see a great need for t his instruct•on, however we put it in for symmetry. The compiler
(and tho compiler writers) can tell ll8 if it is useful.)

3.5.7 < Opnd - 100

(Opndl ONLY)

Sub <123,1oc22

Operand := Opnd

11 note that 1'23 ia subtracted from
'•the contents ot loc22

Opnd is a 24-bit immediate operand.

3.6 Conditional Skip

Certain CLOGS instruction include a cond itional skip or the next instruction. These iu•truc­
tions nre: Add, Sub, Mult. Oiv. Rern, And, Or, Xor.

Assembler Language Definition - Dtwis, May 5, 1988

For the Add, Sub, Mult. Div, and Rem instructions, the conditions are:

LT result of operation less tl1an ze ro.

GT result of operation greater than tero.

EQ result of operation equal to 1-ero.

NO result of operation did NOT overflow.

NU result of operdion did 1\0T underflow.

NZ result of operation was NOT a divide-by-zero.

For the And, Or, and XOR instructions, tbe condit ions are:

EQ result of operation equal to zero.

NZ result of operation is not zero.

27

Eacb of the conditions correspond to a bit in the instruction. If the bit is set and the
condition is true, then the next instruction is not executed . Of course, if no cond ition is
specified, the following instruction will never be skipped.

For eau of gentr•tion by the compiler and to ease hand coding assembler, the appropri­
at~ possibilities of condition skip have been ineorpora\ ed into the operation abbreviation.
Conditional skips may also be specified by adding the abbreviations above after the required
operands. These end of line conditionals override any conditionals specified in the operation
code abbreviation, so should be used with care. Following are some example ins~ructions
and descrip~ions of the interpret.ation and use.

SUDGT Opndl , Opnd2
Subtract the fi rst ope rand and from the second opern11d, placing the result in the second
operand, and skip the following instruction if the result was greater than zero. Note that
this inatruction, when Opnd2 is an immediate one. followed by a trap or branch. pro,-ides a
p() operation on the semaphore addressed by Opndl .

OIVNZ Opndl , 0pud2
Divide operand I by operand 2. plac ing the result in operand 2, and skip the following
instruction if the result was NOT a divide-by-zero. If the next instruction is a branch to an
error handling routine, this combmation allows easy handling of arithmetic exceptions by
the user program.

The trap and branch instructions use the same Oags. but Me conditionally executed
instead of conditionally skipping the next instruction.

Assembler Language Definition - Davis, May .5, 1988 28

3. 7 Instruction List

In the list of instruction below, t he beading identifies the operation and operands for the
instruction. In typewrite r type, a list of the instru.ction abbreviations ill given, including
all abbreviations addressing conditional skips or byte logical operations. In these descrip­
tions Opnd I and Opnd2 refer to the operand definitions above. The optional conditional
description appears at the end of the required operands.

3.7.1 Add Opndl, Opnd2

ADD Opndl • Opnc12 (, Condi tiona.JJ
ADDCT Opndl, Opnd2 (,Conditional)
ADDCE Opnd!,Opnd2(,Conditional)
ADDEQ Opndl,Opnd2(,Conditional)
AODLT Opndi,Opnci2(,Conditional)
ADDLE Opndl, Opncl2 (, Condi ti.onal]
ADDI O Opndl,Opnc12(,Conditional)
ADDIU Opndi , Opnci2(,Conditional)
ADDF Opndi,Opnd2 (,Conditional)

Operand one and operand two are added in full 6~bit two's complement arithmetic; the
resu lt is placed in operand two. (conditional skips: I..T, GT, EQ, NO, NU)

3.7.2 Sub Opndl, Opnd2

SUB Opndl,Opnci2(,Conditional)
SUBCT Opnd1,0pnd2(,Conditional)
SUBC£ Opndl,Opnc12(,Conditional)
SUBEQ Opndl,Opnd2(,Conditional]
SUBLT Opndl,Opnci2(.Conditional)
SUBLE Opndl,Opnd2(,Conditional]
SUBJO Opndl,Opnd2(,Conditional)
SUBNU Opndl,Opnd2(,Conditional)
SUBF Opndl ,Opnd2(,Conditional)

Operand one is subtmcted from operand t wo; t he result is placed in operMd two. Arith·
metic is full 61-biL two's complement. (conditional skips: LT, C'f, EQ, NO. NU)

Assembler Language Definition- Davis, May 5, 19$8

3.7.3 Mult Opndl, Opnd2

KUL Ophdl,Opnd2[,Conditional]
IIVLGT Ophdl,Opnd2(.Conditlonal)
IIVLGE Ophdl,Opnd2(,Condit1onal)
KULLT Opnd!,Opnd2[,Conditional]
MULLE Opndl,Opnd2[,Conditional]
MULEQ Ophdl,Opnd2[.Cond>tional]
IIIILIO Ophdl,Opnd2(.Conditional]
KULJO Opndi,Opnd2[,Conditional]
KULF Opnd1 ,0pnd2[,Conditional)

29

The low-order 64 bits of operand one are multiplied by \he low-order 64 bils of operand
two, producing a 64-bit result which is stored in operand two. If the opera~ion results in a
number thn< catUlot be represented in 64 bits, an overOow exception will occur. (conditional
skips. LT, GT, EQ, NO, NU)

3.7.4 Div Opndl, Opnd2

DIV Opndl, Opnd2[,Conditlonal]
DIVGT Opndl ,Opnd2[,Conditional]
DIVGE Opndl,Opnd2[,Conditional]
DIVEQ Opnd1,0pnd2[,Conditional]
DIVLT Opnd!,Opnd2[.Conditional]
DIVLE Opnd1,0pnd2[,Conditional]
DIVHO Ophd1,0pnd2(.Condit ional]
DIVHU Opndl,Opnd2[,Conditional]
DIVHZ Opndl,Opnd2[,Conditional]
DIVF Opndl,Opnd2(,Condit1onal]

Operand two is divided by operand one, and the result is placed in operand two. The
operands are 64-bit quantities; the result is a 64-bit quantity. Division is in two's comple·
ment mteger arithmetic. Division by a divisor greater than the quotient will result in zero.
(conditional skips: I,T, GT, EQ, NO, NU, NZ)

3.7.5 Rem Opndl, Opnd2

Assembler Language Definition- D~vis, May 5, 1988 30

REM Opnd1,Dpnd2(,Conditional)

Operand ~wo is divided by operand one. and ~be Iemainder of tlus division ;., placed 111

operand two. Division is as in the Div instruction. (conditional skips: LT, GT, EQ, NO,
NU, NZ)

3.7.6 And Opndl, Opnd2

AID Dpndl,Opnd2(,Conditional)
AIDEQ Opnd1 ,Opnd2(,Conditional)
AIDIZ Opnd1,0pnd2[,Conditional)
AIDBYT Conatant,Opndi,Opnd2[,Condition~l)
ANDBYTEQ Conotant,Opndl,Opnd2(,Conditional]
AJDBYTJZ Conotant,Opndl,Opnd2[,Condit ional)

Operand two and operand one a re ANOed ~gether in bitwise fashion: the result is
placed in operand ~wo. fashion, and the result is placed in oper~nd \ wo, Tbese operations
are normally bit wise for all bita, but may be applied to only an 8 bit byte selected by a
Constant. (conditional skips: EQ, NZ)

3.7.7 Or Opndl, Opnd2

OR Opnd1,0pnd2(,Conditional]
OREQ Opndl,Opnd2(,Conditional]
ORIZ Opndl,Opnd2[,Conditional)
ORBYT Conatant,Opnd1,0pnd2(,Conditional)
ORBYTEQ Conotant,Opnd1,0pnd2(,Condit ional)
ORBYTHZ Conetant ,Opndl,Opnd2(,Condit ional)

Operand two and operand one nre ORed together in bit wise fashion, and the result is
placed in operand two. These opera tions are norma lly bit wise for llll bits, but may be
applied to only an 8 bit byte selected by a Constant. (condiuonal skips: EQ, NZ)

Assembler Language Definition - Davis, Ma>' 5, 1988

3.7.8 Xor Opndl, Opnd2

lOR Opndl,Opnd2[,Condi~ional)
IOREQ Opnd1,0pnd2(,Condl~ioDAl]
101\J"Z Opndl,Opnd2[.CondltioDAl)
XORBYT Cona~ant,Opnd!,Opnd2[,Condi~ional)
XORBYTEQ Conatant,Opnd!,Opnd2(,Conditional]
XORBYTIZ Conatant,Opnd!,Opnd2(,Condition&l]

31

Operand one and operand ~wo are exclusive-ORed together in bitwise fashion, and the
result is placed in operand ~wo. These operations are normally bit wise for all bit.s, but may
be applied to only an 8 bit byte selected by a Constan~. (eonditional skips: EQ, NZ)

3.7.9 Left N, Opndl, Opnd2

LEFT Constant,Opndl,Opnd2

Operand one is shifted left N bits (N is supplied in the flags field of the instruction -it
is not a true operand); the result of the shift is placed in operand ~wo. A move is affected
by setting N equal to zero. The low-order bits of the result are cleared to zero.

3.7.10 Right N, Opndl, Opnd2

RCBT Constant,Opndl,Opnd2

Operand one is shifted right logically (sign bilts ignored) :'1 bit.s. The high N bit.s of the
result are cleared to tero. The resuJt ts placed in operand two.

3.7.11 RightArith N, Opndl, Opnd2

RGHTA Constant,Opndl,Opnd2

'

Assembler Langunge Definition - On vis, ,\ifay 5, 1988 32

Operand one is right shifted arithmetically (sign extension is performed))I bits. The
result is plaeed in operand L"'O.

3.7.12 Branch Opndl, Opnd2

BRH Opnd1,0pnd2(,Conditional)
BEQ Opnd1,0pnd2(,Conditional)
BLE Opnd1,0pnd2(,Conditiona1)
BCE Opnd1,0pnd2[,Conditional)
BJE Opnd1,0pnd2[,Condit ional)
BGT Opnd1,0pnd2[,Condit i onal)
BLT Opnd1,0pnd2[,Conditional)

The program counter is conditionally lo.'de<.l from operand one, based o n the result of
comp&risons with operand 2 (LT . GT , EQ, NE, Uncond itional, l.E, GE). If t he addressing
mode of operand I is such that a new ISEG is fetched, that new !SEC is stored into the
MM U. This allows for the changing of instruction contexts. (Operand context is changed
via the LoadOSID instruction)

3.7.13 Trap Opnd1, Opnd2

TRP Opndl,Opnd2(,Condit i onal)

Control switcht>s to t.he context ind icated by the trap vector indexed by Opnd I (a number,
not ao address), based on t he result of comparisons done with operand 2. Comparison
conditions are the same as for the branch instruction.

3.7.14 LoadOSID Opndl

LOB Opndl

Assembler Language Definit ion - Davis, May 5, 1088 33

The OSID from Opndl is loaded into the ~t:\IU as the primary OSID for this process. If
no loaded physical page assigned to the current process has this OSlD, the CPU will trap.
The operating syst.crn may t hen decide if this is an authorized OSrD for lhe current process.

3. 7.15 Floating Point Instructions

Floati ng point in3truetions codea are not yet aseigned

Floating poin t instructions are important enough to this machine that we will reserve
operation codes for add, subtract, multiply and divide. The instructioru~ will operate on
IEEE standard 64 bit floating point numbers with the round to closest rounding option. If
not implemented in hardware, the instructions will be executed by the kernel as it handles the
unassigned operation eode exception. This easily allow.s addition of floating point hardware
later, and the software handling will take maximum advantage of the fast context change.'
available. Conditional skips shall be handled in the same manner as for fixed poont a rithmetic

Chapter 4

Compiler Description

As support for research into issues of architecture and operating systems, a cross compi ler for
a hypothetical reduced instruction set computer is required. The language to be compiled is
C, and the architecture targeted is the CLOGS arcb.itedure being designed by ~lark Davis
and Bill 0. Gallmeister.

4.1 Class Project

The CLOGS cross compiler to be built must be a modular system wbicb can be easily mod·
ified to output CLOGS assembly language, object code, or high-level simulator constructs.
Note that all of these output formats should be roughly isomorphic to one another; producing
one from another is mainly a lexieal matter.

Tbe CLOGS team has no illusions that the compiler produced by the 240 team will be the
final solution to CLOGS' compiler needs; therefore, it is essential that the CLOCS team be
able to do work on the compiler after completion of the 240 projed. For these reasons, the
compiler should be built to output code statistics, and the compiler must be well-structured,
well-documented and moderately easy to maint&in 1\nd modify.

4.2 Fast Context Switch

The Cl-OCS project is to design " computer architecture to handle real t ime applications
while support ing a full-featured, general purpose operati ng system. This computer has the
ability to change context rapidly.

34

CLOGS Compiler and Assembly Language- Davis and GaJJmeister, May 5, 1988 35

4.3 CLOCS Architecture

The CLOCS architecture ;. a simple one. All operattons are memory to memory, and the
processor has minimal internal state. There are few data types and instructions. Several
addressing modC8 are provided to compensate for the lack of index register•.

4.3.1 Simple Architecture

Because the research is aumd at answering questions regarding the performance of simple
machines, and also because this IS a ~arch project, tbe CLOCS architecture is simple.

RISC

In keeping with the RISC philosophy, CLOCS has few instructions (about twe nty), few data
types (the word, interpre ted as a logical, arithmetic, or addressing entity), and a minimal
amount of state. CLOGS has exactly one register, the Status Word .

Resonreh GoMiderations

Since this is a research machine, a simple archie«ture was decided upon; this allows us to
concentrate more on tbe central issues of the research.

In addition, to facilitate comparison of GLOCS and currently available designs, it is
desired that GLOCS hear some outward resemblance to other existing R!SG machines. 'The
ma<:hine tbe CLOGS is designed to resemble tbe most closely is Sun Microeystems' SPA RC
processor.

4.3.2 Memory Address Space Organization

16 Meg Directly Addressable

Operand addresses in mstruet.ions, as well as the program count.er itself, are 24 bits long.
This gives a derault addre.~Sing range or 16 mega words.

Oue Teraword Total Virturu Add l'C$S Space

For eAch process running on the CLOCS cpu, a deraull segment identafier is supplied for
instruction and operands. The segment identifier is prepended to the 24 hit operand or
program counter address, to deterntine the desired add ress. These segmeut identifiers are](}
bits long, providing a totnl of ·10 bits of address. Some addressing modes allow altering the

CLOCS Compiler and Assembly Language - Davis and Gallmeister, May 5, 1988 36

segmen t identifier,so that all of the virtual address s;pace may be addressed. The address
space is 64K segments of 16 megaword each, for 2-to-th~40th (1,099.511,627,776 or one
teraword) total virtual address space.

PIDs, P r ocessor Levels and P ermissions

CLOCS supports in hard ware the notion of distinct p r~esses. In the program nat us word
is the Pr~ess Identifier (PID), a 14 bit field that identifies the running pr~ess. Associated
with each process is a default instruction segment, a default operand (or data) segment and
memory access permission for segments being used by the process.

A superuser, PID 0, may access the Memory Management Unit (MMU) registers to
establish this information. Any process may read Ol" execute segment 0, and the process
with PID 0 may read, write or execute in any segment, but all other memory access must be
approved by the MMU. A user process (PLD # 0) may l>ave permission to read only, read
or write, execute only, or read and execute a segment. Segments may be default segments
(used when no sro is specified like during instruction fetch or fetching operands using the
24 bit virtual offset in the instruction "'ord}.

Memory Scheme

A quick review of terms:

PID (14) Procees identifier.

SID (16) Segment. identifier.

OSID (16) the default operand SID.

ISID (16) the default instruction SID.

VO (24) Virtual Offset.

PC (24) Program Counter, a VO.

OPND (24) Operand of in an instruction, a VO.

VP (12) Virtual page.

PP (18) Physical page.

PO (12) Physical Offset, the low order bits of VO.

VA (40) Virtual address, SID+ VO.

I" A (30) Physical address, PP+PO.

The MMU t ranslates the combination of PIO, SID, VP to PP and checks the PI D's permis­
sion ou that SID+ VP combination. The 30 bit Physical Address gives t.bat machine a real
memory capability of I,073,741,82•1 words (or 8 gigabytes). All accesses to memory are by
64-bit word access only.

CLOCS Compiler •nd Assembly Language - Davis a nd Gallmcister, May 5, 1!188 37

Memory-Mapped Access

C LOGS reduces tbc variety of its instructions by mapping aU state information of the machine
into the memory space of the proce880r. Thus, the State Word, consisting of the PC, PtD,
and Fla&a, may be found aL loca\lon ffff.fflfff (This is segment ffff, address ftlTff). The
M M U regiSters begin M fflf.tllOOOO. Location fflf.fefflf contains the number of M M U registers
installed on this cpu. Input-output devices are mapped into the memory from ffflffOOOO
to ffff.ffcfff. The trap ~nd interrupt vectors, likewise, can be found in t he this segment, at
addresses fflf.fftllOO to trrr.fflffe.

4.3.3 Minimal Processor State

4.3.4 Data Types

CLOGS supports a single arithmetic data type: the 64-bit sigued integer represented as a
2's complement. There is provision for an optional data type, a 64 bit lEE!:: 784 floating
point number.

4.3.5 Instruction Format

In this instruction form~\, \he S bits of opera\ion code are followed by 5 bits of ftags whieb
determine a.ddressing modes for the two operands. Th<> next 6 bits specify flag~~ or a count.
The operand , 24 bits long, follows. A number of addressing modes, as described elsewhere
in this doc ument, can be applied lo the operand(s) by the judicious setting of the addressing
mode flngs.

4.3.6 Addressing Modes

CLOGS supports seven addressing modes. aU o£ which a.ce available for use w1th operand one,
a.nd four of which are &\'8ilahle for operand two. Alter each a.ddressmg mode identification
is the bit pattern appearing in the instruction to ident ify that mode. All modes used for
operand 2 have a high order bit ofO. so only the 2 lowest order bits appear in the instruction.
[n t.hese dC'scriptions, "+'J means catenate Lhe two values.

Opnd- 000

(Opnd L. Opnd2)

Operand := FETCH (OSID + Opnd)

OSlO, the operand SID, is catenated to the high-o rder end of Opnd to provide a full

CLOGS Compaler ~~nd Assembly Langu•g~ - Davis and Gallmeaster, ,\fay 5, 1988 38

40-bil virtual operand address from which ibe operand is iclchecl. This is CLOCS' "direct
mode" of addressing.

@Opnd • 001

{Opndl, Opnd2)

Operand := FETCH (OSID + FETCU(OSIU + Opnd))

OSID is cal.ena~ to Opnd to form an virtual address. From this add<ess 15 felched a
24-bit offset. This offset is catenated with OSID to fo~m the v~rtual operand address. This
as CLOCS' "indirect mode" adruessing.

zOpnd - 010

(Opndl, Opnd2)

Operand := FETCH (0 Segment+ Opnd)

The operand is catenated to a SID of >.ero to arrive at the virtual opernnd address. T his
provides rapid zer<rpage add ressing, but otherwise is identical to Direct Addressing.

z@Opnd- 011

(Opndl, Opnd2)

Operand := FETCH(FETCH (OSlO + Opnd))

OSID is catenated to Opnd to form an virtual address; from this address a word con­
t.aining a 40-bit address is fetched to form a virtual address into any page. This is indirect
addressing FROM the process' page, INTO any page.

z@>,Opnd • 101

(Opndt ONLY)

Operand:= FETCH(FETCB {0 Segment+ Opnd))

Opnd is catenated with the zero page SID to form a virtual address; from this address in
the zero page a word containing a 40-bit address is fetched. This virtual add rest~ is used to
felch data in any page. This is indir~'<:t add ressing FROM the zero page, INTO any page.

CLOGS Compiler and Assembly LMguage- Davis and GaUmcistcr, May 5, 1988 39

@zOpnd - 110

(Opndl ON LY)

Operand •= FETCB(OSJO + FETCfl (0 Segment + Opnd))

Opnd i~ catenated with the zero page SID to form an virtual address. From that address,
a 24-bit offset is fetched . Tbis offset is catenated with the OSID to form the virtual operand
address. This is indirect add ressing FROM the ~ero page, INTO the process' page. (We do
not see a great need for this instruction, however we pu t it in for symmetry. The compiler
(and tbe compiler writers) can tell us if it is useful.)

<Opnd - 100

(Opndl ONLY)

Operand •= Opnd

Opnd is a 24-bit trnmediate operand.

4.3.7 Conditional Skip

Certain CLOCS instruction include a conditional skip of the next instruction. These instruc·
tions are: Add, Sub, Mult, Oiv. Rem, And, Or, Xor.

For the Add, Sub, ~lult. Div, and Rem instructions, the conditions are:

LT result of operation less than zero.

GT rl!<lult of operation greater than zero.

EQ result of operation equal to zero.

NO result nf operation did NOT ovtrflow.

NU result of operation d id NOT underOow.

NZ result of operation was :-lOT a divide-by-zero.

for t he And, Or, and XOR instructions, the conditions are:

EQ result of operation equal to uro.

NZ result. of operation is no~ zero.

CLOCS Compiler and Assembly Langu•ge - Davis and Gallmeister, May 5, !988 40

Each of the conditions correspond to a bit in the instruction. If the bit is set and the
condition is true, then the next instruction is not executed. Of course. tf no condition is
specified, the following instruction will never be skipped.

Following are some example instructions a nd descriptions of the interpretation and use.

SUD GT Opndl, Opnd2
Subtract the first operand and from the second operand, pla<:ing tbe result in the second
operand, and skip the following instruction if tbe result was greater than •ero. Note that
this instruction, when Opnd2 is an immediate one, followed by a trap or branch, provides a
p() operation on the semaphore addressed by Opndl.

DIV NZ Opndl, Opnd2
Divide operand I by operand 2, placiD& the result in operand 2, and skip the following
instruction if the result wat NOT a divide-by-zero. If the next instTuction is a branch to an
error handling routine, this combination ollows easy handling of arithmetic exceptions by
t he u.ser program.

The trap and branch instructions use the same 8ags, but are conditionally executed
instead of conditionally skipping the next instruction.

4.3.8 Instruction List

Add Opodl, Opod2

Operand one and operand two are added in full 64-bit two's complement arithmetic; the
result is pl .. ced in operand two. (conditional skips)

Sub Opndl, Opnd2

Operand one is •ubtracted from operand two; the result is pl$-ctd in operand two, Arithmetic
is full 64-bit two's complement. (conditional skips)

Mult Opndl, Opnd2

The low-order 64 bits of operand one are multiplied by the low-order 64 bits of operand
t wo, producing a 64-bit result which is stored in operand two. If the operation results in a
number thM cannot be represented in 64 bits, an overllow exctption will occur. (conditional
skips)

CLOGS Compiler and Assembly Language- Davis and Gallmcister, May 5, 1988 41

Div Opudl, Opnd2

Operand two is divided by operand one, and the resuh is placed in operand two. The
operands a re 64-bit quantities; the result is a 64-bit quantity. Division is in two's comple­
ment integer arilhrnet~. Division by a divisor greater than the quotient will result in ~ero
(conditional skips)

Rem Opudl, Opnd2

Operand two is divided by operand one, and the remainder of this divisiou is placed ln
operand two. Division is as in the Div instruction. (conditional skips)

And Opndl, Opud2

Operand two and operand one are ANDed together in bitwise fashion; the result is plaeed
in operaud two. (conditional skips)

Or Opndl, Opnd2

Operand two and operand one are ORed together in bitwise fashton, and the result is placed
in operand t wo. (conditional skips)

Xor Opndl. Opnd2

Operand one and operand two are uelusive-ORed together in bitwtse fashion , and the result
is placed in operand two. (conditiona l •k ips)

Len N, Opndl. Opnd2

Operand one is shifted left N bits (N is suppli~d in lb.e flags field of the instructioo - it is
nola true operand): the result of the shirt is plac.ed i1t operand two. A move is affected by
setting N equal to zero. The low-order bits of the result are cleared to zero.

Right N, Opndl, Opnd2

Operand one is shift...! right logically (sign bit is ir;nored) ~ bits The high N bitS of the
result are cleared to zero. The result is placed in operand two.

CLOCS Compiler and Assembly Language - Davis a.nd Gal/meistcr, May 5, 1988 42

RightArith N, Opndl, 0pnd2

Operand one is rigbi shifted arithmetically (sign extension is performed) N bits. T he result
is placed in operand 1wo.

Branch Opndl, Opnd2

The program counter is conditionally loaded from operand one, based on the result of eom·
parisons with operand 2 (T,T, GT, EQ, NE, Uncond il.ionnl, LE, GE) . U the addres~ing mode
of operand lis such that a new ISEG is fetched, that new !SEC is stored into the MM U.
This a llows for the changing of instruction contexl.s. (Operand context is changed vin the
LoadOBase instruction)

Trap Opndl , Opnd2

Control swit.ches to the context indicated by the trap vector indexed by Opndl (a number,
not an address}, based on the result of comparisons done with operand 2. Comparison
conditions a.re the same as for the branch instruction.

LoadOSID Opndl

The OSlO from Opndl is loaded into the MMU as the primary OSlO for this process Ir no
loaded physical page assigned to the current process hu this 0510, the cpu will trap. The
operating system may then decide if this is an author ized 0510 for tbe current process.

Flooting Point Instructions

F'loating point instructions are impor tant enough to this mac hine that we will reserve oper­
ation codes for add, subtract, multiply and divide The instructions will operate on IEEE
standard 64 bit Ooating point numbers with the round to closest rounding option If not
implemented in hardware, the instrudions witl be executed by the kernel a.s it bandies the
unassigned operation code except ton. This easily allows addition of 6oating potnt hardware
later, and the software handling will take maximum advantage of the fast context ch~nges
available.

Bibliography

(1] Harvey M. Deitel. An Introduclior~ to Operoling Systems. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1984.

(2] Karsten Schwan, Tom Bihari, Bruce W. Weide, and Gregor Taulbee. High-Performance
Operating System Primitives for Robotics and Real-Time Control Systems. A CM Trans­
actions on Computer Systems, 5(3):189-231, August 1987.

43

