
Term-Rewriting Techniques
for Logic Programming I:

Completion

TRBB-010

.l'.pril 1988

Michael P. Smith"'
David A. Plaisted

The University of No rth Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill , NC 27599-3175

'

(7,'• '' "'
. I '

I I

'Vepartmcnt of Computer Sctcncc, Duke Uni••ersi~y. Durham. SC.

"lii<C is on E.qual Opportunity/AffirmBti"e Action lrlbtitution,

Term-Rewriting Techniques
for Logic Programming I:

Completion•

~lichael P. Smith
Department of Computer Science

D11ke University
Durham, NC 27706
mps~cs.duke. edu

David A. Plaisted
Department of Computer Science
The University of Nortu Carolina

Chapel Hill, NC 2i514
plaisted@cs.unc.edu

April 19, 1988

' llese&rch ••.opported in p:ut by National Sdcntc l'oundalion G rant DCit-8516243.
Thank3 ~o Donn.ld LoveJanc.l, Gopn.lan Nadathur, Xu min Nie, and 1.l1c particip&n~s in du::
Deda.ralivr l.&ng:uage~ Scminat at UNC and the Theorem~ Proving Seminar at Duke {or
va.Juablc con\men t..s.

1

0

I-------- --------2
1~~12 2~~22

/"-.. /"-..
12 L 122 211 212

Figure 1: Occurrences in a(a(b,a(b,w)),a(a(b.b),c))

1 Theoretical Background

Reasoning about equations is fundamen tal in computer science and else.
where. Yet equality is diflicul~ for many automated theorem provers to
handle. The chief obstacle to automating equational reasoning is the lack
of control inherent in the basic mode of equational inference: bidirectional
matching and substitution. A natural answer to this problem is to add direc.
tion to equations, turning them into rewt·ite rules. 'vVe have simulat<~d the
K n uth-Dcndix technique for converting a. set of equiltions into a complete set
of rewrite rules in a first-order theorem prover implemented in Prolog. Since
unification t>lays a primary role in this technique, Knuth -Uendlx completion
provides an obvious route for dealing with equations in a logic programming
context.

1.1 Equational and Rewrite Systems

Let T be a set of first-order terms constructed from some set of function
symbols rand variables V. We shall informally use string> of integers, or
occurrences, to identify subterm positions. \\'e write r(v]P to denote a term
r with a subterm v at position p. For example, the occurrcnn•s of s =
a(a(b,a(b,w)),a(a(b,b),c)), arc mapped in tree form in Figure 1. Note

s(a(a(b,a(h , w)),a(a(b,b),t·))]o = s{a(b,a(b,w)))l = s(b]11 = s(<t(b,w)] 12 =
s[b]m = s[w]m = s{a(a(b. b),c)h = s{a(b. blht = s{b]111 = s(b]m = s[c]?'J.

An equational system C O\'er T has as axioms a set of equations of
the form o = fJ. When a term contains a subterm (not necessarily proper)
matclting either side of an equation, that subterm may be replaced by the

2

o~her side of ~he equation. ~fore formally, an equario11al system has the
single rule of inference:

:=:(T(uu]p), u = v
:=:(r(t;ujp)

where:=: stands for any propositional context, <1 = {3 represents ambiguously
either a= /3 or /3 = a, and u is a substitutio1\ of tc•rms for variabl~s . Dirkhoff
(lj showed the soundness and completeness of Pquational systems.

The problem with equational systems from the computational stand·
point is that their single rule of inference l>rovides no strategy other than
to exhaustively compare pairs of terms on ~ither side of the a.xiom;,. fn
common practice, equations a.r~ efficiently used to simplify complex terms
accorcling to some ordering principle. For exalllf>lc, in verifyiug that

•I

v'4! • 4+ 4 =I>
ieO

we first replace definienda by definiens. and then replace equals by equals in
the direction of shoner term~ 11ntil both sid~s Dre identical. This suggests
that automated equatioaal rcasoning sllOuld use direr t.cd equations similarly
to cut dc)wrl search, as many systems do.

A rewrite system n over T is set of directed equatiotiS of the form
I ~ r, called rewrite rules. Directed equations arc applied like undirected
equations, but only left-hand sides are matched and replaced by right-hand
sides only. ~lore formally again, a rewrite system has this rule of inference:

:::(T[ti<7)p), U- V

:=:(,.[va)p)

with :::: and u understood as before.
Not surprisingly. not just any rewrite system is complete in the sense

that one crul deri,•e any valid consequence of the rules considered as undi
rected equations. There is, however, a family of rewrite systems that are
not only sound and comtl lcte, bu~ decidable, ,J cspi tc the fact that in general
equation<LI consequence is undecidable. To in troduce them we need a bit of
terminology fi rst.

We write s - t for "s rewrites to t in a single step" and s ..:. t for
the reflexive, transith·c closure of -. s 1 t is an abbreviation for 3u(u
s & u - t) : in other words, some term u diverges under rewriting. .s ! t
will likewise abbreviate convergence: 3u(s- u & t - u). We shall indicate
evcruual convergence: 3u(.!..:. u & t..:. u) by s 1· t. and P.vcntual divergence:

3

s s

tl~/t2
u

figure 2: Confluence and Local Confluence

3u(u ~ s & u ~ t), by s •! 1. We shall wri tes..!.. t to indicate that t is a
nor mal form of s . i.e .. that s ~ t and ,3u(t .=. u).

One way to decide whether an equation follows from a set of equation~
is to use tl1a1. set to matrh :u~d replace the terms in the target equation until
eit her both sides of the target equation are the same, or else both sides arc
irreducibly distinct. If every term has a unique normal form. this procedure
is complete. In a canonical rewrite system, every term has a unique normal
fo rm.

A c:.111onical rewrite system n is one whi<:h is fin ite, noetherian, and
confluertt. A system of rewrite rules n is noet herian just in case eveiy
sequence of rewrites terminates: in other words. iff .:. is well founded in n.
Confluence, sometimes called the diamond or lattice property, ensures that
terms that diverge under rewriting eventually converge. ln other word~, n
is con:fl uent iff 'v's,t(.s +f t :J s l• t). (See Figure 2.)

1.2 Noetherian Orderings

A llinary relation >- on 1' is monoto nic iff it has the replacement pr-i>per·ty,
i.e.,

'>It, u E T, 'v' I E F. t >- u :J f(o., ,a,, t, l>k, •.. ,c.n) >- f(c., •... ,c.,. ILl>b • •. ,Cl'n)

It is stable (under substitution) iff

'v't, u E T, t >- u :J ta >- uu

for any substitution u of terms in T for variables. A monotonic partial
ordeting is a simplificat ion ordering if it has in addition the subterm
property:

'v't E T, 'v'f E F, f(... t...) >- t

4

Dershowilz [2] proves the following ih()Orem:

A rewriting system {I, - r;} over a set of terms Tis noeth~rian
if ther<> exists a stable simplification ordering >- over T such that
l; >- r;.

We shall call such a. stable simpUfication ordering<> reduction ordering.
For our proofs we used a recursive procedure wb.ich lcxicograpb.ically

orders terms in the following way. First a routine we'll call LEX attempts to
order the terms on the fol lowing principles:

1. Variabl~s are not ordered among themselves.

2. Compound terms 1 >-t., atoms: e.g .. /(X, Y) >-t,. a.

:1. Compound term~ >-t•r subterms: e.g., f (X,g(b,Y)) >-t.,g(b,Y}.

4. Two atoms arc reverse lexiwgraphically ordered by th1•ir names: e.g.,
adam >-~c: zoe.7

5. Two compound terms are ordered by RANI\.

6. Compound terms partially orderable by llAtiK are ordered by calling LEX

on their subterms.

RAN 1\ orders terms in the following way. F irst 1mifiable pairs are rejected
as non-onlcrable, s ince th is would o l>vio usly lead l:o cycles. Non-unifiab le
terms are then ranked. t l ~ •• ,., t2 iff:

(i) v,, ~ V0 , where V11 , \lf2 are the multiscts of variables in 11
and 1ft res1)ectively; and
(ii) w(tl) > w(t2), where w(r) is a linear polynomial weighting
of the functors in r.

A pair of terms is partially ordcrable it meets (i) of RANI\ in one or
both directions (i .e ., th~ occurrences of variables on o ne side is a subset.
not necessarily proper, of those on the other), but does not mee t (ii) in
either d irection (i.e., the weight is the same on both sides). If the ordering
reported by applying LEX to subterms conflicts with the dirl'ction of the
partial ord<•ring of RANK on the terms, the terms are not ordNcd by LEX.

1 ui.z., non"ariable terms 'hat are neit.her nu meric nor sy mbolic a.lont~. nor Hsts.
1Thus c.ht user ca.n give cl iffer~nt w~ights to ea.c;h idendfier through cartful naming.

5

Not<• that in the sirnpl~sl case where all functors are weighted equally,
this ranking orders from longer to shorter ~erms, according to the number
of functors. In the ordering we use on the rombinator problems reported
here, all zero-place functors receive a weight of zero, and all other functors
a weight of one. Th11S

/ (g(a,X,c),h(b.c,Y)) >- a(a,b,c)

by a simple count of the functors, whereas

/(g(a.X.r),Y) >- f(X.g(}',b,c))

is determined by a recursive caD to lexicographically order subtcrms.

j(X.fJ(a.Y,Y)), f(Y,rJ(b,X,X))

is incomp~rablc since it fails condit ion (i) in both directions.
~EX/RANK is a reduction ordering si11ce it fulfills the suillerm condition

by 3. of LEX and the rcplacernent condition by ii of RAI\K.

1.3 Confluence and Local Confluence

A rew rite system n is locally ~onfl uent when tenus that diverge in a single
step cvcutuaJiy convt'rgc: Vs,l(.s l t;) s l•t). (Sec Figure 2.) ~cwman [3}
proved that "noetherian rdation is confluent iff it is locally confluent.
Theorem: If n is noetherian, then

'lfs,t ((s · t :::> s l•t) iff(s· f t :> .s l • t)].

Proof {!4]): The 'if' direction is trivial. The proof of the 'only if' part
uses a pair of i nductio~s to complete the characteristic diamond shape of
conflu~ncc (see Figure :J).

WP ~ssumc that - is a noetherian, locally confluent relation. \\'e show
- to be confluent by noetherian induction. We assume it for cv~rything
less than z under-: i.e .. \>'y(x ~ y). where .:!:. is the transitive closure of
-. and show it for x.

If z - 11 or x - z then we are done by local confluence. Otherwise,
split x ..:. y into x - .• and .~ ..:. y, <Utd x ..:. z into '!' - I and c ..::, z as
shown in the diagram. By lontl confluence. 3u(s ..:. u & I ..:. u). Now two
applications of the induction hypothesis do the trick: first to get us from y
and u to v: and then from v and ~ to u:. 0

The necessity that the relation be noetherian is shown in Figure •I, which
illustrates a locally confluent but non-noetherian r~l:nion which is obviously
uot confluent.

6

w

Figure 3: Noethe rian local confluence impl1cs confluence

Figure 4: Non-noetherian local confluence does not imply collfl uence.

i

1.4 Local C onfl uence and C l'i t ical P ait·s

Donald Knuth and Pett•r llenclix (5] discovered a test for local (.onfl uence
and a procedure for turning a set of equuions mto locally confluent (and
ultimately canonical) rewrite rules, which they implemented and tried on
several problems involving groups. Their basic discovery wa.~ that a noethe·
ria.n r<!write system wou ld be locally confluent iff every critical p a ir of
terms reduced to the same normal form.

One way to ensu re confluence in a rev:rite system would bP to equate
the resulting terms each time a term had clistinct rewrites. Given that the
rewrite rules are congrucnfc-preserving, such a procedure would clearly be
sound. Unfortunately there are typically iufinjtely many such di•·ergent pairs
if there are any. Note howt>ver that this approach involves infinite duplica
tion, since the set of divergent pai rs includes infinite subsets of unifiable
variants. The insight of Knuth and Dcndix was to search for tlte source of
di\·ergence in the rewrite rules the mselves, using most general unification to
render the task finite.

A critical pair is generated when the left-hand sides of two rules overlap
or s upe rpose, so that one is unifi"ble \\'ith a. non-variable su bterm, not
necessarily proper, of the o~her. The critical pair consists of the most general
version of the terms that could be generated by such overlapping rules. For
instance. the two rules

f (X,g(X, a)) ~ h(X)

g(b, n _. i(Y)

superpose to yield th<• critical pair

< f (b, i(a)), h(b) >

;\lore £ormally, suppose >.1 - p 1, >.2 ~ P2 E R. and suppose further
that >.1 = .. p.2aJP for some most general unifier a and somt• (non-variable)
occurrence 1>. T hen there is a critica l pair< u[p1u),p10' >. Fo1· any pair of
t<•rms s, t such that s I t, there is a crit ical pair < 1'<./J > arHl a unifie r a
such that s = Ota and t = {Ja (or l'ice versa).

By equaling critical pairs, we handle together unifiable classes of terms
that would diverge, with great economy. Provided the original set of rul<•s
is finite , there will only finitely many cri tical pa irs. Once :>JI c ritical pairs
are equated, local confluence is guaranteed.

8

Fig11rc 5: Disjoint Subtcrms Case

Theorem: A rewrite system n is locally confluent iff for every critical
pair< S,T >. S .• T.

Proof ((5.6)):
Clearly 1?. is not locally confluent if some critical pair does not converge.
To show that critical pair convergence suffices for local confluence, we note
that there are on ly three possible cases, depicted in the next three figures
("-'.lap ted from [7]).

Suppose that a term cr diverges ander rewriting. Then there are Sll !>terms
of a. say {31 and {h, so that a = u[PJ], = v(,IJ1)9 for some contexts u a11d v,
and positions p and q. Further there must be be rules r 1 and r1 in 1?. of
the form ~~ - p1 , ~, - pz and most general unifiers o 1 and <11 such thM
;J, = >.,at and Jz = ~zOz. Applying r1 or r, to a yields the divergent pair
o.',cl':

< u[pdP , v[pz]q > .
Local confluence demands that a' h a". Call that necessary meeting place
-y.

The simplest case is depicted in Figure 5. If 8 1 and {Jz are disjoint sub.
terms, then r 1rzcr = rzrtO' = w(pt]p(p,j7• For example, if r 1 = f(.\. >')
.\. r2 = g(X, Y)- Y. and a= h(f(n,b),g(b,c)), ~ben a' = h(a.g(b.,·)) and
(>

11 = h{f(a,b),c). So r = h(a. c).

lf the two subterms are not disjoint, then we may suppose that ;]1 b a
subterm of {)2 . There are two possibilities unclcr this heading: either {31 is
contained in one of the terms substitul.cd for variables in >.1 by u2 , or ~lsc
it i> unifiable with ll. non· variable subterm of .X2 •

'!'he fi rst possibility is depicted in F'igure 6. Suppose both u 1 and 112

replace some variable in cr by r. r 1 applied to ao1 re(>laces an occurrence of

9

Figure 6: \'ariable Cas~

.,. by r'. Additional applications of r 1 will replace the other occurrences of
T in a 1u1 by r' . Call the expression obtained in this way a"'. Apply ing r2
to a"' yiclcls (ao2),;,,, (i.e, oo-2 wi th r' unifo rmly substituted for r) . This
same term can be derived by fi rst applying r~ to au,, followed by M many
applications of r 1 M are needed to replace all occu rrcnccs of r by r'.

For example. suppose r1 = n(X) - -X and r 2 = X • (Y + Z) -
(X • Y) +(X ~ Z). If o = 2 • (n(3) + ft(4)), then o' = 2 • (-3- n(ol)) (or
2 • (n(3)+ -4)}, and o" = (2 • n{3)) + (2 .r1(4)). o"' = 2 • (- 3 + -4), and
1 = (2 . -3) + (h -·1).

The final possibility, depicted in F'igt• rc 7, is simply the cri tical pair case.
Since we are given t ho convergence of crit ical p<l.irs by hypothesis, we are
done. As an example, let 1·1 =X +0 ~X, X • (l' + Z) (X • I') + (X • Z),
and 0: = 2 A (1 + 0). Then n' = 2 +l and c1" = (2 • 1) + (2 * 0}. Giv<'n ouly
these two rules, these two terms are irreducible.

1.5 Com pletion

The Knuth- Bendix completion procedure is simply to equate critical pairs
and orient the resulting equations in :u:cordance with some noetherian or·
deri ug. The enlarged ~ct of rewrite rules is then checked for critical J)airs
qnce again, and the JHOccss iterates. There arc three possible outcomes. II
the proced ure terminates, tltcn t he reSlllti ng rewrite system is locally confiu-

10

cri t ical pair

Figure> 7: Critical Pair Case

ent, a.nu in fact canonical, since the nn itencss of the original s~t of equations
and <t noetherian rewrite relation are assumed by the procedure. T he prO
cedure rna.y never termina.Lc, with each addition to the set of rewrite rules
generating another round of critical pairs. Or the procedure may abort, if a
critical pair of terms is generated which is not orderable in either direetion.

Thus the Knuth-Bendix completion procedure assumes a noetherian or
dering on T. If the ordering is not total, the procedure may generate a
non-orient:tblc critical pair and so fail. This problem may be r·esolved by
ad hoc exterBions to the ordering to handle incommensurable terms a.s they
ap1)ear, but this tactic ri sks rendering the ordering non-noetherian. In fact,
even gh·rn an ordering total on ground terms, it is not always possible to
order ~rms with ''al'iables. The approach we have followed is that of -un
failing completion" as described in [8]. Non-orientable equations are kept in
the database and used bidirectionally for the generation of critical pa irs in
the manner of paramodulation.

following [8]. we pres~nt the completiort algorithm ah•tractly as an in
ference system for a set of equations E and a set of rewrite rules R. Assume
here that >- is a reduction ordering on T. First the basic Kmath-Dendix
procedure is characterized by the following rules:

Cl: Orienting an equation

Bu{.•=t} , R .
E,Ru{J -t} afs>-l

C2: Equating a critical pair

E, R
E { _ } n if S J R I Us - t,,.

11

C3: Simplifying an equa1ion

EU{J:::t}, R.f
• I .S ~R U

Eu{u=t),R

C4: Deleting a trivial equation

Eu {3 = s}, R

E,R

The next rules do not alfccl. the final outcome of the 1\nuth- Bendix
procedure, but arc practically necessary for efficiency. They simplify rewrite
rules so that right-hand sides are in normal form rt>lati,·e to all the rules
deri,·ed so far, and the left-hand sides in normal form relative io a.ll rules
.Jeri vcd so far exc<'pt, naturally, those in whlr.h they occur.

Sl: Simpl ifyi ng the right-hand side of a rewrite rule

E, R u {s- t} ·r
E, R u {s- u} 1 t -n u

52: Simplifying the left-hand side of a rewrite rule

E, R u {$ - t}
EU(u-t},R

if I - r E R, s = v{lu)p, u = v{ru)p; or I- r E Rands<> I. o <> J signifies
a i; a proper instance of {J: 3u (a= pu) & -.3 u (.8 = oa).

The intent of 52 is to delete subsumed irts tances of rewrite ru les. The
rest r-ictions are necessary to disting11ish these cases from those falUng under
C2: non-subsumed overlapping rules should not be dropped from R!

Standard completion fails when an equation can neither be simplified
by C3 or C4. nor oriented by Cl. Naturally this can be avoided if r is
total, but this is too much to expect in gen<' ral. Commutativity is an of
tct1 indispensibl~ a..~ iom that cannot he oriented by any reduction orde ring.
Various approaches for rewriting and unification in associative-commutative
syst~ms have been suggested: eg, (9,10.11). :\one of these approache> com
pletely excludes the possibility of failure due to incomparable terms, as does
the apJ>roach skctc:hrd next.

\Vc obtain unfa.i ling completion by adding the in ference rule:
C5: l':quating a critical pai r.

E. R .I
£ { _ } R 1 s f.t:•vn t

U $-I ,

12

together with the following rules for simplification:
53: Simplifying the right-hand side

E, R u {s ~ t} ·r
I t-,..lL

E,Ru(s - u) "'

54: Simplifying the l~ft- hand side

lEu {s: t}. II
a Eu{u:i:l}, R

b)E,Ru{s-t}
Eu {u- t}, R

if I- r E E,s = v[lu]p, u = v[ru]p: or I= r E E a.nd s <> /.

Inference rule C5 subsume,; C2 as a special case. £= signifies tlw rules
generated by the symmetric closure of E. Unfailing completion superposes
not only the left-hand sides of rewrite rules with one another to generate
critical pa.irs, but also the left-hand sides of rewrite rules with t'ithcr side
of equations, and equations with equations. 53 and 54 extend 51 and 52
by allowing orientabl~ instances of equations to be used a:; rewrite rules.
au = fJu is an orientable instance of a = {J if au >- {3u. E denotes the
rewrite system consisting of all orientable instances of equations in £.

Essentially, when faced with a non-orientablc equation, unfailing comple
tion falls back on a paramodulation st.rategy for the determination of critical
pairs. The completeness of this strategy depends ultimately on llirkhoff's
result. While giving up nothing in completeness, however, non-oriented
equations are expensive computationally and should be <tvoidcd iC possible.
The use of oricutable instances in the simplification rules is an Mtempt to
reap some of the advantages of direction from non-orientable equations. For
exam(lll', the two equations X • Y = Y • X and (.\' • l') • Z = (Y • .\") • Z
are not ori<'ntable. Neverth<'less, using them w(' can rewrite ground terms.
e.g .. ((((a • b) • c) •d) • e) ..:.. (e. (tl• (c • (b • a)))), using lexicographic reverse
alph;tbetical l:>rdering. See Figure 8.

The soundness and completeness of unfai li ng completion are proved in
[.s].

1.6 Two Examples of Completion

To sec how standard completion works, consider the following definition of
a grou1>:

13

((((a • b) +e) • d) -e)- ((((b • a) H)+ d) te) [(X • Y) • Z = (Y +X) • Z]
((((b• a) +e) ~ rl) • e)- (((("'(b•a)) • d) • e) [(X • Y) • Z = (Y d ') • Z)
(((c • (b • a)) • d) *€)- ((d • (c• (b • a)))-e) [(X • Y) • Z = (Y • X) • ZJ
((d * (c • (b • a)))H)- (e t (d ~(c• (ll ><t)))) [X • Y = >' • X]

l·'igurc 8: Rewriting instances of unoricnLable eqnaLions.

l•.l = .l

x" x- = I
(x • y) • z = x +(y •z)

We shall t race in parL the comploLion sequence dicLated by the ru les Cl -
C4, under the lexicographic ordering wbere • >- -. The results appear in
Figure 9.

We start by direct ing the three equ:>tions in the order listed. Not<! that
the lexicographic ordering has the efli>ct of moving parentheses to the right
in the association axiom. since (x•y) >- :l: . The first critical pair added comes
from superposing the first two rewrite rules: the second from superposing
th<' rule just generated with the second rule. In generaL wo have followed
such a linc<•r or depth. r, rst strategy. Tlte third critical pair arises from the
overlap b!'lwcen rules 2 and 3, and the next two by superposing the ruie
just added with 2 again. The sixth critical pair is generated by superposing
the previous rule with rule 5. The last critical pair results from superposins
the ru le before the immediately preceding rule with rule 3.

In a straightforward manner we have derived a nearly complete syste111
of rewrite rules. Only on~ ruie is missing. (x • y) - ~ y- ~ x- T his is
a hit more complicated, requiring some intermediate rules. See (5(for one
derivation.

We illustrate unfa.iling completion with the axioms for <~11 associat i\'0·
rommutati vt: ring:

x.o..y=y+x
:t · y=y • x

(.l + y) + z = J' .,. (y + z)
(r •y) • z=:n(y • z)

:t+O = x
X+ i(.c) = 0

:t • (y"- .::) = (x • y) +(:t • z)
(!I+ z) • x = (yq) +(zu)

Note that no procedure will succeed in orienting the symmet ry a..xiom.

14

I Ei R; rule
l • :r =x

0 z . :r- = 1
(x ~ y) • z=x • (y • z)

:rvz =1 Ro+
1 (x •!I) • z = x t {y n·) I •x- x Cl

fit+
2 (.c • y)n=x•(y•z) :t: • x- - I Cl

R2+
3 {:t: •y) • z - x • (y • z) Cl
4 1- = 1 R3 C2

R3+
5 1-- l Cl
6 I • I = 1 Rs C2
j I = I ll; C3
8 Rs C4
9 1 • z = x • (x • z) Rs C2
lO Z =X * (z- * 2) R.s C3

Rs+
l1 x•(x- • z)-.z Cl
12 z • I - (z)- Ru C2
13 x=(:r_)_ Rn C3

lluT
14 (x_)_ -+ x Cl
15 x- • x = 1 R14 C2

11t4+
16 x- • x -+ 1 Cl
17 x + 1 =X 11t6 C2

11ts+
18 X . I - X Cl
19 I • : = x- • (:r • z) R,s C2
20 :=:t • (:t •z) Rts C3

Rts+
21 :.e- -. (x ... z) ~ z Cl

l~igurc 9: P,a.rtial tornplction of g roup ax.ioms

15

In Figure 10, the b(,gimting of a completion sequence is ill ustr:.ted . We usc
the lcx.icograph it: ordering described earl ier. The initial orientation steps arc
combined to save space. The first two critical pairs produced overlap the
first non-orientable equation with the third and fourth rewrite rules. The
last critical pnh is simplified a.nd oriented to give us the closing rewrit.e rule.

2 Application

2.1 Integrating Completion and Proving

We get the effect of unfai li ng complet ion by arran~ing r.he input to a prover
implemented in Prolog by David Plaisted. ba.~ed on llis simplified problem
reduction format, called sprfn (14). The crux of th~ arrangement is to induce
the <>dd.ition of critical pa.irs to the eC(\J:>.1.ionaJ da.taba.,e.

sprfn m;1.y be viewed a..~ an extension to Prolog with t rue (sound) unifi
cation and negation, a complete search strategy (iterative deepening) and
caching of intermediate results. Ahernati\•ely, il. may be seen as a theorem
prover that takes advantage of the built-in unification and b;~ck-cha.ining of
Prolog to adtieve respecr.<tble results in a relatively short and comprehensi
ble piece of code. sprfn inserts a li mltc•l forward-chaining pha.s~ every time
tile depth-bound is increased and the prohlem restarted . Solutions obtained
in either phase are available in bot b. Given a set of rewrite rules. sprfn does
automatic rewriting of terms at the end of each forward-chain infl, phase. t:s
ing the Prolog-likc interface of sprfn, it is possible to represent (~~u a.tional
problems in a way that causes the prover to simulate the Knuth- Bendix com
pletion procedure. ln tb1s paper we compare these representations with the
standard axiomatic representations of equality on several problems involving
combinators.

A feature of our the sw~tegy is tha i. we do not first compile " complet~
system of rewrite rules and then auempt to prove a theorem, but rather
interle;we completion and proof steps. Once we have generated enough
rPwrite rules to prove the theorem wc are done, or so we hope.

Most t)f the rules of un fai ling completion are built into sprfn. C l is taken
care of either interactively by the user or by an automated ori~nter. In th••
r<'Sults to be described, w~ use the lexicographic orienter described earli~r
C2 is subsumed by CS, as we have said. C3 is taken care of automatically
during the rewrite phase. Simpli fication using orieotahl<! instances <t$ iu S3
and S4 is again providccl by the rewriting part of sprfn. This leaves C4 Md
CS to be taken care of in the input. C4 is satisfied by adding a reftexh·ity

JG

i E, R, rule
x+y=y+x
x • y=y•z

(x+y) +z= x + (y+ :)
0 (x •y)•z = z • (y • z)

x+O=x
z + i(z) = 0

:r • (!I - z) = (:r * 31) + (:); • z)
(!J + Z} *Z : (y * X) +(Z * X)

:~:+y=y+:r

x•y=v • :~:

1,2 z+O=z Ro-'-

z • i(z) = 0
z A{!f + :) = (x • y)+(z. z) (x+y)T: - z +(y+ :} Cl
(y + z) • z = (y • x) + (.n :z:) (z• y) • z- x•(y•z) Cl

x+y=y+x
3,4 zty=yn; fl.~+

x • (y + z) = lz • y) + (z u) z+O-x Cl
(y + z) *Z = (y • z) + (P z) z + i(x) - 0 Cl

ll..+
5,6 x+y = y+z (x • y}+(x • =) - x • (y+z) Cl

x • y=y•x (y • z} + (z u)- (y + z) • z Cl
7 O+:t=:l: Rs C5

RB+
8 O+x- z Cl
9 i(z)+z-0 Rs C5

i41+
10 i(z)+z - 0 Cl
11 i(O) + 0 = 0 R10 C5
12 i(O) = 0 R1o S4a

R,o+
13 i(O)- 0 Cl

Figure 10: Partial completion of associative-commutative ring a.~joms

17

axiom to ou r represen \a~ions, which wi ll subsume any instances o f X = X .
The principal job of the input representation is t h ~ simulation of C5, which
adds the cri~ical pairs to the database.

2.2 The C ritical P air Representation

In tld s rep resentation. a rule with a critical-pai r equatio n as its head is
introduced for each occurrence of a non-,·ariable subterm in the terms of
the input. The Knnth-nendix conditions for the generation of critical pairs
appear in t he body. Because this rep resentation contains rules solely to in·
tr<Jduce a nd eq uate crit ical pairs, we call It the cri t ical pair rcprcsentatiOtl.

For example, the b combinator, which given three functions returns the
composition of the fir:.t and the second applied to the third, is defined a.~

follows:
bxyz = 1·(y::').

Represent<•d in first-order terms, t his becomes

a(a(a(b,X),Y),Z) = a(X.a(Y,Z))

using a fo r functional application . We <lcpict t his equation in tree form in
Figure 11.

In this forest, there are five distinct positions occupied by non-variable
terms that may overlap with other t~rms. In practice, we ignore those
posit ions occupied by CO lllbi na to rs , s ince they will be irred ucible on any
r('asonable orde ring. Those positions roo Led in an occurrence of a, Lhc root
position and post ions 1, 2, and 11, ar<' left as po.•sible trouble spots. For
each one, we construct a rule to introduce the appropriate critical pair into
the equation dat<tbase. See Figure 12.

In fact, there seems lo be no reason to tltink that c ritical pai r ru les for
each non-variable occurrence in the input would be sufficient. given that new
and deeper t<'rms will ordinarily be g~nerated and superposed "s the critiral
pair processes iterates. Since sprfn t~nds to be distracted by too many
available inferenr.es. we thought it woul d he best to s tart with a rnjnimal
number of <:ri tical pair rules. and add to the m as needed . In practice. just
the critical pair rules tailored to the input has prov('n sufficient for theorem.
proving. (That is, anything unpro,'3ble with this basic set of critka.l pair
rules is still unprovable with an augmen ted set.) ~lore work needs to be done
o n t he prad ical and tlt~o retical su f!lcioncy of thi5 or any set of occurre n<·c·
specific critical pair rule;.

lS

=

Figu.re 11: bxyz = x(yz)

These rules exhibit the Prolog-like interface to sprfn, including one mis
leading resemblance: ·=· here s~ands for the relation of equality, not the
operation of unification, a.~ in Prolog. Note that the rules for introducing
critical pairs search only the equ<l.tions, because only terms in equations arc
accessible for unification. It is vital then that all rewrite rules be represented
<llso by equations. In addition, equations in the input wiU not be oriented
by sprfn unless they are independently deri,·ed. Thus it is important that
the input file contain an equation for every rewrite rule, and a rewrite rult•
for every orientable <:'qttation. sprfn will preserve this parity, bu t the use r is
responsible for the input.

Calls to Prolog restrict these rules to the forward-chaining phase. Thl'
equation of critical pairs is not an appropriate goal for the prover. If th~
body of a critical pair rule is satisfied, then the equation will IH~ gene rated;
but no subgoals wiU be added by these rules.

2.3 The)vlodification Representation

In our li rst representation, declarations of definitions and a..xioms were sep.
arate frou1 the procedur~s for genN<tting and equat ing criticl\l pairs. In
our next representation, they are rombined. and with this multiple cases

19

'1. root posit ion
v = u : -

prolog(t_cha>ning),
X = U,
prolog(nonvar(X)),
X • V,
prolog((X \== V)),
prolog((V \•• U)).

Y. I posi tion
a(V,'f) = U :

prolog(t_chalning),
"(X ,Y) = U,
prolog(nonvar(X)) ,
X = V,
prolog((X \•• V)).
prolog((a (V,Y) \== U)).

Y. 2 posit1on
a(X,V) = U :

prolog(t_chaining) ,
a(X,Y) = U,
prolog(nonvar(Y)),

Y.
Y.
'l.
'l.
'l.
'1.
Y.

prolog((Y \•= V)),
prolog((a(X,V) \== U)).

Y. 11 position
a(a(V,Y),Z) = U :

prolog(f_cha>n>ng),
a(a(X,Y),Z) = U,
prolog(nonvar(X)),
X • V,

cri~ieal pa1r to be equated
keep completion in torvard phase
aquat1on i n database contains a
non-variabl e subterm which is
also a term in another equat1on
no~ ayntact~cally identical
c:rit ica.l pair non-trivial

prolog((X \== V)) ,
prolog((a(a(V,Y) ,Z) \== 0)) .

Figure 12: Critical pair rules rcqllired ror b combinator

20

81 = 82 : - pr olog(t_cha1ning) ,
a (b, X) = U, a(U ,Y) = V, a (V, Z) = 81,
a(Y, Z) = W, a(X ,W) c 82.

Y. 8 1 = 8xyz
Y. B2 = x(yz)

Pigurc l3: Definition of b combinator in mod ification representation

of superposition are combined as well. Because our strategy {or represent
ing equality resembles that of (12) (cf. (13)), we call this the modi fi cation
repr<1sentation .

In this representation, each non-variable subterm in the term being de
fined is "pulled out" and equated with a variable, much Uke the \ISUal Prolog
rep resentation of functional app lication. If this chain of equat ions exists in
the database, ultimately equating the left-hand side of an equation to say,
B 1 and the right-hand side to B2, then the equation BI = 82 is added to
the database.

As an example, Figure 13 gives the definition of the b combiuator. The
various rest rictions of the previous procedu re h;tve been drop ped here: any
of the vari<lbles may be bound to variables or to terms that are syntactically
iden t ical wi th other terms in the clause. These differences arise from the fact
that tb.is rule is intended to define the b combinator as well as express the
conditions for the addition of critical pairs. Since the rules serve to define
the combinators as well as to introduce critical pairs, it is less than obvious
they should be restricted to the forward-chaining phase. but in fact the
prover performed much better on our exam ples wi th these gual'cls instaUed,
as opposed to no guards. or back-chaining guards.

The pertinent difference between tb.is repres~ntation and the last is that
this representation telescopes multiple subterm replacements at different
positions and adds the pair $ = t directly, rather than working at one
!>osition at a time. and adding first the equations 11 = s and " = t, and
only then s = t.

2.4 An Example Proof

As an example proof we choose the deri,·ation a fixed-point combinator from
threi: other combinator~: a composition combinator: b:tyz = x(yz); and two
repeating combinators: lxy = :t(yy), mx = :t.t:. This problem appears in
colorful guise in [15], where the combinators are given the names of birds . [n

21

Smullyan 's vocabulary, our problem is to derive a sage bird from a bluebird, a
lark, and a mockingbird. The essential insight is that it foUows immediately
from the definition of the LARK, lzy = :r(yy), that l:tl:z: = z (lxlx) for any x;
i.e., that lxlx is a fixed-point for any z.

2.4.1 No Rewrite Version

Our first representation uses equality a.•cioms and no rewrite rules:

Y.'l.'l. Bluebird + Lark + Mockingbird ::> Sage (tmm, p. 9:)

'l. definition ot SAGE BIRD: Yx : xYx
!also :- prolog(\+ f_chalning),

eq(a(Y ,t(Y)), B), oq(a(t(Y),B), B).

'l. definition of MOCKiNGBIRD: Kx : xx
eq(a(X,X), a(~.X)) .

'1. dotinition ot I.ARJ<: L.xy = x(yy)
eq(a(X,a(Y,Y)), a(a(l,X),Y)).

'l. ~Qfinition ot BLUEaiRD : Bxy< • x(yz)
oq(a(a(a(b,X),Y),Z), a(X,a(Y,Z))).

'l.'l.'l. equality

Y. equivalence relation
eq(X, X) .
eq(X , Y) :- prolog(t_chaining) , eq(Y, X) .
eq(X, Z) :- prolog(\+ !_chaining),

eq(X,Y), prolog(X \== Y),
oq(Y,Z), prolog(Y \== Z).

Y. replacement rulea
eq(U,V) ·- prolog(\+ t_chain>ng),

prolog((nonvar(U) ; nonvar(V))),
replaceq(U,V).

replacoq(a(Tl,T2).a(T3,T4)) :-
prolog(\+ ! _chaining), eq(Tl,TJ), oq(T2,T4).

replaceq(f(Tl),f(T2)) :-
prolog(\+ ! _chaining), eq(Tl,T2).

We use eq to represent equality here, since sprfn is desig1tcd to auto.
matically rewrite using terms related by ~. The existence of a fixed-point

22

combinator is denied and this denial made the first subgoal for our top-level
go:u false. Then the three input combinators are defined. The axioms
defining eq/2 as an equivalence rela~.ion and the the rules allowing replace
ment of equal subterms while preserving equality ar£~ standard except for the
introduction <>f various guards, via calls to the P rolog in terpreter, attempt·
ing to control thei r use. Both t he t ransit ivity axiom and the replacement
rules ttre restricted to the back-chaining phase. Syntactically identical terms
would obviously not be us~ful subgoals for the the transitivity axiom to gen·
erate. Again, if both U and V are variables, then they should be shown equal
through unification and the application of the r~fiexivity axiom, not through
the replacement rules.

Given this input file, sprfn produces the following o11tput:

solution_size_mult(O . I) is asserted
proof_oizo_mult(1) is aaoerted
clause_eount_mult(O) is asserted

proot tound
false:-

prolog(\+ t_chain1ng)
eq(a(a(a(b,m),l),t(a(a{b,c), l))) ,

a(a(l,f(a(a(b.~),l))),a(l,f(a(a(b,~).l))))) ·
prolog(\+t_cha1ning)
input(eq(a(a(a(b,m),l),f(a(a(b ,m),l))) ,

a(m,a(l ,f(a(a(b,m),l))))))
prolog(a(a(a(b,m),l),f(a(a(b,m),l)))

\•• a(m,a(l,f(a(a(b,m),l)))))
eq(a(m,a(l, f (a(a(b,c) ,l)))),

a(a(l,t(a(a(b,m),l))),a(l,f(a(a(b,m),l))))) :
prolog(t_cha>ning)
input(oq(a(a(l,f(a(a(b,m),l))),a(l,f(a(a(b,m),l)))),

a(m,a(l,t(a(a(b,m) ,l))))))
prolog(a(m,a(l,f{a(a(b,m),l)))) \••

a(a(l,! (a(a(b,m),l))),a(l,!(a(a(b ,m) ,1)))))
input(eq(a (t{a(a(b,m),l)) ,a(a(l,t(a(a(b,m),l))),

a(l, t (a(a(b,m) ,l))))),
a(a(l,f(a(a(b,m),l))),a(l,f(a(a(b,m),l))))))

size of proot 11
clause count 6
72.0333 cpu seconds used

23

240 inferences dQne

The assertions reported arc parameters for weighting the various factors
that make up the cost of a particular proof subtree: length of the solution,
depth of the tree, and the number of nodes. Varying these weights can help
or hinder the prover in i\s search for a proof.

E:ach dot marks the restarting of sprfn wit!\ a greater depth bound. At
the end we are told that this proof was found at dt'pth 11. and that the proof
tree has 6 nodes. (calls to Prolog are not counted a.~ nodes in th~ proof tree.)
As usual with UN IX statistics, cpu time is :tccnrate only to within :1: 10% or
so. The number of inferences represen ts each time an old sohttion or input
clause was used.

The proof is simply a report of the subgoaJs g('ncrated from the top·
level goal, false. This generates three subgoals: a call to Prolog, <lnd
two equations. The second equation turns out to be that ins tance of the
defiltition of the LA RK combinator showinglxlx to be a fixed point. The first
matches the head of the transilivity rule and generates the further ~ubgoals.
The first equation in these subgoals is an instance of the definition of the
ll~UBBIRD combinator. and the second an instance of the <.lcfinil,ion of the
MOC KINGBIRD combinator, once it is turned <~round throt,gh an appeal lo
symmet ry.

2.4.2 Critical Pair Representation

The crit ical pai r represent:nion of the theorem is ns we have described it,
with the addition of the equality axioms and a rewrite rule. Of those a.'doms
defining equality as an c<Juivalencc relation, only reflexivity is demanded by
the unfailing completion inference system. The ;ymmetry a.~iom is added
Lo get Lite e/Tcct of ::: in C l and C3, and also e= in C5: in other words, to
allow the equations in the database to be used in either direction. fnciden
tally, equations arc stored as directed left-Lo-right (but not as rewrite rules).
so it is helpful if all equations in the input ha,·e the more complex term on
the left . The Lchaining guard is an at tempt to contml the applicat ion of
the symllietry axiom, hy res tricting it to the completion phase. Transitivity
is not needed for complet ion. but is required for the completeness of the
pro\'er. Hence it is restricted to the back-chaining phase, outside of comple
Lion. Finally the rewrite rule is necessary to compensate Cor sprfn's /lU irk: it
t reats all input as "old solutions" . and so will not attempt lo ron vert iu pu t
equations into rewrite rules.

Y. Blueb~rd + Lark + Mockingbird t> Sago (t~, p. 91)
Y. definition ot SAGE BIRD: Yx • xYx
false :-

prolog(\+ !_chaining),
a(Y,!(Y)) = B, a(t(Y),B) =B.

X definition o! MOCKINGBIRD
a(X , X) = a(m,X).

X detinition ot LARK
a(X,a(Y,Y)) = a(a(l,X),Y) .

X de!init1on of BLUEBIRD
a(a(a(b,X),Y),Z) = a(X,a(Y,Z)).

Y.Y.Y. critical pairs
I. root. position

v • u :-
prolog(t_chaining),
X • U,
prolog(nonvar(X)),
X = v,
prolog((X \ == V)),
prolog((V \•= U)).
X I position

a(V.Y) = u :
prolog(t_cha~ing),

a(X,Y) = U,
prolog(nonvar(X)),
X = v.
prolog((X \ == V)),
prolog((a(V,Y) \== U)).
'l. 2 posit.ion

a(X,V) • U :
prolog(!_chaining),
a(X.Y) = U,
prolog(nonvar(Y)),
y = v,

prolog((Y \== V)),
prolog((a(X,V) \== U)).
'!. 11 position

a(n(V,Y),Z) = U :
prolog(t_chaining),
a(a(X,Y),Z) = U,
prolog(nonvar(X)),
X : V.
prolog((X \ •• V)),
prolog((a(a(V,Y),Z) \== U)).

25

Y.Y.Y. equality
X = X.
X= Y :- prolog(t_chauo>ng) . Y =I.
l = Z :- prolog(\+ 1_ebaining) , prolog(nonvar(l)),

X= Y. prolog(nonvar(Y)), pr olog(X \== Y),
Y = z. prolog(Y \=• Z) .

'l.X% oriontable equa~ione
re~ite(a(a(a(b,X),Y).Z), a(X ,a(Y,Z))).

Not<> that the statemf:nt of the theorem and the df:finition of the combi
nators is the same as in the no-rewrite version, except that. now'=' is used
to trigger the automated rewriting capabilites of sprfn.

Given the preceding input, and using the lexicograt>hlc ordering in which
functors arc weighted alphabetically, sprfn returns the following:

solution_size_sult(0.1) is ass&rted .
proof_slze_~ult(l) is asserted.
orient 11 asserted .

a(a(l, a(X ,X)).X)->a(m,a(X,X))
a(X, a(Y,a (a(b,X) ,Y)))->a(m ,a(a(b,X) .Y))
a(a(l,X),Y)->a(X ,a(m ,Y))
a (a(a(m,b),X) ,Y) - >a(b,a(X,Y))
a(m,X)•o.(X,X)
a(X,a(~.Y))=a(X,a(Y,Y))

a(a(X,X),a(~.X))->a(m,a(X . X))

a(X,a(Y ,Y))=a(X,a(o,Y))

a(X,a(Y, a(Z,Z)))=a(X,a(Y,a(m ,Z)))
a(a(X , X),n(X , X))->a(~,a(m,X))

a(l,a(Y,a(m,Z)))=a(X,a(Y,a(Z,Z)))
a(X,a(a(m,Y) ,Z))=a(X,a(o.(Y,Y),Z))
a(a(m,a(b,X)),Y)=a(X,a(a(b,l) ,Y))
a (a(m,X),a(Y,Z))=a(a(X,X),a(Y,Z))

a(a(m,X),a(X,X))->a(rn,a(m,X))
a(a(m,X),a (m ,X)) - >a(m,a(X,X))
a(X,a(m,a(l.X)))->a(m,a(l,X))
a(a(m,l),X)->a(l,a(~,X))

a(X,a(a(Y,Y),Z))•a(X,a(a (m .Y).Z))
a(a(l,l),a(Y,Z)):a(a(m,X),a(Y,Z))
a(X,a(a(b,l),Y))=a(a(m,a(b ,X)),Y)

26

a(b,a(X,a(a(m,b),X)))->a(a,a(a(m,b),X))
a(X,a(a(b,X),a(m,a(b,X))))->a(m,a(a(b,X),a(b,X)))
a(a(m,a(X ,X)),a(m,a(X,X)))->a(m,a(m,a(m,X)))
a(a(m,n(a,b)),l)->a(b,a(a(=,b),X))
a(a(m,a(b,b)),X)->a(b,a(a(m,b),X))
a(a(m,X),a(m,Y))=a(a(X,X),a(Y,Y))

proof found
!also:-

prolog(\•f_chaining)
input(a(a(a(b,m),l),f(a(a(b,m),l)))

•a(m,a(l ,f(a(a(b,m),l)))))
a(f(a(a(b,m),l)),a(m,a(l,f(a(a(b,m),l)))))

•a(m,a(l,f(a(a(b,m) , l)))) :-
prolog(f_chaining)
input(a(a(l,f(a(a(b,m),l))) ,a(l ,f(a(a(b,m),l))))

•a(m ,a(l,f(a(a(b,m) , l)))))
prolog(nonvar(a(a(l,f(a(a(b, m),l))).

a(l,f(a(a(b,m), l))))))
a(f(a(a(b,m),l)) ,a(m ,a(l ,f(a(a(b,m) ,l)))))

•a(a(l ,t (a(a(b ,m),l))) ,a(l,f(a(a(b,m),l)))):
prolog(f_chaining)
input(a(!(a(a(b ,m),l)),a(a(l ,f(a(a(b,m),l))),

a(l,f(a(a(b,m) ,l)))))
=a(a(l,!(a(a(b ,m), l))),a(l,f(a{a{b ,m) ,l)))))

prolog(nonvar(a(a(l,f(a(a(b,m) , l))),
a(l,f(a(a(b,m),l))))))

1nput(a(a(l,f(a(a(b,m),l))) ,a(l,f(a(a(b,m),l))))
=a(m,a(l ,f(a(a(b,m),l)))))

prolog(a(a(l,f(a(a(b,m),l))),a(l,!(a(a(b,m) ,l))))
\==a(m,a(l ,f(a(a(b,m),l)))))

prolog(a(f(a(a(b,m),l)),a(m,a(l,f(a(a(b,m),l)))))
\==a(a(l,f(a(a(b,a),l))),a(l,t(a(a(b,m),l)))))

prolog(a(a(l,f(a(a(b.~).l))),a(l,f(a(a(b,m),l))))
\==a(!(a(a(b.~),l)) ,a(m,a(l,f(a(a(b,~).l))})))

prolog(a(f(a(a(b,m),l)),a(m,a(l,i(a(a(b,m),l)))))
\==a(m,a(l,i(a(a(b,m),l)))))

s1ze of proof 14
clause count 7
210.533 cpu seconds used
633 1nferonces done

Each equation ha.s been added by a critical pair rule, and oriented by the
autom;tLcd lexicographic orienter if possible. As before, the top-levt>l goal

27

false generates three subgoals. Tbe firs~ is an •nstance of the definition of
the MOCKII'GBIRD. The second matches the root position critical pair rule,
and so generates 6 further su bgoals of its own. The first necessary equation
is again an instance of the MOCKINGBIRD definition, and the second again
matches a critical pair rule, this time at position 2. (Jt helps to identi fy the V
and U terms througl1 the last two Prolog identity checks.) The first equation
required by this rule represents sprfn's insight tbat /:r/:r is a fiXed point for
any .r, and is accepted as an instance of the definition of LARK. The next
is yet another instance of the MOCKI!iGBIRD. The remaining subgoals are
simply to ensure that the terms are not identical.

2.4.3 The Modi:fi.cation Representation

The modification representation follows the previous t he previous ones, ex
cept that now the defi nitions of the combinators have been upullc.-d-out."
There are no occurrence-specific critical pair rules.

Y.Y.% Bl uebird + Lark + Mocki ngbird ••> Sage
'l. Definition of SAGE bi rd: Yx • xYx
false :- prolog(\+ t_chaining),

a(Y,f(Y}) = B, a(f (V).B) = S.
% def i nition of BLUEBIRD : Sxyz • x(yz)
!II ; 82 . -

prolog(t_cha inlng) ,
a(b,X) • U, a(U,Y) • V, a(V,Z} • 81,
a(Y,Z) = ~. a(X,W) • 82.

'l. definit ion of MOCKIUGBIRD ; Kx : xx
81 • 82 :-

prol og(!_chaining),
a(m,X) = Bl. a(X,X) = 82.

% do!in1tion o! LARK : Lxy s x (yy)
81 : 82 ·

prolog(f_cha>nlng),
n(l, X) • U, n(U, Y) • 91,
n(Y, Y) = V, n(X, V) = 82.

'/.Y.'/. Equallty
X -= X.
X = Y ·- prolog(!_chalning) . Y =X.
X= Z :- prolog(\+ !_chaining). prolog(nonvar(X)) .

X • Y, prolog(nonvar(Y)) , prolog(X \•• Y),
Y = Z, prolog(Y \== Z).

28

Given this file and the same orienter again, we get the following output.
Note that sprfn first tries to orient the equations it constructs from the input
definitions.

solution_size_mul~(0. 1) is asserted.
proof_size_mult(!) is ~•sorted .
orient is assorted.

a (.,,X)=a(X,X)

a(a(l,X} ,Y}=a(X ,a(Y ,Y}}
a(X,X}•a(m .X}

a(a(a(b,X),Y),Z)->a(X,a(Y,Z)}
a(X,a(Y,Y} }=a(a(l,X) ,Y}

a(X ,a(a(l,X),a(l,X}})->a(a,a(l, X))
a(a(l,X),a(X,X}}->a(a(l,~}.X}

a(X,a(m.Y}}=a(X,a(Y,Y} }
a(a(l ,a(X,X)} ,X} - >a(m,a(X,X))
a(a(m, l),X)=a(l,a(X ,X))
a(a(l ,X),Y) ->a(X,a(m,Y))
a(a(X,X),a(m,X))->a (m,a(X ,X))
a(X,a(m,Y))=a(X,a(Y,Y))
a(X,a(Y,Y))=a(X,a(= ,Y})
a(X,a(X,a(m,a(l,X)}}}->a(m,a(l,X}}
a(a(X,X},a(X,X}}->a(m,a(m,X})

a(a(a(m,b) ,X},Y)- >a(b,a(X,Y})
a (a(m ,a(m, b)},a(b,b} }->a(b,a(m ,a(m,b)))
a(a(m ,a(m,b}}, X)- >a(b,a(a(b,b},X))
a(a(a(m,X},a(a,X}},a(m,a(X,X}))->a(m,a(m,a(~.x}})

a(X,a(a(Y,Y),Z))=a(X,a(a(a,Y},Z))
a(a(m,a(b,X)),Y}=a(X,a(a(b ,X),Y})
a(m,a(m ,a(a(b,m),a(a(b,m),a(a(b,m},a(b ,m))})))

->a(m,a(m ,a(b,m)))
a(X,a(a(b , X),a(a(b,X),a(b,X)))}->a(m,a(m,a(b,X))}
a(a(a(m,X),a(m,X)).a(a(a,X),a(X,X)}}->a(m,a(a,a(m,X)))
a(X,a(Y,a(Z.Z)})=a(X,a(Y,a(a,Z)))
a(X,a(Y,a(a(b,X),Y}}}->a(a,a(a(b,X),Y}}
a(a(c,a(m,X)}, a(~.a(X,X})}->a(m,a(m,a(X.X})}
a(X , a(Y .~(m,Z})) =a(X,a(Y,a(Z,Z)})

a(a(m,a(m,a(l ,m))),a(m ,a(m,a(l,m)))) - >a(m,a(l ,m)}

29

a(a(m, X),a(X ,X))->a(m,a(X, X))
a(a(m , X) ,a(m,X))->a(m,a(X,X})
a(b,a (a(b,b),a(m ,a(m, b)))) ->a(~.a<~.a(m,b)))
a(m,a(X,X))=a(m,a(m,X))
a(a(X, X) , a(m ,a(Y, Y))) =a(a(m, X), a(m, a(•, Y)))
a(a(X,X),a(m,Y))•a(a(m,X),a(Y,Y))
a(a(2,l),a(X,X))->a(l,a(=,a(m,X)))
a(l,a(m,a(l,l)))->a(o,a(~.l))
a(l ,a(m,a(m,l)))->a(m,a(m,l))
a(m,a(m,a(X,X)))•a(m,a(m,a(m,X)))
a(X ,a(m ,a(Y,Y))) • a(X,a(m ,a(m ,Y)))
a(X,a(m,a(m,Y))) •a(X ,a(m,a(Y,Y)))
n(X ,a(m,a(m,Y)))•a(X,a(m,a(Y,Y)))
a(l,a(X,X))=a(a(m,l),X)
a(m,a(m,a(l,m)))->a(m,a(l,m))
a(m,a(a(b,X),a(b,X)))->a(m,a(m,a(b,X)))

a(a(m,l),f(a(m,l)))->a(l,a(m,t(a(m,l))))
a(a(m,a(m,X)),a(m,a(m,a(b,Y))))

=a(a(m,a(X,X)),a(m,a(m,a(b,Y))))
a(a(m, a(m,X)),a(m,a(m,Y)))=a(a(m, a(X .X)),a(m,a(m,Y)))
a(a(m, a(m,X)),a(Y,Z))=a(a(m,a(X ,X)) , a{Y,Z))
a(a(m, X) , a(m,a(m,a(b ,Y))))=a(a (X,X),a(m,a(m,a(b,Y))))
a(a(m,X),a(m,a(m,Y)))=a(a(X ,X),a(m,a(m,Y)))
a(a(m,X),a(Y,Z))•a(a(X,X) ,a(Y,Z))
a(a(o,X),a(a(b,a(X,X)),a(a(b,a(l,X)),a(b,a(X,X)))))

->a(m,a(m,a(b,a(X,X))))
a(a(X,X),a(m,a(m,a(b,Y))))=a(a(m,X),a(m,a(m,a(b,Y))))
a(a(X,X),a(~,a(m,Y)))=a(a(m , X),a(m,a(m,Y)))
a(a(X,X),a(Y,Z)):a(a(~.x),a(Y , Z))
a(b,a(a(m,b),a(m,a(b ,b))))->a(m,a(m,a(m,b)))
a(a(m,a(m ,a(m,X))) ,a(m,a(m ,a(X,X))))->a(m,a(m,a(m,a(X , X))))
a(X,a(a(m,a(m,Y)) ,Z))=a(X,a(a(m,a(Y,Y)),Z))
a(b,a(a(b,b),a(m,a(m ,X))))=a(b, a(a(b,b),a(m,a(X ,X))))
a(b,a(a(b,b),a(m,a(X,X))))=a(b,a(a(b,b),a(m,a(m,X))))
a(a(a(X,X),Y),a(a(X,X),Y))->a(c,a(a(m,X),Y))
a(X,a(a(m,Y),Z))•a(X,a(a(Y,Y),Z))
a(b,a(a(m,b),a(m,a(m,b))))->a(m,a(m,a(b,b)))
a(a(a(m,X),Y),a(a(X,X),Y))->a(m,a(a(m,X),Y))
a(a(a{m,X),Y),a(a(m,X),Y)) - >a(m,a(a(X,X),Y))
a(a(m,a(b,b)),a(b,b))->a(b,a(m,a(m,b)))
a(a(m, a(b ,m)),a(b,m))->a(m ,a(m,a(b,m)))
a(a(m,a(m,a(m,X))),a(a(m,a(X,X)),a(m ,a(m,X))))

->a(m,a(m,a(m,a(X,X))))

30

a(X,a(Y,a(m,a(m,Z))))•a(X,a(Y,a(m,a(Z,Z))))
a(X,a(a(b,X),a(m,a(b,X))))->a(s,a(m,a(b,X)))
a(a(X,a(Y,Y)),a(X,a(Y,Y)))->a(m,a(X,a(m,Y)))
a(a(X,a(a,Y)),a(X,a(Y,Y)))->a(m,a(X,a(m,Y)))
a(a(X,a(a,Y)),a(X,a(m,Y)))->a(m,a(X,a(Y,Y)))
a(a(X,a(a(b,a),X)),a(X,a(a(b,a),X)))->a(a,a(a(b,m),X))
a(a(m,a(m,a(X,X))),a(a,a(m,a(m,X))))->a(m,a(o,a(m,a(Q,X))))
a(X,a(Y,a(m,a(Z,Z)))):a(X,a(Y,a(m ,a(m,Z))))
a{a(X,a(Y ,Y)),a(l,a(m,Y)))->a(m,a(X,a(Y ,Y)))
a(a(a(X,l),Y),a(a(m,X),Y))->a(m,a(a(X,X),Y))
a(b,a(X,a(a(m,b),X)))->a(m,a(a(m,b),X))
a(X,a(m,a(l,X)))->a(m,a(l,X))
a(a(~,a(X,X)),a(m,Y)):a(a(m,a(m,X)) ,a(Y,Y))
a(a(m,a(m,X)),a(m,a(Y,Y)))=a(a(m,a(X,l)),a(c ,a(m,Y)))
a(a(m,a(m,X)),a(m,Y))=a(a(~.a(X,X)),a(Y,Y))
a(a(m,a(m,l)),a(X,X))=a(a(m,a(m,l)),a(m,a(m,X)))
a(a(m,a(m,l)),a(X,X))->a(a(m,a(m,l)),X)
a(a(m,a(l,l)) ,a(X,X))=a(a(rn,a(l,l)) ,a(m,a(m,a(m,X))))
a(a(m,a(l,l)) ,a(m,a(X ,X)))->a(a(m,a(l,l)) ,X)
a(a(m,X),a(m ,a(Y,Y)))•a(a(X,X),a(m ,a(m ,Y)))
a(a(m,X),a(m,Y))•a(a(X , X),a(Y ,Y))
a(a(X,X),a(m ,a(m ,Y)))•a(a(m,X),a(m,a(Y,Y)))
a(a(m, l),a(m,X))=a(l,a(m,a(X ,X)))
a(a(m,l),X)->a(l,a(m,X))
a(X ,a(Y,a(m,a(Z,Z))))•a(X,a(Y,a(m,a(m,Z))))
a(a(X,X),a(Y ,Y))•a(a(m,X),a(m,Y))
a(a(m,a(X,X)) ,a(Y,Y))=a(a(m,a(m ,X)),a(m,Y))
a(a(m,X),a(Y,Y))•a(n(X ,X),a(m,Y))
a(a(m,X),a(m,a(m,Y)))•a(a(X,X),a(m,a(Y,Y)))
a(X,a(a(b,X) ,Y)):a(a(m,a(b,X)),Y)
a(a(m,a(m,l)),a(:,a(m ,X)))->a(a(m,a(m,l)) ,X)
a(a(m,X),a(a(b,a(X,X)) ,a(m,a(b,a(m,X)))))

->a(m,a(m,a(b,a(X,X))))
a(m,a(l,l))->a(m,a(m,l))
a(l,a(m,a(X,X)))•a(l,a(m,a(m ,X)))
a(m, a(m,a(m,X)))•a(m, a(m,a(X,X)))

proof found
falso:-

prolog(\+f_chaining)
a(a(a(b,m),l),f(a(a(b,m),l)))

=a(m,a(l,!(a(a(b,m) ,l)))): -
prolog(!_chaining)
input(a(b,m)=a(b ,m))

31

i nput(a(a(b,m) , l)=a(a(b,m) ,l))
input (a(a(a(b, m) ,l) ,t(a(a(b,m),l)))

•a(a (a(b ,m),l), f (a(a(b,m) ,l))))
ioput(a(l ,!(a(a(b,m) , l)))=a(l ,f(a(a (b,m) , l))))
input(a(m ,a(l , ! (a(a(b,m) ,l))))

=a(m,a(l , t(a(a(b,m), l)))))
a(m,a(l ,f (a(a(b,m),l))))

=a (f (a(a(b ,m) , l)) ,a(m,a(l,f(a(a(b,m) ,l))))):
prolog(f _chainlng)
input(a(m,a(l,1 (a(a(b,o) ,l))))

=a(m,a(l ,f(a(a(b,m),l)))))
a(a(l,!(a(a(b,m), l))) ,a(l,f(a(a(b,m),l))))

=a(t(a(a(b, m) , l)),a(m ,a (l ,f(a(a (b,m) , l))))) :
prolog(! _chaining)
input (a (l , 1(a(a(b ,~) , l)))=a(l,! (a(a(b ,m) , l))))

input(a(a (l, f(a (a(b,m), l))) ,a(l ,!(a(a(b ,m),l))))
=a(a(l ,f (a(a(b,m), l))) ,a(l,t (a(n(b,m),l)))))

a(n(l,f(a (a(b,c) ,l))) ,a(l ,t(a(a (b ,m) ,l))))
•a(m,a(l,t(a(a(b,m) ,l)))) :-

prolog(t_ chaining)
a (m,a(l,t(a(a(b,m) , l))))

=a(a(l,f(a(a(b,m),l))),~(l , f (a(a (b,m),l))));
prolog(f _chain1ng)
input(a(m,a(l,! (a(a(b ,m),l))))

=a(o,a(l, f (a(a (b,m) , l)))))
i nput (a(a(l,f(a(a(b,m),l))) ,a(l,!(a(a(b,m) ,l))))

=a(a(l,f(a(a(b,m),l))),a(l,f(a(a(b ,m),l)))))
input (a(f (a(a(b,m),l)) ,a(m,a(l,f(a(a(b,m), l)))))

=a(t (a(a(b ,m) , l)) ,a(m,a(l,t(a(a(b,m) ,l))))))
size of proof 32
elause coun~ 17
9 19. 716 cpu s econds U30d
1813 i nt orenc es done

Since the statement of the theorem is the same as before, the proof
starts with th<' generation of the same subgoals. The first equational sub.
goal match~s the definition of the AJ. U ~BIRD combinator , and generates.)
su bgoal equations. all discharged as instances of the reflexivity a.:<iom, here
the only ultim;~te groundN of subgoals. The second matches the definition
of the MOCKISGSIRD, and so adds two more equations to derive. The first
is again satisfied immediately as an instance of X • X, and tho second takes
us into the definit ion of ~ARK . (Note l:rlx here ap pears as ml:r). Its first
two equational subgoals as well as th~ fourth are instances of the reflex.i,,ity

32

axiom, and the th ird cal ls on symmetry. 'rhe subgo:\1 equation matches the
MOCKINGB!ItO deftnition, whose two equations are both grounded in th~ re
flexivity axiom aga.in. Unlike the previous proofs, this proof is constructed
almost entirely through forward-chaining, and so the order of the proof does
not reflect at all that of its construction.

2.5 Results

2.5.1 The Problems

We tested the three representations on 16 combinator problems drawn from
(l5j. Tlte results appear in figure 14. The conve11tion followed in labeling
the problems is that the given combinators are listed to the left of the
underscore. and what is to be derived. usually another combinator, to the
right.

Two problems proved too difficult for sprfn, at least with the weights
given. McCune and \Vas (16] were able with much human effort and hours
of computer time to guide their prover to a derivation of a fixed-point com·
binator (a 'sage') from the b and w combina.tors. We were 1\0I al>lc to get
sprfn lo derive this in one step. When given a pah of lemmas in ~he fonn <>f
two imermediatc combinators suggested by Smullyan, a and c, the problem
becomes soluble for sprfn under all problem representations. SimiJarly, we
were unable to derive a complicated permutor, psi. from b,c (a different c.
called a 'cardinal' in (15)) and w, but it is relatively simple when done via
the derivation of a 'dovekie' and a 'hummingbird.' The difficulty with both
BW.SAGE and scw_PSI is most likely the 'warbler' combinator:

w~y = xyy

both sides of the definition unify, rendering simpl ifica.tion impossible .
The deriva-tion of the 'cardit\al', <\ simple three-place permutor, rrmn

the composition combinator 'bluebird' and the twa.place pennutor 'thru•h'
(discovered by Chur~h) proved surprisingly difficult. so another three· place
permutor. the ·robin', was introduced as an int~rmed.iary in a pair of prob·
!ems (suggcstcd by Smullyan).

In KW_\lOCK w~ derive the duplicative 'mockingbird' from the aforemen
tioned 'warbler' and the cancellative 'kestrel':

kxy = x.

L..EGO involves Lh~ construction of an "egocentric" functioJL, which returns
itself when given itself as an argument, from a 'lark'. This problem was

33

solved in (1 7]. The final problem constructs a combinator that commute>
with every other combinator from t he 'thrush' and 1he condition that every
function has a fixed-point.

2.5 .2 Data

CPU times and the number of inferenrcs required for the problems are tab
ulated in rigure H. The problem were run under c. Prolog on a Sun 3/60.
~o effort was made to control for load, which varied from light to moder
ate. Blanks indicate that the problem was not solved, usually by running
out of resourt'CS. ln the one case marked by an aste risk. t he prob lem was
solved only under the •nosave' option, which tums off the caclting feature.
and resulls in faster but more repetiti,·e inferences using com11aratively little
memory.

The surprising result wa.s t hat the 1\o-rcwrite J•cprescntation JWrformed
the bes t in terms of shortes t time. It should be noted that the no-rewrite
,·crsion would have had an unsolved problem. howc,·cr, had we not disabled
the caching feature on the BT _CARD problem. :->onetheless, the equational
a.xiorns did p~rforrn unexpectt>dly well, a.~ is shown in another way in Fig·
ure 15. Here we list the first and Jast place totals for each representation.

One bright spot for the critical pair representMion is that is does ha,·e the
lowest average number of inferences. even if not CPU time. Focussing on this
number not only sidesteps the inaccuracy of time statistics in UN IX, but also
discoun ts the overhead involved in the rewriting and completion phases, Mtd
so points out the potential for efficient implementations of these phases. U n
fortunatel}. this measure is skewed hadly by the 'nosave' run, which quickly
piles up repeated inferences. Dropping the inference counts for BT _CARD

from both w lumns, we find that the critical pair represeJtl<\l.ion averages
over twice the numbc ,· of inferences tni\de by thll no-rewrite rep resentation,
~nd the modification format ;n·erages over three times as many.

2.6 Discussion

The rewriting strategies we have employed do not exhibit the efficiency we
had expected. Clearly directing equations has not provided the additional
control promised. It mu>t be emphasized that the data are insufficient to
warrant any firm conclusions. We IJ<We compared only 16 problems of a
specific type, using but one setti ng of t he various switches sprfn r>rovides .
Nonetheless, some provisional morals suggest themselves.

34

CPU seconds # of lnfercnc(•s
Theorem ~RW CP MOD NRW CP ~100

ac...sage 33 49 41 107 139 158
b..dovk 2·1 21 52 119 133 258
bcw.J:mmm ' 243 493 1325 812 1094 2095
bcw _psi - - - -
bdh_psi 13 67 127 73 263 397
blm.sage 72 210 920 210 633 1813
bs _phi 2:1 370 120 639 660 347
bt_ca.rd 377')022 14963 15026 366:1 42379
bLrob T 15 ·-"" 44 114 189
bw...a 38 42 112 1'12 186 383
bw..c 157 35Z2 10082 [>.17 4852 7876
bw_sage - - - - - -
kw_mock 330 83 53 654 412 260
Lego 297 53 34 522 155 132
r _card I 6 20 23 35 103
t_comm 8 6 12 50 29 58

I AVERAGEJf: 116 426 1993 1357 883 4032
I AVERAGE2': 96 378 995 306 670 1082

. . • . caclung turned off .
j: BCWJ>SI and 8W..SAGE not included.
:: BCWJ>SI, BW..SACE, and BT_CARD not included.

Figure 14: Statistics for comllinator problems

CPU time Inferences
1st 3rd 1st 3rd

Nil\\' I !0 2 9 2
Cl, 2 2 2 1
MOD 2 9 3 11

l~ igurt' 15: First and [,a% Place Finishes

35

One surprise wa.~ how well sprfn can ha.ndl" Lhe axiomatic <~,pproach to
equal ity. ln fact this was a surprise, since only late in the testing did we come
to seriously apply the sorts of efficiency guards to the no-rewrite version we
had worked out for the other representations. We believe that 1he back
rhaining na ture of the prover worked well wi th this approach, and that
Lhc <tbility to limit some of the axioms to P.ithcr the forward and backward
chaining phasl's of the prover helped significantly.

We do not yer understand well enough how this integration of comple
tion and theorern-pro,•ing works. For example, the input files were originally
wriLten to work with an alp habet ical lexicograph ic ordering. H tu rned ou t
that performance was significantly improved when terms were reverse alpha
betically ordered! Some problems took longer, but most were solved more
quickly, and one theorem previously unprovable using the modification for
mar was prO\'Cn under this orientation.~ This was surprising since the lexical
ordering of atoms has au effect only if terms arc tied at the top level and
on all subterm~ considered up to tha~ point. At most a few percent of the
critical pairs generated in our examples are oriented by considering the aJ.
phabetical ranking of identifiers. Presumably this orMring has more effect
in rewriting instances, which is invisi ble to the user.

This case a.nd other surprises show that we do not yet understand our
techt1ique well enough to write it off. A better usc of the oricnler (or perhaps
one using different principles), or a more clever selling of the switches sprfn
provides may make all the difference for the rewriting approach.

Nonetheless, the integration of completion into the prover did not work
as well as we had hoped. \Ve suspect t hat the amount of information corning
in under the forward chaining phase in the form of new directed equations
simply overwh~lmed the normally efficient goal-orientation of sprfn. :\ote
that the modification rep resentation, in which all but the opening stage of
Lhe proof is derived in forward chaining, performed the poorest overal L

The tactic of carrying out completion in the forward-chaining phase and
the rest of thl' proof primarily in the back-chaining phase would undoubt
edly be aided by more sophisticated forward chaining, currently rNhaps tile
least intelligent part of sprfn. The general problem of i ntroduc i n~; search pri·
orities withi n the iterative deepening sta.teg)· is being investigated by Xu min
Nie. Tests on experimental priority systems devil>ed by :\ie have sometimes
caused dramatic improvements for the rewriting techniques described here.
and it would be worth investigating wh ich representation beneA ts l.he most

' . VU •• 9W..t::,

36

from the various priority schemes.
Even granting the preliminary status of ow- results, it is reasonable to

reconsider the strategy of integrating completion into theorem-proving as
a w~y of handling equality. After all, by its very nature, completion wil l
int roduce premises no t particularly helpful for the proof a t hand. Another
possibility we have been exploring is n. more directed representation taking
advantage of the left-linear nature of combinator definitions, more akin to
na r rowi ng (cf. [18]) than completion.

37

R eferences

(1] G. Dirk hoff. ~on the structure of abstract algebras.~ Proceedings of the
Cambridge Philosl)[lf.icnl Society 31 (1935), pp. 433- 454.

(2] N. Dcrshowi~z. "Orderings for term-rewriting systems.» 7'/te Jottrnal of
Tltcorctical Computer Science 17 (1982), pp. 279-301.

(3] M.H.A. Newman. '·On theories with a combinatorial definition of
'equivalence·.~ Annal~ of Mathematu~., 43 (19-12). pp. 22a - 2'13.

(4] G. Huet. "Confluent reductions: abstract properties and applica.tions
to term rewriting ~ystcms." Journal of the Association for Comp11ting
:\1/acil inery 27 (1980), Jlp . 797 - 821.

(5} D. Knuth and P. DcndL'C. "Simple word problems in universal algebras."
In Computational Problems in Abstract Algebra. J. Leech, ed. Pergamon
Press, Y.Y (1970). pp. 263 297.

(6] G. lluel "A complete proof of correctness of the Knuth-Bendix comple
tion a.lgorithm ."' Joumnl of Compltler and Systems Sciences 23 (1981),
pp. l l - :21.

[7] N. Dershowitz. "Completion and its applications.n Proceedings of the:
Colloquium on the Re$olution of &tuntions m Algebraic Structures. II.
Ai~· Ka.ci & ~I. Nivat, eds. Austin, Texas. (1987).

[8] L. Da.chmair, N. Dershowitz, and D. Plaisted. "Completion without
fa.ih11·c.'' P•·oceediuys of the Colloquium on the flesolution of Equr1tion.s
in Algebraic St,.uctm·fs. H. Ait-Kaci & M. Nivat, cds. Austin, Texas.
(1987).

[9] G. Peterson and i\1. Stickel. "Complete setS of reductions for some equa.
tionaJ theories.'' Journal of tlte Assocaation for Computing Macltinery
28 (1981), pp. 233 - 2G4.

[lOJ .J.-P .. Jouannaud a.11<J II. Kil·chner. "Completion of a set of ru les modulo
a set of equat ions." SIAM Joumal of Computing 15 (1986), pp. 1155 -
1194.

[11] L. Bachmair and N. Dershowitz. "Completion for rewriting modulo a
congruence." Proceedmgs of zhe Second lntemntional Conferrnce on
Rewdting Techni'lue.v and Applications (1987).

38

(l2j D. Bra.nd. "Proving ~heorcms with the modification metbocl." SIAM
Journal of ComputinfJ 4 (1975), pp. 112- 't:·w.

[13j D. A. Plaisted and S. Greenbaum. "Problem representations for back
chaining and equality in resolution tbeort>m pro,•ing." proceedings of the
First IEEE Conference on .4rlificial fntclligence Applications (1984),
pp. 417- 422.

(14] D. A. Plaisted. "Non-Horn clause logic progra mming without contra
posit ives." Journal of 1tutomated 11f'llsoning, forthcoming.

(15) R. Smully;\n. To Mock a Mockingbir·d. I<no·,, r, i\Y (1985).

[16f \V. McCune and L. Wos. "A case study in automated theorem proving:
finding sages in combinatory logic." Joumal of Automated Reasoning 3
{1987). pp. 91 - 107.

(17] 13. Glickfield and R. Overbeek. "A foray into combinatory logic.'' Jour
nal of Automated Reasoning 2 (1986), pp. 419-431.

[18] J .-M. Hullot. "Canonical forms and unification.~ Pr·oceedili{J8 of the
Fifth Conference on A ulomaled Decluclioll, prin l.ed as Lcclur·e Noles
in co7!lputer Science 87, Spri nger-Verlag (!9SO), pp. 318 33~.

39

