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Figure 1: Occurrences in a(a(b,a(b,w)),a(a(b.b ),c)) 

1 Theoretical Background 

Reasoning about equations is fundamen tal in computer science and else. 
where. Yet equality is diflicul~ for many automated theorem provers to 
handle. The chief obstacle to automating equational reasoning is the lack 
of control inherent in the basic mode of equational inference: bidirectional 
matching and substitution. A natural answer to this problem is to add direc. 
tion to equations, turning them into rewt·ite rules. 'vVe have simulat<~d the 
K n uth-Dcndix technique for converting a. set of equiltions into a complete set 
of rewrite rules in a first-order theorem prover implemented in Prolog. Since 
unification t>lays a primary role in this technique, Knuth -Uendlx completion 
provides an obvious route for dealing with equations in a logic programming 
context. 

1.1 Equational and Rewrite Systems 

Let T be a set of first-order terms constructed from some set of function 
symbols rand variables V. We shall informally use string> of integers, or 
occurrences, to identify subterm positions. \\'e write r(v]P to denote a term 
r with a subterm v at position p. For example, the occurrcnn•s of s = 
a(a(b,a(b,w)),a(a(b,b),c)), arc mapped in tree form in Figure 1. Note 

s(a(a(b,a(h , w)),a(a(b,b ),t·))]o = s{a(b,a( b,w)))l = s(b]11 = s(<t(b,w)] 12 = 
s[b]m = s[w]m = s{a(a(b. b),c)h = s{a(b. blht = s{b]111 = s(b]m = s[c]?'J. 

An equational system C O\'er T has as axioms a set of equations of 
the form o = fJ. When a term contains a subterm (not necessarily proper) 
matclting either side of an equation, that subterm may be replaced by the 
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o~her side of ~he equation. ~fore formally, an equario11al system has the 
single rule of inference: 

:=:(T(uu]p), u = v 
:=:( r(t;ujp) 

where:=: stands for any propositional context, <1 = {3 represents ambiguously 
either a= /3 or /3 = a, and u is a substitutio1\ of tc•rms for variabl~s . Dirkhoff 
(lj showed the soundness and completeness of Pquational systems. 

The problem with equational systems from the computational stand· 
point is that their single rule of inference l>rovides no strategy other than 
to exhaustively compare pairs of terms on ~ither side of the a.xiom;,. fn 
common practice, equations a.r~ efficiently used to simplify complex terms 
accorcling to some ordering principle. For exalllf>lc, in verifyiug that 

•I 

v'4! • 4+ 4 =I> 
ieO 

we first replace definienda by definiens. and then replace equals by equals in 
the direction of shoner term~ 11ntil both sid~s Dre identical. This suggests 
that automated equatioaal rcasoning sllOuld use direr t.cd equations similarly 
to cut dc)wrl search, as many systems do. 

A rewrite system n over T is set of directed equatiotiS of the form 
I ~ r, called rewrite rules. Directed equations arc applied like undirected 
equations, but only left-hand sides are matched and replaced by right-hand 
sides only. ~lore formally again, a rewrite system has this rule of inference: 

:::(T[ti<7)p), U- V 

:=:(,.[va)p) 

with :::: and u understood as before. 
Not surprisingly. not just any rewrite system is complete in the sense 

that one crul deri,•e any valid consequence of the rules considered as undi­
rected equations. There is, however, a family of rewrite systems that are 
not only sound and comtl lcte, bu~ decidable, ,J cspi tc the fact that in general 
equation<LI consequence is undecidable. To in troduce them we need a bit of 
terminology fi rst. 

We write s - t for "s rewrites to t in a single step" and s ..:. t for 
the reflexive, transith·c closure of -. s 1 t is an abbreviation for 3u(u ­
s & u - t) : in other words, some term u diverges under rewriting. .s ! t 
will likewise abbreviate convergence: 3u(s- u & t - u). We shall indicate 
evcruual convergence: 3u(.!..:. u & t..:. u) by s 1· t. and P.vcntual divergence: 
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figure 2: Confluence and Local Confluence 

3u(u ~ s & u ~ t), by s •! 1. We shall wri tes..!.. t to indicate that t is a 
nor mal form of s . i.e .. that s ~ t and ,3u(t .=. u). 

One way to decide whether an equation follows from a set of equation~ 
is to use tl1a1. set to matrh :u~d replace the terms in the target equation until 
eit her both sides of the target equation are the same, or else both sides arc 
irreducibly distinct. If every term has a unique normal form. this procedure 
is complete. In a canonical rewrite system, every term has a unique normal 
fo rm. 

A c:.111onical rewrite system n is one whi<:h is fin ite, noetherian, and 
confluertt. A system of rewrite rules n is noet herian just in case eveiy 
sequence of rewrites terminates: in other words. iff .:. is well founded in n. 
Confluence, sometimes called the diamond or lattice property, ensures that 
terms that diverge under rewriting eventually converge. ln other word~, n 
is con:fl uent iff 'v's,t(.s +f t :J s l• t). (See Figure 2.) 

1.2 Noetherian Orderings 

A llinary relation >- on 1' is monoto nic iff it has the replacement pr-i>per·ty, 
i.e., 

'>It, u E T, 'v' I E F. t >- u :J f(o., .... ,a,, t, l>k, •.. ,c.n) >- f(c., •... ,c.,. ILl>b • •. ,Cl'n ) 

It is stable (under substitution) iff 

'v't, u E T, t >- u :J ta >- uu 

for any substitution u of terms in T for variables. A monotonic partial 
ordeting is a simplificat ion ordering if it has in addition the subterm 
property: 

'v't E T, 'v'f E F, f( ... t...) >- t 
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Dershowilz [2] proves the following ih()Orem: 

A rewriting system {I, - r;} over a set of terms Tis noeth~rian 
if ther<> exists a stable simplification ordering >- over T such that 
l; >- r;. 

We shall call such a. stable simpUfication ordering<> reduction ordering. 
For our proofs we used a recursive procedure wb.ich lcxicograpb.ically 

orders terms in the following way. First a routine we'll call LEX attempts to 
order the terms on the fol lowing principles: 

1. Variabl~s are not ordered among themselves. 

2. Compound terms 1 >-t., atoms: e.g .. /(X, Y) >-t,. a. 

:1. Compound term~ >-t•r subterms: e.g., f (X,g(b,Y)) >-t.,g(b,Y}. 

4. Two atoms arc reverse lexiwgraphically ordered by th1•ir names: e.g., 
adam >-~c: zoe.7 

5. Two compound terms are ordered by RANI\. 

6. Compound terms partially orderable by llAtiK are ordered by calling LEX 

on their subterms. 

RAN 1\ orders terms in the following way. F irst 1mifiable pairs are rejected 
as non-onlcrable, s ince th is would o l>vio usly lead l:o cycles. Non-unifiab le 
terms are then ranked. t l ~ •• ,., t2 iff: 

(i) v,, ~ V0 , where V11 , \lf2 are the multiscts of variables in 11 
and 1ft res1)ectively; and 
(ii ) w(tl) > w(t2), where w(r) is a linear polynomial weighting 
of the functors in r. 

A pair of terms is partially ordcrable it meets (i) of RANI\ in one or 
both directions (i .e ., th~ occurrences of variables on o ne side is a subset. 
not necessarily proper, of those on the other), but does not mee t (ii) in 
either d irection (i.e., the weight is the same on both sides). If the ordering 
reported by applying LEX to subterms conflicts with the dirl'ction of the 
partial ord<•ring of RANK on the terms, the terms are not ordNcd by LEX. 

1 ui.z., non"ariable terms 'hat are neit.her nu meric nor sy mbolic a.lont~. nor Hsts. 
1Thus c.ht user ca.n give cl iffer~nt w~ights to ea.c;h idendfier through cartful naming. 
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Not<• that in the sirnpl~sl case where all functors are weighted equally, 
this ranking orders from longer to shorter ~erms, according to the number 
of functors. In the ordering we use on the rombinator problems reported 
here, all zero-place functors receive a weight of zero, and all other functors 
a weight of one. Th11S 

/ (g(a,X,c),h(b.c,Y)) >- a(a,b,c) 

by a simple count of the functors, whereas 

/(g(a.X.r),Y) >- f(X.g(}',b,c)) 

is determined by a recursive caD to lexicographically order subtcrms. 

j(X.fJ(a.Y,Y)), f(Y,rJ(b,X,X)) 

is incomp~rablc since it fails condit ion (i) in both directions. 
~EX/RANK is a reduction ordering si11ce it fulfills the suillerm condition 

by 3. of LEX and the rcplacernent condition by ii of RAI\K. 

1.3 Confluence and Local Confluence 

A rew rite system n is locally ~onfl uent when tenus that diverge in a single 
step cvcutuaJiy convt'rgc: Vs,l(.s l t;) s l•t). (Sec Figure 2.) ~cwman [3} 
proved that "noetherian rdation is confluent iff it is locally confluent. 
Theorem: If n is noetherian, then 

'lfs,t ((s · t :::> s l•t) iff(s· f t :> .s l • t)]. 

Proof {!4]): The 'if' direction is trivial. The proof of the 'only if' part 
uses a pair of i nductio~s to complete the characteristic diamond shape of 
conflu~ncc (see Figure :J). 

WP ~ssumc that - is a noetherian, locally confluent relation. \\'e show 
- to be confluent by noetherian induction. We assume it for cv~rything 
less than z under-: i.e .. \>'y(x ~ y). where .:!:. is the transitive closure of 
-. and show it for x. 

If z - 11 or x - z then we are done by local confluence. Otherwise, 
split x ..:. y into x - .• and .~ ..:. y, <Utd x ..:. z into '!' - I and c ..::, z as 
shown in the diagram. By lontl confluence. 3u(s ..:. u & I ..:. u). Now two 
applications of the induction hypothesis do the trick: first to get us from y 
and u to v: and then from v and ~ to u:. 0 

The necessity that the relation be noetherian is shown in Figure •I, which 
illustrates a locally confluent but non-noetherian r~l:nion which is obviously 
uot confluent. 
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Figure 3: Noethe rian local confluence impl1cs confluence 

Figure 4: Non-noetherian local confluence does not imply collfl uence. 
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1.4 Local C onfl uence and C l'i t ical P ait·s 

Donald Knuth and Pett•r llenclix (5] discovered a test for local (.onfl uence 
and a procedure for turning a set of equuions mto locally confluent (and 
ultimately canonical) rewrite rules, which they implemented and tried on 
several problems involving groups. Their basic discovery wa.~ that a noethe· 
ria.n r<!write system wou ld be locally confluent iff every critical p a ir of 
terms reduced to the same normal form. 

One way to ensu re confluence in a rev:rite system would bP to equate 
the resulting terms each time a term had clistinct rewrites. Given that the 
rewrite rules are congrucnfc-preserving, such a procedure would clearly be 
sound. Unfortunately there are typically iufinjtely many such di•·ergent pairs 
if there are any. Note howt>ver that this approach involves infinite duplica 
tion, since the set of divergent pai rs includes infinite subsets of unifiable 
variants. The insight of Knuth and Dcndix was to search for tlte source of 
di\·ergence in the rewrite rules the mselves, using most general unification to 
render the task finite. 

A critical pair is generated when the left-hand sides of two rules overlap 
or s upe rpose, so that one is unifi"ble \\'ith a. non-variable su bterm, not 
necessarily proper, of the o~her. The critical pair consists of the most general 
version of the terms that could be generated by such overlapping rules. For 
instance. the two rules 

f (X,g(X, a)) ~ h(X) 

g(b, n _. i(Y ) 

superpose to yield th<• critical pair 

< f (b, i(a)), h(b) > 

;\lore £ormally, suppose >.1 - p 1, >.2 ~ P2 E R. and suppose further 
that >.1 = .. p.2aJP for some most general unifier a and somt• (non-variable) 
occurrence 1>. T hen there is a critica l pair< u[p1u),p10' >. Fo1· any pair of 
t<•rms s, t such that s I t, there is a crit ical pair < 1'<./J > arHl a unifie r a 
such that s = Ota and t = {Ja (or l'ice versa). 

By equaling critical pairs, we handle together unifiable classes of terms 
that would diverge, with great economy. Provided the original set of rul<•s 
is finite , there will only finitely many cri tical pa irs. Once :>JI c ritical pairs 
are equated, local confluence is guaranteed. 
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Fig11rc 5: Disjoint Subtcrms Case 

Theorem: A rewrite system n is locally confluent iff for every critical 
pair< S,T >. S .• T. 

Proof ((5.6)): 
Clearly 1?. is not locally confluent if some critical pair does not converge. 
To show that critical pair convergence suffices for local confluence, we note 
that there are on ly three possible cases, depicted in the next three figures 
("-'.lap ted from [7]). 

Suppose that a term cr diverges ander rewriting. Then there are Sll !>terms 
of a. say {31 and {h, so that a = u[PJ], = v(,IJ1)9 for some contexts u a11d v, 
and positions p and q. Further there must be be rules r 1 and r1 in 1?. of 
the form ~~ - p1 , ~, - pz and most general unifiers o 1 and <11 such thM 
;J, = >.,at and Jz = ~zOz. Applying r1 or r, to a yields the divergent pair 
o.',cl': 

< u[pdP , v[pz]q > . 
Local confluence demands that a' h a". Call that necessary meeting place 
-y. 

The simplest case is depicted in Figure 5. If 8 1 and {Jz are disjoint sub. 
terms, then r 1rzcr = rzrtO' = w(pt]p(p,j7• For example, if r 1 = f(.\. >')­
.\. r2 = g(X, Y)- Y. and a= h(f(n,b),g(b,c)), ~ben a' = h(a.g(b.,·)) and 
(>

11 = h{f(a,b),c). So r = h(a. c). 

lf the two subterms are not disjoint, then we may suppose that ;]1 b a 
subterm of {)2 . There are two possibilities unclcr this heading: either {31 is 
contained in one of the terms substitul.cd for variables in >.1 by u2 , or ~lsc 
it i> unifiable with ll. non· variable subterm of .X2 • 

'!'he fi rst possibility is depicted in F'igure 6. Suppose both u 1 and 112 

replace some variable in cr by r. r 1 applied to ao1 re(>laces an occurrence of 
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Figure 6: \'ariable Cas~ 

.,. by r'. Additional applications of r 1 will replace the other occurrences of 
T in a 1u1 by r' . Call the expression obtained in this way a"'. Apply ing r2 
to a"' yiclcls (ao2),;,,, (i.e, oo-2 wi th r' unifo rmly substituted for r) . This 
same term can be derived by fi rst applying r~ to au,, followed by M many 
applications of r 1 M are needed to replace all occu rrcnccs of r by r'. 

For example. suppose r1 = n(X) - -X and r 2 = X • (Y + Z) -
(X • Y) +(X ~ Z). If o = 2 • (n(3) + ft(4)), then o' = 2 • ( -3- n(ol)) (or 
2 • (n(3)+ -4)}, and o" = (2 • n{3)) + (2 .r1(4)). o"' = 2 • (- 3 + -4), and 
1 = (2 . -3) + (h -·1). 

The final possibility, depicted in F'igt• rc 7, is simply the cri tical pair case. 
Since we are given t ho convergence of crit ical p<l.irs by hypothesis, we are 
done. As an example, let 1·1 =X +0 ~X, X • (l' + Z) .... (X • I' ) + (X • Z), 
and 0: = 2 A (1 + 0). Then n' = 2 +l and c1" = (2 • 1) + (2 * 0}. Giv<'n ouly 
these two rules, these two terms are irreducible. 

1.5 Com pletion 

The Knuth- Bendix completion procedure is simply to equate critical pairs 
and orient the resulting equations in :u:cordance with some noetherian or· 
deri ug. The enlarged ~ct of rewrite rules is then checked for critical J)airs 
qnce again, and the JHOccss iterates. There arc three possible outcomes. II 
the proced ure terminates, tltcn t he reSlllti ng rewrite system is locally confiu-
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cri t ical pair 

Figure> 7: Critical Pair Case 

ent, a.nu in fact canonical, since the nn itencss of the original s~t of equations 
and <t noetherian rewrite relation are assumed by the procedure. T he prO­
cedure rna.y never termina.Lc, with each addition to the set of rewrite rules 
generating another round of critical pairs. Or the procedure may abort, if a 
critical pair of terms is generated which is not orderable in either direetion. 

Thus the Knuth-Bendix completion procedure assumes a noetherian or­
dering on T. If the ordering is not total, the procedure may generate a 
non-orient:tblc critical pair and so fail. This problem may be r·esolved by 
ad hoc exterBions to the ordering to handle incommensurable terms a.s they 
ap1)ear, but this tactic ri sks rendering the ordering non-noetherian. In fact, 
even gh·rn an ordering total on ground terms, it is not always possible to 
order ~rms with ''al'iables. The approach we have followed is that of -un­
failing completion" as described in [8]. Non-orientable equations are kept in 
the database and used bidirectionally for the generation of critical pa irs in 
the manner of paramodulation. 

following [8]. we pres~nt the completiort algorithm ah•tractly as an in­
ference system for a set of equations E and a set of rewrite rules R. Assume 
here that >- is a reduction ordering on T. First the basic Kmath-Dendix 
procedure is characterized by the following rules: 

Cl: Orienting an equation 

Bu{.•=t} , R . 
E,Ru{J -t} afs>-l 

C2: Equating a critical pair 

E, R 
E { _ } n if S J R I Us - t,,. 
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C3: Simplifying an equa1ion 

EU{J:::t}, R.f 
• I .S ~R U 

Eu{u=t),R 

C4: Deleting a trivial equation 

Eu {3 = s}, R 

E,R 

The next rules do not alfccl. the final outcome of the 1\nuth- Bendix 
procedure, but arc practically necessary for efficiency. They simplify rewrite 
rules so that right-hand sides are in normal form rt>lati,·e to all the rules 
deri,·ed so far, and the left-hand sides in normal form relative io a.ll rules 
.Jeri vcd so far exc<'pt, naturally, those in whlr.h they occur. 

Sl: Simpl ifyi ng the right-hand side of a rewrite rule 

E, R u {s- t} ·r 
E, R u {s- u} 1 t -n u 

52: Simplifying the left-hand side of a rewrite rule 

E, R u {$ - t} 
EU(u-t},R 

if I - r E R, s = v{lu)p, u = v{ru)p; or I- r E Rands<> I. o <> J signifies 
a i; a proper instance of {J: 3u (a= pu ) & -.3 u (.8 = oa). 

The intent of 52 is to delete subsumed irts tances of rewrite ru les. The 
rest r-ictions are necessary to disting11ish these cases from those falUng under 
C2: non-subsumed overlapping rules should not be dropped from R! 

Standard completion fails when an equation can neither be simplified 
by C3 or C4. nor oriented by Cl. Naturally this can be avoided if r is 
total, but this is too much to expect in gen<' ral. Commutativity is an of­
tct1 indispensibl~ a..~ iom that cannot he oriented by any reduction orde ring. 
Various approaches for rewriting and unification in associative-commutative 
syst~ms have been suggested: eg, (9,10.11). :\one of these approache> com­
pletely excludes the possibility of failure due to incomparable terms, as does 
the apJ>roach skctc:hrd next. 

\Vc obtain unfa.i ling completion by adding the in ference rule: 
C5: l':quating a critical pai r. 

E. R .I 
£ { _ } R 1 s f.t:•vn t 

U $-I , 
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together with the following rules for simplification: 
53: Simplifying the right-hand side 

E, R u {s ~ t} ·r 
I t-,..lL 

E,Ru(s - u) "' 

54: Simplifying the l~ft- hand side 

lEu {s: t}. II 
a Eu{u:i:l}, R 

b)E,Ru{s-t} 
Eu {u- t}, R 

if I- r E E,s = v[lu]p, u = v[ru]p: or I= r E E a.nd s <> /. 

Inference rule C5 subsume,; C2 as a special case. £= signifies tlw rules 
generated by the symmetric closure of E. Unfailing completion superposes 
not only the left-hand sides of rewrite rules with one another to generate 
critical pa.irs, but also the left-hand sides of rewrite rules with t'ithcr side 
of equations, and equations with equations. 53 and 54 extend 51 and 52 
by allowing orientabl~ instances of equations to be used a:; rewrite rules. 
au = fJu is an orientable instance of a = {J if au >- {3u. E denotes the 
rewrite system consisting of all orientable instances of equations in £. 

Essentially, when faced with a non-orientablc equation, unfailing comple­
tion falls back on a paramodulation st.rategy for the determination of critical 
pairs. The completeness of this strategy depends ultimately on llirkhoff's 
result. While giving up nothing in completeness, however, non-oriented 
equations are expensive computationally and should be <tvoidcd iC possible. 
The use of oricutable instances in the simplification rules is an Mtempt to 
reap some of the advantages of direction from non-orientable equations. For 
exam(lll', the two equations X • Y = Y • X and ( .\' • l') • Z = (Y • .\") • Z 
are not ori<'ntable. Neverth<'less, using them w(' can rewrite ground terms. 
e.g .. ((( (a • b) • c) •d) • e) ..:.. (e. ( tl• ( c • ( b • a)))), using lexicographic reverse 
alph;tbetical l:>rdering. See Figure 8. 

The soundness and completeness of unfai li ng completion are proved in 
[.s]. 

1.6 Two Examples of Completion 

To sec how standard completion works, consider the following definition of 
a grou1>: 
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((((a • b) +e) • d) -e)- ((((b • a) H)+ d) te) [(X • Y) • Z = (Y +X) • Z] 
((((b• a) +e) ~ rl) • e)- (((("'(b•a)) • d) • e) [(X • Y) • Z = (Y d ') • Z) 
(((c • (b • a)) • d) *€)- ((d • (c• (b • a)))-e) [(X • Y) • Z = (Y • X) • ZJ 
((d * (c • (b • a)))H)- (e t (d ~(c• (ll ><t)))) [X • Y = >' • X] 

l·'igurc 8: Rewriting instances of unoricnLable eqnaLions. 

l•.l = .l 

x" x- = I 
(x • y) • z = x +(y •z) 

We shall t race in parL the comploLion sequence dicLated by the ru les Cl -
C4, under the lexicographic ordering wbere • >- -. The results appear in 
Figure 9. 

We start by direct ing the three equ:>tions in the order listed. Not<! that 
the lexicographic ordering has the efli>ct of moving parentheses to the right 
in the association axiom. since (x•y) >- :l: . The first critical pair added comes 
from superposing the first two rewrite rules: the second from superposing 
th<' rule just generated with the second rule. In generaL wo have followed 
such a linc<•r or depth. r, rst strategy. Tlte third critical pair arises from the 
overlap b!'lwcen rules 2 and 3, and the next two by superposing the ruie 
just added with 2 again. The sixth critical pair is generated by superposing 
the previous rule with rule 5. The last critical pair results from superposins 
the ru le before the immediately preceding rule with rule 3. 

In a straightforward manner we have derived a nearly complete syste111 
of rewrite rules. Only on~ ruie is missing. (x • y) - ~ y- ~ x- T his is 
a hit more complicated, requiring some intermediate rules. See (5( for one 
derivation. 

We illustrate unfa.iling completion with the axioms for <~11 associat i\'0· 
rommutati vt: ring: 

x.o..y=y+x 
:t · y=y • x 

( .l + y) + z = J' .,. (y + z) 
(r •y) • z=:n(y • z) 

:t+O = x 
X+ i(.c) = 0 

:t • (y"- .::) = (x • y) +(:t • z) 
(!I+ z) • x = (yq) +(zu) 

Note that no procedure will succeed in orienting the symmet ry a..xiom. 
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I Ei R; rule 
l • :r =x 

0 z . :r- = 1 
(x ~ y) • z=x • (y • z) 

:rvz =1 Ro+ 
1 (x •!I) • z = x t {y n·) I •x- x Cl 

fit+ 
2 (.c • y)n=x•(y•z) :t: • x- - I Cl 

R2+ 
3 {:t: •y) • z - x • (y • z) Cl 
4 1- = 1 R3 C2 

R3+ 
5 1-- l Cl 
6 I • I = 1 Rs C2 
j I = I ll; C3 
8 Rs C4 
9 1 • z = x • (x • z) Rs C2 
lO Z =X * (z- * 2) R.s C3 

Rs+ 
l1 x•(x- • z)-.z Cl 
12 z • I - (z )- Ru C2 
13 x=(:r_)_ Rn C3 

lluT 
14 (x_)_ -+ x Cl 
15 x- • x = 1 R14 C2 

11t4+ 
16 x- • x -+ 1 Cl 
17 x + 1 =X 11t6 C2 

11ts+ 
18 X . I - X Cl 
19 I • : = x- • (:r • z) R,s C2 
20 :=:t • (:t •z) Rts C3 

Rts+ 
21 :.e- -. (x ... z) ~ z Cl 

l~igurc 9: P,a.rtial tornplction of g roup ax.ioms 
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In Figure 10, the b(,gimting of a completion sequence is ill ustr:.ted . We usc 
the lcx.icograph it: ordering described earl ier. The initial orientation steps arc 
combined to save space. The first two critical pairs produced overlap the 
first non-orientable equation with the third and fourth rewrite rules. The 
last critical pnh is simplified a.nd oriented to give us the closing rewrit.e rule. 

2 Application 

2.1 Integrating Completion and Proving 

We get the effect of unfai li ng complet ion by arran~ing r.he input to a prover 
implemented in Prolog by David Plaisted. ba.~ed on llis simplified problem 
reduction format, called sprfn (14). The crux of th~ arrangement is to induce 
the <>dd.ition of critical pa.irs to the eC(\J:>.1.ionaJ da.taba.,e. 

sprfn m;1.y be viewed a..~ an extension to Prolog with t rue (sound) unifi 
cation and negation, a complete search strategy (iterative deepening) and 
caching of intermediate results. Ahernati\•ely, il. may be seen as a theorem­
prover that takes advantage of the built-in unification and b;~ck-cha.ining of 
Prolog to adtieve respecr.<tble results in a relatively short and comprehensi­
ble piece of code. sprfn inserts a li mltc•l forward-chaining pha.s~ every time 
tile depth-bound is increased and the prohlem restarted . Solutions obtained 
in either phase are available in bot b. Given a set of rewrite rules. sprfn does 
automatic rewriting of terms at the end of each forward-chain infl, phase. t:s­
ing the Prolog-likc interface of sprfn, it is possible to represent (~~u a.tional 
problems in a way that causes the prover to simulate the Knuth- Bendix com­
pletion procedure. ln tb1s paper we compare these representations with the 
standard axiomatic representations of equality on several problems involving 
combinators. 

A feature of our the sw~tegy is tha i. we do not first compile " complet~ 
system of rewrite rules and then auempt to prove a theorem, but rather 
interle;we completion and proof steps. Once we have generated enough 
rPwrite rules to prove the theorem wc are done, or so we hope. 

Most t)f the rules of un fai ling completion are built into sprfn. C l is taken 
care of either interactively by the user or by an automated ori~nter. In th•• 
r<'Sults to be described, w~ use the lexicographic orienter described earli~r 
C2 is subsumed by CS, as we have said. C3 is taken care of automatically 
during the rewrite phase. Simpli fication using orieotahl<! instances <t$ iu S3 
and S4 is again providccl by the rewriting part of sprfn. This leaves C4 Md 
CS to be taken care of in the input. C4 is satisfied by adding a reftexh·ity 
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i E, R, rule 
x+y=y+x 
x • y=y•z 

(x+y) +z= x + (y+ :) 
0 (x •y )•z = z • (y • z) 

x+O=x 
z + i(z) = 0 

:r • (!I - z) = ( :r * 31) + (:); • z) 
(!J + Z} *Z : (y * X) +( Z * X) 

:~:+y=y+:r 

x•y=v • :~: 

1,2 z+O=z Ro-'-

z • i(z) = 0 
z A{!f + : ) = (x • y)+(z. z) (x+y)T: - z +(y+ :} Cl 
(y + z) • z = (y • x) + (.n :z:) (z• y) • z- x•(y•z) Cl 

x+y=y+x 
3,4 zty=yn; fl.~+ 

x • (y + z) = lz • y) + (z u) z+O-x Cl 
(y + z) *Z = (y • z) + (P z) z + i(x) - 0 Cl 

ll..+ 
5,6 x+y = y+z (x • y}+(x • =) - x • (y+z) Cl 

x • y=y•x (y • z} + (z u )- (y + z) • z Cl 
7 O+:t=:l: Rs C5 

RB+ 
8 O+x- z Cl 
9 i(z)+z-0 Rs C5 

i41+ 
10 i(z)+z - 0 Cl 
11 i(O) + 0 = 0 R10 C5 
12 i(O) = 0 R1o S4a 

R,o+ 
13 i(O)- 0 Cl 

Figure 10: Partial completion of associative-commutative ring a.~joms 
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axiom to ou r represen \a~ions, which wi ll subsume any instances o f X = X . 
The principal job of the input representation is t h ~ simulation of C5, which 
adds the cri~ical pairs to the database. 

2.2 The C ritical P air Representation 

In tld s rep resentation. a rule with a critical-pai r equatio n as its head is 
introduced for each occurrence of a non-,·ariable subterm in the terms of 
the input. The Knnth-nendix conditions for the generation of critical pairs 
appear in t he body. Because this rep resentation contains rules solely to in· 
tr<Jduce a nd eq uate crit ical pairs, we call It the cri t ical pair rcprcsentatiOtl. 

For example, the b combinator, which given three functions returns the 
composition of the fir:.t and the second applied to the third, is defined a.~ 

follows: 
bxyz = 1·(y::'). 

Represent<•d in first-order terms, t his becomes 

a(a(a(b,X),Y),Z) = a(X.a(Y,Z)) 

using a fo r functional application . We <lcpict t his equation in tree form in 
Figure 11. 

In this forest, there are five distinct positions occupied by non-variable 
terms that may overlap with other t~rms. In practice, we ignore those 
posit ions occupied by CO lllbi na to rs , s ince they will be irred ucible on any 
r('asonable orde ring. Those positions roo Led in an occurrence of a, Lhc root 
position and post ions 1, 2, and 11, ar<' left as po.•sible trouble spots. For 
each one, we construct a rule to introduce the appropriate critical pair into 
the equation dat<tbase. See Figure 12. 

In fact, there seems lo be no reason to tltink that c ritical pai r ru les for 
each non-variable occurrence in the input would be sufficient. given that new 
and deeper t<'rms will ordinarily be g~nerated and superposed "s the critiral 
pair processes iterates. Since sprfn t~nds to be distracted by too many 
available inferenr.es. we thought it woul d he best to s tart with a rnjnimal 
number of <:ri tical pair rules. and add to the m as needed . In practice. just 
the critical pair rules tailored to the input has prov('n sufficient for theorem. 
proving. (That is, anything unpro,'3ble with this basic set of critka.l pair 
rules is still unprovable with an augmen ted set.) ~lore work needs to be done 
o n t he prad ical and tlt~o retical su f!lcioncy of thi5 or any set of occurre n<·c· 
specific critical pair rule;. 
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Figu.re 11: bxyz = x(yz) 

These rules exhibit the Prolog-like interface to sprfn, including one mis­
leading resemblance: ·=· here s~ands for the relation of equality, not the 
operation of unification, a.~ in Prolog. Note that the rules for introducing 
critical pairs search only the equ<l.tions, because only terms in equations arc 
accessible for unification. It is vital then that all rewrite rules be represented 
<llso by equations. In addition, equations in the input wiU not be oriented 
by sprfn unless they are independently deri,·ed. Thus it is important that 
the input file contain an equation for every rewrite rule, and a rewrite rult• 
for every orientable <:'qttation. sprfn will preserve this parity, bu t the use r is 
responsible for the input. 

Calls to Prolog restrict these rules to the forward-chaining phase. Thl' 
equation of critical pairs is not an appropriate goal for the prover. If th~ 
body of a critical pair rule is satisfied, then the equation will IH~ gene rated; 
but no subgoals wiU be added by these rules. 

2.3 The )vlodification Representation 

In our li rst representation, declarations of definitions and a..xioms were sep. 
arate frou1 the procedur~s for genN<tting and equat ing criticl\l pairs. In 
our next representation, they are rombined. and with this multiple cases 
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'1. root posit ion 
v = u : -

prolog(t_cha>ning), 
X = U, 
prolog(nonvar( X)), 
X • V, 
prolog((X \== V)), 
prolog((V \•• U)). 

Y. I posi tion 
a(V,'f) = U : ­

prolog(t_chalning), 
"(X ,Y) = U, 
prolog( nonvar(X)) , 
X = V, 
prolog((X \•• V)). 
prolog((a (V,Y) \== U)). 

Y. 2 posit1on 
a( X,V) = U : ­

prolog(t_chaining) , 
a( X,Y) = U, 
prolog(nonvar(Y)), 

Y. 
Y. 
'l. 
'l. 
'l. 
'1. 
Y. 

prolog((Y \•= V)), 
prolog((a(X,V) \== U)). 

Y. 11 position 
a(a(V,Y),Z) = U :­

prolog(f_cha>n>ng), 
a(a(X,Y),Z) = U, 
prolog(nonvar(X)), 
X • V, 

cri~ieal pa1r to be equated 
keep completion in torvard phase 
aquat1on i n database contains a 
non-variabl e subterm which is 
also a term in another equat1on 
no~ ayntact~cally identical 
c:rit ica.l pair non-trivial 

prolog((X \== V)) , 
prolog( (a(a(V,Y) ,Z) \== 0) ) . 

Figure 12: Critical pair rules rcqllired ror b combinator 
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81 = 82 : - pr olog(t_cha1ning) , 
a (b, X) = U, a(U ,Y) = V, a (V, Z) = 81, 
a(Y, Z) = W, a(X ,W) c 82. 

Y. 8 1 = 8xyz 
Y. B2 = x(yz ) 

Pigurc l3: Definition of b combinator in mod ification representation 

of superposition are combined as well. Because our strategy {or represent­
ing equality resembles that of (12) (cf. (13)), we call this the modi fi cation 
repr<1sentation . 

In this representation, each non-variable subterm in the term being de­
fined is "pulled out" and equated with a variable, much Uke the \ISUal Prolog 
rep resentation of functional app lication. If this chain of equat ions exists in 
the database, ultimately equating the left-hand side of an equation to say, 
B 1 and the right-hand side to B2, then the equation BI = 82 is added to 
the database. 

As an example, Figure 13 gives the definition of the b combiuator. The 
various rest rictions of the previous procedu re h;tve been drop ped here: any 
of the vari<lbles may be bound to variables or to terms that are syntactically 
iden t ical wi th other terms in the clause. These differences arise from the fact 
that tb.is rule is intended to define the b combinator as well as express the 
conditions for the addition of critical pairs. Since the rules serve to define 
the combinators as well as to introduce critical pairs, it is less than obvious 
they should be restricted to the forward-chaining phase. but in fact the 
prover performed much better on our exam ples wi th these gual'cls instaUed, 
as opposed to no guards. or back-chaining guards. 

The pertinent difference between tb.is repres~ntation and the last is that 
this representation telescopes multiple subterm replacements at different 
positions and adds the pair $ = t directly, rather than working at one 
!>osition at a time. and adding first the equations 11 = s and " = t, and 
only then s = t. 

2.4 An Example Proof 

As an example proof we choose the deri,·ation a fixed-point combinator from 
threi: other combinator~: a composition combinator: b:tyz = x(yz); and two 
repeating combinators: lxy = :t(yy), mx = :t.t:. This problem appears in 
colorful guise in [15], where the combinators are given the names of birds . [n 
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Smullyan 's vocabulary, our problem is to derive a sage bird from a bluebird, a 
lark, and a mockingbird. The essential insight is that it foUows immediately 
from the definition of the LARK, lzy = :r(yy), that l:tl:z: = z (lxlx) for any x; 
i.e., that lxlx is a fixed-point for any z. 

2.4.1 No Rewrite Version 

Our first representation uses equality a.•cioms and no rewrite rules: 

Y.'l.'l. Bluebird + Lark + Mockingbird ::> Sage (tmm, p. 9:) 

'l. definition ot SAGE BIRD: Yx : xYx 
!also :- prolog(\+ f_chalning), 

eq(a(Y ,t(Y)), B), oq(a(t(Y),B), B). 

'l. definition of MOCKiNGBIRD: Kx : xx 
eq(a(X,X), a(~.X)) . 

'1. dotinition ot I.ARJ<: L.xy = x(yy) 
eq(a(X,a(Y,Y)), a(a(l,X),Y)). 

'l. ~Qfinition ot BLUEaiRD : Bxy< • x(yz) 
oq(a(a(a(b,X),Y),Z), a(X,a(Y,Z))). 

'l.'l.'l. equality 

Y. equivalence relation 
eq(X, X) . 
eq(X , Y) :- prolog(t_chaining) , eq(Y, X) . 
eq(X, Z) :- prolog(\+ !_chaining), 

eq(X,Y), prolog(X \== Y), 
oq(Y,Z), prolog(Y \== Z). 

Y. replacement rulea 
eq(U,V) ·- prolog(\+ t_chain>ng), 

prolog((nonvar(U) ; nonvar(V))), 
replaceq(U,V). 

replacoq(a(Tl,T2).a(T3,T4) ) :-
prolog(\+ ! _chaining), eq(Tl,TJ), oq(T2,T4). 

replaceq(f(Tl),f(T2)) :-
prolog(\+ ! _chaining), eq(Tl,T2). 

We use eq to represent equality here, since sprfn is desig1tcd to auto. 
matically rewrite using terms related by ~. The existence of a fixed-point 
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combinator is denied and this denial made the first subgoal for our top-level 
go:u false. Then the three input combinators are defined. The axioms 
defining eq/2 as an equivalence rela~.ion and the the rules allowing replace­
ment of equal subterms while preserving equality ar£~ standard except for the 
introduction <>f various guards, via calls to the P rolog in terpreter, attempt· 
ing to control thei r use. Both t he t ransit ivity axiom and the replacement 
rules ttre restricted to the back-chaining phase. Syntactically identical terms 
would obviously not be us~ful subgoals for the the transitivity axiom to gen· 
erate. Again, if both U and V are variables, then they should be shown equal 
through unification and the application of the r~fiexivity axiom, not through 
the replacement rules. 

Given this input file, sprfn produces the following o11tput: 

solution_size_mult(O . I) is asserted 
proof_oizo_mult(1) is aaoerted 
clause_eount_mult(O) is asserted 

proot tound 
false:-

prolog(\+ t_chain1ng) 
eq(a(a(a(b,m),l),t(a(a{b,c), l ))) , 

a(a(l,f(a(a(b.~),l))),a(l,f(a(a(b,~).l))))) · ­
prolog(\+t_cha1ning) 
input(eq(a(a(a(b,m),l),f(a(a(b ,m),l))) , 

a(m,a(l ,f(a(a(b,m),l)))))) 
prolog(a(a(a(b,m),l),f(a(a(b,m),l))) 

\•• a(m,a(l,f(a(a(b,m),l))))) 
eq(a(m,a(l, f (a(a(b,c) ,l)))), 

a(a(l,t(a(a(b,m),l))),a(l,f(a(a(b,m),l))))) :­
prolog(t_cha>ning) 
input(oq(a(a(l,f(a(a(b,m),l))),a(l,f(a(a(b,m),l)))), 

a(m,a(l,t(a(a(b,m) ,l)) ) ))) 
prolog(a(m,a(l,f{a(a(b,m),l)))) \•• 

a(a(l,! (a(a(b,m),l))),a(l,!(a(a(b ,m) ,1) )))) 
input(eq(a (t{a(a(b,m),l)) ,a(a(l,t(a(a(b,m),l))), 

a(l, t ( a(a(b,m) ,l))))), 
a(a(l,f(a(a(b,m),l))),a(l,f(a(a(b,m),l)))))) 

size of proot 11 
clause count 6 
72.0333 cpu seconds used 
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240 inferences dQne 

The assertions reported arc parameters for weighting the various factors 
that make up the cost of a particular proof subtree: length of the solution, 
depth of the tree, and the number of nodes. Varying these weights can help 
or hinder the prover in i\s search for a proof. 

E:ach dot marks the restarting of sprfn wit!\ a greater depth bound. At 
the end we are told that this proof was found at dt'pth 11. and that the proof 
tree has 6 nodes. (calls to Prolog are not counted a.~ nodes in th~ proof tree.) 
As usual with UN IX statistics, cpu time is :tccnrate only to within :1: 10% or 
so. The number of inferences represen ts each time an old sohttion or input 
clause was used. 

The proof is simply a report of the subgoaJs g('ncrated from the top· 
level goal, false. This generates three subgoals: a call to Prolog, <lnd 
two equations. The second equation turns out to be that ins tance of the 
defiltition of the LA RK combinator showinglxlx to be a fixed point. The first 
matches the head of the transilivity rule and generates the further ~ubgoals. 
The first equation in these subgoals is an instance of the definition of the 
ll~UBBIRD combinator. and the second an instance of the <.lcfinil,ion of the 
MOC KINGBIRD combinator, once it is turned <~round throt,gh an appeal lo 
symmet ry. 

2.4.2 Critical Pair Representation 

The crit ical pai r represent:nion of the theorem is ns we have described it, 
with the addition of the equality axioms and a rewrite rule. Of those a.'doms 
defining equality as an c<Juivalencc relation, only reflexivity is demanded by 
the unfailing completion inference system. The ;ymmetry a.~iom is added 
Lo get Lite e/Tcct of ::: in C l and C3, and also e= in C5: in other words, to 
allow the equations in the database to be used in either direction. fnciden 
tally, equations arc stored as directed left-Lo-right (but not as rewrite rules ). 
so it is helpful if all equations in the input ha,·e the more complex term on 
the left . The Lchaining guard is an at tempt to contml the applicat ion of 
the symllietry axiom, hy res tricting it to the completion phase. Transitivity 
is not needed for complet ion. but is required for the completeness of the 
pro\'er. Hence it is restricted to the back-chaining phase, outside of comple 
Lion. Finally the rewrite rule is necessary to compensate Cor sprfn's /lU irk: it 
t reats all input as "old solutions" . and so will not attempt lo ron vert iu pu t 
equations into rewrite rules. 



Y. Blueb~rd + Lark + Mockingbird t> Sago (t~, p. 91) 
Y. definition ot SAGE BIRD: Yx • xYx 
false :-

prolog(\+ !_chaining), 
a(Y,!(Y)) = B, a(t(Y),B) =B. 

X definition o! MOCKINGBIRD 
a(X , X) = a(m,X). 

X detinition ot LARK 
a(X,a(Y,Y)) = a(a(l,X),Y) . 

X de!init1on of BLUEBIRD 
a(a(a(b,X),Y),Z) = a(X,a(Y,Z)). 

Y.Y.Y. critical pairs 
I. root. position 

v • u :-
prolog(t_chaining), 
X • U, 
prolog(nonvar(X)), 
X = v, 
prolog((X \ == V)), 
prolog((V \•= U)). 
X I position 

a(V.Y) = u :­
prolog(t_cha~ing), 

a(X,Y) = U, 
prolog(nonvar(X)), 
X = v. 
prolog((X \ == V)), 
prolog((a(V,Y) \== U)). 
'l. 2 posit.ion 

a(X,V) • U :­
prolog(!_chaining), 
a(X.Y) = U, 
prolog(nonvar(Y)), 
y = v, 

prolog((Y \== V)), 
prolog((a(X,V) \== U)). 
'!. 11 position 

a(n(V,Y),Z) = U :­
prolog(t_chaining), 
a(a(X,Y),Z) = U, 
prolog(nonvar(X)), 
X : V. 
prolog((X \ •• V)), 
prolog((a(a(V,Y),Z) \== U)). 
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Y.Y.Y. equality 
X = X. 
X= Y :- prolog(t_chauo>ng) . Y =I. 
l = Z :- prolog(\+ 1_ebaining) , prolog(nonvar(l)), 

X= Y. prolog(nonvar(Y)), pr olog(X \== Y), 
Y = z. prolog(Y \=• Z) . 

'l.X% oriontable equa~ione 
re~ite(a(a(a(b,X),Y).Z), a(X ,a(Y,Z)) ). 

Not<> that the statemf:nt of the theorem and the df:finition of the combi­
nators is the same as in the no-rewrite version, except that. now'=' is used 
to trigger the automated rewriting capabilites of sprfn. 

Given the preceding input, and using the lexicograt>hlc ordering in which 
functors arc weighted alphabetically, sprfn returns the following: 

solution_size_sult(0.1) is ass&rted . 
proof_slze_~ult(l) is asserted. 
orient 11 asserted . 

a(a(l, a(X ,X)).X)->a(m,a(X,X)) 
a( X, a(Y,a (a(b,X) ,Y)))->a(m ,a(a(b,X) .Y)) 
a(a(l,X),Y)->a(X ,a(m ,Y) ) 
a (a(a(m,b),X) ,Y) - >a(b,a(X,Y)) 
a(m,X)•o.(X,X) 
a(X,a(~.Y))=a(X,a(Y,Y )) 

a(a(X,X),a(~.X))->a(m,a(X . X)) 

a(X,a(Y ,Y))=a(X,a(o,Y)) 

a(X,a(Y, a(Z,Z) ))=a(X,a(Y,a(m ,Z))) 
a(a( X , X),n(X , X))->a(~,a(m,X)) 

a(l,a(Y,a(m,Z)))=a(X,a(Y,a(Z,Z))) 
a(X,a(a(m,Y) ,Z))=a(X,a(o.(Y,Y),Z)) 
a( a(m,a(b,X)),Y)=a(X,a(a(b,l) ,Y)) 
a (a(m,X),a(Y,Z))=a(a(X,X),a(Y,Z)) 

a(a(m,X),a(X,X))->a(rn,a(m,X)) 
a(a(m,X),a (m ,X)) - >a(m,a( X,X )) 
a(X,a(m,a(l.X)))->a(m,a(l,X)) 
a(a(m,l),X)->a(l,a(~,X)) 

a(X,a(a(Y,Y),Z))•a(X,a(a (m .Y).Z)) 
a(a(l,l),a(Y,Z)):a(a(m,X),a(Y,Z)) 
a(X,a(a(b,l),Y))=a(a(m,a(b ,X)),Y) 
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a(b,a(X,a(a(m,b),X)))->a(a,a(a(m,b),X)) 
a(X,a(a(b,X),a(m,a(b,X))))->a(m,a(a(b,X),a(b,X))) 
a(a(m,a(X ,X)),a(m,a(X,X)))->a(m,a(m,a(m,X))) 
a(a(m,n(a,b)),l)->a(b,a(a(=,b),X)) 
a(a(m,a(b,b)),X)->a(b,a(a(m,b),X)) 
a(a(m,X),a(m,Y))=a(a(X,X),a(Y,Y)) 

proof found 
!also:-

prolog(\•f_chaining) 
input(a(a(a(b,m),l),f(a(a(b,m),l))) 

•a(m,a(l ,f(a(a(b,m),l))))) 
a(f(a(a(b,m),l)),a(m,a(l,f(a(a(b,m),l))))) 

•a(m,a(l,f(a(a(b,m) , l)))) :-
prolog(f_chaining) 
input(a(a(l,f(a(a(b,m),l))) ,a(l ,f(a(a(b,m),l)))) 

•a(m ,a(l,f(a(a(b,m) , l))))) 
prolog(nonvar(a(a(l,f(a(a(b, m),l))). 

a(l,f(a(a(b,m), l )))))) 
a(f(a(a(b,m),l)) ,a(m ,a(l ,f(a(a(b,m) ,l) )))) 

•a(a(l ,t (a(a(b ,m),l))) ,a(l,f(a(a(b,m),l)))):­
prolog(f_chaining) 
input(a(!(a(a(b ,m),l)),a(a(l ,f(a(a(b,m),l))), 

a(l,f(a(a(b,m) ,l))))) 
=a(a(l,!(a(a(b ,m), l ))),a(l,f(a{a{b ,m) ,l))))) 

prolog(nonvar(a(a(l,f(a(a(b,m) , l))), 
a(l,f(a(a(b,m),l)))))) 

1nput(a(a(l,f(a(a(b,m),l))) ,a(l,f(a(a(b,m),l)))) 
=a(m,a(l ,f(a(a(b,m),l))))) 

prolog(a(a(l,f(a(a(b,m),l))),a(l,!(a(a(b,m) ,l)))) 
\==a(m,a(l ,f(a(a(b,m),l) )))) 

prolog(a(f(a(a(b,m),l)),a(m,a(l,f(a(a(b,m),l))))) 
\==a(a(l,f(a(a(b,a),l))),a(l,t(a(a(b,m),l))))) 

prolog(a(a(l,f(a(a(b.~).l))),a(l,f(a(a(b,m),l)))) 
\==a(!(a(a(b.~),l)) ,a(m,a(l,f(a(a(b,~).l))}))) 

prolog(a(f(a(a(b,m),l)),a(m,a(l,i(a(a(b,m),l))))) 
\==a(m,a(l,i(a(a(b,m),l))))) 

s1ze of proof 14 
clause count 7 
210.533 cpu seconds used 
633 1nferonces done 

Each equation ha.s been added by a critical pair rule, and oriented by the 
autom;tLcd lexicographic orienter if possible. As before, the top-levt>l goal 
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false generates three subgoals. Tbe firs~ is an •nstance of the definition of 
the MOCKII'GBIRD. The second matches the root position critical pair rule, 
and so generates 6 further su bgoals of its own. The first necessary equation 
is again an instance of the MOCKINGBIRD definition, and the second again 
matches a critical pair rule, this time at position 2. (Jt helps to identi fy the V 
and U terms througl1 the last two Prolog identity checks.) The first equation 
required by this rule represents sprfn's insight tbat /:r/:r is a fiXed point for 
any .r, and is accepted as an instance of the definition of LARK. The next 
is yet another instance of the MOCKI!iGBIRD. The remaining subgoals are 
simply to ensure that the terms are not identical. 

2.4.3 The Modi:fi.cation Representation 

The modification representation follows the previous t he previous ones, ex­
cept that now the defi nitions of the combinators have been upullc.-d-out." 
There are no occurrence-specific critical pair rules. 

Y.Y.% Bl uebird + Lark + Mocki ngbird ••> Sage 
'l. Definition of SAGE bi rd: Yx • xYx 
false :- prolog(\+ t_chaining), 

a(Y,f(Y}) = B, a(f (V).B) = S. 
% def i nition of BLUEBIRD : Sxyz • x(yz ) 
!II ; 82 . -

prolog(t_cha inlng) , 
a(b,X) • U, a(U,Y) • V, a(V,Z} • 81, 
a(Y,Z) = ~. a(X,W) • 82. 

'l. definit ion of MOCKIUGBIRD ; Kx : xx 
81 • 82 :-

prol og(!_chaining), 
a(m,X) = Bl. a(X,X) = 82. 

% do!in1tion o! LARK : Lxy s x ( yy) 
81 : 82 ·­

prolog(f_cha>nlng), 
n(l, X) • U, n(U, Y) • 91, 
n(Y, Y) = V, n(X, V) = 82. 

'/.Y.'/. Equallty 
X -= X. 
X = Y ·- prolog(!_chalning) . Y =X. 
X= Z :- prolog(\+ !_chaining). prolog(nonvar(X)) . 

X • Y, prolog(nonvar(Y)) , prolog(X \•• Y), 
Y = Z, prolog(Y \== Z). 
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Given this file and the same orienter again, we get the following output. 
Note that sprfn first tries to orient the equations it constructs from the input 
definitions. 

solution_size_mul~(0. 1) is asserted. 
proof_size_mult(!) is ~•sorted . 
orient is assorted. 

a (.,,X)=a(X,X) 

a(a(l,X} ,Y}=a(X ,a(Y ,Y}} 
a( X,X}•a(m .X} 

a(a(a(b,X),Y),Z)->a(X,a(Y,Z)} 
a(X,a(Y,Y} }=a(a(l,X) ,Y} 

a(X ,a(a(l,X),a(l,X}})->a(a,a(l, X)) 
a(a(l,X),a(X,X}}->a(a(l,~}.X} 

a(X,a(m.Y}}=a(X,a(Y,Y} } 
a(a( l ,a(X,X)} ,X} - >a(m,a(X,X)) 
a(a(m, l ),X)=a(l,a(X ,X)) 
a(a( l ,X),Y) ->a(X,a(m,Y)) 
a(a(X,X),a(m,X))->a (m,a(X ,X)) 
a(X,a(m,Y))=a(X,a(Y,Y)) 
a( X,a(Y,Y))=a(X,a(= ,Y}) 
a(X,a(X,a(m,a(l,X)}}}->a(m,a(l,X}} 
a(a(X,X},a( X,X}}->a(m,a(m,X}) 

a(a(a(m,b ) ,X},Y)- >a(b,a(X,Y}) 
a (a(m ,a(m, b)},a(b,b} }->a(b,a(m ,a(m,b)) ) 
a(a(m ,a(m,b}}, X)- >a(b,a(a(b,b},X)) 
a(a(a(m,X},a(a,X}},a(m,a(X,X}))->a(m,a(m,a(~.x}}) 

a(X,a(a(Y,Y),Z))=a(X,a(a(a,Y},Z)) 
a(a(m,a(b,X)),Y}=a(X,a(a(b ,X ),Y}) 
a(m,a(m ,a(a(b,m),a(a(b,m),a(a(b,m},a(b ,m))}))) 

->a(m,a(m ,a(b,m))) 
a(X,a(a(b , X),a(a(b,X),a(b,X)))}->a(m,a(m,a(b,X))} 
a(a(a(m,X),a(m,X)).a(a(a,X),a(X,X)}}->a(m,a(a,a(m,X))) 
a(X,a(Y,a(Z.Z)})=a(X,a(Y,a(a,Z))) 
a(X,a(Y,a(a(b,X),Y}}}->a(a,a(a(b,X),Y}} 
a(a(c,a(m,X)}, a(~.a(X,X})}->a(m,a(m,a(X.X})} 
a(X , a(Y .~(m,Z} ) ) =a(X,a(Y,a(Z,Z)}) 

a(a(m,a(m,a(l ,m))),a(m ,a(m,a(l,m)))) - >a(m,a(l ,m)} 
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a(a(m, X),a(X ,X))->a(m,a(X, X)) 
a(a(m , X) ,a(m,X))->a(m,a(X,X}) 
a(b,a (a(b,b),a(m ,a(m, b)))) ->a(~.a<~.a(m,b))) 
a(m,a(X,X))=a(m,a(m,X)) 
a(a(X, X) , a(m ,a(Y, Y))) =a(a(m, X), a(m, a(•, Y))) 
a(a(X,X),a(m,Y))•a(a(m,X),a(Y,Y)) 
a(a(2,l),a(X,X))->a(l,a(=,a(m,X))) 
a(l,a(m,a(l,l)))->a(o,a(~.l)) 
a(l ,a(m,a(m,l)))->a(m,a(m,l)) 
a(m,a(m,a(X,X)))•a(m,a(m,a(m,X))) 
a(X ,a(m ,a(Y,Y))) • a(X,a(m ,a(m ,Y))) 
a(X,a(m,a(m,Y))) •a(X ,a(m,a(Y,Y))) 
n(X ,a(m,a(m,Y)) )•a(X,a(m,a(Y,Y))) 
a(l,a(X,X))=a(a(m,l),X) 
a(m,a(m,a(l,m)))->a(m,a(l,m)) 
a(m,a(a(b,X),a(b,X)))->a(m,a(m,a(b,X))) 

a(a(m,l),f(a(m,l)))->a(l,a(m,t(a(m,l)))) 
a(a(m,a(m,X)),a(m,a(m,a(b,Y)))) 

=a(a(m,a(X,X)),a(m,a(m,a(b,Y)))) 
a(a(m, a(m,X)),a(m,a(m,Y)))=a( a(m, a(X .X)),a(m,a(m,Y))) 
a(a( m, a(m,X)),a(Y,Z))=a(a(m,a(X ,X)) , a{Y,Z)) 
a(a(m, X) , a(m,a(m,a(b ,Y))))=a(a (X,X),a(m,a(m,a(b,Y)))) 
a(a(m,X),a(m,a(m,Y)))=a(a(X ,X),a(m,a(m,Y))) 
a(a(m,X),a(Y,Z))•a(a(X,X) ,a(Y,Z)) 
a(a(o,X),a(a(b,a(X,X)),a(a(b,a(l,X)),a(b,a(X,X))))) 

->a(m,a(m,a(b,a(X,X)))) 
a(a(X,X),a(m,a(m,a(b,Y))))=a(a(m,X),a(m,a(m,a(b,Y)))) 
a(a(X,X),a(~,a(m,Y)))=a(a(m , X),a(m,a(m,Y))) 
a(a(X,X),a(Y,Z)):a(a(~.x),a(Y , Z)) 
a(b,a(a(m,b),a(m,a(b ,b))))->a(m,a(m,a(m,b))) 
a(a(m,a(m ,a(m,X))) ,a(m,a(m ,a(X,X))))->a(m,a(m,a(m,a(X , X)))) 
a(X,a(a(m,a(m,Y)) ,Z))=a(X,a(a(m,a(Y,Y)),Z)) 
a(b,a(a(b,b),a(m,a(m ,X))))=a(b, a(a(b,b),a(m,a(X ,X)))) 
a(b,a(a(b,b),a(m,a(X,X))))=a(b,a(a(b,b),a(m,a(m,X)))) 
a(a(a(X,X),Y),a(a(X,X),Y))->a(c,a(a(m,X),Y)) 
a(X,a(a(m,Y),Z))•a(X,a(a(Y,Y),Z)) 
a(b,a(a(m,b),a(m,a(m,b))))->a(m,a(m,a(b,b))) 
a(a(a(m,X),Y),a(a(X,X),Y))->a(m,a(a(m,X),Y)) 
a(a(a{m,X),Y),a(a(m,X),Y)) - >a(m,a(a(X,X),Y)) 
a(a(m,a(b,b)),a(b,b))->a(b,a(m,a(m,b))) 
a(a(m, a(b ,m)),a(b,m))->a(m ,a(m,a(b,m))) 
a(a(m,a(m,a(m,X))),a(a(m,a(X,X)),a(m ,a(m,X)))) 

->a(m,a(m,a(m,a(X,X)))) 

30 



a(X,a(Y,a(m,a(m,Z))))•a(X,a(Y,a(m,a(Z,Z)))) 
a(X,a(a(b,X),a(m,a(b,X))))->a(s,a(m,a(b,X))) 
a(a(X,a(Y,Y)),a(X,a(Y,Y)))->a(m,a(X,a(m,Y))) 
a(a(X,a(a,Y)),a(X,a(Y,Y)))->a(m,a(X,a(m,Y))) 
a(a(X,a(a,Y)),a(X,a(m,Y)))->a(m,a(X,a(Y,Y))) 
a(a(X,a(a(b,a),X)),a(X,a(a(b,a),X)))->a(a,a(a(b,m),X)) 
a(a(m,a(m,a(X,X))),a(a,a(m,a(m,X))))->a(m,a(o,a(m,a(Q,X)))) 
a(X,a(Y,a(m,a(Z,Z)))):a(X,a(Y,a(m ,a(m,Z)))) 
a{a(X,a(Y ,Y)),a(l,a(m,Y)))->a(m,a(X,a(Y ,Y))) 
a(a(a(X,l),Y),a(a(m,X),Y))->a(m,a(a(X,X),Y)) 
a(b,a(X,a(a(m,b),X)))->a(m,a(a(m,b),X)) 
a(X,a(m,a(l,X)))->a(m,a(l,X)) 
a(a(~,a(X,X)),a(m,Y)):a(a(m,a(m,X )) ,a(Y,Y)) 
a(a(m,a(m,X)),a(m,a(Y,Y)))=a(a(m,a(X,l)),a(c ,a(m,Y) )) 
a(a(m,a(m,X)),a(m,Y))=a(a(~.a(X,X)),a(Y,Y)) 
a(a(m,a(m,l)),a(X,X))=a(a(m,a(m,l)),a(m,a(m,X))) 
a(a(m,a(m,l)),a(X,X))->a(a(m,a(m,l)),X) 
a(a(m,a(l,l) ) ,a(X,X) )=a(a(rn,a(l,l)) ,a(m,a(m,a(m,X)))) 
a(a(m,a(l,l)) ,a(m,a(X ,X)))->a(a(m,a(l,l)) ,X) 
a(a(m,X),a(m ,a(Y,Y)))•a(a(X,X),a(m ,a(m ,Y))) 
a(a(m,X),a(m,Y))•a(a(X , X),a(Y ,Y)) 
a(a(X,X),a(m ,a(m ,Y)))•a(a(m,X),a(m,a(Y,Y))) 
a(a(m, l ),a(m,X))=a(l,a(m,a(X ,X))) 
a(a(m,l),X)->a(l,a(m,X)) 
a(X ,a(Y,a(m,a(Z,Z))))•a(X,a(Y,a(m,a(m,Z)))) 
a(a(X,X),a(Y ,Y) )•a(a(m,X),a(m,Y)) 
a(a(m,a(X,X)) ,a(Y,Y))=a(a(m,a(m ,X)),a(m,Y)) 
a(a(m,X),a(Y,Y))•a(n(X ,X),a(m,Y )) 
a(a(m,X),a(m,a(m,Y)))•a(a(X,X),a(m,a(Y,Y))) 
a(X,a(a(b,X) ,Y)):a(a(m,a(b,X)),Y) 
a(a(m,a(m,l)),a(:,a(m ,X)))->a(a(m,a(m,l)) ,X) 
a(a(m,X),a(a(b,a(X,X)) ,a(m,a(b,a(m,X))))) 

->a(m,a(m,a(b,a(X,X)))) 
a(m,a(l,l))->a(m,a(m,l)) 
a(l,a(m,a(X,X)))•a(l,a(m,a(m ,X))) 
a(m, a(m,a(m,X)))•a(m, a(m,a(X,X))) 

proof found 
falso:-

prolog(\+f_chaining) 
a(a(a(b,m),l),f(a(a(b,m),l))) 

=a(m,a(l,!(a(a(b,m) ,l)))): -
prolog(!_chaining) 
input(a(b,m)=a(b ,m)) 
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i nput(a(a(b,m) , l)=a(a(b,m) ,l) ) 
input (a(a( a(b, m) ,l) ,t(a(a(b,m),l))) 

•a(a (a(b ,m),l), f (a(a(b,m) ,l)))) 
ioput(a(l ,!(a(a(b,m) , l)))=a(l ,f(a(a (b,m) , l)))) 
input(a(m ,a(l , ! (a(a(b,m) ,l)))) 

=a(m,a(l , t(a(a(b,m), l ))))) 
a(m,a(l ,f (a(a(b,m),l )) )) 

=a (f (a(a(b ,m) , l)) ,a(m,a(l,f(a(a(b,m) ,l))))): ­
prolog( f _chainlng) 
input(a(m,a(l,1 (a(a(b,o) ,l)))) 

=a(m,a( l ,f( a(a(b,m),l)) ) )) 
a(a(l,!(a(a(b,m), l ) )) ,a(l,f(a(a(b,m),l))) ) 

=a(t(a(a(b, m) , l)),a(m ,a (l ,f( a(a (b,m) , l))))) : ­
prolog( ! _chaining) 
input ( a (l , 1(a(a(b ,~) , l)))=a( l,! (a(a(b ,m) , l)))) 

input(a(a (l, f(a (a(b,m), l) ) ) ,a( l ,!( a(a(b ,m),l) )) ) 
=a(a(l ,f (a(a(b,m), l ))) ,a(l,t (a(n(b,m),l )) ))) 

a(n(l,f(a (a(b,c) ,l))) ,a(l ,t( a(a (b ,m) ,l)))) 
•a(m,a(l,t(a(a(b,m) ,l)))) :-

prolog( t_ chaining) 
a (m,a(l,t(a( a(b,m) , l) )) ) 

=a(a(l,f(a(a(b,m),l))),~(l , f ( a(a (b,m),l ) ) ) ); ­
prolog( f _chain1ng) 
input(a(m,a( l,! (a(a(b ,m),l)))) 

=a(o,a(l, f (a(a (b,m) , l))))) 
i nput (a(a(l,f(a( a(b,m),l))) ,a(l,!(a(a(b,m) ,l )))) 

=a(a(l,f(a(a(b,m),l))),a(l,f(a(a(b ,m),l)))) ) 
input (a(f (a(a(b,m),l) ) ,a(m,a(l,f(a(a( b,m), l))))) 

=a( t (a(a(b ,m) , l)) ,a(m,a(l,t(a(a(b,m) ,l)))))) 
size of proof 32 
elause coun~ 17 
9 19. 716 cpu s econds U30d 
1813 i nt orenc es done 

Since the statement of the theorem is the same as before, the proof 
starts with th<' generation of the same subgoals. The first equational sub. 
goal match~s the definition of the AJ. U ~BIRD combinator , and generates.) 
su bgoal equations. all discharged as instances of the reflexivity a.:<iom, here 
the only ultim;~te groundN of subgoals. The second matches the definition 
of the MOCKISGSIRD, and so adds two more equations to derive. The first 
is again satisfied immediately as an instance of X • X, and tho second takes 
us into the definit ion of ~ARK . ( Note l:rlx here ap pears as ml:r). Its first 
two equational subgoals as well as th~ fourth are instances of the reflex.i,,ity 
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axiom, and the th ird cal ls on symmetry. 'rhe subgo:\1 equation matches the 
MOCKINGB!ItO deftnition, whose two equations are both grounded in th~ re­
flexivity axiom aga.in. Unlike the previous proofs, this proof is constructed 
almost entirely through forward-chaining, and so the order of the proof does 
not reflect at all that of its construction. 

2.5 Results 

2.5.1 The Problems 

We tested the three representations on 16 combinator problems drawn from 
(l5j. Tlte results appear in figure 14. The conve11tion followed in labeling 
the problems is that the given combinators are listed to the left of the 
underscore. and what is to be derived. usually another combinator, to the 
right. 

Two problems proved too difficult for sprfn, at least with the weights 
given. McCune and \Vas (16] were able with much human effort and hours 
of computer time to guide their prover to a derivation of a fixed-point com· 
binator (a 'sage') from the b and w combina.tors. We were 1\0I al>lc to get 
sprfn lo derive this in one step. When given a pah of lemmas in ~he fonn <>f 
two imermediatc combinators suggested by Smullyan, a and c, the problem 
becomes soluble for sprfn under all problem representations. SimiJarly, we 
were unable to derive a complicated permutor, psi. from b,c (a different c. 
called a 'cardinal' in (15)) and w, but it is relatively simple when done via 
the derivation of a 'dovekie' and a 'hummingbird.' The difficulty with both 
BW.SAGE and scw_PSI is most likely the 'warbler' combinator: 

w~y = xyy 

both sides of the definition unify, rendering simpl ifica.tion impossible . 
The deriva-tion of the 'cardit\al', <\ simple three-place permutor, rrmn 

the composition combinator 'bluebird' and the twa.place pennutor 'thru•h' 
(discovered by Chur~h ) proved surprisingly difficult. so another three· place 
permutor. the ·robin', was introduced as an int~rmed.iary in a pair of prob· 
!ems (suggcstcd by Smullyan). 

In KW_\lOCK w~ derive the duplicative 'mockingbird' from the aforemen­
tioned 'warbler' and the cancellative 'kestrel': 

kxy = x. 

L..EGO involves Lh~ construction of an "egocentric" functioJL, which returns 
itself when given itself as an argument, from a 'lark'. This problem was 
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solved in (1 7]. The final problem constructs a combinator that commute> 
with every other combinator from t he 'thrush' and 1he condition that every 
function has a fixed-point. 

2.5 .2 Data 

CPU times and the number of inferenrcs required for the problems are tab­
ulated in rigure H. The problem were run under c. Prolog on a Sun 3/60. 
~o effort was made to control for load, which varied from light to moder­
ate. Blanks indicate that the problem was not solved, usually by running 
out of resourt'CS. ln the one case marked by an aste risk. t he prob lem was 
solved only under the •nosave' option, which tums off the caclting feature. 
and resulls in faster but more repetiti,·e inferences using com11aratively little 
memory. 

The surprising result wa.s t hat the 1\o-rcwrite J•cprescntation JWrformed 
the bes t in terms of shortes t time. It should be noted that the no-rewrite 
,·crsion would have had an unsolved problem. howc,·cr, had we not disabled 
the caching feature on the BT _CARD problem. :->onetheless, the equational 
a.xiorns did p~rforrn unexpectt>dly well, a.~ is shown in another way in Fig· 
ure 15. Here we list the first and Jast place totals for each representation. 

One bright spot for the critical pair representMion is that is does ha,·e the 
lowest average number of inferences. even if not CPU time. Focussing on this 
number not only sidesteps the inaccuracy of time statistics in UN IX, but also 
discoun ts the overhead involved in the rewriting and completion phases, Mtd 
so points out the potential for efficient implementations of these phases. U n­
fortunatel}. this measure is skewed hadly by the 'nosave' run, which quickly 
piles up repeated inferences. Dropping the inference counts for BT _CARD 

from both w lumns, we find that the critical pair represeJtl<\l.ion averages 
over twice the numbc ,· of inferences tni\de by thll no-rewrite rep resentation, 
~nd the modification format ;n·erages over three times as many. 

2.6 Discussion 

The rewriting strategies we have employed do not exhibit the efficiency we 
had expected. Clearly directing equations has not provided the additional 
control promised. It mu>t be emphasized that the data are insufficient to 
warrant any firm conclusions. We IJ<We compared only 16 problems of a 
specific type, using but one setti ng of t he various switches sprfn r>rovides . 
Nonetheless, some provisional morals suggest themselves. 
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CPU seconds # of lnfercnc(•s 
Theorem ~RW CP MOD NRW CP ~100 

ac...sage 33 49 41 107 139 158 
b..dovk 2·1 21 52 119 133 258 
bcw.J:mmm ' 243 493 1325 812 1094 2095 
bcw _psi - - - -
bdh_psi 13 67 127 73 263 397 
blm.sage 72 210 920 210 633 1813 
bs _phi 2:1 370 120 639 660 347 
bt_ca.rd 377' )022 14963 15026 366:1 42379 
bLrob T 15 ·-"" 44 114 189 
bw...a 38 42 112 1'12 186 383 
bw..c 157 35Z2 10082 [>.17 4852 7876 
bw_sage - - - - - -
kw_mock 330 83 53 654 412 260 
Lego 297 53 34 522 155 132 
r _card I 6 20 23 35 103 
t_comm 8 6 12 50 29 58 

I AVERAGEJf: 116 426 1993 1357 883 4032 
I AVERAGE2': 96 378 995 306 670 1082 

. . • . caclung turned off . 
j: BCWJ>SI and 8W..SAGE not included. 
:: BCWJ>SI, BW..SACE, and BT_CARD not included. 

Figure 14: Statistics for comllinator problems 

CPU time Inferences 
1st 3rd 1st 3rd 

Nil\\' I !0 2 9 2 
Cl, 2 2 2 1 
MOD 2 9 3 11 

l~ igurt' 15: First and [,a% Place Finishes 
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One surprise wa.~ how well sprfn can ha.ndl" Lhe axiomatic <~,pproach to 
equal ity. ln fact this was a surprise, since only late in the testing did we come 
to seriously apply the sorts of efficiency guards to the no-rewrite version we 
had worked out for the other representations. We believe that 1he back­
rhaining na ture of the prover worked well wi th this approach, and that 
Lhc <tbility to limit some of the axioms to P.ithcr the forward and backward 
chaining phasl's of the prover helped significantly. 

We do not yer understand well enough how this integration of comple­
tion and theorern-pro,•ing works. For example, the input files were originally 
wriLten to work with an alp habet ical lexicograph ic ordering. H tu rned ou t 
that performance was significantly improved when terms were reverse alpha­
betically ordered! Some problems took longer, but most were solved more 
quickly, and one theorem previously unprovable using the modification for­
mar was prO\'Cn under this orientation.~ This was surprising since the lexical 
ordering of atoms has au effect only if terms arc tied at the top level and 
on all subterm~ considered up to tha~ point. At most a few percent of the 
critical pairs generated in our examples are oriented by considering the aJ. 
phabetical ranking of identifiers. Presumably this orMring has more effect 
in rewriting instances, which is invisi ble to the user. 

This case a.nd other surprises show that we do not yet understand our 
techt1ique well enough to write it off. A better usc of the oricnler (or perhaps 
one using different principles), or a more clever selling of the switches sprfn 
provides may make all the difference for the rewriting approach. 

Nonetheless, the integration of completion into the prover did not work 
as well as we had hoped. \Ve suspect t hat the amount of information corning 
in under the forward chaining phase in the form of new directed equations 
simply overwh~lmed the normally efficient goal-orientation of sprfn. :\ote 
that the modification rep resentation, in which all but the opening stage of 
Lhe proof is derived in forward chaining, performed the poorest overal L 

The tactic of carrying out completion in the forward-chaining phase and 
the rest of thl' proof primarily in the back-chaining phase would undoubt­
edly be aided by more sophisticated forward chaining, currently rNhaps tile 
least intelligent part of sprfn. The general problem of i ntroduc i n~; search pri· 
orities withi n the iterative deepening sta.teg)· is being investigated by Xu min 
Nie. Tests on experimental priority systems devil>ed by :\ie have sometimes 
caused dramatic improvements for the rewriting techniques described here. 
and it would be worth investigating wh ich representation beneA ts l.he most 

' . VU •• 9W..t::, 

36 



from the various priority schemes. 
Even granting the preliminary status of ow- results, it is reasonable to 

reconsider the strategy of integrating completion into theorem-proving as 
a w~y of handling equality. After all, by its very nature, completion wil l 
int roduce premises no t particularly helpful for the proof a t hand. Another 
possibility we have been exploring is n. more directed representation taking 
advantage of the left-linear nature of combinator definitions, more akin to 
na r rowi ng (cf. [18]) than completion. 
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