Term-Rewriting Techniques
for Logic Programming I:
Completion

TR&S-019
April 1988

Michael P. Smith*
David A, Plaisted

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#:3175, Sitterson Hall

Chapel Hill, NC 27599-3175 ¢

*Department of Computer Scicnce, Duke University, Durham, NC.

UNC is an Equal Opportunity/Affirmative Action Institution,

Term-Rewriting Techniques
for Logic Programming [:
Completion®

Michael P. Smith
Department of Computer Science
Duke University
Durham, NC 27706
mps@es.duke.edu

David A. Plaisted
Department of Computer Science
The University of North Carolina

Chapel Hill, NC 27514
plaisted@cs.unc.edu

April 19, 1988

*Research supported in part by National Science Foundation Grant DCR-B516243,
Thanks to Donald Loveland, Gopalan Nadathur, Xumin Nie, and the participants in the
Declurative Languages Seminar at UNC and the Theorem-Proving Seminar st Duke for
valuable comments.

1/0\‘2

121 122 211 212

Figure 1: Occurrences in a{a(b,a(b,w)),a(a(b.b).c))

1 Theoretical Background

Reasoning about equations is fundamental in computer science and else-
where. Yet equality is difficult for many automated theorem provers to
handle. The chief obstacle to automating equational reasoning is the lack
of control inherent in the basic mode of equational inference: bidirectional
matching and substitution. A natural answer to this problem is to add direc-
tion to equations, turning them into rewrite rules, We have simulated the
Knuth-Bendix technique for converting a set of equations into a complete set
of rewrite rules in a first-order theorem prover implemented in Prolog. Since
unification plays a primary role in this technique, Knuth-Bendix completion
provides an obvious route for dealing with equations in a logic programming
context.

1.1 Equational and Rewrite Systems

Let T be a set of first-order terms constructed from some set of function
symbols F' and variables V. We shall informally use strings of integers, or
occurrences, to identify subterm positions. We write r{vl; to denote a term
T with a subterm v» at position p. For example, the occurrences of s =
al{a(b.,a(b,w)),ala(b,b).,c)), are mapped in tree form in Figure 1. Note

s[a(a(b,a(b, w)),a(a(b,b),c))]e = sla(b,a(b,w))]; = s[bli = s[a(b,w}];2 =
siblia1 = s[w]ia2 = s{a(a(b, b),c}]s = s{a(b,b)}z; = s[blan; = s[blaiz = slclz.

An equational system £ over T has as axioms a set of equations of
the form a« = 3. When a term contains a subterm (not necessarily proper)
matching either side of an equation, that subterm may be replaced by the

other side of the equation. More formally, an equational system has the
single rule of inference:
Z(r[uol,) u=v
=(rfvaly)
where = stands for any propositional context, & = 3 represents ambiguously
either @ = 3 or 3 = a, and o is a substitution of terms for variables, Birkhoff
[1] showed the soundness and completeness of equational systems.

The problem with equational systems from the computational stand-
point is that their single rule of inference provides no strategy other than
to exhaustively compare pairs of terms on either side of the axioms. In
commeon practice, equations are efficiently used to simplify complex terms
according to some ordering principle. For example, in verifying that

A
Vilsd+a =i

=0
we first replace definienda by definiens, and then replace equals by equals in
the direction of shorter terms until both sides are identical. This suggests
that automated equational reasoning should use directed equations similarly
to cut down search, as many systems do.

A rewrite system R over T is set of directed equations of the form

[— r, called rewrite rules. Directed equations are applied like undirected
equations, but only left-hand sides are matched and replaced by right-hand
sides only. More formally again, a rewrite system has this rule of inference:

E(r[ualy), u— v
=(r[val,)
with = and o understood as before.

Not surprisingly, not just any rewrite svstem is complete in the sense
that one can derive any valid consequence of the rules considered as undi-
rected equations. There is, however, a {amily of rewrite systems that are
not only sound and complete, but decidable, despite the fact that in general
equational consequence is undecidable. To introduce them we need a bit of
terminology first.

We write s — ¢ for “s rewrites to t in a single step™ and s = ¢ for
the reflexive, transitive closure of —. s [t is an abbreviation for 3u(u —
s & u — t) : in other words, some term u diverges under rewriting, s | ¢
will likewise abbreviate convergence: Ju(s — u & 1 — u). We shall indicate
eventual convergence: Ju(s — u & ¢ = u) by s |+t, and eventual divergence:

3

N L S

Figure 2: Confluence and Local Confluence

5 5
u/\\) ‘ /\ "
= *
1

Ju(u = s & u — t), by s+ t. We shall write = L t toindicate that ¢ is a
normal form of s, i.e., that s — ¢ and =3u(t = u).

One way to decide whether an equation follows from a set of equations
is to use that set to match and replace the terms in the target equation until
cither both sides of the target equation are the same, or else both sides are
irreducibly distinct. If every term has a unique normal form, this procedure
is complete. In a canonical rewrite system, every term has a unique normal
form.

A canonieal rewrite system R is one which is finite, noetherian, and
confluent. A system of rewrite rules R is noetherian just in case every
sequence of rewrites terminates; in other words, iff — is well-founded in R.
Confluence, sometimes called the diamond or lattice property, ensures that
terms that diverge under rewriting eventually converge. In other words, R
is confluent iff Vs,t(s+] ¢ D & [+t). (See Figure 2.)

1.2 Noetherian Orderings

A binary relation = on T is monotonic iff it has the replacement praperty,
f.e,

Viue T,VfEF,1*» ud flag,a;, 1, &, ..yn) = fley, .05, o, ...,

It is stable (under substitution) iff
ViuwueT,t»u 2 to = uo

for any substitution ¢ of terms in T for variables. A monotonic partial
ordering is a simplification ordering if it has in addition the subterm
property:

VieT,VfeEF, fl..t...)»t

ey)

Dershowitz [2] proves the following theorem:

A rewriting system {l; — r;} over a set of terms T is noetherian
if there exists a stable simplification ordering > over T such that
L% ;. .

We shall call such a stable simplification ordering a reduction ordering.

For our proofs we used a recursive procedure which lexicographically
orders terms in the following way. First a routine we'll call LEX attempts to
order the terms on the following principles:

1. Variables are not ordered among themselves.
2. Compound terms! >, atoms: e.g., f(X,Y) >1er 0.
3. Compound terms =, subterms: e.g., f(X,g(b,Y)) =r (b Y).

4. Two atoms are reverse lexicographically ordered by their names: eg.,
adam (. zoe.}

5. Two compound terms are ordered by RANK,

6. Compound terms partially orderable by RANK are ordered by calling LEX
on their subterms.

RANK orders terms in the following way. First unifiable pairs are rejected
as non-orderable; since this would obviously lead to cycles. Non-unifiable
terms are then ranked. {1 >0 t2iff:

(i) Via C Vi1, where Vi, Vis are the multisets of variables in ¢/
and t2 respectively; and

(ii) w(t1) > w(t2), where w(r) is a linear polynomial weighting
of the functors in .

A pair of terms is partially orderable it meets (i) of RANK in one or
both directions (ie., the cccurrences of variables on one side is a subset,
not necessarily proper, of those on the other), but does not meet (ii} in
either direction (i.e., the weight is the same on both sides). If the ordering
reported by applying LEX to subterms conflicts with the direction of the
partial ordering of RANK on the terms, the terms are not ordered by LEX.

uiz., nonvariable terms that are neither numeric nor symbolic atoms, nor lists.

*Thus the user can give different weights to each identifier through careful naming.

Note that in the simplest case where all functors are weighted equally,
this ranking orders from longer to shorter terms, according to the number
of functors. In the ordering we use on the combinator problems reported
here, all zero-place functors receive a weight of zero, and all other functors
a weight of one. Thus

flgla, X, e}, hib, C-.YH ~ gla,b, c:,'l

by a simple count of the functors, whereas

flg{a, X,c),Y) > f(X,g(Y,b,c))
is determined by a recursive call to lexicographically order subterms.

[X gla, YY), f(Yi0(h, X, X))

is incomparable since it fails condition (i) in both directions.
LEX/RANK is a reduction ordering since it fulfills the subterm condition
by 3. of LEX and the replacement condition by ii of RANK.

1.3 Confluence and Local Confluence

A rewrite system R is locally confluent when terms that diverge in a single
stép eventually converge: Vs, 4(s 1t 3 s |« t). (See Figure 2.) Newman [3]
proved that a noetherian relation is confluent iff it is locally confluent.
Theorem: If R is noetherian, then

Vs, t|(s1t D slat)iff (st D 5 |=1)].

Proof ([4]): The 4" direction is trivial. The proof of the ‘only if* part
uses a pair of inductions to complete the characteristic diamond shape of
confluence (see Figure 3),

We assume that — is a noetherian, locally confluent relation. We show
— to be confiuent by noetherian induction., We assume it for everything
less than z under —; ie., Yy{z % y), where 2 is the transitive closure of
—., and show it for =

If # — yorz — z then we are done by local confluence. Otherwise,
split # = pyintoz — sand & = y,and 2 = zintoz — t and t = 2 as
shown in the diagram. By local confluence, Ju(s = u & t = u). Now two
applications of the induction hypothesis do the trick: first to get us from y
and u to v; and then from vand zto w. O

The necessity that the relation be noetherian is shown in Figure 4, which
illustrates a locally confluent but nen-noetherian relation which is ebviously
not confluent,

/.m\
% / :
N

Figure 3: Noetherian local confluence implies confluence

Figure 4: Non-noetherian local confluence does not imply confluence.

=]

1.4 Local Confluence and Critical Pairs

Donald Knuth and Peter Bendix [5] discovered a test for local confluence
and a procedure for turning a set of equations into locally confluent {and
ultimately canonical) rewrite rules, which they implemented and tried on
several problems involving groups. Their basic discovery was that a noethe-
rian rewrite system would be locally confluent iff every eritical pair of
terms reduced to the same normal form.

Osne way to ensure confluence in a rewrite system would be to equate
the resulting terms each time a term had distinct rewrites. Given that the
rewrite rules are congruence-preserving, such a procedure would clearly be
sound. Unfortunately there are typically infinitely many such divergent pairs
if there are any. Note however that this approach involves infinite duplica-
tion, since the set of divergent pairs includes infinite subsets of unifiable
variants. The insight of Knuth and Bendix was to search for the source of
divergence in the rewrite rules themselves, using most general unification to
render the task finite.

A critical pair is generated when the left-hand sides of two rules overlap
or superpose, so that one is unifiable with a non-variable subterm. not
necessarily proper, of the other. The critical pair consists of the most general
version of the terms that could be generated by such overlapping rules. For
instance, the two rules

(X, g(X,a)) — h{X)
9(b,Y) —i(Y)

superpose to yield the critical pair
< f(byi(a)), h{b) >

More formally, suppose Ay — py, A2 — p2 € R, and suppose further
that Ay = u[Aze], for some most general unifier ¢ and some (non-variable)
occurrence p. Then there is a critical pair < u|pye], pro >. For any pair of
terms s, ¢ such that s | ¢, there is a eritical pair < @, 3 > and a unifier o
such that s = ao and t = 3o (or vice versa).

By equating critical pairs, we handle together unifiable classes of terms
that would diverge, with great economy. Provided the original set of rules
is finite, there will only finitely many critical pairs. Once all critical pairs
are equated, local confluence is guaranteed.

Figure 5; Disjoint Subterms Case

Theorem: A rewrite system R is locally confluent iff for every critical
pair < S,T >, § |=T.

Proof ([5.6]):
Clearly R is not locally confluent if some eritical pair does not converge.
To show that critical pair convergence suffices for local confluence, we note
that there are only three possible cases, depicted in the next three figures
(adapted from [7]),

Suppose that a term & diverges under rewriting. Then there are subterms
of a, say 5; and B2, so that a = u[$]; = v[d],for some contexts u and v,
and positions p and ¢. Further there must be be rules r; and ry in R of
the form Ay — p1, Az — p2 and most general unifiers o3 and o7 such that
S = Moy and 3; = Ayoa. Applying ry or r; to a yields the divergent pair

o ,a':
<ulpilp, vlpale > .

Local confluence demands that o’ |+ a”. Call that necessary meeting place
b

The simplest case is depicted in Figure 5. If 8; and 35 are disjoint sub-
terms, then ryma = rprie = wip)|p[p2];. For example, if ry = f(X,Y) —
X.ra=g(X,Y)—=Y,and a = &{ f(a,b),g(b,¢c)), then &’ = h{a,g(h.c)) and
a"” = h{f(a,b),c). So ¥ = h{a,c).

If the two subterms are not disjoint, then we may suppose that 4, is a
subterm of #;. There are two possibilities under this heading: either 3, is
contained in one of the terms substituted for variables in A; by a2, or else
it is unifiable with a non-variable subterm of A;.

The first possibility is depicted in Figure 6. Suppose both ey and o,
replace some variable in & by r. r| applied to ag; replaces an occurrence of

Figure 6: Variable Case

7 by 7', Additional applications of r; will replace the other occurrences of
7 in ayoy by 7', Call the expression obtained in this way a”. Applying ro
to o’ yields (@), e, (ie, @oy with r* uniformly substituted for #). This
same term can be derived by first applying r; to aoy, followed by as many
applications of ry as are needed to replace all occurrences of 7 by 7.

For example, suppose r; = n(X) - =X and rp; = X+ (Y + Z) —
(X +Y)+(X » Z). If a = 2+ (n(3) + n(4)), then o = 2+ (=3 + n(4)) (or
2+ (n(3)+ —4)), and a” = (2 +n(3)) + (2 n(4)). " =2+ (=3 + —4), and
Y=(2%=3)+ (2=-4).

The final possibility, depicted in Figure 7, is simply the critical pair case,
Since we are given the convergence of critical pairs by hypothesis, we are
done. Asan example, let 1y = X +0 = X, X=(V+2Z) = (X+V)4+(X2Z),
and @a=2+(140), Thena' =2+ 1 and a”" = (2+ 1) + (2 +0). Given only
these two rules, these two terms are irreducible.

1.5 Completion

The Knuth-Bendix completien procedure is simply to equate critical pairs
and orient the resulting equations in accordance with some noetherian or-
dering. The enlarged set of rewrite rules is then checked for critical pairs
ance again, and the process iterates. There are three possible outcomes. If
the procedure terminates, then the resulting rewrite system is locally conflu-

10

A%

r A r
" =

Pkt

eritical pair

Figure 7: Critical Pair Case

ent, and in fact canonical, since the finiteness of the original set of equations
and a noetherian rewrite relation are assumed by the procedure. The pro-
cedure may never terminate, with each addition to the set of rewrite rules
generating another round of critical pairs. Or the procedure may abort, if a
critical pair of terms is generated which is not orderable in either direction.

Thus the Knuth-Bendix completion procedure assumes a noetherian or-
dering on T. If the ordering is not total, the procedure may generate a
non-orientable critical pair and so fail. This problem may be resolved by
ad hoe extensions to the ordering to handle incommensurable terms as they
appear, but this tactic risks rendering the ordering non-noetherian, In fact,
even given an ordering total on ground terms, it is not always possible to
order terms with variables. The approach we have followed is that of “un-
failing completion™ as described in [8]. Non-orientable equations are kept in
the database and used bidirectionally for the generation of critical pairs in
the manner of paramodulation.

Following [8]. we present the completion algorithm abstractly as an in-
ference system for a set of equations E and a set of rewrite rules R, Assume
here that > is a reduction ordering on T. First the basic Knuth-Bendix
procedure is characterized by the following rules:

C1: Orienting an equation

Eu{s=t), &

E.RU{E—J}]“}:
C2: Equating a critical pair
E, R 4
EUls=f

11

C3: Simplifying an equation

Eufs=t}, R.
EU{u=1},R

fa—pgu

C4: Deleting a trivial equation

Eu{s=3s}, R
E. R

The next rules do not affect the final outcome of the Knuth-Bendix
procedure, but are practically necessary for efficiency. They simplify rewrite
rules so that right-hand sides are in normal form relative to all the rules
derived so far, and the left-hand sides in normal form relative to all rules
derived so far except, naturally, those in which they occur.

S1: Simplifying the right-hand side of a rewrite rule

E,RU{s—1}
E, RuU {5 — u}

ift—gru

52: Simplifying the left-hand side of a rewrite rule

E, RU{s—t}
Eufu=t}, R

ifl =r € R,s = v[llo]y.u = t|raly; orl — r € Rand se l. ae 7 signifies
@ is a proper instance of 4: 3o (e = Fo)k -3 (F = ag).

The intent of S2 is to delete subsumed instances of rewrite rules. The
restrictions are necessary to distinguish these cases from those falling under
C2: non-subsumed overlapping rules should not be dropped from R!

Standard completion fails when an equation can neither be simplified
by C3 or C4, nor oriented by C1. Naturally this can be avoided if = is
total, but this is too much to expect in general. Commutativity is an of-
ten indispensible axiom that cannot be oriented by any reduction ordering.
Various approaches for rewriting and unification in associative-commutative
systems have been suggested: eg, [9,10,11]. None of these approaches com-
pletely excludes the possibility of failure due to incomparable terms, as does
the approach sketched next.

We obtain unfailing completion by adding the inference rule;

C5: Equating a critical pair.

E. R
EO{s=1t), Rt

ifslg=unt

12

together with the following rules for simplification:
S53: Simplifying the right-hand side

E,Ru{s—1}

B, RUls—u) 8"
S4; Simplifying the loft-hand side
a) Eu{s=1t)}, R
Eulu=1} R
]}E, Ru{s—t}
"ElU{u=1}, R

ifl = r € E,s=1llo]y,u=v[raly;orl=r € Eand s L.

Inference rule C5 subsumes C2 as a special case. E= signifies the rules
generated by the symmetric closure of E. Unfailing completion superposes
not only the left-hand sides of rewrite rules with one another to generate
critical pairs, but also the lefi-hand sides of rewrite rules with either side
of equations, and equations with equations, 53 and S4 extend S1 and S2
by allowing orientable instances of equations to be used as rewrite rules.
ae = (o is an orientable instance of a = 3 if ao > Ba. F denotes the
rewrite system consisting of all orientable instances of equations in E.

Essentially, when faced with a non-orientable equation, unfailing comple-
tion falls back on a paramodulation strategy for the determination of critical
pairs. The completeness of this strategy depends ultimately on Birklofl's
result, While giving up nothing in completeness, however, non-oriented
equations are expensive computationally and should be avoided if possible.
The use of orientable instances in the simplification rules is an attempt to
reap some of the advantages of direction from non-erientable equations. For
example, the tiwoequations X s Y =Y+ X and (X =Y)}s Z=(Y + X)= Z
are not orientable. Nevertheless, using them we can rewrite ground terms.
e, ((((asb)sc)=d)ne) = (e+(ds{ce{bra)))), using lexicographic reverse
alphabatical ordering. See Figure 8.

The soundness and completeness of unfailing completion are proved in

[s].

1.6 Two Examples of Completion

To see how standard completion works, consider the following definition of
a group:

13

((((@sb)sc)wd)xe) = ((bra)sc)vd)ve) [(Xo¥)4Z = (¥ +X)Z]
((((bra)se)sd)we)— (((ex(bra))sd)*+e) [X+Y)+Z=(YV+X)+Z]
(({(ce(bsa))sd)re)— ((dx(co(bsa)))*xe) [(X+Y)+Z=(YV+X)sZ]
((d+(cx(bea))se)—(es(dx(ca(bea)) [Xe¥ =¥ «X]

Figure 8 Rewriting instances of unorientable equations.

l%E = &
rays =]
(zeylez = za(y+z)

We shall trace in part the completion sequence dictated by the rules C1 -
C4, under the lexicographic ordering where = » —, The results appear in
Figure 9.

We start by directing the three equations in the order listed. Note that
the lexicographic ordering has the effect of moving parentheses to the right
in the association axiom, since (z+y) > z. The first critical pair added comes
from superposing the first two rewrite rules; the second from superposing
the rule just generated with the second rule. In general, we have followed
such a linear or depth-first strategy. The third eritical pair arises from the
overlap between rules 2 and 3, and the next two by superposing the rule
just added with 2 again. The sixth critical pair is generated by superposing
the previous rule with rule 5. The last critical pair results from superposing
the rule belore the immediately preceding rule with rule 3.

In a straightforward manner we have derived a nearly complete system
of rewrite rules. Only one rule is missing, (z+ y)~ — y~ » z~. This is
a bit more complicated, requiring some intermediate rules. See [5] for one
derivation.

We illustrate unfailing completion with the axioms for an associative-
commutative ring:

r+Yy=y+z

Tey=y+z
(z+y)+z=x+(y+2)
{rwylsez=rw{ysz)
z+0=1x

r+i(z)=0
ze(ptz)=(zey)+(z+2)
(ytz)ez=(yr3)+(2+2)

Note that no procedure will suceceed in orienting the symmetry axiom,.

I4

I E; R; rule
lez=2%
0 T =1
(zaplez=z+(y=z)
Tz =1 Ho+

1 |(zey)ez=xx(yxz) lez —zx C1
R+

2 [(zey)ez=zx(y*z) ez — 1 C1
Ra+

3 (zey)sz—z+{y=2z)| C1

4 =™ =1 Ha <2
R+

5 1= =1 C1

6 l=1=1 Hs C2

i =1} Ity C3

8 Rs C4 |

9 lng=r*{p™ wz) fis C2

10 o rk(a™vy) s C3
Rs+

11 ze(z%2)—2 C1

12 zel=(z") Ry c2

13 3= (27) Ry C3
Ru"l'

14 (r=) ==z C1

15 -z =1 Ry C2
ftya+

16 T wr—1 C1

17 geli== H]g C2
e+

18 zsl—2 C1

19 lsz=z"s(x+z) Hyg C2

20 2= *{I*z} s C3
ﬁ_ls+

21 T w(raz)—z C1

Figure 9: Partial completion of group axioms

In Figure 10, the beginning of a completion sequence is illustrated. We use
the lexicographic ordering described earlier. The initial orientation steps are
combined to save space. The first two critical pairs produced overlap the
first non-orientable equation with the third and fourth rewrite rules. The
last critical pair is simplified and oriented to give us the closing rewrite rule,

2 Application

2.1 Integrating Completion and Proving

We get the effect of unfailing completion by arranging the input to a prover
implemented in Prolog by David Plaisted, based on his simplified problem
reduction format, called sprfn [14]. The crux of the arrangement is to induce
the addition of critical pairs to the equational database.

sprfn may be viewed as an extension to Prolog with true (sound) unifi-
cation and negation, a complete search strategy (iterative deepening) and
caching of intermediate results. Alternatively, it may be seen as a theorem-
prover that takes advantage of the built-in unification and back-chaining of
Prolog to achieve respectable results in a relatively short and comprehensi-
ble piece of code. sprfn inserts a limited forward-chaining phase every time
the depth-bound is increased and the problem restarted. Solutions obtained
in either phase are available in both. Given a set of rewrite rules, sprfn does
automatic rewriting of terms at the end of each forward-chaining phase, Us-
ing the Prolog-like interface of sprin, it is possible to represent equational
problems in a way that causes the prover to simulate the Knuth-Bendix com-
pletion procedure. In this paper we compare these representations with the
standard axiomatic representations of equality on several problems involving
combinators.

A feature of our the strategy is that we do not first compile a complete
system of rewrite rules and then attempt to prove a theorem, but rather
interleave completion and proof steps. Once we have generated enough
rewrite rules to prove the theorem we are done, or so we hope.

Muost of the rules of unfailing completion are built into sprfn, C1 is taken
care of either interactively by the user or by an auntomated orienter. In the
results to be described, we use the lexicographic orienter described earlier.
C2 is subsumed by C5, as we have said. C3 is taken care of automatically
during the rewrite phase. Simplification using orientable instances as in 83
and S4 is again provided by the rewriting part of sprin. This leaves C4 and
C5 to be taken care of in the input. C4 is satisfied by adding a reflexivity

16

i E; E; rule
T+y=y+=z
XY =Y*E
(z+y)+z=z4+(y+2)
0 (zoylsz=c+{ysz)
z+0==¢x
z+iz)=0
ze(y+z)=(z+y)+(z+2)
(y+z)sz=(y+z)+(222)
Tt+y=yt+r
I*xy=1y=*a
1.2 4 0=1x Ro+
z+iz)=10
ze(y+z)=(zey)+(z+z)| (z4y)+z—z+(y+:) | C1
(y+2)sz=(yrz)+(z92)| (zoy)ez—zs(ysz) |C1
t+y=y+=
3,4 Ery=y*a Ra+
ze(y+z)=(zxy) +(z+2) z+0—z C1
(p+z)rsz=(yez)+(z+32) r+ifz)—0 C1
R+
5.6 T+y=y+z (z+xy)+(zrsz)—=z+(y+2)| C1
T+Y=yYszx (pez)+(z+2)—(y+z)sz| C1
T O+z=2x 1 Ch
Re+
B 0+ —=x 1
9 i{z)+zx=10 I C5
Ro+
10 i(z)+z2—0 C1
11 i0)+0=0 Fio Cs
12 i(0) =0 o Sda
Rio+
13 i(0) —0 Ci1

Figure 10: Partial completion of associative-commutative ring axioms

17

axiom to our representations, which will subsume any instances of X = X.
The principal job of the input representation is the simulation of C5, which
adds the critical pairs to the database.

2.2 The Critical Pair Representation

In this representation, a rule with a critical-pair equation as its head is
introduced for each occurrence of a non-variable subterm in the terms of
the input. The Knuth-Bendix conditions for the generation of critical pairs
appear in the body. Because this representation contains rules solely to in-
troduce and equate critical pairs, we call it the eritical pair representation.

For example, the b combinator, which given three functions returns the
composition of the first and the second applied to the third, is defined as
follows:

bzyz = x({yz).

Represented in first-order terms, this becomes
afa(a(b,X),Y).2) = a(X,a(Y.Z))

using a for functional application. We depict this equation in tree form in
Figure 11.

In this forest, there are five distinct positions occupied by non-variable
terms that may overlap with other terms. In practice, we ignore those
positions occupied by combinators, since they will be irreducible on any
reasonable ordering. Those positions rooted in an occurrence of a, the root
position and postions 1, 2, and 11, are left as possible trouble spots. For
each one, we construct a rule to introduce the appropriate critical pair into
the equation database. See Figure 12,

In fact, there seems to be no reason to think that critical pair rules for
each non-variable occurrence in the input would be sufficient, given that new
and deeper terms will ordinarily be generated and superposed as the critical
pair processes iterates. Since sprfn tends to be distracted by tooc many
available inferences, we thought it would be best to start with a minimal
number of critical pair rules, and add to them as needed. In practice. just
the critical pair rules tailored to the input has proven sufficient for theorem-
proving. (That is, anvthing unprovable with this basic set of critical pair
rules is still unprovable with an augmented set.) More work needs to be done
on the practical and theoretical sufficiency of this or any set of occurrence-
specific critical pair rules.

18

a/ \z
a"/ \y
™

x/a\‘a
Y/ \\z

Figure 11: bzyz = z(yz2)

These rules exhibit the Prolog-like interface to sprfn, including one mis-
leading resemblance: ‘=" here stands for the relation of equality, not the
operation of unification, as in Prolog. Note that the rules for introducing
critical pairs search only the equations, because only terms in equations are
accessible for unification. It is vital then that all rewrite rules be represented
also by equations. In addition, equations in the input will not be oriented
by sprfn unless they are independently derived. Thus it is important that
the input file contain an equation for every rewrite rule, and a rewrite rule
for every orientable equation. sprfn will preserve this parity, but the user is
responsible for the input.

Calls to Prolog restrict these rules to the forward-chaining phase. The
equation of critical pairs is not an appropriate goal for the prover. If the
body of a critical pair rule is satisfied, then the equation will be generated;
but no subgoals will be added by these rules.

2.3 The Modification Representation

In our first representation, declarations of definitions and axioms were sep-
arate from the procedures for generating and equating critical pairs. In
our next representation, they are combined, and with this multiple cases

19

W=

a{v,

afX,

% root positicn
U :-
prolog(f_chaining),
i =0,
prolog(nonvar(X)),
Ina¥,
prolegl{(X \== V)],
prolog((V \== U)}).

% 1 position
Y) =10 ;-
prolog(f_chaining),
a(!.'” =1,
proleg{nonvar(X)),
1=V,
prolog((X ‘== V)),

prolog({a(V,¥) ‘== U}).

% 2 positien
¥) = ¥ -
prolog(f chaining),
alX.y) =1,
prolog{nonvar(Y)),
Y=V,
prolog((¥ \== V)),

prolog((a(X,V) \== U}).

% 11 pesition

afa(V,¥),Z) = U :=

prolog(f_chaining),
a(a(X,Y),2) = U,
prolog(nonvar(X)),
L=V,

prolog((X \== V)),

% critical pair to be equated

% keep completion in forward phase
% equation in database contains a
% non-variable subtarm which is

% also a term in another equation
% not syntactically identical

% critical pair mon-trivial

prolog((ala(Vv,Y),2) \== U)).

Figure 12: Critical pair rules required for b combinator

20

Bi = B2 :- prolog(f_chaining).
a(b,X) = U, a(u,Y) = Vv, a(v,Z) = B1, % Bt = Bxyz
a(r,z) = ¥, a(X,¥) = B2. % B2 = x(yz)

Figure 13: Definition of b combinator in modification representation

of superposition are combined as well. Because our strategy for represent-
ing equality resembles that of [12] (¢f [13]), we call this the modification
representation.

In this representation, each non-variable subterm in the term being de-
fined is “pulled out™ and equated with a variable, much like the usual Prolog
representation of functional application. If this chain of equations exists in
the database, ultimately equating the left-hand side of an equation to say,
B1 and the right-hand side to B2, then the equation B1 = B2 is added to
the database.

As an example, Figure 13 gives the definition of the b combinator, The
various restrictions of the previous procedure have been dropped here: any
of the variables may be bound to variables or to terms that are syntactieally
identical with other terms in the clause. These differences arise from the fact
that this rule is intended to define the b combinator as well as express the
conditions for the addition of critical pairs. Since the rules serve to define
the combinators as well as to introduce eritical pairs, it is less than obvious
they should be restricted to the forward-chaining phase, but in fact the
prover performed much better on our examples with these guards installed,
as opposed to no guards, or back-chaining guards.

The pertinent difference between this representation and the last is that
this representation telescopes multiple subterm replacements at different
positions and adds the pair s = t directly, rather than working at one
position at a time, and adding first the equations « = s and u = ¢, and
only then s = 1.

2.4 An Example Proof

As an example proof we choose the derivation a fixed-point combinator from
three other combinators: a compaosition combinator: bryz = z(yz); and two
repeating combinators: lzy = z(yy), mz = zz. This problem appears in
colorful guise in [15], where the combinators are given the names of birds, In

21

Smullyan's vocabulary, our problem is to derive a sage bird from a bluebird, a
lark, and a mockingbird. The essential insight is that it follows immediately
from the definition of the LARK, lzy = z{yy), that lzlz = z(Izlz) for any z:
i.e., that lzlz is a fixed-point for any z.

2.4.1 No Rewrite Version

Our first representation uses equality axioms and no rewrite rules:

W4 Bluebird + Lark + Mockingbird ==> Sage (tmm, p. 91)

% definition of SAGE BIAD: Yx = x¥x
false :- proleg(\+ f_chaining),
aqia(yY,2(Y}), B), eg(a{f(Y),B), E).

% definition of MOCKINGBIRD: Mx = xx
eq(a(X.X), ala,X)).

% definition of LARK: Lxy = x(yy)
eq(a(x,a(Y,¥)), aa(l,x},Y}).

% definition of BLUEBIRD: Bxyz = x(yz)
eg(ala(alb,X),¥),2), alX,a(Y,Z))).

444 equalicy

% equivalence relation
eqlX, %),
eq(X, Y) :- prolog(f_chaining), eq(Y, X).
eq(X, Z) :- proleg(\+ f_chaining),
eq(X,Y), prolog(X \== ¥),
eq(Y,Z), prolog(Y \== 2).

% replacement rules
eq(U,V) :- prolog(M\+ f_chaining),
prolog({nonvar(U) ; nomvar(V))),
replaceg(U,V},
replaceq({a(T1,T2),a{T3,T4)) -
prolog(\+ f_chaining), eq(T1,T3), eq(T2,T4).
replaceq(£(T1),£(T2)}) :-
prolog(\+ f_chaining), eq(T1,T2).

We use eq to represent equality here, since sprfn is designed to auto-
matically rewrite using terms related by =. The existence of a fixed-point

22

combinator is denied and this denial made the first subgoal for our top-level
goal false. Then the three input combinators are defined. The axioms
defining eq/2 as an equivalence relation and the the rules allowing replace-
ment of equal subterms while preserving equality are standard except for the
introduction of various guards, via calls to the Prolog interpreter, attempt-
ing to control their use, Both the transitivity axiom and the replacement
rules are restricted to the back-chaining phase, Syntactically identical terms
would obviously not be useful subgoals for the the transitivity axiom to gen-
erate. Again, if both U and V are variables, then they should be shown equal
through unification and the application of the reflexivity axiom, not through
the replacement rules.
Given this input file, sprfn preduces the following output:

solution_size mult{0.1) is asaserted
proof_size_mult(l) is asserted
clanse_count_muoit(0) is asserted

proof found
falsa:=-
prolog{\+ f_chaining)
eqla(alal(b,m),1),f(alalb,m},1))),
ala(l,f(ala(b,m),1))),a{l,f{alalb,m),1))))) -
prolog(\+f_chaining)
input(eq(alala(b,m),1),f(ala(b,m),1))),
afm,a(l,f(alalb,m},13)03))
prolog{alalalb,m),1),f{alalb,m), 1))}
== alm,a(l,f(afalb,m),1)))))
eqlal{m,all,2(alalb,m}.1)3)),
ala(l,f(afalb,m),1))),afl,f{afalb,m).13)))) :-
prolog(f_chaining)
input(eq(ala(l,f(a(al{b,m},1))),2(1,2(alalb,m},1)))),
a(m,a(l,f(alalo,m),1))))))
prolog(a(m,a(l,f(afalb,m),1)))) \==
ala(l,f(ala(b.m),1})),al1,2(alalb,m),1)))))
input(eq(a(t{afa(b,m),1)) ,ala(l,f(alalb,n),1)}),
a(l,f(ala(b,m),1))))),
a(a(1,.f(ala(o,m),1))),a(1,2(a(alb,m),1))))))
8ize of proof 11
clause count 6
72.0333 cpu seconds usaed

23

240 inferences done

The assertions reported are parameters for weighting the various factors
that make up the cost of a particular proof subtree: length of the solution,
depth of the tree, and the number of nodes. Varying these weights can help
or hinder the prover in its search for a proof.

Each dot marks the restarting of sprfn with a greater depth bound. At
the end we are told that this proof was found at depth 11, and that the proof
tree has 6 nodes. (calls to Prolog are not counted as nodes in the proof tree.)
As usual with UNIX statistics, cpu time is accurate only to within £ 10 % or
s0. The number of inferences represents each time an old solution or input
clause was used.

The proof is simply a report of the subgoals generated from the top-
level goal, false. This generates three subgoals: a call to Prolog, and
two equations. The second equation turns out to be that instance of the
definition of the LARK combinator showing lzlz to be a fixed point. The first
matches the head of the transitivity rule and generates five further subgoals.
The first equation in these subgoals is an instance of the definition of the
BLUEBIRD combinator, and the second an instance of the definition of the
MOCKINGBIRD combinator, once it is turned around through an appeal to
symmetry.

2.4.2 Critical Pair Representation

The critical pair representation of the theorem is as we have deseribed it,
with the addition of the equality axioms and a rewrite rule. Of those axioms
defining equality as an equivalence relation, only reflexivity is demanded by
the unfailing completion inference system. The symmetry axiom is added
to get the effect of = in C1 and C3, and also £% in C5: in other words, to
allow the equations in the database to be used in either direction. Inciden-
tally, equations are stored as directed left-1o-right (but not as rewrite rules},
so it is helpful if all equations in the input have the more complex term on
the left. The f_chaining guard is an attempt to control the application of
the symmetry axiom, by restricting it to the completion phase, Transitivity
is not needed for completion, but is required for the completeness of the
prover. Henece it is restricted to the back-chaining phase, outside of comple-
tion. Finally the rewrite rule is necessary to compensate for sprfn’s quirk: it
treats all input as “old solutions”, and so will not attempt to convert inpul
equations into rewrite rules.

24

% Bluebird + Lark + Mockingbird => Sage (tmm, p. 91)
% definition of SAGE BIRD: Yx = x¥x
false -
prolog{\+ f_chaining),
alyY. 1{Yy)) =8, af#(Y),B) = 1.
% definition of MOCKINGEIRD
alX,x) = alm,X).
% definition of LARK
alX.al?,r)) = atafl.X).Y).
% definition of BLUEBIRD
alalalb,Xx),¥).2) = a(X,alY,z)).
W% crivical pairs
% Toot position

Y=U =
prolog{f_chaining),
X=1,
proleg{nonvar(X)),
1=V,
prolegli(X ‘== ¥}),
prolegl(V \== U)).
% 1 positien

alV,Y) = U :-
proleg(f_chaining),
a(x,Y) = U,
prolog(nonvar(X)),
=,
proleog({X == ¥}),
prolog({a(V.Y) \== U}).
% 2 position

a(x, vy = U :-
prolog(f_chaining),
a{l.?} = ﬁ:
prolog{nonvar(¥)),
You X,

proleg((Y \== ")),
prolog({alX.V) \== U}),
% 11 position

alalV,¥),2} = U :-
prolog{f_chaining),
alalX,¥),2) = U,
prolog{nonvar(X)),
=1,
prolog{ (X \== V)],
prolog((afal(v,Y),Z) \== U)).

b
o

Wik equality

I=1x
X = Y :- prolog(f_chaining), Y = L.
X = Z :- prolog(\+ f_chaining), prolog(nonvar(X)),

X = Y, prolog{nonvar(Y)}, proleg(X ‘== Y},
Y = 2, prolog(Y \== Z}.

%Wih erientable egquationa

rewrite(ala(a(b,X),¥),2), a(X,a(Y,2))).

Note that the statement of the theorem and the definition of the combi-
nators is the same as in the no-rewrite version, except that now ‘=" is used
to trigger the antomated rewriting capabilites of sprin.

Given the preceding input, and using the lexicographic ordering in which
functors are weighted alphabetically, sprfn returns the following:

solution_size_mult(0.1) is asserted.
proof_size _mult(1l) iz asserted.
orisnt is asserted.

ala(l,alX, X)) .) —=alm,alx, X))
a(¥,alY,alalb,2),¥)))->alm,alalb, %), ¥}
ala{l,x),¥)->a(X,alm,¥))
alalalm,b) X)), ¥)->2alb,alX,¥))
alm,X)=al(X.X)

a(X,alm,Y))=alX,a(Y,¥))

a(a(x,x),ale, X))->alm,a(X. X))
a(X,aly,¥))=a(X.alm,¥})

a(X,a(¥,a(2,2)))}=alX,al¥Y,al(m,2)))
alalX,X),alX,X))->aln,a(m, X))

a(X,a(Y,alm,2}))=alX,a(¥,a(2,2)))
a(X,alalm,Y) ,Z2))=a(X,alalY,Y),2))
alalm,a(b, X)), ¥Y)=a(X,ala(b,X),Y))
atalm,X),alY,2))=ala(X,X),alY,2))

afalm,X),alX, X))=>alm,alm, X))
ala(m,X),alm,X})->alm,a(X,X))
a(X,alm,all,X)))=>afm,all, X))
afalm,1),X)->a(l,aln,X))
a(X,ala(Y,Y).2))=alX,ala(m,¥).2))
ala(X,X),a(Y,z))=ala(m,X),a(Y, 2))
a(X,ala(b,X),¥))=ala(m,alb,X)),¥)

26

a(b,a(X,a(a(n,b),X)))->a(m,ala(n,b),X))
a(Xx,a(a(b,X),a(m,a(d,X))))->alm,aalb,X),alb, X))
ala(m,alX, X)), alm,a(X, X)))=>aln,alm,aln,X)))
ala(m,a(m,b)),X)->a(b,alaln,b), X))
ala(m,a(b,b)),X)->a(b,alalm,b),X))
ala(m,X),al=,¥Y))=ala(X,X),alyY,¥))

proo! found
false:-
prolog{\+f_chaining)
input(a(a(a(b,n),1),f(aa(b,m),1)))
=a(m,a(l,f(afa(b,m),1))))}
al{flalalb,m),1)),alm, a1, t(alalb,m),1)))]}
=a{m,a(l,f{alalb,m),1))}):-
prolog(f_chaining)
input(ala(l,f(aCa(b,m},1)}),a(l,f{alald,m},1))))
=a{m,a{l,f(alalb.m),1)23))
prolog(nonvar(a{a(l,f(afalb,n),1))),
all, flalalb,m), 13333}
alf{alalb,m), 1)), alm,a(l, fCalalb,n), 1300}
=sala(l,f{alalb,m),1))}).all, f(atalb.m),2)))) =
prolog(f_chaining)
input{a{f(alalb,m),1)),adall,flalalb,m), 1)),
all, f(alalb,m}, 1))}
=ala(l,f(alalb,m},1))),a(l, f(alalb,m}, 1))
prolog(nonvar(aall,f{ala(b,m}, 1)),
a{l,f(afalb,m),1)))))
input(a(a(l,(afa(b,n),1))),a(1,f(alalb,m),1)}))
=a(m,a(l,2(aal(b,m),1)))))
proleg(ala(l,z{alalb,m),1))),a(l,2(aalb.m).1})))
\==a(m,a(l,2(a(a(b,m).2)))
prolog(a(z(a(a(b,m),1)),alm,a(1,f(alal(b,mn),1)))))
\==a{a(l,2(ala(b,m},1))),a(1,£(alalb,m),1)0)))
prolog(a(a(l,f(a(a(b,m),1))),a(1,f(ala(b,=),1))))
\==a{ﬁa{n(h,n).1,‘.'].a{u,a{],f{a{a{b,n},l]]})]}
prologl(a(f(ala(b,m),1)),a(m,a(l,f(ala(b,m),1)))))
\==a(m,a(l,f(alalb,m),1)))))
size of proof 14
clause count 7
210,533 cpu seconds used
633 inferences done

Each equation has been added by a critical pair rule, and oriented by the
automated lexicographic orienter if possible. As before, the top-level goal

27

false generates three subgoals. The first is an instance of the definition of
the MOCKINGBIRD. The second matches the root position critical pair rule,
and so generates 6 further subgoals of its own. The first necessary equation
is again an instance of the MOCKINGBIRD definition, and the second again
matches a critical pair rule, this time at position 2. (It helps to identify the V
and U terms through the last two Prolog identity checks.) The first equation
required by this rule represents sprin’s insight that [zlz is a fixed-point for
any r, and is accepted as an instance of the definition of LARK. The next
is yet another instance of the MOCKINGBIRD. The remaining subgoals are
simply to ensure that the terms are not identical.

2.4.3 The Modification Representation

The modification representation follows the previous the previous ones, ex-
cept that now the definitions of the combinators have been “pulled-out.”
There are no occurrence-specific critical pair rules.

#Wh Bluebird + Lark + Mockingbird ==> Sage
% Definition of SAGE bird: Yx = xVx
false :- prolog{\+ f_chaining),
l{?;f{?}} = E; E{f{?}.gj = 8.
% definition of BLUEBIRD : Bxyz = x{yz)
Bi = B2 :~-
prolog(f_chaining),
a(b,X) = ¥, a(u,¥Y) = v, a(v,2) = 81,
alY,z) W, a(X,¥) = B2,
¥ definition of MOCKINGBIRD : Mx = xx
Bl = B2 :-
prolog(f_chaining),
alm,X) = B1, alX,}) = B2.
% definition of LARK : Lxy = x(yy)
Bl = B2 :-
prolog(f_chaining),
u{II x} o, “ful T} = 51,
afY, Y} = Vv, nlX, V) = B2,
WA Equality
X.
Y :~ prolog{f chaining), Y = X.
Z :- prolog(\+ f_chaining), prolog(nonvar(X)),
X = Y, prolog{nonvar(Y)), prolog(X \s== Y),
Y = 2, prolog(Y \== 2).

nn

o
(LI

2B

Given this file and the same orienter again, we get the following output.
Note that sprin first tries to orient the equations it constructs from the input
definitions.

solution_size_mult{0,1) is asserted.
proof_size_mult(l) is asserted.
orient is assarted.

;(l.ll=a{1.l}

a(a(1,x),¥)=a(x,a(¥,v))
a{X,X)=alm, X)

aCalald, X}, ¥), 2)->alX,alY,2)}
alX,aly,¥))=alall,X),n)

alX,afa(l,X),a(l,X)}))->alm,a(l,.x))
alalx,Xx),a(X,X))->ala(l,n),X)

alX,alm,¥))=alX,al¥,¥))
afafl,ald, X)), X->alm,alX, X))
a(a(m,1),X)=a(l,a(x, X))
ala(l,X),¥)=->a(x,alm,¥))
aa(x,x),a(m,X))->a(m,a(X,X))
alX,alm,¥))=a(x,a(Y,¥))
a(X,alY,¥))=a(X,a(m,Y))
a(X,a(x,alm,a(1,%))))->alm,a(1,X))
aftalX,x),alx,x})->alm,alm,X})

alafalm,b) X)), ¥)->alb,alX,¥))
alalm,alm, b)) ,alb,b))=-2al{b,alm,aln,b)))
a(a(m,a(m,b)),.D)->a(b,alalb,b) X))
a(a{a(m,X),a(=,X}),a(m,a(X,x)))->aln,am,a(m,X)))
a(X,a(a(Y,¥),z)}=a(X,a(a(m,¥),2))
ala(m,a(b,X)},Y)=a(x,afa(b,X),Y))}
a(m,a(m,ala(b,n},alald,m),alalb,m},alb,m))))}})
=ralm,aim,alb,m)}))
a(X,a(a(b,X),ala(b,x},a(b,X))))->a(m,alm,alb,X)))
ala{ai{m,X),a(m.X}) . alalm,X),a(X, X)))-2a(m,alm,alm,X)))
a(X,alY,a(z.2))=alX,a(¥,a{m,2)))
a(x,a(Y,ala(b.x).Y)))->a(m,alalb,x),Y))
ala(m,alm, X)), a(m,a(X,X)))->alm,alm,a(X,X)))
a(X,alY,alm,2)))=al(x,alY,a(2,2)))
alafm,alm,a{l,m))),alm,alm,a{l,m))1)=%alm,al(l,m)}

25

afalm,X),a(X,X))=->alm,a(X, X))
afalm,X),alm,X))=>alm,a(X, 1)

a(b,afa(b,b) ,a(m,a(m,b))))->alm,alm,a{m,b)))
alm,a(X,X))=al{m,alm,X})
ala(X,X),a(m,al¥,¥)))=ala({n,X) ,alm,alm,¥)))
afa(X,X),aln,Y))=ala(m,X),a(Y.Y))
afa{m,1).a(X.X))->a(l,alm,alm,X}))
a(l,a(m,a(l,1)))->a(m,a{=m,1))
al(l,al(m,afm,1)))-*alm,alm,1})
a(m,alm,a(X,%X)))=alm,a(m,alm,X)))
&(xratmrah’-f}]}'ﬁ(x jalm, aim,¥)))
a‘cxla{mia{'ml-.f}}]=&{x,a{m.ﬂ(Y,YJ}}
alX,alm,alm,¥)))=alX,a(m,afv,v3))
af(l,a(X,.X))=alalm,1).X)
a(m,a{m,a(l,m)))->alm,a(l,m))

afm,alalb, X),al(b,X)))->alm,a{m,alb,X)))

afalw,1),1(a(m,1)))->a(l,a{m,f{aln,1))))
a(a(m,a(m,X)) ,alm,alm,alb,¥))))
=a(a(m,a(x,x)),a(m,a(m,al®n,¥)}))
afai(m,a(m, X)), alm,almn,¥)))=alalm,alx,X)) ,alm,aln,¥)))
a[a(m,a(m,}[}] yalY, 2))=alalm,a(} II}J yalY,2))
a(al{m,X),a(m,a(m,a(d,¥))))=ala(X,X) ,alm,al{m,alb,¥))))
alalm,X) ,alm,alm,¥)))=alalx,X),aln,aln,¥)))
afala,X),alY,Z))=alal),Xx),2(¥Y,2))
ala{m,X),ala(b,a(X,x)),alalb,a(X,x)),alb,alX.X)))))
->a(m,a(m,a(b,a(x,1))))
a(a(X,.x),a(m,a(m,a(v,¥))))=ala{n,Xx) ,ala,aln,a(b,¥))))
ala(x.Xx),alm,a(m,¥)))=alalm,. X} ,alm,aln,¥)))
alal(X,X),a(Y,2))=ala(m,X),al¥.2))
a(b,afalm,b) ,alm,a(b,b}}))->alm,a(m,alm, b))}
ala(m,a{m,a(m, X))}, alm,alm, 20X, £))))=2alm,alm,alm, 202, X000}
alX,adalm,alm,¥)},2))=a(X, alaln,a(¥Y,¥)),2))
a(b,ala(db,b),alm,aln,X))))=alb,alaldb,b),alm,alX,X))))
a(b,a(a(b,b) ,alm,a(X,X)))})=ald,ala(d,b),alm,alm,X))))
a(alal(z.x).¥),a(alX,.X), YY) ->alm,alalm, X)), 1))
a(X,afa(m,¥),2))sa(X,a(a(¥,¥Y),2))
a(b,ala(=.b) ,alm,a{n,b})))->alm,alm,alb,b)))
afa(alm,x),¥),ala(X,x),¥))—alm,a(a(n,X1),¥))
alala(m,X),¥),ala(m,X),Y))->al(m,alalX,X),.V))
a(al{m,a(b,b)),alb,b))->alb,alm,al{m,b)))
alalm,alb,m)),alb,m))->alm,alm,alb,m)))
ala{m,a(m,a{m,X)}) alalm,a(X,%)) alm,alm,1))))
—>alm,alm,alm,a(X,X))))

30

a(Xx,a(Y,aln,a(=,2))))=a(X,a(¥,a(n,a(Z,2))))
a(X,ala(d,X),alm,alb,X))))->alm,alm,a(b,X)))
a(a(X,a(Y,¥)),alX,a(y,¥)))->alm,ald,alm, 1))
aa(X,a(m,Y)),a(X,a(y,¥)))->alm,a(X,aln,¥)))
a(a(X,a(m,¥)),alX,alm, Y)))->alm,a(X,a(¥,1)))
aa(X,a(a(b,n), X)), a(X,ala(b,n),X)))->a(m, alalb,m), X))
ala(m,a(m,a(X,X))),alm,a(n,al(m,X))))->a(n,.a(m,a{m, a(=,1))))
a(X,aly,alm,a(Z,2))))=a(X,al¥,aln,a(m,2))})
afal(X,alY,¥)),a(X,alm,¥)))-2alm,a(X,a(¥.¥)))
alala(x.x),T).alaln,X),¥))->aln,aalX,X},¥))
a(b,a{X,alaln,b).X)})->alm,alalm,b).X))
a(X,alm,a(l,X)))->al=,a(l,X))
alalm,a(X,X)),aln, ¥))=alalm,alm, X)), a(Y.Y))
ala(m,a(m,X)),al(m,a(Y,¥)))=alalm,a(X,X)),alm,alm,¥)))
ala(m,alm, X)), alm, ¥})=alalm,a (X, X)) ,a(Y,¥))
ala(m,alm,1)),a(X,X))=a(a(m,a(m,1})) ,a(m,alm,X}))
a(a(m,a{m,1)),a(X,X))->alaim,alm,1)),X)
ala(m,a(l,1)),alX,X))=ala(m,a(l,1)),a(m,alm, afm, X)3))
a(al(m,a(1,1)),a(m,a(X,%)))->alalm,a(1,1)),X)
ala(m,X),alm,a(¥,¥)))=ala(X,X),alm,alm,¥)))
a(alm,X) ,alm,Y))=a(alX,X) al¥,¥)) _
aa(Xx,Xx),alm,a(m,¥)))=ala(m,X),alm,aly¥,¥}))
ala(m,1),a(m,X))=all,alm,a(X,X)))
afa(m,1),X)=>a(l,alm, %))
alX,al¥,alm,al(Z,2))))=a(X,al¥,a(m,alm,2))))
alalX,x),aly,¥))ealalm, X)), 2ln,¥))
alalm,a(X, X)), alY,¥))=al(alm,alm, X)), alm,¥))
alalm,x),aly,¥))=alalX,X),alm,¥))
afa(m,X),alm,alm,¥)))=ala(X,X),alm,a(y, VI
a(X,ala(b,X),¥))=alalm,alb, X)), ¥}
aaim,a(m,1)),alm,a(m,X)))->alalm,a(m,1)),1)
ala(m,X),ala(b,alX,X)),a{m,a(b,a(=,x)))))
~»alm,alm,alb,alX,x))))
a(m,a(l,1))->a(m,a{m,1))
a(l,a(m,a(X,X)))=a(l,al{m,a(m,X)))
a(m,a(m,a(n,X)))=ala,al(n,a(X,x)))

proof found
false:-
prolog(\+f_chaining)
a(a(a(b,m),1),f(alalb,m),1)})
=al(m,a(1,f(afalb,m),1)))):-
prolog(f_chaining)
input{a(b,m)=a(b,m))

41

input{ala{b,n),1)=ala(b,n),1))
input(a(alalb,m),l},f(alalb,m),1)))
safa(a(b,m),l),f(alalb,m),2))))
input(a{l,f(a(a(b,=),1)))=a(l,f(alalb,m),1))))
input{a(m,af(l,f(afalb,n),1))))
=alm,a(l,fCafalb,m), 100}
alm,afl,2{afalb,m),1)))}
=af(f(a(a(b.m},1)),a(m,a(l,2(alalb,m},1))})):~
prolog{f_chaining)
input(a(m,a(l,f(ala(b,m),1))))
=a(m,a{l,f(alalb,m},1)))))
afall,f(alalb,m), 1)) ,a(l,£(alalb,m),1))))
=a(t{alal(b,m),1))alm,a(l,2(alalb,m},1))))) -
prolog(f_chaining)
input(a{l,f(alal(b,x),1)})=all, f{alalb,m).1))))
inputfafa(l,f{alalb,m),1))),all t{afalb,m},1))))
=a(a(l,f(ala(b,m),1))),2{1,f(alalb,m),1})}))
alall.f(ala(b,m),1))),a(l,f{a(alb,n}, 1))}
=a(m,a(l,2(alalb,m),1)))):~
prolog(f_chaining)
alm,a(l,f{alalb,m),1))})
=afa(l,f(atalb,m), 1))}, ail,f{alalb,m),1))));:-
prolog(f_chaining)
input{alm,a{l, t{alalb,n),1))))
=a(m,a(l,f{ala(b,m),1)))))
input(ala(l,f{alalb,m),1))),a(l,2Catalb,m), 1))}
=afa(l,f(a(alb,m),1))),all, £(alalb,m},1)30))
input{a(f(alal(b,m),1)),alm,a(l, f{alalb,m),1)))))
=a(f(a(alb,m),1)),a(m,a(1,2Calalb,m),1))))))
size of proof 32
clause count 17
919,716 cpu seconds used
1813 inferences dona

Since the statement of the theorem is the same as before, the proof
starts with the generation of the same subgoals. The first equational sub-
goal matches the definition of the BLUEBIRD combinator, and generates 5
subgoal equations, all discharged as instances of the reflexivity axiom, here
the only ultimate grounder of subgoals. The second matches the definition
of the MOCKINGBIRD, and so adds two more equations to derive. The first
is again satisfied immediately as an instance of X = X, and the second takes
us into the definition of Lark. (Note lzlzr here appears as miz). lts first
two equational subgoals as well as the fourth are instances of the reflexivity

32

axiom, and the third calls on symmetry. The subgoal equation matches the
MOCKINGBIRD definition, whose two equations are both grounded in the re-
flexivity axiom again. Unlike the previous proofs, this proof is constructed
almost entirely through forward-chaining, and so the order of the proof does
not reflect at all that of its construction.

2.5 Results
2.5.1 The Problems

We tested the three representations on 16 combinator problems drawn from
[15]. The results appear in Figure 14. The convention followed in labeling
the problems is that the given combinators are listed to the left of the
underscore, and what is to be derived, usually another combinator, to the
right.

Two problems proved too difficult for sprfn, at least with the weights
given. McCune and Wos [16] were able with much human effort and hours
of computer time to guide their prover to a derivation of a fixed-point com-
binator {a ‘sage’) from the b and w combinators. We were not able to get
sprfn to derive this in one step. When given a pair of lemmas in the form of
two intermediate combinators suggested by Smullyan, a and ¢, the problem
becomes soluble for sprfn under all problem representations. Similarly, we
were unable to derive a complicated permutor, psi, from b,c (a different ¢,
called a ‘cardinal’ in [15]) and w, but it is relatively simple when done via
the derivation of a ‘dovekie’ and a ‘hummingbird.” The difficulty with both
BW_SAGE and Bcw_ps1 is most likely the ‘warbler’ combinator:

wIy = Tyy

both sides of the definition unify, rendering simplification impossible,

The derivation of the ‘cardinal’, a simple three-place permutor, from
the composition combinator ‘bluebird’ and the two-place permutor ‘thrush’
(discovered by Church) proved surprisingly difficult, so another three-place
permutor, the ‘robin’, was introduced as an intermediary in a pair of prob-
lems (suggested by Smullyan).

In KW_MOCK we derive the duplicative ‘mockingbird’ from the aforemen-
tioned ‘warbler’ and the cancellative ‘kestrel’;

kzy =

L-EGO involves the construction of an “egocentric” function, which returns
itself when given itself as an argument, from a ‘lark’. This problem was

33

solved in [17]. The final problem constructs a combinator that commutes
with every other combinator from the ‘thrush’ and the condition that every
function has a fixed-point.

2.5.2 Data

CPU times and the number of inferences required [or the problems are tab-
ulated in Figure 14. The problem were run ander C-Prolog on a Sun 3/60.
No effort was made to control for load, which varied from light to moder-
ate. Blanks indicate that the problem was not solved, usually by running
out of resources, In the one case marked by an asterisk, the problem was
solved only under the ‘nosave’ option, which turns off the caching feature,
and results in faster but more repetitive inferences using comparatively little
memory.

The surprising result was that the no-rewrite representation performed
the best in terms of shortest time. It should be noted that the no-rewrite
version would have had an unsolved problem, however, had we not disabled
the caching feature on the BT_CARD problem. Nonetheless, the equational
axioms did perform unexpectedly well, as is shown in another way in Fig-
ure 15, Here we list the first and last place totals for each representation.

One bright spot for the critical pair representation is that is does have the
lowest average number of inferences, even if not cPu time. Focussing on this
number not only sidesteps the inaccuracy of time statistics in UNIX, but also
discounts the overhead involved in the rewriting and completion phases, and
so points out the potential for efficient implementations of these phases. Un-
fortunately, this measure is skewed badly by the ‘nosave’ run, which quickly
piles up repeated inferences. Dropping the inference counts for 8T_carD
from both columns, we find that the critical pair representation averages
over twice the number of inferences made by the no-rewrite representation,
and the modification format averages over three times as many.

2.6 Discussion

The rewriting strategies we have employed do not exhibit the efficiency we
had expected. Clearly directing equations has not provided the additional
control promised. It must be emphasized that the data are insufficient to
warrant any firm conclusions. We have compared only 16 problems of a
specific type, using but one setting of the various switches sprfn provides.
Nonetheless, some provisional morals suggest themselves.

34

CPU seconds

of [nferences

————— e
*: caching turned off.

Theorem NRW | CP MOD || NRW | CP MOD
ac_sage 43 49 41 107 139 | 158
b.dovk 24 21 32 119 133 258
bew_humm 243 493 1325 || 812 1094 | 2095
beow_psi — — - — — —
bdh_psi 13 7 127 73 263 | 397
blm_sage T2 210 920 240 G633 1813
bs_phi 24 370 120 G399 GE 347
bt.card 377" 1022 | 14963 || 15026 | 3663 | 42379
bi_rob T 15 35 d4 114 139
bw.a 38 42 112 142 186 | 383
bw_c 157 3522 | 10082 || 547 4852 | 7876
bw_sage — — — — — -
kw_mock 330 83 53 654 412 260
lego 297 53 34 522 155 132
r_card 4 & 20 23 35 103
t_cormim 8 B iz 50 29 58
AVERAGEL": || 116 426 1993 1357 | 883 | 4032
AVERAGE2": || 96 78 1995 | 306 670 | 1082

f: BCW_P5] and BW_SAGE not included.
i: BOW_PSI, BW_SAGE, and BT_CARD not included.

Figure 14: Statistics for combinator problems

CPU time Inferences

]] 1st | 3rd || 1st | 3rd
NRW || 10 | 2 9 2
CFP 2 2 u 2 1
MOD || 2 9 3 11

Figure 15: First and Last Place Finishes

35

One surprise was how well sprfn can handle the axiomatic approach to
equality. In fact this was a surprise, since only late in the testing did we come
to seriously apply the sorts of efficiency guards to the no-rewrite version we
had worked out for the other representations. We believe that the back-
chaining nature of the prover worked well with this approach, and that
the ability to limit some of the axioms to either the forward and backward
chaining phases of the prover helped significantly.

We do not yet understand well enough how this integration of comple-
tion and theorem-proving works. For example, the input files were originally
written to work with an alphabetical lexicographic ordering. It turned out
that performance was significantly improved when terms were reverse alpha-
betically ordered! Some problems took longer, but most were solved more
quickly, and one theorem previously unprovable using the modification for-
mat was proven under this orientation.® This was surprising since the lexical
ordering of atoms has an effect only if terms are tied at the top level and
on all subterms considered up to that point. At most a few percent of the
critical pairs generated in our examples are oriented by considering the al-
phabetical ranking of identifiers. Presumably this ordering has more effect
in rewriting instances, which is invisible to the user.

This case and other surprises show that we do not vet understand our
technique well enough to write it off. A better use of the orienter (or perhaps
one using different principles), or a more clever setting of the switches sprfn
provides may make all the difference for the rewriting approach.

Nonetheless, the integration of completion into the prover did not work
as well as we had hoped. We suspect that the amount of information coming
in under the forward chaining phase in the form of new directed equations
simply overwhelmed the normally efficient goal-orientation of sprfn. Note
that the modification representation, in which all but the opening stage of
the proof is derived in forward chaining, performed the poorest overall.

The tactic of carrving out completion in the forward-chaining phase and
the rest of the proof primarily in the back-chaining phase would undoubt-
edly be aided by more sophisticated forward chaining, currently perhaps the
least intelligent part of sprfn. The general problem of introducing search pri-
orities within the iterative deepening stategy is being investigated by Xumin
Nie. Tests on experimental priority systems devised by Nie have sometimes
caused dramatic improvements for the rewnting techniques described here,
and it would be worth investigating which representation benefits the most

Yor, Bw e,

36

from the various priority schemes.

Even granting the preliminary status of our results, it is reasonable to
reconsider the strategy of integrating completion into theorem-proving as
a way of handling equality. After all, by its very nature, completion will
introduce premises not particularly helpful for the proof at hand. Another
possibility we have been exploring is a more directed representation taking
advantage of the left-linear nature of combinator definitions, more akin to
narrowing (¢f. [18]) than completion.

ar

References

(1]
(2]

(3l

G. Birkhoff. “On the structure of abstract algebras.” Proceedings of the
Cambridge Philosophical Society 31 (1933), pp. 433 — 454,

N. Dershowitz. “Orderings for term-rewriting systems.” The Journal of
Theoretical Computer Science 17 (1982), pp. 279 — 301,

M.H.A. Newman. “On theories with a combinatorial definition of

‘equivalence’.” Annals of Mathematics 43 (1942), pp. 223 - 243.

[4] G. Huet. “Confluent reductions: abstract properties and applications

(9

[10]

1]

to term rewriting systems.” Journal of the Association for Computing
Machinery 27 (1980), pp. 797 - 821,

D. Knuth and P. Bendix. “Simple word problems in universal algebras.”
In Computational Problems in Abstract Algebra, J. Leech, ed. Pergamon
Press, NY (1970), pp. 263 - 297.

G, Huet *A complete proof of correctness of the Knuth-Bendix comple-
tion algorithm.” Journal of Computer and Systems Sciences 23 (1981),
pp. 11 =21,

N. Dershowitz. “Completion and its applications.” Proceedings of the
Colloguium on the Resolution of Equations in Algebraic Structures, H.
Ait-Kaci & M. Nivat, eds. Austin, Texas. (1987).

L. Bachmair, N. Dershowitz, and D, Plaisted. *Completion without
failure.” Praceedings of the Colloquium on the Resolution of Equations
in Algebraic Structures, H, Ait-Kaci & M. Nivat, eds. Austin, Texas.
(1987).

G. Peterson and M, Stickel. “Complete sets of reductions for some equa.
tional thecries.” Journal af the Association for Computing Machinery
28 (1981}, pp. 233 — 264,

J.-P. Jouannaud and H. Kirchner. “Completion of a set of rules modulo
a set of equations.” SIAM Journal of Computing 15 (1986), pp. 1155 —
1194,

L. Bachmair and N. Dershowitz. “Completion for rewriting modulo a
congruence.” Proceedings of the Second International Conference on
Rewriting Techniques and Applications (1987).

38

(12] D. Brand. “Proving theorems with the modification method." SIAM
Journal of Computing 4 (1975), pp. 412 — 430,

[13] D. A. Plaisted and S. Greenbaum. “Problem representations for back
chaining and equality in resolution theorem proving.” proceedings of the
First [EEE Conference on Artificial Intelligence Applications (1984),
pp. 417 = 422,

(14] D. A. Plaisted, “Non-Horn clause logic programming without contra-
positives.” Journal of Automated Reasoning, forthcoming.

[15] R. Smullyan. To Mock a¢ Mockingbird, Knopf, NY (1985).

[16] W. McCune and L. Wos. “A case study in automated theorem proving:
finding sages in combinatory logic.” Journal of Automated Reasoning 3
(1987), pp. 91 - 107.

[17] B. Glickfield and R. Overbeek. “A foray into combinatory logic.” Jour-
nal of Automated Reasoning 2 (1986), pp. 419 — 431.

[18] J.-M. Hullot. “Canonical forms and unification.” Proceedings of the
Fifth Conference on Automated Deduetion, printed as Lecture Notes
in compuler Seience 87, Springer-Verlag (1980}, pp. 318 - 334,

35

