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ABSTRACT

Several anti-aliasing strategies are proposed,
which generate Monte Carlo discretized estimates
of color and intensity at each pixel of a raster
display,



MONTE CARLO ANTI ALIASING by JOHN H. HALTON

. We are given a function H; * ﬂ}‘ specifying color and intensity at

any point of a zereen area 5 E_l;- The screen § is subdivided into ¥ zpixels
PH (h =1, 2, ..., &), all disjoint and of equal area and shape.

2. It is intended to approximate the function f on S by a function ¢:-Ii'.2 -
which takes the value ¢, on the pixel Fk' for k= 1, 2y cewp M

3. One approach is to define, for the pixel Pﬁ centered at E&' a weight
Funetion w(r - ch} = uh[r} and let

*h'Jﬁrf”hﬁUL (13

w
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where { denotes R® and qur denotes f_mdzf_udy, with r = (z, ¥).
4. A very general Monte Carle scheme for estimating 5 would select an

integer n and a set of estimator-probability pairs {ghi[r]‘ nhi(r}]’ for

e N Bl e n.i SO that one samples points Ei € § with probability density
£
;hitiij, independently of each-cther, and uses the estimator
"
o= L ap ) (2)
g=r - -

for 2y e For example, "'crude Monte Carle" could define ch:(r] = /4, where
A is the area of § (so that 4/¥ is the area of the pixel 7, ), and use the
estimator Ehifr} = af(r) in P, : but this would net work, since we would
want that the estimator be unbtased, i.e., that
-
h Blag, ] = &
ZimBlapg] = 9 (3)

and this reduces, by (1), to ¢ = ithfﬁﬂﬁnh. wiicre



o

o = | drfen, (4)

(4

and we would need to know both 5. and 9, to get P Another approach is
Lo use ahi[r} - u&[r] =wir- chj in the whole of & (though, of course,
most of the probability will be in or near th. and use the estimator ghiir]

= ef{r); vhence the condition (3) reduces to ¢ = 1/n., provided that the

Tﬁl
weight function 2y satisfies (as is usual) the normalizing condition

‘

| drw, (F) = [dru[r- %]= [dru{n =k (5)

05 i F R a3
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Of course, this condition is not at all unredsonable. Note that we may,
yvet again, choose, over the whole of &, ph;{r] = wﬂ{r}, a different normalized
weight function from Wy (for instance, the normal distribution centered ate,
and with standard deviation of the order of the diameter of a pixel), and
then the estimator would be gps (1) = wh{r]f{r]jwiir]nh, as is readily

verified, and this is again feasible; so we note the pair:

{whtf}f{r}

S, (1), (6)

(Gy0 Pys) =
HE? N H{r]nh

5. An alternmative approach would be to use a form of stratified sampiing,
Note that, in the technique developed above, all ny estimators are identical
and identically distributed. Suppose, instead, that the pixel P, is dis-
sected into m identical sub-pixels R&j’ and that s, identical estimators

L
g, -{F) are sampled with density p, .(F) in where .(r) = r-2>5 .) and
gm{] amp hJ{} <, Pz (7)) = of i)

b, .1 I
5 is the center of Rhu We then require, by (3), that
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:Elsr‘- er Ty ey h) = J'f.dr FCr)eg (r). (7)
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As an example, we could choose the functien g, and then put

®
(7} = ;
gﬂg[ ) 2 TR r- b J * (8]
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where we alsoc must have that
m .
Bifoc o S e
a=1 "4 H (2)
. What we must do to make the method efficient is to minimize (or at least

diminish) the varignce of our estimate, Thus, we note that, for the first

technique, given by (&), we hdve

v Lﬂﬂ . b b If d I’”h':”ff.’]f
arl | g..; = ) varig,..] = A, r—= 1
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For the second technique, given by (8], we similarly get that

m m 3 e P _ -
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i If we consider the case of (6), (10), and (11}, and first assume that

Foagy wh, and So b, and i, are all given a priori; then weé may ask how to
t i :

choose the numbers of function-evaluations #. by pixels, so as to make all

h
; ; q ;
variances the same, given the sum n = Ek—l s The answer 1s evidently

2

¥ = GiF N
”;.E = HU‘-h = 'P;,, jfz;{:l[}lk - @ :': [1"-1-]

k
and the commen value of the variance at every pixel is then

(= 0,52/ (15)
=1k ke =T

In the case of (8), (12), and (13), with #, w, g, and so 4, and u; given, we'
gimilarly see that we can first optimize over the strata in a single pixel;

Lagrangian theory shows that
g% = (L . - p E}E;Em (1 2.5 .
J RYRi T h k=11%rk - %57) (l6)

minimizes the varisnce at Ph to the value

AP S S £, S 2)%)° (17

Note that the Cauchy-Schwartz-Bunyakovsky inequality shows that indeed
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and the right-hand side of the inequality is the general variance (12}, by
{9)}; so that (16) does indeed minimize (not maximize or point-of-inflexion)
the variance. Now we proceed, as before, to make all the variances (17) the

same; yielding that

” i
= nitg;lfu&j y ¢E2}3]2f3g=1{5§;1[ukj " ;Ez]afh. (19)
This makes the common value of the wvariance
o LW [m 2.%)
min var[:.'?._l ghj] - ;f; EH=1[EJ=1{DHJ - ¢& ) 1 . {20)
8. As a specific example, we may suppose that 5 is a rectangle
§= (0828 Ll' 0€y s sz; (21)

and that the index & is (), h,), with ¥ = ¥\ ¥, and 0< 4, < ¥, (¢ = 1, 2),

2

so that Ph is the rectangle
L L L L

] 1 2 2
P, B . % (o h Sn& ot v 1)y =2k €y €20 + 1), (22
T, = W 7, A Rl mzf 2 * 1) (22)
L

centered at € = [ehl’ GHE} with c.

he = ﬁi-[ht «8) (t=1,2). (23)

Similarly, we take J = {jl, jzj. m = mom,, and 0 & jt < My (t =1, 2), so

that & . is the (L /0 ym, = L,/Nym,) rectangle centered at

L

Ly

b = (Bpz10 Byysp) with Byie E;E;{mrht vdy v (E=1, 2. (24)

We may further postulate that both uﬂ and Ong take the form of the normgl

distribution, with



T = —.!—- Al = 2 + [y = 2 - )
we (1) T exp(-{{z - 2;,) (@ - 2,)" 1/ 29), (25)
where o= ELILEKH1N2}U = [4/0)a, (26)
d F) = 1 { } 2 ¥ 5 21‘;2 57
an a;i‘:.[ ) = 5oz exp(-{(=z - D?’l.}'lj (v - ;iJ'Z} 1/28), (27}
where 8= {A,’.-‘:'mlm.,]w = (4/fm)o, (28)

Here, o is a constant for the system, related to the weight function w but
not to for to S and its subdivisions,

Then we have that

, Ly L
Ay, = 5 210 ‘01 d;ﬂjlru2 &y [flz, 91wtz - 0,1, 3 - 0,017
* exnf-‘}{ (x - cm}z s (y - ehzjf}f.?a] (29)

=

] fir.-l i e
and w . = % 2o Ja &Juz & [Fiz, 1)1 [0 - Gy ¥ = chzllz

% EKPE% L':c*b;w-l]z L bhjzlz}fh}. [30)

9. The strategies investigated here so far are adaptive only insofar as

the oprtimizing numbers of samples (14) and (16) are to be estimated from

Monte Carlo estimates of the Ah anduhj¢ﬂuch can be obtained simultanecusly
with the estimates of ¢h generated by the estimators (6) and (8), respectively.
Since only small samples are to be taken, because [ is so laborious to get,

the relative sample-sizeés (14) and (16) will not be very accurately optimal.



Another approach would attempt to perform irporiance sarmpling by
sequentially approximating F(=, 3}uh(z, ) with ué. Sinteuh is given and
[ is experimentally determined (so, also given), we may write O(z, ») for
the product. As we accumulate values of o by sampling (initially with an
arbitrary distribution), we can form an increasingly accurate picture of
the functional dependence of  on (=, ¥) and model wé on this.

Alternatively, we may do a sequential ecorrelated sampling caleculation,
in which we fix the sampling density arbitrarily, and then use an estimator
of the form {C(z, ¥) - v(x, y]}fué{x. u) - fqdr ¢(x, u), where ¢ is the
best approximation to ¢ for which the integral on the right is easiily
camputable,

10. Yet another approach which should be empirically investigated is to
use an ordering of the sampled values of C to indicate where stratification
should occur. First, we sample C at a small number of points in each pixel
and tabulate ¢, &, and y, in order of increasing €. If there ls a strong
correlation of C with = or with gy, split the pixel accordingly and sample
a few more points. Repeat, if necessary.

Note that the stratification and sarmpling are done in the whcle aof 4§,
not within the pizel or sub-pizel only. This {8 to conform with the global
form of w. Note also that w may be given the full theoretical form, and

need not be approzimated by a normal distribution itself.



