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In this paper we describe the current state of our graphics system, Pixel-planes 4 (Pxpl4). and the basic 
architecture that we are planning for its successor, Pixel-planes 5 (Pxpl5). At the time of Its introduction 

(at Siggraph'86 Conference In August 1986), Pxpl4 was one of the fastest machines lor near real-time 

rendering of 3D scenes. In a year of constant use, it has opened new research possibilities for us and for 

other local investigators. while also frustrating us and others with its limitations. This paper Introduces the 
preliminary design of its successor. Pxpl5, which we expect to: 1) be some 20 times faster, 2) overcome 

many of Pxp14's limitations by having a much wider range of capabilities and applications, 3) be realiZed in 

a desk-height workstation pedestal, and 4) be reproducoble In a variety of configurations from a few to a 

few dozen boards. Both coarse-graon and fine-grain parallelism will be used to realize its expected 
per1ormance and generality. 

1. Introduction 

1.1 Goals For Our Experimental Graphics Systems 

A primary goal with Pixel-planes has been to provide more effective, near real· time visual interae1ion for 

several difficult 3D applicat ions: 1) radiation therapy planning for cancerous tumors. 2) molecular 

modeling of complex proteins, 3) comprehension of building designs by architects and their clients. We 
work closely with colleagues specializing in these three applications to test the effectiveness of our 

graphics systems. We also make design decisions for our future systems based on their specific needs. 
Thus, although we hope to have graphics systems that are widely useful, we concentrate on specific 

applications in the belief that more successful systems will resun from first satisfying a few specific needs, 

rather than working in isolation. trying to meet vaguely-perceived general needs and hoping that the 

resulting systems will somehow be useful for many applications. The most challenging goal from these 
three applications has been to generate images from 30 scene descriptions in real-time or as close to it as 

possibfe .. certainfy at several updates per second. We and our colleagues have found that the 

comprehension of complicated 3D structures (such as the relationship between a radiation isodose 

surface and the neighboring anatomy, or the shape of an active site in a protein) is drastically reduced 

whenever the update time for an object rotation or a cutting-plane move is reduced from. say 0.1 second 

to 1 second. We also find that comprehension is significantly increased whenever we can combine 
var10us 30 depth cues, for example, adding to dynamic object motion (kinetic depth effect) both stereo 
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and head-motion parallax. Unfortunately such capab:ilities require still greater graphics computation 
power. Thus. although our current system, Pxpl4, meets some of these needs more effectively than any 

other system available today, it is still insuflicient for many of our applications' needs. It is largely these 

and other still unmef goals that inspire us to embark on the design and construction of another 

generation of Pixel-planes systems. 

1.2 30 Graphics Fundamentals 

Our systems, as well as most others, use a conventionan graphics pipeline organization in which a display 
list of 30 objects is traversed by a graphics processor, each polygon (or other) primitive is transformed 

into the screen space, its parts outside the viewing frustum are clipped out. the proper colors at its 

vertices are calculated, and ~ is rendered into a frame buffer using a depth·buffer algorithm. (Pixel-planes 
is often programmed to perform other tasks, but the standard one sketched above is the most common.) 

Since it has been possible for many years to purchase systems that will generate, in real-time, wire-frame 

versions of quite complex objects. we (and many others) have been concentrating on building systems 
that solve the back-end bottleneck, the image rendering. For a review of some of these related systems. 

see [Fuchs, 1987). A notable new system that had not appeared up to the time of that review and one 

that devotes dozens of custom processors to the back--end rendering is described in [Silicon Graphics. 

1987) and in [Jermoluk and Akeley, 1988]. 

2. Current Pixel-planes System (Pxpl4) 

2.1 System Overview 

This section presents a short overview of Pxpl4: see [Eyles, 1987) for a more complete description. The 

heart of the system and its most unusual feature is its f rame buffer, which is composed of custom logic

enhanced memory chips that can be programmed to perform most of the time-consuming pixel-oriented 

tasks at every pixel in parallel (See Figure 1). The novel feature of this approach is a un~ied mathematical 
formulation for these tasks and an efficient tree -structured computation unit that calculates inside each 

chip the proper values for every pixel in parallel. The current system contains 512 x 512 pixels x 72 

b~stpixet, implemented w~h 2,048 custom 3-micron nMOS chips (63 ,000 lransistors in each, operating at 

8 million micro-instructions per second) (Pou"on, 1987). Algorithms for rendering spheres (for molecular 

modeling), for adding shadows, for enhancing medical images, and for rendering objects described by 
constructive solid geometry (CSG) directly from the CSG descriplion have been devised by various 

individuals w ithin and also outside our research group. The Pxpl4 system is in daily use in our 

department's Computer Graphics Laboratory, where applications in molecular modeling, medical imaging, 

and arch~ecture are being developed. 

Concept. The front part of !he system (the part that performs geometric transformations, clipping and 

lighting calculations) specifies the objects on the screen to the frame buffer in geometric, pixel

independent terms, and the frame-buffer memory chips !hemselves work from this description to 

generate !he final image. Image primitives such as lines, polygons, and spheres are each described by 
expressions (and operations) that are 'linear in screen space,' that is, by coefficients A,B.C such thatlhe 
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value desired at each pixel is Ax+By+C, where x,y is the pixel's location on the screen. Thus the 

information that is broadcast to the frame buffer is a sequence of sets (A,B,C, instruction), rather than the 
usual (pixel-address. RGB-data) pairs. 

How lt Works. Pxpl4 contains a fairly conventional 'front end' graphics processor. implemented using 

the Weitek XL chip set, that traverses a segmented. hierarchical display list, computes viewing 
transformations, perfonns lighting calculations, clips pclygons (or other primitives) that are not visible, and 

performs perspective division. It then translates the description of each object into the (linear coefficients 

and op-codes) form of data for the 'smart' frame buffer. An Image generation controller converts the 

word-parallel data and instructions into the bit-serial form required by the enhanced memory chips. A 

video controller scans out video data from the frame buffer and refreshes a standard raster display. The 
system is hosted by a conventional UNIX workstation tlhat suppcrts the system's user interface through 

various graphics input devices and that provides system programming tools (e.g., graphics libraries. 
microcode assemblers, language compilers). During system in~ialization, the host downloads microcode 

and setup information to Pxpl4 via a service bus not shown in the figure. (The fundamentals of the 

system are covered by U.S. Patent No. 4,590,465, and another patent is pending.) 

•••••••• 
: ·smart' ~: 
• Frame • a 
: , Buffer :: 

.~--1r1~~,; .. a 

From 
lmaoe 

Gen&rat!on 
COnlrOUet 

Figure 1: Pixel-planes 4 System Overview 

To.'Fftm 
Video Controller 

Smart Memory Chips. The heart of the system is the logic-enhanced frame buffer, an array of custom, 

VLSI , processor-enhanced memory chips. Each of these chips contains two identical 64-pixel modules. 

Each module has three main parts: a conventional memory array that stores all pixel data for a 64-pixel 
column on the screen, an array of 64 tiny one-btt ALU 's, and a linear expression evaluator (LEE) that 

generates AX+By+C simunaneously for all pixels. All ALU's in the system execute the same micro

instruction at the same time (in Single-Instruction-Multiple-Data fashion), and all memories receive the 
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same address (each pixel ALU operates on ~s corresponding bit of data) at the same time. The LEE 
provides the power of two 1 O-bit multiplier/accumulators at every pixel, but at much less expense in 

silicon area on the chip. The part of the LEE that is common to the pixels in a single column is factored 
out (10 stages of the X-mulliplier and the first4 stages of the Y-mulllplier) . The last six stages of theY

mulliplier can be built as a binary tree, since Y-products 1or a column are closely related. thereby reducing 

the cost in silicon area to about 1.2 bit-serial multiplier/accumulator stages per pixel for the entire LEE. 

Pxpl4 chips have 70% of their active area devoted to memory and 30% to processing circuitry. 

Hardware Configuration. The Pixel-planes 4 system consists of a Digital Equipment Corporation 

MicroVax II workstation, which acts as host, and a separate cabinet containing the prototype custom 

hardware. The prototype contains two card cages in a single raclc a rrultibus cage and a cage with a fully 
custom backplane. The custom cage contains the 512 x 512-pixel frame butter on 32 15" x 15" boards, 

each with 64 logic-enhanced memory chips. The mull I bus cage contains all the other boards: a host 
interface board through which a OMA link to the host Is realized, an analog input board to which joysticks 

and sliders are connected, the graphics processor (with 8 MBytes of RAM), the image generation 

controller: and the video controller. 

Perfo rmance. Pxpf4 can process about 35,000 smooth-shaded. Z·buflered triangles per second 

(quadrilaterals are about 20% slOwer) . Shactows are cast at about 11 ,000 triangles per second, using true 

shadow volumes. About 13,000 smooth-shaded, Z-buffered, interpenetrating spheres can be rendered 

per second. Virtually any number of updates per second can be realized, since the entire Z buffer and an 

the RBG buffers can be cleared in less than 1 o microseconds. 

2.2 Algorithms On Pixel-planes 4 

New algorithms and applications have been appearing in a flurry since the system became operational in 

August 1986 and especially since the new, C-programmable graphics processor became operational in 

Spring 1987. 

CSG System. Claire Durand, Steve Molnar and Greg Turk have Implemented an interactive design 

system based on constructive solid geometry (CSG) and building on the methods described in 

(Goldfeather, Hultquist. and Fuchs, 1986] and in (Jansen, 1986]. This is the first system, to our 

knowledge, that allows direct-manipulation of the CSG tree via a Macintosh-style user interface and 

continuous rendering of the resulting solid object. Casual users have begun designing simple objects 
with the system: telephone sets and dining service and goblets. The design team has begun to 

interface their system wrth a CSG-to-polygons program (part of the BAGS package from Brown Universrty 

developed by Professor Andries van Dam and students). The capability to deal whh both CSG structure 
and polygons may allow the user-designer to enjoy both the ease of design within a CSG structure and 

the still much faster rendering of polygonal representation for objects that are no longer being changed. 

Transparency. Two different algorrthms have been implemented for transparency, one by David 

Ellsworth, the other by John Rhoades. Ellsworth's method displays transparent polygons as opaque 

polygons wrth randomly positioned single-pixel holes--the greater the polygon's transparency, the more 
holes. This method allOws simple processing of polygons 1n an order, but results in distraC1ing sparkling 
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of holes as the polygon moves from frame to frame. Ellsworth is working on reducing this effect 

Rhoades' method processes transparent polygons only after all the opaque ones. This involves 
partitioning the display list and, for the method to work properly, involves sorting lhe transparent 
polygons from, for instance, back to front. Rhoades' current Implementation does not sort the 

transparent polygons but still gives results that are acceptable to our users. He is working on more 

advanced implementations, especially ones that will run efficiently on PxpiS. 

Textures. Two different algor~hms for rendering 1extu1res are being explored, one by Vicki Interrante, 

the other by Brice Tebbs. Interrante's version displays a textured surface as one created by a cover of 
many tiny polygons, one between every consecutive texture sample. It works fine, although slowly. We 

plan to speed up this version by defining a hierarchy of textures, each with a different number of 
polygons, using progressive refinement techniques. When a texture Is moved rapidly, only a rough 

(blurred) version will be displayed. When H is stopped, a more refined version will automatically appear. 

Tebbs' version is an implementation of the techniques described by our team in [Fuchs, et al, 1985). 

Pixels w~hin a textured surface are "colored" with texture coordinates when they are originally rendered. 
After all the polygons have been rendered, the system broadcasts the texture(s) once; the pixels storing 

texture coordinates then replace these coordinates with the corresponding broadcast texture values. 

This method works well when there are only a few small textures used repeatedly throughout the image-

like bricks and asphalt in a building scene. Still a problem is the situation in which a texture is compressed 

and multiple texture samples map onto the same pixel. The new partitioned parallelism of PxplS and its 

graphics processor's ability to read back pixel values should help both with the speed of this processing 
and with the handling of special cases like these which occur only at a small percentage of the pixels. 

Soft Shadows and Multiple Light Sources. Vicki Interrante ls Implementing a capability to specify 

muniple light sources. Already implemented Is the abil~y to have an area, rather than point light source, 
so shadows can appear more naturally soft on the edges, with true penumbras. This is achieved by 

moving the light source slightly during each of the muniple passes that are normally done for anti-aliasing; 
just as area sampling within a pixel is approximated IJ.y random point sampling within that area, area 

sampling of the light source is approximated by random point sampling w~hin the light's area. Interrante is 

now generalizing this method to allow multiple, arbitrarily pos~ioned light sources. 

Adaptive Histogram Equalization By Progressive Refinement. John Austin (a member of the 

project until recently joining Sun Microsystems in Raleigh. NC) implemented a version of Stephen Pizer's 
AHE algorithm for image enhancement that works by progressive refinement. This image enhancement 

technique, which takes more than one hour on a VAX 780, has been done in about 4 seconds on Pixel

planes 4. Austin adapted his method to calculate an approximate version of the enhanced image in a 

small fraction of a second and then refine it. This method works very well. Our medical colleagues are 

eager to use Pixel-planes for this and other applications. 

Specular Phong Shading Studies. John Eyles has developed a fast new method of Phong 

shading for Pixel-planes. His method performs only part of the rendering of each polygon during that 
polygon's processing period and leaves the final calculations to be done after all the polygons have been 

processed. Then each pixel performs the final calculations with the already stored parameters for the 

surface that is visible at that pixel. Specifically, during each polygon's processing period. the linear 
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coeHicients for each component of the normal to the surface are broadcast. Then, after all the polygons 

have been processed, each pixel processor re-normalizes the ·normar that ~ is storing and performs the 
lighting calculations precisely for ns visible surface. AHhough there are not enough b~s per pixel in Pxpl4 

to implement this method fully, it will provide in Pxpl5 the much more realistic specular shading (whh 

multiple light sources) at almost the same speed as the cruder Gouraud shading we currenUy use. 

Curved Surfaces. Howard Good has started to render curved surfaces on Pxpl4, using recursive 

subdivision within the graphics processor followed by rendering of polygonal approximation in the 

enhanced memory chips. Good is now implementing adaptive subdivision methods. With Pxp\5, we 

hope lo use the enhanced memory chips for a larger share of the computations. Both the quadratic 

expression evaluation and the memory readout capabilities of Pxpl5 will be used for this task. 

Mandelbrot and Julia Sets. Greg Turk has developed an algorithm for displaying Mandelbrot and 

Julia sets. It allows the user to explore the 2D plane of the set Interactively, while the Image is updated in 
real lime. Since all pixel processors are enabled virtually all of the time, this algorithm gives far better 

utilization of the raw computational power of Pxpl4 than we have achieved with any other algorithm; to 

update these images on the 512 x 512 display at 25Hz. the enhanced memories perform 1300 million 

15·brt adds plus 655 million 15·b~ muttiplies per second. 

PHIGS+ Compatibility. David Ellsworth and Brice Tebbs have begun implementing a programme(s 
interface to Pxpl4 that is very close to a subset of PHIGS+, the latest version of the Programme(s 

Hierarchical Interactive Graphics Standard. This Implementation is just beginning to run , with only 

polygons currently supported (other support is expected within weeks). The basic interface is expected 

to remain virtually the same for casual users of Pxpl5. 

2.3 Applications on Pxpl4 

Building Walkthrough. As part of a project for exploring and modifying buildings in early design 

stages, John Airey, under the direction of Professor Fred Brooks, is developing a new visible surface 

algorithm optimized lor dense, stat ic environments In which the viewing position Is Inside that 

environment. Airey's method divides the environment automatically Into convex regions and associates 

with each region the list ot polygons possibly visible from any point in that region. In contrast to 
applications in which the rendered object, say, a mechanical part, covers only a part of the screen, in the 

building "'Wall<.through" application. every pixel on the screen is covered by some part of the rendered 

object . Although Airey's methOd can use any display device, it is particularly well swted lor Pxpl4 (and 
Pxpl5), on which rendering time is only a function of the number of polygons, not the size of each 

polygon on the screen. 

Molecular Modeling. Michael Pique (of Scripps Clinic, La Jolla, CA) and others on the GRIP molecular 
modeling team (ted by Professor Fred Brooks) have programmed Pxpl4 to display molecular vibrations. 

They are eager to program Pxpl4 to help with molecular docking studies but await the enhancernerrt that 

allows pixel memories to be read back by the graphics processor. 
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Medical Imaging. Pxpl4 is used regularly and extensively lor display of 3D anatomical structures and 
radiation therapy doses by the NIH-funded Med3D project ted by Professors Henry Fuchs and Stephen 

Pizer. Kevin Novins . while employed by the UNC School of Medicine's Division of Radiation Oncology. 
developed a method of reducing the number of polygons in a reconstructed object with minimal 

degradation to its appearance. This work was motivated in part by the use of Pxpl4, on which the same 
surface represented by fewer polygons is displayed more rapidly. On other systems. which are more 

limited by the number of pixels on a surface than by the number of polygons, such polygon-reduction 

methods would not offer such great advantages. 

3. Inadequacies of the Current System and New Opportunities 

All hough the Pxpl4 system's availability for more than a year has allowed us and others to explore new 
research, its lim~ations, both In performance and generality, leave us dissatisfied. We want not only to 

expand the present capacities of the system, but we also plan to explore some new avenues that 

experience wnh it has suggested: 

Polygon Rendering Rate. For many situations, especially in medical imaging, we and our 

collaborators would like much higher rendering rate. OHen, lor instance, we woukl like to model a cancer 

patient's anatomy, radiation treatment beams, and radiation isodensity surfaces with 50,000 or more 

polygons, and we would like to manipulate smoothly the model on the screen to understand ns structural 
subtleties. We need a lOX speedup to achieve this k.ind of modeling. More advanced visualization 

mechanisms, such as stereo, head-motion parallax and head-mounted display, put still greater 

requirements on the polygon rendering rate. 

Memory Readback. Many new applications we would like to pursue require the ability to process the 

results of computations in the frame buffer. Currently these results can only go to the video stream. In 

the near future we might enhance our video controller to put these results, under program control, on the 

mullibus, lor access by the graphics processor or the system host. For the long run. however, we would 

like this memory access to be more rapid and flexible than just coming through the video stream. 

Algorithms for collision detection in molecular modeling and lor the calculation of radiosity "form factors" 
could be sped up considerably with the pixel readback capability. 

More Memory. As w~h virtually any computer, many applications run out of memory. Although 72 bns 

is a reasonable size lor a frame buffer, it is very small lor a memory system. Since addnional memory 

comes at the expense of other silicon resources, a reasonable solution to the memory limitation problem 

is to Implement a secondary memory mechanism. 

Volumetric Rendering. For many medical situations (and lor some molecular modeling situations) , 

we expect that volumetric rendering will be the best imaging modality. Two separate Investigations by 

PhD students Marc Levoy and Lee Westover are producing very exciting images. Mostly, however. 
these take a long time to generate, since they want to avoid voxel artifacts in their images. Although at 

least one group of researchers has demonstrated a special-purpose machine for generating volumetric 

rmages rapidly [Goldwasser. 1988). even they estimate that a lull-size real-time version of their machine 
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will cost about $250,000. (Even this machine's images would have obvious voxel artilacts!) We would 

like to render volumetric images. but within a more general·purpose graphics engine. 

4. Pixel-planes 5 Design 

We expect Pxpl5 to be a dramatically more powerful machine than Pxpl4 for two reasons: 1) ~ will be 

much faster on currently-run algomhms due to the higher clock rates, more parallelism throughout screen 

partitioning, and more front-end graphics processor power; and 2) the architecture will be far less 
restricted than Pxpl4 with backing store and random access to pi xels by the front-end graphics processor 

(and other parts of the system). which should allow whole new classes of algorithms to be implemented. 

In addition to ~s enhanced performance. Pixel-planes 5 will be configurable in a variety of ways that allow 
cost to be traded lor performance. 

Pixel 
Processor 

Renderer 

Figure 2: Pixel-planes 5 System Overview 

Frame 
Buffer 

Host 
Interlace 

Workstation 

The machine will also be much smaller physically than Pixel-planes 4 and will consume far less electrical 

power. The system's key features are: 

• Screen Partitioning. When rendering polygons, Pixel-Planes 4 first disables all pixels on the 

outside of the first edge of the polygon. Subsequently, all pixels outside the polygon are disabled, and 

not until the beginning ol the next polygon are any of these pixels' processors performing any useful 
computation. Since complex databases generally contain mostly very small polygons, the processors of 

the enhanced memories have a very low utilization. To remedy this, we plan to provide the means for 
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processing simunaneousty multiple polygons, lying in disjoint parts of the display screen. To Implement 

this screen partitioning, the logic-enhanced frame butfer will be partitioned into a number of disjoint 
pieces, each controlled by a separate image generation controller (IGC). Each IGC has an FIFO input 

buller. The graphics processor (which computes the A,B,C coefficient sets and frame-buffer 

instructions) broadcasts each primitive only to those IGC's whose portion of the display is covered by that 
primitive. Since polygons will be qune small, the majority of polygons will be sent to only one lGC. Thus. if 

the IGC's FIFO's are deep enough, and n the order ol the primitives is reasonably uncorrelated wilh their 

screen position, the mulllple IGC's should be able to process several different primitives simultaneously. 

Simulations with even simple data sets and small FIFO's show speed-ups of 4X or better for a system with 
161GC's. 

• Backing Store. The new enhanced memory chips will communicate through a special I/O port with a 

large dynamic RAM "backing store," thus forming a two-tiered pixel memory system. The backing store 
RAM will support direct addressing of pixel data and will allow rapid block transfers of pixel data to olher 

syslem components, including a conventional frame butler from which the display screen will be 
refreshed. Since pixels can also be moved rapidly to the elements of the MlMD front end, it can be used 

to carry out pixel-level calculations that cannot be readily done on the SIMD array of pixel processors. 

Rapid texturing will likely be supported in this way. 

• Separate Refresh Image Buffer. A separate frame butler will allow a flexible mapping between 

the pixel processors in the enhanced memory chips (EMC) and the pixels on the screen. This will permit 
much more effective utilization of these processors, since the EMC's can be dynamically assigned to 

those portions of the screen for which there is the most work. This feature will also allow much smaller 
configurations of Pxpl5 systems without sacrificing signnicant performance lor many applications. 

• Fast Communications Network. The bu ilding blocks of the system, called "application boards," 

will be linked together by a high-speed ring network, capable of moving data between the memory 
subsystems of the application boards at 160 mega-words per second. 

• MIMD Graphics Processor. The "Iron! end" of Pxpl5 will consist of about 32 processors built with 

the Weitek XL chip set. One of these processors will have more memory resources than the others and 
will be the master of the system, aHhough with no specia~ privileges on the ring network. 

• Faster Enhanced Memory Chips. We are re-implementing our custom enhanced memory chips 

in 1.21-1 CMOS. We plan the new chips to have a 40MHz instruction rate. 5 times that of the Pxpl4 chips, 

and 10 contain 256 pixels, with 256 bits per pixel. The new chips will also employ a quadratic expression 

evalualor (in place of the linear one in Pxp14 chips); quadratic expressions are especially useful for 
rendering spheres for molecular modeling, for rendering objects described by CSG, and for rendering 

certain curves and surfaces. The quadratic expression evaluator and the additional memory will also 

speed up lhe calculation of higher-order polynomials. 

• Physical Constraints. Pxpl5 will occupy the volume of a workstation pedestal and should consume 

no more that 2KW of power. The machine will be built entirely from multi-level printed circuil boards (since 

wire-wrap is not useful in systems that must run at 40MHz and faster) and will make considerable use of 



surface-mount packaging. Pixel-planes 5 will be a more modular system than its predecessor. The pre
processor and enhanced memory array w ill each be implemented on multiple identical boards. The 

componenl boards can be combined in a variety of ways to form a range of configurations from small, 
inexpensive systems with modest performance to large systems with very high performance. 

Current Status. We have finished the logic design for the Pxpl5 enhanced memory chips. The design 

includes a much more efficient quadratic expression evaluallon tree than we had originally developed 
[Goldfeather and Fuchs, 1 986]. Detailed design of the communication network is well under way. We 

hope to have Pxpl5 operational by mid-1989. 

5. Conclusions 

We are encouraged that more graphics power is still opening up new opponunities for applications of 

interactive computer graphics. The widespread use of personal computers and workstations is making 
2D graphiCs so much the norm that one can hardly imagine a workstation or an Apple Macintosh without a 

graphics display. In the future, there may also be such expectations for 3D graphics capabilities. We 

hope that we are contributing to the coming of that day. 
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