
Coarse-Grain and Fine-Grain
Parallelism in the Next Generation

Pixel-Planes Graphics System

TRBS-014

A.Jn.rch 1988

lTcllfJ' Fuchs, John Poulton
John Eyles, Trey Greer

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

/?:'F'' ' /f!LJ..' l' ,. ~

To appear in Proceeding• ofth~ llltcmat io11al Conference and 5xhibiiion on Para/Jel
Processing for Computer Vision and Di~;p/ay, Unh·ersity of 1.eerls, United Kingdom,
Jnnuary 12-l(J, 1988.

Abstract

Coarse-Grain and Fine-Grain Parallelism
in the Next Generation Pixel-planes Graphics System

Henry Fuchs, John PouHon, John Eyles, Trey Greer
Department of Computer Science

University of North Carolina

Chapel Hill, NC 27599·3175 USA

1

In this paper we describe the current state of our graphics system, Pixel-planes 4 (Pxpl4). and the basic
architecture that we are planning for its successor, Pixel-planes 5 (Pxpl5). At the time of Its introduction

(at Siggraph'86 Conference In August 1986), Pxpl4 was one of the fastest machines lor near real-time

rendering of 3D scenes. In a year of constant use, it has opened new research possibilities for us and for

other local investigators. while also frustrating us and others with its limitations. This paper Introduces the
preliminary design of its successor. Pxpl5, which we expect to: 1) be some 20 times faster, 2) overcome

many of Pxp14's limitations by having a much wider range of capabilities and applications, 3) be realiZed in

a desk-height workstation pedestal, and 4) be reproducoble In a variety of configurations from a few to a

few dozen boards. Both coarse-graon and fine-grain parallelism will be used to realize its expected
per1ormance and generality.

1. Introduction

1.1 Goals For Our Experimental Graphics Systems

A primary goal with Pixel-planes has been to provide more effective, near real· time visual interae1ion for

several difficult 3D applicat ions: 1) radiation therapy planning for cancerous tumors. 2) molecular

modeling of complex proteins, 3) comprehension of building designs by architects and their clients. We
work closely with colleagues specializing in these three applications to test the effectiveness of our

graphics systems. We also make design decisions for our future systems based on their specific needs.
Thus, although we hope to have graphics systems that are widely useful, we concentrate on specific

applications in the belief that more successful systems will resun from first satisfying a few specific needs,

rather than working in isolation. trying to meet vaguely-perceived general needs and hoping that the

resulting systems will somehow be useful for many applications. The most challenging goal from these
three applications has been to generate images from 30 scene descriptions in real-time or as close to it as

possibfe .. certainfy at several updates per second. We and our colleagues have found that the

comprehension of complicated 3D structures (such as the relationship between a radiation isodose

surface and the neighboring anatomy, or the shape of an active site in a protein) is drastically reduced

whenever the update time for an object rotation or a cutting-plane move is reduced from. say 0.1 second

to 1 second. We also find that comprehension is significantly increased whenever we can combine
var10us 30 depth cues, for example, adding to dynamic object motion (kinetic depth effect) both stereo

2

and head-motion parallax. Unfortunately such capab:ilities require still greater graphics computation
power. Thus. although our current system, Pxpl4, meets some of these needs more effectively than any

other system available today, it is still insuflicient for many of our applications' needs. It is largely these

and other still unmef goals that inspire us to embark on the design and construction of another

generation of Pixel-planes systems.

1.2 30 Graphics Fundamentals

Our systems, as well as most others, use a conventionan graphics pipeline organization in which a display
list of 30 objects is traversed by a graphics processor, each polygon (or other) primitive is transformed

into the screen space, its parts outside the viewing frustum are clipped out. the proper colors at its

vertices are calculated, and ~ is rendered into a frame buffer using a depth·buffer algorithm. (Pixel-planes
is often programmed to perform other tasks, but the standard one sketched above is the most common.)

Since it has been possible for many years to purchase systems that will generate, in real-time, wire-frame

versions of quite complex objects. we (and many others) have been concentrating on building systems
that solve the back-end bottleneck, the image rendering. For a review of some of these related systems.

see [Fuchs, 1987). A notable new system that had not appeared up to the time of that review and one

that devotes dozens of custom processors to the back--end rendering is described in [Silicon Graphics.

1987) and in [Jermoluk and Akeley, 1988].

2. Current Pixel-planes System (Pxpl4)

2.1 System Overview

This section presents a short overview of Pxpl4: see [Eyles, 1987) for a more complete description. The

heart of the system and its most unusual feature is its f rame buffer, which is composed of custom logic

enhanced memory chips that can be programmed to perform most of the time-consuming pixel-oriented

tasks at every pixel in parallel (See Figure 1). The novel feature of this approach is a un~ied mathematical
formulation for these tasks and an efficient tree -structured computation unit that calculates inside each

chip the proper values for every pixel in parallel. The current system contains 512 x 512 pixels x 72

b~stpixet, implemented w~h 2,048 custom 3-micron nMOS chips (63 ,000 lransistors in each, operating at

8 million micro-instructions per second) (Pou"on, 1987). Algorithms for rendering spheres (for molecular

modeling), for adding shadows, for enhancing medical images, and for rendering objects described by
constructive solid geometry (CSG) directly from the CSG descriplion have been devised by various

individuals w ithin and also outside our research group. The Pxpl4 system is in daily use in our

department's Computer Graphics Laboratory, where applications in molecular modeling, medical imaging,

and arch~ecture are being developed.

Concept. The front part of !he system (the part that performs geometric transformations, clipping and

lighting calculations) specifies the objects on the screen to the frame buffer in geometric, pixel

independent terms, and the frame-buffer memory chips !hemselves work from this description to

generate !he final image. Image primitives such as lines, polygons, and spheres are each described by
expressions (and operations) that are 'linear in screen space,' that is, by coefficients A,B.C such thatlhe

3

value desired at each pixel is Ax+By+C, where x,y is the pixel's location on the screen. Thus the

information that is broadcast to the frame buffer is a sequence of sets (A,B,C, instruction), rather than the
usual (pixel-address. RGB-data) pairs.

How lt Works. Pxpl4 contains a fairly conventional 'front end' graphics processor. implemented using

the Weitek XL chip set, that traverses a segmented. hierarchical display list, computes viewing
transformations, perfonns lighting calculations, clips pclygons (or other primitives) that are not visible, and

performs perspective division. It then translates the description of each object into the (linear coefficients

and op-codes) form of data for the 'smart' frame buffer. An Image generation controller converts the

word-parallel data and instructions into the bit-serial form required by the enhanced memory chips. A

video controller scans out video data from the frame buffer and refreshes a standard raster display. The
system is hosted by a conventional UNIX workstation tlhat suppcrts the system's user interface through

various graphics input devices and that provides system programming tools (e.g., graphics libraries.
microcode assemblers, language compilers). During system in~ialization, the host downloads microcode

and setup information to Pxpl4 via a service bus not shown in the figure. (The fundamentals of the

system are covered by U.S. Patent No. 4,590,465, and another patent is pending.)

••••••••
: ·smart' ~:
• Frame • a
: , Buffer ::

.~--1r1~~,; .. a

From
lmaoe

Gen&rat!on
COnlrOUet

Figure 1: Pixel-planes 4 System Overview

To.'Fftm
Video Controller

Smart Memory Chips. The heart of the system is the logic-enhanced frame buffer, an array of custom,

VLSI , processor-enhanced memory chips. Each of these chips contains two identical 64-pixel modules.

Each module has three main parts: a conventional memory array that stores all pixel data for a 64-pixel
column on the screen, an array of 64 tiny one-btt ALU 's, and a linear expression evaluator (LEE) that

generates AX+By+C simunaneously for all pixels. All ALU's in the system execute the same micro

instruction at the same time (in Single-Instruction-Multiple-Data fashion), and all memories receive the

4

same address (each pixel ALU operates on ~s corresponding bit of data) at the same time. The LEE
provides the power of two 1 O-bit multiplier/accumulators at every pixel, but at much less expense in

silicon area on the chip. The part of the LEE that is common to the pixels in a single column is factored
out (10 stages of the X-mulliplier and the first4 stages of the Y-mulllplier) . The last six stages of theY

mulliplier can be built as a binary tree, since Y-products 1or a column are closely related. thereby reducing

the cost in silicon area to about 1.2 bit-serial multiplier/accumulator stages per pixel for the entire LEE.

Pxpl4 chips have 70% of their active area devoted to memory and 30% to processing circuitry.

Hardware Configuration. The Pixel-planes 4 system consists of a Digital Equipment Corporation

MicroVax II workstation, which acts as host, and a separate cabinet containing the prototype custom

hardware. The prototype contains two card cages in a single raclc a rrultibus cage and a cage with a fully
custom backplane. The custom cage contains the 512 x 512-pixel frame butter on 32 15" x 15" boards,

each with 64 logic-enhanced memory chips. The mull I bus cage contains all the other boards: a host
interface board through which a OMA link to the host Is realized, an analog input board to which joysticks

and sliders are connected, the graphics processor (with 8 MBytes of RAM), the image generation

controller: and the video controller.

Perfo rmance. Pxpf4 can process about 35,000 smooth-shaded. Z·buflered triangles per second

(quadrilaterals are about 20% slOwer) . Shactows are cast at about 11 ,000 triangles per second, using true

shadow volumes. About 13,000 smooth-shaded, Z-buffered, interpenetrating spheres can be rendered

per second. Virtually any number of updates per second can be realized, since the entire Z buffer and an

the RBG buffers can be cleared in less than 1 o microseconds.

2.2 Algorithms On Pixel-planes 4

New algorithms and applications have been appearing in a flurry since the system became operational in

August 1986 and especially since the new, C-programmable graphics processor became operational in

Spring 1987.

CSG System. Claire Durand, Steve Molnar and Greg Turk have Implemented an interactive design

system based on constructive solid geometry (CSG) and building on the methods described in

(Goldfeather, Hultquist. and Fuchs, 1986] and in (Jansen, 1986]. This is the first system, to our

knowledge, that allows direct-manipulation of the CSG tree via a Macintosh-style user interface and

continuous rendering of the resulting solid object. Casual users have begun designing simple objects
with the system: telephone sets and dining service and goblets. The design team has begun to

interface their system wrth a CSG-to-polygons program (part of the BAGS package from Brown Universrty

developed by Professor Andries van Dam and students). The capability to deal whh both CSG structure
and polygons may allow the user-designer to enjoy both the ease of design within a CSG structure and

the still much faster rendering of polygonal representation for objects that are no longer being changed.

Transparency. Two different algorrthms have been implemented for transparency, one by David

Ellsworth, the other by John Rhoades. Ellsworth's method displays transparent polygons as opaque

polygons wrth randomly positioned single-pixel holes--the greater the polygon's transparency, the more
holes. This method allOws simple processing of polygons 1n an order, but results in distraC1ing sparkling

5

of holes as the polygon moves from frame to frame. Ellsworth is working on reducing this effect

Rhoades' method processes transparent polygons only after all the opaque ones. This involves
partitioning the display list and, for the method to work properly, involves sorting lhe transparent
polygons from, for instance, back to front. Rhoades' current Implementation does not sort the

transparent polygons but still gives results that are acceptable to our users. He is working on more

advanced implementations, especially ones that will run efficiently on PxpiS.

Textures. Two different algor~hms for rendering 1extu1res are being explored, one by Vicki Interrante,

the other by Brice Tebbs. Interrante's version displays a textured surface as one created by a cover of
many tiny polygons, one between every consecutive texture sample. It works fine, although slowly. We

plan to speed up this version by defining a hierarchy of textures, each with a different number of
polygons, using progressive refinement techniques. When a texture Is moved rapidly, only a rough

(blurred) version will be displayed. When H is stopped, a more refined version will automatically appear.

Tebbs' version is an implementation of the techniques described by our team in [Fuchs, et al, 1985).

Pixels w~hin a textured surface are "colored" with texture coordinates when they are originally rendered.
After all the polygons have been rendered, the system broadcasts the texture(s) once; the pixels storing

texture coordinates then replace these coordinates with the corresponding broadcast texture values.

This method works well when there are only a few small textures used repeatedly throughout the image-

like bricks and asphalt in a building scene. Still a problem is the situation in which a texture is compressed

and multiple texture samples map onto the same pixel. The new partitioned parallelism of PxplS and its

graphics processor's ability to read back pixel values should help both with the speed of this processing
and with the handling of special cases like these which occur only at a small percentage of the pixels.

Soft Shadows and Multiple Light Sources. Vicki Interrante ls Implementing a capability to specify

muniple light sources. Already implemented Is the abil~y to have an area, rather than point light source,
so shadows can appear more naturally soft on the edges, with true penumbras. This is achieved by

moving the light source slightly during each of the muniple passes that are normally done for anti-aliasing;
just as area sampling within a pixel is approximated IJ.y random point sampling within that area, area

sampling of the light source is approximated by random point sampling w~hin the light's area. Interrante is

now generalizing this method to allow multiple, arbitrarily pos~ioned light sources.

Adaptive Histogram Equalization By Progressive Refinement. John Austin (a member of the

project until recently joining Sun Microsystems in Raleigh. NC) implemented a version of Stephen Pizer's
AHE algorithm for image enhancement that works by progressive refinement. This image enhancement

technique, which takes more than one hour on a VAX 780, has been done in about 4 seconds on Pixel

planes 4. Austin adapted his method to calculate an approximate version of the enhanced image in a

small fraction of a second and then refine it. This method works very well. Our medical colleagues are

eager to use Pixel-planes for this and other applications.

Specular Phong Shading Studies. John Eyles has developed a fast new method of Phong

shading for Pixel-planes. His method performs only part of the rendering of each polygon during that
polygon's processing period and leaves the final calculations to be done after all the polygons have been

processed. Then each pixel performs the final calculations with the already stored parameters for the

surface that is visible at that pixel. Specifically, during each polygon's processing period. the linear

6

coeHicients for each component of the normal to the surface are broadcast. Then, after all the polygons

have been processed, each pixel processor re-normalizes the ·normar that ~ is storing and performs the
lighting calculations precisely for ns visible surface. AHhough there are not enough b~s per pixel in Pxpl4

to implement this method fully, it will provide in Pxpl5 the much more realistic specular shading (whh

multiple light sources) at almost the same speed as the cruder Gouraud shading we currenUy use.

Curved Surfaces. Howard Good has started to render curved surfaces on Pxpl4, using recursive

subdivision within the graphics processor followed by rendering of polygonal approximation in the

enhanced memory chips. Good is now implementing adaptive subdivision methods. With Pxp\5, we

hope lo use the enhanced memory chips for a larger share of the computations. Both the quadratic

expression evaluation and the memory readout capabilities of Pxpl5 will be used for this task.

Mandelbrot and Julia Sets. Greg Turk has developed an algorithm for displaying Mandelbrot and

Julia sets. It allows the user to explore the 2D plane of the set Interactively, while the Image is updated in
real lime. Since all pixel processors are enabled virtually all of the time, this algorithm gives far better

utilization of the raw computational power of Pxpl4 than we have achieved with any other algorithm; to

update these images on the 512 x 512 display at 25Hz. the enhanced memories perform 1300 million

15·brt adds plus 655 million 15·b~ muttiplies per second.

PHIGS+ Compatibility. David Ellsworth and Brice Tebbs have begun implementing a programme(s
interface to Pxpl4 that is very close to a subset of PHIGS+, the latest version of the Programme(s

Hierarchical Interactive Graphics Standard. This Implementation is just beginning to run , with only

polygons currently supported (other support is expected within weeks). The basic interface is expected

to remain virtually the same for casual users of Pxpl5.

2.3 Applications on Pxpl4

Building Walkthrough. As part of a project for exploring and modifying buildings in early design

stages, John Airey, under the direction of Professor Fred Brooks, is developing a new visible surface

algorithm optimized lor dense, stat ic environments In which the viewing position Is Inside that

environment. Airey's method divides the environment automatically Into convex regions and associates

with each region the list ot polygons possibly visible from any point in that region. In contrast to
applications in which the rendered object, say, a mechanical part, covers only a part of the screen, in the

building "'Wall<.through" application. every pixel on the screen is covered by some part of the rendered

object . Although Airey's methOd can use any display device, it is particularly well swted lor Pxpl4 (and
Pxpl5), on which rendering time is only a function of the number of polygons, not the size of each

polygon on the screen.

Molecular Modeling. Michael Pique (of Scripps Clinic, La Jolla, CA) and others on the GRIP molecular
modeling team (ted by Professor Fred Brooks) have programmed Pxpl4 to display molecular vibrations.

They are eager to program Pxpl4 to help with molecular docking studies but await the enhancernerrt that

allows pixel memories to be read back by the graphics processor.

7

Medical Imaging. Pxpl4 is used regularly and extensively lor display of 3D anatomical structures and
radiation therapy doses by the NIH-funded Med3D project ted by Professors Henry Fuchs and Stephen

Pizer. Kevin Novins . while employed by the UNC School of Medicine's Division of Radiation Oncology.
developed a method of reducing the number of polygons in a reconstructed object with minimal

degradation to its appearance. This work was motivated in part by the use of Pxpl4, on which the same
surface represented by fewer polygons is displayed more rapidly. On other systems. which are more

limited by the number of pixels on a surface than by the number of polygons, such polygon-reduction

methods would not offer such great advantages.

3. Inadequacies of the Current System and New Opportunities

All hough the Pxpl4 system's availability for more than a year has allowed us and others to explore new
research, its lim~ations, both In performance and generality, leave us dissatisfied. We want not only to

expand the present capacities of the system, but we also plan to explore some new avenues that

experience wnh it has suggested:

Polygon Rendering Rate. For many situations, especially in medical imaging, we and our

collaborators would like much higher rendering rate. OHen, lor instance, we woukl like to model a cancer

patient's anatomy, radiation treatment beams, and radiation isodensity surfaces with 50,000 or more

polygons, and we would like to manipulate smoothly the model on the screen to understand ns structural
subtleties. We need a lOX speedup to achieve this k.ind of modeling. More advanced visualization

mechanisms, such as stereo, head-motion parallax and head-mounted display, put still greater

requirements on the polygon rendering rate.

Memory Readback. Many new applications we would like to pursue require the ability to process the

results of computations in the frame buffer. Currently these results can only go to the video stream. In

the near future we might enhance our video controller to put these results, under program control, on the

mullibus, lor access by the graphics processor or the system host. For the long run. however, we would

like this memory access to be more rapid and flexible than just coming through the video stream.

Algorithms for collision detection in molecular modeling and lor the calculation of radiosity "form factors"
could be sped up considerably with the pixel readback capability.

More Memory. As w~h virtually any computer, many applications run out of memory. Although 72 bns

is a reasonable size lor a frame buffer, it is very small lor a memory system. Since addnional memory

comes at the expense of other silicon resources, a reasonable solution to the memory limitation problem

is to Implement a secondary memory mechanism.

Volumetric Rendering. For many medical situations (and lor some molecular modeling situations) ,

we expect that volumetric rendering will be the best imaging modality. Two separate Investigations by

PhD students Marc Levoy and Lee Westover are producing very exciting images. Mostly, however.
these take a long time to generate, since they want to avoid voxel artifacts in their images. Although at

least one group of researchers has demonstrated a special-purpose machine for generating volumetric

rmages rapidly [Goldwasser. 1988). even they estimate that a lull-size real-time version of their machine

8

will cost about $250,000. (Even this machine's images would have obvious voxel artilacts!) We would

like to render volumetric images. but within a more general·purpose graphics engine.

4. Pixel-planes 5 Design

We expect Pxpl5 to be a dramatically more powerful machine than Pxpl4 for two reasons: 1) ~ will be

much faster on currently-run algomhms due to the higher clock rates, more parallelism throughout screen

partitioning, and more front-end graphics processor power; and 2) the architecture will be far less
restricted than Pxpl4 with backing store and random access to pi xels by the front-end graphics processor

(and other parts of the system). which should allow whole new classes of algorithms to be implemented.

In addition to ~s enhanced performance. Pixel-planes 5 will be configurable in a variety of ways that allow
cost to be traded lor performance.

Pixel
Processor

Renderer

Figure 2: Pixel-planes 5 System Overview

Frame
Buffer

Host
Interlace

Workstation

The machine will also be much smaller physically than Pixel-planes 4 and will consume far less electrical

power. The system's key features are:

• Screen Partitioning. When rendering polygons, Pixel-Planes 4 first disables all pixels on the

outside of the first edge of the polygon. Subsequently, all pixels outside the polygon are disabled, and

not until the beginning ol the next polygon are any of these pixels' processors performing any useful
computation. Since complex databases generally contain mostly very small polygons, the processors of

the enhanced memories have a very low utilization. To remedy this, we plan to provide the means for

9

processing simunaneousty multiple polygons, lying in disjoint parts of the display screen. To Implement

this screen partitioning, the logic-enhanced frame butfer will be partitioned into a number of disjoint
pieces, each controlled by a separate image generation controller (IGC). Each IGC has an FIFO input

buller. The graphics processor (which computes the A,B,C coefficient sets and frame-buffer

instructions) broadcasts each primitive only to those IGC's whose portion of the display is covered by that
primitive. Since polygons will be qune small, the majority of polygons will be sent to only one lGC. Thus. if

the IGC's FIFO's are deep enough, and n the order ol the primitives is reasonably uncorrelated wilh their

screen position, the mulllple IGC's should be able to process several different primitives simultaneously.

Simulations with even simple data sets and small FIFO's show speed-ups of 4X or better for a system with
161GC's.

• Backing Store. The new enhanced memory chips will communicate through a special I/O port with a

large dynamic RAM "backing store," thus forming a two-tiered pixel memory system. The backing store
RAM will support direct addressing of pixel data and will allow rapid block transfers of pixel data to olher

syslem components, including a conventional frame butler from which the display screen will be
refreshed. Since pixels can also be moved rapidly to the elements of the MlMD front end, it can be used

to carry out pixel-level calculations that cannot be readily done on the SIMD array of pixel processors.

Rapid texturing will likely be supported in this way.

• Separate Refresh Image Buffer. A separate frame butler will allow a flexible mapping between

the pixel processors in the enhanced memory chips (EMC) and the pixels on the screen. This will permit
much more effective utilization of these processors, since the EMC's can be dynamically assigned to

those portions of the screen for which there is the most work. This feature will also allow much smaller
configurations of Pxpl5 systems without sacrificing signnicant performance lor many applications.

• Fast Communications Network. The bu ilding blocks of the system, called "application boards,"

will be linked together by a high-speed ring network, capable of moving data between the memory
subsystems of the application boards at 160 mega-words per second.

• MIMD Graphics Processor. The "Iron! end" of Pxpl5 will consist of about 32 processors built with

the Weitek XL chip set. One of these processors will have more memory resources than the others and
will be the master of the system, aHhough with no specia~ privileges on the ring network.

• Faster Enhanced Memory Chips. We are re-implementing our custom enhanced memory chips

in 1.21-1 CMOS. We plan the new chips to have a 40MHz instruction rate. 5 times that of the Pxpl4 chips,

and 10 contain 256 pixels, with 256 bits per pixel. The new chips will also employ a quadratic expression

evalualor (in place of the linear one in Pxp14 chips); quadratic expressions are especially useful for
rendering spheres for molecular modeling, for rendering objects described by CSG, and for rendering

certain curves and surfaces. The quadratic expression evaluator and the additional memory will also

speed up lhe calculation of higher-order polynomials.

• Physical Constraints. Pxpl5 will occupy the volume of a workstation pedestal and should consume

no more that 2KW of power. The machine will be built entirely from multi-level printed circuil boards (since

wire-wrap is not useful in systems that must run at 40MHz and faster) and will make considerable use of

surface-mount packaging. Pixel-planes 5 will be a more modular system than its predecessor. The pre
processor and enhanced memory array w ill each be implemented on multiple identical boards. The

componenl boards can be combined in a variety of ways to form a range of configurations from small,
inexpensive systems with modest performance to large systems with very high performance.

Current Status. We have finished the logic design for the Pxpl5 enhanced memory chips. The design

includes a much more efficient quadratic expression evaluallon tree than we had originally developed
[Goldfeather and Fuchs, 1 986]. Detailed design of the communication network is well under way. We

hope to have Pxpl5 operational by mid-1989.

5. Conclusions

We are encouraged that more graphics power is still opening up new opponunities for applications of

interactive computer graphics. The widespread use of personal computers and workstations is making
2D graphiCs so much the norm that one can hardly imagine a workstation or an Apple Macintosh without a

graphics display. In the future, there may also be such expectations for 3D graphics capabilities. We

hope that we are contributing to the coming of that day.

6. Acknowledgments

The work we have reponed was funded jointly l;ly the U.S. National Science Foundation (grant no. MIP-
8601552) and the U.S. Defense Advanced Research Projects Agency (order no. 6090).

We thank our team of graduate student research assistants, who developed much of the software

environment and many of the algorithms described here: Clare Durand (now with the U.S. Geologolicat
Service). David Ellswonh, Howard Good, Victoria Interrante. Roman Kuchkuda (now with Megatek, San

Diego, CA), Steve Molnar. John Rhoades, Brice Tebbs, and Greg Turk.

Our work in system building would have been impossible without our depanment's Microelectronic

Systems Laboratory, its director Vernon Chi, and staH members John Austin, Mark Monger, John

Thomas, and Brad Bennett. Austin and Monger have now joined Sun Microsystems in Raleigh, NC.

We thank Professor Jack Goldfeather of Carleton College for numerous ideas about a wide variety of

topics, especially about curved surfaces and quadratic expression evaluation. We thank Mark Kellam and
Wayne Dettloff of the Microelectronics Center of Nonh Carolina for help with chip fabrication and system

design and testing. We thank our colleague, Professor Frederick P. Brooks, Jr., for years of advice and

suppor1 and for the sphere-rendering algorithm. We thank our past graduate assistants, Greg Abram.
John Cromer. Amarie Helton, Justin Heinecke, Scott Hlennes, Chang-Hong Hsieh, Jeff Hultquist. Alex

Melnick, Mary Ranade, and Susan Spach, for years of dedicated, creative effort.

We thank Unda Houseman tor patient ed~ing ol this paper.

1 1

We also thank: The MOSt$ Project for IC and circuit board fabrication; John Ousterhou1. who has

provided tools for the U.S. university VLSI community; Chuck Seitz. whose ideas have greatly influenced

our design style [Seitz, 1985]; our colleagues at Xerox PARC, Atan Paeth (now at UniversHy of Waterloo).

Lynn Conway (now at University of Michigan). and Alan Bell, who collaborated on early designs; Data

General for gifts of cabinets and power supplies; and SCI, Inc., for wave soldering services.

7. References and Bibliography

Austin, J. and S. Pizer. 1987. "A Multiprocessor Histogram Equalization Machine: Proceedings of the
Xth Information Processing in Medica/Imaging International Conference, Utrecht, The Netherlands.

Bishop, T.G. and D. Weimer. 1986. "Fast Phong Shading: Computer Graphics, 20(4), (Proceedings of

SIGGRAPH '86) , pp 103-106

Eytes, J., J. Austin. H. Fuchs, T. Gree, J. Pou~on. 1987. "Pixel-planes 4: A Summary: to appear in

Advances in Graphics Hardware 2: Proceedings of the Eurographics '87 Second Workshop on Graphics
Hardware.

Fuchs, H. and J. Poufton. 3rd Ouarter, 1981. "Pixel-planes: A VLSI·Oriented Design for a Raster

Graphics Engine: VLSI Design. 2(3). pp 2Q-28.

Fuchs, H., J. Pouijon, A. Paeth, and A . Bell. January 1982. "Developing Pixel Planes, A Smart Memory

Based Raster Graphics System: Proceedings of the 1982 MIT Conference on Advanced Research in

VLSI, Dedham, MA, Artech House, pp 137· 146.

Fuchs, H .. J. Goldfeather, J .P. Hultquist. S. Spach. J.D. Austin, F.P. Brooks, J.G. Eyles. and J. Poulton.

July 1985. "Fast Spheres. Shadows, Textures, Transparencies. and Image Enhancements in Pixel

planes: Computer Graphics. 19(3), (Proceedings of SIGGRAPH '85) , pp 111-120.

Fuchs, H. 1987. "An Introduction lo Pixel-planes and other VLSI-intensive Graphics Systems:

Proceedings of the NATO International Advanced Study Institute on Theoretical Foundations of

Computer Graphics and CAD. II Ciocca International Center, Castelvecchio Pascoli, Lucca, Tuscany,

Italy, July 1987 (Springer-Verlag. 1988).

Goldfeather, J. and H. Fuchs. January, 1986. "Quadratic Surface Rendering on a Logic-Enhanced

Frame-Buffer Memory System: IEEE Computer Graphics and Applications. 6(1), pp. 48·59.

Goldleather, J., J.P.M. Hultquist, and H. Fuchs. August 1986. "Fast Constructive Solid Geometry

Display in the Pixel-Powers Graphics System: Computer Graphics, 20(4), (Proceedings of SIGGRAPH

'86) , pp 107·116.

Goldwasser, S.M., and A.A. Reynolds, DA TaHon, and E.S. Walsh. January 1988. "High-Performance

Graphics Processors for Medlcal tmaging Applications: these proceedings.

12

Jansen, F.W. August 1986. "A Pixel-Parallel Hidden Surface Algorithm for Constructive Solid

Geometry: Proceedings of Eurographics '86, Elsevier Science Publishers B. V. (North-Holland):

Amsterdam. New Yorf<. pp. 29-40.

Jermoluk. Tom and Kurt Akeley. 1966. "Cost Effeclive High-Performance Polygon Rendering."
submitted for publication. (Authors· address: Silicon G raphics Computer Systems. 201 1 Stierlin Road,

Mountain View. California 94043. USA)

Pizer, S.M., J.B. Zimmerman. and E.V. Staab. 1984. "Adaptive Grey Level Assignment in CT Scan
Display, · Journal of Computer Assisted Tomography, 6(2), pp 300--305.

Pounon, J., H. Fuchs, J.D. Austin, J.G. Eytes. J. Heinecke, C·H Hsieh, J. Goldfeather, J.P. Hultquist, and

s. Spach. 1985. "PIXEL-PLANES: Building a VLSt-Based Graphic System: Proceedings of the 1985
Chapel Hill Conference on VLSI, Rockville, MD. Computer Science Press. pp 35·60.

Poulton, J .. H. Fuchs, J.D. Austin. J.G. Eyles, and Trey Greer. 1987. "Building a 512x512 Pixel-planes

System: Proceedings of the 1987 Stanford Conference on Advanced Research in VLSI. Cambridge,

MA. MIT Press. pp 57-71 .

Seitz. C.L, AH. Frey. S. Mattisson. S.D. Rabin, O.A. Speck. and J.LA. van de Snepscheut. 1965.

'"Hot-ClOCk nMOS," Proceedings of the 1985 Chapel Hill Conference on VLSI, Rockville. MD, Computer
Science Press. pp. 1-17.

Silicon Graphics Computer Systems. 1987. "IRIS GT Graphics Architecture: A Technical Report," Silicon

Graphics Computer Systems. 2011 Stiertin Road, Mountain View, Cal~omia 94043. USA.

