
Combined And-Or Parallel
Execu tion of Logic P rograms

TR88-012

March 1988
(Revised December 1988)

Gopal Gupta
Bharat Jayaraman

-

·ft/1 ~ \';; ..

• I

T he University of North Carolina at Chapel Hill '
Department of Computer Science '
(8#3175, Sitterson Hall
Chapel Hill. NC 27599-3175

UNC is an Equal OpportunityjAflirmll.tivc Action Institution.

Abstract

Combined And-Or Parallel

Execution of Logic Programst

Gopal G1Lpta

Bharat layaraman

Department of Computer Science

University of North Carolina at Chapel Hill

Chapel Hill, NC 27514

This paper presents an extended and-or Lree and an extended WAM (Warren Ab­

stract Machine) model for efficiently supporting both and-parallelism and or-parallelism

on shared-memory multiprocessors. Our approach is based on the binding-arrays method

for or-parallelism and the RAP (Restricted And-Parallelism) method for and-parallelism.

Our combined and-or model avoids backtracking, because of or-parallelism, and avoids re­

dundant computations when goals exhibit both and- and or-parallelism, by representing the

cross-product of the solutions from the and-or-parallel goals rather than re-computing it.

Thus the extended and-or tree has two new nodes: a 'sequential' node (for RAP's sequential

goals), and a 'cross-product' node (for the cross-product of solutions from and-or-parallel

goals). The other main features of our approach are: (i) each processor's binding-array is

accompanied by a base-array, for constant access-t ime to variables in the presence of and­

parallelism; (ii) coarse-grain parallelism is supported by our processor scheduling poli.q,

to minimize the cost of binding-array updates during task-switching; (iii) essentially, two

new classes of WAM instructions are introduced: the 'check' instruct ions of RAP-WA:VI,

and 'allocate' instructions for the different types of nodes. (iv) Several optimizations are

proposed to minimize the cost of task switrhing. This extended \\"AM is currently being

implemented on a Balance Sequent 8000.

t This research is supported by grant DCR-8603609 from the Nntional Science Founda­

tion and contract N 00014-86-l<-0680 from the Office of ~a val Research.

1

1. Introduction

A number of approaches have been proposed for the parallel execution of logic pro­

gramming languages, but the bulk of current research emphasizing practical implementa­

tions has dealt with either or-parallelism [HCH87, LWH88] or and-parallelism [D84, H86,

LK88]. The obvious reason for combining and-parallelism and or-parallelism in a single

framework is that any implementation that caters to either alone is suboptimal compared

with one that caters to both. But there are other benefits: First , a combined model does

not have to support backtracking unlike a pure and-parallel model; it suffices to determine

subgoal independence, and initiate forward execution. Second, when there is potential

for both and- and or-parallelism in a single program, exploiting either form of parallelism

alone can lead to unnecessary over-computation. For example, given the usual definition

of append, the pair of goals? append (X, Y, [1 , ... ,m]), append(P, Q, [1 , ... , n]),

leads to a 0 (m•n) computational cost under a pure or-parallel or pure and-parallel imple­

mentation (and also a sequential implementation), because all n + l solutions for P and Q

are re-computed for each of the m + 1 solutions for X and Y. Instead of re-computing the

solutions, if we represent the cross product of their solutions, the computational cost would

only be of the 0 (m + n). Note t hat such goals frequently arise in database searching.

In contrast to recently emerging approaches to combined and-or parallelism which

emphasize execution on distributed systems [BSY88, C87, WR87, K87], we describe in this

paper the combined and-or parallel execution for shared-memory multiprocessors, because

we feel the latter best support the dynamic data creation of logic languages. We believe

that ultimately a combination of the two approaches would be used in systems of the

future. At a strategic level, we adopt a proce330r-or1entcd view of the computation [H86],

which ceatrasts with most earlier models which adopt a process-oriented view. That is,

there is one process per processor in our model, and different processors cooperate to bwld

the and-or tree. This approach is well-swted to shared-memory multiprocessors; it avoids

the excessive cost of process creation and also facilitates sharing of data across processors.

Sine,. shi:lred-memory multiprocessors can be viewed as "multi-sequential" systems, it is

also possible to adapt existing compilation techniques for sequential execution of logic

programs, i.e. Warren Abstract Machine technology [W83], to such systems.

Our proposed approach is based upon our recently developed method for and-or

parallelism [GJ88j. which combines the binding-arrays method for or-parallelil>m [\;1,'84,

LWH88] and the Restricted And-Parallelism (RAP) method !D84, H86]. We select the

2

binding-arrays method because it provides constant-time performance for the two most

frequently occurring operations: variable access and task-creation. \:Vhile task-switching

is not constant-time in this method, one can minimize its cost by keeping the granularity of

parallelism high (LWHSS, HCH87J-an assumption that is compatible with current shared­

memory multiprocessors. We also propose a number of new techniques to reduce the cost

of task switching. We select the RAP method because it supports divide-and-conquer

parallelism, which frequently occurs in algorithm design. Because the RAP method does

not support stream-and-parallelism, our combined model also does not.

The rest of this paper is orgaruzed as follows: section 2 describes the major issues in

or-parallelism and and-parallelism and states desirable criteria for their implementation;

section 3 gives an overview of the combined and-or model, including the extended and-or

tree, the variable-access method and the parallel execution strategy; section 4 describes the

data areas and. instruction set of the extended WAM, and the code for a simple example:

section 5 discusses how task switching can be made more efficient; and section 6 presents

conclusions and comparisons with related work.

We assume the reader has some familiarity with and-or parallel execution and the

Warren Abstract Machine.

2. Parallelism in Logic Languages

We will now develop criteria which or- and and-parallel models should satisfy, and then

mention some of the execution models for or-parallelism and and-parallelism. These criteria

would be used in assessing our own combined and-or model to be described later.

2.1 Or Parallelism

Or-parallelism manifests itself whenever there is a non-deterministic search for solutions.

In logic programs, or-parallelism arises when multiple clause heads unify with a goal. The

subgoals arising from these multiple matches can be executed in parallel. There are three

significant issues to he addressed in any or-parallel implemenbtion:

1. An or-parallel implementation must be able to represent multiple bindings for

variables which are unbound at the time of the match. D.H.D. Warren refers to such

variables as conditional variableJ (W87aj.

2. In adciition to representing multiple bindings, an efficiem implementation must

ensure that the accuJ time to such conditional variables and the ta.!k-creation time needed

3

•

is not prohibitivei ideally, they should be a constant independent of the size of the goal

tree and independent of the size of the arguments of a goal.

3. A further requirement on or-parallel implementations arises from the finite nature

of the underlying parallel machine. Because it is very likely that the number of or-parallel

tasks will exceed the number of available processors-a valid assumption for commercially

available shared-memory multiprocessors -the talk lwitching time should also not be

prohibitive, and ideally a constant independent of the goal tree.

We can thus sum up the criteria for an ideal or-parallel implementation as follows: constant

access time to all va.riablesi constant task-creation time; and constant task-switch time.

Other desirable characteristics of an ideal or-parallel implementation are that it should

execute as efficiently as a sequential implementation in case only one processor is available.

Also, it should be amenable to optimizations that apply to sequential implementations,

such as last-call optimization and environment trimming.

No method in the literature achieves all the criteria mentioned earlier; however, we

think that the binding-arrays method comes closest, since it provides constant time per­

formance for the two most frequently occurring operations: access to variables and task

creation.
#: I binding array

~
I

0 • •
• •

6 'foe'

BATop _.

• • • •
Fig 1 : Access 10 Conditional Variables in Binding Artays Method

The binding-arrays method works by assigning to each conditional variable a unique

offset, which is used to index into a binding array, local to the processor, to obtain the

binding of these variables. Figure 1 shows how the variable X bound to the offset 6 is

dereferenced by processor Pl to the atomic constant foo. The# indicates the offset counter

value along the branch. The binding array method has the disadvantage that processor

context-switch time is large since binding arrays need to be updated upon context S\\;tch.

4

This overhead can be alleviated by not switching coo often or not switching to too distant

nodes in the tree. Other properties of this method are that, if there is only one processor

available, a depth-first search would perform comparably to a sequential implementation,

and it supports standard sequential optimizations.

2.2 And Parallelism

And-parallelism in logic programs arises because multiple subgoals in a goal can be exe­

cuted in parallel. Because executing dependent subgoals in parallel may result in wasteful

computation we would like to execute only independent subgoals in parallel. Four different

approaches have been proposed to handle dependencies: (1) by requiring explicit annota­

tion, from the programmer indicating which are "input" variables and which are "output"

variables [CG86, S83]; (2) by monitoring the status for variables (bound or unbound),

and dynamically re-structuring tasks [C87J; (3) by global compile time analysis (requir­

ing no runtime checks) assuming worst cases for subgoal dependencies [CDD85}; and (4)

by monitoring at runtime the status for terms (ground or nonground) and using a static

task-structure, conditioned upon the status of tenus, to obtain re$tricted and-parallelism

[D84]. Approach (1) differs from (2), (3) and (4) in that the programmer has to explicitly

specify the dependencies, using annotations. Vve do not further consider this approach

here, because we are interested in automatic detection of and-parallelism. We consider (4)

as a nice compromise between (2), where considerable run-time analysis is needed, and

(3), where extensive compile time analysis is done.

Three important criteria should be satisfied by an ideal and-parallel implementation:

avoid was~eful over-computation; avoid complex run-~ime dependency analysis; and sup­

port intelligent backtracking. As with or-parallel implemeqtations, it is desirable that an

and-parallel implementation perform comparably with a sequential implementa~ion in the

single-processor case and support standard sequential optimizations.

We use RAP to exploit independent and-parallelism, though our model would work for

other methods such as (LI<S8, CDDSS]. In the RAP method progrl>lTI clauses a.t'e cowpiled

into Conditional Graph Expressions (CGEs) of the form

(condition, goa/1 , goal2 , • .• , goaln),

meaning that, if condition is true, goals goa/1, .. goal,. arc to be evaluated in parallel. other­

wise they are to be evaluated sequentially. The condition can be either ground(u1, .•.• v,.),

which checks whether all of the variables u1 , .. • , v. are bound to ground terms or it can

5

be independent(v1 , • • • , vn), which checks whether the set of variables reachable from each

of v1 ••• vn are mutually exclusive of one another. Checking for ground and independence

involve very simple runtime tests, details of which are presented in (084). The method is

conservative in that it may type a term as nonground even when it is ground-another

reason why the method is regarded as "restricted". This model has been excendcd by

Hermenegildo and Nasr, and has been efficiently implemented using WAM-like instruc­

tions.

2.3. Combined And-Or Parallelism

The criteria for combined and-or parallel implementation are the union of the criteria

for pure or-parallel and pure and-parallel implementations: constant variable-access, task­

creation and task-switch times (pure or-parallel ca..<:e); and avoidance of wasteful computa­

tion and efficient determination of subgoal independence (pure and-parallel case). Also liS

mentioned in section 1, the combined model docs not have to support any backtracking,

unlike a pure and-parallel model, because of the presence of or-parallelism. The realization

of and-parallelism is simplified in this respect; it suffices to detect subgoal independence

and initiate their forward execution. Also recomputation should be avoided whenever l>oth

and- and or-parallelism arise in solving a goal.

Finally, we should expect an and-or parallel implementation to produce solutions at

least as fast as (if not much faster than) a sequential implementation. This implies that

preference should be given to and-parallel tasks over or-parallel tasks if there are more

tasks than available processors. To sum up, the criteria for a combined and-or parallel

implementation are essentially the union of the criteria for pure or-parallel and pure and­

parallel implementations. In adclition, it is desirable to avoid over-computation when both

and-parallelism and or-parallelism arise within a set of goals, and also favor and-parallelism

over or-parallelism if there are limited processors.

3. Overview of the Combined And-Or Model

Our approach is to combine the binding-arrays model for or-pu.ra.lleHsm and the R.J\.P

model for and-parallelism. Thus programs are compiled into CGEs before execution. \\'e

begin by describing extensions to the basic and-or tree. Figure 2 shows an extended and-or

tree for a simple example. There are four kinds of nodes in the extended tree. In addition

to and nodes and or nodes, we also have cross-product nodes, to hold the cross-product of

solutions from and-or parallel goals, and ~equ.ential nodes, which correspond to sequential

6

e(...) . a(...).
e(...). a(...).
f(...). b(...).
f(...). b(...).

b

<<bl, C2>
<b2, c 2>
<b l, gl >

<b2, gl >

<b~ i>
• • • >

g(...) . c(...) :- h, (e II f),g.
g(...). c(...).
h(...). d(...) .
h(...) . d(...) .

?- a; (b II c); d.

[J AndNode

0 Or Node

?-a; (b llc); d

I 1
<<e, f >

<el, f2>
<e2, f l>

<e2, f2>>

2
a

c

Q Sequential Node

c:::::::::> Cross Product Node

Figure 2. An Example of an And-Or Tree

7

f

• • •

goals in the RAP model. All cross-product nodes are parents of and-nodes and sequentio.l

nodes, and correspond to join-nodes in the Pepsys model (WR87]. There is one sequential

node for each tuple in the cross-product set. Nodes have space for their subgoals (also

called goal-list), and or-nodes have space for the bindings of the variables occuring in the

sub-goals.

Note that branches rooted at a cross-product node can be grown in and-parallel; such

branches do not have data-dependencies between them. Branches rooted at nodes other

than cross-product nodes can be grown in or-parallel; for such branches we have to ensure

that the environment of each or-parallel branch is correctly maintained. This is a general

scheme for exploiting and-or parallelism in logic programs. Not described in the extended

and-or tree is (a) how variables are accessed in constant-time, (b) how a collection of

processors in a shared-memory multiprocessor cooperate to grow the tree, and (c) how

task-switching is done. We address these issues in the next two subsections.

3.1. Variable A ccess

When dealing with both and- and or-parallelism, the binding-arrays method for the

pure or-parallel case must be extended to achieve constant-time access to variables. To see

the problem, consider the goals (p; (qlll q2); r), where';' stands· for sequencing and ql and

q2 also exhibit or-parallelism. Suppose further that goal p has been completed. In order

to execute goals q 1 and q2 in and-parallel, it is necessary to maintain separate binding

arrays for them. As a reslllt, the binding-array offsets for any conditional variables that

come into existence within these two goals will overlap. Thus, when goal r is attempted,

we arc faced with problem of merging the binding-arrays for ql and q2 into one composite

binding-array or maintaining fragmented binding-arrays.

To solve the above problem, first recall that in the binding-array method [W84, W87)

an offset -counter is maintained for each branch of the or-paral lel tree for assigning offsets

to conditional variables. However, offsets to the conditional variables in the and-parallel

branches cannot hP. uniquely assigned, since there is no implicit ordering e.mong them and

at run time a processor can traverse them in any order. \Ve introduce another le\'e) of

indirection in the binding array to get around this problem.

In addition to the binding array, each processor also maintains another array called

the bau array. As each and-node is created, it is assigned a uniq\lc integer id. \\'hen

a processor encounters an and-node, it stores the offset of the next free location of the

8

binding array in the j.th location of its base array, where i is the id of the and-node.

~ •
base array binding array

•
1 1-------1¥
6 25 1-------1 •

29 'foo'
• • •

<6,4 > BATop _.

Fig 3 : Access ID Conditional Variables in Ex~ended Binding Array Method

The offset·counter is reset to zero when an and-node is created. Subsequent conditional

variables are bound to the pair (i, v}, where v is the value of the counter. The counter

is incremented after each conditional variable is bound to th.is pair. The dcreferencing

algorithm is described below.

deref(V) f •un bound vari,.blu •re bound to tbcmulvu• f
term •v {
iC V-+tag •• VAR

if not V -+value =:: V
dcrd(V -.value)

clae V

elae if V l AC == NON .V AR
v

elac { f•condhion•l VAr bound to (i, v) · I
val= BA[v + ba•c (i]); f • SA i• the bindin& ar-ray. • f
if value~vol = = va1

v
che derd{val) } }

Note that access to variables is constant-time, though the constant is somewhat larger

compared to the binding-arrays method for pure or-parallelism. Also note that now the

base array is also to be updated on a task-switch. Figure 3 shows how a variable bound

to the pair (6, 4) is dereferenccd to the atomic value foo

9

3.2. Parallel Execution

Because we are targeting our implementation at shared-memory multiprocessors. we can

assume the extended and-or execution tree lies in a memory space accessible to all pro­

cessors. In our proposed scheme, processors traverse the branches of the tree, executing

sub-goals in the nodes, and growing and contracting the tree in the process. Since the num­

ber of branches in the and-or tree would be much larger than the number of processors,

each processor ends up executing more than one branch of the tree. This is accomplished

through backtracking on success/ failure. The movement of a processor from its current

site to the place where work is available is called ta~k 3witching. A processor that has

created a node is eventually responsible for solving the entire tree rooted at it. However,

other idle processors may eagerly help, by taking up any available work from this subtree.

A processor does not become idle until the entire sub-tr~ rooted at the node it undertook

to solve is explored. This ensures coarse granularity of parallelism, and results in less task

switching. Below we provide the algorithm that a processor uses for selecting work in the

extended and·or tree. In the algorithm, two basic operations load and unload are assumed.

In the load operation, a processor, given a cross-product tuple, updates its binding array

with the condit ional variables that are found in the and-branches of the solutions corre­

sponding to the tuple; the base array is simultaneously updated. vVe therefore say the

processor loads its binding array with the tuple. During the unload operation, conditional

variables occuring in the and-branch of the solutions in the tuple are purged from the

binding array; the base an·ay is also purged.
u .sk_sw itch()

J• A is the cu.rretH node.• /

C ase A of

6nd.Jlodc :

or ..node:

if A j• not equal to root.

If tht re are more untried •iblinga o f A

else
pick A '• untried aiblins and -node (Qr exe~ution.

lCl a. tuple cont Ainins: &.be •oll.ltion found.
load the Oindin' array .. itb the tuple.
c:.:ec.u te aequeatia.l s-oal aher Lhe CG E .

if or-node hu more aherna.l.ivea
execute •.n ahernative clause

dac:
if work available &C a. nod e below f • e xplained l.-ter •J

move to the oodc where w ork is a v.-.ilable.

\IJ)d 4te bindin s arrey (and bate ttorray, if nec:ded).
c ury ou t the work .

elte
move to the node furt hel' up .

upda.te bindln& array.

10

taskJ.witch().
unload the. ~uple In \he •cqucntial node.
£(while unloa.dina: , a node w-ilh work i~~o found in the •"<l-brancb

execute tha.t • ork .

c. he.
move up to the parent crou-produc.\ node
H ftn untried tuple i$ found

load bind ins &tray with the tuple
excc:utc the uq,uential goa.l for thAt tuple.

elu
move. one node up

CaskJw itch().

Note that the case for a cross-product need not be treated explicitly since a processor

reaching a sequential node also has access to its parent cross-product node. In order

to determine when work is available below an or-node, we assume that each processor

maintains a pool of work it produces, which it will eventually carry out if unaided by no

other processor. ·while choosing available work preference is given to untried and-nodes

over untried or-nodes and cross-product tuples, so that solutions are produced at least as

fast as (if not mu.ch faster than) a sequential implementation.

Note that the binding array is updated not only during loading and unloading of

tuples but also when a processor moves up from one node to another. Also note that while

moving up, if the processor happens to ~e the creator of that node, it has to wait for other

processors working in the sub-tree below to finlsh before it can move further up.

4. An Extended WAM for the And-Or Mode l

Figure 4 summarizes the state of an AO-\VA)I1 processor - all processors ha,·e a

similar state. As a processor executes the extended WA.M instructions (described in section

3.2) it pushes nodes along a branch in the extended and-or tree oo to its stacks. Because
0

idle processors may eagerly help other processors, it can happen that nodes along a branch

are dis~ributcd across the stacks of different processors. In the remainlng description we

explain the processor-state, concentrating on features not present in the standard WA!\·f

model [W83].

4.1. AO-WAM Machine State

A. Data Areas: (i) Corr~Jpondence of nodeJ in extended and-or tree to frameJ in

.!tacb: All nodes in the extended and-or tree map directly to the stack frames. However,

a single choice point is created for a set of sibling or-nodes of the extended and-or tree,

and one environment record is created for each or-node. In subsequent sections we ~hall

11

Data Areas

CE

E

s.J

GLOBAL TRAIL LOCAL TRAIL

~ ~
LTR

s

H

CFA
CP
p

~

l
Node Scheduling Areas

co

' Or-node Queue

I I I I I I I
CPO

AS

Variable Access Arra s

Bdg. Array
Top

Registers

Base Array

Base Array
Top

WAM Registers

B L. SN, 0 , LC. GC

CPO,AS.OO

CFA (of RAP-WAM)

Figure 4 AO-WAM Processor State

12

refer to choice-points as or-nodes, by abuse of terminology. Given two nodes nl and n2,

where nl is above n2 in the stack, it is true that nl is a descendent of n2 in the and-or

tree or they are in independent and-branches. As a corollary of this, space from the node

and environment stacks is always reclaimed from the top.

(ii) Separation of local 3tack into environment and node 3iacl:.s: The advantage of this

separation is two-fold: 1) During space allocation, it is easy for the processors to access

the top-most node in their local stack (through BL). 2) It simplifies the task of updating

the binding array. It also enables incorporation of other scheduling strategies and thus

makes the architecture amenable to modifications.

(iii) Separation of trail into local and global trai/3: This is done to reduce the amount

of work during task switching (explained in section 4).

(iv) Introduction of Mlution nodeJ: A solution node is pushed on the environment

stack when the end of an and-branch is reached. It serves two purposes: 1) Its addre~s

is used as the name for the corresponding solution in cross-product tuple. 2) H makes

sure that an and-parallel solution does not get deleted from the stack until the entire

cross-product has been tried.

B. Node Scheduling Areas: The node-scheduling areas are used to identify avail­

able work, and are organized as follow: (i) Or-node Queue: The untried or-nodes are

organized as a queue for scheduling because we believe that those closer to the root would

contain bigger subtrees, ma.."imizing the granularity of work. (ii) CroJ3·product Queue:

The untried cross-product tuples are organized as a queue for the same reason. {iii) And­

node Stack: Untried and-nodes are organized as a stack because later and-subgoals must

be solved before earlier and-subgoals .
•

Or-nodes and Cross-product nodes have a proceJJor bit-ve;;tor (similar to [HCH87]).

This vector tells which processors are working in the subtree rooted at that node. A

processor sets the bit at posit ion pid, where pid is the processor id of the processor, when

it passes through the node while moving to the site where work is Available. It resets this

bit when it returns while traveling up the tree.

C. Variable Access Arrays: T hese have been in explained in section 2.1.

D. Registers : ln addition to the regular 'VA.\1 registers we have the following extra

registers. (i) BL, which points to the top of the node stack. (ii) D, which points to the

current and-node, i.e., the and-node in whose scope the current environment falls. The

13

current value of D is saved in the Cont D field in cross-product nodes so that it can be

restored when sequential nodes are pushed. (iii) SN, the solution node register, which points

to the top most solution node. Space below S!l cannot be reclaimed until the and-branch

has been fully solved. (iv) LC and GC, which are the offset counters for the local and global

conditional variables, respectively. (v) CFA, in which the address of the code sequence to be

executed, if the CGE fails, is loaded. (vi) CPQ, AS and OQ, which bold pointers to the beads

of the work queues/ stacks. The CPQ, AS and OQ pointers are stored in nodes to restore the

respective work queues/stacks on failure.

4.2. AO-WAM Instruction Set.

The AO-WAM supports most of the instructions supported by WAM. However, some

of the instructions have been modified. Some new instructions have also been added.

The modified instructions are call P, n, k, put_variable Yn, Ai, k and allo­

cate. These instructions are similar to those in Aurora (LWH88). The third argument

in call is needed to implement an optimization similar to environment trimming on the

local binding array. The third argument in put_variable is used to allocate offsets to

local conditional variables at compile time. The allocate ins tmction has to take care

that it allocates space above the top-most solution node so that and-branches that are still

needed are not destroyed.

The new instructions introduced in the AO-WA:\4 consist of the check instructions

(check.Jne_else , check..ground and checLindependent) of RAP-WAM [H86] for com­

piling CGEs, and instructions for allocating space for various nodes: alloc_cross_prod

Addr, alloc_and Addr, alloc_sequential and alloc_solution Addr. The check.Jne_else

instruction loads a register with the address (cal led Check Fail Address or CFA) where

the execution is to branch if the CGE condition evaluates to false. The check..ground

(checLindependent) instruction checks if the variables in their arguments are grounded

(independent). The instructions for allocating space are used to allocate space for the

va.riow: nnrles. The example in the next section illu5trates their meaning o.nd usc. Two

interesting instructions are:

put..and..variable Yn, Ai, j: This instruction is the same as the put-variable Yn,

Ai, j instruction except that the variable Yn is globalized and a reference to the global

value is saved in Ai. Tlus instruction globalizes unbound variables in the and-parallel

subgoals, so that during update (loading and unloading tuples) of the binding arrays,

14

•

the processor has to only look at the trail for global variables.

push_and_call Code/n: similar to the push_call instruction in RAP-WAM. Push

an entry into the and-goal stack, i.e. , push the instruction address of the sub-goal,

argument registers A1 through An (loaded through the regular put instructions) and

the current environment register. Exclusive access to the stack is obtained while

pushing the entry.

4.3. Example

In this section we give the compiler generated AO-WAM code for the a simple clause.

The code is annotated to explain the effect of the instructions. The source program is

f(X, Y) :- a(X, Y), b(X,Y), c(X, Y, Z), d(X,Y,Z).

Suppose the graph expression generated is the following:

f(X, ·Y) :- a(X, Y), (ground(X,Y) I b(X,Y,Z) II c(X,Y)), d(X,Y,Z).

where a is expected to ground X and Y so that b and c can be executed in parallel. The
code is as follows

f/3:

HIIC

allocate
get_variable X, A1
get_variable Y, A2

put_value X, Al
put_value Y, A2
call a/2, 3, 1

checlune_else SEQ _CODE
check..ground X
check..ground Y

alloc_cross_pr~d ADDR

put_value X, A1
put_value Y, A2
push_and_call bl/2

put_value X, A1
put_value Y, A2
put_and_variable Z,A3,0
call cl/3,3, 1

alloc_solution ADDR

Entry point for procedure f
Push environment for f.

unify arguments of f.

load argument register to execute a.

Call a

store the address SEQ_CODE in CFA
If X is not ground j ump to SEQ_CODE
If Y is not ground jump t o SEQ_CODE

Allocate a cross product node. ADDR
is the address from ;here execution
continues vhen a tuple is picked up.
load argument registers for b.

push the and-call entry in thP ~nd-goal stack.

load argument registers for c.
Pick up c for execution.
globalize Z for split trail optimization
the val ue of the 2nd & 3rd arguments doesn't
matter since B ;ill be more recent than E.

Return here vhen an and-branch finishes.
Push a solution node, store the solution found &

15

ADDR
alloc.sequential

execute CALL.d

SEQ.CODE:
put.value X, A1
put_value Y, A2
call b/2, 3, 1
put.value X, A1
put.value Y, A2
put.variable Z, A3
call c/3, 3, 1

CALLd:

b1:

put.value X, Al
put.value Y, A2
put.value Z, A3
execute d/3

alloc..a.nd HIIC

b/2 ... b's code

c1:
c/3

d/3

alloc...and HIIC
c's code

.. . d's code

5. Efficient Task Switching

check to see if more and-goal still unsolved. If'
yes, load regs. & execute one, else load BA "i U. a
tuple containing current solution, load E reg. from
the parent cross-product node and branch to ADDR

Push the sequential node and updat e
t he BA to execute sequential code d.
execute d.

branch here if CCE can't be executed in parallel .

alloc. an and node (and-parallel execution).
set the continuation ·code to HIIC

alloc. an and node (and-parallel execution).

Task switching is an overhead in the AO-WAM wh.ich is inherited from the bi!;!ding

arrays method. We have tried to rnin.irn.ize it by choosing a suitable scheduling strategy, as

discussed in section 2.1, so that processors switch less often. We now discuss further ways

to rn.in.irnize the work involved in task switching; all of them a.id in reducing the amount

of work involved in updating binding arrays.

5 .1. Splitting the Trail

Note that after an and-parallel subgoal G has been solved, subsequent goals are only

interested in the bindings produced for G 's unbound variables. Thus, while loading the

bind.ing array we need only r.onsider the conditional variables in G and ignore those of

its descendent. This can be safely done because, even if the conditional variables in G

16

geL bound Lo conditional variables of its descendents, the conditional variables of the

descendent nodes would not be accessed when G 's variables are dereferenced since younger

variables point to older ones. However, bindings of G's conditional variables m;gh t reside in

the trail section of descendent frames. If we globalize the conditional variables in the and­

parallel subgoal and split the trail into a global trail and a local trail, we need only consider

the global t rail during binding a.rray loading. Although we would still be loading some

unneeded variables, we would save the work of loading all local conditional variables in

the descendent subgoals. This justifies the inclusion of the instruction put_and_variable.

Note that the binding array bas to be loaded from both global and local trails during a

task switch.

5.2. Promoting Variables

There are two instances where conditional variables can be promoted to unconditional

\'ariables, resulting in less task switch time: first, when a processor takes the last alternative

from an or-node and is the last one using that or-node; and second, when a processor while

backtracking passes an or-node which has just one active path below it. The first is similar

to the WAM trust operation and to the contr-action operation in the SRI model (W87J.

ln both cases conditional variables up to the previous or-node can be made unconditional.

When a variable is promoted it also needs to be removed from the binding array.

5.3. Cross-product Enumeration

When a processor is backtracking and possibly unloading a cross-product tuple, it

is very likely that after getting to the cross-product node it will pick up another tuple

to continue execution. The branches corresponding to the new tuple would be loaded
_.

before execution is begun. However, the new tuple might have some elements common

with the old tuple just unloaded, which we would have to load again. Thus, an obvious

improvement would be to save the loading/unloading steps for the common elements in the

tuple. This improvement has two advantages - not only less work is done, the contention

for the node-stacks and trail is also reduced.

5.4. Grounded CGEs

Frequently the CGEs are of thcform (ground (X, Y) I b (X, Y) , c (X, Y), d (X, Y, Z)) .

In such CGEs, X and Y would be ground if the condition succeeds: hence there is no need

for processors to load their binding arrays from branches of b and c when they pick up a

17

tuple from the cross-product set of b, c and d. However, they do need to load their binding

arrays from d's branch, since d has a potential conditional variable, Z, as its argument. We

believe that this optimization would tremendously improve the performance of the system.

since the ground condition is very frequently found in CGEs.

6. Conclusions and Related Work

The combined and-or model presented in this paper preserves the characteristics of the

binding arrays method for pure or-parallelism and the RAP method for pure and-parallelism,

namely, constant-time variable access, constant-time task creation, efficient dependency

checking of subgoals, and restricted intelligent backtracking. Additionally, there is no

need to restart and-parallel goals, as required in [H86J, and the computation of and-parallel

subgoals are shared across different solution paths, resulting in better time and space per­

formance. Standard optimizations, such as last-call and environment trimming, still apply,

though the conditions under which they can be applied would slightly change due to the

sharing of nodes. Furthe;more, if there is only one processor av.Ulable, the execution would

be as fast as a sequential implementation, with the added advantages of limited intelligent

backtracking, no redundant computations and no restarting of and-parallel goals. Even the

main source of overhead of the binding arrays approach, i.e., task switching, is minimized

in our model.

Note that sharing frames across different or-paths would always save time compared

with re-computing goals. If there was no sharing, all and-branches would be replicated

and recomputed. During this computation all variables encountered would be accessed

at lea.st once during unification. However, if branches are shared, we save time by not

pushing frames on the stacks, and also during loading only the conditionrel variables are

accessed, which are far fewer in number. If we take into account our optimizations for task

switching, the number of such conditional variables would be even less.

Another noteworthy point is that the amount of traversing the processors would per­

form in context switching would not ut: lllQre than in the case of purely or-parallel bincling

array method (for example, [LWH88J). In fact, since the solut ions to and-parallel sub-goals

are shared, the amount the traversing would be much less. If we take into account the

optimizations discussed in section 4, the amount of traversing involved in a task switch

would be reduced further significant ly. Thus. in our model, ann-parallelism ha.s the effccl

of improving the performance obtained from or-parallelism.

18

A number of other research projects have aimed at realizing both and- and or­

parallelism in a single implementation. Of these (WR87, K87j come closest to ours; most

others are intended for specialized architectures. The PEPSys model from ECRC [WR8ij

is a prl).(;tical model for and-or parallelism. Its limitations, however, are that variable ac­

cess, based on time-stamping, is not a constant-time operation. Since the join appears

not to be incrementally computed, processor cycles could be wasted in synchronizing. The

PEPSys model, however, is not tied down to a fixed architecture and can be implemented

on shared or non-shared memory multiprocessors. Kale's reduce-or model {K87j uses Data

Join Graph3 for exploiting parallelism. Although the technique also exploits dependent

and-parallelism it requires potentially time-consunling back-unification to ensure the con­

sistency of bindings. Also Or-processes require full copies of arguments , which might be a

significant overhead.

We have begun implementing the extended WAM model described in this paper on

a Balance Sequent 8000. vVe expect experimental results on our implementation by April

1989.

[BSY88]

[CG86]
0

[C87]

{CDD85]

References

P. Biswas, S-C Su, D.Y.Y. Yun, "A Scalable Abstract Machine Model to Sup­

port Limited-OR (LOR)/ Rcstricted-A;-.fD Parallelism (RAP) in Logic Pro­

grams," in Fifth International Logic Programming Conference, Seattle, \VA ..

pp. 1160-1179.

K. Clark and S. Gregory, "Par log: Parallel Programming in Logic", In .4. C.M.

TOPLAS, Vol. 8, No. 1, Jan. 1986.

J. S. Conery, "Binding Environm-ents for Parallel Logic Programs in Non­

Shared Memory Multiprocessors", 1987 IEEE International Symposium m

Logic Programm.n.g, San Franc:iseo, pp. 457-467

J-H. Chang, A. M. Despain, and D. DeGroot, "And-Parallelism of Logic

Programs based on Static Data D-ependency Analysis", ln Dige&t of PaperJ

of COMPCON Spring 1985, pp. 218-225, 1985.

[D84j D. DeGroot, "Restricted AND-parallelism", Int 'l Cor1j. on Fifth Generation

Computer SyJtem3, Xov., 1984.

19

[GJSS]

[HCH87]

G. Gupta and B. Jayaraman, "Combined And-Or Parallel Execution of Logic

Programming Languages", Technical Report TR-88-012, Dept. of Computer

Science, UNC Chapel Hill, Mar '88, 23 pages.

B. Hausman, A. Ciepielewski, and S. Haridi, "Or-Parallel Prolog made effi­

cient on shared memory multiprocessors", in 1987 IEEE International Sym­

po3ium in Logic Programming, San Francisco, pp. 69-79.

[H86) M. V. Hermenegildo, "An Abstract Machine for Restricted And Parallel Ex­

ecution of Logic Programs", !Jrd International Conference on Logic Program­

ming, London, 1986, pp. 25-39.

[K87] L. V. I< ale, "The REDUCE-OR model for Parallel Evaluation", In 4th Inter­

national Conference on Logic Programmmg, Melbourne, 1987, pp. 616-632.

[LI<88J

[LWH88)

[S83]

[W83)

[W87j

[W87a]

(W84]

[WR87}

Y-J. Lin and V. Kumar, "AND-parallel execution of Logic Programs on a

Shared Memory :viultiprocessor : A Summary of Results'', in Fifth lnterna­

Ltonal Logic Programrmng Conference, Seattle, WA.

E. Lusk, D.H.D. Warren, S. Haridi et. al. "The Aurora Or-Prolog System" ,

Internal Report, Gig<1lips Project, 19 pages.

E. Shapiro, "A Subset of Concurrent Prolog and its Interpreter'', ICOT Tech.

Report TR-003, !COT, Tokyo, Feb., 1983.

D. H. D. Warren, "An Abstract Instruction Set for Prolog", Tech. Note 309,

SRI International, 1983, 28 pages.

D. H. D. Warren, "The SRI-model for Or-Parallel execution of Prolog - Al.>­

stract Design and Implementation Issues", 1987 IEEE International Sympo-

3ium in Logic Programming, San Francisco, pp. 92-102.

D. H. D. Warren, "Or-Parallel Execution Models of Prolog", TAPSOFT '87,

Springer Verlag, LNCS 250.

D. S. Vvllrren, "Efficient Pro!og :\-f<!mory Management for Fle.-cib!c Control

Strategies", In The 1984 /ntern.ational Symposium on Logic Programming,

AtlanLic City, pp. 198-202.

H. Westphal, P. Robert, J. Chassin and J. Syre, "The PEPSys Model: Com­

bining Backtracking, A:\D- and OR-parallelism", In 1g97 IEEE International

Sympo3ium in Logac Programming, San Francisco, pp. 436-4-!8.

20

