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Abstract 

Combined And-Or Parallel 

Execution of Logic Programst 

Gopal G1Lpta 

Bharat layaraman 

Department of Computer Science 

University of North Carolina at Chapel Hill 

Chapel Hill, NC 27514 

This paper presents an extended and-or Lree and an extended WAM (Warren Ab­

stract Machine) model for efficiently supporting both and-parallelism and or-parallelism 

on shared-memory multiprocessors. Our approach is based on the binding-arrays method 

for or-parallelism and the RAP (Restricted And-Parallelism) method for and-parallelism. 

Our combined and-or model avoids backtracking, because of or-parallelism, and avoids re­

dundant computations when goals exhibit both and- and or-parallelism, by representing the 

cross-product of the solutions from the and-or-parallel goals rather than re-computing it. 

Thus the extended and-or tree has two new nodes: a 'sequential' node (for RAP's sequential 

goals), and a 'cross-product' node (for the cross-product of solutions from and-or-parallel 

goals). The other main features of our approach are: (i) each processor's binding-array is 

accompanied by a base-array, for constant access-t ime to variables in the presence of and­

parallelism; (ii) coarse-grain parallelism is supported by our processor scheduling poli.q, 

to minimize the cost of binding-array updates during task-switching; (iii) essentially, two 

new classes of WAM instructions are introduced: the 'check' instruct ions of RAP-WA:VI, 

and 'allocate' instructions for the different types of nodes. (iv) Several optimizations are 

proposed to minimize the cost of task switrhing. This extended \\"AM is currently being 

implemented on a Balance Sequent 8000. 

t This research is supported by grant DCR-8603609 from the Nntional Science Founda­

tion and contract N 00014-86-l<-0680 from the Office of ~a val Research. 
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1. Introduction 

A number of approaches have been proposed for the parallel execution of logic pro­

gramming languages, but the bulk of current research emphasizing practical implementa­

tions has dealt with either or-parallelism [HCH87, LWH88] or and-parallelism [D84, H86, 

LK88]. The obvious reason for combining and-parallelism and or-parallelism in a single 

framework is that any implementation that caters to either alone is suboptimal compared 

with one that caters to both. But there are other benefits: First , a combined model does 

not have to support backtracking unlike a pure and-parallel model; it suffices to determine 

subgoal independence, and initiate forward execution. Second, when there is potential 

for both and- and or-parallelism in a single program, exploiting either form of parallelism 

alone can lead to unnecessary over-computation. For example, given the usual definition 

of append, the pair of goals? append (X, Y, [1 , ... ,m]), append(P, Q, [ 1 , ... , n] ), 

leads to a 0 (m•n) computational cost under a pure or-parallel or pure and-parallel imple­

mentation (and also a sequential implementation), because all n + l solutions for P and Q 

are re-computed for each of the m + 1 solutions for X and Y. Instead of re-computing the 

solutions, if we represent the cross product of their solutions, the computational cost would 

only be of the 0 (m + n). Note t hat such goals frequently arise in database searching. 

In contrast to recently emerging approaches to combined and-or parallelism which 

emphasize execution on distributed systems [BSY88, C87, WR87, K87], we describe in this 

paper the combined and-or parallel execution for shared-memory multiprocessors, because 

we feel the latter best support the dynamic data creation of logic languages. We believe 

that ultimately a combination of the two approaches would be used in systems of the 

future. At a strategic level, we adopt a proce330r-or1entcd view of the computation [H86], 

which ceatrasts with most earlier models which adopt a process-oriented view. That is, 

there is one process per processor in our model, and different processors cooperate to bwld 

the and-or tree. This approach is well-swted to shared-memory multiprocessors; it avoids 

the excessive cost of process creation and also facilitates sharing of data across processors. 

Sine,. shi:lred-memory multiprocessors can be viewed as "multi-sequential" systems, it is 

also possible to adapt existing compilation techniques for sequential execution of logic 

programs, i.e. Warren Abstract Machine technology [W83], to such systems. 

Our proposed approach is based upon our recently developed method for and-or 

parallelism [GJ88j. which combines the binding-arrays method for or-parallelil>m [\;1,'84, 

LWH88] and the Restricted And-Parallelism (RAP) method !D84, H86]. We select the 
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binding-arrays method because it provides constant-time performance for the two most 

frequently occurring operations: variable access and task-creation. \:Vhile task-switching 

is not constant-time in this method, one can minimize its cost by keeping the granularity of 

parallelism high (LWHSS, HCH87J-an assumption that is compatible with current shared­

memory multiprocessors. We also propose a number of new techniques to reduce the cost 

of task switching. We select the RAP method because it supports divide-and-conquer 

parallelism, which frequently occurs in algorithm design. Because the RAP method does 

not support stream-and-parallelism, our combined model also does not. 

The rest of this paper is orgaruzed as follows: section 2 describes the major issues in 

or-parallelism and and-parallelism and states desirable criteria for their implementation; 

section 3 gives an overview of the combined and-or model, including the extended and-or 

tree, the variable-access method and the parallel execution strategy; section 4 describes the 

data areas and. instruction set of the extended WAM, and the code for a simple example: 

section 5 discusses how task switching can be made more efficient; and section 6 presents 

conclusions and comparisons with related work. 

We assume the reader has some familiarity with and-or parallel execution and the 

Warren Abstract Machine. 

2. Parallelism in Logic Languages 

We will now develop criteria which or- and and-parallel models should satisfy, and then 

mention some of the execution models for or-parallelism and and-parallelism. These criteria 

would be used in assessing our own combined and-or model to be described later. 

2.1 Or Parallelism 

Or-parallelism manifests itself whenever there is a non-deterministic search for solutions. 

In logic programs, or-parallelism arises when multiple clause heads unify with a goal. The 

subgoals arising from these multiple matches can be executed in parallel. There are three 

significant issues to he addressed in any or-parallel implemenbtion: 

1. An or-parallel implementation must be able to represent multiple bindings for 

variables which are unbound at the time of the match. D.H.D. Warren refers to such 

variables as conditional variableJ (W87aj. 

2. In adciition to representing multiple bindings, an efficiem implementation must 

ensure that the accuJ time to such conditional variables and the ta.!k-creation time needed 

3 



• 

is not prohibitivei ideally, they should be a constant independent of the size of the goal 

tree and independent of the size of the arguments of a goal. 

3. A further requirement on or-parallel implementations arises from the finite nature 

of the underlying parallel machine. Because it is very likely that the number of or-parallel 

tasks will exceed the number of available processors-a valid assumption for commercially 

available shared-memory multiprocessors -the talk lwitching time should also not be 

prohibitive, and ideally a constant independent of the goal tree. 

We can thus sum up the criteria for an ideal or-parallel implementation as follows: constant 

access time to all va.riablesi constant task-creation time; and constant task-switch time. 

Other desirable characteristics of an ideal or-parallel implementation are that it should 

execute as efficiently as a sequential implementation in case only one processor is available. 

Also, it should be amenable to optimizations that apply to sequential implementations, 

such as last-call optimization and environment trimming. 

No method in the literature achieves all the criteria mentioned earlier; however, we 

think that the binding-arrays method comes closest, since it provides constant time per­

formance for the two most frequently occurring operations: access to variables and task 

creation. 
#: I binding array 

~ 
I 

0 • • 
• • 

6 'foe' 

BATop _. 

• • • • 
Fig 1 : Access 10 Conditional Variables in Binding Artays Method 

The binding-arrays method works by assigning to each conditional variable a unique 

offset, which is used to index into a binding array, local to the processor, to obtain the 

binding of these variables. Figure 1 shows how the variable X bound to the offset 6 is 

dereferenced by processor Pl to the atomic constant foo. The# indicates the offset counter 

value along the branch. The binding array method has the disadvantage that processor 

context-switch time is large since binding arrays need to be updated upon context S\\;tch. 
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This overhead can be alleviated by not switching coo often or not switching to too distant 

nodes in the tree. Other properties of this method are that, if there is only one processor 

available, a depth-first search would perform comparably to a sequential implementation, 

and it supports standard sequential optimizations. 

2.2 And Parallelism 

And-parallelism in logic programs arises because multiple subgoals in a goal can be exe­

cuted in parallel. Because executing dependent subgoals in parallel may result in wasteful 

computation we would like to execute only independent subgoals in parallel. Four different 

approaches have been proposed to handle dependencies: (1) by requiring explicit annota­

tion, from the programmer indicating which are "input" variables and which are "output" 

variables [CG86, S83]; (2) by monitoring the status for variables (bound or unbound), 

and dynamically re-structuring tasks [C87J; (3) by global compile time analysis ( requir­

ing no runtime checks) assuming worst cases for subgoal dependencies [CDD85}; and (4) 

by monitoring at runtime the status for terms (ground or nonground) and using a static 

task-structure, conditioned upon the status of tenus, to obtain re$tricted and-parallelism 

[D84]. Approach (1) differs from (2), (3) and (4) in that the programmer has to explicitly 

specify the dependencies, using annotations. Vve do not further consider this approach 

here, because we are interested in automatic detection of and-parallelism. We consider ( 4) 

as a nice compromise between (2), where considerable run-time analysis is needed, and 

(3), where extensive compile time analysis is done. 

Three important criteria should be satisfied by an ideal and-parallel implementation: 

avoid was~eful over-computation; avoid complex run-~ime dependency analysis; and sup­

port intelligent backtracking. As with or-parallel implemeqtations, it is desirable that an 

and-parallel implementation perform comparably with a sequential implementa~ion in the 

single-processor case and support standard sequential optimizations. 

We use RAP to exploit independent and-parallelism, though our model would work for 

other methods such as (LI<S8, CDDSS]. In the RAP method progrl>lTI clauses a.t'e cowpiled 

into Conditional Graph Expressions (CGEs) of the form 

(condition, goa/1 , goal2 , • .• , goaln), 

meaning that, if condition is true, goals goa/1, .. goal,. arc to be evaluated in parallel. other­

wise they are to be evaluated sequentially. The condition can be either ground( u1, .•.• v,.), 

which checks whether all of the variables u1 , .. • , v. are bound to ground terms or it can 
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be independent( v1 , • • • , vn), which checks whether the set of variables reachable from each 

of v1 ••• vn are mutually exclusive of one another. Checking for ground and independence 

involve very simple runtime tests, details of which are presented in (084). The method is 

conservative in that it may type a term as nonground even when it is ground-another 

reason why the method is regarded as "restricted". This model has been excendcd by 

Hermenegildo and Nasr, and has been efficiently implemented using WAM-like instruc­

tions. 

2.3. Combined And-Or Parallelism 

The criteria for combined and-or parallel implementation are the union of the criteria 

for pure or-parallel and pure and-parallel implementations: constant variable-access, task­

creation and task-switch times (pure or-parallel ca..<:e); and avoidance of wasteful computa­

tion and efficient determination of subgoal independence (pure and-parallel case). Also liS 

mentioned in section 1, the combined model docs not have to support any backtracking, 

unlike a pure and-parallel model, because of the presence of or-parallelism. The realization 

of and-parallelism is simplified in this respect; it suffices to detect subgoal independence 

and initiate their forward execution. Also recomputation should be avoided whenever l>oth 

and- and or-parallelism arise in solving a goal. 

Finally, we should expect an and-or parallel implementation to produce solutions at 

least as fast as (if not much faster than) a sequential implementation. This implies that 

preference should be given to and-parallel tasks over or-parallel tasks if there are more 

tasks than available processors. To sum up, the criteria for a combined and-or parallel 

implementation are essentially the union of the criteria for pure or-parallel and pure and­

parallel implementations. In adclition, it is desirable to avoid over-computation when both 

and-parallelism and or-parallelism arise within a set of goals, and also favor and-parallelism 

over or-parallelism if there are limited processors. 

3. Overview of the Combined And-Or Model 

Our approach is to combine the binding-arrays model for or-pu.ra.lleHsm and the R.J\.P 

model for and-parallelism. Thus programs are compiled into CGEs before execution. \\'e 

begin by describing extensions to the basic and-or tree. Figure 2 shows an extended and-or 

tree for a simple example. There are four kinds of nodes in the extended tree. In addition 

to and nodes and or nodes, we also have cross-product nodes, to hold the cross-product of 

solutions from and-or parallel goals, and ~equ.ential nodes, which correspond to sequential 
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e( ... ) . a( ... ). 
e( ... ). a( ... ). 
f( ... ). b( ... ). 
f( ... ). b( ... ). 

b 

<<bl, C2> 
<b2, c 2> 
<b l, gl > 

<b2, gl > 

<b~ i> 
• • • > 

g( ... ) . c( ... ) :- h, (e II f ),g. 
g( ... ). c( ... ). 
h( ... ). d( ... ) . 
h( ... ) . d( ... ) . 

?- a; ( b II c ); d. 

[J AndNode 

0 Or Node 

?-a; (b llc ); d 

I 1 
<<e, f > 

<el, f2> 
<e2, f l> 

<e2, f2>> 

2 
a 

c 

Q Sequential Node 

c:::::::::> Cross Product Node 

Figure 2. An Example of an And-Or Tree 
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goals in the RAP model. All cross-product nodes are parents of and-nodes and sequentio.l 

nodes, and correspond to join-nodes in the Pepsys model (WR87]. There is one sequential 

node for each tuple in the cross-product set. Nodes have space for their subgoals (also 

called goal-list), and or-nodes have space for the bindings of the variables occuring in the 

sub-goals. 

Note that branches rooted at a cross-product node can be grown in and-parallel; such 

branches do not have data-dependencies between them. Branches rooted at nodes other 

than cross-product nodes can be grown in or-parallel; for such branches we have to ensure 

that the environment of each or-parallel branch is correctly maintained. This is a general 

scheme for exploiting and-or parallelism in logic programs. Not described in the extended 

and-or tree is (a) how variables are accessed in constant-time, (b) how a collection of 

processors in a shared-memory multiprocessor cooperate to grow the tree, and (c) how 

task-switching is done. We address these issues in the next two subsections. 

3.1. Variable A ccess 

When dealing with both and- and or-parallelism, the binding-arrays method for the 

pure or-parallel case must be extended to achieve constant-time access to variables. To see 

the problem, consider the goals (p; ( qlll q2); r), where';' stands· for sequencing and ql and 

q2 also exhibit or-parallelism. Suppose further that goal p has been completed. In order 

to execute goals q 1 and q2 in and-parallel, it is necessary to maintain separate binding 

arrays for them. As a reslllt, the binding-array offsets for any conditional variables that 

come into existence within these two goals will overlap. Thus, when goal r is attempted, 

we arc faced with problem of merging the binding-arrays for ql and q2 into one composite 

binding-array or maintaining fragmented binding-arrays. 

To solve the above problem, first recall that in the binding-array method [W84, W87) 

an offset -counter is maintained for each branch of the or-paral lel tree for assigning offsets 

to conditional variables. However, offsets to the conditional variables in the and-parallel 

branches cannot hP. uniquely assigned, since there is no implicit ordering e.mong them and 

at run time a processor can traverse them in any order. \Ve introduce another le\'e) of 

indirection in the binding array to get around this problem. 

In addition to the binding array, each processor also maintains another array called 

the bau array. As each and-node is created, it is assigned a uniq\lc integer id. \\'hen 

a processor encounters an and-node, it stores the offset of the next free location of the 
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binding array in the j.th location of its base array, where i is the id of the and-node. 

~ • 
base array binding array 

• 
1 1-------1¥ 
6 25 1-------1 • 

29 'foo' 
• • • 

<6,4 > BATop _. 

Fig 3 : Access ID Conditional Variables in Ex~ended Binding Array Method 

The offset·counter is reset to zero when an and-node is created. Subsequent conditional 

variables are bound to the pair (i, v}, where v is the value of the counter. The counter 

is incremented after each conditional variable is bound to th.is pair. The dcreferencing 

algorithm is described below. 

deref(V) f •un bound vari,.blu •re bound to tbcmulvu• f 
term •v { 
iC V-+tag •• VAR 

if not V -+value =:: V 
dcrd(V -.value) 

clae V 

elae if V ....... l AC == NON .V AR 
v 

elac { f•condhion•l VAr bound to (i, v) · I 
val= BA[v + ba•c (i]); f • SA i• the bindin& ar-ray. • f 
if value~vol = = va1 

v 
che derd{val) } } 

Note that access to variables is constant-time, though the constant is somewhat larger 

compared to the binding-arrays method for pure or-parallelism. Also note that now the 

base array is also to be updated on a task-switch. Figure 3 shows how a variable bound 

to the pair (6, 4) is dereferenccd to the atomic value foo 
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3.2. Parallel Execution 

Because we are targeting our implementation at shared-memory multiprocessors. we can 

assume the extended and-or execution tree lies in a memory space accessible to all pro­

cessors. In our proposed scheme, processors traverse the branches of the tree, executing 

sub-goals in the nodes, and growing and contracting the tree in the process. Since the num­

ber of branches in the and-or tree would be much larger than the number of processors, 

each processor ends up executing more than one branch of the tree. This is accomplished 

through backtracking on success/ failure. The movement of a processor from its current 

site to the place where work is available is called ta~k 3witching. A processor that has 

created a node is eventually responsible for solving the entire tree rooted at it. However, 

other idle processors may eagerly help, by taking up any available work from this subtree. 

A processor does not become idle until the entire sub-tr~ rooted at the node it undertook 

to solve is explored. This ensures coarse granularity of parallelism, and results in less task 

switching. Below we provide the algorithm that a processor uses for selecting work in the 

extended and·or tree. In the algorithm, two basic operations load and unload are assumed. 

In the load operation, a processor, given a cross-product tuple, updates its binding array 

with the condit ional variables that are found in the and-branches of the solutions corre­

sponding to the tuple; the base array is simultaneously updated. vVe therefore say the 

processor loads its binding array with the tuple. During the unload operation, conditional 

variables occuring in the and-branch of the solutions in the tuple are purged from the 

binding array; the base an·ay is also purged. 
u .sk_sw itch() 

J• A is the cu.rretH node.• / 

C ase A of 

6nd.Jlodc : 

or ..node: 

if A j• not equal to root. 

If tht re are more untried •iblinga o f A 

else 
pick A '• untried aiblins and -node (Qr exe~ution. 

lCl a. tuple cont Ainins: &.be •oll.ltion found. 
load the Oindin' array .. itb the tuple. 
c:.:ec.u te aequeatia.l s-oal aher Lhe CG E . 

if or-node hu more aherna.l.ivea 
execute •.n ahernative clause 

dac: 
if work available &C a. nod e below f • e xplained l.-ter •J 

move to the oodc where w ork is a v.-.ilable. 

\IJ)d 4te bindin s arrey (and bate ttorray, if nec:ded). 
c ury ou t the work . 

elte 
move to the node furt hel' up . 

upda.te bindln& array. 
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taskJ.witch(). 
unload the. ~uple In \he •cqucntial node. 
£(while unloa.dina: , a node w-ilh work i~~o found in the •"<l-brancb 

execute tha.t • ork . 

c. he. 
move up to the parent crou-produc.\ node 
H ftn untried tuple i$ found 

load bind ins &tray with the tuple 
excc:utc the uq,uential goa.l for thAt tuple. 

elu 
move. one node up 

CaskJw itch(). 

Note that the case for a cross-product need not be treated explicitly since a processor 

reaching a sequential node also has access to its parent cross-product node. In order 

to determine when work is available below an or-node, we assume that each processor 

maintains a pool of work it produces, which it will eventually carry out if unaided by no 

other processor. ·while choosing available work preference is given to untried and-nodes 

over untried or-nodes and cross-product tuples, so that solutions are produced at least as 

fast as (if not mu.ch faster than) a sequential implementation. 

Note that the binding array is updated not only during loading and unloading of 

tuples but also when a processor moves up from one node to another. Also note that while 

moving up, if the processor happens to ~e the creator of that node, it has to wait for other 

processors working in the sub-tree below to finlsh before it can move further up. 

4. An Extended WAM for the And-Or Mode l 

Figure 4 summarizes the state of an AO-\VA)I1 processor - all processors ha,·e a 

similar state. As a processor executes the extended WA.M instructions (described in section 

3.2) it pushes nodes along a branch in the extended and-or tree oo to its stacks. Because 
0 

idle processors may eagerly help other processors, it can happen that nodes along a branch 

are dis~ributcd across the stacks of different processors. In the remainlng description we 

explain the processor-state, concentrating on features not present in the standard WA!\·f 

model [W83]. 

4.1. AO-WAM Machine State 

A. Data Areas: (i) Corr~Jpondence of nodeJ in extended and-or tree to frameJ in 

.!tacb: All nodes in the extended and-or tree map directly to the stack frames. However, 

a single choice point is created for a set of sibling or-nodes of the extended and-or tree, 

and one environment record is created for each or-node. In subsequent sections we ~hall 
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Data Areas 

CE 

E 

s.J 

GLOBAL TRAIL LOCAL TRAIL 

~ ~ 
LTR 

s 

H 

CFA 
CP 
p 

~ 

l 
Node Scheduling Areas 

co 

' Or-node Queue 

I I I I I I I 
CPO 

AS 

Variable Access Arra s 

Bdg. Array 
Top 

Registers 

Base Array 

Base Array 
Top 

WAM Registers 

B L. SN, 0 , LC. GC 

CPO,AS.OO 

CFA (of RAP-WAM) 

Figure 4 AO-WAM Processor State 
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refer to choice-points as or-nodes, by abuse of terminology. Given two nodes nl and n2, 

where nl is above n2 in the stack, it is true that nl is a descendent of n2 in the and-or 

tree or they are in independent and-branches. As a corollary of this, space from the node 

and environment stacks is always reclaimed from the top. 

(ii) Separation of local 3tack into environment and node 3iacl:.s: The advantage of this 

separation is two-fold: 1) During space allocation, it is easy for the processors to access 

the top-most node in their local stack (through BL). 2) It simplifies the task of updating 

the binding array. It also enables incorporation of other scheduling strategies and thus 

makes the architecture amenable to modifications. 

(iii) Separation of trail into local and global trai/3: This is done to reduce the amount 

of work during task switching (explained in section 4). 

(iv) Introduction of Mlution nodeJ: A solution node is pushed on the environment 

stack when the end of an and-branch is reached. It serves two purposes: 1) Its addre~s 

is used as the name for the corresponding solution in cross-product tuple. 2) H makes 

sure that an and-parallel solution does not get deleted from the stack until the entire 

cross-product has been tried. 

B. Node Scheduling Areas: The node-scheduling areas are used to identify avail­

able work, and are organized as follow: (i) Or-node Queue: The untried or-nodes are 

organized as a queue for scheduling because we believe that those closer to the root would 

contain bigger subtrees, ma.."imizing the granularity of work. (ii) CroJ3·product Queue: 

The untried cross-product tuples are organized as a queue for the same reason. {iii) And­

node Stack: Untried and-nodes are organized as a stack because later and-subgoals must 

be solved before earlier and-subgoals . 
• 

Or-nodes and Cross-product nodes have a proceJJor bit-ve;;tor (similar to [HCH87]). 

This vector tells which processors are working in the subtree rooted at that node. A 

processor sets the bit at posit ion pid, where pid is the processor id of the processor, when 

it passes through the node while moving to the site where work is Available. It resets this 

bit when it returns while traveling up the tree. 

C. Variable Access Arrays: T hese have been in explained in section 2.1. 

D. Registers : ln addition to the regular 'VA.\1 registers we have the following extra 

registers. (i) BL, which points to the top of the node stack. (ii) D, which points to the 

current and-node, i.e., the and-node in whose scope the current environment falls. The 
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current value of D is saved in the Cont D field in cross-product nodes so that it can be 

restored when sequential nodes are pushed. (iii ) SN, the solution node register, which points 

to the top most solution node. Space below S!l cannot be reclaimed until the and-branch 

has been fully solved. (iv) LC and GC, which are the offset counters for the local and global 

conditional variables, respectively. (v) CFA, in which the address of the code sequence to be 

executed, if the CGE fails, is loaded. (vi) CPQ, AS and OQ, which bold pointers to the beads 

of the work queues/ stacks. The CPQ, AS and OQ pointers are stored in nodes to restore the 

respective work queues/stacks on failure. 

4.2. AO-WAM Instruction Set. 

The AO-WAM supports most of the instructions supported by WAM. However, some 

of the instructions have been modified. Some new instructions have also been added. 

The modified instructions are call P, n, k, put_variable Yn, Ai, k and allo­

cate. These instructions are similar to those in Aurora (LWH88). The third argument 

in call is needed to implement an optimization similar to environment trimming on the 

local binding array. The third argument in put_variable is used to allocate offsets to 

local conditional variables at compile time. The allocate ins tmction has to take care 

that it allocates space above the top-most solution node so that and-branches that are still 

needed are not destroyed. 

The new instructions introduced in the AO-WA:\4 consist of the check instructions 

(check.Jne_else , check..ground and checLindependent) of RAP-WAM [H86] for com­

piling CGEs, and instructions for allocating space for various nodes: alloc_cross_prod 

Addr, alloc_and Addr, alloc_sequential and alloc_solution Addr. The check.Jne_else 

instruction loads a register with the address (cal led Check Fail Address or CFA) where 

the execution is to branch if the CGE condition evaluates to false. The check..ground 

( checLindependent) instruction checks if the variables in their arguments are grounded 

(independent). The instructions for allocating space are used to allocate space for the 

va.riow: nnrles. The example in the next section illu5trates their meaning o.nd usc. Two 

interesting instructions are: 

put..and..variable Yn, Ai, j: This instruction is the same as the put-variable Yn, 

Ai, j instruction except that the variable Yn is globalized and a reference to the global 

value is saved in Ai. Tlus instruction globalizes unbound variables in the and-parallel 

subgoals, so that during update (loading and unloading tuples) of the binding arrays, 
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the processor has to only look at the trail for global variables. 

push_and_call Code/n: similar to the push_call instruction in RAP-WAM. Push 

an entry into the and-goal stack, i.e. , push the instruction address of the sub-goal, 

argument registers A1 through An (loaded through the regular put instructions) and 

the current environment register. Exclusive access to the stack is obtained while 

pushing the entry. 

4.3. Example 

In this section we give the compiler generated AO-WAM code for the a simple clause. 

The code is annotated to explain the effect of the instructions. The source program is 

f(X, Y) :- a(X, Y), b(X,Y), c(X, Y, Z), d(X,Y,Z). 

Suppose the graph expression generated is the following: 

f(X, ·Y) :- a(X, Y), (ground(X,Y) I b(X,Y,Z) II c(X,Y)), d(X,Y,Z). 

where a is expected to ground X and Y so that b and c can be executed in parallel. The 
code is as follows 

f/3: 

HIIC 

allocate 
get_variable X, A1 
get_variable Y, A2 

put_value X, Al 
put_value Y, A2 
call a/2, 3, 1 

checlune_else SEQ _CODE 
check..ground X 
check..ground Y 

alloc_cross_pr~d ADDR 

put_value X, A1 
put_value Y, A2 
push_and_call bl/2 

put_value X, A1 
put_value Y, A2 
put_and_variable Z,A3,0 
call cl/3,3, 1 

alloc_solution ADDR 

Entry point for procedure f 
Push environment for f. 

unify arguments of f. 

load argument register to execute a. 

Call a 

store the address SEQ_CODE in CFA 
If X is not ground j ump to SEQ_CODE 
If Y is not ground jump t o SEQ_CODE 

Allocate a cross product node. ADDR 
is the address from ;here execution 
continues vhen a tuple is picked up. 
load argument registers for b. 

push the and-call entry in thP ~nd-goal stack. 

load argument registers for c. 
Pick up c for execution. 
globalize Z for split trail optimization 
the val ue of the 2nd & 3rd arguments doesn't 
matter since B ;ill be more recent than E. 

Return here vhen an and-branch finishes. 
Push a solution node, store the solution found & 
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ADDR 
alloc.sequential 

execute CALL.d 

SEQ.CODE: 
put.value X, A1 
put_value Y, A2 
call b/2, 3, 1 
put.value X, A1 
put.value Y, A2 
put.variable Z, A3 
call c/3, 3, 1 

CALLd: 

b1: 

put.value X, Al 
put.value Y, A2 
put.value Z, A3 
execute d/3 

alloc..a.nd HIIC 

b/2 ... b's code .... 

c1: 
c/3 

d/3 

alloc...and HIIC 
c's code 

.. . d's code . . .. 

5. Efficient Task Switching 

check to see if more and-goal still unsolved. If' 
yes, load regs. & execute one, else load BA "i U. a 
tuple containing current solution, load E reg. from 
the parent cross-product node and branch to ADDR 

Push the sequential node and updat e 
t he BA to execute sequential code d. 
execute d. 

branch here if CCE can't be executed in parallel . 

alloc. an and node ( and-parallel execution). 
set the continuation ·code to HIIC 

alloc. an and node (and-parallel execution). 

Task switching is an overhead in the AO-WAM wh.ich is inherited from the bi!;!ding 

arrays method. We have tried to rnin.irn.ize it by choosing a suitable scheduling strategy, as 

discussed in section 2.1, so that processors switch less often. We now discuss further ways 

to rn.in.irnize the work involved in task switching; all of them a.id in reducing the amount 

of work involved in updating binding arrays. 

5 .1. Splitting the Trail 

Note that after an and-parallel subgoal G has been solved, subsequent goals are only 

interested in the bindings produced for G 's unbound variables. Thus, while loading the 

bind.ing array we need only r.onsider the conditional variables in G and ignore those of 

its descendent. This can be safely done because, even if the conditional variables in G 
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geL bound Lo conditional variables of its descendents, the conditional variables of the 

descendent nodes would not be accessed when G 's variables are dereferenced since younger 

variables point to older ones. However, bindings of G's conditional variables m;gh t reside in 

the trail section of descendent frames. If we globalize the conditional variables in the and­

parallel subgoal and split the trail into a global trail and a local trail, we need only consider 

the global t rail during binding a.rray loading. Although we would still be loading some 

unneeded variables, we would save the work of loading all local conditional variables in 

the descendent subgoals. This justifies the inclusion of the instruction put_and_variable. 

Note that the binding array bas to be loaded from both global and local trails during a 

task switch. 

5.2. Promoting Variables 

There are two instances where conditional variables can be promoted to unconditional 

\'ariables, resulting in less task switch time: first, when a processor takes the last alternative 

from an or-node and is the last one using that or-node; and second, when a processor while 

backtracking passes an or-node which has just one active path below it. The first is similar 

to the WAM trust operation and to the contr-action operation in the SRI model (W87J. 

ln both cases conditional variables up to the previous or-node can be made unconditional. 

When a variable is promoted it also needs to be removed from the binding array. 

5.3. Cross-product Enumeration 

When a processor is backtracking and possibly unloading a cross-product tuple, it 

is very likely that after getting to the cross-product node it will pick up another tuple 

to continue execution. The branches corresponding to the new tuple would be loaded 
_. 

before execution is begun. However, the new tuple might have some elements common 

with the old tuple just unloaded, which we would have to load again. Thus, an obvious 

improvement would be to save the loading/unloading steps for the common elements in the 

tuple. This improvement has two advantages - not only less work is done, the contention 

for the node-stacks and trail is also reduced. 

5.4. Grounded CGEs 

Frequently the CGEs are of thcform (ground (X, Y) I b (X, Y) , c (X, Y), d (X, Y, Z)) . 

In such CGEs, X and Y would be ground if the condition succeeds: hence there is no need 

for processors to load their binding arrays from branches of b and c when they pick up a 
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tuple from the cross-product set of b, c and d. However, they do need to load their binding 

arrays from d's branch, since d has a potential conditional variable, Z, as its argument. We 

believe that this optimization would tremendously improve the performance of the system. 

since the ground condition is very frequently found in CGEs. 

6. Conclusions and Related Work 

The combined and-or model presented in this paper preserves the characteristics of the 

binding arrays method for pure or-parallelism and the RAP method for pure and-parallelism, 

namely, constant-time variable access, constant-time task creation, efficient dependency 

checking of subgoals, and restricted intelligent backtracking. Additionally, there is no 

need to restart and-parallel goals, as required in [H86J, and the computation of and-parallel 

subgoals are shared across different solution paths, resulting in better time and space per­

formance. Standard optimizations, such as last-call and environment trimming, still apply, 

though the conditions under which they can be applied would slightly change due to the 

sharing of nodes. Furthe;more, if there is only one processor av.Ulable, the execution would 

be as fast as a sequential implementation, with the added advantages of limited intelligent 

backtracking, no redundant computations and no restarting of and-parallel goals. Even the 

main source of overhead of the binding arrays approach, i.e., task switching, is minimized 

in our model. 

Note that sharing frames across different or-paths would always save time compared 

with re-computing goals. If there was no sharing, all and-branches would be replicated 

and recomputed. During this computation all variables encountered would be accessed 

at lea.st once during unification. However, if branches are shared, we save time by not 

pushing frames on the stacks, and also during loading only the conditionrel variables are 

accessed, which are far fewer in number. If we take into account our optimizations for task 

switching, the number of such conditional variables would be even less. 

Another noteworthy point is that the amount of traversing the processors would per­

form in context switching would not ut: lllQre than in the case of purely or-parallel bincling 

array method (for example, [LWH88J). In fact, since the solut ions to and-parallel sub-goals 

are shared, the amount the traversing would be much less. If we take into account the 

optimizations discussed in section 4, the amount of traversing involved in a task switch 

would be reduced further significant ly. Thus. in our model, ann-parallelism ha.s the effccl 

of improving the performance obtained from or-parallelism. 

18 



A number of other research projects have aimed at realizing both and- and or­

parallelism in a single implementation. Of these (WR87, K87j come closest to ours; most 

others are intended for specialized architectures. The PEPSys model from ECRC [WR8ij 

is a prl).(;tical model for and-or parallelism. Its limitations, however, are that variable ac­

cess, based on time-stamping, is not a constant-time operation. Since the join appears 

not to be incrementally computed, processor cycles could be wasted in synchronizing. The 

PEPSys model, however, is not tied down to a fixed architecture and can be implemented 

on shared or non-shared memory multiprocessors. Kale's reduce-or model {K87j uses Data 

Join Graph3 for exploiting parallelism. Although the technique also exploits dependent 

and-parallelism it requires potentially time-consunling back-unification to ensure the con­

sistency of bindings. Also Or-processes require full copies of arguments , which might be a 

significant overhead. 

We have begun implementing the extended WAM model described in this paper on 

a Balance Sequent 8000. vVe expect experimental results on our implementation by April 

1989. 
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