Subset-Logic Programming:
Application and Implementation

TR88-011
February 1988

Bharat Jayaraman and Anil Nair

The University of North Carclina at Chapel Hill
Department of Computer Science

CB+#3175, Sitterson Hall

Chapel Hill, NC 27599-3175




Subset-logic Programming: Application and Implementationt

Bharat Jayaraman
Anil Nair

Department of Computer Science
University of North Carolina at Chapel Hill
Chapel Hill, NC 27514
U.S.A.

Tel: (919) 962-1764
E-mail: bj@cs.unc.edu

Abstract

Subset-logic programming is a paradigm of programming with subset and equality
assertions. We propose this paradigm as a logical basis for programming with sets. We
present a language called SEL to illustrate the approach. The terms of SEL are the usual
first-order terms of Prolog, augmented with one associative-commutative (a-c) construc-
tor, U, for defining sets. Computationally, we treat assertions as one-way rewrite rules,
where the matching used is a restricted form of associative-commutative matching. Unlike
Prolog’s unification, a-c matching could produce multiple matching substitutions, which
can effectively serve to iterate over the elements of sets, thus permitting many useful set
operations to be stated non-recursively. We also describe the implementation of SEL. We
show how WAM-like instructions can be used to compile SEL programs. Because matching
rather than unification is used, the ‘read' and ‘write' modes of ‘get’ instructions can be
identified at compile-time. Two forms of backtracking occur: in addition to backtrack-
ing upon failure, the implementation also backtracks upon success in order to collect all
elements of a set. An important property of a SEL function is whether or not it ‘dis-
tributes over nondeterminism’ in a particular argument. If it does, we can avoid checking

for duplicates in this argument, and also avoid constructing the set corresponding to this
argument,

1 ‘This research is supported by grant DCR-8603609 from the National Science Foundation and contract
N 00014-86-K-0680 from the Office of Naval Research.



1. Introduction

The term ‘logic programming’ is often taken to be synonymous with predicate-logic pro-
gramming, owing to the latter’s simple semantics [K74] and the success of Prolog [WPP77|.
In recent years, other forms of logic programming have been proposed, most notably
equational-logic [O85] and constraint-logic programming [JL87]. We contribute another
such approach in this paper, called subset-logic programming. The main motivation for
our work was to provide a rigorous basis for programming with sets. Existing approaches,
such as the ‘setof’ construct of most Prolog systems [N85] or the relative-set construct of

functional languages |T85], are not supported by an underlying logic, although they are
very useful in practice.

In our approach, a program is a collection of two kinds of assertions:
(i) equality assertion: f(terms) = expression
(ii) subset assertion: f(terms) 2 expression

The declarative meaning of an equality (resp. subset) assertion is that, for all its ground
instances, the function foperating on the argument ground terms is equal to (resp. superset
of) the ground term denoted by the expression on the right-side. We adopt the closed-
world assumption, so that the meaning of a set-valued function f operating on ground
terms can be equated to the union of the respective sets defined by the different subset
assertions for f. The top-level query is of the form

? expr

where ezpr is 2 ground expression. The meaning of this query is the term ¢ such that ¢ =
ezpr is a logical consequence of the program assertions.

The language vehicle we present for conveying these ideas is called SEL, for Set-
Equation Language. The data objects in SEL, called terms, are the finite objects built
up from atoms and data-constructors. (There are no infinite or higher-order objects in
SEL.) Terms are distinguished from more genera! expressions, which may also contain
function applications. Apart from the usual data-constructors of Prolog, we also permit the

associative-commutative (a-c) constructor U. The U constructor is our means of defining
sets,

Computation with these assertions is a process of ‘replacing equals by equals!. Both
equality and subset assertions are oriented left-to-right for rewriting. All constructors and
user-defined functions are strict in all arguments, thus nested function applications are
performed innermost-first. Because arguments to functions are ground terms, function
application requires one-way matching, rather than unification. The matching operation
is actually associative-commutative (a-c) matching [P72], because of the presence of the U
constructor. Unlike unification, a-c matching could have multiple matching substitutions.

1



In this paper, we restrict the use of U on the left-sides of program assertions in a man-
ner that supports clear programming as well as efficient implementation. The associated
matching algorithm is referred to as restricted a-c¢ matching.

SEL is essentially a functional programming language, in which sets are ‘first class’
objects, i.e., not simulated by lists. Its benefits for functional and logic programming are:
(i) many operations over sets can be stated non-recursively, thanks to the implicit iteration
over sets provided by a-c matching; (ii) formulating problems in terms of sets rather than
lists provides more parallelism, because sets relax the sequencing constraint of lists; (iii)
nondeterministic search can be specified without the use of ‘cuts’; (iv) efficient (non-
backtrackable) execution is possible with equations; and (v) checks for duplicate elements
in argument sets and formation of intermediate sets can be avoided when operations using
these sets ‘distribute over nondeterminism’ (discussed in section 2).

SEL does not support unification or backward reasoning. We believe these capabilities
are already well-supported in predicate- and constraint-logic programming. A unified
language with both capabilities can be designed, but this issue is beyond the scope of this
paper.

In order to demonstrate the practicality of our approach, we also present in this
paper the implementation of SEL programs. Our implementation model is essentially a
stack-heap model based on structure copying. It turns out that ‘WAM’-like instructions
[W83] are very appropriate for the compilation of a-c matching. Because we employ one-
way matching, we can identify at compile-time the ‘read’ and ‘write’ modes of WAM's ‘get’
instruction. Another interesting contrast from Prolog implementations is that backtracking
in a SEL implementation could occur both on success as well as failure. The former
occurs because multiple branch points could arise in the invocation of a single subset
assertion—due to branching in a-¢ matching—and the successful completion of one such
branch requires backtracking to repeat the same right-side, but using a different matching
substitution. Because the underlying implementation model for SEL is so similar to the

WAM model, we believe that combining predicate-logic and subset-logic programming
would be practically feasible.

We described the language SEL, and its declarative and operational semantics in an
earlier paper [JP87]. The main objective of this paper is to show the relevance of SEL
for logic programming, to describe restricted a-c matching, and also to demonstrate that
it can be implemented efficiently using WAM-like instructions. The rest of this paper
is organized as follows: section 2 informally presents the features of SEL, restricted a-c
matching, and examples; section 3 describes an abstract machine for SEL: its execution

model, instruction set, and the compiled code for a typical program; and section 4 presents
conclusions and possible extensions.



2. Subset-logic Programming

We first clarify the syntactic structure of term and ezpression.

term ::= atom | variable | { } | {term} | term U term | constructor(terms)
terms ::= lerm | term , terms

ezpr ::= term | {ezpr} | ezpr U ezpr | construetor(ezprs) | function(terms) |
if ezpr then ezpr else ezpr
ezprs ;= expr | expr , exprs

We use the [...| notation for writing lists, as in Prolog, and also the notation [h | t]
to refer to a non-empty list, with head h and tail t. Similarly, we use the {...} notation
for sets, e.g. {1,2,3}, and also use {h | t} to refer a non-empty set, one of whose elements
is h and the remainder of the set is t. Thus, {h |t} = {h} Ut. The set {1,2,3} may be
represented as {1} U {2} U {3} U{ }. Other permutations, such as {2} U {1} U {3} u{ },
{1}u{3}u {2} u{ }, etc., represent the same set. Lists and sets may be freely combined
in SEL. The constructor U, which stands for set union, is associative and commutative,

with the properties, x U x = x (idempotence) and x U { } = x (identity), where { } stands
for the empty set.

2.1 Restricted A-C Matching

The associative-commutative matching problem may be stated as follows: Given two terms
t; (possibly non-ground) and t; (ground), some constructors of which may be associative-
commutative, is there a substitution # such that {;§ =,. 137 Note that the equality =,. is
based only the associative and commutative properties, but not the idempotent property.
Thus, for example, matching {h | t} with {1,2,3} cannot yield the matching substitution
{h — 1,t « {1,2,3}}. However, {1} can match {h | t}, yielding {h — 1,t — { }}.

Plotkin [P72] was perhaps the first to study a-c matching, which he used for building-
in equality theories in resolution theorem-provers, To the best of our knowledge, a-c
matching has not been previously considered for practical logic programming. For both
programming and implementation simplicity, we propose to disallow ezplicst use of the U
constructor on the left-sides of SEL assertions. Instead, we permit arbitrary combinations
of patterns of the form

{term | term}.

While some expressive power is sacrificed by this restriction, most practical cases are unal-
fected. This restriction turns out to be very important for compilability of SEL programs.

Below we present a Prolog program to specify more precisely the behavior of the
matching algorithm, assuming the above restriction. The first argument of match is a
possibly non-ground term (representing the head of an assertion) and the second argument

3



is a ground term (representing the arguments of a function call). In case a match is
possible, the variables in the first input argument are instantiated appropriately. Multiple
matches are produced one at a time. For simplicity, only lists and sets are considered;
other constructors can be treated similarly.

match(A, A) :-
atomic(A), !.

match({ },{}).

match(V, Arg) :-
var(V), !,
V= Arg.

match([T1 | T2], [Argl | Arg2l) :-
match(T1, Argl).
match(T2, Arg2).

match({Eleml | Setl}, ArgSet) :-
generate(ArgSet, Elem2, Set2),
match(Eleml, Elen2),
match(Setl, Set2).

generate({Elem | Set}, Elem, Set).
genorate({Elem | Set}, Elem2, {Eleam | Set2}) :-
generate(Set, Elem2, Set2).

2.2 Program Assertions
As mentioned in the introduction, program assertions are either of the form
f(terms) = ezpression or f{terms) O ezpression.

We require that every variable on the right-side of an equality or subset assertion must
be present on its left-side. There are no free variables in SEL. We informally explain the
operational semantics of these assertions; a more formal account is given in our earlier
paper [JP87| in terms of rewrite rules.

For example, when matching an expression distr(10,{1,2,3}) with the left-side of 2
subset assertion :

distr(x,{a[t}) 2 {[x|n]}

all three matches are considered, namely, {x — 10,h — 1,t — {2,3}}, {x «~ 10,h ~ 2,
t — {1,3}}, and {x «— 10,h — 3,t «— {1,2}}. The right-side of the assertion for distr,
namely {[x | h|}, is then fully reduced for each of these matches, and the union of the fully
reduced results is defined as the value for £{{1,2,3}). Thus, the value returned in this

4



case would be {[10[1], [10]2], [10]3]}. Duplicate elements are eliminated while taking this
union—we mention in section 2.4 when we can avoid checking for duplicates and also avoid
constructing this set. If multiple subset assertions match a call, their respective right-sides
are similarly reduced, and the union of all such results is taken as the result of the call.
Because the union operation is strict, it will not terminate if any of these reductions does
not terminate, i.e., zU L = L. However, because of the closed-world assumption, if any
one these reductions terminates with a non-term expression (T), its result can be assumed
to be { } for the purpose of the union, i.e., zUT =z,

Unlike subset assertions, when computing with equality assertions, only one of the
potentially many a-c matches is considered in reducing the matching assertion, because we
assume the result of rewriting is independent of which particular match is considered. For
example, when matching an expression size({1,2,3}) with the left-side of an assertion

size({h|t}) = 1+ size(t)
any one of the three matches for h and t may be taken, and the others ignored. [t
is left to the programmer to ensure that the result of rewriting is independent of the
particular match considered—in our earlier paper [JP87], we mentioned methods of proving

confluence for equational programs with a-c matching. An example of an assertion that
violates this property is: set21ist({h|t}) = [h | set21ist(t)].

Finally, we define the conditional expression as follows:
if true then el else &2 = el, and
if r then el else 2 = 2, if z# true A z # L.

That is, the conditional expression implements a form of negation by failure [CT78)].

2.3 Examples of SEL Programs
Append:
append([ |,y) =y .
append([h | t],y) = [h | append(t, )]

First-order functional programming can be carried out in the usual way with equations,
as the above example suggests.

Set Intersection:

intersect({ },s)={ }
intersect(s,{ })={ }
intersect({h|. },{h|. }) 2 {(n}
Finding common elements in the two sets is finessed by a-¢ matching. The anonymous

variable _ is similar to that of Prolog. An important difference here, however, is that
considerable space and time can be saved by not constructing the remainder of the set.

5



Relative Set Abstraction:

all-fp({ }) ={ }

all-fp({x |- }) 2 if p(x) then {f(x)} else { }
The above assertions serve to effectively define the relative set construct, {£(x) | x € § A p(x)}.
Here, a-c matching is used to iterate over the elements of the argument set.

Permutations:

perms({ }) = {[ ]}

perms({x | t}) 2 distr(x,perms(t))

distr(x,{ })={}

distr(x,{y |- }) 2 {{x| ]}
The function perms takes a set of elements as input and produces as output the set of
permutations of these elements. The function distr expects a set of lists as its second
argument. Its result is a set whose elements are constructed by “consing” its first argument
to each list in its second-argument set.
Four Queens Problem:

queens(col,safeset) = if eq(col,5) then safeset
else placequeen(col,{1,2,3,4},safeset)
placequeen(col, {row | . },safeset) 2
if safe([col | row|, safeset)
then queens(col + 1, {|col | row|| safeset})
else { }
safe(fcl | r1],{ }) = true
safe([cl | r1],{[c2| 2] | 8}) = (r1 # r2) and (abs(ci — c2) # abs(rl — r2))
and safe(ci |ri] s)
Tqueens(1,{ })
The above example illustrates how a search may be specified. The algorithm places a
queen on each successive column, beginning from column 1, as long as each new queen
placed is safe with respect to all queens in the preceding columns. A solution is found if a
queen can be thus be placed on all columns. The second argument to placequeen, viz., the
set {1,2,3,4}, enumerates the row positions in each column. If a particular row-column
position is not safe, placequeen returns the empty set { }, thereby pruning this line of

search. The function safe specifies the safety condition—we assume that SEL has the
usual complement of arithmetic operations.

2.4 Remarks

The above examples serve as a basis for the following more general points:

6



1. Note that intersect, all-fp, and distr are stated non-recursively. We similarly
defined several other useful operations in our recent paper [JP87|. This is one of the
strengths of a-c matching. All of the programs using relative set-abstraction in Miranda

[T85] may be macro-expanded into SEL assertions, in the manner shown in the all-fp
example.

2. Formulating problems, e.g. permutations, with sets rather than lists allows more
parallelism. Note that comparable declarative formulations of this problem in existing
functional and logic languages cannot achieve as much parallelism as the SEL formulation
because they sequentialize the generation of permutations by treating the answer as a list of
permutations. Because of one-way matching, the or-parallelism arising from a-c matching
does not incur the problem of having to maintain multiple bindings of unbound variables
in the parent environment [HCH87, SW87|.

3. We say that an operation f distributes over nondeterminism in the i-th argument

iff
- { [ (SE NN LS ) S D A T

where the i-th argument of f is the one shown above. Functions that compute some
aggregate property of a set, e.g. size and perms, do not distribute over nondeterminism.
Functions, such as distr and intersect, that are defined in terms of the elements of the
set, do distribute over nondeterminism. There are two benefits of knowing that a function
distributes over nondeterminism in a particular argument:

(i) We can avoid checking for duplicate elements in this argument; the function is
simply applied to the singleton-sets that make up the argument set, and the individual

results propagated. Because argument sets are usually free from duplicates, this can lead
to substantial savings in execution time.

(ii) When several such functions are composed together, we effectively avoid con-
structing intermediate sets, thus saving space as well. This optimization is similar to the

avoidance of constructing intermediate lists when composing a series of ‘map’ functions in
functional languages.

At this stage of its development, we assume that a SEL programmer specifies, through
suitable ‘mode’ declarations, in which arguments a function distributes over nondetermin-
ism. '

3. Implementation

We present here the salient aspects of an abstract machine for implementing SEL. This
abstract machine is very similar to the WAM, being based on a stack-heap model with
structure-copying. We therefore concentrate on the differences in this presentation. We

T



assume that the reader has some familiarity with the WAM implementation of Prolog
[W8s3].

The basic approach is as follows: At compile-time, we flatten all expressions in accor-
dance with innermost-first semantics, so that the arguments of all function calls are terms.

Temporary variables are introduced as necessary, We illustrate by showing the flattened
form of perms below.

perma({ }) = {{ )}
perms({x|t}) 2 v1 :— perms(t) 2 v2, distr(x,v2) =v1
Note that the operation distr distributes over nondeterminism (in its second argument),
but perms does not. This is distinguished in the compiled code by the use of O in flattening
perns, and the use of = in flattening distr. Equality and subset assertions can be assumed
to be mutually exclusive, i.e., an equality and a subset assertion cannot both match a given
call. Furthermore, equality assertions can be assumed to be mutually exclusive among
themselves; in case of overlap, the choice is arbitrary. Within each class, the assertions

are indexed on their first argument, as in the WAM. We try all equality assertions first,
followed by subset assertions.

The main data areas are: (i) the static code area, (ii) the control stack, and (iii)
the heap. There is no need for a trail stack, because the matching is strictly one-way;
trying alternative branches during a~ matching requires changes only to local variables.
In addition to these areas, a push-down list is maintained in order to traverse nested
structures during matching—similar to that needed for unification.

As in the WAM, the control stack is made up enuvironments and choice-points. Envi-
ronment trimming and last-call optimization are possible for equality assertions (because
they are deterministic) but not for subset assertions. The heap stores lists, structures, and
sets. Unlike the WAM, we do not need to identify global variables, because all returned
values must be ground. In other words, all variables can be allocated on the control stack.

3.1 Execution Model

A function defined exclusively by equality assertions is invoked by a call instruction. An
environment record is created on the control stack for this call if the matching assertion has
permanent variables, as in the WAM. If there is no match, failure is signalled, which causes
failure-backtracking to the most recent choice-point (discussed further below) or to the top-
level if there is none. Successful completion of an equality assertion causes normal return
to its caller, and is accompanied by deletion of the corresponding environment record.

If there are no (applicable) equality assertions for a given call, control transfers to any
applicable subset assertions. If there are no applicable subset assertions either, failure-
backtracking is initiated. The multiple subset assertions that match a given call and the

8



multiple a-c matches within a single subset assertion are attempted sequentially—depth-
first computation of subsets is a complete strategy because U is strict. We create a choice-
point record on the control stack to keep track of these alternatives. A single choice-point
can record multiple branch-points during a-c matching; for example, {{h1 | t1} | {n2 | £2}}

has three branch-points, one for each occurrence of *|". The number of branch-points is
known at compile-time.

When invoking a function defined by subset assertions, we distinguish two modes of
calls: call-one and call-all. The former is used to call a function—such as perma—that
appears as an argument to a function—such as distr—that distributes over nondetermin-
ism in this argument; otherwise the latter is used. An environment record is created if the
subset assertion matching this call has at least one call in its body. In other words, all

variables within a subset assertion are assumed to be permanent if the assertion has any
function call.

If a subset assertion is invoked by a call-all instruction, each successful completion
of the assertion causes success-backtracking to the most recent choice-point; if it is invoked
with a call-one instruction, each successful completion causes an ezit back to the caller.
The compiled code for each subset assertion ends with a collect? instruction, which
tests a ‘mode’ register to determine whether to initiate success-backtracking or exit—the
environment record is not deleted at this time. Once all branch-points within a choice-
point have been exhausted, the next subset assertion that matches the call is entered, and
the current environment record is deleted. As each subset is computed, it is added to
the overall set after removing duplicates. When failure-backtracking transfers control to
a choice-point, the subset computed for this path is assumed to be empty, and execution
continues as if success-backtracking had occurred.

Note that the heap is not retracted upon success-backtracking, because the data-
structures created along all success backtrack paths are collectively needed. The heap is
retracted upon failure backtracking. Garbage collection—not discussed in this paper—is
needed to reclaim inaccessible objects in the heap.

3.2 Instruction Set

The state of a SEL program is given by the content of the data areas, as well as certain
registers. The following registers and their intended use are identical to that of the WAM:P,
current program code pointer; CP, continuation program code pointer; E, last environment
pointer; B, last choice-point; A, top of stack pointer; H, top of heap pointer; HB, heap
backtrack pointer; S, structure pointer (to top of heap); A1, A2, ..., argument registers;
and X1, X2, ..., temporary variables,

In addition, we need the following new registers: M, mode of the current call; CB,
current branch-point; and B1, B2, ... branch-point registers.

9



Similar to the WAM, there are several classes of instructions: get, pul, store, malch,
procedural, and indezing. The main differences are the following:

(i) WAM's unify instructions have been replaced by match and store instructions. The
‘read' and ‘write’ modes of WAM's get instructions for lists and structures can be identified
at compile-time. All uses of WAM’s get and unify in the ‘read’ mode are replaced by get
and match instructions; all uses of WAM's get and unify in ‘write’ mode are replaced by
store instructions. All uses of WAM’s put and unify instructions are replaced by put and
store instructions.

(ii) For sets, we use four new instructions: get_empty.set, get_set, get_set_head,
and put_set instructions. The difference between get_set and get_set_head is that the
latter does not construct the remainder of the set. In the former case, the n different
remainders of an n-element set are constructed in a total of n extra words, rather than
O(n?) extra words. Each invocation of the get_set instruction constructs only one of

the remainders. Both these instructions establish branch-points, by setting the CB and
branch-point registers appropriately.

(iii) The procedural instructions of the WAM are augmented with the call-one,
call-all, and collect? instructions described earlier. The collect? instruction is
responsible for constructing the resulting set and removing duplicates, in case the mode
register indicates a call-all invocation.

(iv) The indexing instructions differ from the WAM in that they do not create choice-
points. Choice points are created explictly with a set_choice point instruction. We
use try.equ._else instructions to link equality assertions, and try_sub_and to link subset

assertions. We use a switch.on ground_ter= instruction for indexing equality and subset
assertions, with four cases: constant, list, structure, and set.

We conclude the description of the implementation by showing how the two assertions
for perms are compiled with these instructions. Each line of the compiled code is com-
mented at the end by showing the corresponding program fragment that it implements.
Note that the address of the result of a function is passed as an extra argument (the last),
and that the set {[ |} is represented as {[ | | { }}.

perms/2: switch.on ground term C1, fail, fail, C2

C1: get.empty.set Al % perms({ }) =
storeset A2 L 1
store_constant | ] % 11l
atore_constant { } {3
proceed

C2: allocate

10



get_set Al % perms({

match_variable Y1 » x |
match_variable Y2 % t}) 2
get_variable Y3, A2 % vt
set.choice_point M

put.value Y2, Al % perzs(t) 2
put_value Y4, A2 % ve,
call-one perms/2

put_value Y1, Al % distr(x,
put.value Y4, A2 X v3) =
put_value Y5, A3 ¥ vi
call-all distr/3

collect? Y3, Y5 TY3 := Y3UYS

4. Conclusions

There is an acknowledged need for a declarative approach to sets in both functional
and logic programming [T85, N85]. Our work represents an attempt to fulfil this need. The
two main ideas behind subset-logic programming are: (i) programming with subset and
equality assertions, and (ii) computing with a-¢ matching and rewriting. We presented the
formal semantics of subset-logic programming in an earlier paper [JP87]. In this paper,
we have illustrated the paradigm through examples, and shown that it is practical by
sketching how it can be efficiently implemented using existing technology. We are in the
process of implementing the language SEL described in this paper.

We have tried to be conservative in our design, in that we have tried to provide the
smallest set of features that will be declarative, useful, and efficiently implementable. Many
extensions appear to be possible: non-strict constructors, absolute set-abstraction, higher-
order features, and also the integration of subset-logic and predicate-logic programming.
We are at present investigating these extensions. We are also trying to automatically
characterize as much as possible (at compile-time) the confluence of equality assertions
with a-c constructors and also the distribution of functions over nondeterminism.

References

[C78] K. L. Clark, “Negation as Failure,” In Logic and Data Bases, Ed. H. Gallaire
and J. Minker, Plenum Press, New York, 1978, pp. 293-322.

[HCHB?] B. Hausman, A. Ciepielewski, S. Haridi, “OR-Parallel Prolog Made Efficient

on Shared Memory Multiprocessors,” In 1987 Symp. on Logic Prog., pp. 69-
79, San Francisco, 1987.

11



[JL87|

[3P87]

[K74]
[N8s)
|085]
[P72]
(SS86)]
[SWs7|
[T85]

[WPPT77]

[W83]

J. Jaffar, J.-L. Lassez, “Constraint Logic Programming,” In 14th ACM POPL,
pp. 111-119, Munich, West Germany, 1987.

B. Jayaraman and D.A. Plaisted, “Functional Programming with Sets,” In
Third Int’l Conference on Functional Programming Languages and Computer
Architecture, pp. 194-210, Portland, 198T7.

R.A. Kowalski, “Predicate Logic as Programming Language,” IFIP Proc.,
1974, pp. 560-574.

L. Naish, “All Solutions Predicates in Prolog,” In Symp. on Logic Program-
ming, Boston, 1985, pp. 73-77.

M. J. O'Donnell, “Equational logic as a programming language,” M.I.T. Press,
1985,

G. Plotkin “Building-in equational theories,” In Machine Intelligence T, pp.
73-90, Edinburgh University Press, 1972.

L. Sterling and E. Shapiro, “The Art of Prolog,” MIT Press, 1986.

K. Shen and D.H.D. Warren, “A Simulation Study of the Argonne Model for
OR-Parallel Execution of Prolog,” In 1987 Symp. on Logic Prog., pp. 54-68,
San Francisco, 1987.

D. A. Turner, “Miranda: A non-strict [unctional language with polymeorphic
types,” in Conf. on Functional Prog. Langs. and Comp. Arch., Nancy, France,
Sep. 1985, pp. 1-16.

D. H. D. Warren, F. Pereira, and L. M. Pereira, “Prolog: the Language and

Its Implementation Compared with LISP," SIGPLAN Notiees, Vol 12., No. 8§,
pp. 109-115, 1977.

D. H, D. Warren, “An Abstract Prolog Instruction Set,” Tech. Note 309, SRI
International, Menlo Park, October 1983.

12



