
Subset-Logic Programming:
Application and Implementation

TR88-0ll

February 1988

Bbarat Jayaraman and Anil Na.i.r

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitter son Hall
Chapel Hill, NC 27599-3175

Subset-logic Programming: Application and Implcmcntationt

Abstract

Bharat Jaya.nman
Anil Nair

Department of Compute r Science

University of North Carolirw at Chapel Bill

Chopt.l Hill, NC e154
U.S.A.

Tel: (919) 962-1764

E-mail: bjOcs.unc.edu

Subset-logic programming is a paradigm of programming with subset and equality
assertions. We propose this paradigm as a logical basis for programming with sets. We
p r~ent a language called SEL to illustrate the approach. The teriii3 of SEL arc the usual
first-order ten:Dll of Prolog, augmented with one associative-commutative (a-c) construc
tor, U , for defining sets. Computa.tionally, we treat assertions as one-way rewrite rules,

where the matching used is a. restricted form of associative-commutative matching. Unlike

Prolog's unification, a-c matching could produce multiple matching substitutions, which
can effectively serve to iterate over the elements of sets, thus permitting many useful set
operations to be stated non-recursively. We also describe the implementation of SEL. We
show how W AM-like instructions ClUl be used to compile SEL programs. Because matching

rather than unification is used, the ' read' and 'write' modes of 'get' instructions can be
identified at compile-time. Two forms of backtracking occur: in addition to backtrack
ing upon failure, the implementation also backtracks upon success in order to collect all

o elements of a set. An important property of a SEL function is whether or not it 'dis
tribut~ over nondeterminism' in a particular argument. If it does , we can avoid checking
for duplicates in this argument, and also avoid constructing the set corresponding to this
argument.

t This reseo.rth is supported by gra.nl OCR-8603609 from lhe Kat ion~ Sci~nc~ Foundation and conlrotl

N 00014·86-K·0680 from the Office of Naval R rch.

1. Int r oduction

The term 'logic programming' is often taken to be synonymous v;ith predicate-logic pro

gramming, owing to the latter's simple semantics [K74) and the success of Prolog [WPP77).
In recent years, other forms of logic programming have been proposed, most notably
equational-logic [085) and constrain~logic programming [JL87j. We contribute another
such approach in this paper, called subset--logic programming. The main motivation for

our work was to provide a rigorous basis for programming with sets. Existing approaches,
such as the 'setof' co1111truct of most Prolog systems {N85j or the relative-set co1111truct of
functional languages [T85), are no~ supported by an underlying logic, although they are
very useful in practice.

In our approach, a program is a collection of two kinds of assertio1111:

(i) equality assertion: f{terrru} = czprc8-3ion

(ii) subset assertion: f(tcrm8) 2 c:cprcssion

The declarative meaning of an equality (resp. subse~) assenion is ~hat, for aU its ground
instances, the function /operating on the argument ground terms is equal to (resp. superset
of) the ground term denoted by the expression on the right-side. We adopt the closed
world assumption, so that the meaning of a set-valued function f operating on ground
terms can be equated to the union of ~he respect ive sets defined by the different subset
assertions for f. The top-level query is of the form

? expr

where czpr is a ground expression. The meaning of this query is the te rm t such that t =
cxpr is a logical consequence of the program assertions.

The language vehicle we present for conveying these ideas is called SEL, for Set

Equation Language. The data objects in SEL, c ailed terms, are the finite objects built
up from atoms and data-constructors. (There are no infinite or higher-order objects in
SEL.) Terms are distinguished from more general expressfons, which may also contain

function applications. Apart from the usual data-.<<>nstructors of Pro log, we also permit the
associative-commutative (a-c) constructor u. The u constructor is our means of defining
sets.

Computation with these assertions is a process of 'replacing equals by equals~. Both
equality and subset assertions are oriented left-to-right for rewriting. AU constructors and
user-defined functions are strict in all arguments, thus nested function applications are

performed innermost-first. Because arguments to functions are ground terms, function
application requires one-way matching, rather than unification. The matching operation
is actually associative-commutative (a-<) matching [P72j, because of the presence of the U
constructor. Unlike unification, a-< matching could have multiple matching substitutions.

l

In this paper, we restrict the use of U on the left-sides of program assertions in a man
ner that supports dear programming as well as efficient implementation. The associated
matching algorithm is referred to as restricted a-c matching.

SEL is essentially a functional programming language, in which sets are 'first class'

objects, i.e., not simulated by lists. lt.s benefits for functional and logic programming are:
(i) many operations over sets can be stated non-recursively, thanks to the implicit iteration
over set.s provided by a...c matching; (ii) formulating problems in l.erms of sets rather than
lists provides more parallelism, because sets rela.x the sequencing constraint of lists; (iii)
nondeterministic: search ca.n be specified without the use of 'cuts'; (iv) efficient (non
backtra.c.kablc) execution is possible with equations; and (v) checks for duplicate elements

in argument sets and formation of int-ermediate sets can be avoided when operations using
these sets 'distribute over nondctcrmini.sm' (discussed in section 2).

SEL does not support unification or backward reasoning. We believe these capabilities
are already wcll-support.ed in predicate- and constraint-logic programming. A unified
language with both capabilities can be designed, but this issue is beyond the scope of this
paper.

In order to demonstrate the practicality of our approach, we also present in this
paper the implementation of SEL programs. Our implementation model is essentially a

stack-heap model based on structure copying. It turns out that 'WAM'-like instructions

[W83] are very appropriate for the compilation or a-c matching. B~ause we employ one

way matching, we can identify at compile-time the 'read' and 'write' modes of WA.'\1's 'get'

instruction. Another interesting contrast from Pro log implementations is that backtracking
in a SEL implementation could oc:c:ur both on suc:c:ess as well as failure. The former
occurs because multiple branch points could arise in the invocation of a single subset

assertion-due to branching in a-< matching-and the successful completion of one such

branch requires backtracking to repeal the same righ~side, but using a different matching
substitution. Because the underlying implementation model for SEL is so similar to the
WAM model, we believe that combining predicate-logic and subset- logic programming
would be practically feasible.

We described the language SEL, and it.s declarative and operational semantics in an

earlier paper [JP87J. The main objec~ive of this paper is to show the relevance of SEL
for logic programming, to describe res~ricted a-< matching, and also to demonstrate that
it can be implemented efficiently using WAM-Iike instructions. The rest of this paper

is organized as follows: section 2 Wormally presents the features of SEL, restricted a-c
matching, and examples; section 3 describes an abs~ra.c:t machine for SEL: its execution
model, instruction set, and the compiled code for a typical program; and section 4 presents
conclusions and possible extensions.

2

z. Subset-logic Programming

We first c:larify the synta.ctic structure of term and expression.

term : :• atom I variable I { } I {term} I term U term I constructor(terms)

terms : : • term I term , terms

e;r;pr: :• tum I {e:rpr} I e:rpr U e:rpr I construclor(e:rprs) I function(terrns) I
if e:rpr then e:rpr else e:rpr

e:rprs : : • e:rpr I e:rpr . e:rpr~

We use the ! .. ·I notation for writing lists, as in Prolog, and also the notation [h I t}

to refer to a non~mpty list, with head hand tail t. Similarly, we use the { ... } notation
for sets, e.g. {1, 2, 3}, and also use {h I t} to refer a non-empty set, one of whose elements
ish and the remainder of the ut is t. Thus, {h I t} = {h} u t. The set {1,2,3} may be
represented as {1} U {2} U {3} U { }. Other permutations, such as {2} U {1} U {3} U { },
{1} U {3} U {2} u { }, etc., represent the same set. Lists and sets may be freely combined
in SEL. The constructor u, which stands for set union, is associative and commutative,

with the properties, xU x • x (idempotence) and xU { } = x (identity), where { } stands
for the empty set.

2.1 Restricted A-C Matching

The associative-commutative matching problem may be stated as follows: Given two terms

11 (possibly non-ground) and t2 (ground), some constructors of which may be associative
commutative, is there a substitution 8 such that t 1 8 = 4c t2? Note that the equality =cc is

based only the associative and commutative properties, but not the idempotent property.
Thus, for example, matching {h t} with { 1, 2, 3} cannot yield the matching substitution
{h <- l,t ,_ {1,2,3}}. However, {1} can match {h I t}, yielding {h ,_ l,t ,_ { }} .

Plotkin (P72] was perhaps the first to study a-c matching, which he used for building
in equality theories in resolution theorem-provers. To the best of our knowledge, a-c
matching has not been previously considered for prutical logic programming. For both

programming and implemen~ation simplicity, we propose to disallow explicit use of the U

constructor on the left-side& of SEL assertions. Instead, we permit arbitrary combinations
of patterns of the form

{term I term}.

While some expressive power is surificed by this restriction, most practical cases are unaf

fected. This restriction turns out to be very imporlan~ for compilabilily of SEL programs.

Below we present a Pro log program to specify more precisely the behavior of ~he

matching algorithm, assuming the above res~riction. The first argument of ::at:ch is a
possibly non-ground term (representing the head of an assertion) and the second argument

3

is a ground term (representing the arguments of a function call). [n case a match is

possible, the variables in the first input a.rgumenL are instantiated appropriately. Multiple
matches are produced one at a time. For simplicity, only lists and sets are considered;
other constructors can be treated similarly.

match(A, A) :
atomic (A) • I .

match({}, { }) .

match(V. Arg) :
var(V). I.

V • Arg.

match((T1 I T2). [Arg1
match(Tl. Arg1),
match(T2. Arg2).

Arg2)) :-

match({Elam1 I Setl}, ArgSat) ·-
generate(ArgSet. Elam2. Set2),
match(Elam1, Elem2).
match(Setl, Set2).

generate ({Elem I Set}, Elem. Set) .
genorate ({Elem I Set}, Elem2. {Elem Set2}) ·

ganerate(Set, Elem2, Set2).

2.2 Program Assertions

As mentioned in the introduction, program assertions are either of the form

/(terms) = ezpression or !(terms) :2 c:pression.

We require thai every variable on the right,..side of an equality or subset assertion must

be present on its left-side. There are no free variables in SEL. We informally explain the

operational semantics of these assertions; a more formal account is given in our earlier
paper [JP87) in terrns of rewrite rules.

For example, when matching an expression distr(10, {1,2,3}) with the left-side of a
subset assertion

distr(x, {h I t}) :2 {!x I h}}

all three matches are considered, namely, {x ~ 10, h <-- 1, t <- {2, 3}}, {x - 10,h ,_ 2,
t <- {1,3}}, and {x ~ 10,h ,_ 3,t <- {1,2}}. The right-side of the assertion for distr,

namely {[x I hj}, is then fully reduced for each of these matches, and the union of the fui!Y
reduced results is defined as the value for f ({t,2,3}). Thus, the value returned in this

4

case would be {[1011], [1012], {1013]}. Duplicate elements are eliminated while taking this
union-we mention in section 2.4 when we can avoid checking for duplicates and also avoid
constructing this set. If multiple subset assertions match a call, their respective right-sides
are similarly reduced, and the union of all such results is taken as the result of the call.

Because the union operation is strict, it will not t erminate if any of these reductions does
not terminate, i.e., xU .l = .L. However, because of the closed-world assumption, if any
one t hese reductions terminates with a non-term expression (T), its result can be assumed
to be { } for the purpose of the union, i.e., xU T = z.

Unlike subset assertions, when computing with equality assertions, only one of the
potentially many a-c matches is considered in reducing the m&tching assertion, because we
assume the result of rewriting is independent of which particular match is considered. For
example, when matching an expression a in({ l , 2, 3}) with the left-side of an assertion

aize({h I t}) = 1 + size(t)

any one of the three matches for h and t may be taken, and the others ignored. It

is left to the programmer to ensure that the rellult of rewriting is independent of the
particular match considered-in our earlier paper (JP87j, we mentioned methods of proving
confluence for equational programs with a-c matching. An example of an assertion that
violates this property is: aet2list({h I t})= [h I 18t2list(t)J.

Finally, we define the conditional expression as follows:

if true than e1 else e2 • e1,and

if .x t hen e1 else e2 • e2, if .x f true 11 x '# .l .

That is, the conditional expression implements a form of negation by failure (C78j.

2 .3 Examples of SEL Programs

Append:

append([J, y) = y •
append([h I t j, y) =[h I append(t,y)J

First-order functional programming can be carried out in the usual way with equations,

as the above example suggests.

Set Intersection:

i ntersec t ({ } , s) =< { }

intersect(s , { }) =< { }

intersect({h I _ }. {h I - }) 2 {h}

Finding common elements in the two sets is finessed by a-c matching. The anonymous
variable _ is similar to that of Prolog. An important difference here, however, is that
considerable space and time can be saved by not constructing the remainder of the set.

Relative Set Abstraction:

aU-fp({ }) = { }
all-fp({x 1- }) 2 if p(x) then {f(x)} e lae { }

The above assertions serve to effectively define the relative set construct, {!(x) I xES II p(x)}.
Here, a-c matching is used to iterate over the clements of the argument set.

Permutations:

perms({ }) =: {[]}

perms({x I t}) 2 diatr(x,perma (t))

distr(x, { }) = { }
diatr{x, {y I - }) 2 {lx I y]}

The function perms takes a set of element.s aa input and produces a..s output the set of
permutations of these elements. The function diatr expects a set of lists a..s its second
argument. Its result is a seL whose elements are constructed by •consingft its 6rn argument

to each list in its second-argument set.

Four Queens Problem:

queens(c:ol, aafeset) =if eq(col, 6) then safeset

else placequeen(col, { 1, 2, 3, 4}, safe set)

plac:equeen(col, {row 1- },safeset) 2
11 aate(lc:ol rovj, safeaet)

sate([cl I rl], { }) =true

then queens (col + 1, {!col I rowjl safeset})

else { }

safe([c:l l rl],{[c:2 1 r2Jis}) = (rl f. r2) and {abs(c1-c2} i abs(rl - r2))
and sate(lc 1 , r lJ, s)

?queens(l,{ })

The above example illustrates how a search may be specified. The algorithm places a
queen on each successive column, beginning from column 1, as long as each new queen
placed is safe with respect to a ll queens in the precedjng columns. A solution is found if a
queen can be thus be placed on all columns. The second argument to placequeen, viz., the
set {1, 2, 3,4}, enumerates the row positions in ea.ch column. If a particular row-column
position is not safe, placequeen reLurns the empty set { }, thereby pruning this line of

search. The function safe specifies the safety condition-we assume that SEL has the
usual complement of arithmetic operations.

2.4 Remarks

The above examples serve as a basis for the following more general points:

6

1. Note that intersect, all-fp, and distr are stated non-recursively. We similarly

defined several other useful operations in our recent paper [JP87j. This is one of the

strengths of a-c matching. All of the programs using relative set-abstraction in Miranda

[T85j may be macro-expanded into SEL assertions, in the manner shown in the all-fp

example.

2. Formulating problems, e.g. permutations, with sets rather than lists allows more

parallelism. Note that comparable declarative formulations of this problem in existing

functional and logic languages cannot achieve as much parallelism as the SEL formulation

because they sequentialize the generation of permutatioM by treating the answer as a list of

permutations. Because of one-way matching, the or-parallelism arising from a-c matc:hing

does not incur the problem of having to maintain multiple bindings of unbound variables

in the parent environment [HCH87, SW87j.

3. We say that an operation f distributes over nondetcrminism '" the i-th argument

iff

f (... ,x u y, ...) = f (. . . ,x, .. .) U f(. .. ,y, .. .)

where the i-th argument of f is the one shown above. Functions that compute some

aggregate property of a set, e .g. size and pen::a, do not distribute over nondeterminism.

Functions, such as diatr and intersect, that are defined in terms of the elements of the

set, dp distribute over nondeterminism. There are two benefits of knowing that a function

distributes over nondeterminism in a particular argument:

(i) We can avoid checking for duplicate elements in this argument; the function is
simply applied to the singleton-sets that make up the argument set, and the individual

results propagated. Because argument sets are usually free from duplicates, this can lead
to substantial savings in execution time.

(ii) When several such functions are composed together, we effectively avoid con·

structing intermediate sets, thus sa'!iing space as well. This optimization is similar to the

avoidance of constructing intermediate lists when composing a series of 'map' functions in
functional languages.

At this stage of its developmen~. we assume that a SEL programmer specifies, through

suitable 'mode' declarations, in which arguments a function dist ributes over nondetermin

ism.

3. Implementation

We present here the salient aspects of an abstract machine for implementing SEL. This

abstract machine is very similar to the WA:-vt. being based on a s tack-heap model wi th

structure-copying. We therefore concentrate on the djfferences in this presentation. We

7

assume that the reader has some familiarity with the W A.\.1 implementation of Prolog

(W83j.

The basic approach is as follows: At compile-time, we flatten all expressions in accor

dance with innermost-first semantics, so th.at the a.rguments of all function calls are terms.

Temporary variables are introduced as necessary. We illustrate by showing the flattened

form of perms below.

perms({}) ={! n
parma({x It}) 2 vl perma(t) 2 v:l, distr(x, v:l) = vl

Note that the operation diatr distributes over nondeterminism (in its second argument},

but perms does not. This is distinguished in the compiled code by the use of 2 in flattening

parma, and the use of= in flattening diatr. Equality a.nd subset assertions can be assumed

to be mutually exclusive, i.e., an equality and a subset assertion cannot both match a given

cal l. Furthermore, equality assertions can be assumed to be mutually exclusive among

themselves; in ca.se of overlap, the choice is arbitrary. Within each class, the assertions

are indexed on their first argument , as in the W AM. We try all equality assertions first,

followed by subset assertions.

The main data areas are: (i) the static codG area, (ii) the control stack, and (iii)

the heap. There is no need for a trail stack, because the matching is strictly one-way;

trying alternative branches during a-c matching requires changes only to local variables.

ln addition to these areas, a push-down list is maintained in order to traverse nested

structures during matching~imilar to that needed for unification.

As in the WAM, the control stack is made up environments and choice-points. Envi

ronment trimming and last-call optimization are possible for equality assertions (because

they are deterministic) but not for subset assertions. The heap stores lists, structures, and

sets. Unlike the WAM, we do not need to identify global variables, because all returned
values must be ground. In other words, all variables can be allocated on the control stack.

3.1 Execution Model

A function defined exclu.sively by equality assertions is invoked by a call instruction. An

enuironment record is created on the control &tack for this call if the matching assertion has

permanent variables, as in the WAM. If there is no match, failure is signalled, which causes
failure-backtracking to the most recent choice-point (discussed further below) or to the top

level if there is none. Successful completion of an equality assertion causes normal return

to its caller, and is accompanied by deletion of the corresponding environment record.

If there are no (applicable) equality assertions for a given call, control transfers to any

applicable subset assertions. If there are no appltcable subset assertions either, failure

backtracking is initiated. The multiple subset asseitions that match a given call and the

8

multiple a-c matches within a single subset assertion are altempted sequentially-depth
first computation of subsets is a complete strategy because U is strict. We create a choice
point record on the control stack to keep track of these alternatives. A single choice-point

can record multiple branch-points during a-c matching; for example, { {hl I tl} I {h2 I t2}}
has ~hree branch-points, one for each occurrence of "I'. The number of branch-points is
known at compile-time.

When invoking a function defined by subset assertions, we distinguish two modes of

calls: call-one and call-all. The former is used to call a function~uch as perms-that
appean as an argument to a function- such as diatr-that distributes over nondetermin

ism in this argument; otherwise the latter is used. An emnronment record is created if the
subset assertion matching this call has at least one call in its body. [n other words, all
variables within a subset assertion are assumed to be permanent if the assertion has any

function call.

If a subset assertion is invoked by a call-all instruction, each successful completion

of the assertion causes .succus-backtracking to the most recent choice-point; if it is invoked
with a call- one instruction, each successful completion causes an e:tit back to the caller.

The compiled code for each subset assertion ends with a collect? instruction, which
tests a 'mode' register to determine whether to initiate success-backtracking or exit- the
environment record is not deleted at this time. Once all branch-points within a choice
point have been exhausted, the next subset assertion that matches the call is entered, and

the current environment record is deleted. As each subset is computed, it is added to
the overall set after removing duplicates. When failure-backtracking transfers control to

a choice-point, the subset computed for this path is assumed to be empty, and execution

continues as if success-backtracking had occurred.

Note that the heap is not retracted upon success-backtracking, because the data
structures created along all success backtrack paths are collectively needed. The heap is
retracted upon failure backtracking. Garbage collection-not discussed in this paper-is

' needed to reclaim inaccessible objects in the heap.

3.2 I nstruction Set

The state of a SEL program is given by the content of the data areas, as well as certain
registers. The following registers and !.heir intended use are identical to that of the WA.'\1: P,
current program code pointer; CP, continuation program code pointer; E, last environment

pointer; B, last choice-point; A, top of stack pointer; H, top of heap pointer; HB, heap
backtrack pointer; S, structure pointer (to top of heap) ; At. 1.2. . .. , argument registers;
and Xl. X2, .. . , temporary variables.

In addition, we need the following new registers: M, mode of the cur rent call; CB,
current branch-point; and Bl. B2. . .. branch-point registers.

9

Similar to the WAM, there are several classes of instructions: get, put, store, match,

procedural, and indexing. The main differences are the following:

(i) WAM's uni/'11 instructions have been replaced by match and store instructions. The

'read' and 'write' modes of WAM's get instructions for list.s and structures can be identified

at compile-time. All uses of WiUvf's get and unify in the 'read' mode a.re replaced by get

and match instructions; aU uses of WA}.i's get and uni/v in 'write' mode are replaced by

store instructions. All uses of WAM's put and unify instructions are replaced by put and

store instructions.

(ii) For sets, we use four new instructions: gtt_e::~pty_set, get..set, get...set...haad,

nnd put_set inst ructions. The difference between get..set and get..set..head is that the

latter does not construct the remainder of the ul. In the former ca:se, the n different

remaindeT!I of an n-element set a.re constructed in a total of n extra words, rather than

O(nl) extra words. Each invocation of the get_.ee t instruction constructs only one of

the remainders. Both these instructions establish bra."'lch-point.s, by setting the CB and
branch-point registers appropriately.

(iii) The procedural instructions of the WAM are augmented with the call-one,

call-all, and colhct? instructions described earlier. The collect? instruction is

responsible for constructing the resulting set and removing duplicates, in case the mode

register indicates a call-all invocation.

(iv) The indexing instructions differ from the W AM in that they do not create choice

points. Choice points are created explictly with a set_choice..point instruction. We

use try_equ_else instructions to link equality assertions, and try_sub..And to link subset

assertions. We use a awi tch_on..grouncLter:: instruction for indexing equality a.nd subset

assertions, with four cases: constant, list, structure, and set.

We conclude the description of the implementation by showing how the two assertions
for perma a.re compiled with these instructions. E ach line of the compiled co.sle is com

ment ed at t he end by showing the corresponding program fragment that it implements.

Note that the address of the resu lt of a function is passed as an extra argument (the last),

and tha t the set {[j} is rep resented as {[Jl { }}.

perme/ 2: ewi tch_o4round_terl:l Cl . fail . fa il , C2

Cl : get_empty_set Al X perl:ls {{ }) -
store_set A2 X {
s tore_cons t ant [] X I J I
store_constant { } X {}}
proceed

C2 : allocate

10

get..set A1
match_variable Y1
aateh_variable Y2
get_variable Y3, A2
sat_choice..point
put_value Y2, Al
put_value Y4 , A2

call-one perl:ls/:2
put_value Yl, Al
put_value Y4, A2
put_value Y5, A3

call-all distr/3
collect? Y3, Y5

,; perm.s({

,; x l
,; t }) 2
X vl

X · -
X per-S(t) 2
X v2,

X diatr(x.
X v2) -
X vl

X Y3 :• Y3 U YS

4. Conclusions

There is an a.cknowledged need for a declara.tive approach to set$ in both functional
and logic programming (T85, N85j. Our work represents an attempt to fulfil this need. The

two main ideas behind subset-logic programming are: (i) programming with subset and
equality assertions, and (ii) computing with a-c matching and rewriting. We presented the
formal semantics of subset-logic programming in an earlier paper (JP87j. In this paper,

we have illustrated the paradigm through examples, and shown that it is pra.ctical by

sketching how it can be efficiently implemented using existing technology. We are in the

process of implementing the language SEL described in this paper.

We have tried to be conservative in our design, in that we have tried to provide the

smallest set of features that will be declarative, useful , and efficiently implementable. Many
extensions appear to be possible: non-strict constructors, absolute set-abstraction, higher

order Jeatures, and also the integration of subset.-logic and predicate-logic programming.
We are at present investigating these extensions. We are also trying to automatically

characterize as much as possible (at compile- time) the confluence of equality assertions
with a-<: constructors and also the distribution of functions over nondetenninism.

References

{C78j K. L. Clark, "Negation as Failure,• [n Logic ond Doto 80$~S, Ed. H. Gallaire

and J. Minker, Plenum Press, New York, 1978, pp. 293-322.

[HGH87j B. Hausman, A. Giepielewski, S. Haridi, "OR-Parallel Prolog Made Efficient
on Shared ~emory Multiprocessors," ln 1981 Symp. on Logic Prog., pp. 69-
79, San Francisco, 1987.

11

[JL87]

IJP87]

J. Jaffar, J.-L. Lassez, "Constraint Logic Programming," In 1-Ith ACM POPL,

pp. 111-119, ~funich, West Germany, 1987.

B. Jayararnan and D.A. Plaist-ed, "Functional Progra.xnrrllng with Sets," In
Third Int 'I Conferena on Functional Pro!;ramming Languages and Computer

Arch1tecture, pp. 194-210, Portland, 1987.

[K74] R.A. Kowalski, "Predicate Logic as Progra.xnrrllng Language,• rFlP Proc.,

1974, pp. 569-574.

[N85] L. Naish, "All Solutions Predicates in Pro log," In Svmp. on Logic Program

ming, Boston, 1985, pp. 73-77.

[085]

[P72]

[SS86]

[SW87J

M. J. O'Donnell, "Equational logic as a programming language," M.I.T. Press,

1985.

G. Plotkin "Building-in equational ~heories," In Machine Intelligence 7, pp.

73-90, Edinburgh University Press, 1972.

L. Sterling and E. Shapiro, "The Art of Prolog," MIT Press, 1986.

K. Shcn and D.H D. Warren, "A Simulation Study of the Argonne ~lode! for

OR-Parallel Execution of Prolog," In 1987 Symp. on Logic Prog., pp. 5-t-68,

San Francisco, 1987.

[T85] D. A. Turner, "Miranda: A non-stricl functional language with polymorphic

types," in Couf. on Functional Prog. Longs. and Comp. l•rch., Nancy, France,

Sep. 1985, pp. 1·16.

[WPP77J

[W83]

D. H. D. Warren, F. Pereira, and L. M. Pereira, "Prolog: the Language and

Its Implementation Compared with LISP," SJGPLAN Notices, Vol 12., No.8,

pp. 109-ll5, 1977.

D. H. D. Warren, "An Abstract Prolog Instruction Set," Tech. Note 309, SRI

International, Menlo Park, October !983.

12

